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1 Introduction

In recent years there has been increasing interest to hard exclusive production of tensor

mesons a2(1320), K∗2 (1430), f2(1270) and f ′2(1520) by virtual photons or in heavy meson

decays. In particular the possibility of three different polarizations of tensor mesons in

weak B meson decays can shed light on the helicity structure of the underlying electroweak

interactions. A different symmetry of the wave function and hence a different hierarchy

of the leading contributions for the tensor mesons as compared to the vector mesons can

lead to the situations that the color-allowed amplitude is suppressed and becomes compa-

rable to the color-suppressed one. This feature can give an additional handle on penguin

contributions. The early work was devoted mainly on the identification of the interesting

decay modes and their basic theoretical description using various factorization techniques

at the leading-order and the leading-twist level, see e.g. [1–6]. These studies are to a large

extent exploratory. The physics potential of tensor meson production will depend on the

accuracy of the theoretical description of such processes that can be achieved in QCD.

The recent study [7] of hard exclusive production of tensor mesons in single-tag two-

photon processes is an important step forward in this context. This is a “gold-plated”

reaction where the theoretical formalism can be tested and the relevant nonperturbative
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functions — tensor meson distribution amplitudes (DAs) — determined, or at least con-

strained. Our work aims to match this experimental progress with a development of the

robust QCD framework for the study of the transition form factor γ∗γ → f2(1270) in

collinear factorization.

This reaction has already attracted some attention. Useful kinematic relations and

estimates of the transition form factors for the mesons built of light and heavy quarks can

be found in [8]. In ref. [9] it was pointed out that hard exclusive production of f2(1270)

with helicity λ = ±2 is dominated by the gluon component in the meson wave function

and can be used to determine gluon admixture in tensor mesons in a theoretically clean

manner. In ref. [10] the helicity difference sum rule for the weighted integral of the γ∗γ

fusion cross section was derived and shown to provide constraints on the transition form

factor in question. A phenomenological model for the tensor meson form factor can also

be found in [11]. A related reaction γ∗γ → ππ near the threshold has been discussed

in [12–14].

Theory of the transition form factors goes back to the classical work on hard exclusive

reactions in QCD [15–17]. The case of tensor mesons does not bring in complications of

principle as compared to the pseudoscalar meson transition form factors that have been

studied in great detail, but the tensor meson case is much less developed on a technical

level. Our paper can be viewed as a major update of a earlier work [9] where the leading

contributions to this process have been identified and calculated at the leading order. The

new elements are:

• We introduce twist-three and twist-four DAs and calculate the corresponding contri-

butions to the form factors;

• We calculate meson mass corrections terms in the higher-twist DAs and estimate the

leading “genuine” three-particle contributions;

• We include the next-to-leading (NLO) corrections and calculate the charm-loop con-

tribution for the helicity amplitude with λ = ±2 taking into account for the c-quark

mass;

• We estimate quark-gluon coupling constants entering on the higher-twist level using

QCD sum rules and the leading-twist gluon couplings using QCD sum rules and,

alternatively, from the quarkonium decay Υ(1S)→ γ f2;

• We estimate the soft (end-point) correction for the leading, helicity-conserving am-

plitude.

The main conclusion from our study is that the experimental results on the γ∗γ → f2(1270)

transition form factors reported in ref. [7] appear to be in a very good agreement with the

QCD scaling predictions starting already at moderate Q2 ' 5 GeV2. This is in contrast to

the transition form factors for pseudoscalar π, η, η′ mesons where large scaling violations

have been observed [18–20]. The absolute normalization for all helicity form factors can

be reproduced assuming a 10–15% lower value of the tensor meson coupling to the quark
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energy-momentum tensor as compared to the estimates existing in the literature, which is

well within the uncertainty.

The presentation is organized as follows. Section 2 is introductory. It contains the

definition of helicity amplitudes for the γ∗γ → f2(1270) transition and the necessary kine-

matic relations. For the reader’s convenience, the relation of our conventions to other def-

initions existing in the literature is explained in appendix A. Section 3 contains a detailed

discussion of the leading-twist and higher-twist DAs of the tensor meson, which are the

main nonperturbative input in the calculations. This section contains several new results.

The relevant nonperturbative parameters are calculated in appendix D using QCD sum

rules. In appendix E we estimate one of the leading-twist gluon couplings from the decay

Υ(1S)→ γ f2. In section 4 we calculate the three existing helicity amplitudes in collinear

factorization, including higher-twist and, partially, radiative corrections. In section 5 we

discuss the power suppressed corrections ∼ 1/Q2 arising from the end-point regions. We

explain how such corrections can be estimated using dispersion relations and duality and

construct the light-cone sum rule for the largest, helicity conserving amplitude. In section

6 we compare our results to the experimental data [7] and summarize.

2 f2(1270) production in two-photon reactions

We consider the reaction

γ∗(q1) + γ(q2)→ f2(P ) , q2
1 = −Q2 , q2

2 = 0 , P 2 = m2 (2.1)

with one real and one virtual photon, P = q1 + q2. Here and below m = 1270 MeV is the

meson mass.

The transition amplitude can be related to the matrix element of the time-ordered

product of two electromagnetic currents

Tµν = i

∫
d4x e−iq1x〈f2(P, λ)|T{jem

µ (x)jem
ν (0)}|0〉 , (2.2)

where

jem
µ (x) = euū(x)γµu(x) + edd̄(x)γµd(x) + . . . .

The correlation function Tµν can be decomposed in contributions of three Lorentz structures

Tµν = Tµν0 + Tµν1 + Tµν2 , (2.3)

defined as

Tµν0 = e
(λ)∗
αβ

(
−gµν⊥

)
(q1 − q2)α(q1 − q2)β

m2

(2q1q2)2
T0(Q2) ,

Tµν1 = e
(λ)∗
αβ (−gαν⊥ ) (q1 − q2)β

[
qµ1 − q

µ
2

q2
1

(q1q2)

]
m2

(2q1q2)2
T1(Q2) ,

Tµν2 = e
(λ)∗
αβ

[
gαµ⊥ gβν⊥ −

1

2
gµν⊥

m2

(2q1q2)2
(q1 − q2)α(q1 − q2)β

]
T2(Q2) . (2.4)
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Here

gµν⊥ = gµν − 1

(q1q2)
(qµ1 q

ν
2 + qν1q

µ
2 ) +

q2
1

(q1q2)2
qµ2 q

ν
2 , 2q1q2 = m2 +Q2 . (2.5)

The polarization tensor e
(λ)
αβ is symmetric and traceless, and satisfies the condition e

(λ)
αβP

β =

0. Polarization sums can be calculated using∑
λ

e(λ)
µν e

(λ)∗
ρσ =

1

2
MµρMνσ +

1

2
MµσMνρ −

1

3
MµνMρσ , (2.6)

where Mµν = gµν − PµPν/m2 and the normalization is such that e
(λ)
µν e

(λ′)∗
µν = δλλ′ . The

invariant form factors T0, T1 and T2 correspond to the three possible helicity amplitudes

T0 : γ∗(±1) + γ(±1)→ f2(0) ,

T1 : γ∗(0) + γ(±1)→ f2(∓1) ,

T2 : γ∗(±1) + γ(∓1)→ f2(±2) . (2.7)

All three amplitudes (form factors) have mass dimension equal to one and scale as Tk ∼ Q0

(up to logarithms) in the Q2 →∞ limit. The two-photon decay width of f2(1270) is given

by [21]

Γ[f2 → γγ] =
πα2

5m

(
2

3
|T0(0)|2 + |T2(0)|2

)
= 3.03(40) keV , (2.8)

where α ' 1/137 is the electromagnetic coupling constant. Assuming that |T2(0)| � |T0(0)|
we obtain

|T2(0)| '
√

5m

πα2
Γ[f2 → γγ] = 339(22) MeV. (2.9)

The relation of our definition of helicity form factors to the other existing in the literature

definitions is given in appendix A.

3 Distribution amplitudes

In the standard classification the tensor JPC = 2++ SU(3)f nonet is composed of f2(1270),

f ′2(1525), a2(1320) and K∗2 (1430). Isoscalar tensor states f2(1270) and f ′2(1525) have a

dominant decay mode in two pions (or two kaons). The isovector a2(1320) decays only in

three pions and is more difficult to observe in hard reactions. In the quark model these

mesons are constructed from a constituent quark-antiquark pair in the P-wave and with the

total spin equal to one. In QCD they can be represented by a set of Fock states in terms of

quarks and gluons, that further reduce to DAs in the limit of small transverse separations.

In the exact SU(3)-flavor symmetry limit the f2(1270) meson is part of a flavor-octet,

f2 = T8, and f ′2(1525) is a flavor-singlet, f ′2 = T1. However, it is known empirically that the

SU(3)-breaking corrections are large. Since f2(1270) and f ′2(1525) decay predominantly in

ππ and KK, it follows that they are close to the nonstrange and strange flavor eigenstates,

respectively, with a small mixing angle, see [21, 22]. In this paper we assume ideal mixing

at a low scale which we take to be µ0 = 1 GeV, for definiteness. In other words, we assume
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that f2(1270) at this scale is a pure nonstrange isospin singlet. This assumption can easily

be relaxed when more precise data on the form factors become available. In what follows

the notation q̄ . . . q refers to the SU(2)-flavor-singlet combination

q̄ q =
1√
2

[
ū u+ d̄ d

]
, (3.1)

where u ans d are the usual “up” and “down” quark flavors.

Let nµ be an arbitrary light-like vector, n2 = 0, and

pµ = Pµ −
1

2
nµ
m2

pn
, g⊥µν = gµν −

1

pn

(
nµpν + nνpµ

)
. (3.2)

We define the f2-meson quark-antiquark light-cone DAs as matrix elements of nonlocal

light-ray operators [9, 23]

〈f2(P, λ)|q̄(z2n)γµq(z1n)|0〉 = fqm
2 e

(λ)∗
nn

(pn)2
pµ

∫ 1

0
du eiz

u
12(pn) φ2(u, µ)

+ fqm
2
e

(λ)∗
⊥µn
pn

∫ 1

0
du eiz

u
12(pn) gv(u, µ)

− 1

2
nµfqm

4 e
(λ)∗
nn

(pn)3

∫ 1

0
du eiz

u
12(pn) g4(u, µ) ,

〈f2(P, λ)|q̄(z2n)γµγ5q(z1n)|0〉 = −ifqm2εµναβ
nνpα

pn

e
(λ)∗
βn

pn

∫ 1

0
du eiz

u
12(pn) ga(u, µ) , (3.3)

where

e(λ)∗
µn ≡ e(λ)∗

µν nν , e
(λ)∗
⊥µn ≡ g

⊥
µνe

(λ)∗
νn = e(λ)∗

µn − pµ
e

(λ)∗
nn

(pn)
+

1

2
nµe

(λ)∗
nn

m2

(pn)2
(3.4)

and we use a shorthand notation

zu12 = ūz1 + uz2 , ū = 1− u . (3.5)

Note that

e(λ)∗
pn = −1

2
e(λ)∗
nn

m2

pn
. (3.6)

In all expressions light-like Wilson lines between the quark fields are implied.

The DAs defined in (3.3) satisfy the following symmetry relations:

φ2(u) = −φ2(ū) , gv(u) = −gv(ū) , ga(u) = +ga(ū) , g4(u) = −g4(ū) . (3.7)

and are normalized as∫ 1

0
du (2u− 1)φ2(u) =

∫ 1

0
du (2u− 1)gv(u) =

∫ 1

0
du (2u− 1)g4(u) = 1 . (3.8)
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The integral of the DA ga(u) vanishes∫ 1

0
du ga(u) = 0 , (3.9)

and the first nonzero (second) moment,
∫ 1

0 du (2u − 1)2ga(u), involves contributions of

three-particle operators, see below.

The coupling fq is defined as the matrix element of the local operator

1

2
〈f2(P, λ)|q̄

[
γµi

↔
Dν +γνi

↔
Dµ

]
q|0〉 = fqm

2e(λ)∗
µν (3.10)

where
↔
Dµ=

→
Dµ −

←
Dµ is the covariant derivative. This coupling is scale dependent and gets

mixed with the gluon coupling and the similar coupling for strange quarks. In appendix B

we summarize the scale dependence of all DA parameters introduced in this section.

The numerical value of fq has been estimated in the past [23–25] (see also appendix D)

using the QCD sum rule approach. Another possibility is to use the experimental result

on the decay width Γ(f2 → ππ) and estimate fq assuming that the matrix element of the

energy-momentum tensor 〈π+π−|Θµν |0〉 is saturated by the tensor meson [23–27]. These

two estimates agree with each other surprisingly well, although this agreement should not

be overrated as in both cases the non-resonant two-pion background is not taken into

account. We use (cf. [23] and appendix D)

fq = 101(10) MeV (3.11)

(at the scale 1 GeV) as the default value for the present study. Note that the positive

sign for this coupling is a phase convention, whereas the relative signs of the other matrix

elements with respect to fq are physical and can be determined by considering suitable

correlation functions as explained in appendix D.

Using the definitions in (3.3) it is easy to derive the operator product expansion (OPE)

of quark bilinears close to the light cone x2 → 0 (at the tree level):

〈f2(P, λ)|q̄(x)γµq(−x)|0〉

= fqm
2 e

(λ)∗
xx

(Px)2
Pµ

∫ 1

0
du ei(2u−1)(Px)

[
φ2(u)− gv(u) +

1

4
x2m2φ4(u)

]
+ fqm

2 e
(λ)∗
µx

Px

∫ 1

0
du ei(2u−1)(Px) gv(u)

+
1

2
fqm

4xµ
e

(λ)∗
xx

(Px)3

∫ 1

0
du ei(2u−1)(Px)

[
2gv(u)− φ2(u)− g4(u)

]
,

〈f2(P, λ)|q̄(x)γµγ5q(−x)|0〉

= −ifqm2εµναβ
xνPα

Px

e
(λ)∗
βx

Px

∫ 1

0
du ei(2u−1)(Px) ga(u) , (3.12)

where φ4(u) is another twist-four two-particle DA that can be expressed in terms of the

other functions using QCD equations of motion (EOM), see below.
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In addition we define three-particle twist-three DAs as

gµµ
′

⊥ 〈f2(P, λ)|q̄(z3n)igGµ′n(z2n)/nq(z1n)|0〉 = fqm
2(pn)e

(λ)∗
⊥µn

∫
Dα eipn

∑
αkzkΦ3(α) ,

gµµ
′

⊥ 〈f2(P, λ)|q̄(z3n)gG̃µ′n(z2n)/nγ5q(z1n)|0〉 = fqm
2(pn)e

(λ)∗
⊥µn

∫
Dα eipn

∑
αkzkΦ̃3(α) .

(3.13)

The conformal expansion of the three-particle DAs reads [28, 29]

Φ3(α) = 360α1α
2
2α3

[
ζ3 +

1

2
ω3(7α2 − 3) + . . .

]
,

Φ̃3(α) = 360α1α
2
2α3

[
0 +

1

2
ω̃3(α1 − α3) + . . .

]
. (3.14)

The two-particle DAs ga(u) and gv(u) have collinear twist three and contain con-

tributions of geometric twist-two and twist-three operators.1 The contributions of lower

geometric twist are traditionally referred to as Wandzura-Wilczek (WW) contributions.

They can be calculated in the terms of the leading-twist DA φ2(u) as [9, 23]

gWW
v (u) =

∫ u

0
dv

φ2(v)

v̄
+

∫ 1

u
dv

φ2(v)

v
,

gWW
a (u) =

∫ u

0
dv

φ2(v)

v̄
−
∫ 1

u
dv

φ2(v)

v
. (3.15)

Assuming for simplicity the asymptotic expression for the leading-twist quark DA

φas2 (u) = 30u(1− u)(2u− 1) , (3.16)

one obtains

gWW
v (u) = 3C

1/2
1 (2u− 1) + 2C

1/2
3 (2u− 1) ,

gWW
a (u) = 5C

1/2
2 (2u− 1) , (3.17)

where C
1/2
n (x) are Legendre polynomials. The Legendre expansion can be motivated by

the properties of these DAs under conformal transformations [28, 29]. The “genuine”

geometric twist-three contributions can be related to the three-particle DAs using EOM,

see appendix C. For the truncation in (3.14) one obtains

ga(u) = gWW
a (u)− 10ζ3C

1/2
2 (2u− 1) +

15

8
(ω3 − ω̃3)C

1/2
4 (2u− 1) ,

gv(u) = gWW
v (u)−

[
10ζ3 −

15

8
(ω3 − ω̃3)

]
C

1/2
3 (2u− 1) . (3.18)

1We remind that geometric twist is defined as “dimension minus spin” of the corresponding operators,

whereas collinear twist is defined as “dimension minus spin projection on the light-ray direction”. The

collinear twist counting is closely related to the counting of powers of large “plus” components of meson

momentum in the matrix elements and determines power suppression of the corresponding contributions

at large Q2, see e.g. ref. [29].
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The twist-three matrix elements can be estimated using QCD sum rules, see appendix D.

We obtain (at the scale 1 GeV)

ζ3 = 0.15(8) , ω3 = −0.2(3) , ω̃3 = 0.06(1) . (3.19)

The DAs φ4(u) and g4(u) have collinear twist four and receive contributions of the

geometric twist-two, -three and -four operators. The Wandzura-Wilczek-type twist-two

contributions assuming the asymptotic expression for φ2(u) (3.16) have the form

φWW
4 (u) = 100u2(1− u)2(2u− 1) ,

gWW
4 (u) = 30u(1− u)(2u− 1) . (3.20)

We expect that these contributions are the dominant source of the power-suppressed correc-

tions ∼ 1/Q2 because of the large mass of the f2(1270) and will neglect “genuine” geometric

twist-three and twist-four contributions. The derivation of the expressions in (3.20) pro-

ceeds similar to the case of the DAs of vector mesons considered in [28, 30, 31] so that we

omit the details.

Finally, the leading-twist gluon DAs of f2(1270) can be defined as [9]

gµµ
′

⊥ gνν
′

⊥ 〈f2(P, λ)|Ganµ′(z2n)Ganν′(z1n
′)|0〉

= fTg

[
e

(λ)
⊥µν(pn)2 − 1

2
g⊥µνm

2e(λ)
nn

] ∫ 1

0
du eiz

u
12pnφTg (u)

− fSg m2g⊥µνe
(λ)
nn

∫ 1

0
du eiz

u
12pnφSg (u) . (3.21)

The distribution amplitudes φTg (u) and φSg (u) are both symmetric to the interchange of

u↔ ū and describe the momentum fraction distribution of the two gluons in the f2-meson

with the same and the opposite helicity, respectively. The asymptotic distributions at large

scales are equal to

φT,as
g (u) = φS,as

g (u) = 30u2(1− u)2 . (3.22)

The normalization constants fTg and fSg are defined through the matrix element of the local

two-gluon operator:

〈f2(P, λ)|Gaαβ(0)Gaµν(0)|0〉 = fTg

{[
(PαPµ −

1

2
m2gαµ) e

(λ)
βν − (α↔ β)

]
− (µ↔ ν)

}
−1

2
fSg m

2

{[
gαµ e

(λ)
βν − (α↔ β)

]
− (µ↔ ν)

}
. (3.23)

The coupling fSg can be estimated from the radiative decay Υ(1S)→ γf2, see appendix E.

The result is consistent with the assumption that fSg is very small at hadronic scales and

is generated mainly by the evolution. In the numerical analysis we use the value

fSg (1 GeV) = 0 . (3.24)
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Figure 1. Leading contributions to the transition form factors γ∗γ → f2(1270) in QCD. Adding

crossing-symmetric diagrams is implied.

The coupling to a helicity-aligned gluon pair, fTg , is difficult to quantify. The calculation

of the leading contributions to the relevant correlation functions suggests that the two

couplings, fSg and fTg , have the same sign, see appendix D. In what follows we use

fTg (1 GeV) ≈ 20 MeV (3.25)

as a ballpark estimate.

As already mentioned, all couplings considered here are scale dependent. The relevant

expressions are collected in appendix B.

4 QCD factorization

QCD description of the transition form factors in two-photon reactions is based on the

analysis of singularities in the product of two electromagnetic currents in (2.2) in the limit

(x − y)2 → 0. Typical Feynman diagrams contributing to the leading-order accuracy are

shown in figure 1.

The leading contributions in the Q2 →∞ limit have been calculated already in [9]. The

form factor T0(Q2) is of the leading twist and is dominated by the quark DA. In this case

we include, in addition, NLO perturbative corrections to the leading twist contribution,

which can be extracted from the corresponding expressions for the two-pion production

in [13]. We also include the twist-four meson-mass correction m2/Q2 which is a new result.

The form factor T1(Q2) is of twist-three. It receives the Wandzura-Wilczek-type con-

tributions calculated in [9] and the “genuine” twist-three contributions of three-particle

quark-antiquark gluon DAs (new result).

As already noticed in [9], the T2(Q2) form factor is rather peculiar: the leading con-

tribution at Q2 → ∞ comes in this case from the two-gluon DA with aligned helicity

that we refer to as gluon transversity DA. However, this contribution is suppressed by

the factor αs/π ∼ 0.1 which is the standard perturbation theory factor for an extra loop,

and also the two-gluon coupling to a “conventional” quark-antiquark meson is expected

to be small as compared to the quark-antiquark coupling. By this reason the true QCD

asymptotics for this form factor may be postponed to very large momentum transfers that

are out of reach on the existing experimental facilities. The result for T2(Q2) given below

includes the leading term and the Wandzura-Wilczek-type higher-twist power correction
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that does not involve such small factors. We also calculate and add the leading-twist

c-quark contribution.

With these new additions, the expressions for the form factors are

T0 = 〈fq〉
∫ 1

0

du

ū

[
1 +

αs
4π

Cq(u)

]
φ2(u)− αs

4π

2

3
fSg

∫ 1

0
duCSg (u)φSg (u)

+
2m2

Q2
〈fq〉

∫ 1

0

du

ū

[
u lnuφ2(u)− 1

8ū
φ4(u)

]
, (4.1)

T1 = 2〈fq〉
∫ 1

0

du

ū

[
gv(u)− ga(u)

]
= 4〈fq〉

∫ 1

0

du

ū
ln(u)φ2(u) + 2〈fq〉

∫
DαCΦ(α)

[
Φ3(α) + Φ̃3(α)

]
, (4.2)

T2 =
4m2

Q2
〈fq〉

∫ 1

0
du lnu gv(u) +

αs
π
fTg

∫ 1

0

du

ū

[
2

3
+

4

9
Cc(u)

]
φTg (u) , (4.3)

where the notation 〈fq〉 stands for the sum of the light quark couplings weighted with the

electromagnetic charges

〈fq〉 =
4

9
fu(µ) +

1

9
fd(µ) +

1

9
fs(µ) =

5
√

2

18
fq(µ) +

1

9
fs(µ) . (4.4)

The coefficient function of the three-particle DAs to T1 is given by

CΦ(α) =
1

α2

[
1

α1ᾱ1
+

1

α2

(
lnα1

ᾱ1
− ln ᾱ3

α3

)
+

lnα1

ᾱ2
1

]
, (4.5)

and the NLO quark and gluon coefficient functions for T0 read [13]

Cq(u) = CF

[
ln2 ū+ 3 lnu− 9

]
, CSg (u) =

2 lnu

uū2

[
u lnu− 2u− 2

]
. (4.6)

The c-quark contribution to T2(Q2) (this is a new result) is given by

Cc(u) = 1 +
2m2

c

Q2

[
− β

uū
ln

(
β + 1

β − 1

)
+
βu
ū

ln

(
βu + 1

βu − 1

)
+
βū
u

ln

(
βū + 1

βū − 1

)
(4.7)

+
1

uū

(
1

2
+
m2
c

Q2

)(
ln2

(
β + 1

β − 1

)
− ln2

(
βu + 1

βu − 1

)
− ln2

(
βū + 1

βū − 1

))]
,

where

βu =

√
1 +

4m2
c

uQ2
, β ≡ β1. (4.8)

Here mc ' 1.4 GeV is the c-quark mass. We did not calculate the corresponding contribu-

tion to T0(Q2) because in this case it is a part of a O(αs) correction to the leading-order

result O(1). It turns out (see below) that the c-quark contribution to T2 is still strongly

suppressed as compared to the light quarks in the Q2 range of the Belle experiment, so

that taking it into account for T0 does not seem to be worth the effort at this stage in view

of the other uncertainties.
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We have checked the electromagnetic gauge invariance of our results by explicit calcu-

lation. Note that electromagnetic Ward identities relate the contributions of three-particle

DAs, the last diagram in figure 1, to the higher-twist contributions in the first diagram en-

coded in the “genuine” twist-three contributions to the two-particle DAs. Such terms can

be thought of as corresponding to gluon emission from the quark legs in the hard scattering

amplitude. Thus it is not surprising that the twist-three form factor T1(Q2) can be written

in two equivalent representations as in (4.2): either contributions of the three-particle DAs

can be eliminated in favor the two particle ones, or, vice verse, the “genuine” twist-three

contributions to the two-particle DAs can be rewritten in terms of the three-particle DAs.

Evaluating (4.1), (4.2), (4.3) using the expressions for the DAs that are collected in

the previous section we obtain

T0 = 5

(
1− αs

27π

)
〈fq〉 −

215

27

αs
π
fSg − 5

m2

Q2
〈fq〉 , (4.9)

T1 =
10

3
〈fq〉

[
1 + 4ζ3 +

9

16
(ω3 − ω̃3)

]
, (4.10)

T2 =
10

3

m2

Q2
〈fq〉

[
2− ζ3 +

3

16
(ω3 − ω̃3)

]
+

5

2

αs
π
fTg

[
2

3
+

4

9
λ(m2

c/Q
2)

]
, (4.11)

where all nonperturbative parameters and the QCD coupling have to be taken at the hard

scale µ ∝ Q. The function λ(m2
c/Q

2) takes into account suppression of the charm quark

contribution in comparison to the light flavors; it is given by

λ(x) = 1− 30x− 72x2 + 24x(1 + 3x)β̂ ln

(
β̂ + 1

β̂ − 1

)
− 6x

(
1 + 6x+ 12x2

)
ln2

(
β̂ + 1

β̂ − 1

)
,

(4.12)

where β̂ =
√

1 + 4x. The normalization is such that λ(0) = 1. Note that λ(0.1) ' 0.091 so

that the c-quark contribution at Q2 ∼ 20 GeV2 is still suppressed by an order of magnitude

as compared to the contributions of u, d, s quarks.

The expressions for the helicity form factors collected in this section present our

main result.

5 Soft (end-point) contributions

Transition form factors with one real photon receive power corrections ∼ 1/Q2 coming

from the region of large separation (x − y)2 ∼ 1/Λ2
QCD between the electromagnetic cur-

rents in (2.2). Such contributions are missing in the OPE and involve overlap integrals of

the nonperturbative light-front wave functions at large transverse separations between the

constituents and cannot be calculated in terms of DAs. They are revealed, nevertheless,

as end-point divergences in the momentum fraction integrals in the framework of QCD

factorization if one tries to extend it beyond the leading power accuracy. Such divergences

are a clear indication that some extra contributions have to be added.

The technique that we adopt in what follows has been suggested originally [32] for

the γ∗γ → π0, see [33, 34] for two recent state-of-the-art analysis. In this section we
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demonstrate how the same approach can be applied to the production of tensor mesons

(cf. [35]). To this end we consider the simplest example: the form factor T0 to the leading-

order accuracy, leaving the NLO corrections to T0 and the other two form factors, T1 and

T2, for a future study. Our presentation follows closely the work [33] where further details

and generalizations can be found.

The idea is to calculate the transition form factor for two large virtualities

q2
1 = −Q2 , q2

2 = −q2 , Q2 � q2 ,

using collinear factorization or, equivalently, OPE, and perform analytic continuation to

the real photon limit q2 = 0 using dispersion relations. In this way explicit evaluation of

contributions of the end-point regions is avoided (since they do not contribute for suffi-

ciently large q2) and effectively replaced by certain assumptions on the physical spectral

density in the q2-channel.

For our purposes it is sufficient to assume that the second photon is transversely

polarized. Then there are no new Lorentz structures and the only difference is that the

form factors depend on two virtualities. The starting point is that the form factor

T̂0(Q2, q2) =
1

(2q1q2)2
T0(Q2, q2) , T0(Q2) ≡ (m2 +Q2)2 T̂0(Q2, q2 = 0) , (5.1)

satisfies an unsubtracted dispersion relation in the variable q2 for fixed Q2. Separating the

contribution of the lowest-lying vector mesons ρ, ω one can write

T̂ γ
∗γ∗→f2

0 (Q2, q2) =

√
2fρT̂

γ∗ρ→f2
0 (Q2)

m2
ρ + q2

+
1

π

∫ ∞
s0

ds
Im T̂ γ

∗γ∗→f2
0 (Q2,−s)
s+ q2

, (5.2)

where s0 is a certain effective threshold. Here we assumed that the ρ and ω contributions

are combined in one resonance term and the zero-width approximation is adopted; fρ ∼
200 MeV is the usual vector meson decay constant. Since there are no massless states, the

real photon limit is recovered by the simple substitution q2 → 0 in this equation.

If both virtualities are large, Q2, q2 � Λ2
QCD, the same form factor can be calculated

using OPE. Assume this calculation is done to some accuracy. The result is an analytic

function that satisfies a similar dispersion relation

T̂ γ
∗γ∗→f2

0,OPE (Q2, q2) =
1

π

∫ ∞
0

ds
Im T̂ γ

∗γ∗→f2
0,OPE (Q2,−s)
s+ q2

. (5.3)

The basic assumption of the method is that the physical spectral density above the thresh-

old s0 coincides (if integrated with a smooth test function) with the spectral density calcu-

lated in OPE, in the very similar way as the total cross section of e+e−-annihilation above

the resonance region coincides with the QCD prediction,

T̂ γ
∗γ∗→f2

0,OPE (Q2,−s) ' T̂ γ
∗γ∗→f2

0 (Q2,−s) , s > s0 . (5.4)

We expect that OPE becomes exact as q2 →∞ so that in this limit the calculation has to

reproduce the “true” form factor. Equating the two representations in eqs. (5.2), (5.3) at
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q2 →∞ and subtracting the contributions of s > s0 from the both sides one obtains

√
2fρT̂

γ∗ρ→f2
0 (Q2) =

1

π

∫ s0

0
ds Im T̂ γ

∗γ∗→f2
0,OPE (Q2,−s) . (5.5)

This relation explains why s0 is usually referred to as the interval of duality (in the vector

channel). The (perturbative) QCD spectral density Im T̂ γ
∗γ∗→f2

0,OPE (Q2,−s) is a smooth func-

tion, very different from the physical spectral density Im T̂ γ
∗γ∗→f2

0 (Q2,−s) ∼ δ(s −m2
ρ).

Nevertheless, their integrals over a certain region of energies coincide. In this sense QCD

description of correlation functions in the terms of quark and gluons is dual to the descrip-

tion in the terms of hadronic states.

In practical applications one uses a certain trick [36] which allows to reduce the sen-

sitivity on the duality assumption in (5.4) and simultaneously suppress contributions of

higher twists in the OPE. This is done going over to the Borel representation 1/(s+ q2)→
exp[−s/M2] the net effect being the appearance of an additional weight factor under the

integral that suppresses the large invariant mass region:

√
2fρT̂

γ∗ρ→f2
0 (Q2) =

1

π

∫ s0

0
ds e−(s−m2

ρ)/M2
Im T̂ γ

∗γ∗→f2
0,OPE (Q2,−s) . (5.6)

Varying the Borel parameter M2 within a certain window, usually 1–2 GeV2 one can test

sensitivity of the results to the particular model of the spectral density.

With this refinement, substituting eq. (5.6) in (5.2) and using eq. (5.4) one obtains for

q2 → 0 (cf. [32])

T̂ γ
∗γ→f2

0,LCSR (Q2) =
1

π

∫ s0

0

ds

m2
ρ

e(m2
ρ−s)/M2

ImT̂ γ
∗γ∗→f2

0,OPE (Q2,−s)

+
1

π

∫ ∞
s0

ds

s
Im T̂ γ

∗γ∗→f2
0,OPE (Q2,−s) . (5.7)

The abbreviation LCSR stands for the Light-Cone Sum Rules [37], as this approach is

usually referred to.

Adding and subtracting the contribution of s < s0 in the second term,2 one can rewrite

the result as

T̂ γ
∗γ→f2

0,LCSR (Q2) = T̂ γ
∗γ→f2

0,OPE (Q2) + T̂ γ
∗γ→f2

0,soft (Q2) , (5.8)

where the first term is the original OPE expression which is possible but not necessary to

write in the dispersion representation, and the second term is the correction of interest:

T̂ γ
∗γ→f2

0,soft (Q2) =
1

π

∫ s0

0

ds

s

[
s

m2
ρ

e(m2
ρ−s)/M2 − 1

]
Im T̂ γ

∗γ∗→f2
0,QCD (Q2,−s) . (5.9)

An attractive feature of this technique is that one does not need to evaluate the non-

perturbative wave function overlap contributions explicitly: they are taken into account

effectively via the modification of the spectral density.

2Such a rewriting is not always possible as the separation of the OPE result and the soft correction can

suffer from end-point divergences, see [33].
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As an illustration, consider the leading-twist QCD result at the leading order in strong

coupling:

T̂0(Q2, q2) = 〈fq〉
∫ 1

0
du

φ̃2(u)

[ūQ2 + uūm2 + uq2]2
, (5.10)

where

φ̃2(u) = −
∫ u

0
dv φ2(v) , φ̃as

2 (u) = 15u2ū2 . (5.11)

This expression can easily be brought to the form of a dispersion relation changing variables

u→ s = ū
uQ

2 + ūm2 and integrating by parts. In this way one obtains after some rewriting,

T̂ γ
∗γ→f2

0,soft (Q2) = −〈fq〉
∫ 1

u0

du φ̂2(u)

[
1

[ūQ2 + uūm2]2
− e(m2

ρ−s)/M2

m2
ρu

2M2

]

+ 〈fq〉
[

1

m2
ρ

e(m2
ρ−s0)/M2 − 1

s0

]
φ̂2(u0)

u2
0m

2 +Q2
, (5.12)

where

u0 =
1

2m2

[√
(Q2 + s0 −m2)2 + 4m2Q2 − (Q2 + s0 −m2)

]
, (5.13)

and, for comparison, to the same accuracy

T̂ γ
∗γ→f2

0,OPE (Q2) = 〈fq〉
∫ 1

0
du

φ̂2(u)

[ūQ2 + uūm2]2
. (5.14)

Note that u0 → 1 as Q2 →∞ so that the integration region shrinks to the end-point u→ 1

and the correction is power suppressed ∼ 1/Q2 in this limit, as expected. Numerical results

are presented in the next section.

6 Results and discussion

The effective form factor averaged over polarizations

Tf2(Q2) =

√
2

3

∣∣∣∣T0(Q2)

T2(0)

∣∣∣∣2 +
Q2m2

(m2 +Q2)2

∣∣∣∣T1(Q2)

T2(0)

∣∣∣∣2 +

∣∣∣∣T2(Q2)

T2(0)

∣∣∣∣2 , (6.1)

is calculated using default values of the nonperturbative parameters and compared with

the experimental data [7] in figure 2. We observe a perfect scaling behavior for Q2 & 4–

5 GeV2 as predicted by QCD, whereas the normalization is slightly off — about 1–1.5σ

if systematic errors in the data are taken into account. This difference can easily be

compensated by a 10–15% decrease of the value of the quark coupling fq which serves as

an overall normalization factor in the calculation, or, alternatively, by a moderate deviation

of the leading twist DA φ2(u) from its asymptotic form. For illustration we show in the

same figure by short dashes the result of the QCD calculation with fq = 85 MeV at the

scale 1 GeV.
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Figure 2. The effective form factor summed over polarizations normalized to T2(0) = 339 MeV.

The calculation using default values of the nonperturbative parameters is shown by the solid curve.

The same calculation with the quark coupling fq reduced by 15% is shown by short dashes. The

experimental data are taken from ref. [7]. Only statistical errors are shown.

Such a 10–15% smaller coupling as compared to our default value fq = 101 MeV is

certainly possible as the existing estimates are not reliable. A more precise number can

eventually be obtained from lattice QCD, however, this calculation is rather complicated

and will take time. It would be very interesting to measure the time-like transition form

factor e+e− → f2(1270)γ at large virtualities q2 ∼ 100 GeV2 (cf. [38]) where the nonper-

turbative uncertainties are considerably reduced. This would give a direct measurement of

the fq-coupling.

Our results for the helicity-separated form factors T0(Q2), T1(Q2), T2(Q2) are com-

pared with the experimental data [7] in figure 3. All three form factors are described rather

well, the QCD calculation being slightly above the data as we have already seen for the

helicity-averaged form factor in figure 2. Note that our result for T1(Q2) only includes the

leading-power contribution at large Q2 in contrast to T0(Q2) and T2(Q2) where we also

calculated the 1/Q2 correction. Terms ∼ 1/Q2 in T1(Q2) correspond to collinear-twist-five

and soft contributions and are more difficult to estimate. They should be expected, how-

ever, to be negative and of the same order of magnitude as for T2(Q2) so that the increase

of the QCD curve for T1(Q2) in figure 3 at smaller Q2 will almost certainly be compensated

by power corrections and is not a reason for concern. As expected, T1(Q2) is also more

sensitive to the twist-three quark-antiquark-gluon contributions as compared to the other

two form factors, and the uncertainties in the corresponding parameters are not negligible,

they are shown by the shaded area.

As discussed in [9], the form factor T2(Q2) at asymptotically large Q2 is dominated by

the two-gluon contribution with aligned helicity that we refer to as gluon transversity DA.

This contribution is suppressed, however, by the factor αs/π ∼ 0.1 which is the standard

penalty for an extra loop. Also the two-gluon coupling to a “conventional” quark-antiquark

meson is unlikely to be large as compared to the quark-antiquark coupling. By this reason,

T2(Q2) at realistic Q2 is still dominated by the Wandzura-Wilczek-type higher-twist power

correction that does not involve such small factors: the shaded area in the plot for T2(Q2)
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Figure 3. The form factors T0(Q2), T1(Q2), T2(Q2) (from top to bottom) normalized to T2(0) =

339 MeV. The result for T0(Q2) shown by the solid line includes the estimate of soft end-point

contributions using light-cone sum rules. The result without the soft correction is shown by dashes.

The error band for T1(Q2) (shaded area) corresponds to variation of the twist-three parameters

in the range specified in (3.19), whereas for T2(Q2) we also include variation of the tensor gluon

coupling fTg in the range ±50 MeV. The experimental data are taken from ref. [7]. Only statistical

errors are shown.
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includes variation of the tensor gluon coupling fTg in a rather broad range, ±50 MeV, but

the effect is barely visible. Our result does not mean that studies of the T2 form factor

at large Q2 are not interesting. On the contrary, a broad resonance structure in the two-

pion channel with a scaling behavior T2 ∼ Q0 would be a clear signature of a tensor

gluonium state.

To summarize, the main conclusion from our study is that the experimental results

on the γ∗γ → f2(1270) transition form factors reported in ref. [7] appear to be in a very

good agreement with QCD scaling predictions starting already at moderate Q2 ' 5 GeV2.

The absolute normalization for all helicity form factors can be reproduced assuming a 10–

15% lower value of the tensor meson coupling to the quark energy-momentum tensor as

compared to the estimates existing in the literature, which is well within the uncertainty.

These findings are in contrast to the transition form factors to pseudoscalar π, η, η′ mesons

where large scaling violations have been observed [18–20]. If confirmed by future higher-

statistics measurements that can come from BELLE II, perfect scaling behavior can be an

indication that higher-twist and soft corrections are less of an issue for tensor as compared

to pseudoscalar mesons. This can be interesting in context of the studies of heavy meson

decays [1–6] where the effective hard scale is not very large and estimates of preasymptotic

corrections are difficult. In turn, the QCD description implemented in our analysis can

still be improved in many ways, e.g., taking into account deviation from ideal SU(3)-flavor

mixing at hadronic scales, two-loop scale dependence of the couplings, higher-twist and end-

point corrections to T1(Q2), more elaborate models for the DAs, etc. The corresponding

studies will become necessary if the accuracy of the experimental data is increased.
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A Other conventions

The experimental results in ref. [7] are presented for a different set of transition form factors

Fi(Q
2) suggested in [8]. The form factors Ti(Q

2) defined in (2.4) are more convenient for

the QCD study but in order to compare our results with the data we need to establish the

precise correspondence between these two descriptions.

In ref. [8], the cross section σλ1λ2 for the production of f2(1270) by photons with

helicities λ1 and λ2 is written as

σλ1λ2 = δ(s−m2)8π2 5Γγγ
m

fλ1λ2(Q2), (A.1)

where s = (q1 + q2)2 and Γγγ denotes the two-photon decay width (2.8). The form factors

are defined in terms of the helicity cross sections as [8]

F0(Q2) =

√
f±±TT (Q2)

(1 +Q2/m2)
, F1(Q2) =

√
fLT (Q2)

(1 +Q2/m2)
, F2(Q2) =

√
f±∓TT (Q2)

(1 +Q2/m2)
.

(A.2)
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Calculation of the helicity cross sections (A.1) in terms of the Lorentz covariant amplitudes

similar to Ti was done in ref. [10], see appendix C3. Using the expressions presented there

we obtain

σ±±TT = δ(s−m2) 8π2 5Γγγ
m

{
ΓΛ=0
γγ

Γγγ

(
1 +

Q2

m2

)−1 ∣∣∣∣T0(Q2)

T0(0)

∣∣∣∣2}, (A.3)

σLT = δ(s−m2) 8π2 5Γγγ
m

{
πα2

5mΓγγ

Q2/m2

(1 +Q2/m2)3

∣∣T1(Q2)
∣∣2}, (A.4)

σ±∓TT = δ(s−m2) 8π2 5Γγγ
m

{
ΓΛ=2
γγ

Γγγ

(
1 +

Q2

m2

)−1 ∣∣∣∣T2(Q2)

T2(0)

∣∣∣∣2}, (A.5)

where ΓΛ
γγ stands for the two-photon decay width of f2(1270) with the polarization Λ:

ΓΛ=2
γγ =

πα2

5m
|T2(0)|2 , ΓΛ=0

γγ =
πα2

5m

2

3
|T0(0)|2 . (A.6)

Using these expressions and the definitions in (A.2) one finds

F0(Q2) =

√
ΓΛ=0
γγ

Γγγ

(
1 +

Q2

m2

)−1 ∣∣∣∣T0(Q2)

T0(0)

∣∣∣∣ , (A.7)

F1(Q2) =

√
πα2

5mΓγγ

√
Q2/m2

(1 +Q2/m2)2

∣∣T1(Q2)
∣∣ , (A.8)

F2(Q2) =

√
ΓΛ=2
γγ

Γγγ

(
1 +

Q2

m2

)−1 ∣∣∣∣T2(Q2)

T2(0)

∣∣∣∣ . (A.9)

Experimentally the ratio of the decay widths with Λ = 0 and Λ = 2 is small [39]:

ΓΛ=0
γγ

ΓΛ=2
γγ

' (3.7± 0.3)× 10−2. (A.10)

Hence the expressions in (A.7)–(A.9) can be simplified neglecting the contribution of ΓΛ=0
γγ

in the full decay width:

F0(Q2) '
√

2

3

(
1 +

Q2

m2

)−1 ∣∣∣∣T0(Q2)

T2(0)

∣∣∣∣ , (A.11)

F1(Q2) '
√
Q2/m2

(1 +Q2/m2)2

∣∣∣∣T1(Q2)

T2(0)

∣∣∣∣ , (A.12)

F2(Q2) '
(

1 +
Q2

m2

)−1 ∣∣∣∣T2(Q2)

T2(0)

∣∣∣∣ . (A.13)

We use these simplified relations in order to present the data [7] in terms of the Ti form

factors that are more suitable for comparison with QCD predictions.

The effective form factor Ff2(Q2) is defined in [7] as

Ff2(Q2) =
√
F 2

0 (Q2) + F 2
1 (Q2) + F 2

2 (Q2) . (A.14)
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It is written in our notation as

(1 +Q2/m2)Ff2(Q2) =

√
2

3

∣∣∣∣T0(Q2)

T2(0)

∣∣∣∣2 +
Q2m2

(m2 +Q2)2

∣∣∣∣T1(Q2)

T2(0)

∣∣∣∣2 +

∣∣∣∣T2(Q2)

T2(0)

∣∣∣∣2. (A.15)

For completeness we quote the phenomenological ansatz for the form factors Fi sug-

gested in [8]:

F0 = (1 +Q2/m2)−2 1√
6

Q2

m2
, F1 = (1 +Q2/m2)−2Q

m
, F2 = (1 +Q2/m2)−2. (A.16)

Note that the asymptotic behavior for the FF F2 is different from the QCD result, see

eq. (4.3), because the contribution of the gluon transversity distribution has not been

taken into account. More model predictions can be found in refs. [10, 11].

B Scale dependence

In this appendix we summarize the scale dependence and mixing under renormalization to

the leading one-loop accuracy for all relevant parameters. In what follows

L =
αs(µ)

αs(µ0)
, β0 =

11

3
Nc −

2

3
nf . (B.1)

As already mentioned in the main text, for simplicity, we make use of the decoupling

scheme, or fixed flavor number scheme (FFNS), such that the DAs only involve the three

light flavors and the charm c-quark contributions are included in the coefficient function.

Going over to the variable flavor number scheme (VFNS) is straightforward but has very

limited numerical impact so that we do not implement it in this study.

For definiteness we also assume ideal quark mixing at a low normalization point µ0 =

1 GeV, f2 ∼ (uū + dd̄)/
√

2. Thus all matrix elements involving strange quark vanish at

this scale, but appear at higher scales because of the evolution. Staying within the fixed

three-flavor scheme we decompose the SU(2)-flavor singlet coupling fq in the SU(3)-flavor

singlet and octet parts that have different scale dependence:

f(8) =
1√
6

(
fu + fd − 2fs

)
, f(1) =

1√
3

(
fu + fd + fs

)
, (B.2)

where fu,d,s are the couplings for the separate flavors. Thus

fq(µ) =

√
1

3
f(8)(µ) +

√
2

3
f(1)(µ) ,

fs(µ) = −
√

2

3
f(8)(µ) +

√
1

3
f(1)(µ) . (B.3)

Ideal mixing at the reference scale implies

f(8)(µ0) =

√
1

3
fq(µ0) , f(1)(µ0) =

√
2

3
fq(µ0) , fs(µ0) = 0 . (B.4)
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The relevant renormalization group equation reads [40–42]

(
µ
∂

∂µ
+ β(g)

∂

∂g

)f(8)

f(1)

f sg

 =
αs
2π

8
3CF 0 0

0 8
3CF −4

3
√
nf

0 −4
3
√
nfCF

2
3nf


f(8)

f(1)

f sg

 , (B.5)

where from one finds

f(8)(µ) = L( 8
3
CF )/β0f(8)(µ0) ,

f(1)(µ) = f(1)(µ0) +
[
L( 8

3
CF+ 2

3
nf )/β0 − 1

] [ 4CF
4CF + nf

f(1)(µ0)−
2
√
nf

4CF + nf
f sg (µ0)

]
,

f sg (µ) = f sg (µ0)−
[
L( 8

3
CF+ 2

3
nf )/β0 − 1

] [ 2CF
√
nf

4CF + nf
f(1)(µ0)−

nf
4CF + nf

f sg (µ0)

]
,

fTg (µ) = L( 7
3
CA+ 2

3
nf )/β0fTg (µ0) . (B.6)

The last expression is based on the calculation of the relevant anomalous dimension by

Hoodbhoy and Ji [43]. Note that the following combination of the quark and gluon cou-

plings is scale-independent:

√
nff(1)(µ) + 2f sg (µ) =

√
nff(1)(µ0) + 2f sg (µ0) , (B.7)

as it corresponds to the matrix element of a conserved current: the traceless part of the

QCD energy-momentum tensor.

The scale dependence of the flavor-nonsinglet twist-three couplings ζ3, ω3 and ω̃3 can

be found, e.g., in [28, 44]. Since the twist-three gluon DAs are completely unknown, using

flavor-singlet evolution equations is not justified, and also the numerical difference between

flavor-singlet and flavor-nonsinglet evolution is negligible as compared with the errors on

the parameters. Staying with the flavor-nonsinglet evolution one obtains

ζ3(µ) = L3(CA−CF )/β0ζ3(µ0) . (B.8)

The remaining couplings ω3 and ω̃3 mix with each other:(
ω̃3

ω3

)
(µ) = LΓ/β0

(
ω̃3

ω3

)
(µ0) (B.9)

with the anomalous dimension matrix

Γ =

(
13
6 CA −

1
12CF

7
2CA −

21
4 CF

1
6CA −

1
4CF

25
6 CA −

29
12CF

)
=

(
115
18

7
2

1
6

167
18

)
. (B.10)

C Equations of motion

Two-particle meson DAs of higher twist can be expressed in terms of the three-particle

DAs using QCD equations of motion (EOM). The case at hand is very similar to the
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vector meson DAs considered in [28], see section 4.1 and 4.2, so that we simply quote

the result:

gv(u) =

∫ u

0
dv

Ω(v)

v̄
+

∫ 1

u
dv

Ω(v)

v
− d

du

∫ ū

0
dα1

∫ u

0
dα3

1

α2
Φ3(α1, α2, α3)

+

∫ ū

0
dα1

∫ u

0
dα3

1

α2

(
d

dα3
+

d

dα1

)
Φ̃3(α1, α2, α3) ,

ga(u) =

∫ u

0
dv

Ω(v)

v̄
−
∫ 1

u
dv

Ω(v)

v
, (C.1)

where

Ω(u) = φ2(u)− 1

2

d

du

∫ ū

0
dα1

∫ u

0
dα3

1

α2

(
α1

d

dα1
+ α3

d

dα3

)
Φ3(α1, α2, α3)

− 1

2

d

du

∫ ū

0
dα1

∫ u

0
dα3

1

α2

(
α1

d

dα1
− α3

d

dα3

)
Φ̃3(α1, α2, α3) (C.2)

and we tacitly assume α2 = 1− α1 − α3.

The conformal expansion of the two- and three-particle DAs takes the form

φ2(u) = 6uū

∞∑
n=1,3,...

anC
3/2
n (2u− 1) ,

Φ3(α1, α2, α3) = 360α1α
2
2α3

∞∑
k,l=0

ωklJkl(α1, α3) ,

Φ̃3(α1, α2, α3) = 360α1α
2
2α3

∞∑
k,l=0

ω̃klJkl(α1, α3) , (C.3)

where C
3/2
n (2u − 1) are Gegenbauer polynomials and Jkl(α1, α3) are Appell polynomials

of two variables that are orthogonal (for different k + l) with the weight function α1α
2
2α3.

The summation index is related to the conformal spin: j = n + 2 for the two-particle

distribution and j = k + l + 7/2 for the three-particle ones. Converting to the notation

used in the main text, eqs. (3.14) and (3.16), one obtains

a1 ≡
5

3
, ζ3 ≡ ω00 , ω3 ≡ ω10 = ω01 , ω̃3 ≡ 3 ω̃10 = −3 ω̃01 . (C.4)

Plugging the conformal expansion (C.3) in (C.1) it is straightforward to derive the general

expansion of ga(u) and gv(u) in orthogonal polynomials, which reduces to the result given

in (3.18) for the particular truncation corresponding to eq. (3.14).

D QCD sum rules

The twist-three quark-gluon couplings can be estimated from the tensor meson contribution

to the correlation functions of

Jµν(x) =
1

2
q̄(x)

[
γµi

↔
Dν +γνi

↔
Dµ

]
q(x) , qq̄ ≡ (uū+ dd̄)/

√
2 , (D.1)
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↔
D=

→
D −

←
D, and the quark-gluon light-ray operators that enter the definition of the corre-

sponding DAs,

Gα(z1, z2, z3;x) = q̄(z3n+ x)igGαn(z2n+ x)/nq(z1n+ x) ,

G̃α(z1, z2, z3;x) = q̄(z3n+ x)gG̃αn(z2n+ x)/nγ5q(z1n+ x) . (D.2)

In particular we consider the following correlation functions:

Tαnn,n̄n̄ = i

∫
d4x eiqx〈0|T{Jn̄n̄(x)Gα(z1, z2, z3; 0)}|0〉

=
[
n̄α(qn)− qα(nn̄)

]
(nn̄)

∫
Dα eiqn

∑
zkαk T (q2;α) +O(nα) (D.3)

T̃αnn,n̄n̄ = i

∫
d4x eiqx〈0|T{Jn̄n̄(x)G̃α(z1, z2, z3; 0)}|0〉

=
[
n̄α(qn)− qα(nn̄)

]
(nn̄)

∫
Dα eiqn

∑
zkαk T̃ (q2;α) +O(nα) , (D.4)

where it is assumed that the auxiliary light-like vectors are chosen such that

(qn̄) = 0 , (qn)/=0 . (D.5)

We obtain

T (q2;α) =
αs
2π3

Γ[2− d]

[−q2]2−d
α1α2α3

[
1− 2α1

1− α1
+

1− 2α3

1− α3
+ 4

]
+
〈g2G2〉
12π2

Γ[2− d
2 ]

[−q2]2−
d
2

α1α3δ(α2)

+
2

9
g2〈q̄q〉2 1

−q2
δ(α1)δ(α3) ,

T̃ (q2;α) =
αs
2π3

Γ[2− d]

[−q2]2−d
α1α2α3

[
1− 2α1

1− α1
− 1− 2α3

1− α3

]
+ 0 · 〈g2G2〉+ 0 · 〈q̄q〉2 , (D.6)

where 〈g2G2〉 is the gluon condensate and 〈q̄q〉 is the quark condensate and we used the

usual factorization approximation for the vacuum expectation values of the four-fermion

operators. Note that the correlation function T̃ (q2;α) does not receive nonperturbative

corrections (to this power accuracy in the OPE and to the leading order in the strong

coupling).

The contribution of f2(1270) to these correlation functions is

g⊥αα′Tα′nn,n̄n̄ = −q⊥α (nn̄)2 |fq|2m4

m2 − q2

∫
Dα eiqn

∑
αkzkΦ3(α) + . . . (D.7)

and similar for T̃α′nn,n̄n̄, so that taking moments and applying the Borel transformation

one ends up with the sum rules

|fq|2m4 e−m
2/M2

=
3

40π2

∫ s0

0
s2ds e−s/M

2 − 2

9

〈αs
π
G2
〉∫ s0

0
ds e−s/M

2
+

16παs
9
〈q̄q〉2 ,

|fq|2m4e−m
2/M2

ζ3 =
7αs

720π3

∫ s0

0
s2ds e−s/M

2
+

1

18

〈αs
π
G2
〉∫ s0

0
ds e−s/M

2
+

8παs
9
〈q̄q〉2,

|fq|2m4e−m
2/M2 3

4
ω3 = − 7αs

1440π3

∫ s0

0
s2ds e−s/M

2− 1

6

〈αs
π
G2
〉∫ s0

0
ds e−s/M

2
+

32παs
9
〈q̄q〉2,

|fq|2m4e−m
2/M2 1

28
ω̃3 =

αs
1440π3

∫ s0

0
s2ds e−s/M

2
(D.8)
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where, for completeness, we added in the first line the sum rule for the coupling |fq|2 derived

in [24, 25] and reanalyzed more recently in [23]. Using the value s0 = 2.53 GeV2 [23] and

the interval 1.0 < M2 < 1.4 GeV2 for the Borel parameter we obtain from this sum rule

for the standard values of the gluon
〈
αs
π G

2
〉

= 0.012 GeV4 and quark 〈q̄q〉 = (−240 MeV)3

condensates

fq(µ = 1 GeV) = 101(10) MeV . (D.9)

The quoted error corresponds to a 50% uncertainty in the gluon condensate, other uncer-

tainties are much smaller. The quark-gluon couplings ζ3, ω3, ω̃3 can best be estimated by

taking the ratios of the corresponding sum rules to the sum rule for |fq|2. Using the same

values of input parameters we obtain

ζ3 = 0.15(8) , ω3 = −0.2(3) ω̃3 = 0.06(1) . (D.10)

The given values correspond to the scale 1 GeV. Note that the uncertainty in ω3 is very large

because of the cancellations between gluon and quartic condensates. For ω̃3 the leading

nonperturbative corrections vanish and the perturbative contribution is very small. It is

tempting to conclude that ω̃3 is much smaller than ζ3 and ω3, but the number given above

should be viewed with caution as the sum rule for this coupling is likely to be dominated

by uncalculated higher-order corrections and/or condensates of higher dimension.

Estimates of gluon couplings are notoriously very difficult, see e.g. [45]. A limited

insight can be obtained by considering the correlation function

Gµν = i

∫
d4x eiqx〈0|T{Ganµ(x)Ganν(x)Gbn̄ξ(0)Gbn̄ξ(0)}|0〉

=

(
qµqν −

1

2
q2gµν

)
(nn̄)2G1(q2) +

1

2
gµν(nn̄)2G2(q2) + . . . (D.11)

where the ellipses stand for the structures ∼ nµ, n̄µ, nν , n̄ν and, as above, we assumed that

(n̄q) = 0. Since tensor 2++ gluonium (glueball) states are expected to be rather heavy,

see e.g. [46], by choosing a sufficiently low interval of duality in these invariant functions

one can constrain the contribution of f2(1270). The leading contributions to the invariant

functions G1(q2) and G2(q2) are, retaining singular terms only (cf. [45]),

G1(Q2) =
〈G2〉
3q2

, G2(Q2) =
1

5π2

Γ[−d
2 ]

[−q2]−
d
2

+ 0 · 〈G2〉 , (D.12)

and the contribution of the tensor f2(1270) meson is

G1(Q2) = −
fSg f

T
g m

2

m2 − q2
+ . . . , G2(Q2) =

|fSg |2m4

m2 − q2
+ . . . , (D.13)

respectively. Thus

|fSg |2m4e−m
2/M2 ≈ 1

10π2

∫ s0

0
s2ds e−s/M

2
, fSg f

T
g m

2e−m
2/M2 ≈ 1

3
〈G2〉 . (D.14)
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Figure 4. The leading contribution to the correlation function in eq. (D.15).

Taken at face value, these sum rules suggest that both couplings are of the order of 100 MeV

(which should be viewed as an estimate from above), and have the same sign.

A somewhat better estimate can be obtained by considering the correlation function

Hµν = i

∫
d4x eiqx〈0|T{Ganµ(x)Ganν(x)Jn̄n̄(0)}|0〉

= (qµqν −
1

2
q2gµν)(nn̄)2H1(q2) +

1

2
gµν(nn̄)2H2(q2) + . . . (D.15)

Assuming (qn̄) = 0, the contribution of f2(1270) to this correlator is

H1(Q2) =
fqf

T
g m

2

m2 − q2
+ . . . , H2(Q2) = −

fqf
S
g m

4

m2 − q2
+ . . . . (D.16)

The leading contribution in QCD is given by the Feynman diagram shown in figure 4. We

obtain

H1 =
√

2
αs

(4π)3
q2CACF

[
8

9
ln
( µ2

−q2

)
+

139

54

]
+ . . .

H2 = −
√

2
αs

(4π)3
q4CACF

[
8

15
ln2
( µ2

−q2

)
+

598

225
ln
( µ2

−q2

)
+

5627

1500

]
+ . . . (D.17)

where from one obtains the sum rules

fqf
T
g m

2e−m
2/M2 ≈ 8

√
2

9

αs
(4π)3

CACF

∫ s0

0
ds se−s/M

2
,

fqf
S
g m

4e−m
2/M2 ≈

√
2αs

(4π)3
CACF

∫ s0

0
ds s2e−s/M

2
[16

15
ln
µ2

s
+

598

225

]
. (D.18)

Dividing these expressions by the sum rule for |fq|2 we obtain for the same values of

parameters

fTg /fq = 0.25− 0.29 , fSg /fq = 0.53− 0.58 . (D.19)

Again, it appears that the two gluon couplings have the same sign. The accuracy of

this calculation is very difficult to quantify, we view the numbers in (D.19) as order-of-

magnitude estimates only.
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Figure 5. The leading contribution to the radiative decay Υ(1S)→ γf2(1270).

E fS
g from the radiative decay Υ(1S) → γf2

The scalar gluon coupling fSg can be estimated from the bottomonium decay Υ(1S) →
γf2(1270). The dominant contribution comes from the two-quark QQ̄ component of the

bottomonium wave function; the contribution of higher Fock states is suppressed by the

small relative velocity of the heavy quarks. To the leading-order accuracy the decay am-

plitude is described by the diagram in figure 5. The corresponding calculation was already

done in refs. [47–49]. The result reads

A [Υ(1S)→ γ f2] = (ε∗γ · εΥ)
√

2MΥ

√
3

2π

R10(0)

m4
b

2παseeb e
(λ)∗
nn fSg m

2
f

1

4

∫ 1

0

du

uū
φSg (u) , (E.1)

where ε∗γ and εΥ are the polarization vectors of the photon and heavy meson, respectively,

mb is the b-quark (pole) mass and R10(0) denotes the radial wave function of Υ(1S) at the

origin. Potentially there could be also a contribution of the transverse DA φTg (t), but the

corresponding terms cancel to the leading-order accuracy.

In order to avoid the dependence on the nonperturbative parameter R10(0) it is con-

venient to consider the ratio

Br[Υ(1S)→ γ f2]

Br[Υ(1S)→ e+e−]
=

64π

3

α2
s(4m

2
b)

α

(
1− m2

M2
Υ

) [
fSg I

S
g

]2
m2
b

, (E.2)

where this dependence cancels. Here we used the notation ISg for the integral

ISg (µ) =
1

4

∫ 1

0

du

uū
φSg (u, µ) . (E.3)

For the asymptotic DA φSg (u, µ) = 30u2(1 − u)2 one obtains ISg = 5
4 . The branching

fractions on the l.h.s. of eq. (E.2) are known, see [21]:

Br[Υ(1S)→ γ f2] = (1.01± 0.09)× 10−4,

Br[Υ(1S)→ e+e−] = (2.38± 0.11)× 10−2 . (E.4)

Using mb ' 4.8GeV, αs(4m
2
b) = 0.176 and α ' 1/137 we obtain

|fSg ISg |(µ2 = 4m2
b) = (18.6± 1.9) ,MeV , (E.5)

where from, for the asymptotic DA, one finds

fSg (µ2 = 4m2
b) = (14.9± 0.8) MeV. (E.6)
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Here we tacitly assumed that this coupling is positive (with respect to fq), as suggested

by the QCD sum rule analysis in appendix D. The given error bar reflects experimental

uncertainties only. The theoretical uncertainties are much larger so that we estimate the

overall accuracy of the value in (E.6) as 30–50%.

This result appears to support an intuitive picture that the gluon coupling of “ordi-

nary” quark-antiquark mesons is very small at hadronic scales and is generated entirely by

the evolution. Indeed, assuming fq(1 GeV) = 101(10) MeV and fSg (1 GeV)=0 and using

the expressions collected in appendix B one finds

fSg (µ2 = 4m2
b) = (25± 3) MeV. (E.7)

This number is in a reasonable agreement with the above extraction from the bottomonium

radiative decay having in mind the theoretical uncertainties.
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