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1 Introduction

The N -component ϕ4 model possesses a nontrivial critical point in 2 < d < 4 dimensions

and serves as an example of a conformal field theory (CFT), see e.g. ref. [1]. The funda-

mental renormalization group functions in this model are known with a high precision in

the perturbative expansion [2–8] that allows one to get reliable predictions for the critical

indices in the physically interesting dimension d = 3. This model can also be analyzed

within the 1/N expansion framework. This technique is very suitable for the description

of phase transition phenomena [1]. Critical indices in this approach are given by a series

in 1/N with the coefficients being functions of the space dimension d that allows one to

obtain indices directly in d = 3. Moreover, consistency of the results of the perturbative

and 1/N expansions provides a nontrivial check of the calculations in both approaches.

Unfortunately, the calculations in the 1/N approach are rather involved. Only two indices

— the critical dimension of the basic field in the N -vector and Gross-Neveu models — are

known to 1/N3 accuracy [9–11]. Nevertheless many critical exponents are available at the

1/N2 order, see for a review [12]. Other observables, e.g. central charges, have also been

computed within the large-N approach, [13].

Recent interest in the O(N)-vector model comes from studies of the AdS/CFT corre-

spondence. Namely, it was conjectured in [14] that the critical O(N) vector model should

be dual to the higher-spin theory in AdS4, see also [15–17]. Some tests of this conjecture

have been already performed at the level of tree-level three-point correlation functions and

one-loop determinants [18–20]. Although the conjectured duality is supported by these
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tests it goes without saying that verification beyond the tree level is desirable. The sim-

plest quantities to compare on both sides of this correspondence are the masses (AdS)

and anomalous dimensions (CFT) of the currents. Indeed, it is expected that the radiative

corrections on the AdS side should give masses1 to higher-spin fields [21–23], that, from the

CFT point of view, correspond to the anomalous dimensions, γs, of the higher-spin currents

m2
s = m2

0(s) + δm2
s , m2

0(s) = (d+ s− 2)(s− 2)− s, δm2
s = γs(d− 4 + 2s+ γs) . (1.1)

The anomalous dimensions are known at the 1/N order for the singlet currents [24] and

at 1/N2 for the non-singlet currents [25]. The aim of this work is to bridge this gap and

calculate the anomalous dimensions of the singlet currents to the 1/N2 accuracy.

The higher-spin vs. vector model duality turns out to be a particular case of a more

general duality between Chern-Simons matter theories and parity breaking higher-spin

theories, [26, 27]. There are four simplest Chern-Simons matter theories: free boson, critical

vector model, free fermion and Gross-Neveu models that are coupled to a Chern-Simons

gauge field at level k. The three-dimensional bosonization duality [26, 28, 29] identifies

these four theories pairwise. The AdS/CFT duality then relates them to a parity-violating

higher-spin theory in AdS4 with two different boundary conditions for the scalar field of

the higher-spin multiplet. In this more general picture the Gross-Neveu model and the

critical vector model turn out to be duals of one and the same higher-spin theory, but for

different values of the parity violating parameter and boundary conditions. Remarkably,

the anomalous dimensions of the singlet higher-spin currents happen to be the same at

order 1/N in d = 3 both for the critical vector model and the Gross-Neveu model [30]:

γs =
1

N

16(s− 2)

3π2(2s− 1)
for even s . (1.2)

Recently, the order-1/N anomalous dimensions have been computed in all the four basic

Chern-Simons matter theories [31]. The result is that they are given by two functions of

spin, one of them being γs above, times simple factors that depend on the parity violating

parameter. It is interesting that the two spin-dependent functions were found to be same

for all the four theories, a particular case being (1.2). In [32] the order-1/N2 anomalous

dimensions were computed for the Gross-Neveu model. The results of the present paper

reveal that the order-1/N2 anomalous dimensions are different in the critical vector and

the Gross-Neveu models. It would be interesting to extend the results to Chern-Simons

matter theories.

The paper is organized as follows. In section 2 we describe the model and review a

technique for the calculation of critical exponents. In section 3 we discuss the renormaliza-

tion of higher-spin currents and present our results for the anomalous dimensions of these

currents in the 1/N2 order in arbitrary dimension d. The anomalous dimensions in d = 3

are discussed in section 4. The details of the calculations and some numerical results are

collected in several appendices.

1The masses are measured in the units of the cosmological constant.
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2 Critical O(N) model

The O(N) invariant ϕ4 model (where ϕ is an N -component real field)

S(ϕ) =

∫
ddx

{
1

2
(∂ϕ)2 +

1

4!
gM2ǫ(ϕ2)2

}
, (2.1)

has a nontrivial Fisher-Wilson critical point in d = 4− 2ǫ dimensions [33, 34],

u∗ =
6ǫ

N + 8

(
1 +

6ǫ(3N + 14)

(N + 8)2

+
ǫ2

2(N + 8)4

(
− 33N3 + 110N2 + 1760N + 4544− 96ζ3(N + 8)(5N + 22)

))
, (2.2)

where u = g/16π2. This model is critically equivalent to the nonlinear σ - model, see for a

review [1, 12]. The latter describes a system of two interacting fields — basic field ϕ and

“auxiliary” field σ — with the action2

S(ϕ, σ) =

∫
ddx

(
1

2
(∂ϕ)2 −

1

2
σϕ2

)
. (2.3)

The partition function is given by the path integral

Z(J) = N−1

∫
DϕDσ exp {−S(ϕ, σ) + Jϕϕ+ Jσσ} . (2.4)

The 1/N expansion for this model is constructed as follows [12, 35]. One represents the

action (2.3) in the form

S =

∫ (
1

2
(∂ϕ)2 +

1

2
σKσ −

1

2
σϕ2 −

1

2
σKσ

)
= S0 + Sint , (2.5)

where
∫
σKσ =

∫
ddx

∫
ddy σ(x)K(x− y)σ(y), etc. Thus the kernel K is an inverse prop-

agator of the σ field. It is fixed by the condition that the term σKσ in Sint cancels the LO

ϕ loop insertions to the σ lines. Namely,

K(x) +
N

2
D2

ϕ(x) = 0 , (2.6)

where Dϕ(x) is the propagator of the basic field ϕ

Dϕ(x) =
a(1)

4πµ

1

(x2)µ−1
and a(x) =

Γ(µ− x)

Γ(x)
. (2.7)

Since Dσ = K−1 ∼ 1/N one gets a systematic 1/N expansion for (2.4). However, despite

the fact that one considers the theory in non-integer dimensions the loop diagrams are

divergent and the theory has to be regularized. The most convenient way to do it is to

modify the kernel K in the free part (S0) of the action [35],

K(x) 7→ K∆(x) = C(∆)(M2x2)−∆K(x) . (2.8)

2Going from (2.1) to (2.3) one gets an additional term ∼ σ2 which, however is IR irrelevant and can be

omitted in the critical regime.
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The function C(∆) is arbitrary except that it has to satisfy the condition C(0) = 1.

Different choices of C(∆) result in a finite renormalization for Green functions but do not

affect the critical exponents. We fix the function C(∆) by the requirement that the σ field

propagator takes the form

Dσ(x) =
1

N
B(µ)

M2∆

(x2)2−∆
, B(µ) = −

32a(2− µ)

a(2)a2(1)
. (2.9)

The divergences in diagrams arise as poles in ∆ and are removed by the R operation.

From now on we will assume the MS scheme, i.e. Z factors are series in 1/∆, Z = 1 +∑
k≥1 ck(1/N)/∆k. The renormalized action takes the form3 [35]

SR(ϕ, σ) =

∫ (
1

2
Z1(∂ϕ)

2 +
1

2
M−2∆σK∆σ −

1

2
Z2σϕ

2 −
1

2
σKσ

)
. (2.10)

Note, however, that the renormalization is not multiplicative, i.e. SR(ϕ, σ) 6= S(ϕ0, σ0). It

means that the knowledge of renormalization factors is not sufficient for determining critical

exponents [35, 36]. Nevertheless it was shown in [25] that to the 1/N2 accuracy the anoma-

lous dimensions can be expressed via the corresponding renormalization factors in a simple

way. The recipe is the following: we rescale the propagator of σ field by a parameter u,

Dσ(x) → Dσ(x, u) = u×
1

N
B(µ)

M2∆

(x2)2−∆
. (2.11)

Then the contribution of each diagram, G, to the renormalization constant comes with the

factor unG , where nG is the number of σ-lines in the diagram. Let Z be the renormalization

factor for an operator O, [O](Φ) = Z OB(Φ0), Φ = {ϕ, σ}. In the MS scheme it takes the

form

Z = 1 +
1

∆
Z1(u) +

1

∆2
Z2(u) + . . . , (2.12)

where Zk(u) =
∑

j zkj(u)/N
j . Then, to the order 1/N2 the anomalous dimension of the

operator O can be obtained as [25]

γO = 2u∂uZ1(u)
∣∣∣
u=1

+O(1/N3) . (2.13)

For more details see [25, 37]. In certain situations conventional techniques of self-

consistency equations [38, 39] and conformal bootstrap [9] are, of course, more effective.

However, the approach outlined above is very convenient for analysis of composite

operators, especially with a nontrivial mixing pattern.

3 Higher-spin operators

We are interested in the critical dimensions of the higher-spin (traceless and symmetric)

singlet operators

Jµ1,...,µs =
∑

a

ϕa∂µ1
. . . ∂µsϕ

a − traces. (3.1)

3Note, that in so-called exceptional dimensions, ds = 2s/(s − 1), s = 3, 4 . . . there are additional

divergences which require the counterterms of the form (ϕ2)s. In particular, for ds = 3 there is the

counterterm (ϕ2)3, see [12].

– 4 –



J
H
E
P
0
8
(
2
0
1
7
)
1
0
6

In what follows we will not display Lorentz indices explicitly and adopt a shorthand no-

tation for the operator, Js ≡ Jµ1,...,µs . The operator Js mixes under renormalization with

operators that are total derivatives. However, since the mixing has a triangular form it

is irrelevant for calculation of the anomalous dimensions and can be neglected. Thus the

renormalized operator takes the form

[Js] = Z(s)Js . (3.2)

The leading order diagrams contributing to the renormalization factor are shown in fig-

ure 1. The left diagram on this figure is the only one contributing at this order to the

renormalization of the non-singlet operator. The right diagram with a closed ϕ line cycle,

contributes to the singlet operator only. With this in mind we write the answer for the

anomalous dimension of the singlet operator in the form

γ(s) = η + γns(s) + ∆γ(s). (3.3)

Here the index η determines the anomalous dimension of the field ϕ, η = 2γϕ, γns(s) is

the anomalous dimension of the non-singlet operator, and ∆γ(s) is the contribution due to

diagrams with a closed ϕ-line cycle. All contributions except ∆γ(s) are known to the NLO

accuracy. The first two expansion coefficients for the index η = η1/N + η2/N
2 +O(1/N3)

take the form [39]

η1 =
4(2− µ)Γ(2µ− 2)

Γ(µ− 1)2Γ(2− µ)Γ(µ+ 1)
,

η2 = η21

(
−
2µ2 − 3µ+ 2

2− µ
R(µ)− 3−

3

(µ− 2)2
−

11

2(µ− 2)
+

1

2(µ− 1)
+

1

2µ

)
, (3.4)

where

R(µ) = ψ(1) + ψ(µ− 1)− ψ(2− µ)− ψ(2µ− 2). (3.5)

The LO anomalous dimension of the σ field (γσ = γσ,1/N + . . .) is [39]

γσ,1 = −2η1
(µ− 1)(2µ− 1)

2− µ
. (3.6)

The non-singlet anomalous dimension γns(s) has been calculated in [25] at the order 1/N2.

The first two coefficients of the 1/N expansion

γns(s) =
η1
N

γns,1(s) +
(η1
N

)2
γns,2(s) + . . . (3.7)
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Figure 1. Leading-order diagrams contributing to the anomalous dimension, γ(s). The left diagram

contributes to the non-singlet anomalous dimension γns and the right one — to the pure singlet, ∆γ.

Solid lines stand for the propagator of the basic field ϕ and wavy lines for the σ-field propagator.

read4

γns,1(s)=−
µ(µ−1)

js(js−1)
,

γns,2(s)=γns,1(s)

{
1

2

(
1

js
+

1

js−1

)(
1+γns,1(s)

)
+
1

2

µ2−µ+1

µ(µ−1)
γns,1(s)+

1

2
µ(µ−1)Rs(µ)

−
2(µ−1)(2µ−1)

µ−2
S(js)+

2µ2−3µ+2

µ−2
R(µ)+

µ3−4µ2+2µ+2

(µ−1)(µ−2)2

}
, (3.8)

where we introduced the notation, js = s + µ − 1, for the canonical conformal spin. The

functions S(j) and Rs(µ) are defined as

S(j) = ψ(j)− ψ(µ− 1) ,

Rs(µ) =

∫ 1

0
dα

∫ 1

0
dβᾱµ−3 β̄µ−3 (1− α− β)s = R+

s (µ) + (−1)sR−
s (µ) , (3.9)

where

R−(s) =
Γ2(µ− 2)s!

Γ(s+ 2µ− 3)
, R+(s) =

1

s+ 1

∫ 1

0
dααs+µ−2

2F1

(
1, 3− µ

s+ 2

∣∣∣∣α
)
. (3.10)

Singlet operators exist only for even spins, so that from now on we assume that s is

even. At 1/N order only one diagram — the rightmost diagram in figure 1 — contributes

to the pure singlet anomalous dimension

∆γ(s) =
η1
N

∆γ1(s) +
(η1
N

)2
∆γ2(s) +O(1/N3) . (3.11)

Calculating this diagram and using eq. (2.13) we reproduce the known result [24]

∆γ1(s) = −
2µ(µ− 1)Γ(2µ− 2)Γ(s+ 1)

js(js − 1)Γ(s+ 2µ− 3)
= 2γns,1(s)

Γ(2µ− 2)Γ(s+ 1)

Γ(s+ 2µ− 3)
. (3.12)

4In ref. [25] the anomalous dimensions of the non-singlet operators symmetric in O(N) indices were

calculated. Such operators exist for even spin only. The expression (3.8) is valid for all s. The only

difference with the result of [25] is an additional sign factor in front of the term R(n, µ).
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Thus to the leading order 1/N the singlet anomalous dimension is

γ(s) =
η1
N

(
1−

µ(µ− 1)

js(js − 1)

(
1 +

2Γ(2µ− 2)Γ(s+ 1)

Γ(s+ 2µ− 3)

))
. (3.13)

Note, that for s = 2 the anomalous dimension vanishes as it should be since the spin

two current corresponds to the energy-momentum tensor. We also remark that the spin

dependence of the LO singlet anomalous dimensions (3.13) is exactly the same as in the

Gross-Neveu model, see e.g. [30, 32].

3.1 Singlet current at 1/N2

The diagrams which contribute to the pure singlet anomalous dimension at the order 1/N2

can be split in two groups. The first one comprises the self-energy and vertex corrections to

the leading order diagram (eight different diagrams in total). The diagrams from the second

group are shown in figure 2. The diagrams from the first group can be effectively calculated

with the help of technique developed in [25]. We give some details of this calculation in

appendix C.

Next, the first three diagrams in the figure 2 are easy to calculate. All other diagrams

have only a superficial divergency. Since we are interested only in a residue at the ∆ pole

the regulator ∆ can be removed from the σ-lines and placed on one of the ϕ-lines. For

∆ = 0 the basic σϕ2 vertex has the property of uniqueness and can be transformed with

the help of the star-triangle relation

= πµ a(α, β, γ)
α

βγ
α′

β′ γ′

which holds if α+ β + γ = 2µ. Here a(α, β, γ) ≡ a(α)a(β)a(γ) and α′ = µ− α, etc. Using

the standard technique [12] one can find rather straightforwardly the contribution of each

diagram to the renormalization constant of the singlet current. We collected answers for

individual diagrams in appendix B.

Before presenting the answer for the singlet anomalous dimensions let us note that if

one is interested only in the d = 3 result the calculation of the last three diagrams can be

greatly simplified. It should be stressed here that we are talking about the pole part of the

diagrams only. Using the star - triangle relation one derives in d = 3:

α α

α = µ− 1

β = 2

= πµa2(α)a(β) = πµa2(α)a(β)

1 1

2µ− 3

1 1

– 7 –
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Since d = 2µ = 3 the horizontal line on the rightmost diagram disappears. In this way it is

easy to check that the contributions of the third and fourth diagrams in the second line in

figure 2 vanish in d = 3, while the last diagram is reduced to a simple ladder-type diagram

by application of the chain rule.

Collecting all terms, our answer for the NLO singlet anomalous dimension takes the

form:

γ(s)=
η1
N

γ1(s)+
(η1
N

)2
γ2(s)+...

=
η1
N

(
1+γns,1(s)+∆γ1(s)

)
−
1

2

(η1
N

)2(
1+γns,1(s)+∆γ1(s)

)[
γns,1(s)

(
1

js
+

1

js−1

)

+∆γ1(s)

(
1

js
+

1

js−1
+ψ(js+µ−2)−ψ(js+2−µ)−2+ψ(3−µ)−ψ(µ−1)

)]

+
η2
N2

+
(η1
N

)2
{
γns,1(s)

[
1

2

µ2−µ+1

µ(µ−1)
γns,1(s)+

1

2
µ(µ−1)Rs(µ)

−
2(µ−1)(2µ−1)

µ−2
S(js)+

2µ2−3µ+2

µ−2
R(µ)+

µ3−4µ2+2µ+2

(µ−1)(µ−2)2

]

+∆γ1(s)

[(
µ(2−µ)−

2

2−µ

)
S(js)−

1

2
∆γ1(s)−

1

2js(js−1)

+
2(µ−1)(2µ−1)

µ−2
Ψ(js)+

2

µ−2
R(µ)−

µ4−4µ3+9µ2−6µ−2

(µ−1)(µ−2)2

+

(
1
2∆γ1(s)+4(2µ−3)γns,1(s)

)
js(js−1)+µ(µ−1)(js+µ−3)(js+2−µ)

(2−µ)(js+1−µ)(js+µ−2)
Φ(js)

+
2µ(µ−1)(2µ−3)

(2−µ)2

(
−

2µ−3

s(s+2µ−3)

(
Ψ(js)+

1

s+2µ−3
+

1

2−µ
−R(µ)

)

+
Γ(2µ−2)Γ(s)

Γ(s+2µ−2)

(
S(js)−ψ(s+1)+ψ(1)−

1

2µ−3
+

1

s+2µ−3
+

1

2−µ
−R(µ)

)

+
Γ(2µ−2)

Γ(µ−2)Γ(s+µ−1)

s−1∑

m=0

Cs−1
m

Γ(s−m)Γ(µ−1+m)Γ(s+µ−2−m)

(m+1)2Γ(s+2µ−3−m)

)]}
. (3.14)

Here

Ψ(j) = ψ(j + µ− 2) + ψ(j + 2− µ)− 2ψ(j)− ψ(1)− ψ(2µ− 2) + 2ψ(µ− 1) ,

Φ(j) =
[
ψ(j + µ− 2) + ψ(j + 2− µ)− 2ψ(j) + ψ(µ− 1)− ψ(1)− J(j, µ)

]
(3.15)

and the function J(j, µ) is defined by

J(j,µ)=
Γ(j)

Γ(µ−2)s!

∫ 1

0
dαα2µ−4+s

∫ 1

0
dβ

βµ−2β̄s

1−αβ
=

µ−2

j(j+µ−2)
3F2

(
1,µ−1,j+µ−2

j+µ−1,j+1

∣∣∣∣1
)
.

(3.16)

The expression (3.14) passes several consistency checks. First, it can be verified that for

s = 2 the singlet anomalous dimension vanishes, γ(s = 2) = 0. We remark also that the

– 8 –
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Figure 2. Feynman diagrams of different topologies, D1, . . . , D9, contributing to the 1/N2 anoma-

lous dimension of the singlet current Js.

non-singlet spin one current is conserved and, hence, its anomalous dimension vanishes,

η + γns(s = 1) = 0.

Second, the large spin asymptotic of γ(s) complies with the CFT prediction [40, 41]. It

was noticed in [42, 43] that if one represents anomalous dimensions of higher-spin operators

in the form

γ(s) = f

(
js +

1

2
γ(s)

)
(3.17)

then the asymptotic expansion of the function f(j) has a rather specific form. Namely, it

is given by the sum of terms
(
j −

1

2

)−∆q ∑

k≥0

aq,k
(j(j − 1))k

. (3.18)

Excluding the prefactor, this series is invariant under j → 1−j save that the coefficients aq,k
are allowed to be functions (polynomials) of ln(j − 1/2). For more detail see refs. [40, 41].

In the perturbative expansion eq. (3.17) takes the form

γ(s) = f1(js) +
1

2
f1(js)f

′
1(js) + f2(js) + . . . (3.19)

Comparing it with (3.14) one finds that f1(js) is the LO anomalous dimension, while

the second term in (3.19) is contained in the first two lines in (3.14). Thus the large

– 9 –
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Figure 3. Anomalous dimensions of the singlet currents as function of µ for s = 4, 6, 8. The

order-1/N correction is on the left plot and the order-1/N2 correction is on the right. The solid

line corresponds to the limiting value of η1 (on the left) and to η2 (on the right).

spin expansion of all other terms in (3.14) starting from the third line has to have the

form (3.18). The asymptotic expansion of all contributions, except the diagram D9 (B.2),

can be easily calculated and has the form (3.18). For the diagram D9 we checked this

property in d = 3 only.

Third, the anomalous dimension of the higher-spin currents in ϕ4 model in 4 − 2ǫ

expansion are known with four-loop accuracy [44]. Restoring O(N) factors for individual

diagrams given in [44] we obtain for γ(s)

γ(s)=
N+2

3

{
u2

(s−2)(s+3)

6s(s+1)
−u3

(N+8)

9s(s+1)

[
2S1(s)+

s4+2s3−39s2−16s+12

8s(s+1)

]

×u4
5

864
(−N2+18N+100)−

u4

s(s+1)

[
N+2

18

(
S1(s)−

11s4+20s3+15s2−6s−6

2s2(s+1)2

)

+
N2+6N+20

27

(
S2(s)+S2

1(s)−S1(s)
4s2+2s−1

s(s+1)
+
8s4−4s3−13s2−s+3

4s2(s+1)2

)

+
5N+22

27

(
2S2(s)+S2

1(s)−
s2+s−4

s(s+1)
K2(s)

−S1(s)
11s2+7s−2

s(s+1)
+
42s4+52s3+3s2−7s+3

2s2(s+1)2

)]}
+O(u5), (3.20)

where Sk(n) =
∑n

m=1 1/m
k and K2(n) =

∑n
m=1(−1)m+1/m2. Expanding (3.14) in ǫ for

µ = 2 − ǫ and (3.20) in 1/N for u = u∗, eq. (2.2), we find complete agreement between

both results.

The anomalous dimensions of the singlet currents as a function of dimension d = 2µ

for few lower spins are shown in figure 3. The LO anomalous dimensions are positive in

the whole interval 2 < d < 4 while the NLO correction change the sign near d = 3. It

explains a relative smallness of NLO corrections in d = 3.
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Figure 4. γ(4)− η as a function of N for N = 3, . . . , 30. Stars correspond to 1/N expansion and

dots to 4− 2ǫ expansion.

4 d = 3 reduction and higher-spin masses

In three dimensions the results can be considerably simplified. First of all,

η1 =
8

3π2
, η =

η1
N

(
1−

8

3N
η1 + . . .

)
. (4.1)

After some simplifications we obtain for the non-singlet anomalous dimensions in three

dimensions

γns,1(s)=−
3

(4s2−1)
,

γns,2(s)=
3

4(4s2−1)

{
−
128s2

9
−6π(−1)ss+

11

2s−1
−

6

(2s−1)2
−

3

2s+1
+

6

(2s+1)2
+
158

9

−32log(2)+6sS1

(
s

2
−
1

4

)
−6sS1

(
s

2
−
3

4

)
−16S1

(
s−

1

2

)}
.

For the anomalous dimensions of the singlet currents we have

γ1(s)=
2(s−2)

2s−1
,

γ2(s)=
3

4s2−1

(
−
32s2

9
−

(
13s2+14s+6

)
log(2)

s
−
3

2
πs+

3

2
s

(
S1

(
s

2
+
3

4

)
−S1

(
s

2
+
1

4

))

+
3(−1−s+s2)

s

(
S1

(s
2

)
−S1

(
s+1

2

)
−S1(s+1)

)
−
(s+2)(7s+6)

2s
S1

(
s+

1

2

)

+

(
13s2+3s+3

)

s
S1(s)+13s−

9

s+1
+

1

2s−1
−

6

(2s−1)2
−

3

2s+1
+

9

2s+3
−
9

s
+
152

9

)
.

It may be interesting to compare the results of the large-N expansion with the perturbative

results in 4− 2ǫ dimensions for ǫ = 1
2 , which is displayed on figure 4 for the s = 4 current.

We see that as N increases the two approximation converge to each other.
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Now we can write down the effective masses of higher-spin fields in AdS4:

δm2
s =

2

N
(s− 2)η1 +

η21
N2

3

2s+ 1

{
−

(
13s2 + 14s+ 6

)
log(2)

s
+

(
13s2 + 3s+ 3

)

s
S1(s)

−
(s+ 2)(7s+ 6)

2s
S1

(
s−

1

2

)
−

32s2

9
+

41s

3
−

9

s+ 1
−

3

2s+ 1
+

9

2s+ 3
−

9

s

+
137

9
−

3

2
πs+

3
(
s2 − s− 1

)

s

(
S1

(s
2

)
− S1

(
s+ 1

2

)
− S1(s+ 1)

)

+
3

2
s

(
S1

(
s

2
+

3

4

)
− S1

(
s

2
+

1

4

))}
. (4.2)

The order-1/N correction is linear, while the effective mass up to the order-1/N2 can be

written as

δm2
s = 2η(s− 2)

(
1 + ηκ(s) + . . .

)
. (4.3)

At large spin κ(s) = 39
8

log s
s

+ . . . and we also plot κ(s) in figure 5.

5 Summary

We have calculated the 1/N2 corrections to the anomalous dimensions of the singlet higher-

spin currents in the O(N) vector model. Also, using the results of ref. [44] we recovered

the four-loop anomalous dimensions in the O(N) model and checked that the 1/N and ǫ

expansions for the anomalous dimensions are in complete agreement with each other.

The 1/N2 expression for the anomalous dimensions (3.14) is rather involved but simpli-

fies considerably in three dimensions. We have also related them to the two-loop radiative

corrections to the masses of higher-spin fields.

It has been known that the LO critical dimensions of the singlet higher-spin currents

coincide in the O(N) and Gross-Neveu models with some identification of the expansion

parameters. Our result shows that it is no longer true at the NLO order even in d = 3.

This also implies that the NLO anomalous dimensions of the higher-spin currents in Chern-

Simons matter theories have a more complicated form than the one observed at the LO.
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A Numerical values

We collect below numerical values of the order-1/N2 anomalous dimensions of the singlet

currents. It is worth stressing that η1 = 8
3π2 is the same for the Gross-Neveu and for the

critical vector models. It is convenient to give anomalous dimensions as multiples of (η1)
2,

see eq. (3.7). Conservation of the O(N) - current implies γns(1) = 0 and we obtain for a

few lowest spins

γns,2(2) = −
696

125
≈ −5.568 , γns,2(3) = −

263104

128625
≈ −2.04551 ,

γns,2(4) = −
548936

138915
≈ −3.9516 , γns,2(5) = −

8406592

3773385
≈ −2.22786 .

(A.1)

Conservation of the stress-tensor implies γ(2) = 0 and we have

γ2(4) = −
1544

3087
≈ −0.500162 , γ2(6) = −

233008

259545
≈ −0.897756 ,

γ2(8) = −
22279496

19144125
≈ −1.16378 , γ2(10) = −

248880040436

183833374725
≈ −1.35383 .

(A.2)

Let us note that the numerical values for the singlet currents are by an order of magnitude

smaller than those in the Gross-Neveu model. Let us also write down the singlet anomalous

dimensions in a way that makes it clear that the second order corrections are relatively small

γ2(4) =
4

7

η1
N

(
1− 0.2364

1

N
+ . . .

)
, γ2(6) =

8

11

η1
N

(
1− 0.3335

1

N
+ . . .

)
,

γ2(8) =
4

5

η1
N

(
1− 0.3930

1

N
+ . . .

)
, γ2(10) =

16

19

η1
N

(
1− 0.4343

1

N
+ . . .

)
.

(A.3)

B Diagrams

In this appendix we collect the results for the diagrams shown in figure 2. The expressions

below give the divergent part of diagrams with subtracted counterterms. The symmetry

factors are already included in these expressions. We obtained for the diagrams Dk, k =

1, . . . , 9

D1=
η21
4
γns,1(s)∆γ1(s)

(
−

1

6∆2
+

1

3∆

[
−1+

1

µ+s−1
+

1

µ+s−2

+ψ(2µ−3+s)+ψ(3−µ)−ψ(µ−2)−ψ(2)

])
,
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D2=
η21
12

γns,1(s)∆γ1(s)

(
−

1

∆2
+

1

∆

[
−1+

1

µ+s−1
+

1

µ+s−2
−

1

µ−2
+ψ(2)−ψ(s+1)

])
,

D3=
η21
32

∆γ21(s)

(
−

1

∆2
+

2

∆

[
−1+

1

µ+s−1
+

1

µ+s−2

+ψ(2µ+s−3)−ψ(s+1)−ψ(µ−1)+ψ(3−µ)

])
,

D4=−
1

∆

η21
16

∆γ21(s)
(s+µ−1)(s+µ−2)

(2−µ)s(s+2µ−3)
Φ(js),

D5=−
1

6∆
η21∆γ1(s)

µ(µ−1)(3−µ)

µ−2

(
ψ(µ+s−1)−ψ(µ−2)

)
,

D6=−
1

6∆
η21∆γ1(s)

µ(µ−1)

2−µ

(
1

2−µ
+
(s+1)(s+2µ−4)

s(s+2µ−3)
×Φ(js)

)
,

D7=D8=−
η21
4∆

γns,1(s)∆γ1(s)
(2µ−3)(s+µ−1)(s+µ−2)

(2−µ)s(2+2µ−3)
Φ(js). (B.1)

For the last diagram we get

D9=−
η21
5∆

∆γ1(s)
µ(µ−1)(2µ−3)

(2−µ)2

{
−

2µ−3

s(s+2µ−3)

(
Ψ(js)+

1

s+2µ−3
+

1

2−µ
−R(µ)

)

+
Γ(2µ−2)Γ(s)

Γ(s+2µ−2)

(
S(js)−ψ(s+1)+ψ(1)−

1

2µ−3
+

1

s+2µ−3
+

1

2−µ
−R(µ)

)

+
Γ(2µ−2)

Γ(µ−2)Γ(s+µ−1)

s−1∑

m=0

Cs−1
m

Γ(s−m)Γ(µ−1+m)Γ(s+µ−2−m)

(m+1)2Γ(s+2µ−3−m)

}
. (B.2)

C Vertex and self-energy corrections

In this appendix we discuss the calculation of the self-energy and vertex corrections di-

agrams. In total there are eight different diagrams which arise from the SE and vertex

corrections to the LO pure singlet diagram. The calculation of SE diagrams is rather

straightforward but cumbersome while the vertex corrections could be rather involved. The

reason for this is that the diagrams with vertex corrections contain, evidently, divergent

subgraph and, therefore, one cannot remove the regulator ∆ from the σ lines and use the

uniqueness property of the σϕ2 vertex. However it is helpful to take into account that the

model under consideration is a conformal one. The form of two- and three- point correlators

in CFT is fixed up to normalization factors by the scaling dimensions of the fields. Namely,

the dressed (full) propagators and 1PI irreducible three point function Γσϕϕ have the form

Dϕ(x) = Â/x2∆ϕ , Dσ(x) = B̂/x2∆σ , (C.1)

and

γR(z, x, y) ≡ Γσϕϕ(z, x, y) = Ẑ(z − x)−2α(z − y)−2α(x− y)−2β . (C.2)
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Here

∆ϕ = µ− 1 + γϕ , ∆σ = 2 + γσ ,

α = µ− 1− γσ/2 , β = 2− γϕ + γσ/2 . (C.3)

The explicit expressions for the factors Â, B̂, Ẑ at the order-1/N can be found in ref. [25].

One can use this information in order to avoid a tedious calculation of the individual

diagrams. Namely, it was shown in [25] that the contribution to the anomalous dimension

at the 1/N2 order due to the SE and vertex corrections to the 1/N diagram can be

extracted from the same diagram with the dressed propagators and vertices.

Let us consider a logarithmically divergent diagram. For such a diagram the number

of ϕ lines is equal to the number of basic vertices and twice a number of the σ lines,

Nϕ = NV = 2Nσ . (C.4)

Replacing propagators and vertices by full propagators and vertices one gets a superficially

divergent diagram. It has to be regularized by introducing the regulator ∆ in any line.

The resulting diagram has a simple pole in ∆

G =
1

∆
R+ F . (C.5)

The contribution to the anomalous dimension which comes from SE and vertex corrections

diagram is equal to

δγSE+V = −2r(1)/N2 , (C.6)

where r(1) comes from the expansion of the residue R in 1/N , R = r(0)/N + r(1)/N2 +

O(1/N3).

The triple vertices in the modified diagram has the uniqueness property that usually

simplifies calculation greatly. Moreover, it is not necessary to replace all vertices and

propagators at once. The contributions from lines and vertices are additive [25]. One can

replace a subset of lines and vertices, S1 ⊂ S, satisfying the condition (C.4), calculate the

corresponding diagram G(1) and find the coefficient r
(1)
1 . Then the same can be done for

the next subset, S2, and so on. If sets Sk are not intersecting,
⋂

k Sk = ∅ and
⋃

k Sk = S,

then δγ = − 2
N2

∑
k r

(1)
k . If the sets S/

⋃
k Sk = S+ and

⋂
k Sk = S− are not empty then

we have to add the contributions from the elements in S+ and subtract those in S−. We

illustrate this rule on the example of the pure singlet diagram, figure 1. The corresponding

decomposition is shown in figure 6.

In the leftmost diagram we replaced two left vertices, the left σ line and two horizontal

ϕ lines. In the middle diagram — two right vertices, the right σ line and the two horizontal

ϕ lines. So the contribution of the horizontal lines is counted twice. Thus we have to add

the contribution from the lines attached to the operator vertex and subtract contribution

from the horizontal lines. It is done by adding the rightmost diagram. All the diagrams are

superficially divergent and have to be regularized by shifting index of one of the σ−lines by

∆. All these diagrams (first two are obviously equal each other) can be easily calculated

with the help of a chain integration rule and the star-triangle relation.
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Figure 6. Vertex and Self-Energy correction diagrams for the pure singlet diagram.

After simple calculation we find for the residue r(1) of a simple pole of the diagrams

D10, D11 and D12:

r
(1)
D10

= r
(1)
D11

= −
1

2
η1∆γ1(s)

{
χ1

(
ψ(µ+ s− 1)− ψ(µ− 2)−

µ

µ− 1

)

+
1

2
γσ,1

(
ψ(s+ 1) + ψ(s+ 2µ− 3)− 2ψ(1) + ψ(3− µ)− ψ(µ− 1) + 6

3− µ

µ− 2

)

+ η1

[
2µ2 − 3µ+ 2

µ− 2
·R(µ) + 2(µ− 1)

(
4−

7

(µ− 2)2

)]}
, (C.7)

where χ = −η − γσ = χ1/N +O(1/N2) and

r
(1)
D12

= −
1

4
η21∆γ1(s)

{
2
(
ψ(s+ µ− 2)− ψ(µ− 1) + 1

)

+ ψ(µ− 1)− ψ(3− µ)− ψ(s+ 2µ− 3) + ψ(s+ 1)

}
. (C.8)
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