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Abstract 

Chitin and cellulose are the most abundant natural polymers. They have unique 

properties suitable for the design of new bio-sourced and biodegradable materials for 

various applications such as textile fibers, food packaging, and biomedical products. 

Unfortunately, these biopolymers suffer from a lack of solubility in regular solvents. But, 

due to their intractable bulk structure, the dissolution of such polymers is a crucial step 

for their processing. In this context, the solubility of non-modified cellulose and chitin in 

different solution media such as ionic liquids, deep eutectic solvents, and other 

conventional solvent systems was first studied in this work. It was found that the ionic 

liquid, 1-butyl-3-methylimidazolium acetate (BmimOAc), was the most efficient solvent 

for the dissolution of both polymers. Despite its good solubilizing capacity, BmimOAc is 

neither biodegradable nor bio-renewable. As the aim of this thesis was to provide an easy 

and environmentally friendly method to process cellulose and chitin, a second solvent 

was added in the dissolution process to reduce the necessary amount of BmimOAc. The 

biodegradable and bio-based co-solvent, γ-valerolactone (GVL), was an ideal candidate 

for this purpose. In order to assess its potential, the influence of GVL in the cellulose 

proceeding was also evaluated according to the industrial Lyocell process. N-

methylmorpholine N-oxide monohydrate (NMMO) was used for this procedure. Besides 

increasing the sustainability of the studied systems, GVL was observed to enhance 

polymer dissolution and to facilitate manufacturing of the regenerated polymers. To 

understand these positive effects, physicochemical properties of binary mixtures 

(GVL/BmimOAc or NMMO) were characterized by viscosity, ionic conductivity, and 

thermal analysis measurements. The properties of the polymer solutions were also 

investigated by thermal and rheological studies. In a third step, materials such as cellulose 

fibers and new cellulose/chitin composite materials were successfully prepared from these 

solutions. All produced materials were characterized in detail by means of 

spectroscopical, morphological, and mechanical analysis methods. Wetting and 

permeability studies were additionally performed to demonstrate the advantages of a 

chitin coat on the properties of cellulose-based textiles. The results showed that the 

presence of chitin decreases the water wettability of the textiles on the coated site. 

Furthermore, the chitin layer acts as a promising water and oxygen barrier, which makes 

these novel materials potential candidates for various applications such as impermeable 

textiles for hygiene products.  
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Zusammenfassung 

Cellulose und Chitin sind Polymere, die in großen Mengen in der Natur 

vorkommen. Ihre einzigartigen Eigenschaften machen sie zu idealen Kandidaten für neue 

bioabbaubare Kompositmaterialien in vielfältigen Anwendungen wie Textilfasern, 

Verpackungen oder biomedizintechnische Produkte. Allerdings sind sie in vielen, häufig 

verwendeten organischen Lösungsmitteln praktisch unlöslich, jedoch müssen beide 

Biopolymere zu ihrer Verarbeitung unbedingt gelöst werden. In diesem Zusammenhang 

wurde zuerst die Löslichkeit der beiden natürlichen und nicht-modifizierten Polymere in 

verschiedenen Lösungsmitteln, wie zum Beispiel in ionischen Flüssigkeiten, tiefen 

Eutektika und anderen klassischen Lösemitteln, untersucht. Die ionische Flüssigkeit 1-

Butyl-3-Methylimidazoliumacetat (BmimOAc) erwies sich als das effizienteste 

Lösungsmittel für beide Polymere. Um die Nicht-Bioabbaubarkeit und die nicht 

nachwachsenden Naturrohstoffe des Lösungsmittels weiter zu verringern und den 

Auflösungsprozess mit BmimOAc umweltfreundlicher zu gestalten, wurde als zweites 

das biogene und biologisch leicht abbaubare Lösungsmittel γ-Valerolacton (GVL) in 

signifikanten Mengen hinzugefügt. Um andere Einsatzmöglichkeiten von GVL zu 

bewerten, wurde dessen Einfluss auf die Lösungseigenschaften von Cellulose im Lyocell-

Verfahren untersucht. N-Methylmorpholin N-Oxid-Monohydrate (NMMO) wurde 

deshalb als Lösungsmittel hergenommen. Neben der zunehmenden Nachhaltigkeit der 

getesteten Systeme zeigte die Zugabe von GVL weitere positive Einflüsse, insbesondere 

eine verbesserte Löslichkeit der Polymere und eine erleichterte Herstellung von 

Materialien aus wiedergewonnenen Polymeren. Um diese Effekte zu verstehen, wurden 

die physikalisch-chemischen Eigenschaften von binären Mischungen (GVL/BmimOAc 

oder NMMO) durch Viskositäts- und Leitfähigkeitsmessungen und thermische Analyse 

bestimmt. Außerdem wurden die rheologischen und thermischen Charakteristika von 

Polymerlösungen gemessen. Zuletzt wurden die Polymere aus diesen 

Lösungsmittelgemischen erfolgreich als Cellulosefasern und als Cellulose/Chitin-

Kompositmaterialien gewonnen. Alle produzierten Materialien wurden mit Hilfe von 

spektroskopischen, morphologischen und mechanischen Methoden analysiert. Zusätzlich 

wurden Benetzungs- und Permeabilitätsstudien durchgeführt, um die Vorteile einer 

Chitin-Beschichtung gegenüber den Eigenschaften von Cellulosetextilien zu 

demonstrieren. Die Ergebnisse zeigten, dass Chitin die Hydrophobie der Textilien nur auf 

der beschichteten Seite erhöhte. Zudem zeigten die mit Chitin beschichteten 
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Cellulosefilme eine geringere Wasser- und Sauerstoffdurchlässigkeit. Dadurch stellen 

diese Polymere interessante Materialien für unterschiedliche potentielle Anwendungen 

dar, wie zum Beispiel impermeable Stoffe für Hygieneprodukte.  

 

Stichwörter: Chitin, Cellulose, Lösung, ionische Flüssigkeit, tiefe Eutektika, γ-

Valerolacton, Faser, Chitinbeschichtung, Textilien. 
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Introduction 

 

Polymers are defined as compounds of many (from greek polus) parts (meros) or in other 

words large molecule with multiple repeating units. The existence of these molecules has 

revolutionized the scientific world since the 19
th

 century. The initial studies of man-made 

polymers were performed thanks to the transformation of natural polymers, such as cellulose 

or rubber into “artificial polymers”.
1
 For instance, the first “artificial polymer” was 

nitrocellulose, which was prepared by Christian Schönbein in 1846 by means of cellulose 

esterification with a blend of sulfuric and nitric acids.
2
 Since then, a lot of new and 

performant synthetic polymers have been developed and improve our daily lives as additives 

or material products. As shown in the overview in Figure I.1, polymers are found in a wide 

range of applications such as packaging, automobile and building components or 

electronics.
3
 

 

Figure I.1: Overview of the uses of synthetic polymers in 2012. 

 

Unfortunately, the intensive use of synthetic polymers, such as nylon, polyvinyl chloride, 

polystyrene or polyethylene terephthalate, commonly known as plastics, has created a lot of 

non-biodegradable and hazardous waste, causing serious environmental problems.
4
 Despite 

the widening consciousness for the necessity of recycling these materials, other solutions 
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have to be found to reduce the environmental impact of these harmful materials. In this 

context, the research and the development of biodegradable materials have gained more and 

more importance. As it can be seen in the bibliometric study from SciFinder
®
 database in 

Figure I.2, the growing interest of the research on biodegradable materials started in the 

2000s and led to an inflation of articles. Biodegradable materials can be defined as products 

capable of undergoing decomposition principally through enzymatic action of 

microorganisms into CO2, water, methane, and other inorganic compounds in a limited 

duration of time.
5
 The use and transformation of renewable resources such as biomass- or 

bio-based raw materials are the most promising aspects of the manufacturing of these 

biodegradable products. Typically, starch, vegetable crop derivatives, and wood are used for 

this purpose and cellulosic, starch-, and soy-based plastics have emerged.
5,6

 These 

biodegradable products have already shown their potential to be used in a variety of 

industrial applications. Examples are packaging (bags, sacks, food packaging), domestic and 

hygiene goods (cups, cutlery, plates, diapers), agriculture (plant labels), and building 

materials (wall plasters).
5,7,8

 In addition, other biodegradable polymers from other sources 

than land-based origins can be also used for the processing of such materials. For example 

marine feedstocks are a rich source of proteins, polysaccharides (e.g. chitin, agar, alginate, 

and carrageenan), and other polymeric compounds. These oceanic-derived compounds have 

potential uses in a wide variety of fields, such as in food, beverage, pharmaceutical, and 

cosmetic.
9
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Figure I.2: Bibliometric analysis from Scifinder
®
 database about the number of publications 

(including scientific journals, patents, conferences) dealing with biodegradable materials. 

 

Materials can be simply composed of one biodegradable polymer or they can be designed 

through blend of two or more biopolymers. Novel bio-sourced products can thus be 

developed and adapted for specific requirements and for a more sustainable future.  

 

This doctoral thesis deals with the preparation and the characterization of novel composite 

materials from cellulose and chitin. Cellulose and chitin are two abundant biopolymers, one 

from vegetal origin and the other mainly from marine source. Cellulose already plays a 

significant role in the production of daily materials such as textile fibers, paper or 

packaging.
10

 However chitin still remains widely less utilized and a large part of its 

production (i.e. 60-70%) is used to produce its deacetylated derivative chitosan.
11

 Cellulose 

and chitin are linear polysaccharides having a similar structure. Their tendency to decompose 

upon heating before reaching their melting point presents a major challenge. In order to 

process these biopolymers into materials, the main task is to dissolve them in appropriate 

solvents.  
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In this work, both polymers are equally investigated. First, the state of the art of their 

properties, implementations, and applications found in literature is presented. In the second 

part, proper solvents for cellulose and chitin dissolution are searched with the aim to provide 

an easy and eco-friendly method to process both biopolymers. In a further step, the effect of a 

sustainable co-solvent in the dissolution process of these two biopolymers is studied. All 

benefits of this addition are characterized to fully evaluate its potential in industrial 

manufacturing. Lastly, different novel materials comprising cellulose and chitin are prepared. 

For this purpose, cellulose and chitin blend materials as well as cellulosic textile coated with 

chitin are designed. Their new functional properties are characterized to assess their 

technological importance. Possible industrial implementations are studied in collaboration 

with Lenzing AG, leader in innovation for the manufacturing of cellulose fibers. 
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1.1 Cellulose and chitin: biopolymers and sustainable raw 

materials 

1.1.1 Biopolymers and sustainable applications 

The term biopolymer includes polymers derived from living organisms or synthetized from 

renewable resources. They can be categorized into three major families: (1) natural polymers 

such as proteins and polysaccharides, (2) synthetic polymers from bio-sourced monomers 

such as polyester (e.g. polylactic acid), and (3) polymers from microbial fermentation (e.g. 

polyhydroxyalkanoates).
12

 Their study and utilization have attracted more and more the 

interest of researchers over the last 50 years as it is shown by the bibliometric study from 

SciFinder
®
 database in Figure 1.1. The main reasons for this growing interest are the 

anticipation to the exhaustion of fossil energy resources and the awareness of the 

environment impacts of petrochemicals, which can accumulate in nature and are lethal 

threats for human beings.  

 

Figure 1.1: Bibliometric analysis from Scifinder
®
 database about the number of publications 

(including scientific journals, patents, and conferences) dealing with biopolymers. 

 

Natural polymers are available in high quantities on land and at sea. They are biodegradable 

and have diverse interesting properties and versatile utilities. These polymers can be used 
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alone or more generally combined with other polymers, as blend or reinforced fibers, to 

produce biodegradable materials with newly added values. Their different applications 

sectors are diversified and include medicine (e.g. drug delivery), packaging (e.g. composting 

bags), commodities (e.g. clothing and diapers), automotive (e.g. car components), building 

materials (e.g. wall plasters), and agriculture (e.g. pots).
5,7,13,14

 Today, the best examples of 

manufacturing materials from renewable sources are starch-based bioplastics, produced by 

Novamont SpA under the name Mater-Bi
®
, and cellulosic fibers (TENCEL

®
, Lenzing 

Modal
®
, and Lenzing Viscose

®
) manufactured by Lenzing AG.

7,15
  

 

Besides the development of biodegradable materials, natural polymers have also gained 

attention as a platform to produce fine chemicals and bioenergy as fuels, power, and heat. 

They are indeed considered as an abundant sustainable source of organic carbons and ideal 

alternatives to fossil resources. By using biorefinering technologies, which combine physical, 

chemical, thermochemical, and biotechnical methods, polymers from biomass can be 

separated, refined, and transformed into a large portfolio of bioderived intermediates and 

products.
16,17

 For instance, the three major polymers contained in lignocellulosic biomass, i.e. 

cellulose, hemicellulose, and lignin, can be converted into more than 200 value-added 

compounds.
18

 Figure 1.2 depicts an overview of the platform molecules produced from these 

polymers. Lignin, a three dimensional aromatic polymer, can generate mainly aromatic 

compounds such as substituted quinines, phenols (e.g. vanillin), and catechols. The two 

polysaccharides, cellulose and hemicellulose, are converted into sugar compounds (C5 and 

C6). Cellulose is hydrolyzed into glucose, whereas the depolymerization of hemicellulose 

results in the formation of the C5 (xylose and arabinose) and C6 (glucose, mannose, 

galactose, rhamnose) sugars. Via biological or chemical conversions, these sugars can be 

converted into a large number of valuable chemicals such as furfural, xylitol, sorbitol, and 5-

hydroxymethylfurfural (HMF), and further transformed to various other fine chemicals (e.g. 

ethanol, levulinic acid).
18-20
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Figure 1.2: Overview of the main platform molecules produced from lignocellulosic biomass.
18-20

 

 

1.1.2 Cellulose and chitin structures and properties in the solid state 

Among the numerous natural polymers, cellulose and chitin are the most abundant 

biopolymers in nature. These polysaccharides have unique properties and characteristics 

which give them potential as alternative sources of materials to reduce the dependence on 

petrochemical feedstocks.  
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1.1.2.1 Cellulose 

Since cellulose was discovered and isolated from green plants in 1838 by the French chemist 

Anselme Payen, the structure and the properties of this molecule have been intensively 

investigated.
10,21,22

  

1.1.2.1.1 Sources and extraction 

Cellulose is considered as the most abundant polymeric resource on earth with an annual 

production from biomass estimated to be about 10
12

 tons. This biopolymer is the principal 

skeletal component in all plants and can be found in smaller amounts in other living 

organisms such as bacteria, algae, and animals.
10,12,23

 Table 1.1 illustrates the amount of 

cellulose present in some plants. Wood, cotton fibers, and cotton linters are the principal raw 

material sources for cellulose industrial processing. Typically cellulose is combined with 

lignin and hemicellulose in the cell wall of plants. Cellulose can be extracted from these 

plants thanks to different processes, for instance mechanical methods (e.g. cryocrushing or 

grinding), chemical treatments (e.g. acid hydrolysis or Kraft process), enzymatic treatments, 

and intensive ultrasonication.
24

  

 

Table 1.1: Percentage of cellulose present in some plants.
24

 

Source Amount of cellulose (%) 

Wood: 

Hardwood 

Softwood 

 

 

43-47 

40-44 

Non-wood: 

Cotton  

Hemp 

Jute 

Corn cobs 

Bagasse 

Corn stalks 

Coir 

Wheat straw  

 

95 

70 

71 

45 

40 

35 

32-43 

30 
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1.1.2.1.2 Molecular structure 

Cellulose is a linear polysaccharide composed of β-D-glucopyranose molecules linked 

through β-1,4-glycosidic bonds as shown in Figure 1.3. The repeat unit cellobiose contains 

two anhydroglucose rings. Each anhydroglucose unit (AGU) is 180° rotated axially from the 

previous unit and is in the energetically favorable 
4
C1 conformation. This means that the 

hydroxyl groups, the hydroxymethyl groups, and the glycosidic bonds are equatorial. The 

two terminal units of the cellulose chain have different chemical properties. The glucose unit 

having the hydroxyl group at the C1 carbon is referred to the reducing end because the 

anomeric carbon is free to convert to an aldehyde structure. In contrast, the anomeric carbon 

in the other terminal glucose with the hydroxyl group at the C4 carbon is involved in a 

glycosidic bond. Therefore, it has no reducing properties.
10,23,25 

The average number of AGU 

gives the chain length or degree of polymerization (DP) of the cellulose. The value of DP 

depends on the cellulose source material and extraction method. It can vary from 100 to 

15 000.
10

 

 

Figure 1.3: Molecular structure of cellulose. AGU stands for an anhydroglucose unit and n for the 

degree of polymerization. 

 

The hydroxyl groups placed at the positions C2, C3, and C6 form with the oxygen atoms a 

large number of intra- and inter-molecular hydrogen bonds which are responsible for the 

stable polymer network (see Figure 1.4). The intrachain bonding gives the linear 

configuration of cellulose. The van der Waals forces and intermolecular hydrogen bonds 

cause the parallel aggregation of multiple cellulose chains forming elementary fibrils, which 

aggregate themselves into microfibrils.
26

 These fibrils can contain cellulose chains regions, 
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which are highly ordered (crystalline structure) or disordered (amorphous structure). The 

ratio of amorphous cellulose to crystalline cellulose is defined by the degree of crystallinity 

and again depends on the cellulose source material and extraction method.
27

  

 

Figure 1.4: Intermolecular (blue dotted line) and intramolecular hydrogen bonds (red dotted line) 

between two parallel cellulose chains.
28

 

 

1.1.2.1.3  Crystalline structure 

There are different crystalline structures of cellulose: cellulose I, II, IIII, IIIII, IVI, and IVII.
29

 

Cellulose I, or native cellulose, is the polymorph of cellulose found naturally in cellulose-

based organisms. The cellulose chains in this structure are arranged in a parallel 

configuration. Cellulose II, or regenerated cellulose, is rarely present in nature but can be 

produced from cellulose I by solubilization and recrystallization (regeneration) or by aqueous 

sodium hydroxide treatment (mercerization). It is the most thermodynamically stable form 

and bears cellulose antiparallel chains.
30

 Cellulose IIII and IIIII are obtained from cellulose I 

and II treated with liquid ammonia or some amines, respectively. Subsequent heating up to 

206 °C in glycerol produces the polymorph cellulose IVI and IVII.
31,32

   

1.1.2.1.4  Properties 

The hierarchical structure of cellulose described above governs its physical, chemical, and 

thermal properties. First, cellulose is a renewable, biodegradable, non-toxic, and non-edible 

polysaccharide. The extensive hydrogen bond network gives it high tensile and compressive 

strength. This network makes it also insoluble in water and in most organic solvents. This 

organization is also responsible for the non-thermoplastic properties of cellulose, which 

decomposes upon heating (above 240 °C) before reaching its melting point.
24,33

 The hydroxyl 

groups of the molecule, especially in the amorphous regions, cause the hydrophilic and 
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hygroscopic character of the polymer as well as its large chemical modifying capacity.
10,24

 

Cellulose also possesses some other promising properties such as high sorption capacity, 

relative thermostabilization, and alterable optical appearance.
34

  

 

1.1.2.2 Chitin 

Chitin was first isolated from the fungal cell wall in 1811 by the French chemist Henri 

Braconnot and then in 1823 from the cuticle of an insect by Auguste Odier.
35,36

 However, 

intensive research on this molecule and its applications began only later in the 1970’s.
37

  

1.1.2.2.1 Sources and extraction 

After cellulose, chitin is the second most abundant natural polymer present on earth. This 

polymer is distributed in a wide variety of species such as arthropods, microorganisms, and 

invertebrate animals as it can be seen in Table 1.2. It is a major structural component in the 

cuticle of insects, in the backbone of squids, and in the exoskeleton of crustaceans and 

mollusks. In these organisms, chitin forms a complex network with proteins and minerals 

(mainly calcium carbonate). It contributes to their strength, reinforcement, and protection. 

Concerning the microorganisms, chitin is a characteristic component of the cell walls of 

fungi and certain green algae.
38,39
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     Table 1.2: Percentage of chitin present in some of its main sources. 

Source Amount of chitin (%) 

 

 

 

 

Arthropods 

 

Crustaceans: 

Crab 

Lobster 

Shrimp 

Krill 

Insects: 

Tobacco hornworm 

Cockroaches 

Coleoptera 

House fly 

 

20-40 
39

  

20-40 
39

  

20-40 
39

  

<10 
39

 

 

2-34 
40

 

30-42 
40

 

11-41 
40

 

45 
40

 

 

 

Microorganisms 

Algae: 

Coralline algae 

Fungi: 

Yeast 

Filamentous fungi 

Aquatic molds 

 

<4.5 
41

 

 

0.45 
39

 

10-40 
39

  

58 
39

  

 

 

 

Invertebrate 

animals 

 

 

Mollusks: 

Cuttlefish 

Octopus 

Squid 

Annelids: 

Earthworm 

Leech 

 

6-40 
37

 

6-40 
37

  

6-40 
37

 

 

0.2-38 
37

 

0.2-38 
37

 

 

Despite the variety of sources, chitin has mainly been commercially produced up till now 

from crustacean shells (especially crabs and shrimps).
42

 The easy accessibility of these 

materials as waste from the seafood processing industry and the high containing amount of 

chitin are the reasons of this only commercial exploitation.
37

 The annual production of chitin 

from these resources is estimated to be about 75 000 tons.
39

 The biopolymer is mainly used 

as raw material to produce chitosan. This deacetylated derivative finds application in 

cosmetic, biomedical, and food sector.
37

 Chitin is extracted from shell wastes by a process, 

which removes the other compounds of shells (proteins, calcium carbonate, and pigments) 

step-by-step. After being washed and crushed, the shells are first treated with diluted 

hydrochloric acid to remove calcium carbonate and then deproteinized with a hot sodium 

hydroxide solution.
39

 A decolorization step with oxidizing agents (e.g. potassium 

permanganate, sodium hypochlorite or hydrogen peroxide) can be additionally used to obtain 

a white powder.
37
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1.1.2.2.2 Molecular structure 

Chitin is structurally similar to cellulose, but it is an amino-polysaccharide bearing acetamido 

groups at the C2 positions, instead of hydroxyl groups for the cellulose molecule. Thus, the 

ideal structure of chitin is a linear polymer composed of N-acetyl-D-glucopyranose repeat 

units linked through β-1,4-glycosidic bonds as shown in Figure 1.5. However, in reality, 

100% acetylated chitin cannot be obtained from the sources described above because of the 

alkaline treatment. Commercial chitin additionally contains N-glucosamine monomers (see 

Figure 1.5). The number of acetamido groups present in the molecule is defined by the 

degree of acetylation (DA), i.e. the ratio of N-acetyl-D-glucopyranose to N-glucosamine 

units. The term “chitin” is given to all copolymers composed of N-glucosamine and N-acetyl-

D-glucosamine monomers with a DA bigger than 50% (generally 70-90%). Otherwise they 

are termed “chitosan”. Thus, chitin is a heteropolymer while cellulose is a homopolymer.
43

  

 

Figure 1.5: (A) Idealized representation of the molecular structure of chitin and (B) real 

representation of commercial chitin. n stands for the degree of polymerization and DA for the degree 

of acetylation. 

 

The degree of polymerization of chitin extracted from crustaceans shells and squid pens is 

reported to be about 2000-4000.
44

 Contrary to cellulose, which can have DPs lower than 500, 

chitin cannot be found with such low values.
45

 This can be due to the fact that no 

depolymerization treatment has been found yet without affecting the DA of the chitin.
37

  

As cellulose, the structural network of chitin is governed by a large number of inter- and 

intra-molecular hydrogen bonds making it stable and intractable. The additional acetamido 

group in the repeating unit increases the hydrogen bonding between adjacent chains (with 

C=O HN and –OH O=C associations) causing chitin network to be more complex than 
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cellulose.
45

 These hydrogen bonds influence chitin to form crystalline microfibrils, which are 

usually embedded in a protein matrix in living organisms.
46

  

1.1.2.2.3 Crystalline structure 

Three polymorphic forms of chitin termed α-, β-, and γ-chitin are known. α-Chitin is the most 

abundant polymorph of chitin and occurs in the crustacean exoskeletons, in insect cuticles, 

and in fungal or yeast cell walls.
46

 The chitin chains are organized in an antiparallel 

arrangement which is favorable for the formation of additional strong intermolecular 

hydrogen bonding. α-Chitin is the most stable form among the three crystalline variations.
47

 

β-Chitin is found in squid pens and in the endoskeleton of cuttlefish.
37,46

 The molecule chains 

in this structure type are arranged in a parallel manner which forms weaker intermolecular 

hydrogen bonds.
48

 γ-Chitin, less commonly found in nature, occurs in insect cocoons.
37

 The 

structure of this polymorph is a mixture of α- and β-chitin, with two parallel strands alternate 

with one antiparallel.
49

  

1.1.2.2.4 Properties 

Chitin has similar properties as cellulose regarding its renewability, biodegradability, 

biocompatibility, and non-toxicity. Its structure renders it similarly insoluble in water or in 

the most organic solvents.
42

 Chitin also degrades upon heating, at around 250 °C, before 

melting.
37

 However, the presence of the amine groups (acetylated or deacetylated) confers its 

advantages over cellulose as strong antibacterial effect and other biological properties such as 

antitumor, analgesic or hemostatic.
50

 It also enables chitin to have a less hydrophilic 

character, water retention capacity, and adsorption properties (with metal ions or 

hydrophobic organic compounds, for instance). The presence of functional groups (hydroxyl, 

acetamide, and amine) allows chitin to have a larger chemical modifying capacity than 

cellulose.
37,42,44
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1.2 Cellulose and chitin solubilization 

As highlighted before, despite their abundance and interesting properties, cellulose and more 

particularly chitin potential remains under-exploited. They are limited by the fact that the 

biopolymers cannot be melted and degrade at elevated temperatures. To be processed, they 

can be chemically modified or dissolved. However, polymer dissolution without degradation 

or modification is essential to keep its native properties. Therefore, the research on suitable 

solvents for both biopolymers is a necessity. The state of the art of the effective solvents and 

especially direct ones (without chemical modification) will be discussed in this section as 

well as some theories about polymer solutions.  

 

1.2.1 Theory on the solubility of polymers 

A “good solvent” for a polymer is commonly defined as a substance that dissolves it well, 

while a “non-solvent” does not possess the power of dissolving this polymer. When a 

polymer is dissolved, solutions obtained are clear and uniform, whereas adding a non-solvent 

will cause the polymer precipitation.
51

 The solution process of a polymer is more complex 

and slower than for non-polymeric materials. A multistep process occurs during polymer 

dissolution. Solvent molecules first diffuse into the polymer network and lead to the swelling 

of the polymer. If polymer-solvent interactions can overcome the polymer-polymer 

interactions, the polymer chains then disentangle and transfer into a true solution.
52

 

From a thermodynamic point of view, the solubility of a substance (e.g. a polymer) is 

governed by the Gibbs free energy (Equation 1.1). 

∆𝐺𝑚 =  ∆𝐻𝑚 − 𝑇∆𝑆𝑚 (1.1) 

 

where ΔGm is the Gibbs energy of mixing, ΔHm is the enthalpy of mixing, ΔSm the entropy of 

mixing, and T the temperature.
52

 

Solubility takes place when a negative value of the Gibbs energy of mixing occurs. That 

means that the enthalpy of mixing can be negative or balanced by the entropy term. For a 
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polymer, a high molecular weight induces a low entropic driving force. Therefore, the 

dissolution rate of a polymer decreases with increasing molecular weight.
53

 

Specifically for macromolecules in solution, a mathematical model of the Gibbs energy was 

developed by Flory and Huggins. This model describes the free energy of mixing, ΔGm, by: 

∆𝐺𝑚 = 𝑅𝑇[𝑁1𝑙𝑛Ф1 + 𝑁2𝑙𝑛Ф2 + 𝜒12𝑁1Ф2] (1.2) 

 

where R is the gas constant, T the temperature, N1 and N2 the numbers of moles of solvent 

and polymer, Ф1 and Ф2 the volume fractions of solvent and polymer, and χ12 the parameter 

of solvent-polymer interactions. The values of χ allow distinguishing a good solvent from a 

bad one. A solvent with 0 ≤ χ ≤ 0.3 is called a good solvent, with 0.4 ≤ χ ≤ 0.5 it is a 

mediocre solvent, and with χ = 0.5 the solvent is called Ɵ solvent. The latter corresponds to 

the critical transition range from good to bad solvent conditions. Finally, a solvent with 

χ > 0.5 is called a poor solvent or non-solvent. Unfortunately, the Flory Huggins model is not 

applicable to all polymer solutions. Very dilute polymer solutions are discontinuous in 

structure and have domains of polymer chain segments and regions of polymer-free solvent. 

This is not compatible with the Flory Huggins model. Anyway, this theory can give good 

thermodynamic features of solvent/polymer system.
51,54

  

To completely understand the dissolution of polymers in solvents, kinetics has to be also 

considered. It plays an important role and controls the dissolution of a polymer. If a solvent is 

thermodynamically ideal, it can happen that the dissolution rate is too slow to form a 

homogeneous and bulk solution. Kinetics can be manipulated by different factors. Heat and 

mechanical energy generally enhance the diffusion of large molecules in a solvent, for 

example.
55  

 

1.2.2 Classical solvent systems 

1.2.2.1 Cellulose 

Cellulose solvents are known for a rather long time and can be classified into two categories: 

(1) derivatizing and (2) non-derivatizing solvent systems, depending on their interactions 
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with the cellulose molecules. Non-derivatizing solvents interact by physical intermolecular 

interactions which separate the polymer chains from each other, while derivatizing solvents 

dissolve cellulose by modifying it chemically and form derivatives.
56

 For instance, carbon 

disulfide with sodium hydroxide (CS2/NaOH) is utilized as a derivatizing solvent in the 

industrial viscose process and transforms cellulose into cellulose xanthate.
57

 Concerning the 

most relevant non-derivatizing solvent systems, an overview of these solvents is given in 

Figure 1.6. Aqueous systems such as  (1) inorganic-transition metal complexes (e.g. 

cuprammonium hydroxide (Cuam)), (2) mineral acids (e.g. H3PO4), (3) molten inorganic salt 

hydrates (e.g. LiX*H2O and ZnCl2*4H2O), and (4) aqueous bases including ammonium 

hydroxides (e.g. tetraethylammonium hydroxide), phosphonium hydroxide (e.g. 

tetrabutylphosphonium hydroxide), pure alkali hydroxides (e.g. NaOH, efficient only for low 

DP cellulose), and alkali hydroxides with additives (e.g. NaOH with urea or thiourea) were 

found to be efficient media.
55,56

 Also non-aqueous system has been found as direct solvents 

for cellulose. This category includes (1) single component solvents (e.g. N-ethylpyridinium 

chloride, N-methylmorpholine N-oxide), (2) mixtures of organic liquid with inorganic salts 

(e.g. N,N-dimethylacetamide/lithium chloride and dimethyl sulfoxide/tetrabutylammonium 

fluoride), (3) mixtures of organic liquid with amines and sulfur dioxide (e.g. dimethyl 

sulfoxide/diethylamine/sulfur dioxide), and (4) mixtures of ammonia or ammonium salts 

(e.g. NH3/NaI (NH4I)).
56
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Figure 1.6: Relevant examples of non-derivatizing cellulose solvents. 

 

Generally, the efficiency of the solvents is governed by their ability to interfere with and 

break the existing intermolecular hydrogen bonds of cellulose, according to many author’s 

opinions.
53,56,58

 It has to be mentioned that other parameters such as the mixing conditions 

(time, temperature, etc.), the viscosity of the solvent, the crystallinity and the DP of cellulose 

can also influence the dissolution success.
58

  

The exact interactions between the solvent system and cellulose can differ according to the 

physical-chemical properties of the used solvents (aqueous or non-aqueous media, simple or 

multicomponent mixtures, organic or inorganic compounds, ...). A lot of reviews have 
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summarized these interactions more in detail.
53,55,56,58

 However, for some solvent systems, 

the specific solvation mechanism is sometimes interpreted differently or is not completely 

understood. For instance, the most frequently used solvent mixture N,N-dimethylacetamide/ 

lithium chloride (DMAc/LiCl) has received different hypotheses concerning its interaction 

with cellulose. The mechanism proposed by McCormick et al. was that the lithium ions form 

macrocations with the carbonyl group of DMAc while the unencumbered small 

electronegative anion Cl
- 
plays the major role in breaking the intra- and inter-hydrogen bonds 

of the cellulose.
59

 But some other authors (e.g. El-Kafrawy, Morgenstern et al.) questioned 

the role of the lithium cations in the solvation process. The cation could be associated not 

only with the carbonyl oxygen of DMAc but also with the hydroxyl oxygen of the 

cellulose.
60,61

 Figure 1.7 illustrates these two proposed dissolution mechanisms. 

 

Figure 1.7: Proposed interaction between LiCl/DMAc and cellulose acting as the dissolution 

mechanism by (A) McCormick et al. (B) Morgenstern et al. 

 

Some researchers have thought about a hypothetic systemization for the cellulose dissolution 

mechanism. After structural studies of three traditional non-derivatizing solvents, N-

methylmorpholine N-oxide (NMMO), DMAc/LiCl, and dimethyl sulfoxide tetrabutyl-

ammonium fluoride (DMSO/TBAF), Pinkert et al. proposed that all non-dervatizing solvents 

for cellulose can be hypothetically arranged with themselves in cyclic structures (see 

Figure 1.8). The involvement of the compounds in this arrangement is related to their 

dissolution ability because energetically favored geometries enable the solvents to give 

hydrogen bonds of high stability compared to those in cellulose.
58

 For instance, the ring 
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formation is assisted more favorably by small ions and polar characteristics than larger 

cations such as NMMO and TBAF. Thus, the dissolution ability of small ions, such as 

lithium, is enhanced compared to compounds with steric hindrance.
58

  

 

Figure 1.8: Hypothetical ability of the three non-derivatizing solvents to arrange in a cyclic 

formation: (A) DMAc/LiCl (5-ring geometry), (B) DMSO/TBAF (6-ring geometry), (C) NMMO (6-

ring geometry).
58

 

 

Contrary to the majority of opinions, Lindman et al. proposed another systematic pattern. 

They highlighted the amphiphilic character of cellulose. These authors suggested that the key 

to dissolve cellulose is the elimination of the hydrophobic interactions between cellulose 

molecules rather than hydrogen bonding interactions.
53,62,63

 Thus, they implied that cellulose 

dissolution would be facilitated in amphiphilic solvents. For example, they illustrated this 

hypothesis with the efficiency of NMMO, which contains polar and non-polar parts, or with 

the enhancing solubility in NaOH solutions with the addition of specific additives, such as 

urea, or amphiphilic organic cation.
63,64

  

This “new” vison of cellulose dissolution mechanism is a matter of debate between the 

cellulose scientists.
65

 The amphiphilic character of cellulose is not contested. However, the 

(in)solubility explanations, the tardive realization, and some irrelevant observations in the 

Lindman hypothesis are still up to discussion.
65

 In this way, the exact understanding of 

cellulose dissolution mechanism is still challenging scientists.   

Another challenge for researchers is the development of alternative and more sustainable 

solvent systems for the dissolution of cellulose. Indeed, the classical solvents mentioned 

above suffer from a lack of compatibility with the environment. They lead to some concerns 
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regarding their toxicity, volatility, high cost, non-biodegradability, unrecoverability or even 

thermal instability.
58,66,67

 

 

1.2.2.2 Chitin  

For the dissolution of chitin, only a limited number of classical solvent systems are known in 

contrast to cellulose solubilization. The more complex hydrogen bonds network of chitin can 

be the factor for this restriction.
68

 The most popular solvents are (1) halogenated solvents, 

such as di- and tri-chloroacetic acid, formic acid/dichloroacetic acid mixtures and 

hexafluoroisopropyl alcohol;
69

 (2) salt solutions such as DMAc/LiCl, N-methyl-2-

pyrrolidone/LiCl and CaCl2·2 H2O/saturated methanol;
70,71

 and (3) alkali aqueous systems, 

e.g. urea or thiourea/NaOH solutions.
72,73

 Figure 1.9 gives an overview of these relevant 

examples.  

 

Figure 1.9: Main classical solvents used for chitin dissolution. 
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The mechanism of the dissolution of chitin in all these solvents has not been fully resolved. 

As for cellulose, the common opinion suggests that the solvent systems with hydrogen bond 

acceptors (e.g. Cl
-
) or donors (NH2 in urea or thiourea) break up the intra- and inter-

molecular hydrogen bonds of chitin.
68,74

 Again many of these solvents are toxic, corrosive, 

mutagenic, non-biodegradable, not easy to recycle or degrade chitin during the dissolution 

process.
68

  

With regard to common solvents for cellulose and chitin, the capacity to dissolve both 

polymers is limited to N,N-dimethylacetamide/lithium chloride and alkaline (NaOH) urea or 

thiourea mixtures. Hence, the development of alternative solvents persists as a crucial interest 

for researchers.  

 

1.2.3  Alternative solvents  

1.2.3.1 Environmental aspects  

The need of alternative and green solvents appeared with the concept of green chemistry two 

decades ago. Most solvents used in chemical processes are volatile, toxic and have an impact 

on the environment and human health. They have to be eliminated from the industrial process 

and replaced by chemical products and processes that are more environmentally friendly. For 

this, Paul Anastas and John Warner created in 1998 twelve principles as guidelines for 

sustainable chemistry and processes.
75

 Jérôme et al. adapted these principles to solvents 

solely and proposed a list of criteria that a green solvent has to follow:  

“(1) Availability: a green solvent needs to be available on a large scale, and the 

production capacity should not greatly fluctuate in order to ensure a constant availability 

of the solvent on the market.  

(2) Price: green solvents have to be not only competitive in terms of price but also their 

price should not be volatile during time in order to ensure sustainability of the chemical 

process.  

(3) Recyclability: in all chemical processes, a green solvent has to be fully recycled, of 

course using eco-efficient procedures.  
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(4) Grade: technical grade solvents are preferred in order to avoid energy-consuming 

purification processes required to obtain highly pure solvents.  

(5) Synthesis: green solvents should be prepared through an energy-saving process and 

the synthetic reactions should have high atom-economy.  

(6) Toxicity: green solvents have to exhibit negligible toxicity in order to reduce all risks 

when manipulated by humans or released in nature when used for personal and home 

care, paints, etc.  

(7) Biodegradability: green solvents should be biodegradable and should not produce 

toxic metabolites.  

(8) Performance: to be eligible, a green solvent should exhibit similar and even superior 

performances (viscosity, polarity, density, etc.) compared to currently employed solvents.  

(9) Stability: for use in a chemical process, a green solvent has to be thermally and 

(electro)chemically stable.  

(10) Flammability: for safety reasons during manipulation, a green solvent should not be 

flammable.  

(11) Storage: a green solvent should be easy to store and should fulfill all legislations to 

be safely transported either by road, train, boat or plane.  

(12) Renewability: the use of renewable raw materials for the production of green 

solvents should be favored with respect to the carbon footprint.” 
76

 

In practice, it is quite difficult to find a solvent that meets all these criteria. Nevertheless, few 

solvents such as ionic liquids, deep eutectic solvents, water, and bio-based solvents fulfill 

some of these principles and are considered as more or less “green”.
76,77

  

 

1.2.3.2 Ionic liquids 

1.2.3.2.1 General aspects and properties 

Ionic liquids (ILs) are by definition salts consisting entirely or almost exclusively of ions and 

melt below 100 °C. When they are liquid at room temperature, they are called “room-
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temperature ionic liquids (RTILs)”.
78

 They are formed from bulky, unsymmetrical ions with 

delocalized charge and are generally classified into two groups: (1) protic ILs (PILs) and (2) 

aprotic ILs (AILs).
79

 AILs consist of non-protonated cations and anions, while PILs are 

formed by proton transfer from a Brønsted acid to a Brønsted base.
78

 The first reported IL, 

ethylammonium nitrate, was discovered by Walden in 1914. However, massive 

investigations of novel ILs (especially RTILs) as a new class of solvent began only in the 

1990’s.
77

 Due to their specific characteristics such as negligible vapor pressure, non-

inflammability, high thermal and chemical stability, recyclability, and wide viscosity range, 

ILs have some advantages over classical volatile solvents. They are thus classified as “green 

solvent”.
77

 Moreover, a huge variety of anions and cations combinations (estimated to be 

around 10
18

) allows the formation of ILs with specific properties, designated as task-specific 

ionic liquid.
80

 Recently, several studies have shown that some ILs are toxic, poorly 

degradable or not degradable at all. They are also generally considered as very expensive 

solvents and thereby have questioned the determining “green solvents”.
81,82

  

1.2.3.2.2 Dissolution of cellulose and chitin in ILs 

Over the last decades, ILs have been thoroughly investigated and widely exploited in various 

fields of science and technology. Among other things, they appeared to be the ideal 

alternative to the classical solvents for the dissolution of cellulose and chitin. In Figure 1.10, 

a bibliometric analysis from SciFinder
®
 database combining “cellulose”/“chitin” 

“dissolution” in “ionic liquids” as keywords highlights the intensive interest of scientists for 

this purpose. It also illustrates the higher number of publications (including scientific 

journals, patents, and conferences) about cellulose over the last 15 years. In contrast, 

publications about chitin dissolution in ILs are less recurrent. For instance, in 2012, 313 

publications can be found for cellulose whereas only 19 dealt with the dissolution of chitin in 

ILs. Chitin has more solubility problems than cellulose leading to less processability.  
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Figure 1.10: Bibliometric analysis from Scifinder
®
 database dealing with the dissolution of cellulose 

and of chitin in ILs. 

 

1.2.3.2.3 ILs as cellulose solvents 

The first molten salt system employed for the dissolution of cellulose was reported in 1934 

by Graenacher with a mixture of pyridinium salt and nitrogen-containing bases.
83

 Later, in 

2002, Swatloski et al. revealed several RTILs containing 1-alkyl-3-methylimidazolium 

cations and different anions (chloride, bromide, and thiocyanate) able to dissolve cellulose.
84

 

Since then, a huge variety of ILs has been investigated as cellulose solvents and detailed lists 

can be found in several reviews.
28,79,85

 Briefly, the most famous ILs for cellulose include 

several class of cations, mainly imidazolium, pyridinium, ammonium, and phosphonium 

derivatives, shown in Figure 1.11. As anion, they are mainly composed of halide (e.g. 

chloride, bromide), carboxylate (e.g. formate, acetate), and thiocyanate, also shown in 

Figure 1.11. Table 1.3 gives examples for the combinations of these cations and anions 

forming ILs able to solubilize cellulose. These data are extracted from the review of Pinkert 

et al.
79

 It should be mentioned that methylimidazolium-based RTILs with different alkyl 

substituents are the most predominant ILs as cellulose solvents in literature. For the anion, 

chloride and acetate seemed to be the most efficient ones.
79

 It can additionally be observed 

that many factors such as the DP of cellulose and the dissolution conditions (temperature, 

thermal or microwave heating) significantly influence the cellulose solubility in ILs. This can 
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be well illustrated with the IL 1-butyl-3-methylimidazolium chloride (BmimCl, see Table 

1.3). Under the same experiment conditions, 18 wt% cellulose with a DP of 286 were 

dissolved in BmimCl while only 13 wt% cellulose with a higher DP of 593 were solubilized. 

Moreover, the solubility of cellulose (with a DP of 1000) in BmimCl could be increased by 

2.5 times through microwaving instead of regular thermal heating.
79

 The presence of water 

and impurities in ILs and the high viscosity can also be an obstacle in the dissolution process 

of cellulose because of competitive hydrogen bonding and lower ion mobility.
58,84,86

  

 

 

Figure 1.11: Relevant cations and anions present in ILs having the capacity to dissolve cellulose. 
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Table 1.3: Examples of some ILs able to dissolve cellulose, their cellulose dissolving capacities 

according to the DP of cellulose and the solubility conditions.  

Ionic liquid DP of 

cellulose 

Conditions Cellulose 

solubility (wt%) 

1-Butyl-3-methylimidazolium chloride 286 

593 

1000 

1000 

1000 

83 °C, 12 h 

83 °C, 12 h 

100 °C, n.a.
a
 

70 °C, n.a.
a
  

MW
b 

18 

13 

10 

3 

25 

1-Butyl-3-methylimidazolium bromide 1000 

α-Cellulose 

MW
b
 

90 °C, 12 h 

5-7 

Insoluble 

1-Butyl-3-methylimidazolium 

thiocyanate 

1000 MW
b
 5-7 

1-Butyl-3-methylimidazolium acetate 569 n.a.
a
 13.2 

1-Ethyl-3-methylimidazolium acetate 225 

569 

110 °C, n.a.
a
 

n.a.
a
 

15 

13.5 

1-Allyl-3-methylimidazolium formate 250 85 °C, n.a.
a
 21.5 

3-Methyl-N-butylpyridinium chloride 286 

593 

1198 

105 °C, 12 h 

105 °C, 12 h 

105 °C, 12 h 

39 

37 

12 

Benzyldimethyl(tetradecyl)ammonium 

chloride 

286 

593 

1198 

62 °C, 12h  

62 °C, 12 h 

62 °C, 12 h 

5 

2 

1 

Tetrabutylphosphonium formate 225 110 °C, n.a.
a
 6 

1-Ethyl-3-methylimidazolium diethyl 

phosphate
87

 

398 100 °C, 2 h 12-14 

a
n.a. = not specified by the authors    

b
MW = microwave heating 

 

From a guidance standpoint, Pinkert et al. compared the structural aspects of the dissolving 

and non-dissolving IL ions. They suggested a list of the characteristics for a good cellulose 

solvent. Cations favorable for the cellulose solubilization are (1) nitrogen-containing 

aromatic heterocycles with the ability to delocalize their positive charge within the aromatic 

π-system and (2) ring molecules with dipolar character (heteroatom) or very polar character 

for the non-rings. The anions require an ability to act as a hydrogen bond acceptor, preferably 

small in size, and their substituents should not be bulky or hydrophobic.
58

 

1.2.3.2.4 ILs as chitin solvents 

Due to strong structural similarities between cellulose and chitin, the ILs used for cellulose 

dissolution have been also investigated for chitin. However, only a few of them, mostly 

methylimidazolium based RTILs were efficient for chitin.
88

 Table 1.4 gives an overview of 

the IL solvents for chitin found in several publications. The most promising ILs seem to be 1-
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allyl-3-methylimidazolium bromide and 1-butyl-3-methylimidazolium acetate. Once more, 

the dissolution conditions and the properties of chitin (namely its crystallinity, molecular 

weight and DA) affected the dissolution of chitin in ILs, as shown in Table 1.4. Wang et al. 

studied for instance the influence of the molecular weight and the DA of the chitin on the 

dissolution.
89

 They demonstrated that alkali treatments to deacetylate chitin render it more 

easily soluble in ILs compared to the native chitin. The deacetylation process has namely 

several impacts on chitin. First, the extensive hydrogen bond interactions are reduced by the 

decrease of the carbonyl groups. In addition, the molecular weight decreases and the 

amorphous domains in chitin increase. All these modifications facilitate the penetration of IL 

between the chitin chains.
89

 Finally, it is quite important to know the exact information about 

the chitin used (source, DA, molecular weight, purity) for dissolution studies.  

 

Table 1.4: Examples of ILs able to dissolve chitin, their chitin dissolving capacities according to the 

information given by the authors about the chitin used.  

Ionic liquid Chitin information  Conditions Chitin solubility 

(wt%) 

1-Butyl-3-methylimidazolium 

chloride 

n.a.
a
 

α-Chitin (η=35 cp, 

DA=99%)
b,c

 

β-Chitin (η=15 cp)
b
 

β-Chitin (η=15 cp)
b
 

110 °C, 5 h 

110 °C 

 

110 °C 

110 °C 

10 
90

 

Partially soluble
45

 

 

Partially soluble
45

 

Partially soluble
45

 

1-Butyl-3-methylimidazolium 

acetate 

α-Chitin (η=35 cp, 

DA=99%)
b,c

 

β-Chitin (η=15 cp)
b
 

β-Chitin (η=278 cp)
 b
 

110 °C 

 

110 °C 

110 °C 

6 
45

 

 

6-7 
45

 

3 
45

 

1-Ethyl-3-methylimidazolium 

acetate 

Pure and practical 

grade 

MW
b
 3.8 

91
 

1-Ethyl-3-methylimidazolium 

chloride 

Pure grade 

Practical grade 

100 °C, 19 h 

100 °C, 19 h 

3.5 
91

 

1.5 
91

 

1-Allyl-3-methylimidazolium 

bromide  

α-Chitin (DA=94.6%)
c
 100 °C, 48 h 5-7 

92
 

1-Allyl-3-methylimidazolium 

chloride 

DA=91.6%
c
, 

Mv=1.23x10
5
 g/mol

d 
<45 °C 0.5 

89
 

1-Allyl-3-methylimidazolium 

acetate 

DA=91.6%
c
, 

Mv=1.23x10
5
 g/mol

d
 

110 °C 5 
89

 

1-Methyl-3-methylimidazolium 

dimethyl phosphate 

DA=91.6%
c
, 

Mv=1.23x10
5
 g/mol

d
 

<60 °C 1.5 
89

 

1-Ethyl-3-methylimidazolium 

dimethyl phosphate 

DA=91.6%
c
, 

Mv=1.23x10
5
 g/mol

d
 

<60 °C 1.5 
89

 

a
n.a. = not specified by the authors 

d
Mv = molecular weight 

b
η = intrinsic viscosity

                        c
DA = degree of acetylation 

e
MW = microwave heating 
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1.2.3.2.5 Mechanism of dissolution 

The dissolution mechanism of cellulose and chitin in ILs has been again proposed by the 

majority of the authors to be a question of cleavage of the hydrogen bonds interaction 

between the polymer chains.
58,84,88,89,93

  

 

Cellulose  

Authors first assumed that the anion of the IL bears the main responsibility to break the 

hydrogen bonding to dissemble cellulose chains with no specific role for the cation.
84,94

 For 

example, Swatloski et al. investigated the solubilization power of 1-butyl-3-

methylimidazolium ILs with different anions. They suggested that anions, which are small 

and strong hydrogen bond acceptors (such as chloride) were more efficient than ILs 

containing larger or non-coordinating anions such as tetrafluoroborate or 

hexafluorophosphate.
84

 However, it was observed that certain combinations of ILs containing 

good hydrogen bond accepting anions can be ineffective with certain cations. For instance, 

ILs containing chloride and cations such as pyrrolidinium or piperidinium or longer-chain 

substituted (hexyl,octyl) methylimidazolium cations were found to be not or less 

powerful.
58,84

 These observations and further studies (i.e. ILs screening with a variety of 

combinations, NMR studies, and molecular dynamics simulations) have motivated scientists 

to investigate the role of individual ionic species in the dissolution process.
28,66,95-99

 Zhang et 

al. suggested with the study of 1-allyl-3-methylimidazolium chloride (AmimCl) that the ion 

pairs dissociate to free Amim
+
 and Cl

-
 above the critical temperature. Cation and anion 

individually play a role in the disruption of the cellulose hydrogen bonding. Cl
-
 ions interact 

with the cellulose hydroxyl proton while free Amim
+
 forms complex with the hydroxyl 

oxygen. This suggested mechanism scheme is represented in Figure 1.12.
66,97
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Figure 1.12: Dissolution mechanism of cellulose in the IL 1-allyl-3-methylimidazolium chloride 

(AmimCl) proposed by Zhang et al. 

 

Generally, mostly all depth researches are in accordance with the predominant role of the 

anion in the dissolution pattern due to its interactions with the cellulose hydroxyls as 

suggested by Zhang et al.
95,98,100

 However, the exact role of the cation is still unclear and 

different interpretations about the cations-cellulose interactions can be found in literature. A 

brief overview of these controversial explanations is presented below. Zhang et al. argued 

with NMR experiments on the cellobiose solvation with 1-ethyl-3-methylimidazolium 

acetate (EmimOAc) that both, anion and cation, associate with the hydroxyl groups. The 

anion forms hydrogen bonds with the hydrogen atoms of the hydroxyl groups. The cation, 

thanks to the most acidic proton, associates with the oxygen of the hydroxyls with less steric 

hindrance.
98

 Conversely for the same IL, Youngs et al. demonstrated that the IL cation plays 

only a minor role via van der Waals interactions and does not participate in hydrogen 

bonding. These observations were performed with NMR and molecular dynamics study of 

glucose dissolved in EmimOAc and extrapolated to cellulose.
99

 According to Lindman et al., 

the cations of ILs have amphiphilic properties and interact through hydrophobic associations 

with cellulose.
53

 Recently, with the study of 13 different cations combined with an acetate 

anion, Lu et al. suggested that cations affect the cellulose dissolution in two ways. First, 

acidic protons in cation form hydrogen bonds with cellulose hydroxyl oxygen and ether 

oxygen and are important for the dissolution. Secondly, strong cation-anion interactions or 

steric hindrance of large sized groups in cation negatively affect the dissolution. In addition, 

they supposed that van der Waals interactions between cations and cellulose are irrelevant for 

the dissolution mechanism.
95

 A larger molecular dynamics study with anions, i.e. chloride, 

acetate, and dimethylphosphate, paired with alkylimidazolium-based cations was done by 



Fundamentals                                                                                                               Chapter 1 

 

 

 
32 

 

Rabideau et al. to understand the individual role of IL ions in the cellulose solvation. They 

suggested that cations interact mainly at the cellulose surface with the anions bound at the 

polar domains of cellulose via electrostatic interactions. In addition, they showed that cations 

are also in contact with the non-polar domains of cellulose via van der Waals interactions and 

fill the gaps between the cellulose-bound anions sites.
96

 Thus, the role of the cation is still the 

subject of an ongoing debate. 

As for the cellulose classical solvents, Pinkert et al. have shown the possible arrangement of 

the most effective ILs into stable cyclic arrangements and thus postulated that all non-

derivatizing solvents follow a similar pattern. For example, the hypothetical ability of 1,3-

dialkylimidazolium chloride to form a 6-ring geometry and the involvement of the acidic 

imidazolium proton in this structure is illustrated in Figure 1.13.
58

  

 

Figure 1.13: Hypothetical ability of a 1-3-dialkylimidazolium chloride IL to arrange in a 6-ring 

geometry.
58

 

 

Chitin 

The limited reports on chitin dissolution in ILs have not carefully investigated its exact 

solvation mechanism. It was generally assumed that the anions play the key role in the 

dissolution, analogous to cellulose dissolution. Anions with strong hydrogen bond acceptor 

ability were suggested to cleave the extensive hydrogen bond network of chitin.
45,88,89,91

 To 

our knowledge, the role of cations in chitin dissolution has not been elucidated yet.  

After all, ILs are new promising efficient solvents for the solubilization of cellulose and 

chitin. However, as outlined before, their disadvantages such as high costs and toxicity are 

obstacles to their industrial scale applications and processing. Thus, scientists tried to replace 

them with other greener solvents such as deep eutectic solvents. 
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1.2.3.3 Deep eutectic solvents 

1.2.3.3.1 General aspects and properties 

Deep eutectic solvents (DESs) are fluids obtained by heating two or more components 

capable of association with each other through hydrogen bond interactions. They form a 

eutectic mixture, i.e. a mixture with a lower melting point than that of the individual 

components. For instance, the most widely used DES, choline chloride + urea (in a molar 

ratio of 1:2), has a melting point of 12 °C, whereas choline chloride and urea melt at 302 °C 

and at 133 °C, respectively.
101

 DESs are generally liquid at temperatures lower than 150 °C, 

mostly between room temperature and 70 °C.
101

 Contrary to ionic liquids, which are entirely 

composed of ionic species, DESs comprise also non-ionic ones.
101

 Indeed, most of the DESs 

are obtained by complexation of a quaternary ammonium halide salt with a metal salt (e.g. 

metal halides) or hydrogen bond donor like carboxylic acids, amides, amino acids, and 

alcohols.
102

 Depending on the nature of the complexing agent, DESs are generally classified 

into four groups:
102,103

 

Type I: organic halide salt + metal chloride (e.g. 1-ethyl-3-methylimidazolium 

chloride/ AlCl3) 

Type II: organic halide salt + hydrated metal chloride (e.g. choline 

chloride/CoCl2*6H2O) 

Type III: organic halide salt + hydrogen bond donor (e.g. choline chloride/urea) 

Type IV: metal chloride + hydrogen bond donors (e.g. ZnCl2/urea) 

Concerning their physicochemical properties, DESs have similarities with ILs. DESs are also 

tunable solvents which can be customized, according to the components used. Specific DES 

with different properties can thus be obtained for a huge potential of different applications. 

As ILs, they are non-volatile, non-flammable, and exhibit a wide liquid range.
102

 DESs 

mostly show also a very high viscosity as the common ILs. Besides having most of the ILs 

advantages, DESs also overcome some ILs limitations. First, their preparation is easier 

because it generally involves the simple mixing of components at moderate heating. 

Therefore, it avoids the purification, the multi steps, and the waste problems present in some 

IL syntheses. Secondly, most of the components used to obtain DESs are cheaper, non-
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reactive with water, biocompatible, biodegradable, and non-toxic.
101

 Thus, DESs can be 

considered as environmentally benign alternative solvents to ILs for many applications, in 

particular in the dissolution of polysaccharides. 

1.2.3.3.2 Dissolution of cellulose and chitin 

The definition of DES appeared only in 2003 with the work of Abbott et al. on choline 

chloride/urea mixtures. Their application can already be found in various fields such as 

electrochemistry, catalysis and organic synthesis, extraction processes, and material 

preparation.
101,104

 However, the research field on the dissolution of cellulose and chitin in 

DESs is not as developed as for ILs. The bibliometric analysis from SciFinder
®
 database 

combining “cellulose” or “chitin” “dissolution” in “deep eutectic solvents” drew up a list of 

13 and 2 publications for cellulose and chitin, respectively. As it can be seen in Figure 1.14, 

the interest of scientist on these subjects started only recently, in 2012. The reason behind 

this may be the high viscosity of some DESs and/or their poor dissolution power towards 

these polysaccharides.
101

  

 

Figure 1.14: Bibliometric analysis from Scifinder
®
 database about the number of publications 

(including scientific journals, patents, and conferences) dealing with the dissolution of cellulose and 

chitin in DES. 
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Table 1.5 gives an overview of the DESs efficient for the cellulose and/or chitin 

solubilization found in literature. These DESs are all from Type III and contain mostly 

choline chloride as organic salt. Choline chloride was principally investigated because it is 

cheap, non-toxic, biodegradable, and easily available on the market.
105

 Moreover, chloride is 

well known for its efficiency to break the hydrogen bond network of cellulose and chitin (see 

Sections 1.2.2 and 1.2.3.2). Regarding Table 1.5, except the work of Sharma et al. put in 

brackets, only modest cellulose concentrations of less than 2.5 wt% were dissolved in choline 

chloride based DESs. To overcome this limitation, several studies proposed different 

strategies.
106,107

 For instance, Hiltunen et al. enhanced the cellulose solvation from above 

4 wt% in choline chloride/boric acid DES by adding water, betain solutions or aqueous 

mixtures of betaine and sodium hydroxide.
106

 Ren et al., for their part, showed that the 

exchange of choline cation with allyl triethyl ammonium can drastically enhance the 

cellulose solubility to 6.5 wt%, particularly because of the allyl substitution of the hydroxyl 

group, which decreases the viscosity of the DES.
107
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Table 1.5: Examples of DESs able to dissolve cellulose and/or chitin, their dissolving capacities 

according to the information given by the authors on the polymer used and the solubility conditions. 

The data written in brackets are extracted from the work of Sharma et al.  

DES (molar ratio) Information about the 

polysaccharide 

Conditions Solubility 

(wt%) 

Choline chloride/urea 

(1:2) 

Cotton linter pulp (DP=575.6)
a
 

activated by ultrasonication with 

saturated calcium chloride 

Microcrystalline cellulose 

[Microcrystalline cellulose 

(MW=3.12x10
5
 Da)]

b
 

[α-Chitin (DA=94.1%)]
c
 

(20<T<120 °C), 2h 

 

 

110 °C, 12h 

[100 °C, 10h] 

 

[MW 80 °C, 2h]
d
 

1.43
108

 

 

 

<0.2
105

 

[8]
109

 

 

[7]
109

 

Choline 

chloride/imidazole 

(3:7) 

Cotton linter pulp (DP=575.6)
a
 

activated by ultrasonication with 

saturated calcium chloride 

(20<T<120 °C), 

1.5h 

2.48
108

 

Choline 

chloride/ammonium 

thiocyanate (1:1) 

Cotton linter pulp (DP=575.6)
a
 

activated by ultrasonication with 

saturated calcium chloride 

(20<T<120 °C), 3h 0.85
108

 

Choline 

chloride/oxalic acid 

(1:1) 

Cotton linter pulp (DP=575.6)
a
 110 °C, n.a.

e
 <1

107
 

Choline 

chloride/thiourea (1:2) 

[Microcrystalline cellulose 

(MW=3.12x10
5
 Da)]

b
 

[α-Chitin (DA=94.1%)]
c
 

[100 °C, 6h] 

 

[100 °C, 6h] 

[10]
109

 

 

[9]
109

 

Choline 

chloride/glycerol (1:2) 

[Microcrystalline cellulose 

(MW=3.12x10
5
 Da)]

b
 

[MW 80 °C, 2h]
d
 

 

[3.5]
109

 

Choline bromide/urea 

(1:2) 

[Microcrystalline cellulose 

(MW=3.12x10
5
 Da)]

b
 

[α-Chitin (DA=94.1%)]
c
 

[MW 80 °C, 2h]
d
 

 

[MW 80 °C, 2h]
d
 

[6]
109

 

 

[7]
109

 

Chlorocholine 

chloride/urea (1:2) 

[Microcrystalline cellulose 

(MW=3.12x10
5
 Da)]

b
 

[α-Chitin (DA=94.1%)]
c
 

[100 °C, 10h] 

 

[100 °C, 10h] 

[5]
109

 

 

[8]
109

 

Betaine 

hydrochloride/urea 

(1:4) 

[Microcrystalline cellulose 

(MW=3.12x10
5
 Da)]

b
 

[α-Chitin (DA=94.1%)]
c
 

[100 °C, 10h] 

 

[100 °C, 10h] 

[2.5]
109

 

 

[5]
109

 

Proline/malic acid 

(3:1) 

Cellulose (purity of 90%) 100 °C, n.a.
e
 0.78

110
 

Allyltriethyl-

ammonium 

chloride/oxalic acid 

(1:1) 

Cotton linter pulp (DP=575.6)
a
 110 °C, n.a.

e
 6.48

107
 

a
DP = degree of 

polymerization  
d
MW = microwave heating 

b
Mw = molecular weight 

e
n.a.= not specified by the authors 

c
DA = degree of acetylation 
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Surprisingly, the work of Sharma, Prassad et al. is the only study where relatively high 

amounts of microcrystalline cellulose (MCC) can be solubilized in choline-based DESs. 

Contradictory, several authors found that MCC or cellulose with higher DP are sparingly or 

not at all soluble in choline based DESs.
105,107,108

 For example, the solubility of MCC was 

inferior as 0.2 wt% for Zhang et al. while it was 8 wt% for Sharma et al. in roughly the same 

conditions, as presented in Table 1.5. The presence of protic hydroxyl groups in choline 

cation were suggested to compete in cleaving the hydrogen bonds of cellulose. Therefore 

choline-based DESs are inefficient for the dissolution of high amounts of cellulose.
107

  

For chitin, only the works of Sharma et al. deal with its dissolution capacity in DESs.
109,111

 

Choline chloride/thiourea was observed to be the most effective medium for the 

solubilization of α-chitin (see Table 1.5). Sharma et al. hypothesized that thiourea interacts 

with the acetoamido group of chitin as with the membrane of proteins.
109

 

 

Finally, DESs were assumed to be suitable and alternative greener solvents to ILs for the 

cellulose and chitin dissolution. However, they seemed to be poorly efficient compared to 

ILs and the development of more powerful DESs has still to be investigated.  
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1.3 Cellulose and chitin materials 

The development of efficient cellulose and chitin solvents had an important impact on 

cellulose and chitin processing. The polymers put into solutions have shown to have the 

potential to produce different cellulose and/or chitin materials such as fibers, films, 

nanomaterials, gels, and membranes.
26,92,112-115

 All these materials cannot be described in 

detail but some relevant examples and applications will be presented in this part.  

 

1.3.1 Production process of materials and applications 

 

Figure 1.15: Schematic of the production process for the materials composed of cellulose and chitin. 

 

Figure 1.15 illustrates the common process used to produce the materials listed above. After 

the dissolution of the biopolymer in a solvent, the regenerated polymer materials are 

generally produced by first shaping the polymer solution into the required form. For instance, 

films are obtained by casting the polymer solution onto glass plates, fibers by extrusion, and 

nano-composites under vigorous stirring or by top-down or bottom-down procedures.
28,116,117

 

Then, an anti-solvent (mainly water, ethanol or acetone) is added, leading the polymer to be 

regenerated and the solvent to be removed. The final material is washed with the anti-solvent 

and dried. The regenerated cellulose or chitin generally showed lower degree of crystallinity 

than the native polymers. For instance, it was reported that cellulose I changes to cellulose II 
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and amorphous cellulose or α-chitin to semi α-chitin.
28,45,88,118

 At the end of the process, the 

initial solvent can be potentially recovered and reused.
28

  

Table 1.6: Applications of cellulose and chitin materials according to their form.  

Material form Applications 

Cellulose Fibers Reinforcement material for construction and automotive 

industry,
119

 textile and paper industry
34

 

Chitin Fibers Antibacterial fibers for textiles, tissue engineering and wound 

healing
50

, wastewater treatment
42

 

Cellulose Films/membranes Water treatment
120

, paper and packaging industry
10

 

Chitin Films/membranes Water treatment
120

, coating materials, pharmaceutical and 

biomedical field (e.g. drug carrier, wound healing)
50

 

Cellulose Nanomaterials Barrier film, transparent films for packaging, thermal and 

mechanical reinforcement material, biomedical implants, 

pharmaceuticals, drug delivery, conductive material
26

 

Chitin Nanomaterials Gas barrier material
115

, practical additive to synthetic polymers
116

 

Cellulose  Gels Porous materials
121

, superabsorbent hydrogel for drug delivery
74

 

Chitin Gels Superabsorbent hydrogel for drug delivery
74

, porous matrixes for 

tissue engineering
50

 

 

Cellulose and chitin exhibit diverse properties (detailed in Sections 1.1.2.1.4 and 1.1.2.2.4) 

that enable them to be applied to various sectors. Table 1.6 lists some examples of 

applications found in literature concerning materials based on cellulose or chitin in function 

of their forms. Chitin-based materials are especially found in biomedical science while 

cellulose-containing materials are used in a vaster array of fields such as textile, paper, 

biomedical materials, packaging, and water treatment. Cellulose and chitin composite 

materials are also produced to combine the unique properties of each polymer and used in the 

application sector mentioned above. For instance, the addition of chitin into cellulose–based 

materials has shown to significantly increase their mechanical strength and bactericidal 

properties.
122

 

 

1.3.2 Cellulose and chitin fibers  

Fibers are materials worldwide produced for consumer goods. In the course of “green” 

chemistry, the development of renewable and biocompatible fibers gains more and more 
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importance as alternatives to synthetic fibers. This section will describe the production of 

these materials from cellulose and/or chitin.  

1.3.2.1 Regenerated cellulosic fibers at the industrial scale 

Cellulosic fibers are predominant on the industrial market, especially in the textile 

industry.
123

 Textiles are produced from two types of cellulosic fibers, natural (e.g. cotton) or 

man-made fibers. The latter are the most promising substitutes for cotton as they exhibit 

some further advantages as lower costs, higher availability, higher mechanical resistance, and 

higher wet strength. 
124

 Man-made cellulosic are produced by two types of techniques, the 

viscose and the Lyocell process, illustrated in Figure 1.16.
124

  

1.3.2.1.1 Viscose process 

The first manufactured technique is the viscose process which has been applied at industrial 

scale since the 1930s and is still mainly used to produce the viscose and Modal fibers. This 

technology consists first in purifying the cellulose pulp with caustic soda (NaOH) and in 

transforming cellulose with carbon disulfide (CS2) into cellulose xanthate. The cellulose 

xanthate is then dissolved in NaOH giving a dope. This solution is filtrated, degassed, and 

treated before to be spun through a spinneret into a chemical bath containing sulfuric acid, 

zinc sulfate, and sodium sulfate. In this bath, cellulose is regenerated in a filament form (see 

Figure 1.16).
125

 However, the viscose route contains a lot of complicated steps. They cause 

energy consumption, environmental pollution with the use of CS2 and heavy metals, 

production of by-products, and releasing of toxic gaseous hydrogen sulfide.
57,125

 The viscose 

fibers, or also called viscose rayon, are soft, highly absorbent, comfortable, and moderate dry 

strong. They exhibit a serrated cross section and a skin core structure with large voids in the 

core region and a densified skin layer.
126

 For textile and nonwoven application, standard 

viscose fibers are characterized by a fineness ranging from 1 to 10 dtex, an elongation at 

break from 18 to 25%, and a tensile strength from 20 to 26 cN/tex and from 10 to 15 cN/tex 

in wet conditions. Fiber fineness, also called titer, specifies the relation of mass to length 

(dtex = mass (dg)/length (km)). Viscose rayons are mainly used for outerwear manufacturing 

such as dress, skirts or t-shirts or as reinforced material for tire cords.
127
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Modal fibers are produced by a modified viscose process, namely other precipitation baths 

and a pulp with a higher degree of polymerization are proceeded.
57

 These modifications 

cause better mechanical properties than for viscose fibers, namely a higher tensile strength 

(up to 42 cN/tex), a higher wet tensile strength (19-30 cN/tex) and a lower elongation at 

break (8-18%). Modal fibers are generally used as a substitute for cotton and are found in 

high quality textiles such as bed and sports clothes, technical and home textiles, and toweling 

goods.
127

  

 

Figure 1.16: Detailed diagram of the viscose and Lyocell process.
128

  

 

1.3.2.1.2 Lyocell process 

Recently (in the 1990’s), an environmentally friendlier and easier technique, the Lyocell 

process, was developed to replace the viscose method. A direct dissolution of the pulp is 

performed without pre-treatment or derivatization, thus no by-products are formed. The first 

commercial Lyocell fibers were produced by Courtaulds (Great Britain) and are currently 



Fundamentals                                                                                                               Chapter 1 

 

 

 
42 

 

made by Lenzing AG (Austria) under the TENCEL
®
 trade name on a huge industrial scale 

(100 ktons/year). 

The Lyocell process, or also called NMMO process, uses N-methylmorpholine N-oxide 

(NMMO) in presence of water as solvent to dissolve cellulose pulp (detailed in Figure 1.16). 

The initial solution is generally composed of 10-15% cellulose, 50-60% NMMO, 20-30% 

water, and stabilizers. Aqueous NMMO solutions are preferred to facilitate the cellulose 

dissolution. The excess of water is extracted under mechanical stirring of the dope at reduced 

pressure and high temperature until complete dissolution of cellulose is obtained. Generally, 

appropriate slurries are obtained when the water amount is close to the percentage of water 

present as NMMO would be monohydrate. A typical dope is, for instance, composed at the 

industrial scale of 14% cellulose, 10% water, and 76% NMMO.
129

 This spinning dope is then 

extruded according to a dry-jet wet spinning process, illustrated in Figure 1.17. This 

technique consists in spinning the solution at elevated temperature (90-120 °C) through an air 

gap into a water bath. There, the extrudate is impoverished of NMMO, which allows the 

regeneration of the cellulose in form of filament. The resulting fibers are washed and dried. 

At the end of the process, NMMO is recovered from the baths and reused for a new spinning 

route.
126,129,130

 Theoretically, the Lyocell process overcomes the disadvantages of the toxic 

and multi-steps viscose technique. However, some drawbacks also remain in this process, 

such as the high energy consumption and the thermal instability of NMMO and cellulose.
129

  

 

Figure 1.17: Schema of the dry-jet wet fiber spinning process used in Lyocell process.
126
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TENCEL
®
 fibers exhibit a different morphology and better performant properties than the 

viscose fibers because of the different processing technique. In contrast to viscose, the 

forming fibers have smaller and circular cross section (10 µm diameter) and present fibrillar 

structure with microfibrils parallel to the fiber axis.
117

 The air gap conditions have a big 

influence on this highly oriented structure. 
126,131

 Lyocell fibers properties differ from viscose 

by considerable higher dry and wet strength (38-47 cN/tex and 26-40 cN/tex, respectively) 

and by their tendency to fibrillate especially in the wet state. Their enormous application 

potential extends from clothing to technical sectors. Their particular characteristic properties, 

mentioned above, allow Lyocell fibers to be used particularly well in the nonwoven sector or 

for filters and special papers manufacturing.
127

 

 

1.3.2.2 Regenerated cellulose/chitin fibers from IL solutions 

As already mentioned, ILs have been thoroughly investigated as direct and powerful solvents 

for cellulose and chitin and are therefore used for material processing. Among other, one 

potential application of cellulose/chitin-dissolving IL solutions is the production of fibers. 

Research on the spinnability of these solutions and the characterization of the forming fibers 

has gained more and more importance. For cellulose-based fibers, the aim is to substitute the 

currently commercialized viscose and Lyocell process. Concerning chitin, its derivative 

chitosan was mainly used to produce fibers because of the limited solvent systems which can 

readily dissolve pure chitin.
68,91,112,124,132

  

Fibers from IL solutions are produced according to the same dry-jet wet fiber spinning 

process as in the Lyocell process.
124

 Highly oriented fibers with promising properties could 

be obtained with different ILs. Imidazolium-based ILs such as 1-butyl-3-methylimidazolium 

chloride (BmimCl), 1-butyl-3-methylimidazolium acetate (BmimOAc), 1-ethyl-3-

methylimidazolium chloride (EmimCl), 1-ethyl-3-methylimidazolium acetate (EmimOAc), 

and non-imidazolium-based ILs such as 1,5-diazabicyclo[4.3.0]non-5-ene acetate were 

successfully used to produce cellulose fibers.
66,124,132,133

 Chitin fibers were manufactured with
 

EmimOAc und cellulose/chitin filament from ethylmethylimidazolium propionate.
112,134
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Regenerated cellulose fibers from IL (BmimCl, BmimOAc, EmimCl, EmimOAc) solutions 

were compared by Lenzing AG with the Lenzing Viscose
®
, Lenzing Modal

®
, and TENCEL

®
 

fibers. Fibers made from ILs showed similar properties to the TENCEL
®

 fibers. However, no 

real improvement of the characteristic of the fibers could be observed.
135

 The influence of the 

process parameters on the mechanical properties of fibers spun from IL solutions has to be 

investigated more to have one day maybe the possibility to overcome the TENCEL
®

 fibers. 

In addition, up to now the spinning process from IL solutions has not been applied to 

industrial production yet. Intrinsic drawbacks of ILs such as high costs, difficulty to be 

synthesized at a large scale with a high purity, high water absorption, and negative health and 

environmental impacts cause problems.
136
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2.1 Introduction 

As already mentioned in Chapter 1, cellulose and chitin cannot be melted and are difficult to 

process in solution because of their rigid bulk structures caused by extensive hydrogen 

bonding.
10,42

 Thus, the dissolution of cellulose and chitin in proper solvents has been the 

most important challenge before processing these polymers into novel biodegradable 

materials. The development of these solvents has been already a longstanding field of 

research. The state of the art concerning the different kinds of solvents is detailed in 

Chapter 1. On the basis of the results yielded by this survey, the majority of the solvents 

revealed shortcomings such as environmental and health hazards. It is still necessary to 

search for more efficient and environmentally friendly solvents for cellulose and chitin.  

For this purpose, the investigated solvents should meet certain criteria. First of all, they have 

to be effective solvents for both polymers to avoid the use of different compounds. A single 

solvent system for both polymers will facilitate processing and will avoid costs as well as 

intense energy consumption, especially for solvent recovery. Secondly, they should be non-

derivatizing and direct solvents. This means that they should have the ability to dissolve 

polymers without chemically damaging them and without being altered themselves. 

Moreover, no multi-step pretreatment or activation of the polymers should be performed 

prior to use in order to keep intact the properties of each polymer. For sustainable 

development and environmental concerns, solvents have to be environmentally friendly. In 

other words, biocompatible, low toxic, biodegradable, bio-resourced, and thermally stable 

solvents are preferably required for this work. Finally, they should also be easily removable 

from polymers and recyclable at the end of the process. 

Herein, a broad range of solvents was investigated to identify suitable solubilizing agents for 

cellulose as well as for chitin. Three types of solvents, namely ionic liquids (ILs), deep 

eutectic solvents (DESs), and other organic compounds were tested. Their dissolution 

capacity towards cellulose and chitin was examined by performing dissolution tests. These 

experiments were carried out using microcrystalline cellulose and α-chitin. The aim is to 

provide an easy and environmentally friendly method to process both cellulose and chitin.    
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2.2 Experimental section 

The presence of water and other impurities can reduce the effectiveness of the solvents for 

dissolution experiments.
86,137

 Therefore, some precautions were taken with the chemicals and 

during the preparation of solvents in order to use dried and highly pure compounds. The 

water content was determined with a Karl Fischer coulometer (899 Metrohm, Switzerland). 

 

2.2.1 Chemicals  

2.2.1.1 Chemicals used for the biopolymers  

Microcrystalline cellulose (MCC) was purchased from Merck (Germany). α-Chitin from 

shrimp shells were obtained from Sigma Aldrich (Germany). Chitin extracted from 

mealworms (Tenebrio molitor) was donated by Ynsect (France) and was in the form of 

flocks. This chitin was first ground in a ball mill (Fritsch Pulverisette 6, Germany) to obtain a 

fine powder. The degree of polymerization (DP) of each polymer was measured by Yaqing 

Duan (from the Straubing Center of Science) using an Ubbelohde viscometer. These DP 

values were evaluated to be 124 for MCC, 1542 for chitin from mealworms, and 1691 for 

chitin from shrimp shells. The degree of acetylation of the chitin from shrimp shells is 

92 ± 4% and was determined by Yaqing Duan by elemental analysis and infrared 

spectroscopy. All polymer powders were dried at 70 °C for 5 days and then stored in a glove 

box, prior to use. 

 

2.2.1.2 Chemicals used for the ionic liquids 

The ionic liquids whose structures are represented in Figure 2.1, Ammoeng 102 (purity ≥ 

95%), 1-ethyl-3-methylimidazolium acetate (purity ≥ 95% and ≥ 98%), 1-butyl-3-

methylimidazolium acetate (purity ≥ 98%), 1-hexyl-3-methylimidazolium bis(trifluoro-

methylsulfonyl)imide (purity ≥ 99%), and N-butyl-N-methylpyrrolidinium dicyanamide 

(purity ≥ 98%) were purchased from IoLiTec (Germany). Prior to use, they were dried using 

a high vacuum setup (10
-6

-10
-7

 mbar) consisting of a rotary vacuum pump and an oil 
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diffusion pump for 5 days. They were stored in sealed vials in a nitrogen-filled glove box. 

For the synthesis of 1-allyl-3-methylimidazolium bromide, allyl bromide (Reagent Plus
®
, 

99%) and 1-methylimidazole (purity ≥ 99%) were obtained from Sigma Aldrich and Carl 

Roth (Germany), respectively. They were both distilled under reduced pressure, prior to use. 

Methanol (anhydrous, purity ≥ 99.8%) was purchased from Sigma Aldrich and potassium 

hydroxide (KOH) from Merck. All other ILs were synthesized at our chair. 

 

2.2.1.3 Chemicals used for the deep eutectic solvents  

The following chemicals used to produce the deep eutectic solvents were dried with a 

turbomolecular pump under vacuum (10
-6

 mbar) for 5 days. They were stored in a nitrogen-

filled glove box to avoid water uptake. The water content of these chemicals was found to be 

lower than 500 ppm. Choline chloride (purity ≥ 98%) was obtained from Alfa Aesar 

(Germany). Urea (purity ≥ 99%), thiourea (purity ≥ 98%), and ethylammonium chloride 

(purity ≥ 98%) were purchased from Merck. Betaine (purity ≥ 99%) was obtained from 

Sigma Aldrich. 

 

2.2.1.4 Chemicals used for the other organic solvents  

All other chemicals were used without further purification. γ-Valerolactone (Reagent Plus
®
, 

purity ≥ 99%), γ-hexalactone (purity ≥ 98%), ethyl lactate (purity ≥ 98%), ethyl acetate 

(purity ≥ 99.5%), 4-methylmorpholine N-oxide monohydrate (NMMO mono., purity ≥ 95%), 

and tetrabutylphosphonium hydroxide solution (40% in H2O) were purchased from Sigma 

Aldrich. γ-Butyrolactone (purity , ≥ 99%), lithium chloride (purity ≥ 99%), and propylene 

carbonate (purity ≥ 99%) were obtained from Merck. 2,5-Dimethylfuran (purity ≥ 98.7%), 2-

methylfuran (purity ≥ 98.7%), and 2-methyltetrahydrofuran were donated by Pennakem 

(USA). Choline hydroxide (with 45 wt% H2O) was donated by Taminco (Germany). 

Dimethyl sulfoxide (purity ≥ 99.98%) was purchased from Fisher Scientific (UK). The 

nominal water content of tetrabutylphosphonium hydroxide solution (60 wt%), choline 
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hydroxide (45 wt%), and NMMO mono. (13.3 wt%) were additionally confirmed by 

coulometric Karl Fischer titration. 

 

2.2.2 Experimental methods 

2.2.2.1 Solvent synthesis and preparation 

All sample preparations were carried out gravimetrically with an estimated uncertainty lower 

than ± 0.001 g.  

2.2.2.1.1 Preparation of ionic liquids 

1-Allyl-3-methylimidazolium bromide was synthesized by reaction of 1-methylimidazole 

with allyl bromide according to the modified method of Schneider et al.
138

 First, 1-

methylimidazole and allyl bromide were distilled over KOH under reduced pressure to obtain 

highly pure products. The reaction was then carried out by adding slowly and dropwise allyl 

bromide into 1-methylimidazole dissolved in anhydrous methanol under an atmosphere of 

dry nitrogen at 25 °C for several days. The completion of 1-metylimidazole reaction was 

monitored with thin layer chromatography. Allyl bromide, supplied in slight excess, and 

methanol were removed afterwards under reduced pressure (10
-3

 mbar). The resulting IL, a 

clear viscous liquid was dried using the high vacuum setup to remove remaining traces of 

solvent. The purity of the synthesized IL was confirmed by 
1
H- and 

13
C-NMR (data are 

detailed in Appendix 2.1).  

1-Butyl-3-methylimidazolium tetrafluoroborate and 1-butyl-3-methylimidazolium hexa-

fluorophosphate were synthesized by Johannes Hunger. The ILs were prepared via anion 

metathesis. Equimolar amounts of 1-butyl-3-methylimidazolium chloride and NaBF4/NaPF6 

dissolved in water were stirred in an ice bath to avoid hydrolysis of anions. The obtained ILs 

were extracted three times with dichloromethane to remove the aqueous phase. To eliminate 

the traces of NaCl, the organic phase was washed three times with small amount of water. 

The ILs were pre-dried over MgSO4 and dichloromethane was evaporated under vacuum. 

Colorless liquids were obtained.
139
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1-Octyl-3-methylimidazolium tetrafluoroborate was synthesized by Alexander Stoppa. To 

prepare this IL, equimolar amounts of 1-octyl-3-methylimidazolium chloride dissolved in 

dichloromethane and aqueous solution of NaBF4 were stirred in an ice bath to minimize the 

hydrolysis of BF4
-
. To remove the aqueous phase, the solution was extracted three times with 

dichloromethane. After combining all the organic fractions, NaCl was extracted by washing 

the organic phase three times with small amounts of water. After removal of the 

dichloromethane under vacuum, the procedure yielded a yellowish liquid.
140

 

Ethylammonium formate and butylammonium formate were synthesized by Andreas 

Nazet following the approach of Burrel et al.
141

 The reactions were started by the 

neutralization of the bases, N-ethylamine for ethylammonium formate and N-butylamine for 

butylammonium formate, with formic acid. Equimolar amounts of acid and base were 

simultaneously mixed dropwise into a reaction vessel to keep the mixture near stoichiometric 

neutrality and thus ensure low by-product formation. The reaction being very exothermic, the 

temperature was maintained at 0 °C with an ice cooled water bath. After 4 h, ethylammonium 

formate and butylammonium formate were obtained as colorless liquids. The protic ionic 

liquids were dried with the high vacuum setup for 5 days at 40 °C to remove water and 

unreacted reactants.
142

  

Imidazolium carboxylate anions (from formate (C1) to nonanoate (C9)) were prepared by 

Andreas Nazet from imidazole and carboxylic acid (from formic acid to nonanoic acid) 

according to the same route described for ethylammonium formate. The obtained ILs were 

dried under reduced pressure (10
-2

 mbar) at 40 °C for a time span from 1 to 3 days.
142

 

Pyrrolidinium hydrogen sulfate and pyrrolidinium carboxylate anions (from formate 

(C1) to propionate (C3)) was synthesized by Andreas Nazet from pyrrolodine and sulfuric 

acid/carboxylic acid (formic, acetic, and propionic acid) according to the same route 

described for ethylammonium formate.
142

 

Choline butanoate was synthesized by Theresa Höß by neutralizing a solution of choline 

hydroxide with butyric acid according to the modified procedure of Fuyaka et al.
143

 A slight 

excess of butyric acid was slowly and dropwise added to a choline hydroxide solution in 

methanol in an ice bath. The solution was stirred at room temperature for 12 h and then 
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extracted with diethyl ether several times to remove unreacted acid. The ionic liquid was 

filtered through a fluted filter and dried under reduced pressure. Further drying was 

performed with the high vacuum setup at 40 °C and a white salt was obtained.
144

  

Choline lactate was synthesized by Stefan Wolfrum according to the method of 

Vijayaraghavan et al.
145

 Lactic acid was slowly added to methanolic choline hydroxide in an 

ice bath and stirred for about 20 h at room temperature. The mixture was extracted with 

diethyl ether to eliminate unreacted acid. The final product was filtered through a fluted 

filter, dried by rotary evaporation and then with the high vacuum setup. A brownish and 

viscous liquid was obtained.  

Butylcarnitine bromide was synthesized by Katharina Häckl according to the modified 

route of Andrea Mülbauer.
146

 Carnitine and 1-bromobutane were slowly mixed under 

nitrogen atmosphere in acetonitrile. The mixture was stirred under reflux over night at 80 °C. 

Evaporation of solvent was performed under reduced pressure with a rotary evaporator and 

then with the high vacuum setup.
147

  

 

The purity of the synthetized ILs was controlled by 
1
H- and 

13
C-NMR measurements, 

recorded for the majority with a Bruker Avance 300 spectrometer (Billercia, USA) at 300 

MHz. They were all stored in sealed vials in a nitrogen-filled glove box to avoid air contact. 

The residual water content of the ILs was determined by coulometric Karl Fischer titration. 

The values are listed in Table 2.1. All the investigated ILs contained very low water fraction 

(<1.2 wt%). Their dissolving behavior was thus assumed to be not influenced by the residual 

water. 
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Table 2.1: Water content in mass fraction of the ILs used in the dissolution tests after drying. 

Ionic Liquid Abbreviation Water content  

(ppm) 

1-Allyl-3-methylimidazolium bromide AmimBr 300 

1-Ethyl-3-methylimidazolium acetate (purity ≥ 95%) EmimOAc 95% 2730 

1-Ethyl-3-methylimidazolium acetate (purity ≥ 98%) EmimOAc 98% 2080 

1-Butyl-3-methylimidazolium acetate BmimOAc <2760 

1-Butyl-3-methylimidazolium hexafluorophosphate BmimPF6 75 

1-Butyl-3-methylimidazolium tetrafluoroborate BmimBF4 70 

1-Hexyl-3-methylimidazolium 

bis(trifluoromethylsulfonyl)imide 

HmimNTf2 15 

1-Octyl-3-methylimidazolium tetrafluoroborate OmimBF4 50 

Imidazolium formate MimC1 1100 

Imidazolium acetate MimC2 1250 

Imidazolium propionate MimC3 580 

Imidazolium butanoate MimC4 150 

Imidazolium pentanoate MimC5 150 

Imidazolium hexanoate MimC6 100 

Imidazolium heptanoate MimC7 150 

Imidazolium octanoate MimC8 200 

Imidazolium nonanoate MimC9 160 

Ethylammonium formate EAF 1600 

Butylammonium formate BuAF 4300 

Pyrrolidinium formate PyrC1 <12000 

Pyrrolidinium acetate PyrC2 3780 

Pyrrolidinium propionate PyrC3 950 

Pyrrolidinium hydrogen sulfate PyrHSO4 50 

Choline butanoate ChC4 230 

Choline lactate ChLac 500 

Butylcarnitine bromide C4CarBr 200 

N-Butyl-N-methylpyrrolidinium dicyanamide P14DCA 200 

Ammoeng 102 A102 80 

 

2.2.2.1.2 Preparation of deep eutectic solvents 

DESs were prepared by mixing the desired components, a hydrogen bond donor and a 

hydrogen bond acceptor, in sealed glass vials in a nitrogen-filled glove box. The vials were 

then heated and stirred under nitrogen atmosphere in an oil bath until a colorless and 

homogeneous liquid was formed.  
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2.2.2.2 Dissolution method 

Dissolution experiments were carried out by mixing desired amounts of polymer (cellulose or 

chitin) with a pure solvent (or a mixture) in sealed glass vials under nitrogen atmosphere. For 

the majority of the selected solvents, the samples were continuously stirred with a magnetic 

stirrer at elevated temperatures between 70 °C and 110 °C in an oil bath, until a 

homogeneous and clear solution was obtained. The dissolution process was first visually 

monitored and the total dissolution of the polymers was confirmed using a polarized optical 

microscope (Leitz Orthoplan, Germany).  

Other procedures were also investigated for the dissolution of polymers in certain solvents. 

Ultrasonication in a water bath was performed by a heated ultrasonic bath (Bandelin Sonorex 

RK 510 H, Germany) under nitrogen atmosphere. Dissolution tests were also carried out with 

heating under microwave irradiation for 2 h at a power of 100 W using a SP Discover 

microwave synthesis system (CEM, Germany). Furthermore, mixing was achieved using a 

PT 3100 Polytron Ultra-Turrax (Kinematica, Germany). 

The polymers were considered not soluble when the addition of 1 wt% of cellulose or chitin 

to the solvent yielded turbid mixtures after 24 h heating and stirring. The maximal amount of 

polymers was increased up to 10-15 wt%. Above this value, solutions were too viscous and 

the stirring was too weak to induce an efficient mass transport. 
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2.3 Results and discussion 

The goal of this study was to investigate direct solvents for cellulose and chitin processing. In 

this context, 49 candidates were screened as solvents for cellulose as well as for chitin. 

Ideally, the solvent should follow the maximum possible number of criteria outlined in the 

introduction.  

Microcrystalline cellulose was selected as the main cellulose substrate as its low degree of 

polymerization (i.e. 124) ensures a relatively fast dissolution and solutions of moderate 

viscosity. Regarding chitin substrate, α-chitin from shrimp shells was chosen since it was the 

only chitin powder commercially available on the German market. 

 

2.3.1 Dissolution in ionic liquids 

Herein, dissolution of cellulose and chitin in ILs with different cations and anions is studied. 

An overview of all ILs, their chemical structures and their abbreviations are given in 

Figure 2.1. These solvents were classified on the basis of their structure. From this selection, 

1-alkyl-3-methylimidazolium-, ammonium- and pyrrolodinium-based ILs as well as protic 

and bio-sourced ILs were thus investigated.  
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Figure 2.1: Overview of the ionic liquids used in the dissolution tests: 1-allyl-3-methylimidazolium 

bromide (AmimBr), 1-ethyl-3-methylimidazolium acetate (EmimOAc), 1-butyl-3-methylimidazolium 

acetate (BmimOAc), 1-butyl-3-methylimidazolium hexafluorophosphate (BmimPF6), 1-butyl-3-

methylimidazolium tetrafluoroborate (BmimBF4), 1-hexyl-3-methylimidazolium bis(trifluoromethyl 

sulfonyl)imide (HmimNTf2), 1-octyl-3-methylimidazolium tetrafluoroborate (OmimBF4), choline 

butanoate (ChC4), choline lactate (ChLac), butylcarnitine bromide (C4CarBr), imidazolium formate 

up to nonanoate (MimC1-C9), ethylammonium formate (EAF), butylammonium formate (BuAF), 

pyrrolidinium formate up to propionate (PyrC1-C3), pyrrolidinium hydrogen sulfate (PyrHSO4), 

tetraalkyl ammonium sulfate Ammoeng 102 (A102), and N-methyl-N-butyl-pyrrolidinium 

dicyanoamide (P14DCA). Tallow is a C18 acyl group. 
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Table 2.2: Dissolution experiments of microcrystalline cellulose (MCC) and α-chitin in different ionic 

liquids (ILs).  

IL  

 

Dissolution conditions 

 

Solubility (wt%)
b 

MCC α-chitin 

AmimBr Stirring
a
 and heating at 100 °C NS 5 

EmimOAc  

(purity ≥ 95%) 

Stirring
a
 and heating at 90 °C 

Ultra-Turrax and heating at 90 °C 

Microwave irradiation and heating at 55 °C 

Ultrasonication and heating at 80 °C 

>15 

- 

- 

- 

<1 

<1 

NS 

<1 

EmimOAc  

(purity ≥ 98%) 

Stirring
a
 and heating at 90 °C - <1 

BmimOAc Stirring
a
 and heating at 110 °C >10 3 

BmimPF6 Stirring
a
 and heating at 90 °C NS NS 

BmimBF4 Stirring
a
 and heating at 110 °C NS NS 

HmimNTf2 Stirring
a
 and heating at 100 °C NS NS 

OmimBF4 Stirring
a
 and heating at 100 °C NS NS 

MimC1 Stirring
a
 and heating at 90 °C NS NS 

MimC2 Stirring
a
 and heating at 90 °C NS NS 

MimC3 Stirring
a
 and heating at 90 °C NS NS 

MimC4 Stirring
a
 and heating at 90 °C NS NS 

MimC5 Stirring
a
 and heating at 90 °C NS NS 

MimC6 Stirring
a
 and heating at 90 °C NS NS 

MimC7 Stirring
a
 and heating at 90 °C NS NS 

MimC8 Stirring
a
 and heating at 90 °C NS NS 

MimC9 Stirring
a
 and heating at 90 °C NS NS 

EAF Stirring
a
 and heating at 100 °C NS NS 

BuAF Stirring
a
 and heating at 100 °C NS NS 

PyrC1 Stirring
a
 and heating at 70 °C NS NS 

PyrC2 Stirring
a
 and heating at 70 °C NS NS 

PyrC3 Stirring
a
 and heating at 70 °C NS NS 

PyrHSO4 Stirring
a
 and heating at 90 °C NS NS 

ChC4 Stirring
a
 and heating at 90 °C NS NS 

ChLac Stirring
a
 and heating at 90 °C  NS NS 

C4CarBr Stirring
a
 and heating at 90 °C NS NS 

P14DCA Stirring
a
 and heating at 100 °C NS NS 

A102 Stirring
a
 and heating at 90 °C NS NS 

a
Magnetic stirring  

b
NS = Not Soluble 

 

Table 2.2 shows the conditions employed for the dissolution experiments as well as the 

results concerning the ability of the ILs to dissolve microcrystalline cellulose and α-chitin. A 

common solvent for both biopolymers is of most importance to this study. In this context, it 

was observed that only one IL among the 17 tested could dissolve both cellulose and chitin, 

namely 1-butyl-3-methylimidazolium acetate (BmimOAc). More than 10 wt% cellulose and 
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3 wt% chitin could be dissolved in BmimOAc. Photographs of the resulting solutions are 

shown in Figure 2.2. For weight percentages above the given values, the high viscosity of the 

solutions inhibited a fast and complete dissolution. Similar results have been reported in 

literature.
45,79,93

 Authors suggested that the solvation involved the disruption of the complex 

hydrogen bond network of cellulose or chitin and was principally caused by the acetate 

anion. This strong hydrogen bonding acceptor and coordinating anion is supposed to interact 

strongly with the protons of the amino and hydroxyl groups for chitin and with the protons of 

hydroxyl group for cellulose.
45,100

 In addition, it is assumed that the cation may be also 

involved in the dissolution process for cellulose. However, the exact role is still subject to 

different interpretations as already mentioned in Chapter 1.
53,96,98

  

 

Figure 2.2: (A) Mixture containing 3 wt% of α-chitin dissolved in BmimOAc, (B) its image obtained by 

polarized light microscope, (C) mixture containing 10 wt% of microcrystalline cellulose dissolved in BmimOAc, 

and (D) its image obtained by polarized light microscope. The white object in solution is a magnetic stirrer. 

 

The results from Table 2.2 suggest that 1-allyl-3-methylimidazolium bromide (AmimBr) 

shows high solubility of chitin (up to 5 wt%), while cellulose was found to be immiscible in 

this solvent. This result is in agreement with reported chitin dissolution studies.
92,113

 Due to 

the allyl group, this IL has a relatively low viscosity compared to other ILs substituted by 

saturated alkyl.
97

 Moreover, AmimBr was reported to be used for the synthesis of polyamide 

and polyimide, polymers having the –NC꞊O groups in common with chitin.
92

 The dissolution 

ability of AmimBr has been considered to be caused by some specific interactions formed by 

AmimBr with the chitin chains.
113

 For cellulose, 1-allyl-3-methylimidazolium-based ILs such 

as 1-allyl-3-methylimidazolium chloride or 1-allyl-3-methylimidazolium formate and 

bromide-based ILs such as 1-butyl-3-methylimidazolium bromide and 1-allyl-2,3-dimethyl-

imidazolium bromide were found to dissolve this polysaccharide.
28,97

 However, the 
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combination of 1-allyl-3-methylimidazolium and bromide has not been reported as cellulose 

solvent.   

It can be observed from Table 2.2 that the contrary occurs for 1-ethyl-3-methylimidazolium 

acetate (EmimOAc). More than 15 wt% cellulose could be dissolved in EmimOAc, while 

chitin solubility was found to be very poor and negligible in this IL. When 1 wt% chitin was 

mixed and stirred in EmimOAc (with a purity ≥ 95%) at 90 °C for 24 h, a turbid and slightly 

more viscous solution than the pure IL was obtained. The presence of undissolved chitin 

particles was still noticeable (see Figure 2.3 A). A part of chitin seemed to be dissolved due 

to the increase of the viscosity of the solution. Nevertheless, no complete dissolution of chitin 

was achieved. Previous studies on dissolving chitin in ILs have shown that EmimOAc is yet 

a good solvent for this biopolymer.
88,91,148

 Changing the dissolution method into Ultra-Turrax 

mixing, microwave irradiation, and heating assisted by ultrasonication did not lead to an 

enhanced solubility of chitin in EmimOAc (see Figure 2.3). It should be noted that 

microwave heating produced degradation of the IL as a brownish solution was obtained 

(Figure 2.3 C). ILs are good microwave absorbers and heating occurs more rapidly leading to 

faster degradation.
28

 In addition, impurities in ILs are known to influence the dissolution 

capacity of these solvents and could be an explanation of EmimOAc inefficiency.
96,137

 

Hence, EmimOAc with a higher purity (≥ 98%) was also investigated. However, again only 

partial solubilization of chitin was obtained, which is in disagreement with previous 

studies.
91,148

  

 

Figure 2.3: Chitin in EmimOAc after different dissolution methods: (A) magnetic stirring and heating 

at 90 °C, (B) Ultra-Turrax and heating at 90 °C, (C) microwave irradiation and heating at 55 °C, 

and (D) ultrasonication and heating at 80 °C. Objects in solutions are magnetic stirrers in (A)/(C) 

and Ultra-Turrax disperser in (B). 
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No cellulose as well as no chitin solubility was found in the other studied ILs. In the case of 

1-butyl-3-methylimidazolium hexafluorophosphate (BmimPF6), 1-butyl-3-methyl-

imidazolium tetrafluoroborate (BmimBF4), and 1-octyl-3-methylimidazolium tetrafluoro-

borate (OmimBF4), the insolubility can be explained by the presence of large non-

coordinating anions. Apparently, BF4
-
 and PF6

-
 are not able to deconstruct the hydrogen 

bonding network of the polymers.
84

 As already mentioned in Chapter 1, the dissolution 

effectiveness of ILs is determined by an appropriate combination of cation and anion. 

However, the role of the anion is predominant.
149

 For 1-hexyl-3-methylimidazolium 

bis(trifluoromethylsulfonyl)imide (HmimNTf2), the presence of the long alkyl chain on the 

imidazolium ring, the large size of the anion, and its weakly basic character are opposite 

characteristics of a good cellulose solvent according to Pinkert et al.
58

 In addition, ILs with 

NTf2
-
 counterions are known for their inability to dissolve cellulose.

58
  

Protic ILs (PILs) were selected on the basis of their advantages over common aprotic ILs. By 

definition, PILs are formed by proton transfer from a Brønsted acid to a Brønsted base.
150

 

Thus, they are typically easy to produce from low-priced chemicals. Furthermore, no by-

products are generated during their preparation.
151

 The transfer of a proton induces hydrogen 

bond donor and hydrogen bond acceptor sites on the ions. 
151

 This implies that PILs are 

capable of hydrogen bonding and this subset of ILs was expected to be able to dissolve 

cellulose and chitin. However, no solving ability was confirmed for the tested PILs (see 

Table 2.2). This may be interpreted by the presence of the strong acidic hydrogen on the high 

electronegativity nitrogen present in the cation. It can be supposed that NH
+
 prefer to interact 

with O
-
 of the anion rather than with the oxygen of the polymers. This further prevents anion-

polymer interactions and leads to insolubility. Moreover, it was observed that in the case of 

ethylammonium and butylammonium formate decomposition under heating of formate into 

formamide and water occurred and can explain the inefficiency of these PILs.
152

 
 

Carnitine and choline are bio-sourced quaternary ammonium compounds present in food, 

animals, plants, and micro-organisms.
153,154

 They are ideal candidates for the design of 

biocompatible and biodegradable ILs as well as for the replacement of the toxic and non-

biodegradable imidazolium-based ILs.
146,147,155

 For this reason, the ability of three bio-

sourced ILs: choline butanoate, choline lactate, and butylcarnitine bromide to dissolve 
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cellulose and chitin was investigated. All were found to be inefficient for this task (see Table 

2.2). This is due to the hydroxyl group on the cationic part of the ILs, as it has been already 

reported for ILs with cationic hydroxyl groups.
95,156

 Hydroxyl protons may form hydrogen 

bonds with the anion, leading to weaken the hydrogen bonding capacity of the latter for the 

polymers dissolution process.
95

  

Ammoeng 102 (A102) is a tetraalkyl ammonium-based IL containing sulfate as anion as well 

as ethylene oxide groups and a long chain acyl group (C18) on the cation. Its reasonable price 

(60 €/kg) and its lower toxicity render this IL an interesting alternative to much more 

expensive and toxic imidazolium-based ILs.
82

 As expected, A102 was able to dissolve 

neither cellulose nor chitin. The hydroxyl end groups, the oxygens of the ethylene oxide 

units, and the long alkyl chain are different factors that cause strong interactions with the 

anion (anionic competition) or steric hindrance.
95

 Nevertheless, Ammoeng-based ILs are 

reported in literature as cellulose solvent. Zhao et al. have shown that Ammoeng 110 

chloride, Ammoeng 110 formate, and Ammoeng 110 acetate could dissolve microcrystalline 

cellulose.
157

 The difference in the structure of Ammoneg 102 and 110 is represented in 

Figure 2.4. But under close scrutiny, the given solubility of cellulose was only of 0.5 wt%, 

which is negligible for this project.
157

 The trial with an IL with a nonaromatic cyclic cation, 

N-butyl-N-methylpyrrolidinium, and a dicyanamide anion (IL short as P14DCA) failed. ILs, 

which have a pyrrolidinium cation, have been already described as non-dissolving solvents 

for cellulose.
58

   

 

Figure 2.4: Structure of (A) Ammoeng 102 and (B) Ammoeng 110 chloride. 

 

In brief, despite their structural similarity, cellulose and chitin showed different solubility in 

the studied ILs. Solely BmimOAc proved capability for dissolving both biopolymers to 

sufficient content (>2 wt%) to produce blend materials.  
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2.3.2 Dissolution in deep eutectic solvents 

The objective of this part is to study whether deep eutectic solvents (DESs) are able to 

dissolve microcrystalline cellulose and α-chitin. Figure 2.5 illustrates the prepared DESs with 

corresponding chemical structures and abbreviations. Choline chloride/urea (molar ratio 1:2), 

choline chloride/thiourea (1:2), ethylammonium chloride/urea (1:2), and betaine/urea (1:2) 

were screened for biopolymer solubility. The selection of these DESs was made on the basis 

of their advantages over traditional ILs such as their easy preparation (mixing of two 

coumpounds at moderate heating) from low cost and environmentally-friendlier substances. 

For instance, the most famous DES composed of choline chloride and urea is completely bio-

sourced and costs 0.52-0.62 €/kg.
101,158

 The conditions and the results of the dissolution tests 

using freshly prepared DESs are summarized in Table 2.3.  

 

Figure 2.5: Overview of the hydrogen bond acceptors (HBA) and the hydrogen bond donors (HBD) 

for the formation of deep eutectic solvents used in the dissolution tests. CCU corresponds to the DES 

choline chloride/urea, CCT to choline chloride/thiourea, ECU to ethylammonium chloride/urea, and 

BU to betaine/urea. 
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Table 2.3: Dissolution experiments of microcrystalline cellulose (MCC) and α-chitin in various deep 

eutectic solvents (DESs). 

DES (HBA:HBD)
a 

Dissolution conditions Solubility (wt%)
c
 

MCC α-chitin 

CCU (1:2) Stirring
b
 and heating at 80 °C 

Ultrasonication and heating at 80 °C 

NS 

NS 

NS 

NS 

CCT (1:2) Stirring
b
 and heating at 80 °C 

Ultrasonication and heating at 80 °C 

NS 

NS 

NS 

NS 

ECU (1:2) Stirring
b
 and heating at 100 °C NS NS 

BU (1:2) Stirring
b
 and heating at 100 °C NS NS 

a
Molar ratio HBA ꞊ Hydrogen Bond Acceptor 

                    HBD ꞊ Hydrogen Bond Donor 

b
Magnetic stirring  

c
NS ꞊ Not Soluble 

 

The dissolution tests were first performed by conventional heating and with mechanical 

stirring using a magnetic stirrer. Both microcrystalline cellulose and α-chitin were found to 

be insoluble in all prepared DESs. Turbid solutions were obtained and many undissolved 

particles could be seen under the microscope. For instance, Figure 2.6 shows the micrographs 

of 1 wt% MCC and 1 wt% of chitin in choline chloride/urea (1:2) after dissolution test.  

 

Figure 2.6: Appearance of the mixtures containing (A) 1 wt% of chitin, (C) 1 wt% of MCC, in choline 

chloride/urea (1:2) after dissolution test by mechanical stirring at 80 °C. (B) is the corresponding 

micrograph to the chitin solution and (D) to the MCC solution obtained by polarized light 

microscope. The white object in solutions is a magnetic stirrer.   
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Secondly, dissolution trials with the two DESs choline chloride/urea (1:2) and choline 

chloride/thiourea (1:2) were performed applying ultrasonication at 80 °C. Ultrasonication is 

known to facilitate and accelerate dissolution of sample. Nonetheless, the results were 

unchanged, no solubility was observable. As it can be seen from Figure 2.7, 1 wt% chitin and 

1 wt% MCC mixed with CCT by ultrasonication gave turbid solutions. The undissolved 

polymers can be visually observed at the bottom of the vials.  

The insoluble behavior of chitin and cellulose in DESs could result from the strong 

interactions between the DES compounds caused by hydrogen bonds as well as from the high 

viscosity of DESs.
159,160

 

 

Figure 2.7: Appearance of the solutions containing (A) 1 wt% of chitin, (B) 1 wt% of MCC, in 

choline chloride/thiourea (1:2) after dissolution test by ultrasonication at 80 °C. 

 

All these collected results on the choline chloride-based DESs disagree with the published 

works from Prasad et al.
109,111

 Indeed, they have reported that choline chloride/urea (1:2) and 

choline chloride/thiourea (1:2) could dissolve microcrystalline cellulose and α-chitin in larger 

quantity than 5 wt%.
109

 After correspondence with the authors, we noticed that they did not 

mention a pre-treatment step performed on the used chitin in their works. They purified 

chitin (from crab shells from TCI Fine chemicals, Japan) according to the following method. 

Chitin was first treated with 2 M HCl (1:10 w/v) for 48 h at room temperature and then 

washed with water. The obtained powder was mixed with 1 M NaOH for 72 h at 80 °C, 

washed with water and dried prior to use. This omission opened the doors to several 

questionings. For instance, (1) does the degree of acetylation of chitin (DA = 94.1%) 
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mentioned in the papers correspond to the unpurified chitin? If yes, (2) is the DA of chitin 

affected by the purification step? (3) How can the process of chitin purification influence the 

dissolution? To solve these questions, the same pre-treatment procedure was performed on 

our chitin. The degree of acetylation of the non-purified and purified chitin determined by 

elemental analysis and infrared spectroscopy was 92 ± 4% and 93 ± 2%, respectively. Thus, 

the chitin was not degraded into chitosan and the purification process had no drastic 

incidence on the DA value. According to Percot et al., the DA of chitin extracted from 

shrimp shells under approximately the same conditions, just a milder acidic treatment 

(0.25 M HCl for 15 min), remains also stable.
161

 Dissolution tests were then investigated with 

purified chitin and with the two choline chloride-based DESs under the same dissolution 

technique (heating at 100 °C) described by Prasad et al.
109

 Turbid solutions were again 

obtained after 22 h and undissolved particles were easily observed under the microscope. As 

it can be seen in Figure 2.8, the size of the undissolved particles, though, was smaller for the 

purified than for the unpurified chitin solution in CCU (1:2). Accordingly, the purification of 

the chitin did not lead to its complete dissolution in choline chloride-based DESs and the 

results of Prasad et al. remained unreproducible. Concerning the conflicting results about 

cellulose solubility in DESs, a study is in concordance with our results and has also shown 

that microcrystalline cellulose was insoluble in CCU (1:2).
105
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Figure 2.8: Appearance of the mixtures containing (A) 1 wt% of purified chitin, (C) 1 wt% of 

unpurified chitin, in choline chloride/urea (1:2) after dissolution test by mechanical stirring at 

100 °C. (B) is the related micrograph to the purified chitin solution and (D) to the unpurified solution 

obtained by polarized light microscope. The white object in solutions is a magnetic stirrer. 

 

2.3.3 Dissolution in other organic solvents 

Other solvent systems, which do not belong to the IL or DES classes, were additionally 

investigated as cellulose and α-chitin solubilizing agents. Figure 2.9 illustrates an overview 

of the tested solvents with corresponding chemical structures and abbreviations. Table 2.4 

lists the results of the solubility of MCC and α-chitin in these solvents. It can be seen that 

both cellulose and chitin were dissolved neither in the bio-sourced solvents such as 2-

methyltetrahydrofuran (MTHF), 2-methylfuran (MF), 2,5-dimethylfuran (DMF), γ-valero-

lactone (GVL), choline hydroxide (ChOH), ethyl lactate (EL), and ethyl acetate (EA), nor in 

the conventional non-ionic solvents such as γ-butyrolactone (GBL), γ-hexalactone (GHL), 

propylene carbonate (PC), and dimethyl sulfoxide (DMSO). Except the ionic solvents, the 

others have no hydrogen bond-breaking properties and were studied to check whether they 
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can be used as co-solvent in the following Chapter. Requirements of a good co-solvent are to 

be a non-solvent for the biopolymers and to be chemically inert with the true solvent.
162

  

Choline hydroxide is a strong base, which tends to decompose slowly upon storage and when 

heated. This and the high amount of water (45 wt% H2O) resulted in insolubility of the 

polymers. N-methylmorpholine N-oxide monohydrate and tetrabutylphosphonium hydroxide 

(with 60 and 40 wt% H2O) are well-known for their ability to dissolve cellulose.
126,163

 They 

were mainly studied to verify if they can similarly dissolve chitin. However, the complex 

network of chitin has proven to be insoluble in these solvents.  

Inspired by the dissolution ability of solvent systems containing lithium chloride in the polar 

aprotic solvent N,N-dimethylacetamide or thiourea in NaOH aqueous solution, this specific 

additives were mixed with the greener and aprotic solvent GVL.
59,68,72,164

 Thus, mixtures 

composed of 1 wt% LiCl (maximal amount soluble in GVL), of 8 wt%, and of 15 wt% 

thiourea in GVL were screened as cellulose and chitin solvents. However, none of the studied 

solutions was able to dissolve cellulose or chitin. It can be presumed that the small amount of 

LiCl present in the solution was a limiting factor and did not create sufficient interactions of 

Cl
-
 and Li

+
 with the polymer molecules leading to the dissolution.

60
 For the thiourea 

mixtures, the absence of aqueous NaOH solution and the high temperature employed could 

explain the insolubility. It was suggested that NaOH, thiourea, water cluster, and cellulose 

form a new hydrogen bond network at low temperature leading to the disruption of the 

intramolecular hydrogen bonds of cellulose.
164
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Figure 2.9: Overview of the organic solvents used in the dissolution experiments: 2-

methyltetrahydrofuran (MTHF), 2-methylfuran (MF), 2,5-dimethylfuran (DMF), γ-valerolactone 

(GVL), choline hydroxide (ChOH), ethyl lactate (EL), ethyl acetate (EA), γ-butyrolactone (GBL), γ-

hexalactone (GHL), propylene carbonate (PC), N-methylmorpholine N-oxide monohydrate (NMMO 

mono.), dimethyl sulfoxide (DMSO), and tetrabutylphosphonium hydroxide (TBPOH). 
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Table 2.4: Dissolution experiments of microcrystalline cellulose and α-chitin in organic solvents, 

which do not belong to the category DES or IL. 

Solvent 

 

Dissolution conditions 

 

Solubility (wt%)
b 

MCC α-chitin 

GVL Stirring
a
 and heating at 100 °C NS NS 

1 wt% LiCl in GVL Stirring
a
 and heating at 40 °C  NS NS 

8 wt% thiourea in GVL 

15 wt% thiourea in GVL 
Stirring

a
 and heating at 100  °C 

Stirring
a
 and heating at 100 °C 

NS 

NS 

NS 

NS 

MTHF Stirring
a
 and heating at 75 °C NS NS 

MF Stirring
a
 and heating at 55 °C NS NS 

DMF Stirring
a
 and heating at 75 °C NS NS 

EL Stirring
a
 and heating at 100 °C NS  NS 

EA Stirring
a
 and heating at 70 °C NS NS 

GBL Stirring
a
 and heating at 100 °C NS NS 

GHL Stirring
a
 and heating at 100 °C NS NS 

PC Stirring
a
 and heating at 90 °C NS NS 

NMMO mono. (~13.3 wt% 

H2O) 

Stirring
a
 and heating at 90 °C >10 NS 

DMSO Stirring
a
 and heating at 90 °C NS NS 

ChOH in 45 wt% H2O Stirring
a
 at 0 °C  

Stirring
a
 and heating at 60 °C  

NS 

NS 

NS 

NS 

TBPOH in 60 wt% H2O 

TBPOH in 40 wt% H2O 

Stirring
a
 and heating at 25 °C 

Stirring
a
 and heating at 25 °C 

5 

>10 

NS 

NS 
a
Magnetic stirring  

b
NS = Not Soluble 

 

Due to the challenge to process chitin, another type of this polymer originating from an 

alternative source other than shrimp was studied. For this purpose, chitin extracted from 

mealworms and holding a lower DP (i.e. 1542 instead of 1691 for chitin from shrimp shells) 

was selected. Dissolving trials with the ILs AmimBr, EmimOAc 98%, and BmimOAc, with 

the DES CCU (1:2), and with the solvent NMMO mono. were performed. No dissolving 

enhancements were observed. Chitin from mealworms was insoluble in EmimOAc 98%, 

CCU, NMMO mono. as for chitin extracted from shrimps. In addition, AmimBr showed a 

weaker ability to dissolve this chitin while solely BmimOAc was effective.   

 

  



Dissolution of cellulose and chitin in various solvents                                                Chapter 2 

 

 

 
69 

 

2.4 Concluding remarks 

The main intention of this work was to screen different solvents as dissolving media for 

microcrystalline cellulose and α-chitin. Ionic liquids, deep eutectic solvents and other organic 

solvents were therefore investigated. Most of these solvents showed poor chitin solubility 

and few of them were able to dissolve cellulose.  

Cellulose was soluble in five solvents, which can be ordered in function of their effectiveness 

as 1-ethyl-3-methylimidazolium acetate > 1-butyl-3-methylimidazolium acetate ≈ N-

methylmorpholine N-oxide monohydrate > tetrabutylphosphonium hydroxide (with 

40 wt% H2O) > tetrabutylphosphonium hydroxide (with 60 wt% H2O). The complete 

dissolution of chitin was only successful with two ionic liquids, ranged in the following 

order: 1-allyl-3-methylimidazolium bromide > 1-butyl-3-methylimidazolium acetate. The 

only common solvent for processing both biopolymers is thus the ionic liquid 1-butyl-3-

methylimidazolium acetate. Based on these results, it can be concluded that chitin solubility 

is more difficult than cellulose and the disruption of chitin complex network, without 

degradation into chitosan, remains a real challenge. 

Despite an effort to find bio-sourced and alternative solvents, none were identified as good 

solvents for cellulose and chitin dissolution. The efficient solvents mentioned above are 

neither novel nor highly eco-friendly. The imidazolium-based ionic liquids suffer from non-

biodegradability, toxicity, and high cost while N-methylmorpholine N-oxide monohydrate 

and tetrabutylphosphonium hydroxide can cause degradation of cellulose at high 

temperatures.
67,155

 Alternative solutions will be developed in the following Chapter in order 

to minimize some of these disadvantages. 
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Chapter 3  

Effects of a co-solvent in dissolution 

processes 
 

 

 

 

 

 

 

 

 

 

The study concerning the effect of γ-valerolactone on the cellulose dissolution with N-

methylmorpholine N-oxide monohydrate presented in this section is submitted to an 

inventor’s notification and a patent application (see list of Publications). 
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3.1 Introduction 

N-methylmorpholine-N-oxide (NMMO) and imidazolium-based ionic liquids (ILs) were 

introduced as greener solvents and alternatives to replace the classical and hazardous solvents 

for dissolving cellulose.
97,126

 ILs have also shown solvating powers towards chitin.
88

 

Unfortunately, there are still several disadvantages in the use of these solvents despite their 

perceived environmentally friendlier nature. Slow dissolution rate, complex processing 

procedures, toxicity, elevated costs, and high energy consumed are part of these limiting 

factors.
28,81,126

 The high viscosity of these solvents is also particularly inconvenient for the 

dissolution process. For instance, it has been reported that ILs are much more viscous than 

conventional organic solvents by a factor ranged from 10 to 10 000.
165

 Adding a polymer into 

these viscous liquids was found to increase the viscosity of the solutions even more.
166

 

Consequently, the mass transfer and the polymer-solvent interactions are weaker, making the 

solubilization of high amounts of polymer and practical use more challenging. To overcome 

this problem, high temperatures and long operating times are generally employed, leading 

sometimes to polymer and solvent degradation.
67,167

 Incorporating a less viscous co-solvent 

into the dissolution process of polymers has been identified as a more effective strategy to 

enhance polymer dissolution.
168-170

 Several co-solvents have been already investigated for the 

improvement of cellulose dissolution in ILs or NMMO, while no studies about chitin 

solubilization in presence of a co-solvent were found in literature.
162,168,169,171-173

  

Some aprotic solvents, such as dimethyl sulfoxide (DMSO), N-methylimidazole, N,N-

dimethylformamide, N,N-dimethylacetamide, 1,3-dimethyl-2-imidazolidinone, γ-valero-

lactone (GVL), and N-methyl-2-pyrrolidinone have been proved to be appropriate co-

solvents for cellulose dissolution in ILs.
170-172,174-176

 Concerning NMMO, N-methyl-2-

pyrrolidinone, DMSO, and N,N-dimethylformamide have been reported as efficient aprotic 

diluents.
162,173

 Unfortunately, the majority of them suffer from health and safety issues and 

from lack of sustainability.
176

 Protic solvents such as water, methanol, formamide, and 

acetamide have been also studied as co-solvent. However, it has been shown that this kind of 

solvents formed hydrogen bonds with ILs anions, which can compete with the IL-cellulose 

interactions. Thereby solely small amount of protic co-solvents are tolerated.
170,172,177
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Among all the aprotic co-solvent mentioned above, the effect of DMSO on cellulose 

dissolution in ILs has been extensively investigated. It was shown that the addition of DMSO 

“help” cellulose dissolution by decreasing the viscosity of ILs as well of the polymer 

solution. Thus, the presence of DMSO enables to facilitate the mass transfer, to accelerate 

dissolution kinetics, and to reduce the dissolution temperature.
169,178

 DMSO mitigates also 

the high costs of ILs.
170

 From a molecular point of view, different interpretations for the role 

of DMSO can be found in scientific literature. For example, with regard to the IL 1-butyl-3-

methylimidazolium acetate (BmimOAc), Andanson et al. proposed from molecular 

simulation that DMSO significantly affect neither the hydrogen bond network of BmimOAc 

nor the IL-glucose interactions.
169

 In contrast, Zhao et al. postulated that DMSO enhanced 

the hydrogen bonds interactions between the anion and the hydroxyl protons of cellulose by 

partially breaking down the ionic association, i.e. between Bmim
+
 and OAc

-
. Thus, 

dissociated anions are produced and are “more free” to interact with the cellulose.
177

    

Although these co-solvents have significantly expanded the range of solvents for cellulose, 

chitin is again left behind as well as the green credentials. Therefore, the goal of this part 

was, as a first step, to find a greenest possible co-solvent for the dissolution of both 

microcrystalline cellulose and α-chitin using BmimOAc as solvent. The latter was the most 

competitive IL for both polymers according to our findings in Chapter 2. The second step 

was to enhance the Lyocell process through an eco-friendly co-solvent. In both cases, the 

maximal concentrations of co-solvent tolerated in the different mixtures were studied by 

polarized-light optical microscopy. The benefits of the co-solvent on the dissolution were 

characterized in details with the help of kinetics, viscosity and conductivity measurements. 

The properties of the resulting polymer solutions were also investigated with thermal and 

rheological studies to assess the influence of the co-solvent in material processing. 
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3.2 Experimental section 

3.2.1 Chemicals 

Microcrystalline cellulose (MCC) and α-chitin used as raw materials are already described in 

Section 2.2.1.1. Bleached Eucalyptus Kraft pulp was provided by Lenzing AG (Austria) with 

a degree of polymerization of 950. All polymer powders were dried at 70 °C for at least 5 

days prior to use and stored in a glove box. 

Solvents mixed with different co-solvents were the IL 1-butyl-3-methylimidazolium acetate 

(BmimOAc) and the hydrated compound 4-methylmorpholine N-oxide monohydrate 

(NMMO mono.), whose origin and purity are mentioned in Section 2.2.1. Prior to use, 

BmimOAc was dried using a high vacuum setup at 10
-6

 mbar for 5 days. Water content was 

controlled with coulometric Karl Fischer titration (899 Coulometer, Metrohm, Switzerland).  

2,5-Dimethylfuran, 2-methylfuran, 2-methyltetrahydrofuran, γ-valerolactone, γ-hexalactone, 

γ-butyrolactone, propylene carbonate, and dimethyl sulfoxide were the co-solvents 

investigated in this study. Origin and purity of these solvents are described in Section 2.2.1. 

The co-solvents mixed with NMMO mono. were previously dried with 3 Å molecular sieves 

for several days to avoid additional water uptake. The water content of these co-solvents is 

summarized in Table 3.1 and was determined by coulometric Karl Fischer titration.   

 

Table 3.1: Water content in mass fraction of the co-solvents used in the tolerance tests with NMMO 

mono. after drying with 3 Å molecular sieves. 

Co-solvents  Water content 

(ppm) 

γ-Valerolactone 40 

γ-Hexalactone 130 

γ-Butyrolactone 120 

Propylene carbonate 95 

Dimethyl sulfoxide 150 

 



Effects of a co-solvent in dissolution processes                                                           Chapter 3 

 

 

 
75 

 

3.2.2 Experimental methods 

3.2.2.1 Tolerance test 

The tolerance of a co-solvent in the dissolution process of polymers was performed with the 

following method. First, a fixed amount of polymer was mixed with a selected ratio of 

solvent and co-solvent in sealed glass vials in the glove box. The mixture was then heated in 

an oil bath to a desired temperature and continuously stirred. If a homogenous solution was 

obtained and no undissolved particles were observed under the polarized optical microscope, 

a new mixture was prepared with the same amount of polymer but with a lower mass ratio of 

solvent/co-solvent. The stability of the mixture was also observed at room temperature, 

especially in the case of NMMO mono. Conversely, if the polymer was not dissolved after 

12 h, a new mixture would be prepared with a higher ratio solvent/co-solvent. The aim of this 

study was to find the maximal amount of co-solvent tolerated to dissolve a certain amount of 

polymer. 

 

3.2.2.2 Physicochemical properties of solvents and polymer solutions 

For the determination of the physicochemical properties, binary mixtures of solvent/co-

solvent were prepared gravimetrically using an Entris® Sartorius (Germany) balance with an 

accuracy of ± 0.1 mg without buoyancy correction. The polymer solutions were produced by 

dissolving cellulose and chitin in a co-solvent/solvent mixture as explained before. 

3.2.2.2.1 Density and dynamic viscosity 

Density of solutions was measured with a vibrating tube densimeter DMA 5000M from 

Anton Paar (Austria) equipped with a precision thermostat. Measurements were performed 

between 25 °C to 90 °C (in increments of 5 °C). A linear extrapolation was used to calculate 

the density values higher than 90 °C. The accuracy of the instrument is estimated to be ± 5 

10
-6

 g.cm
-3 

and ± 0.01 °C.
 
Density values were used to calculate the dynamic viscosity and 

the molar conductivity (see Equation 3.1 and Equation 3.4). 
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Dynamic viscosity measurements of the solutions were performed with a rolling ball 

viscometer (Anton Paar AMVn, Austria) at temperatures from 25 °C to 110 °C. The principle 

is the determination of the rolling time of a steel ball in a glass capillary filled with the 

solution at a given slope angle (30° or 70°). The dynamic viscosity, η, is connected to the 

rolling time by Equation 3.1. 

𝜂 = 𝐾 × (𝜌ball − 𝜌solution) × 𝑡 (3.1) 

 

where K is a calibration constant, ρball and ρsolution the densities of the ball and the solution 

respectively, and t the measured rolling time of the ball in the capillary. Capillaries of 1.6 and 

1.8 mm diameter were used to perform the measurements and calibrated using a suitable 

standard oil (from Cannon Instrument Company, USA) to obtain K. For each solution, 5 

measurements were repeated. The relative uncertainty of the dynamic viscosity results is 

lower than 2%.  

3.2.2.2.2 Viscoelastic properties 

Dynamic viscoelastic behavior of polymer solutions was examined by oscillatory tests using 

a Bohlin CVO 120 rheometer (Malvern, Germany) at different temperatures ranging from 

25 °C to 100 °C. All samples were measured with a 20 mm parallel plate under nitrogen 

atmosphere to prevent absorption of moisture. The gap between the two plates was set to 

300 µm for cellulose dope prepared from NMMO mono. and to 600 µm for IL-based 

formulations. Each polymer solution was equilibrated at the different experimental 

temperatures for 600 s before measurement. First, the linear viscoelastic range of stress was 

determined with amplitude sweep tests at a constant angular velocity (ω = 1 rad/s). Secondly, 

dynamic frequency sweep tests were performed from 0.1 to 100 rad/s at a constant stress 

within the linear viscoelastic regime. A chosen stress of 5 and 10 Pa were applied for IL- and 

NMMO mono.-based solutions, respectively. The dynamic viscoelastic functions such as the 

storage modulus (G’) describing the elastic properties and the loss modulus (G’’) 

characterizing the viscous properties of the sample were measured as a function of angular 

velocity (ω). These moduli are connected to the complex viscosity (|η*|) by Equation 3.2. 

Each sample was measured three times from low to high and back to low velocities. 
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|𝜂∗| = ((
𝐺′′

𝜔
)

2

+ (
𝐺′

𝜔
)

2

)

1/2

 
 

(3.2) 

 

3.2.2.2.3 Electrical conductivity 

Frequency dependent measurements of the resistance using two platinum electrodes in a 

capillary cell were performed to determine the electrical conductivity of the solutions. For 

this purpose, the custom-designed equipment used consists of a cell connected to a 

switchboard, a LCR bridge HM 8118, a thermometer and a home built precision thermostat 

(± 0.005 °C). The cell was filled with the solution under nitrogen atmosphere and sealed to 

avoid contact with air. The cell constant (Kcell) of the capillary cell was determined with KCl 

solutions and was 12.551 ± 0.004 cm
-1

.
179

 Measurements were carried out at temperatures 

from 25 °C to 100 °C, which were recorded with a calibrated PT-100 thermometer connected 

to a ASL F250. The electrical resistance (R) of the sample was measured in the frequency (υ) 

range from 0.2 to 10 kHz to avoid polarization effects at the surface of the electrodes. The 

resistance at the infinite frequency was obtained by extrapolation of the resistance values to 

infinite frequency, 𝑅∞ = lim𝜐→∞ 𝑅(𝜐) and was then used to calculate the electrical 

conductivity (𝜅) according to Equation 3.3. 

𝜅 =  
𝐾cell

𝑅∞
 

(3.3) 

 

The overall uncertainty of the electrical conductivity was estimated to be lower than 0.75%.  

The molar conductivity was then calculated from the measured electrical conductivity (κ) 

with the help of the molar mass (M) of the IL, the density of the solution (ρsolution), and the 

weight fraction of GVL (ωGVL) by using the following equation: 

Ʌ =
𝜅 × 𝑀

(1 −  𝜔𝐺𝑉𝐿) × 𝜌solution
 

(3.4) 

3.2.2.2.4 Dynamic Light Scattering measurements 

Binary mixture nano-structures were studied using dynamic light scattering (DLS). The 

measurements were carried out using a goniometer system CGS-II from ALV (Germany) 



Effects of a co-solvent in dissolution processes                                                           Chapter 3 

 

 

 
78 

 

equipped with an ALV-7004/FAST Multiple Tau digital correlator and a vertical-polarised 

22-mW HeNe laser (wavelength λ = 632.8 nm). Correlation functions were recorded at a 

scattering angle of 90° for 300 s at 25 °C for the GVL/BmimOAc mixtures and at 40 °C for 

mixtures containing NMMO mono. In order to remove all dust particles, samples were first 

filtered through a 0.2 or 0.45 µm polytetrafluoroethylene membrane filter depending on the 

viscosity of the sample and transferred in a cylindrical light scattering cell. The cells were 

then thermostated in a toluene bath for 10 min before measuring.  

3.2.2.2.5 Thermal analysis 

Thermal properties of solvent mixtures and polymer solutions were determined by 

differential scanning calorimetry (DSC) using a Perkin Elmer DSC 8000 (UK) under 

nitrogen atmosphere. The calorimeters were calibrated with a standard sample of indium. 

Measurements were performed in sealed stainless steel crucibles (50 µL Perkin-Elmer pan 

type B014, Germany). Pans were prepared gravimetrically with roughly 15 mg of solution 

using a precision balance (Mettler Toledo, AX26 Comparator, Germany) with an accuracy of 

± 1 µg without buoyancy correction.  

The melting temperature of NMMO mono./GVL mixtures was obtained with a heating scan 

rate of 20 °C/min and a cooling rate of 5 °C/min at temperatures in the range from -60 to 

85 °C. All samples were equilibrated for 30 min at the lowest temperature before being 

heated up and for 3 min at the highest temperature before being cooled down to guarantee 

fully melted or crystallized samples. The same procedure was repeated for each sample three 

times. The melting points were taken from the average onset of the peaks. Thus, the melting 

value corresponds to the beginning of the disappearance of crystalline phase. 

In the case of cellulose solutions, the same procedure was employed. Solely, the scan rates 

were modified and set at 5 and 2 °C/min for the heating and cooling rate, respectively. Three 

cycles were collected for each sample at temperatures between -50 and 90 °C. Different 

transition temperatures were observed and defined as TC (onset of an exothermic peak) for 

the crystallization temperature, Tm (onset of an endothermic peak) for the melting 

temperature, and Tg (midpoint of a small and endothermic stepwise heat flow change) for the 

glass transition temperature.   
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3.3 Results and discussion 

3.3.1 Co-solvent for cellulose and chitin solubilization in BmimOAc 

3.3.1.1 Research of a suitable co-solvent  

The search of a co-solvent for cellulose and chitin solubilization in BmimOAc was done with 

different bio-sourced aprotic solvents: GVL, 2,5-dimethylfuran, 2-methylfuran, and 2-

methyltetrahydrofuran. For the dissolution test, 20 wt% of each bio-sourced solvent were 

mixed either with 1 wt% of chitin or 5 wt% of MCC in BmimOAc. These solutions were 

stirred and heated to 55 °C, 75 °C, 75 °C, and 110 °C for 2-methylfuran, dimethylfuran, 2-

methyltetrahydrofuran, and GVL, respectively. These temperatures were selected to stay 

below the boiling point of each co-solvent. All of these investigated co-solvents were proven 

to be non-solvent for cellulose and for chitin in the previous chapter. Protic solvents were not 

selected here, because they can form hydrogen bonds with the IL and thus hinder polymer 

dissolution, as already mentioned before.
170

 

 

Figure 3.1: Appearance of the mixtures containing either microcrystalline cellulose (MCC) or chitin, 

BmimOAc, and 20 wt% of co-solvent (2-methylfuran, 2,5-dimethylfuran, 2-methyltetrahydrofuran, or 

GVL) after the dissolution test. The white rods in the solutions are magnetic stirrers. 
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Figure 3.1 shows the appearance of the mixtures obtained after the dissolution test. It was not 

possible to dissolve cellulose and chitin using 2,5-dimethylfuran and 2-methylfuran as co-

solvents. The solutions became brown during the dissolution process due to a reaction 

occurring between the co-solvents and BmimOAc. With 2-methyltetrahydrofuran, chitin was 

not solubilized while cellulose was slowly dissolved after 12 hours. Its boiling point of 78-

80 °C inhibited the increase of the dissolution temperature and can be a major drawback in 

polymer dissolution.
180

 In contrast, both polymers could be successfully dissolved in 

GVL/BmimOAc mixtures in less than 4 hours. Translucent gels were obtained and they can 

be seen in Figure 3.1. In addition, GVL is an excellent sustainable liquid. It has low toxicity, 

a high boiling point of 207-208 °C, and is biodegradable. It does not decompose in presence 

of water or oxygen and does not form an azeotrope with water, rendering it easily removable 

by distillation.
181

 Consequently, GVL was selected as suitable co-solvent for cellulose and 

chitin solubilization in BmimOAc. 

 

3.3.1.2 Tolerance and effect of GVL in the dissolution process 

To balance the toxicity and non-biodegradability of BmimOAc, the maximal amount of GVL 

tolerated during the dissolution of different chitin or cellulose amounts was studied at 110 °C 

(Figure 3.2). GVL amounts from 80 to 55 wt% were tolerated for the dissolution of 1-10 wt% 

MCC in BmimOAc. Maximal GVL contents of 25 and 20 wt% could be added to dissolve 1 

and 2 wt% chitin, respectively. Interestingly, a higher amount of GVL could be added to the 

mixtures with cellulose than to those with chitin. Possible reasons include the high difference 

of degree of polymerization between MCC (i.e. 124) and chitin (i.e. 1691) and different 

interactions of GVL with cellulose molecules than with chitin. The addition of GVL 

drastically increased the sustainability of the mixtures and offered lower costs and a reduced 

toxicity. For instance at the laboratory scale, pure BmimOAc (with a purity > 98%) can be 

purchased for 795 €/kg versus 294 €/kg for GVL (with a purity > 99%). Of course, on a 

production scale, the prices are orders of magnitude lower (e.g. around 15 €/kg for GVL).  
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Figure 3.2: GVL-tolerance in mixtures to dissolve 1-10 wt% of MCC in BmimOAc and 1-2 wt% 

chitin in BmimOAc at 110 °C. The proportion of BmimOAc in each solution can be calculated 

according to the following equation: 100 - wt%(MCC or chitin) - wt%(GVL). 

 

The effect of the sustainable co-solvent GVL on the dissolution duration was investigated 

with MCC/GVL-containing mixtures selected according to the tolerance results and is 

represented in Table 3.2. Without the assistance of GVL, 1 wt% cellulose dissolved in 1 hour 

while with GVL (i.e. 80 wt%), its dissolution time was four times lower. The effect of GVL 

was also observed for cellulose concentration of 5 wt%, 8 wt%, and 10 wt%. Solubilization 

durations lower than 1 hour, i.e. 20 and 45 min, were observed for 5 and 8 wt% MCC, 

respectively. It was possible to dissolve 10 wt% cellulose in 75 min. It has to be mentioned 

that these durations are shorter compared to reported values in literature.
79

 Thus, the addition 

of GVL helped not only to increase the sustainability but it also accelerated the dissolution 

process.  
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Table 3.2: Effect of GVL on the dissolution duration of MCC in BmimOAc at 110 °C. 

MCC 

(wt%) 

GVL  

(wt%) 

BmimOAc 

(wt%) 

Dissolution time 

(min) 

1 0 99 60 

1 80 19 15 

5 70 65 20 

8 60 32 45 

10 55 35 75 

 

3.3.1.3 Impact of GVL on BmimOAc physicochemical properties  

In order to better understand the improvements caused by GVL, the properties of binary 

mixtures composed of BmimOAc and GVL were studied. As BmimOAc is fully miscible 

with GVL, the viscosity and the conductivity of different mixture compositions ranging from 

0 to 100 wt% GVL were measured. These two parameters are very important to characterize 

the transport properties of these new systems. Viscosity values are related to mass transport 

phenomena. Studies of molar conductivity coupled with the inverse of the viscosity give 

information about ion association and are usually illustrated by a Walden plot.
182,183

 

Measured data of temperature-dependent density, dynamic viscosity, and electrical 

conductivity are given in Appendix 3.1. Figure 3.3 shows the dynamic viscosity-temperature 

profile of the pure BmimOAc, the pure GVL, and binary mixtures between 25 °C and 

110 °C. For all solutions, the viscosity decreased with increasing temperature by following 

the Vogel-Fulcher-Tammann equation. This empirical equation is commonly used for ILs to 

describe the temperature dependent evolution of their dynamic properties. Therein, the 

dynamic viscosity 𝜂 (or other dynamic properties) is mathematically expressed by Equation 

3.5.
184

  

𝜂 = 𝐴 × exp
𝐵

𝑇 − 𝑇0
 

(3.5) 

 

where 𝐴, 𝐵, and 𝑇0 are adjustable parameters and  𝑇 is the absolute temperature.  

The addition of the low viscous co-solvent to the IL decreased its viscosity significantly (see 

Figure 3.3). For instance, the addition of 20.3 wt% GVL resulted in a viscosity decrease of 

48% at 110 °C. Such a reduction leads to a facilitation of mass transport in these binary 
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mixtures and an enhancement of the contact between polymer molecules and BmimOAc. It is 

thus easy to understand the decrease of the time needed for polymer dissolution in 

BmimOAc/GVL mixtures. Generally, high temperatures (>100 °C) are used to dissolve 

polymers because of the lower viscosity of ILs at these conditions. With the addition of 

GVL, lower dissolution temperatures might be used. This should be beneficial on a large 

scale in terms of energy consumption and possible polymer or IL degradation.  

 

Figure 3.3: Dynamic viscosity of pure GVL, mixtures composed of BmimOAc and GVL, and pure 

BmimOAc as a function of temperature. Lines correspond to the best fits using the Vogel-Fulcher-

Tammann equation. 

 

The influence of GVL concentration on the viscosity of BmimOAc/GVL mixtures at a 

selected temperature, here 25 °C, is shown in Figure 3.4. It can be seen that the viscosity of 

the solution decreased exponentially with the increase of GVL. According to previous 

studies, the impact of an organic solvent on the viscosity of an IL can be described by a 

general equation having the form of Equation 3.6.
137,178
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ln (
𝜂

𝜂𝐼𝐿
) = −

𝑥𝑐𝑜−𝑠𝑜𝑙𝑣𝑒𝑛𝑡

𝛼
 (3.6) 

 

where 𝜂 and 𝜂𝐼𝐿 are the viscosities of the mixture and the pure IL, 𝑥𝑐𝑜−𝑠𝑜𝑙𝑣𝑒𝑛𝑡 is the mole 

fraction of the co-solvent in the mixtures, and 𝛼 is a fitting constant, which depends on the 

studied system.  

As shown in the inset of Figure 3.4, experimental data of the viscosity for different 

GVL/BmimOAc mixtures at 25 °C follow well Equation 3.6 with a coefficient of 

determination r
2
 > 0.99 and a value for 𝛼 of 0.198. The same procedure was performed for 

the viscosity data at the other measured temperatures and the results of 𝛼 and r
2
 are 

represented in Table 3.3. It can be noted that 𝛼 increased linearly with temperature (T) in the 

measured temperature range. The relationship between these two parameters can be 

expressed by Equation 3.7 (r
2
 > 0.99).  

𝛼 = 0.0024 × 𝑇(°𝐶) + 0.1409 (3.7) 
 

Consequently, according to Equation 3.6 and 3.7, the viscosity of all BmimOAc/GVL 

mixtures at temperatures from 25 °C to 110 °C can be predicted by the concentration of GVL 

and the viscosity of pure BmimOAc at the desired temperature. 
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Figure 3.4: Effect of GVL on the viscosity of BmimOAc/GVL mixtures at 25 °C. The line corresponds 

to the best fit using an exponential equation. The inset represents the linear change of ln(η/ηIL) as a 

function of GVL mole fraction using Equation 3.6.  

 

Table 3.3: Values of the constant 𝛼 from Equation 3.6 as a function of temperature. 

Temperature 

(°C) 

𝜶 r
2
 

25 0.198 >0.99 

40 0.234 0.99 

60 0.284 0.99 

80 0.334 0.98 

100 0.374 0.98 

110 0.398 0.98 

 

Figure 3.5 illustrates the Walden plot for the pure BmimOAc and mixtures composed of 

BmimOAc and GVL. According to the Walden rule, the molar conductivity is inversely 

proportional to the viscosity for diluted electrolyte solutions.
185

 This rule has been used to 

provide a qualitative approach of the ionicity for ILs. In this graph, the relationship between 

the molar conductivity and the fluidity (i.e. the inverse of the viscosity) of the IL-based 

solutions is compared to the line of a so-called “ideal” electrolyte solution. Generally, an 1 
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molar aqueous KCl solution is used for this purpose.
183

 In Figure 3.5, it can be observed that 

the addition of GVL did not disturb the linear behavior of the points displayed for each 

solution. The slope of the lines ranged from 0.95 to 1.09. That means that the addition of 

GVL to the IL did not severely change the structure of BmimOAc in terms of ion 

interactions. For a same molar conductivity value, the fluidity is shifted to the right on the x-

axis of Figure 3.5 by increasing GVL concentration. In other words, the ionicity of the 

mixture decreased with the dilution of BmimOAc with GVL.   

 

Figure 3.5: Walden plot of pure BmimOAc and mixtures composed of BmimOAc/GVL. The solid line 

corresponds to the “ideal” behavior of an 1 M aqueous KCl solution and the dashed line to the best 

linear fits.
183
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Figure 3.6: Autocorrelation functions obtained by DLS for BmimOAc/GVL mixtures at 25 °C. 

 

The presence of nano-structures in GVL/BmimOAc mixtures was checked by means of DLS 

measurements at 25 °C. As visible from Figure 3.6, no well-defined autocorrelation functions 

were found in the solutions. This indicates that no nano-structures are formed between GVL 

and BmimOAc and that GVL plays the role of a simple co-solvent.  

 

3.3.1.4 Influence of GVL on the rheological properties of polymer solutions 

Rheology plays an important role in polymer material processing because it explains how a 

system will respond to a mechanical stimulus regarding elastic deformations and viscous 

flow.
186

 Therefore it is essential to observe the influence of the co-solvent GVL on the 

rheological properties of cellulose and chitin dissolved in BmimOAc/GVL mixed solutions.  

Concerning the cellulose solutions, four solutions were prepared on the basis of a constant 

cellulose concentration, i.e. 5 wt% MCC. Different amounts of GVL, within a range from 0 

to 65 wt%, were used as co-solvent in addition to BmimOAc. Dynamic rheological 
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measurements were performed yielding the storage modulus (G’), the loss modulus (G’’), 

and the complex viscosity (|η*|) for the studied solutions as a function of angular frequency 

(ω). Figure 3.7 shows the changes of the dynamic moduli, G’ and G’’, versus ω for the 

cellulose mixtures at 25 °C. These two parameters give information on polymer interactions 

and on the time for mechanical relaxation processes in the samples. For the solution without 

GVL, G’’ was always higher than G’ (with G’ ~ ω
2
 and G’’ ~ ω for ω →0) and no crossover 

is present within the studied angular frequency range (see Figure 3.7 A). The solution thus 

exhibited the behavior of a viscoelastic liquid. By increasing the GVL concentration, it can 

be first noticed that the dynamic moduli values tend to become smaller (Figure 3.7). This 

means that the viscoelastic behavior of the solution is sensitive to GVL content. Secondly, 

crossover points were noticeable within the measured angular frequency range. The solutions 

with GVL exhibited a gel-like behavior (G’ > G’’) at high ω. The crossover frequency 

occurred at lower values with increasing GVL concentration. This indicates that a longer 

relaxation time of the cellulose chain was needed with the increase of GVL content. 

Cellulose molecules seemed to be less flexible and less mobile in presence of GVL. 

Cellulose chains segments might be closer to each other or interlinked with GVL. The 

change of the complex viscosity¸ |η*|, as a function of ω for the cellulose solutions at 25 °C 

is shown in Figure 3.8. It can be observed that |η*| values decreased with increasing GVL 

content. In addition, the samples exhibited a constant plateau (called Newtonian plateau) at 

low ω values, while a slight shear-thinning behavior was detected at higher ω. This latter 

trend was more pronounced for the cellulose solution without GVL. To clearly observe the 

influence of GVL, |η*| data at an angular velocity of 1.18 rad/s as a function of temperature 

for two solutions are represented in Figure 3.9. The effect of only 20 wt% GVL on the 

decrease of |η*| was significant, notably at low temperatures. Above 80 °C, the complex 

viscosity results with and without GVL are similar.   
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Figure 3.7: Loss modulus (G‘‘, solid symbol) and storage modulus (G‘, open symbol) as a function of 

angular frequency for the solutions composed of 5 wt% MCC dissolved in BmimOAc with different 

amount of GVL: (A) 0 and 20 wt%, (B) 40 and 65 wt% at 25 °C. 

 

 

Figure 3.8: Complex viscosity as a function of angular velocity for the solutions composed of 5 wt% 

MCC dissolved in BmimOAc with different amounts of GVL at 25 °C. 
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Figure 3.9: Effect of GVL on the complex viscosity for cellulose solutions composed of 5 wt% MCC 

dissolved in BmimOAc and in BmimOAC/GVL (75/20 wt%). The viscosity values were measured at 

an angular velocity of 1.18 rad/s
 
at different temperatures. The lines correspond to the best 

exponential fits. 

 

Dynamic rheological behaviors of chitin in BmimOAc/GVL mixtures were investigated with 

solutions having the same chitin concentration (i.e. 1 wt%). Two solutions were therefore 

prepared: (1) 1 wt% chitin dissolved in BmimOAc and (2) 1 wt% chitin dissolved in 20 wt% 

GVL and 79 wt% BmimOAc. The change of dynamic moduli, G’ and G’’, for these two 

chitin dopes as a function of angular velocity at 25 °C is shown in Figure 3.10. At low 

angular frequencies, G’’ values were higher than G’ ones for both solutions. This indicates 

that the viscous response dominated, i.e. polymer chains had enough time to disentangle due 

to higher flexibility. After the crossover, G’ > G’’ and elastic response dominated, i.e. the 

polymer chains did not have enough time to relax, the network of entanglement was more 

rigid. This is a typical behavior of a polymer gel.
187

 With the addition of 20 wt% GVL, the 

dynamic moduli decreased and the crossover point shifted to a higher ω (from 0.5 to 

1.7 rad/s). This shift is the opposite of what was observed with cellulose solutions and 

suggests an acceleration of the chitin chain relaxation. In this case, GVL allowed the chitin 

chains to be more flexible and mobile. This difference can be explained by either the 

difference in chain length between MCC and α-chitin or by a different interaction in the 



Effects of a co-solvent in dissolution processes                                                           Chapter 3 

 

 

 
91 

 

polymer solvation mechanism caused by GVL. To fully understand the role of GVL in the 

dissolution mechanism, further investigation is needed. Figure 3.11 presents the flow curves 

(dependence of |η*| on ω) for the chitin solutions at 25 °C. On the one hand, the viscosity 

decreased with the increase of ω, indicating a shear-thinning behavior for both chitin 

solutions. On the other hand, |η*| values became smaller by the addition of GVL. To 

illustrate the impact of GVL, |η*| values at an angular velocity of 1.18 rad/s for both 

solutions are plotted as a function of temperature in Figure 3.12. The addition of GVL tended 

to significantly decrease |η*| values. This effect was more pronounced for measurements at 

temperatures lower than 80 °C. For instance, the viscosity at 100 °C for the chitin solution 

prepared only in BmimOAc was similar to the one at 60 °C for the solution with 20 wt% 

GVL. 

 

Figure 3.10: Loss modulus (G‘‘, solid symbol) and storage modulus (G‘, open symbol) as a function 

of angular frequency for the solutions composed of 1 wt% chitin dissolved in only BmimOAc and of 

1 wt% chitin dissolved in BmimOAc and in presence of 20 wt% GVL at 25 °C. 
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Figure 3.11: Complex viscosity as a function of angular velocity for the solutions composed of 1 wt% 

chitin dissolved in BmimOAc with 0 and 20 wt% GVL at 25 °C. 

 

Figure 3.12: Effect of GVL on the complex viscosity for chitin solutions: 1 wt% chitin dissolved in 

BmimOAc and in BmimOAC/GVL (79/20 wt%). The viscosity values were measured at an angular 

velocity of 1.18 rad/s
 
at different temperatures. The lines correspond to the best exponential fits. 
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3.3.2 Co-solvent for cellulose solubilization in NMMO monohydrate  

3.3.2.1 Suitable co-solvent and tolerance  

For the search of a suitable co-solvent for cellulose dissolution in NMMO mono., some 

aprotic organic solvents with a dipole moment >3.5 Debye (D) were investigated. A high 

degree of polarity has been proposed to be a significant criteria for a suitable co-solvent 

according to Franks et al.
162

 The three different lactones, γ-valerolactone (GVL), γ-

butyrolactone (GBL), and γ-hexalactone (GHL), the carbonate ester having structural 

similarities to these lactones, propylene carbonate (PC), and the most used co-solvent, 

dimethyl sulfoxide (DMSO), were studied. All these solvents were demonstrated to be non-

solvent for cellulose in the previous chapter. The gas-phase dipole moment of each solvent 

was estimated by quantum mechanical, semi empirical calculations with MOPAC (PM6) and 

is given in Table 3.4. The maximal tolerance of each diluent in the dissolution of MCC in 

presence of NMMO mono. was determined at 80 °C. Results are represented as a bar graph 

in Figure 3.13. Among the lactones, GBL could be added in higher amounts without 

disturbing the dissolution process. On the contrary, GHL showed to be the least tolerated. By 

translating these results into mole fraction, the lactone tolerance varied according to a similar 

tendency, i.e. GBL > GVL > GHL. GVL and GHL are the 4-methyl and 4-ethyl analog of 

GBL, respectively. Accordingly, it seems that an increased hydrophobicity is connected to a 

lower tolerance of the respective lactone in the cellulose dissolution.  

Concerning the solvents, which do not belong to the lactone class, their addition and 

tolerance were also investigated during cellulose solubilization. When PC was used as co-

solvent, the dissolution process was inhibited due to a chemical reaction, possibly between 

NMMO mono. and PC. Therefore, this organic liquid was not compatible with the amine 

oxide. As for DMSO, similar amounts as reported for GHL could be added to give a clear 

and stable polymer solution at 80 °C as well as at room temperature (see Figure 3.13). Again, 

the mass fractions were transformed into mole fractions and the order of accepted co-solvent 

appeared to be GBL > GVL > DMSO > GHL. It can be seen from Table 3.4 that the dipole 

moment of a co-solvent, i.e. its degree of polarity, had no obvious influence on this 

classification.  
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Table 3.4: Dipole moment of diluents estimated in the gas phase with MOPAC (PM6). 

Solvent Dipole moment 

(D) 

DMSO 4.71 

GBL 5.10 

GVL 5.20 

GHL 5.28 

PC 5.73 

 

Figure 3.13: Tolerance of co-solvents in mixtures to dissolve MCC at concentrations ranging from 1 

to 10 wt% in NMMO mono. at 80 °C. The proportion of NMMO mono. in each solution can be 

calculated according to the following equation: 100 - wt%(MCC) - wt%(co-solvent). 

 

Although GBL is the most tolerated co-solvent, its ability to be metabolized to the drug γ-

hydroxybutyrate (GHB) in the body is a major drawback in process operations.
188

 

Consequently, GVL was selected as relevant co-solvent for cellulose dissolution in NMMO 

mono. As already mentioned, this molecule can be produced from biomass and meet almost 

all the criteria of a green solvent.
189

 As GVL does not form an azeotrope with water, it can be 

readily separated from water by distillation.
190

 The recovery of solvent after regeneration of 

cellulose in a process such as the Lyocell process is an important step for a sustainable 

procedure. Several publications have shown that NMMO with a water composition up to 

17 wt% was efficient to complete dissolution of cellulose.
126,129

 Generally, aqueous NMMO 
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(with 20-30 wt% H2O) is used as solvent system in the Lyocell process to enhance mixing. 

Cellulose dissolution is performed by eliminating water from the mixture.
126

 Interestingly, 

with GVL, an amount higher than 17 wt% could be added to NMMO mono. to dissolve 

different cellulose concentrations. GVL might allow removing the step of water evaporation 

during cellulose dissolution in the Lyocell process.  

 

The maximal tolerance of GVL in the dissolution of another type of cellulose in presence of 

NMMO mono. was investigated at 80 °C. For this purpose, pulp cellulose with a higher DP 

than microcrystalline cellulose (950 instead of 124) was taken. Remarkably, NMMO mono. 

was still able to dissolve cellulose pulp (1, 2 and 3 wt%) in presence of GVL content ranging 

from 40 to 50 wt% (see Figure 3.14). For cellulose concentrations higher than 3 wt%, the 

solutions were too viscous to be stirred by a simple magnetic stirrer. Lacking of a sealed 

precision mixer, no higher cellulose concentration could be studied and compared to MCC.  

 

Figure 3.14: Tolerance of GVL in mixtures to dissolve cellulose pulp in concentration ranging from 1 

to 3 wt% in NMMO mono. at 80 °C. The proportion of NMMO mono. in each solution can be 

calculated according to the following equation: 100 - wt%(cellulose pulp) - wt%(co-solvent). 
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3.3.2.2 Effect of GVL during the dissolution process 

Beside the increase of sustainability of the process, the addition of GVL has three main 

observed benefits during the dissolution of cellulose:  

1. The dissolution duration of cellulose in mixtures containing GVL was significantly 

decreased compared to solely in NMMO mono. (see Table 3.5). Without the assistance of 

GVL, solubilization times higher by a factor of 1.3, 2, and 4 were recorded for MCC 

concentration of 5, 8, and 10 wt%, respectively. As for GVL/BmimOAc solutions, GVL 

decreases the viscosity of NMMO mono. and facilitates the mass transport.  

2.  As seen in Figure 3.15, the solutions composed of cellulose dissolved in exclusively 

NMMO mono. became brown after dissolution. This could be a sign of cellulose and/or 

NMMO degradation. Optimally, NMMO is a direct and non-derivatizing solvent of 

cellulose. Nevertheless, it has been shown that stabilizers such as propyl gallate are 

needed in the Lyocell process to avoid side reactions.
67,129

 Here, GVL seemed to prevent 

these undesired effects. 

3. Crystallization was not observed at room temperature for the mixtures of 5 wt% MCC in 

NMMO mono./GVL, while the opposite happened for the solutions free of GVL (sample 

C and D in Figure 3.15). This effect should allow spinning solutions with GVL at lower 

temperature than without.  

 

Table 3.5: Effect of GVL on the dissolution duration of MCC in NMMO mono. at 80 °C. 

MCC 

(wt%) 

GVL  

(wt%) 

NMMO mono. 

(wt%) 

Dissolution time 

(h) 

5 37 58 0.75 

5 0 95 1 

8 28 64 1 

8 0 92 2 

10 26.9 63.1 1 

10 0 90 4 
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Figure 3.15: Pictures of samples after dissolution at 80 °C. (A) 8 wt% MCC dissolved in NMMO 

mono. (B) 8 wt% MCC dissolved in NMMO mono./GVL (64/28 wt%). (C) 5 wt% MCC dissolved in 

NMMO mono. (D) 5 wt% MCC dissolved in NMMO mono./GVL (58/37 wt%). The white rod in the 

solutions is a magnetic stirrer.  

 

3.3.2.3 Impact of GVL on NMMO monohydrate physicochemical properties  

In order to highlight the advantages provided by GVL in the Lyocell process, 

physicochemical properties of NMMO mono./GVL mixtures were investigated.  

NMMO exists in different hydrate forms with melting points inversely proportional to the 

water content. Indeed, anhydrous NMMO melts at 184 °C, NMMO monohydrate (i.e. 

13.3 wt% H2O) between 72 and 78 °C depending on the measurement conditions, and the 

NMMO mixture composed of five H2O molecules per two NMMO units (i.e. 28 wt% H2O) 

at 39 °C.
191,192

 To dissolve cellulose in NMMO, its liquid form is essential. Therefore, the 

melting behavior of NMMO mono./GVL mixtures was studied by differential scanning 

calorimetry (DSC) measurements. An example of DSC heating curves obtained for the 

binary mixtures composed of 10, 50, and 70 wt% GVL is shown Figure 3.16. Only three 

solutions were plotted for clear visual representation. The curves display a single melting 

endothermic peak, which is shifted to lower temperature with increase of GVL content. The 

full change of the melting points as a function of GVL concentration is given in Figure 3.17. 

Typically, the melting temperatures were reduced by increasing GVL amount and no eutectic 

was formed between the two compounds. These results indicate that the heating temperature 

during the dissolution of cellulose in NMMO mono./GVL mixtures can be readily reduced 

compared to solely in NMMO mono. For instance, for 1 wt% MCC, which was dissolved in 

a NMMO mono./GVL solution with a weight ratio of 1:1, the heating temperature should be 
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suitable between 50 and 60 °C, instead of 80 °C in pure NMMO mono. As a consequence, 

thermal degradations can be prevented and energy consumption can be reduced. 

 

Figure 3.16: DSC heating curves of NMMO mono./GVL mixtures recorded at a scan speed of 

20 °C/min, showing the effect of GVL concentration. The second heating cycle is represented as well 

as the method to obtain the melting temperature, Tm, defined as the onset of the endothermic peak. 

 

Figure 3.17: Evolution of the melting temperature of NMMO mono./GVL mixtures as a function of 

GVL concentration.  
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NMMO mono./GVL mixtures were studied using DLS measurements at 40 °C. As observed 

in Figure 3.18, different behaviors can be noted when increasing the GVL content. For 

mixtures composed of 30-50 wt% GVL and of 70 wt% GVL, bimodal and monomodal 

functions with a small intensity were obtained, respectively. In the case of solutions with a 

GVL content equal or higher than 90 wt%, these distributions disappeared. Accordingly, no 

significant nano-structures were found in the NMMO mono./GVL formulations. The 

alternating modalities of the correlation functions observed can be assigned to non-dissolved 

aggregates of NMMO.  

 

Figure 3.18: Autocorrelation functions obtained by DLS for mixtures composed of NMMO mono. and 

GVL at 40 °C. 

 

3.3.2.4 Influence of GVL on the cellulose dope 

Generally in the Lyocell process, highly viscous cellulose dopes with zero shear viscosities in 

the range of 5000–30000 Pa.s are extruded through a spinneret.
193

 This proceeding operation 

requires elevated temperatures and pressures leading to high energy consumption. The 

influence of the addition of GVL on the dope properties is relevant to assess the benefits of 

this environmentally friendly co-solvent.  
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The flow behavior of cellulose dope containing GVL was characterized by oscillatory 

measurements. Cellulose solutions, wherein 3 wt% of cellulose pulp was dissolved in a 

mixture of NMMO mono. and GVL, were therefore studied. The dependence of the dynamic 

moduli G’ and G’’ on the angular velocity ω for GVL contents of 30 and 40 wt% at 25 °C is 

illustrated in Figure 3.19. When GVL concentration rose by 10 wt%, G’ and G’’ values 

decreased approximately by a factor of 2. For both solutions, G’ < G’’ during a broad range 

of angular frequencies indicating that solutions behaved as viscous fluids. As G’ increased 

more sharply than G’’ with the increase of ω, a crossover point (G’ = G’’) appeared at high 

angular frequency. With the increase of GVL content, the cross over point shifted to a higher 

value, i.e. 85 instead of 49 rad/s. This suggests an acceleration of the cellulose chain 

relaxation when cellulose dopes contain a larger proportion of GVL. It can be attributed to a 

distance and a difference in the mobility of cellulose chains due to GVL. Figure 3.20 shows 

the change of the complex viscosity as a function of ω for the cellulose dopes at 25 °C. The 

viscosity values of the cellulose solution prepared with 40 wt% GVL were reduced by a 

factor of two, compared to the solution with 30 wt% GVL. For instance, at ω = 1.27 rad/s, 

viscosity values of 22.12 and 12.47 Pa.s were recorded for cellulose dopes composed of 30 

and 40 wt% GVL, respectively. Both dopes exhibited a Newtonian plateau at low ω values as 

well as a shear thinning behavior at higher angular frequencies. Finally, the reduction of the 

dope viscosity by addition of GVL may facilitate the spinnability and the processing of the 

solutions into cellulose materials.  
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Figure 3.19: Loss modulus (G‘‘, solid symbol) and storage modulus (G‘, open symbol) as a function 

of angular frequency for the cellulose dopes composed of 3 wt% cellulose pulp dissolved in NMMO 

mono./GVL at 25 °C. 

 

Figure 3.20: Complex viscosity as a function of angular velocity for the cellulose dopes composed of 

3 wt% cellulose pulp dissolved in NMMO mono./GVL at 25 °C. 

  



Effects of a co-solvent in dissolution processes                                                           Chapter 3 

 

 

 
102 

 

Considering the crystallization of cellulose dope made under cooling, the influence of GVL 

on the thermal behavior of the NMMO mono./MCC system was determined from DSC 

measurements. This precipitation has an important impact on the preparation of cellulose 

materials such as films and fibers and on the structure of the regenerated cellulose products. 

Contrary to other polymer solutions, crystallization of cellulose/NMMO/water is induced by 

the crystallization of the solvent and not due to the polymer.
194

 For each cellulose 

concentration, a solution with the maximal tolerated amount of GVL and a formulation 

without this co-solvent were investigated. The thermal properties of these solutions and the 

pure NMMO mono. measured under the same conditions are given in Table 3.6. Four 

different thermal behaviors can be identified according to the composition of the mixture. For 

each kind, a corresponding thermogram is represented in Figure 3.21. The first behavior 

(group I) is characterized by one melting point upon heating and one crystallization peak 

upon cooling (see Figure 3.21 A). Like pure NMMO mono., cellulose mixtures containing up 

to 5 wt% MCC with GVL, as well as without, belong to this group. In this case, for 

compositions free of GVL, it can be noticed that increasing the cellulose content from 0 to 

5 wt% leads to a slight decrease of the crystallization and melting temperatures. For instance, 

a solution with a concentration of 5 wt% MCC precipitated at about 21 °C, instead of 30 °C 

for solely NMMO mono. and melted at 70 °C instead of 75 °C. This phenomenon was 

already found in several studies and can emanate from the interactions between NMMO and 

cellulose created during dissolution.
191,195

 Nevertheless, the majority of the solutions 

crystallized around room temperature. Adding GVL at a content comparable to that of 

cellulose (5 wt%), lowered the temperatures down to -11 °C and 43 °C for the crystallization 

and the melting transition, respectively. Clearly, the thermal transitions were strongly 

depressed in the presence of GVL. It seems that GVL retarded the diffusion of the 

crystallizing species and accelerated the melting process. This can be explained by the 

saturation of the N-O groups, which interact with the hydrogen bonding network of cellulose, 

and by the lower NMMO concentration present in these mixtures. 

The second behavior (group II) exhibits diverse thermal transitions, i.e. one glass transition, 

one crystallization, and two melting peaks, solely upon heating (see Figure 3.21 B). Only the 

studied system, which contained 8 wt% MCC in NMMO mono., followed this pattern. The 
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exothermic peak occurring upon heating between the glass transition and the melting points 

is called “cold crystallization”. Above the glass transition, where the rigid and glassy state is 

transformed into soft rubbery state, cellulose chains are more mobile. The heat provides them 

more energy to move. Polymer chains tend towards a more stable state, the crystallization, 

and by even further heating, crystals melt.
196

 The double melting peaks could be induced by 

imperfect crystallites, which melt and reorganize to form more perfect crystalline structures 

melting then at higher temperature.
191

  

The third group shows a cold crystallization and a melting transition exclusively upon 

heating (see Figure 3.21 C). Such a behavior was exhibited by cellulose dopes containing a 

proportion of GVL and a cellulose concentration above 5 wt%. A glass transition was not 

observed in the measured temperature range.  

The last behavior (group IV) gives a DSC thermogram with a single and low glass transition 

upon heating (see Figure 3.21 D) and was found for the 10 wt% cellulose solution with 

NMMO mono. Upon closer inspection of Figure 3.21 D, two small peaks are present on the 

heating curve and can be attributed to undissolved residues. Thus, 10 wt% MCC in NMMO 

mono. remained a fluid in the temperature range from -50 to 90 °C. Possible reasons of this 

phenomenon include the high viscosity of the solution and, as already mentioned, the 

involvement of the solvent in the cellulose solubilization.
195,197

 As a consequence, operating 

temperature range of cellulose dope can be influenced by the polymer concentration and by 

the presence of GVL. GVL allows cellulose solutions to melt at temperatures below 50 °C 

and to crystallize at low temperatures far from room temperature. These results have a 

significant importance for the engineering and operating cellulose material manufactured 

from NMMO/GVL mixtures.  
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Table 3.6: Variation of the thermal properties obtained by DSC for cellulose dopes composed of 

MCC, NMMO mono. and GVL. Tc stands for crystallization temperature, Tm for melting temperature, 

and Tg for glass transition temperature. 

Mixture composition 

 

Thermal properties 

MCC 

(wt%) 

GVL  

(wt%) 

NMMO 

mono. 

(wt%) 

Tc (°C) Tm (°C) Tg (°C) DSC 

behavior
a 

- - 100 30 ± 3 75 ± 1 - I 

1 - 99 19 ± 1 72.09 ± 0.02 - I 

1 49 50 -9.2 ± 

0.4 

49.4 ± 0.5 - I 

5 - 95 21± 2 70 ± 2 - I 

5 37 58 -11 ± 2 43 ± 3 - I 

8 - 92 12 ± 1 56.1 ± 0.6 61.1 ± 0.6 -48.5 ± 0.6 II 

8 28 64 -25 ± 2 48.59 ± 2 - III 

10 - 90 - - -45.74 ± 0.04      IV 

10 29 61 7 ± 2 41± 2 - III 
a 
Group I: one melting transition upon heating and one crystallization peak upon cooling 

  Group II: glass transition, crystallization point and two melting peaks on the heating curve 

  Group III: crystallization and melting transition upon heating 

  Group IV: solely glass transition upon heating 
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Figure 3.21: DSC thermograms of the second heating and cooling cycle measured at a heating scan 

rate of 5 °C/min and a cooling scan rate of 2 °C/min for various cellulose dopes: (A) 1 wt% MCC 

dissolved in NMMO mono. depicting the DSC behavior of the Group I, (B) 8 wt% MCC dissolved in 

NMMO mono. (Group II), (C) 8 wt% MCC dissolved in NMMO mono./GVL (64/28 wt%, Group III), 

and (D) 10 wt% MCC dissolved in NMMO mono. (Group IV).  
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3.4 Concluding remarks 

A range of bio-sourced co-solvents were investigated for the dissolution of cellulose and 

chitin using the ionic liquid BmimOAc as solvent. It was revealed that γ-valerolactone was 

the only good candidate for this purpose. The addition of high concentrations of this 

sustainable and relatively economical solvent, particularly observed for cellulose, could 

mitigate the drawbacks caused by the IL, such as toxicity, non-biodegradability, and high 

cost.  

The presence of GVL had a positive influence on the dissolution process. The time required 

for dissolution was reduced by a considerable factor and can be explained by an 

exponentially decrease in the viscosity of the medium. No significant change in ion 

interactions in the IL and no formation of nano-structures were observed experimentally by 

viscosity/ionic conductivity measurements and DLS studies, respectively.  

In addition, GVL can facilitate further processing by decreasing the viscosity of polymer 

solutions. Dynamic oscillatory measurements have shown that the co-solvent caused 

differences in the mobility of the polymer chain and consequently in the rheological behavior 

of cellulose and chitin solutions. GVL allowed the chitin chains to be more mobile, while the 

contrary was observed for microcrystalline cellulose.   

 

For the dissolution of cellulose in NMMO mono., different co-solvents (selected from aprotic 

solvents with a dipole moment greater than 3.5) were investigated, and their tolerance was 

found to follow the series: GBL > GVL > DMSO > GHL. Although GBL proved to be the 

most acceptable co-solvent, its conversion into the intoxicant γ-hydroxybutyric acid (GHB) 

when ingested in the human body can be an issue in a sustainable process. The bio-sourced 

solvent, GVL, was thus considered as ideal co-solvent for the dissolution of cellulose with 

NMMO mono. The influence of this green solvent on the Lyocell process was studied.  

The addition of GVL offered significant improvements in the dissolution process by 

decreasing some dissolution parameters such as the duration and the temperature and by 
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increasing the stability of the solutions. The thermal properties of NMMO mono./GVL and 

cellulose/NMMO mono./GVL mixtures obtained by DSC suggested that GVL decreased the 

melting points of NMMO mono. and allowed cellulose solutions to melt and to crystallize at 

lower temperatures. Thus, novel cellulose dopes were prepared, paving the way for a more 

sustainable and low-temperature Lyocell process. 
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Production of new polymer materials 
 

 

 

 

 
 

 

 

 

 

Parts of the work concerning the coated textiles presented in this section is submitted to the 

Lenziger Berichte in a publication entitled ”Chitin coated cellulosic textiles as natural 

barrier materials” (see list of Publications).  
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4.1 Introduction 

The extensive use of refined petroleum products has created first a depletion of petroleum 

reservoirs and an increasing global pollution of the environment. Thus, the development of 

renewable, recyclable, and biodegradable materials is essential to slowly substitute these 

harmful products, which are still currently dominating the markets.
5
 A complete replacement 

by 100% biobased materials is not an economical and realistic solution. However, the 

research and the development of various possible applications for these sustainable elements 

are a major long-term study. Cellulose and chitin are the two most abundant biopolymers and 

have unique properties suitable for designing biodegradable materials. Their utilization under 

different structural forms such as fibers, films, membranes, nanomaterials, and gels have 

already found attractiveness in a wide range of applications including biomedical 

engineering, filtration processes, packaging, textile and hygienic products.
10,34,42,50

 Cellulose-

based materials are present in our daily life in a variety of objects like papers, paperboards, 

cellophane, filter papers, and textiles. On the contrary, chitin has not achieved the same 

commercial value and a large majority of its production (60-70%) is used to produce its 

deacetylated derivative chitosan.
11

  

This part promotes the preparation of new materials from cellulose and/or chitin. These novel 

materials were characterized to assess their added values and possible applications. For this 

purpose, cellulosic fibers, cellulose/chitin composite fibers, gels and films as well as chitin 

coated cellulosic materials were manufactured.  

On the one hand, the production of cellulosic fibers from N-methylmorpholine N-oxide 

monohydrate (NMMO mono.)/γ-valerolatone (GVL) mixtures was performed according to 

the industrial Lyocell process. The aim was to study the effect of the biomass-derived co-

solvent GVL on the spinning route and on the fibers properties.  

On the other hand, the production of cellulose/chitin materials was investigated using the 

ionic liquid 1-butyl-3-methylimidazolium acetate (BmimOAc) and GVL. The first approach 

was based on the formation and regeneration of chitin/cellulose blends to produce composite 

fibers, gels and films. In this work, manufacturing of fibers was performed using a dry-jet 
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wet spinning technique. The gels and the films were produced by Yaqing Duan, PhD student 

at the Straubing Center of Science (Germany) and are therefore not discussed in this part. For 

more details, please see the publication.
198

 The second strategy focused on the realization of 

chitin-based coatings on cellulosic materials in the form of filter papers and textiles to give 

them new functional properties.  

All produced materials were characterized in detail by thermal, morphological and 

mechanical analysis methods. Wetting and permeability studies were additionally performed 

on chitin coated materials to assess their technological importance and possible applications.  
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4.2 Experimental section 

4.2.1 Chemicals  

Microcrystalline cellulose (MCC) and α-chitin used as raw materials are already described in 

Section 2.2.1. All polymer powders were dried at 70 °C for at least 5 days prior to use and 

stored in a nitrogen-filled glove box. 

Solvents used to prepare polymer dopes are the ionic liquid (IL) 1-butyl-3-

methylimidazolium acetate (BmimOAc), the hydrated organic compound 4-

methylmorpholine N-oxide monohydrate (NMMO mono.), and the co-solvent γ-

valerolactone (GVL). Origin and purity of these solvents are described in Section 2.2.1. Prior 

to use, the IL was dried using a high vacuum setup at 10
-6

 mbar for 5 days. Water content 

was controlled using a coulometric Karl Fischer titration (899 Coulometer, Metrohm, 

Switzerland) after drying. BmimOAc and NMMO mono. were stored in sealed vials in a 

nitrogen-filled glove box to avoid moisture contamination. All other chemicals were used 

without further purification. 

For the coating procedure, filter papers with a pore size of 4-7 µm were purchased from 

Schleicher & Schuell (Germany). Textiles were obtained from Lenzing AG (Austria) and 

produced from four different cellulosic fibers, namely TENCEL
®

, cotton, Lenzing Viscose
®
, 

and Lenzing Modal
®
. They were previously washed and desized in Lenzing AG. Textiles and 

filter papers were dried at 70 °C in an oven for 5 days to remove any moisture prior to use. 

The inorganic dye ruthenium red (purity > 85%, Fluka, Germany) was used to differentiate 

chitin from cellulose for light microscopic analyses of the coated filter papers.  

 

4.2.2 Material production methods  

4.2.2.1 Preparation of polymer solutions 

A typical experimental procedure for preparation of cellulose and chitin materials started 

with the dissolution of the polymers in the appropriate solvent system. For this purpose, two 

solvent mixtures were used (1) NMMO mono./GVL for the production of cellulose fibers and 
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(2) BmimOAc/GVL for the cellulose/chitin composite fibers and the chitin coated materials 

routes.  

For the production of cellulose fibers, a certain amount of cellulose, NMMO mono., and 

GVL were put into a sealed glass vial in the glove box. The sample was then mechanically 

stirred at 80 °C in an oil bath under nitrogen atmosphere until a homogenous solution was 

obtained (after approximately 2 h stirring). Complete dissolution of the resulting mixture was 

confirmed by a polarized optical microscope (Leitz Orthoplan, Germany) prior to further 

handling.  

All chitin/cellulose-containing solutions were prepared in the glove box by mixing all 

components (cellulose, chitin, BmimOAc, and GVL) in desired amounts. In a sealed glass 

vial, the mixture was heated up to 100 °C under mechanical stirring and under nitrogen 

atmosphere. Again, complete dissolution was verified by means of microscopic analysis. If 

reluctant chitin fibers were still observed after 6 h of dissolution, the solution was centrifuged 

at 60 °C at 4500 rpm for 20 min with a Sigma 3-18KS centrifuge (Germany). The upper 

transparent solution was collected to avoid possible obstruction of the spinneret during the 

spinning process. Chitin solution for coating experiments was obtained with the same 

procedure except for the temperature process which was set to 110 °C.  

Dopes were stored at room temperature in their sealed glass vials in absence of atmospheric 

water in case of no immediate use. 

 

4.2.2.2 Fiber spinning equipment and experiment 

Different self-developed lab-scale spinning devices were built to produce cellulose fibers 

from NMMO mono./GVL solution and cellulose/chitin composite fibers from 

BmimOAc/GVL mixtures.  

4.2.2.2.1  Cellulose fibers produced without an air gap 

First, a lab-scale spinning apparatus was developed with the equipment used in the master 

thesis of Alexander Wollinger.
199

 The setup scheme is depicted in Figure 4.1 and consists of 
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a pressure system (items 1, 2, 3, 4 and 6), a syringe with a monofilament spinneret (5 and 7), 

a spinning bath (8), and a take-off roller (9 and 10).  

The spinning principle of this setup can be described as follows. The polymer solution is 

discharged from the dope vessel (5) through a monofilament spinneret (7) under nitrogen 

pressure produced by a nitrogen pipe (1). A manometer (2) is used to check the actual 

pressure in the setup. Two valves (3 and 4) are connected between the dope vessel and the 

nitrogen pipe (1). The dope valve (4) allows regulation of the nitrogen flow and the second 

valve (ventilation valve (3)) is used to ventilate the apparatus at the end of the process. 

Control of both valves is possible either manually or automatically with an electronically 

controlled system (6). The temperature of the spinning dope is regulated using a sand bath 

(11). After passing through the spinneret, the solution is extruded into a precipitation bath (8) 

where the extrudate is impoverished of solvent. This allows the regeneration of the polymer 

in shape of a filament. Spun fibers are rolled onto a take-off roller (9) at linear speed, which 

is controlled by an electronic system (10).  

 

Figure 4.1: Schematic of the first self-developed fiber spinning apparatus.  
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For the manufacturing of the first fibers, the prepared dope was carefully introduced into the 

storage vessel without introducing any air bubbles, after being preheated at the desired 

spinning temperature. The spinning temperature was set between 25 and 80 °C and was 

controlled by a sand bath. Fibers were spun with a 200 µm- or 80 µm-monofilament 

spinneret. Dimensions of these two spinnerets are represented in Figure 4.2. Prior to each 

experiment, the cleanliness of the spinneret orifice was controlled with a microscope (Nikon 

Eclipse E400, Japan). The extrusion speed was restricted by the nitrogen pipe, which induced 

a pressure of 2.6 bars. The coagulation bath contained 1 L of deionized water at room 

temperature. Finally, the produced fibers were washed at least three times using a large 

quantity of sprayed deionized water, then immersed into water before they were dried at 

ambient air for several days.  

 

Figure 4.2: Schematic of the (A) 200 µm-/(B) 80 µm-monofilament spinneret.
199

 

 

4.2.2.2.2  Cellulose fibers produced with an air gap 

A second spinning apparatus was built similar to the dry-jet wet spinning technique used in 

the Lyocell process (detailed in Section 1.3.2.1.2). A scheme of this setup is depicted in 

Figure 4.3 and several parts from the first apparatus were reused, such as the pressure system 

(1, 2, 3, 4 and 12), the syringe with the monofilament spinneret (5 and 6), and the take-off 

roller (10) controlled by an electronic system (11). The system was modified by introducing 

an air gap after the spinneret (7) and a new spinning bath (9). The latter includes two godets 

(8) at a distance of 12 cm apart and with an immersion depth of 2.5 cm to provide a guide for 

the resulting filament until reaching the take-off roller (10).  
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Figure 4.3: Schematic of the second self-developed fiber spinning apparatus. 

 

The spinning procedure was the same as previously described. However, the spinning 

temperature could not be controlled and was 25 °C. An air gap of 2 cm was induced between 

the water surface and the spinneret. The air gap conditions (humidity and temperature) could 

not be controlled or modified at this level. The circulating ambient air in the laboratory was 

the environment surrounding the air gap during the spinning process. 

4.2.2.2.3  Cellulose/chitin fibers produced with an air gap 

A third spinning setup was developed for the production of cellulose and chitin composite 

fibers from BmimOAc by improving the second apparatus. This setup is schematized in 

Figure 4.4. An electric blanket (13) controlled by a transformer and a nitrogen bottle (1) was 

added to regulate the spinning temperature and the nitrogen flow. 
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Figure 4.4: Schematic of the third self-developed fiber spinning apparatus. 

 

The spinning temperature (between 25 and 70 °C) was controlled by an electric blanket. 

Fibers were spun with a 200 µm- or 80 µm-monofilament spinneret. The extrusion speed was 

restricted by the nitrogen bottle, which induced pressure from 2.6 to 4 bars. An air gap of 

0.5 cm was set between the water surface and the spinneret. The coagulation bath contained 

1 L of deionized water at 15 °C. The produced fibers were washed on the take-off roller at 

least three times using a large quantity of sprayed deionized water, then immersed into water 

to remove the solvent residues and dried at ambient conditions for several days.  
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4.2.2.3 Chitin coating on cellulosic material procedure 

A procedure was developed for the chitin coating of cellulosic materials, i.e. cellulosic filter 

papers and textiles. The aim of this process was to create a thin and attached chitin layer on 

these materials. For this purpose, the ionic liquid BmimOAc was used as main chitin solvent 

to slightly dissolve the cellulosic materials at the surface and to allow the chitin to be 

imbedded within.  

Chitin solutions were prepared by dissolving α-chitin (2 wt%) in BmimOAc (88 wt%) and 

GVL (10 wt%) under nitrogen atmosphere at 110 °C. For the filter paper coating, 0.7 wt% of 

ruthenium red was additionally added to the chitin solution to differentiate chitin from 

cellulose. After total dissolution of chitin, a small amount of GVL was added to dilute the 

highly viscous gel and to facilitate the coating process. The final solution was composed of 

1.6 wt% chitin, 30 wt% GVL, and 68.4 wt% BmimOAc and was heated at 100 °C. One side 

of the cellulose materials was put in contact with this heated solution and moved on the 

solution surface by a pair of tweezers (see Figure 4.5). This mechanical stimulus provided a 

homogenization of the chitin layer on the surface. After a selected time (from 1 to 5 min), the 

chitin covered materials were removed from the chitin solution and left at room temperature 

for 2 hours to allow a slow gelation of the chitin. Each material was subsequently soaked in 

ethanol for 2 days and then in deionized water for 2 days to remove BmimOAc and GVL and 

to induce coagulation of the chitin layer. Finally, coated materials were dried between 2 glass 

plates at room temperature for several days. 

 

 

Figure 4.5: Schematic of the chitin coating method on cellulose material. 
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4.2.2.4 Solvent recycling 

A method was developed to recover BmimOAc subsequent to the production of the coated 

materials. After chitin regeneration, the ethanol-based precipitation solutions were first 

filtrated with a 0.2 μm polytetrafluorethylene (PTFE) membrane filter to remove possible 

polymer residues. In a second step, ethanol was evaporated from these solutions for two 

hours under reduced pressure (100 mbar) and at 40 °C using a rotary evaporator. Under these 

conditions, GVL could not be evaporated. That is why the solutions were further dried at 

40 °C at 10
-6

 mbar using the high vacuum setup for 5 days. The purity of the recycled 

BmimOAc was analyzed by 
1
H- and 

13
C-NMR measurements in dimethyl sulfoxide-d6 

recorded with a Bruker Avance 300 spectrometer (Billercia, USA) at 300 MHz.  

 

4.2.3 Material characterization 

4.2.3.1 Fiber characterization 

The quality of the produced fibers was evaluated by means of structural and mechanical 

characterization. 

4.2.3.1.1  Structural analysis 

Surface structure of the fibers was visualized and examined with a microscope (Nikon 

Eclipse E400, Japan) connected to a digital single-lens reflex camera (Canon EOS 650D, 

Japan). To obtain sharp pictures, several images of the same sample focused at different spots 

were taken and superimposed with the program “Zerene Stacker”.  

Fiber cross sections were investigated by the Analytical Laboratory of Kelheim Fibres. For 

this purpose, fibers were cut with a Microtome after being embedded in a matrix of wax and 

their cross sections were observed under a microscope. 

4.2.3.1.2  Mechanical tests 

Fiber properties were also measured by the Analytical Laboratory of Kelheim Fibres in terms 

of fineness (dtex), elongation at break (%) and tensile strength (cN/tex). These characteristics 

were obtained with a Fafegraph HR tensile tester (Textechno Herbert Stein GmbH & Co. 
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KG, Germany) for six fibers per sample. Tensile tests were performed with a clamping length 

of 20 mm, a pretention of 0.64 cN/tex, and a speed of 20 mm/min. 

 

4.2.3.2 Coated material characterization 

The effect of the regenerated chitin layer on the structure and the properties of the textiles 

were characterized by infrared spectroscopy, scanning electron microscopy, water contact 

angle measurements, and water/gas permeability studies. 

4.2.3.2.1  Composition  

To characterize the composition of the prepared materials, infrared spectra were recorded in 

the range from 400 to 4000 cm
-1

. Measurements were performed
 
with a Fourier transform 

infrared spectroscopy (FTIR) instrument with an attenuated total reflectance (ATR) sampler 

by pressing the samples against a Smart Diamond ATR sensor (Nicolet 380, Thermo 

Scientific, Germany).  

4.2.3.2.2  Morphology 

Morphologies of the produced materials were observed by scanning electron microscopy 

(SEM). Dried samples were placed on carbon tape and coated with Au/Pd. SEM images were 

obtained with a digital scanning electron microscope (DSM 940 A, Zeiss, Germany) in 

secondary imaging mode at an acceleration voltage of 10 kV.  

4.2.3.2.3  Contact angle measurements 

Wetting properties were characterized by water contact angle measurements, performed by 

establishing the tangent of a water drop on the material surface (see Figure 4.6). Contact 

angle values were recorded using a goniometer type P1 (Erna Inc., Japan) equipped with a 

microscope and a back light. Measurements were performed at room temperature on both 

sides of the coated films, i.e. on the chitin layer and the textile layer. A 2 µL drop of 

deionized and sterile filtrated water was formed by an automated micrometer pipette 

(Hamilton Company, USA) and placed on the sample surface. The angle of the tangent 

formed at the water drop base was recorded as well as the liquid drop absorption time on 

each material. Overall, five drops were placed on various locations for each sample. 
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Figure 4.6: Contact angle (Ɵ) of a water drop on a silicon wafer surface (Ɵ < 90°). 

 

4.2.3.2.4  Water permeability equipment and experiment 

The ability of water to pass the materials was investigated by permeability tests. An 

experimental setup, illustrated in Figure 4.7, was therefore designed to allow the film to be in 

contact with water and another liquid through a defined area. This self-developed apparatus 

consists of two Plexiglas cells with a volume of 9 mL having a small hole of 3 mm in 

diameter at a height of 1.2 cm and a press system. The holes are surrounded by seal rings (in 

green and black in Figure 4.7) to have a liquid tight system.  

 

Figure 4.7: Experimental setup for the water permeability test. 

 

Ethyl lactate was used as the second solvent because it is fully miscible with water and a 

green solvent (biodegradable, low toxic, non-carcinogenic, non-teratogenic and low 

volatile).
200

 Once the setup was fixed by the press apparatus with the film in-between, the 

cells were filled at the same time, one with 8 mL of deionized water and the other with 8 mL 

of ethyl lactate. Both solutions were stirred at 200 rpm at constant temperature of 20 ± 1 °C 

for 7 h. Samples of 150 µL were collected with an Eppendorf pipette from each cell at the 

same time and at defined time intervals. The water concentration of these samples was 
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measured by volumetric Karl Fischer titration (870 KF Titrino plus, Metrohm, Switzerland) 

four times and the averaged value was recorded over time. For the coated materials, the 

chitin layer was in contact with the water cell. 

The ability of water to pass the materials was characterized by a water permeability 

coefficient, 𝑃H2O, defined by Fick's first law as:
186

  

𝐽H2O = −𝐷 ×
∆𝑐H2O

∆𝑥
 =  −𝑃H2O × ∆𝑐H2O 

(4.1) 

 

where 𝐽H2O  represents the flow of water per unit area, 𝐷 the diffusion coefficient, ∆𝑐H2O the 

difference in water concentration between the ethyl lactate and the water filled cell, and ∆𝑥 

the distance between the two cells. The flux 𝐽H2O can also be expressed by Equation 4.2. 

𝐽H2O =
1

𝐴
×

𝑑𝑐H2O in EL cell

𝑑𝑡
× 𝑉 

(4.2) 

 

with 𝐴 the permeation area, 𝑐H2O in EL cell the water concentration in the ethyl lactate cell, V 

the volume related to the water concentration, and 𝑡 the time. Combining Equations 4.1 and 

4.2, the permeability coefficient 𝑃H2O can be calculated according to the following 

expression:  

|𝑃H2O| =
𝑑𝑐H2O in EL cell

𝑑𝑡
×

𝑉

|∆𝐶H2O|
×

1

𝐴
 

(4.3) 

 

Water permeability coefficients were calculated considering only the averaged values 

between 120 and 420 min. Before 120 min, the difference in water concentration between the 

two cells could not be precisely determined due to the uncertainty of the water concentration 

measurements in the pure water cell carried out by volumetric Karl Fischer titration.  

4.2.3.2.5  Oxygen permeability equipment and experiment 

Oxygen permeability was determined with an optical measurement under dry conditions. 

Illustrated in Figure 4.8, the measurement setup consists of a self-developed measurement 

cell, a chemical optical sensor spot (type PSt6 from PreSens, Germany), a stick-on adapter 
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(SAO from PreSens), a polymer optical fiber (POF-2SMA from PreSens), and a fiber optic 

oxygen transmitter (Fibox 4 trace from PreSens) connected to a computer. Oxygen 

concentration was measured with a non-invasive and non-oxygen consuming method thanks 

to the sensor type PSt6, which is composed of an oxygen sensitive dye embedded in a silicon 

matrix. This sensor spot, which can detect oxygen partial pressures in a trace range from 0 to 

52 hPa, is read out via the polymer optical fiber connected to the transmitter Fibox 4 trace.  

 

Figure 4.8: Measurement setup for O2 permeability experiment 

 

Figure 4.9: Measurement cell for the O2 permeability measurement. (A) View of the Plexiglas 

measurement window where the sensor spot will be stuck. (B) View of the counterplate containing the 

film sample. 

 

The designed cell, depicted in Figure 4.9, is composed of a chamber with two gas connectors, 

a measurement window in Plexiglas, and a counterplate with a central hole. The film sample 

can be fixed with seal rings on the top of the chamber having a volume of 49.38 cm
3
 and is in 

contact with the ambient air through a hole of 0.5 cm diameter. 
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The sensor spot was first fixed inside the chamber on the Plexiglas with silicon glue (from 

RS Components, UK) and was facing a stick-on adapter, which holds the polymer optical 

fiber in place. The PSt6 sensor was already calibrated by PreSens prior to use. A series of 3 

measurements for each sample was performed at a constant temperature of 20 °C. After 

flushing the chamber three times with nitrogen (zero value), the increase of the oxygen 

partial pressure over time was recorded. For the coated materials, the chitin layer was in 

contact with the ambient air of the laboratory room. The time range was selected from 0 to 

13 min, which is the period of time where accurate oxygen partial pressures (from 0 to 

52 hPa) could be measured by the sensor spot. 

The oxygen barrier property of the films was characterized by the oxygen permeability 

coefficient, 𝑃O2
, calculated using an adaptation of the ideal gas law (Equation 4.4) and of the 

Fick's first law (Equation 4.5).
186

 

𝑝O2
× 𝑉 = 𝑛O2

× 𝑅 × 𝑇 (4.4) 

𝐽O2
= −𝑃O2

× ∆𝑐O2 =
1

𝐴
×

𝑑𝑛O2

𝑑𝑡
 

(4.5) 

 

In Equation 4.4, 𝑝O2
 is the partial pressure of oxygen, 𝑉 the volume of the chamber, 𝑛O2

 the 

amount in moles of oxygen, 𝑅 the gas constant, and 𝑇 the absolute temperature. In 

Equation 4.5, 𝐽O2
 represents the flow of oxygen per unit area, ∆𝑐O2  the difference in oxygen 

concentration from the chamber to the outside, and 𝐴 the permeation area. By combining the 

two equations, the oxygen permeability coefficient 𝑃O2
 is given by Equation 4.6. 

|𝑃O2
| =

𝑉

𝐴 × |∆𝑃O2
|

×
𝑑𝑝O2

𝑑𝑡
 

(4.6) 

 

The oxygen permeability coefficients were calculated considering only the average of the 

calculated values between 1 and 13 min.  
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4.3 Results and discussion  

4.3.1 Fibers  

4.3.1.1 Cellulose regenerated fibers from NMMO/GVL solutions 

4.3.1.1.1  Lab-scale spinning  

Preliminary tests were performed to produce cellulose fibers with the first self-developed 

spinning equipment described in Section 4.2.2.2.1. This apparatus imposed unchangeable 

parameters such as a pressure of 2.6 bars, an air gap length of 0 cm, a spinneret of 200 or 

80 µm in diameter, and a minimal velocity of the take-off roller of 3.5 m/min. A solution of 

5 wt% cellulose, 58 wt% NMMO mono. and 37 wt% GVL was spun into a water bath under 

different spinning conditions to evaluate the efficiency of the equipment. Table 4.1 shows the 

varied spinning parameters, their effect on the spinnability of the dope and on the surface 

structure of the fibers observed under light microscopy. The dope could be spun neither at 60 

and 50 °C using an 80 µm spinneret due to a too high extrusion velocity, nor at 25 °C with a 

200 µm spinneret because of a too low extrusion velocity. However, appropriate fibers were 

obtained between 25 and 40 °C with an 80 µm spinneret. The produced fibers exhibited a 

regular and smooth structure independently of the spinning temperature as shown in 

Figure 4.10.  

 

Table 4.1: Spinning conditions and their effects on the spinnability of cellulose dope and on the fiber 

structure. 

Spinning  

temperature 

(°C) 

Spinneret 

(µm) 

Take-off roller 

velocity 

(m/min) 

Spinnability Fiber surface 

structure  

60 80 - Extrusion velocity too high - 

50 80 - Extrusion velocity too high - 

40 80 8.2  Acceptable  Regular structure 

30 80 3.5 Acceptable Regular structure 

25 80 3.5 Acceptable Regular structure 

25 200 3.5 Only fragmentary spinning 

possible (repeated breakage of 

the filament)  

Extrusion velocity too low 

Irregular structure 
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Figure 4.10: Surface structure of cellulose fibers spun with an 80 µm spinneret from a solution of 

5 wt% cellulose, 58 wt% NMMO mono., and 37 wt% GVL at different temperatures: (A) 25 °C (B) 

30 °C (C) 40 °C.  

 

The properties of the regular fibers and the appearance of their cross section were analyzed 

by Kelheim fibers and are summarized in Table 4.2 and Figure 4.11. The cross sections of 

the fibers spun at 25 °C and 40 °C were irregular while fibers spun at 30 °C exhibited 

circular cross sections similar to TENCEL
®
 fibers. The properties of the fibers spun at 40 °C 

could not be examined because some fibers were stuck together. The overall properties of the 

other fibers were far from being sufficient compared to commercial fiber characteristics. In 

addition, large variations of the measured values were obtained (see Table 4.2). These results 

could be expected as the fibers were produced with a self-developed lab-scale spinning 

equipment and without an air gap. The latter is an important parameter which affects the 

formation of the fibers. In the dry-jet wet spinning technique, the dope filament is stretched 

in the air gap with a positive draw ratio, which induces the orientation of the polymer chains. 

A high molecular orientation promotes crystallization and allows the formation of oriented 

and parallel microfibrils after precipitation of the cellulose in the coagulation bath that causes 

high tenacity fibers.
193,201
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Table 4.2: Properties of cellulose fibers spun with an 80 µm spinneret and from a solution of 5 wt% 

cellulose, 58 wt% NMMO mono., and 37 wt% GVL and properties of commercial TENCEL
®
 fibers. 

Fiber 

properties 

Fiber spun at 

25 °C 

Fiber spun at 

30 °C 

Fiber spun at 

40 °C  

Commercial 

TENCEL
® 117

 

Fiber diameter 

(µm) 

Irregular 22 ± 4 Irregular 

stuck fibers 

10 

Fineness (dtex) 11.6 ± 3.7 9.8 ± 2.7 - 1.3  

Elongation at 

break (%) 

6 ± 2 8 ± 3 - 13 

Tensile strength 

(cN/tex) 

4.3 ± 1.1 6.9 ± 2.4 - 40.2 

 

 

Figure 4.11: Cross section view of generated cellulose fibers from a solution of 5 wt% cellulose, 

58 wt% NMMO mono., and 37 wt% GVL and with an 80 µm spinneret at (A) 25 °C, (B) 30 °C, and 

(C) 40 °C. 

 

A second spinning apparatus was built allowing the cellulose dope to be discharged through 

an air gap into a water bath (see Section 4.2.2.2.2). Imposed parameters by this equipment 

were a N2 gas pressure of 2.6 bars, a spinneret of 200 or 80 µm, a minimal velocity of the 

take-off roller of 3.5 m/min, and a spinning temperature of 25 °C. An air gap of 2 cm was 

selected and different dope compositions were spun under these conditions (see Table 4.3). 

As noticed in Table 4.3, no homogeneous fibers could be produced. The incipient filaments 

were not strong enough to be collected by the take-off roller without breaking. The control of 

the extrusion velocity was notoriously difficult because of the constant N2 gas pressure and 

the constant temperature imposed by the apparatus.  

Accordingly, the processability of cellulose solutions prepared from NMMO mono. and GVL 

and the possible advantageous effects of GVL could not be evaluated with the lab-scale 

spinning devices. To solve this problem, the pressure system has to be changed. A more 
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effective system, for instance a heated cylinder with a piston, would allow variations in the 

extrusion pressure and temperature. This equipment would additionally enable to spin higher 

cellulose concentration as well as cellulose with a higher degree of polymerization (DP).  

 

Table 4.3: Spinning conditions and their effects on the spinnability of cellulose dopes and on the fiber 

structure. 

Dope composition Spinneret 

(µm) 

Take-off 

roller velocity 

(m/min) 

Spinnability Fiber surface 

structure  

5 wt% MCC 

37 wt% GVL  

58 wt% NMMO 

mono. 

80/200 3.5 Only fragmentary 

spinning possible 

(repeated breakage of the 

filament)  

Extrusion velocity too low 

Irregular 

structure 

3 wt% MCC  

40 wt% GVL 

54 wt% NMMO 

mono. 

80/200 3.5  Only fragmentary 

spinning possible 

(repeated breakage of the 

filament)  

Extrusion velocity too low 

Irregular 

structure 

1 wt% MCC  

49.4 wt% GVL 

49.6 wt% NMMO 

mono. 

80 - Not enough cellulose to 

form a filament 

Extrusion velocity too 

high 

 

- 

 

4.3.1.1.2  Industrial spinning performed by Lenzing AG 

To evaluate some effects of GVL in the production of cellulose fibers, Lenzing AG 

performed an experiment by adding this bio-sourced solvent in their spinning procedure as 

follows. A solution composed of 25.7 wt% GVL, 9.6 wt% cellulose pulp (with a DP ranged 

from 800 to 900), 50.47 wt% NMMO, 14.23 wt% H2O, and two unspecified stabilizers was 

kneaded in a mixer. Water was extracted at reduced pressure and at high temperature until 

complete dissolution of cellulose was obtained. The resulting solution contained 14.6 wt% 

GVL, 11.3 wt% cellulose, 66.5 wt% NMMO, and 7.5 wt% H2O. A part of GVL was 

evaporated with water, which was not intended. The spinning dope was spun with a dry-jet 

wet spinning apparatus. Monofilaments were extruded at 75 °C through a 100 µm spinneret 

and over a 3 cm air gap into a water bath and were wound onto a godet at a velocity of 

34 m/min.  
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Fibers properties of these filaments and commercial TENCEL
®
 are presented in Table 4.4. 

Dry mechanical properties (i.e. tensile strength and elongation) were slightly lower than for 

normal TENCEL
®
 fibers while wet tenacity value was below TENCEL

®
 standards. 

Accordingly, no massive improvement of fiber mechanical properties was observed with this 

first test. However, no deterioration in the stability of the spinning mass occurred with the 

addition of GVL and the spinning temperature could be reduced to 75 °C instead of 120 °C. 

Further work is needed to promote other possible advantages of GVL in the dry-jet wet 

spinning process.   

 

Table 4.4: Fiber properties of regenerated cellulose fibers spun from NMMO/GVL by Lenzing AG 

and commercial TENCEL
®
 fibers. 

Fiber properties Fiber spun with GVL Commercial TENCEL
® 117

  

Fineness (titre, dtex) 1.3 ± 0.3 1.3  

Dry tensile strength (cN/tex) 32.9 40.2 

Dry elongation at break (%) 9.2 13 

Wet tensile strength (cN/tex) lower 37.5 

 

4.3.1.2 Cellulose/chitin fibers from IL 

Ionic liquid solutions of cellulose and chitin were spun with the third self-developed dry-jet 

wet spinning equipment (details in Section 4.2.2.2.3). Spinnability studies were performed 

with a solution composed of 0.5 wt% chitin, 1 wt% cellulose, 20 wt% GVL, and 78.5 wt% 

BmimOAc spun first through a 200 µm spinneret over an air gap of 0.5 cm. Spinning trials 

were conducted at different spinning temperature, namely 25, 30, 50, and 70 °C and at 

different N2-pressures ranging from 2.6 to 4 bars. For all tests, the incipient filaments were 

not strong enough to be continuously collected by the take-off roller without breaking. 

However, at 70 °C and with a pressure of 4 bars, relatively few interruptions in the spinning 

process were observed and some fibers could be wound. Microscopy analyses of these fibers 

showed regular as well as irregular structural segments along the fiber length, which were 

probably caused by the disruption in the spinning procedure (Figure 4.12). Due to lacking 

continuity of fiber generation, no further characterizations of the fibers were possible. 
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Figure 4.12: Surface structure of cellulose/chitin fibers spun from a solution of 0.5 wt% chitin, 1 wt% 

cellulose, 20 wt% GVL, and 78.5 wt% BmimOAc at 70 °C with a 200 µm spinneret. (A) Regular and 

(B) irregular fiber segments.  

 

Additional experiments to clarify the impact of different cellulose/chitin mass ratios on the 

fibers properties could not be studied because of the poor performance of the spinning 

apparatus. Again, a more professional spinning system would be suitable to investigate this 

study. 

 

4.3.2 Coated cellulose materials with chitin 

Filter papers as well as textiles made from different cellulosic fibers were used as source for 

the cellulose-based materials because they are composed of uniform and interlaced cellulose 

fibers. 

4.3.2.1 Filter paper coating 

The coating procedure described in Section 4.2.2.3 was first studied on filter papers. Various 

durations of 1, 3, and 5 minutes were investigated to impregnate one side of the filter papers 

at 100 °C with the brown chitin solution. The brown color is caused by the ruthenium red 

dye. Figure 4.13 shows views of both sides for the resulting coated materials and accurate 

SEM pictures for the coated filter paper exposed to chitin solution for 3 minutes. All coated 

filter papers presented a thin smooth brownish film on the chitin side. On the untreated sides, 

degradation of the surface could be noticed by the presence of large holes induced by filter 

paper dissolution. The longer the filter was in contact with the chitin solution, the more 

pronounced were the holes on the filter paper side. Moreover, these interspaces allowed 
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chitin to penetrate up to the outer surface of the filter paper as visible in the SEM picture 

from Figure 4.13 B2’. This deleterious effect runs counter to the intended aim, which was the 

design of a thin and attached chitin layer without degradation of the starting materials.  

 

Figure 4.13: (A, B, C) Pictures and (B’) SEM images of chitin coated cellulose filters exposed for (A) 

1 min, (B) 3 min, and (C) 5 min on the chitin solution during the coating process. (1) represents the 

chitin side and (2) the untreated filter paper side of each coated materials.  

 

Accordingly, filter papers were found to be a non-appropriate substrate for this coating 

method. The issue here is the rapid dissolution of the filter paper in the ionic liquid. In 

addition, the use of the dye was obsolete and hided the visualization of possible chitin 

degradation.  

 

4.3.2.2 Textiles coating 

Four textiles made from four different cellulosic fibers (TENCEL
®

, cotton, Lenzing 

Viscose
®
, and Lenzing Modal

®
) were utilized as cellulose substrate (hereinafter referred to as 

“Tencel”, “cotton”, “Viscose”, and “Modal”).  
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4.3.2.2.1  Coating procedure 

First of all, the dissolution behavior of the textiles in BmimOAc was observed in order to 

optimize the coating procedure and to avoid textile degradation. 1 wt% of each textile as well 

as 1 wt% of filter paper was dissolved in BmimOAc at 100 °C. The time required to 

complete dissolution are reported in Figure 4.14. The textiles were more slowly dissolved 

than filter paper. Indeed, dissolution durations of 320 min for cotton, 180 min for Tencel, 

131 min for Viscose, 121 min for Modal, and 20 min for the filter paper were recorded. 

Among the textile samples, cotton presented the highest dissolution time. This suggests that 

the IL had more difficulties to penetrate the cotton crystalline lattice and to break its 

hydrogen bonding network. The reason lies probably in the structural difference between the 

cellulose fibers and their degree of crystallinity. Native cotton fibers are known to be highly 

crystalline and oriented (cellulose I) while regenerated cellulose fibers are less crystalline and 

are composed of cellulose II and amorphous cellulose.
118,202

 This structural difference will be 

well observed further by FTIR analysis.  

 

Figure 4.14: Dissolution time of 1 wt% of the textiles (Tencel, cotton, Viscose, and Modal) and 

1 wt% of filter paper in BmimOAc at 100 °C. 

 

Finally, according to these observations, a coating duration of 5 min was selected to avoid 

dissolution of the cellulosic substrates.  
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4.3.2.2.2  Structure of the coated textiles 

The appearance of the untreated textiles and the coated materials is shown in Figure 4.15. 

Textiles from Lenzing consist of an ordered structural assembly of cellulosic fibers 

(TENCEL
®
, cotton, Lenzing Viscose

®
, and Lenzing Modal

®
) exhibiting a white color. The 

studied textiles were produced by interlacing warp fibers (longitudinal) and weft fibers 

(transversal) so that each warp fiber passes alternately under and over each weft fiber. This 

structural hierarchy can be well observed in the SEM image from Figure 4.16 A. After 5 min 

of impregnation of the textiles on a single side in the chitin solution (1.6 wt% chitin, 30 wt% 

GVL, and 68.4  wt% BmimOAc) at 100 °C, a chitin layer was formed on one side of the 

textiles by promoting its precipitation in ethanol. The coated textiles exhibited a thin 

transparent shiny film on the chitin side, while the untreated side was not visually modified 

during the coating (Figure 4.15). 

 

Figure 4.15: Appearance of the untreated and chitin coated textiles. 

 

The morphology of the prepared materials was observed with SEM. Figure 4.16 shows an 

example of the obtained SEM images for the coated Viscose material performed on the 

surface of both sides, i.e. chitin and textile layer. The cross sections of all the coated textiles 

were also observed. On the one hand, it was observed that the Viscose network consisting of 
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interlaced fibers was not damaged by the coating procedure (Figure 4.16 A). The chitin side, 

on the other hand, bore a homogeneous and smooth surface without crevices or flaws (Figure 

4.16 B). The chitin layer covered the pores of the textile without penetrating inside (Figure 

4.16 C). These observations were the same for all the three other coated materials. The cross 

section of the coated materials displayed two distinct layers, i.e. the interlaced fibers 

representative of the textile side and a thin homogeneous chitin coat. The thickness of the 

chitin coat on all materials was estimated to be 10 ± 2 µm as inferred from the cross section 

SEM images (Figure 4.16 C-F). 

 

Figure 4.16: SEM images of the coated textiles obtained from (A) the untreated side of the coated 

Viscose, (B) the chitin side of the coated Viscose, (C) the cross section of the coated Viscose, (D) the 

cross section of the coated Tencel, (E) the cross section of a coated cotton, and (F) the cross section 

of the coated Modal. 

 

To confirm the presence of chitin on the coated side and to exclude the possibility of textile 

degradation, all materials were characterized by FTIR in ATR mode. Figure 4.17 shows the 
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FTIR-ATR spectra of the chitin side for the four coated textiles. The IR curves were shifted 

by a constant value along the y-axis for visual clarity. First, no differences appeared 

comparing all spectra. Secondly, the typical bands of chitin were detected for all the 

materials.
203,204

 Spectra show OH and NH stretching bands at 3430 and 3261 cm
−1

 and CH3 

asymmetric stretching band at 3090 cm
−1

. The large band around 2875 cm
−1 

represents CH, 

CH2, and CH3 symmetric stretching. The doublet band at 1654 and 1625 cm
−1

 corresponds to 

the amide I band (C=O is engaged with two types of hydrogen bond groups, with N-H groups 

of the adjacent chain, and with the OH-groups of the same chain) and the peak at 1550 cm
-1

 

to amide II band (CN stretching vibrations and in-plane NH bending).
203

 The band at 

1427 cm
-1

 is attributed to CH deformation, the one at 1373  cm
-1

 to C-CH3 amide stretching, 

and the one at 1307 cm
-1 

to the amide III band (in plane mode of CONH group) and to CH2 

wagging. COC and CO stretching bands are represented by intense peaks at 1154-1010 cm
-1

. 

The peak at 896 cm
-1 

confirms the presence of β-linkage in the molecule.
204

 This indicated 

that chitin was successfully coated on the textiles and no obvious degradation or 

deacetylation occurred during the preparation.  

 

Figure 4.17: FTIR-ATR spectra of the chitin coated side for the prepared textiles. 
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Each starting material and its corresponding side on the coated textiles are compared by 

FTIR-ATR curves in Figure 4.18. Again, IR curves for the coated textiles were shifted as 

before for better display. The spectrum of each textile side was similar to the spectrum of the 

corresponding non-coated material. The cellulosic fibers were not chemically degraded 

during the coating process. In addition, the absence of the chitin characteristic bands 

confirmed the presence of chitin solely on the coated side of the prepared material as 

similarly observed under SEM.  

 

Figure 4.18: Comparative FTIR-ATR spectra of each reference textile, (A) Tencel, (B) cotton, (C) 

Viscose, and (D) Modal with its corresponding untreated side on the coated materials. 

 

By carefully observing Figure 4.18, some differences can be observed between cotton and 

the other textile’s absorption bands. Table 4.5 accurately reports the main absorption bands 

and their assignments for each textile.
118

 The major infrared spectral difference between 

cotton and the other textiles is a sharper OH stretching band at around 3330 cm
-1

. This means 
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that the hydrogen bonding network of cotton is different from the man-made fibers. The CH2 

bending band, known as the crystallinity band, is sharper for cotton and occurs at 1427 cm
-1

, 

which is distinctive for cellulose I.
118

 For the other textiles, this band is very weak and shifted 

to 1420 cm
-1

 which indicates that they are composed of cellulose II and amorphous 

cellulose.
205

 Moreover, the weak intensity of the peak at 894 cm
-1

 for the cotton spectra 

indicates that crystalline cellulose II structures are not present for cotton.
118,205

 For the other 

absorption bands no differences are observed. 

 

Table 4.5: Main absorption bands and their assignment for the different cellulosic textiles. 

Assignment  Wavenumber (cm
-1

) 

Tencel Cotton Modal Viscose 

OH stretching intramolecular 

hydrogen bonds 

3332 3332 (sharp) 3324 3337 

CH stretching and CH2 

asymmetric stretching 

2889 2897 2890 2883 

OH of water absorbed from 

cellulose 

1641 1633 1639 1641 

CH2 symmetric bending 1420 1427 (sharp) 1421 1421 

CH bending 1366 1356 1366 1366 

OH bending 1312 1314 1319 1308 

COC stretching 1157 1158 1156 1156 

CO stretching 1019 1027 1018 1017 

Asymmetric C1 (β-glucosidic 

linkage) out-of-plane stretching 

893 (sharp) 893 894 (sharp) 894 (sharp) 

 

To sum up these results, cotton is composed of cellulose I whereas the other textiles (Tencel, 

Viscose, and Modal) consist of cellulose II and amorphous cellulose. 

4.3.2.2.3  Evaluation of new functional properties  

In order to evaluate the specific properties of these new materials, a comparison of the 

untreated and the coated textiles was performed regarding their wetting and water/oxygen 

permeation performance. 

Contact angle measurements 

In a first step, it was studied whether the chitin coat can act as a water barrier, since this 

biopolymer is a major structural component in the exoskeleton of marine crustaceans and 
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contributes to their protection.
39

 For this purpose, wetting properties of the films were 

characterized using water contact angle measurements. Typically, contact angles lower than 

90° correspond to favorable wetting of the surface (quite hydrophilic), whereas low 

wettability materials (quite hydrophobic) induce contact angles higher than 90°.
206

 The 

relation between the water contact angles and the type of textile (coated and non-coated) is 

illustrated in Figure 4.19 A. Due to the high hydrophilic behavior of cellulosic fibers and the 

porous structure of the textiles, no water contact angle could be measured for the non-coated 

materials as the water drop was immediately absorbed. Only cotton induced a contact angle 

of 85 ± 5° for a few seconds (10 s), probably due to its highly ordered structure (cellulose I). 

For the coated materials, the water contact angle tended to be identical on almost all chitin 

sides and was approximately 90° (90 ± 4° for the coated Tencel, 91 ± 3° for the coated 

cotton, and 90 ± 4° for the coated Viscose). Only the coated Modal textile exhibited a slightly 

smaller value of 84 ± 3°. These results proved that the chitin layers exhibit a poor degree of 

wetting towards water. After a long contact period on the surface of the chitin layer, 

decreasing water contact angles were detected and the absorption times were recorded 

(Figure 4.19 B). A complete absorption of a 2 µL drop on all chitin layers was reached after 

circa 20 min (24 ± 3 min for the coated Tencel, 22 ± 6 min for the coated cotton, 21 ± 1 min 

for the coated Viscose, and 19 ± 4 min for the coated Modal). Accordingly, the formed chitin 

layer is not fully impermeable to water but significantly retards its infiltration.  

Since the untreated side of the coated textiles immediately absorbed the water drop, their 

wettability properties were not altered during the process (Figure 4.19 B). Consequently, the 

chitin coating affected only the wetting properties on one side of the processed materials, by 

making the textiles more hydrophobic. The water penetration into the cellulosic textiles was 

slowed down, probably due to the plugging of the holes and the increased wetting angles.  
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Figure 4.19: (A) Contact angle and (B) absorption time of a 2 µL water drop on the surface of the 

textile materials non-coated and coated with chitin (CS stands for Chitin Side and TS for Textile 

Side). 

 

Water permeability 

To study the influence of chitin on the water diffusion through the materials, water 

permeability tests for all of the coated and untreated materials were performed under 

identical conditions. Each film was placed between two cells, whereby one was filled with 

water and the other one with ethyl lactate (more details in Section 4.2.2.3). Figure 4.20 shows 

the comparative evolution of the water concentration in the ethyl lactate cell between the 

coated and uncoated textiles. The increase of the water concentration was drastically reduced 

when the material was coated with chitin. After 420 min, the water concentrations reached 

values of 0.044, 0.042, 0.032, and 0.080 g/mL for the uncoated Tencel, cotton, Viscose, and 

Modal, respectively, while water concentrations of 0.014, 0.014, 0.013, and 0.014 g/mL were 

recorded for the coated Tencel, cotton, Viscose, and Modal, respectively. The non-coated 

Modal material was the most water permeable among the untreated textiles.  

From these experiments, water permeability coefficients were calculated according to 

Equation 4.3 and are reported in Table 4.6. As expected, the permeability coefficients for all 

non-coated textiles were higher than the ones for the coated ones, namely by a factor of 3.3, 

3.2, 3.4, and 4.1 for Tencel, cotton, Viscose, and Modal, respectively. The water transport 
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was faster and easier through the unmodified textiles because of their porous and hydrophilic 

nature. As shown in Table 4.6, water permeability values for the coated textiles ranged from 

4.83 to 6.76x10
-8

 m/s. This indicates that the water barrier properties of the chitin coats were 

independent of the nature of the textile. The chitin layer thus slowed down the water 

permeation.  

 

Figure 4.20: Comparative evolution of the water concentration in the ethyl lactate cell over time 

between each uncoated and coated textile. (A) Tencel, (B) cotton, (C) Viscose, and (D) Modal. 
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Table 4.6: Water permeability coefficient, 𝑃𝐻2𝑂, with corresponding standard deviations. 

Material 𝑷𝑯𝟐𝑶 (x10
-7 

m/s) 

Tencel 2.0 ± 0.5 

Tencel coated with chitin  0.6 ± 0.2 

Cotton 1.6 ± 0.4 

Cotton coated with chitin  0.5 ± 0.2 

Viscose 1.7 ± 0.7 

Viscose coated with chitin  0.5 ± 0.2 

Modal 2.9 ± 0.8 

Modal coated with chitin  0.7 ± 0.2 

 

Gas permeability 

In order to explore other barrier effects of the chitin layer, gas (i.e. O2) permeability tests 

were carried out under dry conditions (more details in Section 4.2.3.2.5). Figure 4.21 shows 

the evolution of the oxygen partial pressure, 𝑝O2
, in the measurement cell for all materials as 

a function of time. Oxygen permeability coefficients were calculated according to 

Equation 4.6 considering the quasi linear increase of the oxygen partial pressure and are 

reported in Table 4.7. For non-coated textiles, 𝑝O2
 identically increased from 0 to 51 hPa in 

13 minutes. This generated high permeability coefficients for these materials in the range 

from 9.0 to 9.4 x10
-7

 m/s (Table 4.7). Furthermore, it should be noticed that this 𝑝O2
 raise 

followed the same trend as in the case when no membrane was fixed on the top of the 

permeation chamber. Independently of their nature, all textiles are highly permeable to 

oxygen due to the presence of open pores. In contrast, the oxygen diffusion through the 

coated materials was much slower as shown in Figure 4.21. After 13 minutes, 𝑝O2
values of 

3.1, 3.0, 2.8, and 2.7 hPa were recorded for the coated Tencel, cotton, Viscose, and Modal, 

respectively. As a result, coated textiles show significant lower permeability coefficients, 

which ranged from 0.42 to 0.46 x10
-7

 m/s. Comparing these values to those obtained for the 

non-coated textiles, it can be concluded that oxygen permeated through  untreated Tencel, 

cotton, Viscose, and Modal textiles 19.8-22.8 times faster than through its corresponding 

coated materials.  
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Figure 4.21: Oxygen partial pressure over time measured in the O2 permeation chamber for (A) all 

the non-coated and coated textiles and (B) specific for the coated materials with chitin. 
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Table 4.7: Oxygen permeability coefficients, 𝑃𝑂2
, with corresponding standard deviations. 

 

 

 

 

 

 

To prove that these new functional properties were caused by chitin and not just by the 

plugging of the textiles pores, the same coating procedure was performed with cellulose 

instead of chitin. To achieve this, a Tencel textile was coated with microcrystalline cellulose 

under the same conditions as previously described. It was not possible to reproduce a 

comparably thin 10 ± 2 µm cellulose layer as for chitin. Therefore, a precise quantitative 

comparison was not possible, especially for the permeability tests. However, it can be 

mentioned that cellulose coating induced a lower water contact angle of 54° instead of 90° 

for the chitin coating. The water drop was also two times faster absorbed by the cellulose 

layer than by the chitin coat. Concerning the gas/water permeability properties of the 

cellulose coated Tencel, it seems that the cellulose coat was more permeable to water but 

slightly less to oxygen than chitin. Further work has to be done to confirm these 

observations. 

Probably further optimization, as for instance the increase of the thickness of the chitin coat, 

could improve the barrier properties of these new materials, making them potential 

candidates for various applications as impermeable textiles for hygiene products. 

4.3.2.2.4  Recycling of BmimOAc 

At the end of the coating process, the recycling of the ionic liquid was attempted for 

sustainability and profitability interests. Once chitin regenerated, the ethanol-based 

precipitation solutions were collected and submitted to a drying procedure detailed in 

Material 𝑷𝐎𝟐
 (x10

-4
 m/s) 

Without membrane 9.4 ± 0.4 

Tencel 9.1 ± 0.3 

Tencel with chitin 0.46 ± 0.02 

Cotton 9.1 ± 0.4 

Cotton with chitin 0.46 ± 0.02  

Viscose 9.0 ± 0.3 

Viscose with chitin 0.42 ± 0.01  

Modal 9.1 ± 0.3 

Modal with chitin 0.40 ± 0.01  
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Section 4.2.2.4. Ethanol was successfully removed under reduced pressure using a rotary 

evaporator. However, GVL was still present in the residue due to its remarkable low vapor 

pressure (0.65 kPa at 25 °C and 3.5 kPa at 80 °C according to scientific literature).
181

 A 

second step was carried out to remove GVL by using a high vacuum setup (10
-6

 mbar). 

Analysis of the obtained extract by 
1
H- and 

13
C-NMR revealed that BmimOAc remained 

unaltered and no trace of ethanol or GVL was detected (see Appendix 4.1). The recovered IL 

was reused to dissolve successfully 2 wt% of chitin in presence of 10 wt% GVL as 

performed for the coating procedure. BmimOAc was then recovered a second time and 

reused for a third time without appreciable decrease of its efficiency.  
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4.4 Concluding remarks 

In this part, the main objectives were the production and characterization of novel polymer 

materials based on chitin and/or cellulose and the functionalization of cellulose-containing 

materials with chitin.  

Cellulose fibers were produced according to the Lyocell process using N-methylmorpholine 

N-oxide (NMMO) hydrate. With the help of Lenzing AG, the impact of the addition of γ-

valerolactone (GVL) on the spinning procedure was studied. It was revealed that this bio-

sourced co-solvent could reduce the spinning temperature without deterioration in the 

stability of the spinning mass. However, no other improvements such as better mechanical 

properties of the fibers were observed so far. Further experiments have to be performed to 

fully characterize the advantages of GVL in this industrial process.  

Cellulose and chitin composite fibers and films were produced using the ionic liquid 1-butyl-

3-methylimidazolium acetate (BmimOAc) combined with GVL. Irregular composite fibers 

were spun with a self-developed dry-jet wet spinning apparatus. Accordingly, the fiber 

properties could not be fully characterized. Cellulose/chitin regenerated films were 

successfully prepared by Yaqing Duan by varying the mass ratio of chitin to cellulose. The 

properties of the resulting films were evaluated in detail by means of various analysis 

methods. It was demonstrated that chitin was not converted into chitosan by the dissolution 

process.  

Chitin coated cellulosic textiles were prepared by regenerating chitin from a mixture of 

BmimOAc/GVL on one side of different textiles. A uniform, transparent, and non-modified 

chitin film of approx. 10 µm was successfully coated without damaging the textile network. 

The chitin coat influenced the properties of the resulting materials by making them more 

hydrophobic solely on the coated site. The penetration of water and oxygen into the coated 

materials were also slowed down leading to presume that chitin acted as a promising natural 

water and oxygen barrier. Finally, a procedure to recover the ionic liquid during the process 

was proposed for sustainable concerns. This step allows a multiple cycle use of the IL 

without any detectable loss of performance. 
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Conclusions and summary  

 

The principal aim of this thesis was to prepare novel materials from cellulose and chitin 

using environmentally friendly techniques. In order to achieve this, different challenges were 

taken up. Figure C.1 gives an overview of the different tasks performed during this work. 

The first confrontation was the solubilization of cellulose and chitin (Chapter 2). The second 

part dealt with the influence of a green co-solvent in dissolution processes (Chapter 3). From 

the prepared polymer solutions, materials were formed, washed and dried. At the end, the 

recycling of the main solvent was investigated to be reused in the dissolution process 

(Chapter 4).  

 

Figure C.1: Overview of the chapters in this work. 

 

First of all, the solubilization of cellulose and chitin were investigated in different solvents. 

Deep eutectic solvents, ionic liquids (ILs) with various anion and cation combinations, and 

other more conventional solvent systems were evaluated towards their capacity to dissolve 

cellulose and chitin. The efficient solvents are shown in the Figure C.2. It was found that 

solely one IL, 1-butyl-3-methylimidazolium acetate (BmimOAc), could dissolve both 
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polymers in sufficient amounts to produce materials. Additionally, it was observed that chitin 

was poorly soluble in almost all the 49 solvents tested. It was found that despite similar 

structure, cellulose and chitin were not soluble in the same solvents. The high degree of 

polymerization of chitin and the additional intra- and inter-molecular interactions caused by 

the acetamido group present in chitin repeating unit may be the reasons of such a contrast.  

 

Figure C.2: Overview of the solvents efficient for cellulose and chitin dissolution: 1-butyl-3-methyl-

imidazolium acetate (BmimOAc), 1-allyl-3-methylimidazolium bromide (AmimBr), tetrabutyl-

phosphonium hydroxide (TBPOH), N-methylmorpholine-N-oxide monohydrate (NMMO mono.), 1-

ethyl-3-methyl-imidazolium acetate (EmimOAc). 

 

In order to reduce the lack of sustainability of the efficient imidazolium-based ionic liquid, a 

greener and bio-based co-solvent was added in the dissolution process. γ-Valerolactone 

(GVL), a sustainable chemical derived from levulinic acid, was found to be the most suitable 

candidate for this purpose. High concentrations of GVL, particularly for cellulose 

solubilization, were successfully added to BmimOAc in the dissolution process without 

precipitation of the polymers. This addition allowed a much faster dissolution, which can be 

explained by a significant decrease in the viscosity of the ionic liquid as well as of the 

resulting mixtures. No major disruptions on the ion interactions of BmimOAc and no 

formation of nano-structures were observed by Walden plot and dynamic light scattering 

techniques, respectively. In addition, rheological measurement of chitin and cellulose 

solutions after dissolution in BmimOAc and GVL revealed that GVL had a different 

influence on the rheological properties of these mixtures. While GVL allowed the chitin 
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chains to be more mobile, the contrary was observed for cellulose. Again the different chain 

length of the polymers can explain this dissimilarity.  

Besides this study, the influence of GVL on the industrial Lyocell process was also 

investigated. For this task, the solvent N-methylmorpholine-N-oxide monohydrate (NMMO 

mono.) was used. Showing no solubility of chitin, NMMO mono./GVL solvent system was 

only investigated regarding cellulose dissolution. Improvements such as reduced dissolution 

duration, lower processing temperature, and more stable polymer solutions were obtained by 

introducing a significant amount of GVL (from 27 to 65 wt%). Possible reasons for these 

enhancements can be explained by the modified thermal and rheological properties caused by 

the addition of GVL. Thermal studies performed by differential scanning calorimetry showed 

that increasing GVL content in NMMO mono./GVL binary mixtures decreased their melting 

temperatures, enabling thus cellulose dissolution at lower temperatures. In addition, GVL 

allowed the ternary systems containing additionally cellulose to melt and to crystallize at 

reduced temperatures. This leads to a possible reduction of processing temperature in the 

manufacturing of fibers or any other materials. Lastly, GVL lowered the complex viscosity 

of ternary mixtures, facilitating thus the practical implementation of the cellulose dope. 

Combining higher performance and eco-friendly properties, this co-solvent may be of great 

interest for industrial applications.  

 

Lastly, the production and characterization of novel materials were investigated (see Figure 

C.3). First, cellulosic textiles coated with a 10 µm chitin layer were successfully prepared by 

regenerating chitin from a BmimOAc/GVL mixture on one side of textiles. After removal of 

the solvent system and drying, the composite materials exhibited the unique properties of 

chitin on the coated side without sign of cellulose degradation. The influence of the chitin 

coat on the textiles properties was characterized by wetting and gas/water permeability 

comparative studies of the conventional and coated textiles. It was demonstrated that chitin 

layer rendered the materials more hydrophobic solely on the coated site. In addition, the 

penetration of water and oxygen into the coated materials were slowed down. This leads to 

presume that chitin can act as a promising natural water and oxygen barrier. Thus, these new 
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functional materials are potential candidates for various applications such as impermeable 

textiles for hygiene products. At the end of the process, a procedure to recover the ionic 

liquid was proposed for sustainable concerns. BmimOAc was reused and recycled at least 

two times without loss of performance.  

Secondly, cellulose/chitin blend fibers were produced using BmimOAc/GVL as solvent 

system. For this purpose, a self-developed apparatus according to the dry jet-wet spinning 

process was employed. However, the lack of performance of this setup did not allow a 

successful production and complete characterization of these fibers. Further studies have to 

be performed to improve the apparatus.  

Initially, the major intension of this project was focused on materials based on both, chitin 

and cellulose. Due to the lack of solubility of chitin in approximately all tested solvent, 

materials containing solely cellulose were produced as well. To further study the potential of 

GVL as co-solvent in the Lyocell process, cellulosic fibers were produced with the help of 

Lenzing AG. Preliminary experiments showed that the addition of the co-solvent could 

reduce the spinning temperature without deteriorating the stability of the spinning dope. No 

other enhancements, such as better mechanical properties of the fibers, were observed so far. 

However, the fact that this sustainable solvent can be added in an industrial process is quite 

remarkable.  

 

Figure C.3: Overview of the produced biodegradable materials. 
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To sum up, novel biodegradable materials from chitin and/or cellulose were produced in this 

thesis, which could provide promising high valuable products. To respect the greenness of 

cellulose and chitin, environmentally friendly chemicals were used, whenever applicable. If it 

was not possible to replace the harmful components by green ones, they were reduced to the 

possible minimum and their recycling was investigated. Two techniques were performed to 

produce the biodegradable materials, i.e. the coated textiles and the fibers. For the latter, 

lower temperatures compared to industrial process were used due the addition of a 

sustainable co-solvent, decreasing thus the energy consumption. 

 

This thesis opens several doors and opportunities to go further in the development of greener 

process for designing biodegradable materials. In future, it would be essential to work on the 

solubility of chitin. Its high degree of polymerization may be one of the major problems and 

an approach to decrease the chitin chain lengths could facilitate its dissolution. However, this 

method should not lead to a reduced degree of acetylation with a risk of producing chitosan. 

The implementation of GVL in the Lyocell process can be also further investigated. It could 

be expected that GVL might facilitate the industrial process.  
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Appendices 

 

Appendix 2.1. Synthesis of 1-allyl-3-methylimidazolium bromide 

for the dissolution tests 

 

1-Allyl-3-methylimidazolium bromide (AmimBr) was analyzed by 
1
H- and 

13
C-NMR 

measurements in dimethyl sulfoxide-d6. The structure of AmimBr is shown in Figure A.1. 

The following abbreviations are used to explain the multiplicities: s = singlet, d = doublet, t = 

triplet, m = multiplet. 

 

Figure A.1: Structure of AmimBr. 

AmimBr: 

1
H-NMR (300 MHz, DMSO-d6): δ (ppm) = 3.90 (s, 3H, C7), 4.95 (d, J=6.14 Hz, 2H, C4), 

5.19-5.27 (m, 2H, C6), 5.89-6.03 (m, 1H, C5), 7.91 (t, J=1.53 Hz, 1H, C1), 7.93 (t, J=1.47 Hz, 

1H, C2), 9.52 (s, 1H, C3) 

13
C-NMR (300 MHz, DMSO-d6): δ (ppm) = 36.00 (C7), 50.38 (C4), 120.06 (C6), 122.00 

(C2), 123.44 (C1), 131.65 (C5), 136.31 (C3) 
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Appendix 3.1. Impact of GVL on BmimOAc physicochemical 

properties 

 

Temperature-dependent density, dynamic viscosity, and electrical conductivity data for 

BmimOAc/GVL mixtures are listed in Table A.1, A.2 and A.3, respectively.  

Table A.1: Density values (expressed in g/cm
3
) as function of temperature and of GVL composition 

for different BmimOAc/GVL mixtures. 

Temperature 

(°C) 

GVL = 0 

wt% 

GVL = 20.3 

wt%  

GVL = 50.0 

wt%  

GVL = 68.4 

wt%  

GVL = 100 

wt%  

25.00 1.051 1.053 1.054 1.054 1.049 

40.00 1.042 1.043 1.043 1.041 1.035 

60.00 1.030 1.030 1.028 1.025 1.016 

80.00 1.018 1.017 1.013 1.009 0.997 

100.00 1.006 0.999 1.002 0.994 0.983 

110.00 1.000 0.992 0.995 0.986 0.974 

 

Table A.2: Dynamic viscosity values (expressed in mPa.s) as function of temperature and of GVL 

composition for different BmimOAc/GVL mixtures. 

Temperature 

(°C) 

GVL = 0 

wt%  

GVL = 20.3 

wt%  

GVL = 50.0 

wt%  

GVL = 68.4 

wt%  

GVL = 100 

wt%  

25.00 333.695 73.089 13.954 5.576 1.825 

40.00 123.295 35.393 8.689 3.872 1.422 

60.00 44.675 16.658 5.221 2.594 1.072 

80.00 20.848 9.343 3.463 1.874 0.847 

100.00 12.111 5.890 2.469 1.420 0.684 

110.00 9.433 4.880 2.144 1.261 0.625 

 

Table A.3: Electrical conductivity values (expressed in mS/cm) as function of temperature and of 

GVL composition for different BmimOAc/GVL mixtures. 

Temperature 

(°C) 

GVL = 0 

wt% 

GVL = 20.3 

wt%  

GVL = 50.0 

wt%  

GVL = 68.4 

wt%  

25.00 0.629 1.687 3.120 3.047 

40.00 1.608 3.317 4.942 4.477 

60.00 4.158 6.678 8.097 6.817 

80.00 8.440 11.449 12.027 9.599 

100.00 1.454 17.542 16.617 12.773 
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Appendix 4.1. Recycling of 1-butyl-3-methylimidazolium acetate 

during the coating procedure of chitin on textiles 

 

Pure γ-valerolactone (GVL), pure 1-butyl-3-methylimidazolium acetate (BmimOAc), 

recycled BmimOAc a first time (named recycled BmimOAc 1), and recycled BmimOAc a 

second time (recycled BmimOAc 2) were analyzed by 
1
H- and 

13
C-NMR measurements in 

dimethyl sulfoxide-d6. The structure of BmimOAc and GVL is shown in Figure A.2. The 

following abbreviations are used to explain the multiplicities: s = singlet, d = doublet, t = 

triplet, m = multiplet. 

 

 

Figure A.22: Structure of (A) BmimOAc and (B) GVL. 

 

Pure GVL: 

1
H-NMR (300 MHz, DMSO-d6): δ (ppm) = 1.30 (d, J=6.31 Hz, 3H, C1), 1.68-1.81 (m, 1H, 

C3), 2.23-2.34 (m, 1H, C3), 2.46 (t, J=2.27 Hz, 1H, C4), 2.50 (t, J=2.46 Hz, 1H, C4), 4.65-4.54 

(m, 1H, C2) 

13
C-NMR (300 MHz, DMSO-d6): δ (ppm) = 20.48 (C1), 28.44 (C3), 28.96 (C4), 76.57 (C2), 

176.92 (C5) 

Pure BmimOAc: 

1
H-NMR (300 MHz, DMSO-d6): δ (ppm) = 0.85 (t, J= 7.40 Hz, 3H, C10), 1.15-1.27 (m, 2H, 

C9), 1.60 (s, 3H, C1), 1.69-1.79 (m, 2H, C8), 3.88 (s, 3H, C3), 4.20 (t, J=7.20 Hz, 2H, C7), 

7.88 (t, J=1.62 Hz, 1H, C4), 7.96 (t, J=1.73 Hz, 1H, C5), 10.29 (s, 1H, C6) 

13
C-NMR (300 MHz, DMSO-d6): δ (ppm) =13.10 (C10), 18.64 (C9), 25.69 (C1), 31.33 (C8), 

35.27 (C3), 48.05 (C7), 122.16 (C5), 123.43 (C4), 137.95 (C6), 173.15 (C2) 

A 

B 
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Recycled BmimOAc 1: 

1
H-NMR (300 MHz, DMSO-d6): δ (ppm) = 0.86 (t, J=7.44 Hz, 3H, C10), 1.15-1.27 (m, 2H, 

C9), 1.57 (s, 3H, C1), 1.69-1.79 (m, 2H, C8), 3.88 (s, 3H, C3), 4.20 (t, J=7.19 Hz, 2H, C7), 

7.87 (t, J=1.63 Hz, 1H, C4), 7.95 (t, J=1.63 Hz, 1H, C5), 10.29 (s, 1H, C6) 

13
C-NMR (300 MHz, DMSO-d6): δ (ppm) =13.11 (C10), 18.64 (C9), 25.06 (C1), 31.33 (C8), 

35.27 (C3), 48.05 (C7), 122.15 (C5), 123.43 (C4), 137.99 (C6), 173.06 (C2) 

Recycled BmimOAc 2: 

1
H-NMR (300 MHz, DMSO-d6): δ (ppm) = 0.87 (t, J=7.41 Hz, 3H, C10), 1.16-1.28 (m, 2H, 

C9), 1.56 (s, 3H, C1), 1.70-1.80 (m, 2H, C8), 3.88 (s, 3H, C3H3), 4.19 (t, J=7.21 Hz, 2H, C7), 

7.83 (t, J=1.64 Hz, 1H, C4), 7.91 (t, J=1.59 Hz, 1H, C5), 10.20 (s, 1H, C6) 

13
C-NMR (300 MHz, DMSO-d6): δ (ppm) =13.13 (C10), 18.64 (C9), 26.12 (C1), 31.32 (C8), 

35.32 (C3), 48.09 (C7), 122.11 (C5), 123.41 (C4), 137.86 (C6), 172.95 (C2) 
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