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1 Introduction

Since its introduction in 1974 [1] the Gross-Neveu (GN) model serves as a toy model for

studies of many interesting physical phenomena. In particular, the GN model in 2 < d < 4

dimensions possesses the Wilson-Fisher fixed point. In the critical regime this model enjoys

scale and conformal invariance and provides an example of nontrivial conformal field theory

(CFT). Various critical indices in the GN model were calculated both in the 2 + ε and 1/N

expansions (here N is the number of the fermion field components), see e.g. refs. [2–11].

Due to its simplicity, the GN model together with the O(N) symmetric ϕ4 model presents

an ideal playground for testing new techniques in CFTs [12–26].

In this work we compute the anomalous dimensions γs of the specific composite oper-

ators, known as higher-spin currents:

Js ≡ Jµ1...µs = q̄aγµ1∂µ2 . . . ∂µsq
a + . . . . (1.1)

Here s is the spin and q is the N−component Dirac fermion while the ellipses stand for

the total derivative terms and symmetrization over all indices and subtraction of traces

are implied. In the free field approximation all the higher-spin currents are conserved and

give rise to an infinite-dimensional symmetry, known as the higher-spin symmetry, which

is then broken by interactions, see e.g. refs. [13, 17, 18, 27].
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At the 1/N order the anomalous dimension of the current Js have been calculated in

1977 by Muta and Popov́ıc [28]. In this work we extend this calculation to the next order

using the technique developed in [29–31]. As a nontrivial check of our result we verify that

the structure of an asymptotic expansion of the anomalous dimension as a function of the

conformal spin, j = s− 1 + (d+ γs)/2, agrees with the predictions of refs. [32–34].

Another surge of recent interest to the GN model comes from studies of the AdS/CFT

correspondence [35–37]. It was conjectured in [38] that the critical O(N)-vector model is

dual to the higher-spin gauge theory in AdS4. Shortly after, the conjecture was extended

to the GN model and its super-symmetric extensions [39, 40]. Some non-trivial tests of

this conjecture were performed at the level of three-point functions [41] and at the level of

one-loop determinants, see [42, 43] for a discussion and references. Remarkably, the same

AdS4 higher-spin theory should be dual both to free and interacting models, depending

on the boundary conditions. Moreover, there is a continuous transition between fermionic

and bosonic versions of these CFT’s, i.e. the three-dimensional bosonization [27, 44, 45],

which on the AdS side is accounted for by a free parameter of the higher-spin theory and

on the CFT side is realized via coupling to the Chern-Simons sector [44]. While the duality

at the tree level is better supported, the most subtle effects should come from the loops.

According to [46], see also [17, 47, 48], radiative corrections on the AdS side should generate

masses δm2 of the higher-spin fields that from the CFT point of view correspond to the

anomalous dimensions γs of the higher-spin currents

m2
s = m2

0(s) + δm2
s,m

2
0(s) = (d+ s− 2)(s− 2)− s, δm2

s = γs

(
d− 4 + 2s+ γs

)
, (1.2)

The masses are measured in the units of the cosmological constant. Therefore, our results

should be equivalent to two-loop computations in the higher-spin theory. More specifically,

one should be able to extract γs from the logarithmic corrections to the near boundary

behaviour of higher-spin fields.

The paper is organized as follows: in section 2 we recall the definition of the GN model

and briefly review the method to compute the critical exponents. The section 3 contains

our results and some details of calculations for the anomalous dimensions of the higher-

spin currents at the next-to-leading order in 1/N . The renormalized propagators can be

found in appendix A, while some of the numerical values of the anomalous dimensions are

collected in appendix B.

2 GN model in d dimensions

The GN model with U(N) symmetry describes a system of d (d ≡ 2µ)-dimensional N -

component Dirac fermions, q (q̄) ≡
{
qa (q̄a), a = 1, . . . , N

}
. Its action (in Euclidean space)

takes the form1 [1]

S = −
∫
ddx

[
q̄�∂q +

g

2N
(q̄q)2

]
. (2.1)

1The discussion of the issues related to renormalization of this model in 2 + ε dimensions can be found

in refs. [11, 49–52].
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To generate a systematic 1/N expansion it is convenient to introduce an auxiliary scalar

field σ and rewrite GN action (2.1) in the following form:

S = −
∫
ddx

[
q̄�∂q + σq̄q − N

2g
σ2

]
. (2.2)

At a certain value of the coupling g = g∗ the system undergoes the second order phase

transition [53]. For g < g∗ the expectation value of σ field vanishes, σ0 = 〈σ〉 = 0, and the

fermions are massless, while for g > g∗ 〈σ〉 6= 0 and fermions acquire mass, m = 〈σ〉 at the

leading order. At the critical point, g = g∗, the correlators of the fields q, q̄, σ exhibit power

law behaviour and, as it can be shown, the model enjoys scale and conformal invariance [6].

Critical exponents are usually calculated with the help of the self-consistency equations [54]

or the conformal bootstrap [55] methods (see ref. [56] for a review). However, it turns out

that for the analysis of the operators with nontrivial tensor structure it is more convenient

to use another approach described below.

In the infrared region (IR) (momenta much less than the cutoff Λ) the dominant

contribution to the propagator of the σ field in the leading order comes from the fermion

loop [53]

Dσ(p) = − 1

n
b(µ)/(p2)µ−1 , Dσ(x) = − 1

n
B(µ)/x2 . (2.3)

Here n = N × tr1, where tr1 is a trace of the unit matrix in the space of d-dimensional

spinors2 and the normalization factors are

b(µ) = (4π)µ
Γ(2µ− 1)

Γ2(µ)Γ(1− µ)
, B(µ) =

4Γ(2µ− 1)

Γ2(µ)Γ(µ− 1)Γ(1− µ)
. (2.4)

For practical calculations it is convenient to use a simplified (massless) version of the GN

model which is critically equivalent to (2.2). The action of the model is given by the

following expression [29, 56]

S′ = −
∫
ddx

[
q̄�∂q −

1

2
σLσ + σq̄q +

1

2
σLσ

]
. (2.5)

The kernel L is the inverse σ-propagator (2.3), L−1 = Dσ. It has the form

L(x) = trDq(x)Dq(−x) = −n
(

Γ(µ)

2πµ

)2 1

(x2)2µ−1
, Dq(x) = −Γ(µ)

2πµ
�x

[x2]µ
, (2.6)

where Dq(x) is the fermion propagator.

The first two terms in (2.5) are considered as the free part of the action, S0, and

the remaining ones — as an interaction, Sint. The last term in (2.5) cancels diagrams

with insertions of simple fermion loops in the σ-lines. Of course, for giving a sense to the

model (2.5) it is necessary to introduce a regularization. Indeed, it can be easily checked

that the vertex σq̄q diverges logarithmically in any dimensions. A regularization preserving

2This trace does not have (and does not require) an exact expression in terms of d (for the integer

dimensions d = 2, 3, 4 it is usually assumed that tr1 = 2, 2, 4).
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the masslessness of propagators, that is important for practical calculations, was proposed

in [29]. Namely, in order to make diagrams finite it is sufficient to change the kernel L in

the free part of the action, S0, as follows

L(x)→ L∆(x) = L(x)(M2x2)−∆C−1(∆) ∼ x−2(2µ−1+∆) . (2.7)

Here M is the scale parameter and C(∆) is an arbitrary function regular at ∆ = 0 such that

C(0) = 1. The choice of the function C(∆) affects only the normalization of correlators

but not their scaling dimensions.

The UV divergences appear in diagrams as poles in ∆ and are removed by the corre-

sponding counterterms. The renormalized action (2.5) takes the form

S′R = −
∫
ddx

[
Z1q̄�∂q −

1

2
σL∆σ + Z2σq̄q +

1

2
σLσ

]
. (2.8)

The model is not, however, multiplicatively renormalized, i.e. S′R(q, σ) 6= S′(q0, σ0). This

means that the anomalous dimensions of the fields or composite operators are not related

directly to the corresponding renormalization factors. The multiplicative renormalizability

can be restored in the extended model by introducing two new charges [29],

S′R(u, v) = −
∫
ddx

[
Z1(u, v)q̄�∂q −

u

2
σL∆σ + Z2(u, v)σq̄q +

v

2
σLσ

]
, (2.9)

so that S′R(q, σ, u, v) = S′(q0, σ0, u0, v0). Obviously, for u = v = 1 the extended model

coincides with the model (2.8). Since the model (2.9) is multiplicatively renormalizable the

scale dependence of the Green functions is described by the renormalization group equations

(RGEs). For instance, let {Oi} be a set of operators which mix under renormalization. The

RGE for the r-point 1PI functions with the insertion of the operators Oi takes the form([
M∂M + βu∂u + βv∂v − nΦγΦ

]
δik + γikO

)
Γk(u, v; p, p1, . . . , pr) = 0 , (2.10)

where nΦ = (nq + nq̄)γq + nσγσ and the RG functions are defined in the standard way

βu = M∂Mu , βv = M∂Mv , γΦ = M∂M lnZΦ , γO = −M∂MZZ−1. (2.11)

Here Zq = Z
1/2
1 , Zσ = Z2Z

−1
1 and the matrix Z enters the definition of the renormalized

operator, ORi (Φ) = ZikOk(Φ0). In an arbitrary subtraction scheme the term(
βu∂u + βv∂v

)
Γi(u, v; {p})

∣∣∣
u=v=1

= −2γσ(∂u + ∂v)Γi(u, v; {p})
∣∣∣
u=v=1

6= 0 , (2.12)

which implies that the RG functions γΦ, γO are not true anomalous dimensions that de-

termine the scale dependence of the correlators. Let us stress that the correlators in the

model (2.8) and in the extended model (2.9) at u = v = 1 have certain scaling dimensions,

namely ([
M∂M − nΦγΦ

]
δik + γikO

)
Γk(u = v = 1; {p}) = 0 , (2.13)

– 4 –
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but, in general, γΦ 6= γΦ, γO 6= γO. It was shown in [29] that in the MOM scheme

the renormalized Green functions depend only on the difference of the charges u and

v, Γk(u, v; {p})) = Γk(u − v; {p}). This implies that the term with β-functions in the

RGE (2.10) vanishes and, hence, γΦ = γMOM
Φ , γO = γMOM

O . Unfortunately the calculations

in the MOM scheme is hardly feasibly beyond the leading order. In the most suitable

for practical calculations MS-scheme, (Z-factors are given by series in 1/∆) in general,

γO 6= γO. However as it was shown in [31] the difference is of order 1/n3

γ∗Φ = γΦ − γMS
Φ = O(1/n3) , γ∗O = γO − γMS

O = O(1/n3) . (2.14)

Thus, the anomalous dimensions in the MS scheme up to 1/n2 order inclusively can be

calculated with the help of eqs. (2.11). Taking into account that

βu = 2u
(
∆− γσ

)
, βv = −2vγσ (2.15)

one derives (from now on we consider only the MS scheme and omit the label MS)

γO = −2
(

∆u∂u − γσ(u∂u + v∂v)
)
ZZ−1 = −2u∂uZ

(1)(u, v)|u=v=1 (2.16)

where

Z = 1 +
∑
k>0

∆−kZ(k) . (2.17)

Taking into account that there is no derivative with respect v in (2.16) one can put v = 1

from the very beginning3 arriving to the final expression for anomalous dimensions [31]

γO = −2u∂uZ
(1)(u, 1)

∣∣∣
u=1

. (2.18)

Taking into account that the charge u appears only in the σ field propagator

Dσ(x) = −1

u
× 1

n
B(µ)C(∆)

M2∆

(x2)1−∆
, (2.19)

and −u∂u counts a number of σ lines in diagrams one concludes that the contributions of

each diagram to the Z factor and to the anomalous dimension, γO, differ by a factor 2nσ,

where nσ is the number of internal σ lines in the diagram.

Equations (2.16), (2.18) have a striking resemblance to the analogous expressions in

the MS scheme in the dimensional regularization. Being a variation of the standard RG

technique, this approach is rather effective for the analysis of composite operators with a

nontrivial tensor structure. A more detailed discussion can be found in refs. [31, 57] and a

generalization to gauge theories in refs. [58, 59].

On finishing the review we recall known results for the anomalous dimensions of the

fermion and auxiliary fields [7–10]. We adopt the standard notations [56]

η = 2γq, γσ = −η − κ . (2.20)

3In this case, v = 1, there are no diagrams with an insertion of the simple fermion loop into the σ lines

(it is exactly cancelled by the term 1/2σLσ in the action (2.9)).

– 5 –



J
H
E
P
0
1
(
2
0
1
7
)
1
3
2

The index η is known with 1/n3 [9, 10] and κ with 1/n2 [7, 9] accuracy. We need the first

two coefficients in the expansion for η, η =
∑

k≥1 ηk/n
k,

η1 = −B(µ)/2µ = − 2 Γ(2µ− 1)

Γ(µ+ 1)Γ(µ)Γ(µ− 1)Γ(1− µ)
, (2.21)

η2 = η2
1

1

2

1

(µ− 1)2

[
(µ− 1)2

µ
+ 3µ+ 4(µ− 1) + 2(µ− 1)(2µ− 1)Ψ(µ)

]
, (2.22)

where Ψ(µ) = ψ(2µ− 1)− ψ(1) + ψ(2− µ)− ψ(µ), and only the first one for κ:

κ1 = η1
µ

µ− 1
, γ(1)

σ = −2µ− 1

µ− 1
η1 . (2.23)

3 Higher-spin currents

We consider the higher-spin (traceless and symmetric) operators bilinear in fermionic fields:

• the scalar (singlet) operators

Os = q̄γµ1∂µ2 . . . ∂µsq + . . . . (3.1)

• the adjoint (non-singlet) operators

OAs = q̄ tAγµ1∂µ2 . . . ∂µsq + . . . . (3.2)

Here tA are the generators of the SU(N) group and summation over isotopic indices is

always implied, (q̄ q = q̄a qa). It is assumed that Lorentz indices are symmetrized and

traces subtracted so that s is the spin of the operator. The ellipses stand for the total

derivatives which can be neglected if one is interested in the anomalous dimensions only.

The renormalized operators take the form

[Os] = ZsOs , [OAs ] = ZAs OAs . (3.3)

Up to 1/n2 terms inclusively the anomalous dimensions are given by

γ(s) = η − 2u∂uZ(1)
s

∣∣∣
u=1

, γA(s) = η − 2u∂uZA,(1)
s

∣∣∣
u=1

, (3.4)

where Z(1) is a simple pole in the corresponding renormalization factor Z = 1 + Z(1)/

∆ +O(1/∆2).

For odd s the anomalous dimensions of singlet and non-singlet operators coincide,

γs = γAs . Therefore, from now on, it will be tacitly implied that spin s is even for the

singlet currents.

As usual, the renormalization factor Z is extracted from the correlator of the operator

with fermion fields at zero momentum transfer, 〈O(0)q(p)q̄(p)〉. Calculating the leading

order (1/n) diagrams shown in figure 1 we reproduce the result of Muta and Popovic [28]

γA(s) =
1

n
η1

(
1− µ(µ− 1)

(s+ µ− 1)(s+ µ− 2)

)
+O(1/n2) , (3.5a)

γ(s) =
1

n
η1

(
1− µ(µ− 1)

(s+ µ− 1)(s+ µ− 2)

(
1 +

Γ(2µ− 1)s!

Γ(2µ− 3 + s)(µ− 1)

))
+O(1/n2) .

(3.5b)
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Figure 1. The leading order diagrams for the correlator 〈O(0)q(p)q̄(p)〉. The right diagram con-

tributes only to the correlator of singlet operators of even spin.

It can be easily checked that the conserved currents, the spin-one and spin-two singlet

(the energy-momentum tensor) currents, have vanishing anomalous dimensions, γA(1) = 0

and γ(2) = 0.

The anomalous dimensions (determined only for integer s) define analytic functions of

complex variable (spin) s, which at integer points coincide with the corresponding anoma-

lous dimensions. It is well known that such a continuation should be done separately for

even and odd s. Thus the eqs. (3.5) define three analytic functions, γ±A (s) and γ(s), where

γ+
A , γ reproduce the corresponding anomalous dimensions for even s, and γ−A (s) for odd s.

Obviously, in the 1/n order, γ+
A (s) = γ−A (s).

In CFTs it is more natural to consider anomalous dimensions as functions of the

conformal spin j defined as

j =
1

2

(
∆s + s

)
= µ− 1 + s+

1

2
γ(s) , (3.6)

where s is the spin and ∆s is the scaling dimension of an operator. For a given anomalous

dimension γ(s) let us define a function f(j) as follows

f(j) = f

(
µ− 1 + s+

1

2
γ(s)

)
= γ(s) . (3.7)

It was noticed in [32] that in all known examples the large j expansion of the function

f(j) has a rather specific structure. Let us consider the f -functions for the anomalous

dimensions (3.5). They take the form

γ±A (s) = f±A (j) =
1

n
η1

(
1− µ(µ− 1)

j(j − 1)

)
+O(1/n2) ,

γ(s) = f(j) =
1

n
η1

(
1− µ(µ− 1)

j(j − 1)

(
1 +

Γ(2µ− 1)

µ− 1

Γ(j − µ+ 2)

Γ(j + µ− 2)

))
+O(1/n2) . (3.8)

At the leading order the functions f±A are invariant under j → 1− j. The singlet function

f(j) is given by the sum of two terms one of which is invariant under j → 1 − j, but

another one, ∼ Γ(j − µ+ 2)/Γ(j + µ− 2), is not. The asymptotic expansion for this term

has the form (
j − 1

2

)−2(µ−1)∑
k≥0

ak
(j(j − 1))k

. (3.9)

– 7 –
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Figure 2. The 1/n2 order diagrams for the non-singlet currents.

Therefore, up to the prefactor the series is invariant under j → 1− j. It was argued in [32–

34] that a generic contribution to the asymptotic expansion of f(j) has the structure (3.9)

where the coefficients ak are allowed to be a function of ln(j − 1/2).

Taking these findings into account we also present our results for the anomalous di-

mensions as functions of conformal spin. Besides that the corresponding expressions have

a simpler form the very possibility to bring results to the form (3.9) provides a nontrivial

check of calculations.

3.1 Non-singlet currents at 1/n2

Diagrams contributing to the renormalization of the non-singlet current at 1/n2 order

comprise the diagrams with the self-energy (SE) and vertex corrections to the leading order

diagram (shown in the l.h.s. of figure 1) plus two additional diagrams shown in figure 2. The

calculations are straightforward so that we present the answer only. It is worth emphasizing

that any diagram containing a fermion loop with odd number of attached σ lines vanishes,

which is exactly the feature that makes computations in the GN model more feasible that

in the O(N) σ-model.

3.1.1 Anomalous dimensions

The full conformal dimension of the non-singlet currents can be written as

∆s = ∆(0)
s +

1

n
γ(1)(s) +

1

n2
γ(2)(s) + . . .

= 2µ+ s− 2 +
1

n

(
η1 + γ(1)

s

)
+

1

n2

(
η2 + γ(2)

s

)
+O

(
1

n3

)
, (3.10)

where η1 and η2 are given in eqs. (2.21) and (2.22), respectively, and the anomalous di-

mension γ
(1)
s takes the form

γ(1)
s = −η1

µ(µ− 1)

(µ+ s− 1)(µ+ s− 2)
. (3.11)

– 8 –
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Figure 3. The 1/n2 order diagrams for the singlet currents.

For the 1/n2 order anomalous dimension γ
(2)
s we found

γ(2)
s = γ(1)

s η1

{
ψ(s+µ−2)−ψ(µ+1)+

2µ−1

µ−1
[ψ(2µ−1)+ψ(−µ)−ψ(µ)−ψ(1)]

− µ(µ−1)

2(s+µ−1)(s+µ−2)

(
1− 1

s+µ−1
− 1

s+µ−2

)
+

µ

(µ−1)(s+µ−2)
+

1

2

µ

µ−1

− µ

µ−1
[ψ(µ)−ψ(s+µ−2)]

}
−η

2
1

2
µ2

(
1− (µ−1)2

(s+µ−1)(s+µ−2)

)
Rs(µ) , (3.12)

where Rs(µ) is (cf. with eq. (5.11) in [31])

Rs(µ) =

∫ 1

0
dα (1− α)µ−2

∫ 1

0
dβ (1− β)µ−2(1− α− β)s−1 . (3.13)

The last term in (3.12), the only contribution which can not be expressed in terms of

Euler’s ψ-function, comes entirely from the diagram in the r.h.s. in figure 2. Finally, as a

simple consistency check one can verify that γ(2)(s = 1) ≡ γ(2)
s=1 + η2 = 0.

3.2 Singlet currents at 1/n2

In order to find the anomalous dimensions of the singlet currents at 1/n2 order one has

to calculate diagrams shown in figure 3 and the diagrams with all possible self-energy and

vertex insertions to the rightmost diagram in figure 1. The calculation does not bring

about any troubles and can be easily performed with the help of the standard methods,

see ref. [56] for a review.

3.2.1 Anomalous dimensions

The anomalous dimensions of the singlet currents with odd spins are equal to those of

non-singlet ones. The scaling dimensions of the currents with even spins can be written as

∆s = 2µ+ s− 2 +
1

n

(
η1 + γ(1)

s + ∆γ(1)
s

)
+

1

n2

(
η2 + γ(2)

s + ∆γ(2)
s

)
+O

(
1

n3

)
. (3.14)

– 9 –
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The indices η1,2 are defined in eqs. (2.21), (2.22), γ
(1)
s , γ

(2)
s — in eqs. (3.11), (3.12), respec-

tively, and ∆γ
(1)
s is the additional shift in (3.5b) for the singlet currents at order 1/n:

∆γ(1)
s = −η1

µΓ(2µ− 1)Γ(s+ 1)

(µ+ s− 2)(µ+ s− 1)Γ(s+ 2µ− 3)
. (3.15)

For the second order correction ∆γ
(2)
s we found

∆γ(2)
s = η1∆γ(1)

s

{
2

2µ−1

µ−1

(
ψ(2µ−1)+ψ(−µ)−ψ(µ)−ψ(1)

)
−1

2

[
3
(
ψ(2µ+s−3)−ψ(µ+s−2)+ψ(2−µ)−ψ(2)

)
+ψ(s)−ψ(1)+

1

s+2µ−3

+ψ(µ+s−2)−ψ(µ)+4
2µ−1

µ(µ−1)
+1

]

− µ

µ−1

[
ψ(s)+ψ(2µ−2+s)−2ψ(s+µ−1)+ψ(2−µ)+ψ(µ)−2ψ(1)

]}

−1

2
γ(1)
s ∆γ(1)

s

{
µ+s−2

(µ−1)(2µ+s−3)
+2

(
−1+

1

µ+s−1
+

1

µ+s−2

)

+ψ(2µ−3+s)−ψ(µ)+ψ(1−µ)−ψ(s)

}

−1

2
(∆γ(1)

s )2

{
1

s(2µ+s−3)
+

(
−1+

1

µ+s−1
+

1

µ+s−2

)
+ψ(2µ+s−3)−ψ(µ)+ψ(2−µ)−ψ(s+1)

−(µ+s−1)(µ+s−2)

s(µ−1)(s+2µ−3)

[
ψ(s+2µ−3)+ψ(s+1)−2ψ(s+µ−1)+ψ(µ)−ψ(1)−Js(µ)

]}
,

(3.16)

where the function Js(µ) is defined as

Js(µ) =
Γ(s+ µ− 1)

s!Γ(µ− 2)

∫ 1

0
dαα2µ−4+s

∫ 1

0
dβ

βµ−2(1− β)s

1− αβ
. (3.17)

Again, the contribution in the last line in (3.16), which can not be expressed in terms of ψ

functions only, is due the rightmost diagram in figure 3. Finally, taking into account that

J2(µ) =
1

2

(
−2S1(µ− 2) + 2S1(2µ− 2) +

1 + µ

1− µ

)
. (3.18)

one can check that the stress-tensor is conserved, i.e. η2 + γ
(2)
s=2 + ∆γ

(2)
s=2 = 0.

3.3 Conformal spin expansion

Below we check that the anomalous dimensions of singlet and non-singlet currents can be

cast into the form (3.9) when expressed as functions of conformal spin.
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3.3.1 Conformal spin expansion of non-singlet currents

In order to express the anomalous dimensions in terms of conformal spin we write

γ±A (s) = f±A (j) = η
(

1 + f1(j)
)

+ η2f±2 (j) , (3.19)

where η = η1/n+η2/n
2 + . . . and j is defined in eq. (3.6). Note that the first term in (3.19)

contains both 1/n and 1/n2 terms. For the functions f1 and f±2 we get

f1(j) = −µ(µ− 1)

j(j − 1)
, (3.20)

f±2 (j) =
1

2

µ2 − µ+ 1

µ(µ− 1)
f2

1 (j) + f1(j)

{
2µ− 1

µ− 1

(
ψ(j)− ψ(µ)

)
+
µ− 1

2µ
− 1

2(µ− 1)2

}

− 1

2
µ2

[
1− (µ− 1)2

j(j − 1)

](
R+(j, µ)∓R−(j, µ)

)
, (3.21)

where

R−(j, µ) = Γ2(µ− 1)
Γ(j + 1− µ)

Γ(j + µ− 1)
, R+(j, µ) =

1

j

∫ 1

0
du ūj−2

2F1

(
2− µ, 1
j + 1

∣∣∣∣− u

ū

)
.

(3.22)

The functions R±(j, µ) are related to the function Rs(µ) as follows:

R+(js, µ) + (−1)s−1R−(js, µ) = Rs(µ) , (3.23)

where js = s+µ− 1. Note also, that in this formulation the spin-one current conservation

is equivalent to the constraint f−2 (µ) = 0.

One can verify that the large j behavior of anomalous dimensions (3.19) agrees with

the predictions of refs. [32–34]. It is easy to see for all terms except, may be, R+(j, µ). For

this function one can use the Mellin-Barnes representation for hypergeometric function to

get asymptotic expansion

R+(j, µ) =
1

2πi

∫ i∞

−i∞
dt

Γ(2− µ+ t)Γ2(1 + t)Γ(−t)Γ(j − t− 1)

Γ(2− µ)Γ(j + t+ 1)
'

j→∞

∑
k≥0

ck
Γ(j − k − 1)

Γ(j + k + 1)
,

(3.24)

with ck = (−1)kk!Γ(2− µ+ k)/Γ(2− µ).

3.3.2 Conformal spin expansion of singlet currents

We can rewrite the answer for the singlet current in the form

γ(s) = f(j) = η
(

1 + f1(j) + ∆f1(j)
)

+ η2
(
f+

2 (j) + ∆f2(j)
)

+O(1/n3) , (3.25)

where j = s+µ−1+γ(s)/2, the functions f1(j), f+
2 (j) are defined by eqs. (3.20), (3.21) and

∆f1(j) = f1(j)
Γ(2µ− 1)

µ− 1

Γ(j − µ+ 2)

Γ(j + µ− 2)
. (3.26)
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For the function ∆f2(j) we obtained

∆f2(j) = ∆f1(j)

{
−
[
ψ(j)− ψ(µ)

]
− 2µ− 1

µ− 1

(
Ψ(j, µ)−Ψ(µ, µ)

)
− 1

2

(
ψ(2− µ)− ψ(µ)

)
− 1

2

1

j(j − 1)
+

(2µ− 3)(3µ− 1)

2(µ− 1)(j − µ+ 1)(j + µ− 2)
+

1

(µ− 1)2
+

1

2µ(µ− 1)
− 1

− 1

2
f1(j)

(
ψ(1− µ)− ψ(µ− 1)− 2 +

2µ− 3

(j − µ+ 1)(j + µ− 2)

)

− 1

2
∆f1(j)

(
ψ(2− µ)− ψ(µ)− 1 +

1

(j − µ+ 1)(j + µ− 2)

− j(j − 1)

(µ− 1)(j − µ+ 1)(j − 2 + µ)

[
Ψ(j, µ) + ψ(µ)− ψ(1)− J(j, µ)

])}
, (3.27)

where

Ψ(j, µ) = ψ(j − 2 + µ) + ψ(j + 2− µ)− 2ψ(j) (3.28)

and J(j, µ) is an analytic continuation of the function Js(µ), defined in (3.17), to non-integer

spins: J(js, µ) = Js(µ), for js = s+ µ− 1:

J(j, µ) =
Γ(j)

Γ(µ− 2)Γ(j + 2− µ)(j + µ− 2)

∫ 1

0
duuµ−2ūj−µ2F1

(
1, 1

j + µ− 1

∣∣∣∣− u

ū

)
=

1

Γ(µ− 2)

Γ(j − 2 + µ)

Γ(j + 2− µ)

1

2πi

∫ i∞

−i∞
dtΓ2(t+ 1)Γ(µ+ t)Γ(−t)Γ(j − µ+ 1− t)

Γ(j + µ− 1 + t)
.

(3.29)

It can be checked that f+
2 (j) + ∆f2(j) vanishes for j = µ + 1, so that the anomalous

dimension of the energy-momentum tensor, γ(s = 2) = 0, as it should be. Next, taking

into account that for large j

Ψ(j, µ)−Ψ(1− j, µ) = O(e−π|Im j|)

and, as it follows from eq. (3.29),

J(j, µ) '
j→∞

∑
n≥0

cn(µ)
Γ(j − 2 + µ)

Γ(j + 2− µ)

Γ(j − µ+ 1− n)

Γ(j + µ− 1 + n)
(3.30)

we conclude that the asymptotic expansion of the function f(j) for large j agrees with the

predictions of ref. [34].

3.4 Three dimensions and higher-spin masses

The case of three dimensions is of the most interest. First of all, we give the expression for

the index η in d = 3 model

η1 =
8

3π2
, η =

η1

n

(
1 +

28

3n
η1 + . . .

)
. (3.31)
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The full order 1/n2 anomalous dimension of the non-singlet currents γ
(2)
s can be simpli-

fied to

γ(2)
s =

3η2
1

4 (4s2 − 1)

{
3π(−1)s

(
2s2 − 1

)
s

− 2(24s+ 9)

4s2 − 1
− 48s

(4s2 − 1)2 + 2

− 32 log(2) +
3
(
2s2 − 1

)
s

[
S1

(
s

2
− 3

4

)
− S1

(
s

2
− 1

4

)]
− 16S1

(
s− 3

2

)}
,

(3.32)

where S1(j) ≡ ψ(j + 1)− ψ(1). The singlet anomalous dimensions can also be simplified:

∆γ(2)
s =

3η2
1

4s2 − 1

{
−

3
(
144s3 + 92s2 − 28s− 15

)
2(4s2 − 1)2

+
11

2
− 8s− 2(14s+ 3) log(2)

− 2(7s+ 3)S1

(
s− 3

2

)
+ 2(8s+ 3)S1(s− 1) + 3

[
S1

(
s− 1

2

)
− S1

(
s− 2

2

)]}
.

(3.33)

The conservation of the stress-tensor corresponds to η2 + γ
(2)
s=2 + ∆γ

(2)
s=2 = 0.

Using the above results for the anomalous dimensions of the currents in the critical

d = 3 GN model one can derive masses of the higher-spin gauge fields (1.2) in the dual

AdS4 model. Plugging the first order anomalous dimensions and (3.32), (3.33) into (1.2)

one gets

δm2
s =

2

n
η1(s− 2) +

η2
1

n2

1

s(1 + 2s)

{
9

4
π
(
2s2 − 1

)
+
s
(
224s3 − 244s2 + 88s− 317

)
3(2s− 1)

+
9

4

(
2s2 − 1

) [
S1

(
s

2
− 3

4

)
− S1

(
s

2
− 1

4

)]
+ 9s

[
S1

(
s− 1

2

)
− S1

(
s− 2

2

)]

+ 6s(8s+ 3)S1(s− 1)− 6s(7s+ 5)S1

(
s− 3

2

)
− 42s(2s+ 1) log(2)

}
.

(3.34)

One can see that the graviton remains massless, δm2
s=2 = 0, as it should be. For large spin

the mass-spin dependence for the higher-spin fields, eq. (1.2), can be written in the form

δm2
s = 2η(s− 2)

(
1 + ηκ1(s) + . . .

)
. (3.35)

Thus in the leading order this dependence takes the form of linear Regge trajectory with

the slope α′ = 1/2η. Note that the same linear mass squared spin dependence holds also

in the O(N) model [47]. The deviation from the linear trajectory, κ1(s), is due to the

next-to-leading corrections,

κ1(s) =
1

2s− 1
+

2s− 1

2(s− 2)

(
f+

2 (s+ 1/2) + ∆f2(s+ 1/2)
)
. (3.36)

The correction κ1(s) is positive for even spins, see figure 4, and vanishes as κ1(s) =
3
2 ln s/s+ . . . for large spin.
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Figure 4. The function κ1(2k), eq. (3.36).

4 Summary

We have calculated the 1/n2 corrections to the scaling dimensions of the (non)singlet

higher-spin currents in the GN model. As nontrivial checks we found that the spin-one

non-singlet current and the spin-two stress-tensor current are conserved and the asymptotic

expansion in terms of conformal spin agrees with the results of refs. [32–34].

In three dimensions the anomalous dimensions can be considerably simplified. Some

of the numerical values can be found in appendix B, which should facilitate comparison

with other methods, e.g. the numerical bootstrap along the lines of [60–62].

Given the anomalous dimensions of the singlet currents we also computed the loop

corrections to the masses of higher-spin fields in the four-dimensional higher-spin theory

dual to the GN model, known as Type-B. At the leading order the mass spin dependence

has the form of a linear Regge trajectory while the next-to-leading correction gives rise to

deviation from linearity.

As was observed in [63, 64], there is some diagrammatic dictionary between all the

Feynman-Witten graphs at order 1/Nk in the bulk and Feynman graphs at the same order

on the CFT side. We note that the graphs of certain topologies present in the bosonic

O(N)-model are absent in the Gross-Neveu model since they contain traces of odd number

of γ-matrices. This fact indicates that the Type-B higher-spin theory should enjoy some

hidden simplicity as compared to the type-A case, which is dual to the bosonic O(N) model.

Also, as it is clear already from the order 1/n results, there are several contributions to the

anomalous dimensions which differ by their large spin asymptotic. It would be interesting

to understand this effect from the bulk side.
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A Renormalized propagators

For completeness of exposition we give here expressions for the renormalized propagators

in the 1/n order assuming that the normalization factor C(∆) is chosen C(∆) = 1. The

propagators take the form

D−1
q (p) = i�p

(
p2
/
M

2
)−γq

Aq(µ) , D−1
σ (p) = −nb−1(µ)p2(µ−1)

(
p2
/
M

2
)−γσ

Aσ(µ) ,

(A.1)

where M = 2M , b(µ) is defined by eq. (2.4) and

Aq(µ) = 1 + γq/µ(µ− 1) +O(1/n2) ,

Aσ(µ) = 1 + γσ

(
ψ(2µ− 1) + ψ(−µ)− ψ(µ)− ψ(1)

)
+O(1/n2) . (A.2)

B Numerical values

Since the formulas for the anomalous dimensions are quite complicated we list below few

numerical values in one of the most interesting cases of three dimensions. The order 1/n

results are due to [28] and we collect the order 1/n2 coefficients only. It is worth stressing

that we give below the full anomalous dimensions at order 1/n2, i.e. η2 is included. It

is convenient to measure the anomalous dimensions in the units of η2
1 = 64/(9π4). The

spin-one current is always conserved, γ2
A(1) = 0, and for few other we find

γ
(2)
A (2) =

1104

125
≈ 8.832 γ

(2)
A (3) =

912896

128625
≈ 7.09734 (B.1)

γ
(2)
A (4) =

1324432

138915
≈ 9.53412 γ

(2)
A (5) =

154300672

18866925
≈ 8.17837 . (B.2)

The anomalous dimensions of the singlet currents with odd spins are the same as for the

non-singlet ones. Below are the full anomalous dimensions at order 1/n2 for even spins

currents. Stress-tensor is conserved, i.e. γ2
S(2) = 0, and for a few others we have in the

units of η2
1

γ
(2)
S (4) =

16600

3087
≈ 5.37739 γ

(2)
S (6) =

12495584

1816815
≈ 6.87774 (B.3)

γ
(2)
S (8) =

145039504

19144125
≈ 7.57619 γ

(2)
S (10) =

133304287652

16712124975
≈ 7.9765 . (B.4)
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[47] W. Rühl, The Masses of gauge fields in higher spin field theory on AdS4, Phys. Lett. B 605

(2005) 413 [hep-th/0409252] [INSPIRE].
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