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1 Summary

In classification tasks of biological data, there are usually fewer labeled than unlabeled

samples because labeling samples is costly or time-consuming. In addition, labeled data

sets can be re-used in different contexts as additional unlabeled data sets. For example,

when searching the Gene Expression Omnibus (GEO) repository for microarray data

sets of drug sensitivity and resistance experiments, the largest one has 2,522 samples,

but the median has only 12 samples.

In machine learning in general, utilizing unlabeled data in classification tasks is

called semi-supervised learning. Artificial neural networks can be used to pre-train

on unlabeled data before fine-tuning via back-propagation with labeled data. Such

artificial neural networks enabling deep learning have gained attention since around

2010, since when they have been among the best-performing algorithms in visual object

recognition.

We measured accuracies in the task of classifying tissue taken from breast cancer

patients at reductive surgery as chemotherapy-resistant or -sensitive. Different data

sets were constructed by subsampling from GEO data set GSE25055 and GSE25065.

Using these data sets, we compared classification accuracy of the neural networks au-

toencoder, Restricted Boltzmann Machine, Deep Belief Network (DBN) and support

vector machine (SVM), and Transductive SVM (TSVM). Training was done both in su-

pervised and semi-supervised mode. For the neural networks, we tried several different

network architectures.

Smoothing the validation set accuracies obtained during training iterations to al-

leviate low sample numbers helped in model selection of the best classifier. We also

investigated the effect of different normalization procedures on the classification ac-

curacy. The data were normalized with either RMA or MAS5, followed by either no

batch-effect correction or Combat batch-effect correction. Only MAS5 profited from

added Combat batch-effect correction, but normalization with RMA alone yielded the

best classification accuracy.

We were particularly interested whether classification accuracies improve when

adding unlabeled samples in semi-supervised learning. Overall, neural networks and

support vector machines performed similar. We found a slight improvement of classifi-

cation accuracy when the number of unlabeled samples presented to DBN and TSVM

was increased to the maximal number of samples in our data sets. However, this effect

was only observed when the learning algorithms were presented the expression values

of all 22,283 genes, not just the 500 most variable genes.
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Part I

Introduction

2 Personalized Medicine

A medium-term goal of medicine is “personalized medicine”, whose goal is to provide

custom-tailored health care on an individual basis. For example, a standard treatment

for breast cancer is chemotherapy, but not all patients profit from this treatment. The

event that a patient has no sign of breast cancer after reductive surgery followed by

chemotherapy is called pathologic complete response, and the opposite event that the

patient still has cancerous tissue after this procedure is called residual disease.

Suppose there were a predictor that could tell the physicist how likely a patient

is to benefit from chemotherapy. If the prediction for a certain patient was such that

complete response to chemotherapy was unlikely, chemotherapy could be replaced by

another therapy.

The goal of this work is to contribute to such a predictor. The input to the predictor

is the molecular expression data, i.e. measures of the number of RNA copies of specific

genes present in the cancer tissue. These gene expression measurements are ususally

measured using microarrays or next generation sequencing. An artificial neural network

then processes this data. The prediction is output by the network in the form of a

number between 0 and 1. Here, 0 means the patient is predicted with absolute certainty

to have residual disease, 1 means the patient is predicted with absolute certainty to

have pathologic complete response, and a number in-between is interpreted as the

probability for pathologic complete response.

The study of neural networks in biology prompted the development of artificial

neural networks as models of biological neural networks. After an introduction to

biological and artificial neural networks we will give an overview of the relevant topics

of machine learning and then introduce the own work done in this manuscript.

3 Biological and Artificial Neural Networks

Artificial neural networks are mathematical constructs, designed to imitate the signal

processing capabilities of real neurons, found in nearly all animals. Neurons can be

connected to form complex neural networks. Like their biological counterparts, artificial
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Figure 1: Schematic image of three biological neurons. A: neuron body B: nucleus C:
dendrite D: synapse E: axon projecting from a distant neuron.

neural networks consist of simpler building blocks, the neurons.

3.1 Neurons As Basic Signal Processing Units

The biological neurons are defined (according to the neuron doctrine [BullockDouglas2005])

as the smallest units whose state change may be called signal processing, so they are

the basic signal processing units. They have multiple inputs at dendrites, and multiple

outputs at axon terminals [ByrneDafny1997]. Figure 1 gives a schematic overview of

these elements.

In most real neurons, the signal transmission and processing is facilitated by alter-

nating small electric (action) potentials (along the axons) and chemical transmissions

(at chemical synapses between axon and dendrite). The electric potential is transmit-

ted along the dendrites of a neuron, and flows to the axon of the neuron, where it can

lead to the release of neurotransmitters stored in the axon terminals into the synaptic

cleft. The released neurotransmitters are detected by receptors and cause ion channels

in the adjacent dendrites of other neurons to open, which changes their membrane

potential. See figure 2 for a depiction of axon, synaptic cleft, and dendrite.
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Figure 2: Schema of a chemical synapse. The signal is transmitted from the axon
terminal (left) to the dendrite (right). Grey: membranes of neurons. Green and blue:
ion transporters maintain intracellular ion concentrations. Red: neurotransmitter is
stored inside the cell in vesicles and emitted into the synaptic cleft upon an electric
potential arriving at the axon terminal. Purple: receptors signal to the inside of the
cell the absence or presence of neurotransmitter on the outside of the cell.

3.1.1 Action Potentials, Their Propagation, and Chemical Synapses

The action potentials are realized by cells in the form of different ion concentrations

inside and outside the cell. These ion gradients are maintained in the resting state

by the Na+/K+-ATPases that pump 3 Na+ ions out of and 2 K+ ions into the cell

for every ATP molecule [LodishZipursky2000]. Because ions are charged, there is an

electric potential between the outside and inside of the cell. The resting potential is

between −80mV and −40mV, depending on the type of neuron. The electric potential

becoming more positive is called depolarization, and the opposite hyperpolarization.

The propagation of the action potentials along dendrites is realized by the opening

and closing of ion channels. Once depolarization of an adjacent region of a neuron

causes the electric potential between the inside and outside of a Na+ ion channel to

reach a critical value, the ion channel opens, causing further depolarization in adjacent

regions of the neuron. This positive feedback loop continues until all Na+ channels are
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open. At the peak of depolarization, K+ ion channels open, causing hyperpolarization,

and the potential returns to the resting potential. This makes the action potential travel

along the neuron. Once it has reached an axon terminal, it causes neurotransmitter

release.

Neurotransmitters binding to receptors present on the outside of the neuron’s mem-

brane cause ion channels to open, and the ions flow into or out of the cell to achieve

equilibrium of ion concentration. The type of ion channel being opened upon binding

of a neurotransmitter can cause either depolarization or hyperpolarization of the den-

drite, depending on the charge of the ion, and whether the resting concentration of the

ion is higher intracellular or extracellular. If a critical threshold of depolarization is

reached, the Na+ ion channels will open, and an action potential “spike” is generated

as described above.

3.1.2 Encoding of Information in Action Potentials

The presence of a critical threshold suggests that it is not the “analog” electric potential,

but the “digital” spike that carries the information from one neuron to the next. For

example, the strength muscles are innervated with, is encoded in the number of action

potentials per time delivered by the muscle neuron to the muscle fiber. However, some

neurons involved in perception directly transmit information in the fluctuations of

neurotransmitter released. This analog mode of transmission allows more information

to be transmitted per time. Subthreshold emission of neurotransmitter also seems to

modulate subsequent action potentials, allowing for a mixture of analog and digital

information transmission [DebanneRama2013].

Examples for neural networks that have been partly decoded are the eye (visual

system) and the nose (olfactory system).

3.2 Examples of Biological Neural Networks

3.2.1 The Eye, a Visual System

In the eye, specialized cells called rods and cones detect light[Biochemistry2002,

Kolb2003]. Rods are more sensitive to dim light, while the three types of cones re-

act to bright light only but can differentiate between colors. Both rods and cones

release the neurotransmitter glutamate continuously into the synaptic cleft, but when

hit by light, suspend this emission for the duration of the light. This is implemented

by the cell by a long pathway.
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Specifically, light elicits a transformation of cis-rhodopsin to trans-rhodopsin, which

presents on its surface a G protein binding site. The G protein transducin binds to

the activated rhodopsin, and in this process GDP acquires a phosphate group to form

GTP. The α-subunit of transducin activates a cGMP phosphodiesterase, which in turn

hydrolyzes cGMP to GMP. The reduction in the concentration of cGMP causes cGMP-

gated ion channels to close. This in turn hyperpolarizes the photosensitive cell, causing

glutamate to be released into the synaptic cleft at a slower rate. This long pathway

between cis-rhodopsin and glutamate release inhibition facilitates an amplification of

the signal at every step, which allows rod cells to signal a spike in response to it being

hit by a single photon.

The area that elicits a response in the cell upon being illuminated is called the

receptive field , and is just as large as the top of the photoreceptor for rods and cones.

The released glutamate binds to receptors present on the outside of bipolar cells, and,

depending on the type of bipolar cell, cause either an action potential to be generated

when the photoreceptor is lit and the surrounding area is dark (ON bipolar cell),

or when the photoreceptor is dark against a bright background (OFF bipolar cell).

Another type of cell, the horizontal cell integrates signals from surrounding cone cells,

and feed their signal back to the cones, or directly to bipolar cells. This enhances

contrast. The signal from several bipolar cells is fed into a ganglion cell, which therefore

has a larger receptive field than its connected bipolar cells. ON bipolar cells only excite

ON ganglion cells, and OFF bipolar cells excite only OFF ganglion cells. Finally, in

primates, there are more than a million nerve fibers from ganglion cells to the visual

cortex of the brain. Altogether, the basic cell types are, depending on the species, 1 to

4 types of horizontal cells, 11 types of bipolar cells, 22 to 30 types of amacrine cells, and

20 types of ganglion cells. Among those cell types’ known functions are integration of a

large number of rods to provide sight in little light, brightness-dependent size regulation

of the receptive field of amacrine cells, and an additional photoreceptor distinct from

rods and cones[Kolb2003].

3.2.2 Odor Sensing in the Olfactory System

The olfactory system of mammals and insects contains neurons that detect odor

molecules, called glomeruli[ZhangSharpee2016]. In humans, there are about 500 dif-

ferent types of glomeruli [1], but it is hypothesized that a human can perceive around

10, 000 different odors. Each “atomic” odor consisting of a few (< 100) molecular

species excites one or more glomeruli, and the compression requires each glomerulus to



18 3 BIOLOGICAL AND ARTIFICIAL NEURAL NETWORKS

signal the presence of one or more than one odor. The excitation pattern of multiple

glomeruli must be resolved in the olfactory neuronal system so that a low-dimensional

vector of (≈ 500) glomeruli activations is decompressed to a high-dimensional repre-

sentation of (≈ 10, 000) odors in the brain.

Each glomerulus is connected to one or more Kenyon Cells in insects. It is assumed

that the activation of a Kenyon cell signals to the insect nervous system the presence

of one specific odor. (In the mammalian brain, a single odor is represented by neurons

in the olfactory cortex.) Experiments show that the circuit connecting glomeruli to

Kenyon cells is feed-forward only, i.e. without recurrent connections (loops). The

structure of a feed-forward compressed sensing circuitry is of interest, because standard

compressed sensing circuits are recurrent dynamic systems that converge to one of their

attractor states. In addition to quick decoding of odors, experimental evidence shows

that the biological compressed sensing circuitry is robust to noise, i.e. to spurious

neuronal spikes in glomeruli, or noise due to experimental inhibition1 of glomeruli.

The theoretical work of [ZhangSharpee2016] proposed that a feed-forward archi-

tecture could facilitate odor decoding simply by implementing a logical AND. They

suggest that in the neuronal AND-circuit a specific odor’s Kenyon cell is activated

when at least (for example) 80% of the glomeruli with receptors to this odor are active.

On a cellular level, this could be realized by connecting the glomeruli associated with

an odor with the odor’s Kenyon cell, and a threshold at the Kenyon cell’s input.

A prediction of [ZhangSharpee2016] is that the number of glomeruli activated by a

single odor should be close to the number of glomeruli that are connected to a Kenyon

cell. They postulated further that the validity of their feed-forward model can be

tested by measuring the odor sparseness2 in the environment of an animal species and

comparing it to its average number of connections from glomeruli to Kenyon cells.

For example, in Drosophila, about 9% of the glomeruli are excited by an odorant,

and the connectivity rate between glomeruli and Kenyon Cells is between 6.5% and

12.5%. In the locust, a projection neuron (the equivalent to a glomerulus) is activated

by half of the odorants and the connectivity rate is about 50%. This is in agreement

with the proposed model.

The model also predicts that species with sparse connectivity have better odor per-

ception of complex odor mixtures. On the other hand, species with dense connectivity

should have better olfactory performance in detecting simple odor mixtures.

1Also experimental modifications of glomeruli have been made so that half of all glomeruli always
express only one type of receptor.

2Odor sparseness is the average number of different molecular species in an odor.
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Figure 3: Left: The sigmoid function σ. Right: Schema of the computational steps
in an artificial neural feed-forward network from input layer to output layer. The
“+” nodes accumulate their input values, and the “σ” nodes compute the output of a
neuron, to be used as input for the next layer.

3.3 Artificial Neurons as Simple Models of Biological Neurons

The machinery facilitating propagation and transmission of information in and between

biological neurons is highly simplified in artificial neurons. Signal processing of a real

neuron is modelled in an artificial neuron as a mathematical function that has multiple

input variables, computes a value according to the function formula and its parameters

and outputs its computed value to multiple neurons, which use it as an input vari-

able. Herein, the processes of neurotransmitter release, de- and hyperpolarization, and

propagation of the action potential are abstracted away into discrete time steps.

Each artificial neuron’s function is evaluated once per time step. Often, the sigmoid

function is used to describe the output of an artificial neuron, the so-called activation

oi = σ(vi) =
1

1 + exp(−vi)
, (1)

where vi ∈ R is the accumulated input to neuron i, and oi ∈ [0; 1] is the activation of

neuron i. See the left panel of figure 3 for a plot of the sigmoid function.

The effect of an incoming axon onto a neuron, that is, the different types of re-

ceptors that can be present on the outside of a real dendrite, and the effected de- or

hyperpolarization of the dendrite are abstracted away by using real-numbered weights.
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Weights are parameters to the mathematical function describing the conversion of out-

puts of neurons to the single input of the next connected neuron. Usually the input vi

of neuron i is computed from the outputs of its connected neurons ci as in

vi = bi +
∑
j∈ci

ojwij, (2)

where bi ∈ R is the so-called bias of neuron i, ci is the vector of indices of its in-going

connected neurons, oj ∈ R is the activation of the connected neuron j, and wij ∈ R is

the weight of the connection going out of neuron j and into neuron i.

In an neural network the neurons are often arranged in layers. See the right panel

of figure 3 for an example of the structure of an artificial neural network.

3.4 Learning in Biological Neural Networks

Nervous systems do not only process signals, but they also learn, that means that they

adapt their signal processing over time. One reason for this is an organism’s need for

a change in behavior, as response to a changing environment.

In biological neuronal systems, this is possible by altering existing synapses (for

example by exchanging the receptors on the surface of dendrites), or by creating and

abandoning existing synapses (i.e. connecting the axon terminals of a neuron to dif-

ferent neurons). There are several known cellular mechanisms for that, among them

LTP, LTD, and PTP[BermudezFederico2007]. Strengthening of the synaptic link (that

occurs within minutes and remains after hours and up to weeks in the hippocampus of

mammals) is called long-term potentiation (LTP), while its weakening is called long-

term depression (LTD). LTP is induced by associativity of connected neurons, that

means, when a neuron contributes to the depolarization in a directly connected neu-

ron, the efficiency of that connection will be strengthened. The molecular mechanisms

responsible for this phenomenon are not yet completely understood. It is known that

they differ between brain regions, and also between types of synapses in the same brain

region. The cellular mechanisms controlling these processes, and their interplay in

larger neuron ensembles are a field of active research [BermudezFederico2007].

An unproven hypothesis is that learning is local, which means that changes at a

synapse only depend on the directly connected neurons, but not on other distantly-

connected neurons. This type of local learning is called Hebbian learning .

The learning in biological neuronal systems happens seemingly automatically, for

example, migratory birds learn and remember travel paths around the globe, without
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an apparent teacher. Ultimately the goals of learning are determined by an interplay

of evolution and the environment.

3.5 Back-propagation for Training Artificial Neural Networks

The nearest analog to learning in biological neural networks is training artificial neural

networks. Here, the goal is explicitly set by humans by providing training data sets.

One training sample consists of a vector of real numbers called input patterns and a

corresponding vector of real numbers of desired output patterns , also called labels . For

every input pattern in the training data set an output pattern is defined that the learner

should compute from the input pattern. Learning is hereby facilitated by changing the

parameters of the artificial neural network.

Back-propagation is a supervised training procedure for artificial neural networks

[RumelhartWilliams1988]. It learns from labeled training samples. The parameters of

the network, the weights and biases, are adapted using gradient descent . The basic idea

is to set the neurons in the input layer to the input pattern, compute the activations of

neurons in the network, compute the total error observed in the output layer using the

difference between actual and desired output, then determine how much each neuron

was “responsible” for the total error in the network, and finally use it to adapt the

weights and biases. This procedure is then repeated until the network is fully trained.

Let the supervised training patterns be indexed by p, xi,p the activation of a neuron

i in the input layer for training pattern p, and yk,p the desired activation of neuron k

in the output layer for this training pattern.

Forward Pass The supervised training procedure first performs the forward pass : it

sets activations oi in the input layer according to the input pattern xi,p to be learned,

computes the activations oj of the hidden layers and the output layer ok.

(In the following, index k is used for a neuron in the output layer, and indices j

and i for a neuron in a hidden layer or the output layer. If the network has only one

hidden layer, then index i refers to a neuron in the input layer.)

Each input neuron’s output oi is set to a training input:

oi = xi,p. (3)

The input vj to a hidden or output neuron is computed from the sum of the connected
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Figure 4: Data flow in training a neural network with three layers using back-
propagation. The input layer is at the top, the hidden layer in the middle, and the
output layer at the bottom. The black arrows denote information flow during the for-
ward pass. Each black arrow is associated with a weight from tail to head. The grey
arrows denote information flow during the backward pass, which propagates errors in
the reverse direction.

neurons’ outputs in the layer above (see section 3.3 ):

vj = bj +
∑
i∈cj

oiwji, (4)

where bj is the bias, oi is the output of a neuron in the layer above, and wji is the

weight of the connection from neuron i to neuron j. The input vj is then scaled by the

sigmoid function to produce a neuron’s output oj:

oj = σ(vj) =
1

1 + exp(−vj)
. (5)

Backward Pass for the Output Layer While in the forward pass the information

flowed from input to output layer, in the backward pass , the information flows from

output to input layer, adjusting the weights and biases on the way. See figure 4 for an

illustration of the two data flow directions.

The training procedure computes the total error Etotal of the network, which is

defined as the squared sum of differences between actual output ok and desired output
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yk over all training patterns:

Etotal =
∑
p

∑
k

1

2
(ok,p − yk,p)2 (6)

=
∑
p

E,

where E is the error of one training pattern. We further split E into a sum of errors

of individual neurons Ek:

E =
∑
k

1

2
(ok − yk)2 (7)

=
∑
k

Ek,

where Ek = 1
2
(ok − yk)2. To compute the contribution of weight wkj to the error, the

error E is then differentiated with respect to a weight wkj for a connection from neuron

j in the last hidden layer to neuron k in the output layer:

∂E

∂wkj

=
∂E

∂ok
· ∂ok
∂vk
· ∂vk
∂wkj

=
∂
∑

k Ek

∂ok
· ∂ok
∂vk
· ∂vk
∂wkj

=
∂Ek

∂ok
· ∂ok
∂vk
· ∂vk
∂wkj

(8)

= (ok − yk) · ok(1− ok) · oj,

which uses that the derivative of the sigmoid function ok = 1
1+exp(−vk)

is ∂ok
∂vk

= ok(1−ok).

The derivative of the error with respect to bk is

∂E

∂bk
=
∂E

∂ok
· ∂ok
∂vk
· ∂vk
∂bk

= (ok − yk) · ok(1− ok) · 1. (9)

Backward Pass for the Other Layers To perform gradient descent, we also need

to update the weights and biases for the remaining connections between hidden layers,

and from the input layer to the first hidden layer. The derivative of the error with

respect to the weight wji of the connection from neuron i in a layer to neuron j in the

layer below (for example, from neuron i in the second last hidden layer to neuron j in
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the last hidden layer) is

∂E

∂wji

=
∂E

∂oj
· ∂oj
∂vj
· ∂vj
∂wji

(10)

=
∂E

∂oj
· oj(1− oj) · oi,

where

∂E

∂oj
=

∂

∂oj

∑
k

Ek

=
∑
k

∂

∂oj
Ek

=
∑
k

∂Ek

∂ok

∂ok
∂vk
· ∂vk
∂oj

=
∑
k

∂Ek

∂ok

∂ok
∂vk
· wkj, (11)

and neuron k is in the layer below the layer that neuron j is in (in our example neuron

k is in the output layer). We take the value for ∂Ek

∂ok

∂ok
∂vk

in equation 11 above from

equation 8 when neuron k is in the output layer or equation 10 when neuron k is in a

hidden layer. (Neuron k is named j in equation 10.) In our example (for neuron j in

the last hidden layer), we take ∂Ek

∂ok

∂ok
∂vk

from the output layer:

∂E

∂oj
=

∑
k

∂Ek

∂ok
· ∂ok
∂vk
· wkj (12)

=
∑
k

(ok − yk) · ok(1− ok) · wkj.

Analogously, the derivative of E with respect to bj is

∂E

∂bj
=

∂E

∂ok

∂ok
∂vk
· ∂vk
∂oj
· ∂oj
∂vj
· ∂vj
∂bj

(13)

=
∑
k

∂Ek

∂ok

∂ok
∂vk

wkj · oj(1− oj) · 1.

The error for each node ∂Ek

∂ok
· ∂ok
∂vk

is thus back-propagated in reverse input direction

through the hidden layers, until all derivatives have been determined.
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Updating rule After having computed the derivatives of the error with respect

to the parameters of the network, we can perform gradient descent and integrate these

derivatives over the training patterns p. We update each weight w and bias b using the

learning rate ε, a small positive number:

∆w = −ε
∑
p

∂E

∂w

(p)

(14)

∆b = −ε
∑
p

∂E

∂b

(p)

,

where ∂E
∂w

(p)
or ∂E

∂b

(p)
are the derivatives of the error with respect to a weight or bias,

when the input layer was set to training pattern p.

Alternatingly performing forward and backward pass and updating the weights

and biases, until the error over all training patterns Etotal is small enough, forms the

complete back-propagation training procedure of a neural network.

Limits of Backpropagation The purpose of error back-propagation is to adjust

the weights of the artificial neural network following the gradient, such that when the

current input pattern pair is presented to the network, its computed output pattern

gets closer and closer to the desired output pattern. However, back-propagation is

not able to train networks with more than one or two hidden layers, because it is a

gradient descent method and can get stuck in poor local optima, and the error surface

gets more rugged the more hidden neurons and layers there are [GoriTesi1992]. Having

artificial neural networks with more than one hidden layer is desirable, because they

can perform the same computation with less total number of hidden nodes compared

to a network with less hidden layers. A network with one hidden layer less needs up to

an exponential factor more hidden nodes [Hastad1987].

4 Introduction to Machine Learning

4.1 Supervised and Unsupervised Machine Learning

In machine learning, there are two major types of learning: supervised and unsupervised

learning [Barber2012]. Both methods process training data sets that are in matrix form:

for example, in expression data, the rows usually denote different genes or transcripts,

and each column represents an independently measured sample. (Note that in the
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general machine learning literature, usually the data matrix is transposed: the columns

denote the features, and the rows the samples.) Samples usually are tissue, blood

samples, or cell line, and differ in their biological background (e.g. cell type, gene

knock-out or knock-in, cell cycle phase) or treatment (e.g. drugs applied).

In supervised learning, for every input pattern in the data set an output pattern is

defined that the learner should compute from the input pattern. Herein, both input

and output pattern can be one- or multi-dimensional vectors. The goal of supervised

learning is to infer a function that maps from the space of input patterns to the space

of output patterns. The output patterns are also called labels . (The fact that for every

input pattern there is a defined output pattern is termed “the input data is labeled”).

In unsupervised learning, there is only an input data set and the goal is to find its

compact description. The output of an unsupervised learning algorithm is the underly-

ing structure of the data according to the algorithm’s objective function. The objective

of an unsupervised learning algorithm can range from dimensionality reduction to data

re-representation to latent variable modelling.

Examples of supervised learning algorithms are (linear or logistic) regression, k-

Nearest Neighbor (k-NN) regression, support vector machines (SVMs), and backprop-

agation neural networks. Examples for unsupervised learning algorithms are (hierar-

chical or kNN) clustering, self-organising maps (SOMs), principal component analysis

(PCA), and Restricted Boltzmann Machines (RBMs).

A goal of both supervised and unsupervised learning is that the learned rules should

generalize well, i.e. previously unseen data should be characterized correctly. The

samples are therefore split into training, validation and test data sets. The training data

set is used to train a machine learning algorithm. Some machine learning algorithms

have meta-parameters, i.e. parameters that are needed for the algorithm, but that

we are not really interested in. (An example is the number of hidden neurons in an

artificial neural network.) The meta-parameters are optimized using the validation

data set . At the end of training, the performance of the machine learning algorithm

must be evaluated on previously unseen samples, the testing data set .

4.2 Semi-supervised Machine Learning

An intermediate form between supervised and unsupervised machine learning is semi-

supervised learning. In contrast to supervised machine learning, which has for every

input pattern a target output pattern, semi-supervised learning does not need a target

output pattern for every input pattern. However, in contrast to fully unsupervised
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A B C

Figure 5: Illustration of semi-supervised learning in two dimensions. Each axis is
a dimension. Circles are samples; filled circles are labeled samples; unfilled circles
are unlabeled samples. The blue circles are samples with label 1, the orange circles
are samples with label 2. A: Supervised SVM learning produces a maximum-margin
classifier. B: Supervised learning ignores and probably mis-classifies some unlabeled
samples (the red crossed-out samples). C: Semi-supervised learning regards densities of
unlabeled samples and may give better results than supervised learning on the labeled
samples alone.

machine learning, it does need some labeled input data sets. A common objective of

semi-supervised machine learning algorithms is to find underlying structure in all input

data sets and then use the known labels to assign labels to unlabeled input samples.

This assumes that samples close in the (high-dimensional) input space have the same

label. Another assumption is that samples distant to each other have different labels.

An example of a possible improvement of semi-supervised classification over supervised

classification is given in figure 5 (adapted from [Joachims1999a]). In the figure, the two-

dimensional samples are either labeled orange or blue, or unlabeled, and the task is

to (1) find a straight line that separates samples with the two colors and (2) color the

unlabeled samples. Supervised learning alone does not take into account the unlabeled

samples, while semi-supervised learning recognizes that there are two clouds of samples,

separated by a gap, where the labeled samples from each color are on different sides

of the gap. It then draws the separating line in the middle of the gap, and colors

the unlabeled samples on the side with the orange samples orange, and the unlabed

samples on the other side blue.

There are two types of semi-supervised learning: transductive and inductive semi-

supervised learning. The goal of transductive semi-supervised learning is to predict

the class labels of a pre-specified list of unlabeled input patterns, while the goal of

inductive semi-supervised learning is to find a universal rule mapping from the space of

input patterns to class labels, which could be applied to classify unknown, future input
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patterns. In case unknown, future input patterns are to be classified using transductive

semi-supervised machine learning, the whole model may have to be re-evaluated.

4.2.1 Example Scenarios for Semi-supervised Learning

An advantage of semi-supervised learning over supervised learning is that it does

not need labels for all input patterns, because labels are often time-consuming or

costly to acquire. For example, the Gene Expression Omnibus data base (GEO)

[BarrettSoboleva2013] contains 41,379 expression data sets that were uploaded be-

tween Jan 1st, 2000, and August 31st, 2013. Many of these are potentially usable as

unlabeled data sets in semi-supervised learning.

However in practice, many machine learning algorithms require samples to be in-

dependently and identically distributed (iid). In an ideal world, GEO samples could

be assumed to be identically distributed within a data set. Unfortunately even within

the same GEO data set there often is systematic variation between samples, called

the batch-effect , caused, for example, by different sample handling or conditions at

measurement time. Hence one either has to use samples from one data set only, or, if

one wants to use samples from different GEO data sets simultaneously, correct for a

possible batch-effect manually, or use an algorithm that has some built-in mechanism

to make such a correction.

One machine learning algorithm with such a built-in mechanism is deep learn-

ing , as employed in Deep Belief Networks (DBNs) [HintonTeh2006]. This machine-

learning algorithm (which is unsupervised, but can be used for supervised and

semi-supervised learning) can learn from images of objects or faces, where the ob-

jects or faces are in different lighting conditions or are viewed from different angles

([HintonSalakhutdinov2006, KrizhevskyHinton2012, KarpathyFei-Fei2014]). In this

setting, the batch effect would be the lighting condition or viewing angle. Such re-

sults seem to imply that DBNs are able to abstract the images, which are given as

vectors of pixels, into encodings of relevant features and compute a classifier on these

abstract features. This can be seen as a form of batch-effect correction.

An extreme form of batch-effect correction is when all training data are in batch

1 and all test data in batch 2. Are neural networks able to handle such a situation?

For example, suppose that batch 1 are all face portraits (frontal view), batch 2 are half

profile faces (30 degree angle view) of – not necessarily the same – people, and the task

is to match faces seen from both viewing angles to the same person. During training,

semi-supervised learning would have access to the unlabeled faces from both viewing
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angles, but all the half profiles would be unlabeled. We are not aware of a study of that

setting using artificial neural networks, but a similar setting was studied in cognitive

psychology, where humans were the learners [BobakBate2015]. The participants of the

study were asked to match a given half profile to one out of 10 portraits, or indicate that

there is no matching face. The accuracy of average people was 81%, while people who

have extraordinary face recognition abilities, so-called “super-recognizers”, had 94%

accuracy. When there was no matching face, average people correctly rejected the face

in 65% of all cases, and super-recognizers did so in 92%. For humans, the unsupervised

training would consist in seeing people’s faces from different angles during normal day-

to-day activity. However, one could argue that this training is unfair, because humans

had access to the label of many half profiles, since they often have seen a person’s

portrait just moments before seeing the half profiles.

4.3 Deep Learning

Deep learning is a term used in artificial neural networks with several hidden layers.

The advantage of a deep network over a network with just one hidden layer is that it

can model a problem more compactly using less hidden neurons in total, because it has

more than one intermediate computation step.

Autoencoders and Deep Belief Networks (DBNs) overcame the limitation of only a

few hidden layers [BengioLarochelle2007, HintonTeh2006]. Here we give brief overviews

over both types of artificial neural network.

Autoencoder An autoencoder is a network with more than one hidden layer, whose

training is unsupervised and its objective is to reconstruct the input in the output

layer. An autoencoder starts as a three-layer network composed of input layer, hidden

layer, and output layer. This network is trained using back-propagation. The middle

hidden layer is then copied and new hidden layer is inserted between both copies,

forming a five-layer-network. The newly added parameters of this network are the

same in number compared to a three-layer network, which can be trained using back-

propagation. Hence, training the five-layer-network using back-propagation also works,

and adding a new hidden layer in the middle can be repeated.

Deep Belief Network Training a Deep Belief Network is separated into a pre-

training phase and a fine-tuning phase. The pre-training phase is unsupervised. It

starts with a network consisting of one input layer and a hidden layer. This pair of
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layers is called a Restricted Boltzmann Machine (RBM). There is an accompanying

unsupervised training procedure called contrastive divergence which finds weights be-

tween these layers. After training the RBM, hidden layers are iteratively added on top

of the RBM, and the new weights between layers are initialized and pre-trained using

contrastive divergence. While the pre-training phase is unsupervised, the fine-tuning

phase can be unsupervised as well as supervised. After training, the multiple-hidden-

layer-network forms a generative artificial neural network called a Deep Belief Network.

5 Overview of Own and Related Work

We used autoencoders, Deep Belief Networks, and Transductive Support Vector Ma-

chines on expression data to predict whether breast cancer patients will show pathologic

complete response to chemotherapy or residual disease. The expression data are high-

dimensional (≈ 22, 000 genes) and we use a relatively large data set (≈ 500 patients).

5.1 Motivations for Using Deep Belief Networks on Transcrip-

tomic Data

The motivations for using Deep Belief Networks on transcriptomic data come from those

networks’ successes when used on image data. In the hand-written digit classification

and graphical object recognition data sets on which the deep artificial neural networks

were developed, they are among the best-performing predictors.

5.1.1 The ImageNet Large Scale Visual Recognition Challenge

An example for the success of deep neural network is image classification in the Ima-

geNet Large Scale Visual Recognition Challenge [RussakovskyFeiFei2015]. It is a yearly

contest, wherein participants are given around 1.2 million training images. Each train-

ing image is labeled with one of 1, 000 possible object categories describing the main

object appearing in the image, for example “trumpet” or “butterfly”. After training

an image classification algorithm, each contestant must compute up to 5 labels for each

of 100, 000 test images. Each test image has a single label, which is kept hidden by

the contest organizer. A test image is scored as correctly classified if the correct label

appears in the (up to 5) labels submitted by the contestant. (Up to 5 labels may be

submitted because for example a street scene may contain, besides the correct “car”
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Year Winner Accuracy Technique

2010 NEC 71.8% SIFT and LBP image features classified by SVM
2011 XRCE 74.2% image signatures classified by one-vs-all SVMs
2012 SuperVision 83.6% deep convolutional neural network
2013 Clarifai 88.3% deep convolutional neural networks averaged
2014 GoogLeNet 93.3% deep convolutional neural network

Table 1: Test set accuracies and techniques of winning contestants in the ImageNet
Large Scale Visual Recognition Challenge from 2010-2014. Column “Year” is the year
of the contest, “Winner” the team name of the winner of this year, “Accuracy” the test
set accuracy of the winner’s submission, and “Technique” a summary of the winner’s
algorithm technique. SVM, support vector machine.

label also street signs and drivers.) Finally, the accuracy of a contestant is computed

as the average fraction of correctly classified test images.

There have been notable improvements in the accuracy of the winning contestant,

starting in 2012. In the last years, all top contestants have moved to using deep neural

networks. See table 1 for the winning contestants between 2010 and 2014. Significant

differences before and after 2012 are the usage of neural networks directly on the

image pixel data, and not using pre-computed image features in a supervised learning

algorithm like a Support Vector Machine.

5.1.2 Highly Correlated Inputs

We will now discuss similarities between image classification and expression data clas-

sification.

Both underlying distributions – of images and of expression data – have many

correlated features. For images, adjacent pixels often display the same object and have

therefore correlated values. In some face recognition tasks for example, the faces are

scaled and translated so that the centers of both eyes and mouth are aligned in different

faces. There will be highly correlated pixels for areas of the image where the cheeks

and lips usually are. If you use the pixels of the whole image as input to the neural

network, the corresponding input nodes will be highly correlated as well.

For transcriptomic data, one almost always observes many correlated genes. The

correlations can be due to many genes being regulated by the same transcription factor

[TornowMewes2003, KlebanovYakovlev2007].
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5.1.3 Deep Belief Networks Find Correlated Nodes

Deep Belief Networks can group correlated input nodes. The network can do this by

increasing the weights from the correlated group to a single hidden node, and decreasing

the weights from the group to all other hidden nodes. The hidden node becomes the

representative of the correlated group of input nodes. This is a form of abstraction

and dimensionality reduction. The hidden node will only be active if many of its

highly-weighted input nodes are active and only few of its negatively-weighted input

nodes are active. Repeated application of this principle of abstraction in deeper and

deeper hidden layers allows the Deep Belief Network to form more and more abstract

representations of its input.

In face recognition for example, an abstract representation might have a single value

for the size of the lips. In expression data, a single node in an abstract representation

might encode the activity of a gene module.

5.1.4 Transductive Support Vector Machine

We compare the artificial neural network approach with another, older, and estab-

lished semi-supervised method, the Transductive Support Vector Machine (TSVM)

[Joachims1999]. Despite the name, it supports transductive as well as inductive learn-

ing. A standard Support Vector Machine searches for a decision boundary such that

the margin between samples with differing labels is maximal (see figure 5). The TSVM

seeks a labeling of the unlabeled samples so that the decision boundary has the maximal

margin between all samples with differing classes.

5.2 Previous Work: Gene Expression Inference With Deep

Learning

Very recently, [ChenXie2015] published work on compressing expression data into fewer

dimensions on a large scale using deep learning. The motivation for this work was that

principal component analysis found that 943 “landmark” genes can capture about 80%

of the information in the CMAP data set. This prompted the development of the

“L1000 Luminex bead technology”, which measures the expression of these 943 genes

at a low cost, and computationally infers the remaining ≈ 21, 000 genes. [ChenXie2015]

worked on improving this computational inference step.

Input data were all ≈ 111, 000 genome-wide expression profiles from the GEO

database of Affymetrix microarrays, which were partitioned into training, validation,



5.2 Previous Work: Gene Expression Inference With Deep Learning 33

and testing data sets. For each sample, the same subset of 943 landmark genes was

chosen and 9, 520 other genes were predicted from the landmark genes. This is differ-

ent from our work, because we classified breast cancer samples using gene expression

levels, while [ChenXie2015] did regression of gene expression levels using other gene

expression levels.

[ChenXie2015]’s artificial neural network architecture had between 1 and 3 hidden

layers with either 3, 000, 6, 000, or 9, 000 nodes. It had 943 input expression values (one

for each landmark gene), and a total of 9, 520 output expression values (one for each

gene to be predicted). In addition to the (non-linear) neural network, they evaluated

linear regression with no regularization, L1-, and L2-regularization.

[ChenXie2015] also evaluated k-Nearest Neighbor (kNN). During training, they de-

termined a number, k, of landmark genes with expression value closest to each target

gene i (let’s call this set of genes knni) in the training data set. During testing, they

predicted the expression value of the target gene i as the average of the gene’s knni

expression values in the testing data set. The optimal k (number of genes to average

over) was chosen based on a validation data set.

The input values were quantile normalized expression values between 4 and 15. The

models were ranked according to the average prediction errors over all 9,520 target

genes.

k-Nearest Neighbor performed worst, with an average prediction error of 0.5866.

Linear regression without regularization and with L2-regularization both had an aver-

age prediction error of 0.3784. Linear regression with L1-regularization had an average

prediction error of 0.3782. As the three linear regression models performed about

equally well, regularization did not improve linear regression. The neural network-

based average prediction errors were between 0.3421 and 0.3204, with the network

having 3 hidden layers of size 9, 000 and 10% dropout rate performing best. (Dropout

is a regularization technique for neural networks, explained in section 9.3.3.) Because

the input expression values were between 4 and 15, an average prediction error of 0.3204

implies an average error of about 3% on the GEO dataset.

In another dataset, [ChenXie2015] again predicted 9, 520 genes from the 943 land-

mark genes, but used the GEO dataset for training, the 1, 000 Genomes data for valida-

tion [LappalainenPedro2013], and GTEx data for testing [ArdlieLek2015]. Learning in

this data set is harder since the training, validation, and testing data sets are measured

using different expression measurement technologies, and therefore prone to the batch-

effect. Nevertheless, the performance ranking of the methods was the same, but worse
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than the data set without batch-effect. KNN scored worst, with an average prediction

error of 0.6520. Linear regression with L1-regularization had an average prediction er-

ror of 0.5667. Linear regression without regularization and with L2-regularization both

had an average prediction error of 0.4702. The artificial neural networks all scored con-

sistently better than KNN and linear regression, with the artificial neural network with

2 hidden layers of size 9, 000, and 25% dropout rate having the lowest prediction error

of 0.4393 (which is equivalent to a relative error of 4%). On the validation data set,

the average prediction error was 0.7467, which is a relative error of 6.8%. This shows

that artificial neural networks are capable of processing input from multiple sources,

with an acceptable gain in error. We had a similar result, in section 11.
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Part II

Methods

Here we will introduce the methods used to train deep neural networks, as applied in

the results part.

6 Notation

Random variable, Node Random variables and nodes are written upper-case. For

example: X or N4.

Value, Scalar Variable The value of a random variable and a scalar variable are

written lower-case. For example, the value of random variable X is written x,

and i is a scalar.

Vector, Set Vectors or sets are written in bold font. For example, the vector X

represents e.g. the random variables {X1, X2, X3}. And the vector x stands for

e.g. the value {x1, x2, x3} of the variable X.

7 Machine Learning

7.1 Generative and Discriminative Models

An often-cited quote by [Vapnik1998] is: “If you possess a restricted amount of infor-

mation for solving some problem, try to solve the problem directly and never solve a

more general problem as an intermediate step. It is possible that the available infor-

mation is sufficient for a direct solution but is insufficient for solving a more general

intermediate problem.”

A generative model is such a more general problem: its aim is to model the input

data set such that hypothetical samples can be generated from the model which might

as well be found in the original input data set. A discriminative model on the other

hand receives the input samples and models the output from these inputs. Usually the

outputs have lower dimension.

Restricted Boltzmann Machines and Deep Belief Networks are both generative mod-

els, while a neural network supervisedly trained with back-propagation is a discrimina-
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tive model. In a discriminative model, the parameters (weights and biases) specify the

class label of a training sample. In a generative model, the parameters need to encode

the whole sample. The number of bits required to specify the class label is much smaller

than the number of bits required to specify a whole training sample [Hinton2010].

Another advantage of a generative model is that one can draw samples from its

distribution (“generate samples”) to easily find out what the model has learned. In a

discriminative model, this can be substantially harder. Consider for example a classifier

network trained with back-propagation that decides whether an image shows a red

ball (output: true or false). The decision function of the network is a complicated

function of all input pixels. Therefore it can be hard to determine the property an

unseen image must have so that the network would classify it as containing a red ball.

Due to their greater generality, generative models have the disadvantage that they are

slower than discriminative models. As [HintonTeh2006] note, however, the class of too

computationally intensive models is being eroded by Moore’s Law.

We will discuss the established Support Vector Machines, Graphical Models, several

artificial neural networks, Restricted Boltzmann Machines, and Deep Belief Networks.

7.2 Support Vector Machines

Here we review supervised and transductive Support Vector Machines (SVMs and

TSVMs).

7.2.1 Supervised Support Vector Machines

A linear SVM separates data points into two distinct classes using the hyperplane

w · x + b = 0,

where w ∈ Rn is the vector perpendicular to the plane, x ∈ Rn is a point on the plane,

and b ∈ R is the distance to the origin (in units of length −‖w‖) [StatnikovGuyon2011].

The hyperplane is defined in the n-dimensional space in which the samples lie, each

sample having n features. For a specific hyperplane defined by w and b and a sample

x, one can calculate the distance d between x and the hyperplane using

d = w · x + b.

In particular, the sign of d ∈ R is called the class of x.
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Training a Hard-margin SVM When training a SVM by providing binary class

labels yi ∈ {−1, 1} for all training samples xi, the hyperplane is constructed such that

it separates the two classes and that it has the largest possible distance (margin) to

border-line samples (support vectors). Learning a hard-margin SVM means finding a

w so that its length is minimal

minimize
1

2
‖w‖2 (15)

subject to the condition that all samples are classified correctly by w, b. Hence, the

constraints

yi(w · xi + b)− 1 ≥ 0, (16)

(where yi is the true class of sample i) must be fulfilled for all samples i. The two

equations 15 and 16 are called the “primal formulation of linear SVMs”. This formu-

lation can be solved by convex quadratic programming with n variables, where n is

the number of features. Using Lagrange multipliers [StatnikovGuyon2011], the primal

formulation can be rewritten into the equivalent “dual formulation”:

minimize
N∑
i

αi −
1

2

N∑
i,j

αiαjyiyjxixj (17)

subject to αi ≥ 0 and
N∑
i

αiyi = 0,

where the αis are the N variables to be solved by quadratic programming, and N is

the number of samples. After computing the solution for the dual formulation, the

w-vector is given in terms of the αi: w =
∑N

i αiyixi and the distance from the origin

is b = yi−wxi, for any sample i which has αi 6= 0 [BurbidgeBuxton2001]. The classifier

is then f(x) = sgn(
∑N

i αiyixix + b).

If there is no solution, i.e. a separating hyperplane does not exist, one can do two

things:

• make the margin a soft margin, i.e. allow some training samples to be misclassi-

fied.

• implicitly map samples into a higher dimensional space where a separating hy-

perplane exists. This implicit mapping is called the kernel trick.

Both strategies will be described in the following.
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Training a Soft-margin SVM A soft-margin SVM is learned by introducing slack

variables ξi ≥ 0 in the primal formulation:

minimize
1

2
‖w‖+ C

N∑
i

ξi

subject to yi(w · xi + b) ≥ 1− ξi for i = 1, . . . , N

and in the dual formulation:

minimize
N∑
i

αi −
1

2

N∑
i,j

αiαjyiyjxixj (18)

subject to 0 ≤ αi ≤ C and
N∑
i

αiyi = 0 for i = 1, . . . , N,

where C > 0 is a meta-parameter that controls trading off a small margin size ‖w‖
for allowing misclassifications of training samples. Many SVM implementations have

a default of 1.

Kernel Trick The samples can be mapped into a higher-dimensional space where a

separating hyperplane exists or has a larger margin. Mapping vectors x into a higher-

dimensional space Φ(x) explicitly requires computing all dimensions, which is time-

consuming or impossible for infinite-dimensional spaces.

However, in the dual formulations in equations 17 and 18 above, the sample vectors

xi only occur together in a scalar product with another sample xj. The mapping can

be done implicitly by not computing Φ(xi) and Φ(xj), but by defining a kernel function

K that computes the scalar product Φ(xi) · Φ(xj) directly:

K(xi,xj) : Rn × Rn → R.

Calculating K is much cheaper than computing Φ(xi), Φ(xj). Not every function can

be a kernel, it has to satisfy the Mercer conditions: for all square-integrable functions

g(x) the integral ∫ ∫
K(xi,xj)g(xi)g(xj)dxidxj ≥ 0

must be non-negative. Otherwise, the quadratic programming problem may not have

a solution [StatnikovGuyon2011].



7.2 Support Vector Machines 39

7.2.2 Transductive Support Vector Machines

A Transductive SVM (TSVM) is a semi-supervised version of a SVM [Joachims1999a].

In addition to N training samples xi, and their class labels yi, we now know N∗ test

samples x∗j without labels. The objective of training a TSVM is to find class labels

y∗j for the test samples, such that a separating hyperplane between the positive and

negative test and training samples has minimal length

minimize
1

2
‖w‖+ C

N∑
i

ξi + C∗
N∗∑
j

ξ∗j

subject to yiw · xi + b ≥ 1− ξi for i = 1, . . . , N

y∗jw · x∗j + b ≥ 1− ξ∗j for j = 1, . . . , N∗

ξi > 0 for i = 1, . . . , N

ξ∗j > 0 for j = 1, . . . , N∗,

where C allows trading off margin size for misclassification errors of training samples

(as for the supervised SVM), and C∗ controls the influence of test samples. If C∗ is

zero, the formulation above is equivalent to the inductive case.

Choosing class labels y∗j for the test samples x∗j must be done before solv-

ing the quadratic programming problem, otherwise it is not convex anymore (see

[CollobertBottou2006]). [Joachims1999a] does this by starting with an inductive SVM,

i.e. setting C∗ to zero, and classifying the test samples x∗j to obtain class labels y∗j .

Then he proceeds by incrementing C∗ while swapping two test samples’ class labels

if the objective function decreases. When C∗ has reached a user-defined threshold,

training stops and the current test sample labels y∗j , and the separating hyperplane

defined by the parameters w and b are returned.

[Joachims1999a] notes that it is the co-occurrence of features that the transductive

SVM exploits to transduce labels from training samples to test samples. For example,

if a cluster of features always has a certain pattern in a group of samples containing

mostly positively labelled training samples, then test samples showing that same feature

pattern will likely also be positively labelled.

Figure 6 is adapted from [Joachims1999a]. It shows samples and features. Sup-

pose sample A and F are given as training samples, with A labeled “positive” and F

labeled “negative”. Samples B-E are given as test samples and we have to label them.

Transductive learning can use the co-occurrence of features 1-3, and the co-occurrence

of features 4-6 to label samples B and C “positive” and samples D and E “negative”.
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Figure 6: Example of co-occurrence of features (columns, 1-7) that transductive learn-
ing can exploit to label samples (rows, A-F). (See text.)

Although feature 3 does not occur in sample A, sample C belongs to the “positive”

class because sample B links samples A and C, by having features 1 and 3 present

simultaneously. Feature 7 has the same value in all samples and cannot contribute to

the labeling.

8 Graphical Models

8.1 Graphs

In the following we will define some graph nomenclature.

A graph is a tuple G = (N,E) of nodes N and edges E. An edge E 3 E = (N1, N2)

consists of a pair of nodes N1 and N2. Two nodes N1 and N2 connected by an edge

are called neighbors . A complete graph is a graph with an edge E = (N1, N2) for every

distinct pair of nodes N 3 N1 6= N2 ∈ N.

An edge can be directed or undirected , which means that the edge (N1, N2) is either

distinct from the edge (N2, N1) or they are the same. If all edges of a graph are directed,

then the graph is called a directed graph; if all edges are undirected, then the graph is

called an undirected graph. In a directed edge E = (P,C), also written as P → C, P

is called the parent and C the child .

A path is an ordered list of edges P = [E1, E2, . . . , En], so that the child of the

previous edge is the parent of the next edge: If Ei = (Pi, Ci) and Ei+1 = (Pi+1, Ci+1),

then Ci = Pi+1. In the path P, Pp is called ancestor of Cc if p ≤ c, and Cc is

called descendant of Pp if p ≤ c. If the child Cj of any edge Ej in P is equal to

the parent Pi of the same or a previous edge (i.e. i ≤ j), then the sub-path C =
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[(Pi, Ci), (Pi+1, Ci+1), . . . , (Pj, Cj)] is called a cycle.

A directed acyclic graph (DAG) is a directed graph that does not contain directed

cycles.

A clique in an undirected graph is a subset of nodes NC ⊂ N, such that every pair

of nodes in the clique N1, N2 ∈ NC has an edge in the graph: (N1, N2) ∈ E. A maximal

clique is a clique where there are no nodes that can be added to it so that the resulting

set of nodes is still a clique.

A set of nodes NA ⊂ N is separated from a set of nodes NB ⊂ N by a set of

nodes NS ⊂ N, if it is impossible to go (along the edges E of the graph) from a node

N1 ∈ NA to a node N2 ∈ NB without passing through any of the nodes in NS.

8.2 Definition of Graphical Models

Graphical models encode a factorization of a joint probability distribution with the

help of a graph. Each node of the graph corresponds to a random variable of the

joint probability distribution. The (union of the) edges of the graph encode the condi-

tional probability distributions. Missing edges encode conditional independencies. The

graph, together with probability functions over the structural elements of the graph is

equivalent to the joint probability distribution.

Figure 7 is an example of a (directed) graphical model. The random variables

are Sun, Clouds, Temperature, and Icecream. Each variable has two possible

values, for example Sun can be either “S+” or “S-”. The tables below Sun and

Clouds are called the priors, and the tables below Temperature and Icecream

are each conditional probability distributions. The graph, together with the pri-

ors and the conditional probability distributions, encodes the joint probability dis-

tribution. For example, the first entry in the joint probability distribution table is

P (Sun = S+,Clouds = C+,Temperature = T+, Icecream = I+) =P (Sun =

S+) ∗ P (Clouds = C+) ∗ P (Temperature = T+ | Sun = S+,Clouds =

C+)∗P (Icecream = I+ | Temperature = T+)= 0.5 ∗ 0.5 ∗ 0.7 ∗ 0.7 = 0.1225.

Directed and Undirected Graphical Models In the following, we will intro-

duce and discuss directed graphical models and undirected graphical models. Directed

graphical models are also called Bayesian networks or Belief Networks , and undirected



42 8 GRAPHICAL MODELS

Figure 7: Example of a graphical model.

graphical models are also called Markov Random Fields or Markov Networks3. We will

consider only models with discrete random variable values.

8.2.1 Undirected Graphical Models

We want to encode a joint probability distribution P in an undirected graph G =

(N,E). Every random variable corresponds to a node. The missing edges encode

conditional independencies. A complete graph would encode no conditional indepen-

dencies. However, we normally want to get a graph with the least possible edges (so

that the independencies between random variables in the joint probability distribution

are all represented in the graph). What properties does the joint probability distribu-

tion P have to fulfill so that it can be encoded in an undirected graph and what does the

minimal undirected graph G look like? This is answered by the Hammersley-Clifford

theorem. [HammersleyClifford1971]

Hammersley-Clifford Theorem Let N = {N1, . . . , Nn} be a vector of random

variables, P (N) be a strictly positive joint probability distribution with P (n) > 0 for

all possible values n of N, and G = (N,E) be an undirected graph with each node

3There is also an unification of Bayesian networks and Markov random fields, i.e. a graphical
model that can have both directed and undirected edges. These networks are called chain graphs , or
partially directed acyclic graphs and are not discussed here.
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corresponding to a random variable (i.e. N = {N1, . . . , Nn}). Then the following

statements are equivalent:

• P (N) factorizes according to the maximal cliques C1, . . . ,Cm in G, i.e. P (N) =
1
Z
φ1(C1) · . . . · φm(Cm), where Z is a scalar such that

∑
n P (N = n) = 1, i.e.

Z =
∑

N1,...,Nn
φ1(C1) · . . . · φ3(C3), and the φi(Ci) depend only on the states

of the random variables in the clique Ci = (Ni1 , . . . , Nin) and must be positive

for all possible states. P (N) is then called a Gibbs distribution, Z is called the

partition function, and φ(Ci) are called the potential functions .

• the local Markov property holds for the graph G and the joint probability distri-

bution P : A node Ni is conditionally independent from all non-neighbor nodes

N\Nneighbor(i), given the states of the random variables Nneighbor(i) immediately

connected to N : P (Ni | Nneighbor(i)) = P (Ni | N).

• the global Markov property holds for the graph G and the joint probability dis-

tribution P : Given any disjoint subsets NA,NB,NS ⊂ N where NS separates

the nodes NA from the nodes NB, and given the states of the random vari-

ables of NS, the nodes NA are conditionally independent of the nodes NB:

P (NA | NS) = P (NA |NS,NB).

Hence when we have a strictly positive joint probability distribution P (N), we can de-

termine the corresponding minimal graph G with the following “brute-force” algorithm

by using the local Markov property: Start with the empty graph. For a variable Ni,

consider all sets of possible neighbor nodes, i.e. the power set P = P({N\Ni}), and

check for each such possible set of neighbors Nneighbors(i), whether all non-neighbors

Nnonneighbors(i) are independent of Ni, given the neighbors

Ni |= Nnonneighbors(i) | Nneighbors(i),

i.e. whether P (Ni | Nneighbors(i),Nnonneighbors(i)) = P (Ni | Nneighbors(i)). When a set

of neighbors Nneighbors satisfying the conditional independency has been found, we can

draw an edge E = (Ni, Nj) between Ni and all neighbors Nj ∈ Nneighbors(i). Repeat

this for all variables Ni ∈ N. Call the resulting set of edges E, and the minimal graph

G = (N,E).

On the other hand, if we have a graph G = (N,E) consisting of a given set of

nodes N and edges E, and local conditional probabilities P (N | NParents) at each
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Figure 8: Example of an Undirected Graph encoding the following conditional indepen-
dencies: the node pairs (N1,N4), (N1,N5), (N2,N4), (N2,N5),(N4,N5) are conditionally
independent given node N3. (But (N1,N2) are not conditionally independent given
N3.)

node fulfilling the Markov property, then we can derive from that the joint probability

distribution over all random variables, or equivalently over all nodes N.

Example of an Undirected Graphical Model For example, if there are the three

cliques C1 = {N1, N2, N3}, C2 = {N3, N4}, and C3 = {N3, N5} (see figure 8), then the

joint probability distribution P (also called Gibbs distribution) can be written as:

P (N1, . . . , N5) =
1

Z
φ1(C1)φ2(C2)φ3(C3),

where φ1(C1) = φ(N1, N2, N3) is the potential function of clique 1 (clique potential),

and is a function of the 3 random variables N1, N2, N3 in the clique. Z is the partition

function and must normalize the function so that P is a probability:

Z =
∑

X1,...,Xn

φ1(C1)φ2(C2)φ3(C3).

In practice, φ1(N1, N2, N3) can be represented by a table that holds, for each pos-

sible combination of states of the three random variables, a positive real number. For

example, if each of the three random variables has two states, then the table (with 23

entries) could look like in table 2.
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n1 n2 n3 φ(N1 = n1, N2 = n2, N3 = n3)

A A A 0.124
A A B 2.553
A B A 0.842
...

...
...

...
B B B 1.258

Table 2: Example of a potential function φ represented as a table.

Figure 9: Example of a Directed Graph. Note that the graph is acyclic, and the nodes
are laid out in layers.

8.2.2 Directed Graphical Models

Directed graphical models are also called Bayesian Networks or Belief Networks . (See

e.g. [KollerTaskar2007, Neal1992].)

Like undirected graphical models, directed graphical models represent an implicit

joint probability distribution over all random variables present in the model. The graph

must be directed and acyclic, and each node of the graph is associated with a random

variable. See figure 9 for an example.

A directed graphical model is defined by the directed graph G = (N,E), a prior

probability distribution P (Nnoparents) at the nodes that do not have parents Nnoparents,

and conditional probability distributions P (Nhasparents | Nparents) at the nodes that

have parents Nhasparents. In the latter nodes the conditional probability distribution

may only be conditional on its immediate parents, not on distant ancestors. The
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directed graph encodes the set of conditional independencies between the random vari-

ables: A random variable X of the graph is conditionally independent of all random

variables that are not descendants of X (i.e. N\Ndescendant(X)) given the values of the

parent variables of X (this is called the local Markov property of directed graphs):

X |= (N\Ndescendant(X)) | Nparent(X).

(In general, independencies betweem any two sets of variables conditioned on a third

can be derived from the structure of the graph using d-separation [Barber2012].)

The Joint Probability Distribution Encoded by the Graphical Model In a

directed graphical model, the random variables N can be totally ordered such that Ni

comes before Nj if there is a directed path from Ni to Nj in the graph, and the order

is unspecified if there is no directed path between Ni and Nj [Neal1992]. (Thus, there

are graphs which have more than one compatible ordering, for example in the graph

A → C ← B, the ordering can be A,B,C as well as B,A,C.) In the following, the

ordering is expressed as the subscript i ∈ N of the random variable Ni. The node Ni

has associated with it the conditional probability P (Ni = ni | Nj = nj∀j < i). (“The

probability that the random variable Ni is equal to ni given that the random variables

Nj are equal to nj where all subscripts j that are smaller than i.”).

The joint probability distribution encoded by the graph is

P (N) = P (N1 = n1, N2 = n2, . . . , Nn = nn) =
n∏

i=1

P (Ni = ni | Nj = nj∀j < i).

Example How to Represent the Conditional Probability Distribution For

example, if the Ni can only assume discrete ni, the conditional probability distribution

can be represented by a table with a size exponential in the number of involved nodes.

When a node has a ancestors, each of which has s possible states, and the node itself

also has s possible states, then the table must contain one probability for each of the

sa · (s− 1) possible states. (sa for the combinations of the values of the ancestors and

(s− 1) for the values the node itself can assume.)

8.3 Exact Inference in Graphical Models

Inference in a graphical model is the task of answering a query about the joint probabil-

ity distribution encoded by the graph, or of a part of the joint probability distribution.
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For example, one might be interested in the overall probability of the configuration of

a sub-set of variables. However, in the general case this takes exponential time.

8.3.1 Naive Approach: Marginalizing the Joint

Since a graphical model is a representation of a joint probability distribution, it can

answer queries about probabilities of the joint probability distribution encoded by the

graphical model by first explicitly calculating the joint, then marginalizing out non-

interesting variables.

For example, we might want to infer the probability of a configuration of variables

when the values of only some of the variables are known. We can then partition the

variables V of a graphical model into three disjoint groups:

1. the known variables K,

2. the unknown variables W that we want to know the probability distribution of,

3. the unknown variables U that we do not care about.

Let the known values of K be written k. The unknown values of W are named w, and

the values of U, u.

How to calculate the joint P (W,U,K) encoded by the graphical model was de-

fined in section 8.2.1 for undirected graphical models and in section 8.2.2 for directed

graphical models. Let’s now turn our attention to marginalizing out the non-interesting

variables U.

When we want to find the probability of configuration W = w, given K = k, we

can first write the query in terms of the joint probability distribution. We have to

condition on K, and marginalize out the unknown variables U that we do not care

about:

P (W = w|K = k) =
∑
U

P (W = w,U = u|K = k)

=
∑
U

P (W = w,U = u,K = k)

P (K = k)
. (19)
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In the above formula there is a sum over all variables U. Writing this out, we obtain

P (W = w|K = k) =
∑
U

P (W = w,K = k)

P (K = k)
(20)

=
∑
U1

∑
U2

· · ·
∑
Un

P (W = w, U1 = u1, U2 = u2, . . . , Un = un,K = k)

P (K = k)
.

In the general case (if the joint probability cannot be factorized), this nested sum

needs O(|u||U|) = O(|u|n) operations to compute, where |u| is the number of possible

values a variable Ui can have (assuming for simplicity that all random variables Ui have

the same number of possible values |u|) and |U| is the number of unknown variables Ui.

This is because all possible combinations of variable assignments have to be considered.

Thus, for this naive marginalization run-time is exponential in the number of variables,

and therefore intractable.

However, we have not yet considered the structure of the graph. We can improve

run-time in some cases of graphs and for some sets of variables K, W, U, as shown by

the following example.

8.3.2 Factorization in Undirected Graphical Models

In the case of an undirected graphical model, we can factorize the joint probability

into independent sub-joint-probabilities according to the cliques. For instance, if the

random variables U = {U1, U2, . . . , Um} are composed of cliques C1,C2, . . . ,Cn, so

that P (U) = 1
Z
φ1(C1)φ2(C2) . . . φn(Cn), then the above sum can be written, using

Hammersley-Clifford, as

P (W = w|K = k)

=
∑

U1

∑
U2
· · ·
∑

Un

P (W=w,U1=u1,U2=u2,...,Un=un,K=k)
P (K=k)

=
∑

C1
· · ·
∑

Cn\{C1,...,Cn−1}
1
Z
φ1(W=w,C1=c1,K=k)·...·φn(W=w,Cn=cn,K=k)

P (K=k)

=
1
Z

(∑
C1
φ1(W=w,C1=c1,K=k)·

(
...·
(∑

Cn\{C1,...,Cn−1}
φn(W=w,Cn=cn,K=k)

)))
P (K=k)

.

The sums in the last line are nested sums that sum over all possible states in

the corresponding cluster. (If we order cliques descendingly by the number of clique

members then C1 is the largest clique.) We still need to sum over the state combinations

in the largest clique. Therefore the run-time is at least O(|u||Cm|), where Cm is the

clique with the largest number of variables in it. This is still an exponential run-time.
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8.3.3 Example of Inference in a Directed Graphical Model

Here we show an example how inference in a specific directed graphical model is done.

In our example, the directed graphical model is composed of several densely connected

layers, where the nodes within a layer are not connected, and they have outgoing

directed connections only to nodes in the adjacent layer below.

When the probability distribution of the parent nodes are known, inferring the

probability distributions of child nodes is easy: just multiply the probability of the

parents with the conditional probability of the child. To keep the example interesting,

given the probability distributions of the nodes in the bottom layer, we want to infer

the probability distributions for all the other nodes.

Deep Belief Networks For example consider the graph in figure 9 on page 45.

This directed acyclic graph has the following directed connections between its nodes:

G1 → H1, G1 → H2, G2 → H1, G2 → H2, H1 → V1, H1 → V2, H2 → V1, H2 → V2. Fur-

thermore, the following conditional probability distributions are given: P (H1|G1, G2),

P (H2|G1, G2), P (V1|H1, H2), P (V2|H1, H2). This layered architecture, where each node

in a layer is connected to all nodes in adjacent layers, defines a directed graphical model

called Deep Belief Network .

Bayes Theorem Applied to Inference in a Deep Belief Network Now assume

that P (V1), P (V2) are given and we want to infer P (G1 | V), P (G2 | V), P (H1 | V),

P (H2 | V). Using Bayes’ Theorem (posterior = likelihood · prior) we get

P (H1, H2|V, V2) =
P (V1, V2|H1, H2)P (H1, H2)

P (V1, V2)

=
P (V1, V2|H1, H2)

(∑
g1

∑
g2
P (g1)P (g2)P (H1|g1, g2)P (H2|g1, g2)

)
P (V1, V2)

=
1

P (V1, V2)
· P (V1|H1, H2)P (V2|H1, H2)

·

(∑
g1

∑
g2

P (g1)P (g2)P (H1|g1, g2)P (H2|g1, g2)

)
, (21)

where

P (V1, V2) =
∑
h1

∑
h2

P (V1|H1 = h1, H2 = h2)P (V2|H1 = h1, H2 = h2)P (H1 = h1, H2 = h2).
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We can make the last transformation because V1 and V2 are independent given H1, H2

(local Markov property). To determine P (H1|V1, V2) and P (H2|V1, V2), we have to

marginalize the other variable in H out:

P (H1|V1, V2) =
∑
h2

P (H1, H2 = h2|V1, V2)

P (H2|V1, V2) =
∑
h1

P (H1 = h1, H2|V1, V2) (22)

Since we now have P (H1|V), using P (H1) =
∑

v1

∑
v2
P (H1, V1 = v1, V2 =

v2) and P (H1|V1, V2) = P (H1, V1, V2)/P (V1, V2) (and equivalently P (H1, V1, V2) =

P (H1|V1, V2)P (V1, V2)), we can determine P (H1)

P (H1) =
∑
v1

∑
v2

P (H1|V1 = v1, V2 = v2)P (V1 = v1, V2 = v2).

P (H2) can be computed similarly. Now that we know P (H1) and P (H2), we can

repeat the steps to determine P (G1 | H) and P (G2 | H).

8.3.4 Inference in Deep Belief Networks is Complicated

The previous example shows that inference in a directed graphical model with densely

connected layers is complicated. If there are n binary variables in H and G, then the

computation of P (H | V) in equation 22 takes O(2n−1n) due to having to marginalize

out all variables in H except one (the term 2n−1), and this for all variables (the term n).

In addition, this applies only if P (H | V) is known already. But in the computation of

P (H | V), equation 21, there are sums over the variables g1 and g2, which take another

O(2n) in general. The phenomenon that leads to this computational problem is called

explaining away .

The posterior of H1 depends on all conditional probabilities of the model, in this

example, P (V | H) and P (H | G). For Deep Belief Networks, which are a kind of

Directed Graphical Model with densely connected layers, the conditional probabilities

P (V | H) and P (H | G) have parameters called “weights” associated with them, and

inference of the layer immediately above V, namely H, requires knowing all weights

in the graph, not just those of P (V | H). In addition, explaining away requires us to

marginalize out all variables in H except one, and this for all variables in H. A further

problem is that we have to integrate over all variables in all layers above H if we are
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interested in P (H | V).

These procedures become infeasible in a Belief Network with more than a few par-

ents per node. This is a problem in learning. If we want to learn the parameters of a

Deep Belief Network, we have to do inference. However, we will see that there is a fast

approximate learning algorithm.

8.3.5 Intractability of Exact Inference on General Graphs

Here we reference a proof by [ChandrasekaranHarsha2012] that low treewidth of the

graph underlying inference in a graphical model is the only structural property that

enables tractable inference.

A triangulated graph is a graph where every loop having at least four nodes contains

a chord , i.e. an edge between two non-adjacent nodes in the loop[Barber2012].

For a triangulated graph, the treewidth is the number of nodes contained in the

largest clique minus one. For a graph of any form, the treewidth is the treewidth of the

triangulation that minimizes the treewidth. For directed acyclic graphs, the maximal

number of parents of any node is the critical number, since it determines the treewidth

of the moralized4 graph. (This was also shown by [KwisthoutVanderGaag2010].)

A graph is a minor of a graph G if it is obtained from G by one or more of the

following operations: 1. deletion of an edge, 2. deletion of a node together with all edges

containing that node, and 3. contraction of an edge, which means an edge (N1, N2)

and its two nodes N1 and N2 are replaced with a new single node and the new node

has edges to all nodes that N1 and N2 had edges to.

Let f(k) be the largest number such that every graph of treewidth k contains a grid

of size f(k)× f(k) as minor. The grid-minor hypothesis states that f(k) is polynomial

in k (see [ChandrasekaranHarsha2012]). [ChekuriChuzhoy2014] proved it in 2014.

A decision problem is in the complexity class NP if it can be decided in time

polynomial in the input by a non-deterministic Turing machine. A decision problem

is in the complexity class P/Poly if it can be decided in time polynomial in the

input x by a deterministic Turing machine that receives as input not only x, but

also an advice string of length at most polynomial in the length of x that may only

depend on the length of x, not x itself5. (See for example [Sipser1996, Goldreich2008,

AroraBarak2009].) The problem whether or not NP ⊆ P/Poly is unsolved.

4You obtain a moralized graph from a directed acyclic graph by introducing edges between all
parents of a node, and then replacing directed edges by undirected edges.

5The advice string allows modeling pre-computation in the computation.
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[ChandrasekaranHarsha2012] showed that under the assumptions that the grid-

minor hypothesis is true (which it is), and that NP * P/poly, and given that arbitrary

potential functions should be allowed, low treewidth is the only structural property of

otherwise arbitrary graphs that ensures tractable run-time of exact inference on the

graphical model belonging to the graph. There exists no inference algorithm with

complexity polynomial in the treewidth.

If the assumption NP * P/poly is correct, then the only way to reduce the com-

putational cost of exact inference on a general graph with a given number of nodes is to

reduce the treewidth or to choose restricted potential functions (for example constants)

whose products do not require multiplication or can be pre-computed. Therefore, in

practice, the joint probability is approximated, for example by Gibbs Sampling.

8.4 Approximate Inference

Approximate Inference in general graphical models by means of Gibbs Sampling was

first described by [Neal1993]. We first have to introduce Markov chains.

8.4.1 Markov Chains

For the following section, see e.g. [Norris1997, GrinsteadSnell2003] as references.

Markov property: Memorylessness A Markov chain is a sequence of random

variables Xt, where t ∈ N0 denotes the discrete index of time. In a Markov chain,

each random variable Xt may depend only on the state of the random variable at the

immediate previous time point t− 1, i.e.

P (Xt = xt | X0 = x0, . . . , Xt−1 = xt−1) = P (Xt = xt | Xt−1 = xt−1)

must hold for all t ≥ 1. This memorylessness is called the Markov property . In a

Markov chain, possible states xt at each time point are discrete and from the same set

S:

xt ∈ S for all t.

Time-homogeneous Markov Chain and Transition Matrix A time-homogeneous

Markov chain is a Markov chain in which the conditional probability P (Xt = xt|Xt−1 =
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xt−1) is the same for all time points t, i.e.

P (Xt = xt | Xt−1 = xt−1) = P (Xt−1 = xt−1 | Xt−2 = xt−2)

for all time points t ≥ 2. If this is the case, then this conditional probability

P (Xt = j | Xt−1 = i) =: pij

is independent of the current time t and can be written as the matrix p, called the

transition matrix . In the following we will only deal with time-homogeneous Markov

chains.

Computing future states from the initial distribution Let d(t) be the distribu-

tion of Xt, also named the probability vector , a row vector of length |S|. An entry d
(t)
i

is equal to the probability of Xt having state xi:

d
(t)
i = P (Xt = xi).

This implies
∑

i d
(t)
i = 1 for all t. The distribution d(t+1) can be computed from d(t) by

matrix multiplication with the transition matrix p:

d(t+1) = d(t)p.

Given an initial distribution d(0) and the transition matrix p, all d(t) are specified by

d(t) = d(0)pt.

Stationary distribution There are time-homogeneous Markov chains whose state

distribution stays constant once it has assumed a certain state distribution. Such state

distributions are called invariant or stationary distribution. A stationary distribution

π must fulfill the following equation:

πp = π

If d(t) = π, then d(t+u) = π for all u ≥ 0. A Markov chain can have more than one

stationary distribution.
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Detailed balance/Reversibility A Markov chain with transition matrix p satisfies

detailed balance if there exists a probability distribution π = (π1, π2, . . . , πn) such that

πjpji = πipij for all i, j.

Such a Markov chain is also called a reversible Markov chain [Norris1997]. A Markov

chain with the detailed balance property has at least one stationary distribution, where

each stationary distribution λ fulfills the detailed balance condition: λjpji = λipij for

all i, j.

While having detailed balance implies that a Markov chain has a stationary distri-

bution, the reverse is not true: there are Markov chains with a stationary distribution

but not satisfying detailed balance. For example, a Markov chain with transition prob-

abilities

(pij) =

 0 2/3 1/3

1/3 0 2/3

2/3 1/3 0


does not satisfy detailed balance, but π =

(
1
3

1
3

1
3

)
is a stationary distribution of

this Markov chain [Norris1997].

Fundamental Theorem of Markov Chains Under what conditions does a Markov

chain have an unique stationary distribution? This is answered by the Fundamental

Theorem of Markov Chains [Behrends2000]:

Theorem: Let d(0) and e(0) be any probability vectors of a Markov chain with

transition probabilities (pij), where (pij) is irreducible, positive-recurrent and aperiodic.

Then the Markov chain converges to the unique stationary distribution π, irrespective

of the starting states:

lim
t→∞

d(0)pt = lim
t→∞

e(0)pt = π.

The definitions of irreducibility, positive recurrence, and aperiodicity follow.

Irreducibility A Markov chain is called irreducible, if it is possible to go from any

state i of the Markov chain to any state j (possibly in more than 1 steps). Formally,

a Markov chain is called irreducible, if its states are all in the same (and only) closed

subset. A subset C of S is called closed if pij = 0 whenever i ∈ C and j /∈ C.

(Remember that S is the set of possible states of the Markov chain.)
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Positive Recurrence A state i of a Markov chain is positive recurrent , if we expect

the Markov chain to take a finite number of steps until it is in state i again, when it

started in state i at time point 0. To define positive recurrence formally, we have to

define auxiliary measures first. The probability that state j is visited at time step k

for the first time after the Markov chain had been in state i at time point 0 is

f
(k)
ij := P (X1 6= j,X2 6= j, . . . , Xk−1 6= j,Xk = j | X0 = i).

The probability that state j is ever reached from state i is

f ∗ij :=
∞∑
k=1

f
(k)
ij .

With this, we can define the expected number of steps for the Markov chain to reach

state j, when starting at state i:

µij :=
∞∑
k=1

kf
(k)
ij .

This number is also called the mean recurrence time. With these definitions, we can

define a state to be transient , positive recurrent, or null recurrent :

• If f ∗ii < 1, the state i is called transient.

• If f ∗ii = 1, the state i is called recurrent.

– If f ∗ii = 1 and µii <∞, the state i is called positive recurrent.

– If f ∗ii = 1 and µii =∞, the state i is called null recurrent.

It can be proven that when there are finitely many states, there are no null recurrent

states (see Proposition 7.2. in [Behrends2000]).

Aperiodicity The definition of an aperiodic state is shorter. The period of a state

i is defined as the greatest common denominator of the number of time steps needed

for a Markov chain so that it is possible to be in state i again, after it was in state i

before:

period(i) = gcd({k | k ≥ 0, (pk)ii > 0}).

If period(i) = 1, state i is called aperiodic. If all states of a Markov chain are aperiodic,

the Markov chain is called aperiodic.
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Markov Chain Monte Carlo (MCMC) Markov Chain Monte Carlo is an algo-

rithm to sample from a multivariate probability distribution. It sets up a Markov chain

that converges to the desired stationary distribution and iterates it through time until

the stationary distribution is approximated sufficiently.

A trick can be useful. To efficiently calculate the stationary distribution π, compute

only the transition matrix for time steps that are a power of 2, i.e. p2
t
. This can be done

by starting with p1 := p, repeated squaring: p2t := ptpt, and assigning the stationary

distribution π = d(0)p2
t

for a large enough t.

MCMC will be described in the next section.

8.4.2 Gibbs Sampling

Here, we will review Gibbs Sampling to show how [Neal1993] used it to approximate

inference in directed and undirected graphical models.

Gibbs Sampling [GemanGeman1984] is an instance of a Markov chain Monte Carlo

(MCMC) algorithm. Its goal is to generate samples from a multivariate joint probability

distribution, without having to know its closed form. The generated samples can then

be used to compute an approximation of the mean of a distribution, for example.

To use a Gibbs Sampler, one must construct a Markov chain with its (only) sta-

tionary distribution equal to the target distribution. Each random variable is updated

in turn, based on the conditional probabilities.

Gibbs Sampling Requires Closed-form Conditional Probabilities Suppose

that the multivariate target distribution is P (X1, . . . , Xn). Here, for each random

variable Xi ∈ {X1, . . . , Xn}, the conditional probability of the variable given all other

variables must be known in closed form, so that it can be evaluated:

P (Xi | Xj, j ∈ {1, . . . , n}\i) = P (Xi | X1, . . . , Xi−1, Xi+1, Xn).

Another prerequisite is that Gibbs Sampling, which requires sampling from the condi-

tional probability distribution and iterating, should be faster than sampling from the

joint target probability distribution directly.

A Markov Chain in Multiple Dimensions The variable updates in Gibbs Sam-

pling can be regarded as a Markov chain. However, we must first define how the random

variables of Gibbs Sampling are mapped to the random variable of the Markov chain.
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One possibility is to re-map the random variables and their states to a single random

variable.

Above, Markov chains were defined for a single state variable X. But in Gibbs

Sampling there are usually more than one variable, written Xi ∈ {X1, . . . , Xn} above.

If there are a finite number of random variables in Gibbs Sampling, and the state space

of these variables is also finite, say of size m, then the (therefore also finite) number of

states of these variables can be encoded in a single variable with a state space of size

mn.

For example, say there are 3 variables, each of which can assume 2 states, and we

want to encode these 23 different possible states in one variable. Then the Markov

chain has one variable with 2 ∗ 2 ∗ 2 different possible states.

Constructing a Markov Chain from Base Transitions [Neal1993] suggests con-

structing a non-homogeneous Markov chain with transition matrix T by applying base

transitions in turn, each of which describe the probability of a state change of one

random variable. The base transitions are named Bk(x, x′), where k ∈ 1, 2, . . . , s is the

index of the base transition, x is the starting state of the transition, x′ is the target

state of the transition. Bk(x, x′) is the probability of the transition and must be strictly

greater than zero for all values of x and x′, to make the Markov chain irreducible. At

each time-point a ∗ s + k − 1 with a ∈ N, the next single base transition Bk(x, x′) is

then applied:

Tas+k−1(x, x
′) = Bk(x, x′).

[Neal1993] also notes that the required properties for a Markov chain to converge

are fulfilled: If each of the base transitions Bk have a stationary distribution, then the

non-homogeneous T also has a stationary distribution.

Initialization of the Gibbs Sampler A Gibbs Sampler starts by specifying a start

value x
(0)
i for each random variable Xi. Since the Markov chain must be constructed

such that it converges to its only stationary distribution the choice of start values is

not critical, but it influences the numbers of iterations needed until the Gibbs Sampler

returns samples from the target distribution. So the start value should be close to the

expected value of the distribution.



58 8 GRAPHICAL MODELS

Iterating Then an iterative process is started. In each iteration t, each random

variable Xi is updated by sampling a new value x
(t)
i from the conditional probability

distribution

P (Xi | X1 = x
(t−1)
1 , . . . , Xi−1 = x

(t−1)
i−1 , Xi+1 = x

(t−1)
i+1 , . . . , Xn = x(t−1)n ). (23)

There are different alternative ways in which the random variables are updated, for

example updating the random variables can be done in random order, or sequentially,

or a whole “block” of multiple random variables can be sampled from the conditional

distribution given all the other random variables (e.g. P (Xi1 , Xi2 , Xi3 | Xj = x
(t−1)
j , j ∈

{1, . . . , n}\{i1, i2, i3})).
If the Markov chain fulfills irreducibility, positive recurrence, and aperiodicity, then

it is guaranteed to converge to its stationary distribution (Fundamental Theorem of

Markov Chains). However there is currently no known analytic method to determine

when the Markov chain has reached its stationary distribution, which leads to the

following two strategies, burn-in and thinning.

Burn-in Period The starting value of the random variable might be far from the

“center” of the distribution. But after some number of throw-away iterations, the Gibbs

Sampler’s values x = (x1, . . . , xn) will start coming from the target joint distribution

P (X1, . . . , Xn). This “some number of throw-away iterations” is called the burn-in pe-

riod and can be considerable depending on the starting values and the joint probability

distribution underlying the conditional probability distributions. If one knows where

the “center” of the equilibrium distribution is then one should use a value near that

center as the starting point, however, in many cases such things are not known (and

may be the goal of Gibbs Sampling in the first place).

There is no known analytic method to determine when a chain is burned-in. Several

convergence diagnostics methods have been proposed, see e.g. [CowlesCarlin1996] for

a review.

Thinning Even after the Markov chain is burned in, there is still a problem with

the returned samples, which prevent them from being used in those applications need-

ing independent samples. The samples of two adjacent time steps x(t) and x(t+1) are

correlated however, because the latter is dependent on the former (by definition).

This can be mitigated by returning only the states of every nth iteration, where n

is a sufficiently large number. This is called “thinning” of the Gibbs sampler.
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Again, there is currently no straightforward analytic way to determine what a suffi-

ciently large n is for the adjacent x to be regarded independent. In practice one resorts

to heuristics like autocorrelation.

8.4.3 Gibbs Sampling in Markov Random Fields and Bayesian Networks

We can now define the algorithms for approximate inference using Gibbs Sampling in

Markov Random Fields and Bayesian Networks.

In Markov Random Fields, we use the local Markov property: each random variable

Xi is independent of all other random variables given the states of the neighboring

random variables. Thus, in Markov Random Fields, the conditional probability (see

equation 23) is

P (Xi | X1, . . . , Xi−1, Xi+1, . . . , Xn) = P (Xi | XNeighborhood(Xi)).

In Bayesian Networks the conditional probability is

P (Xi | X1, . . . , Xi−1, Xi+1, . . . , Xn) = P (Xi | XMarkovBlanket(Xi)),

where XMarkovBlanket(Xi) are the random variables in the Markov Blanket of Xi.

Gibbs Sampling in Markov Random Fields Exact inference in Markov Random

Fields can be done by conditioning on the known random variables and marginalizing

out the uninteresting variables (see section 8.3.1). The exponential runtime of exact

inference can be circumvented by approximate methods like Gibbs Sampling.

For example, we might want to infer the probability of a configuration of variables

when the values of only some of the variables are known. We can partition the variables

X := U ∪K ∪W of a graphical model into three disjoint groups:

1. the variables K whose states are known (for example because they were measured)

2. the unknown variables W that we want to know the probability distribution of,

3. the unknown variables U that we do not care about.

Gibbs Sampling in Markov Random Fields uses a converging Markov chain to sample

from the target joint probability distribution. A prerequisite is that the conditional

probability distributions are known in closed form.
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1. Initialize the state x
(1)
i of the random variable Xi ∈ W ∪ U with an arbitrary

state.

2. Initialize the state x
(1)
i of the known random variables Xi ∈ K with their known

state.

3. For each time point t ∈ {1, 2, . . . } do

(a) Keep the known variables fixed (i.e. x
(t+1)
i := x

(t)
i for all Xi ∈ K).

(b) For each random variable Xi ∈W ∪U do

i. Given the states of all variables X\Xi, sample a new Xi from its con-

ditional distribution P (Xi = x
(t+1)
i | X1 = x

(t)
1 , . . . , Xi−1 = x

(t)
i−1, Xi+1 =

x
(t)
i+1, . . . , Xn = x

(t)
n ). The Hammersley-Clifford theorem states that this

conditional probability is equal to P (Xi = x
(t+1)
i | XNeighborhood(Xi)).

4. Repeat step 3 until the Markov chain converges.

5. Discard the states of the uninteresting random variables U.

6. Return the states of the interesting random variables W.

Gibbs Sampling in Bayesian Networks We use the same algorithmic structure as

for Markov Random Fields above, but sample from a different conditional probability

distribution P (Xi = xi | Xj = xj : j 6= i) when updating the state of Xi in step 3(b).

The conditional probability of Xi given all other nodes is equal to its conditional

probability given the values of the nodes in Xi’s Markov Blanket XMarkovBlanket(Xi)

P (Xi = xi | Xj = xj : j 6= i) = P (Xi = xi | XMarkovBlanket(Xi) = xMarkovBlanket(Xi)),

where XMarkovBlanket(Xi) is the set of Xi’s parents and children, and its children’s par-

ents. Formally, and parallel to section 4.1 in [Neal1993], the conditional probability

distribution P (Xi = xi | XMarkovBlanket(Xi)) is equal to

P (xi | {xi : i 6= k}) = P (xi | xMarkovBlanket(Xi))

=
P (xi | xParent(i))

∏
j∈Child(i) P (xj | xi,xParent(j)\i)∑

x̃i
P (x̃i | xParent(i))

∏
j∈Child(i) P (xj | x̃i,xParent(j)\i)

.
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9 Artificial Neural Networks

Here we will introduce artificial neural networks that have been developed as models

of biological neural networks since in the middle of the last century. The artificial

neural networks introduced here are related to Deep Belief Networks, namely Hopfield

networks, Multilayer Perceptrons, and (Restricted) Boltzmann Machines.

Distinction Between a Deterministic and Stochastic Network In a deter-

ministic network a node represents a deterministic value. In contrast, in a stochastic

network a node represents a probability distribution. If there is a set of “output”

nodes, then in a deterministic setting the output can be interpreted as a point in a

high-dimensional space, while in a stochastic network the output is the joint probability

distribution over all the random variables associated with the output nodes.

A stochastic network is more general than its deterministic counterpart, since a

stochastic network can be converted to a deterministic network, but not vice-versa.

This comes at a higher cost. Inference and learning in stochastic networks take longer

than in deterministic networks.

Distinction Between Feed-forward and Recurrent Networks A feed-forward

network is a network defined on a directed acyclic graph. In contrast, the connections

of a recurrent network may form cycles.

9.1 Hopfield Networks

Structure A Hopfield Network [Hopfield1984] is a deterministic recurrent network

with m nodes, each having a binary state ni ∈ {0, 1} for all nodes i. Every node is

connected with all others but not with itself. The connection from node Ni to node Nj

is directed and has a weight wij ∈ R. There is no self-connection from node i to node i,

and therefore wii = 0 for all nodes i. Hence, each node has m− 1 outgoing connections

and m− 1 incoming connections. There is also a real-valued bias bi ∈ R for each node

i that acts as a weight of a connection from a “virtual” node that always has state 1.

Figure 10 shows an example of the structure of a Hopfield Network.

Associative Memory Hopfield networks can be used as associative or content-

addressable memory , where the memory is a binary number. Bit i of the memory

is stored in node i of the network. Associative or content-addressable memory means



62 9 ARTIFICIAL NEURAL NETWORKS

Figure 10: Example of a Hopfield Network. The circles are the nodes; the arrows are
the (directed) connections.

that the network can be initialized with a partially distorted memory and the net-

work can recall a previously learned memory that is close to the initialized memory.

Recalling a partially known memory is done by repeatedly updating the network.

Updating Rule The network is updated asynchronously: At each time point t, a

node i is chosen at random out of the m possible nodes and it is updated, while all

other nodes remain constant. The state ni of node i at time point t is denoted n
(t)
i and

depends on the state of all other nodes at time step t− 1, the weights wji from node j

to node i, and the bias bi:

n
(t)
i = f

(∑
j 6=i

n
(t−1)
j wji + bi

)
,

where the activation function f is a step function that maps nonpositive values to 0,

and positive values to 1:

f(x) =

0 for x ≤ 0

1 for x > 0
.

(In [Hopfield1984] there is also an external input to each node, constant over all times

t. Because the bias also does not depend on t, both are combined into bi here.)

As described here, the updating rule is asynchronous (i.e. at each time step a node

is picked at random and its state is updated, which is how Hopfield described it

[Hopfield1984]). Updating the network synchronously (i.e. all nodes are updated at

the same time) is also possible.
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Energy of a Hopfield Network The energy is associated with the state of the

network at time point t and is defined as

E(t) = −1

2

∑
i

∑
j 6=i

wijn
(t)
i n

(t)
j −

∑
i

bin
(t)
i . (24)

Hopfield showed that when applying the updating rule repeatedly, the energy converges

to a (possibly local) minimum, provided that the weights are symmetric (i.e. wij = wji)

and there are no single-node loops (i.e. wii = 0). In more detail, each update of a node

either doesn’t change the energy E or decreases it. As time progresses E becomes

smaller and smaller, i.e. E(t) ≤ E(t−1).

Recalling a Training Pattern by the Updating Rule Training a Hopfield net-

work is the task of finding weights wij and biases bi, so that training patterns (i.e.

memories to be learned) have a low energy and all other states have a high energy.

After training, a Hopfield network can be initialized with a distorted pattern, in which

the states of some nodes are inverted. After iteratively updating the network until its

state doesn’t change anymore, the stationary state will be similar to a training pattern.

In a demonstration of [Hopfield1982], approximately 85% of the trials ended in training

patterns, 5% resulted in stable states near training patterns, and 10% ended in stable

states of no obvious meaning.

9.2 Multilayer Perceptrons

Structure A Multilayer Perceptron belongs to the class of deterministic feed-forward

neural networks. The neurons are arranged in layers, with the value of nodes in a layer

only depending on the values of nodes in the layer above. Example structures of

multilayer perceptrons were given in figure 3 on page 19 and figure 4 on page 22.

9.2.1 Multilayer Feed-forward Networks as Universal Function Approxi-

mators

[HornikWhite1989] found that artificial feed-forward neural networks with as few as one

hidden layer can model any Borel measurable function within a given error, provided

the following conditions are met:
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• The activation function must be a “squashing” function: A squashing function

s(x) must be non-decreasing, limx→−∞ s(x) = 0 and limx→∞ s(x) = 1. An exam-

ple is the sigmoid function 1
1+exp(−x) .

• Sufficiently many hidden nodes must be available.

[HornikWhite1989] also note that “This [result] implies that any lack of success in appli-

cations must arise from inadequate learning, insufficient numbers of hidden units[nodes]

or the lack of a deterministic relationship between input and target.”

9.2.2 Training Using Back-propagation

Back-propagation is the adaptation of weights and biases of the network to make its set

of actual outputs better fit a set of desired outputs for a given set of inputs. Technically

it is just running the network for a given input in the forward pass, observing the

outputs in the output layer, computing the errors to the desired outputs and back-

propagating them to adapt the weights and biases between all the layers. This will

make the network output values closer to the desired values next time this particular

input pattern is given to the network. The back-propagation algorithm is a supervised

learning step and thus prone to overfitting. In order to discuss modifications and

extensions of the algorithm, we will first repeat the most important points of back-

propagation as reviewed in section 3.5.

Forward and Backward Pass In the forward pass , each node’s output is computed

from the sum of its inputs

vj = bj +
∑
i∈cj

oiwji,

where bj is the bias, oi is the output of a node in the layer above, and wji is the weight

of the connection from node i to node j. The input vj is then scaled by the sigmoid

function to produce a node’s output oj

oj = σ(vj) =
1

1 + exp(−vj)
.

In the backward pass , the training procedure computes the total error E of the

network, which is defined as the squared sum of differences between actual output ok
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and desired output yk

E =
1

2

∑
k

(ok − yk)2,

where ok is the actual activation of node k in the output layer, and yk is its desired

output. The sum-of-squared-differences term 1
2

∑
k(ok − yk)2 is called the error , loss ,

or cost function.

Error of the Output Layer The error is then differentiated with respect to a weight

wkj for a connection from node j in the last hidden layer to node k in the output layer

∂E

∂wkj

=
∂E

∂ok
· ∂ok
∂vk
· ∂vk
∂wkj

= (ok − yk) · ok(1− ok) · oj, (25)

and with respect to bk

∂E

∂bk
=
∂E

∂ok
· ∂ok
∂vk
· ∂vk
∂bk

= (ok − yk) · ok(1− ok) · 1.

Error of the Other Layers The derivative of the error with respect to the weights

wji of the remaining connections from node i in a layer to node j in the layer below is

∂E

∂wji

=
∂E

∂oj
· ∂oj
∂vi
· ∂vi
∂wji

=
∂E

∂oj
· oj(1− oj) · oi,

where

∂E

∂oj
=

∑
k

∂E

∂ok

∂ok
∂vk

wkj

and we take the value for ∂E
∂ok

∂ok
∂vk

from node k, which is in the layer below node j.

Analogously, the derivative with respect to bj is

∂E

∂bj
=

∑
k

∂Ek

∂ok

∂ok
∂vk

wkj · oj(1− oj) · 1.

Updating Rule and Learning Rate After computing the derivatives of the error

with respect to the parameters of the network, we can perform gradient descent and
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update the parameters using the learning rate ε, a small positive number:

∆w = −ε∂E
∂w

(26)

∆b = −ε∂E
∂b
.

Optimizing the Sum of Squared Differences Error Usually in back-propagation,

the error function to be minimized is the sum of squared differences between the desired

outputs and the actual outputs

E =
1

2

∑
k

(ok − yk)2,

where yk is the desired value of node k in the output layer and ok is the actual output

value of node i. As stated in equation 25, the derivative of the error E with respect to

a weight wkj is
∂E

∂wkj

= (ok − yk) · ok(1− ok) · oj. (27)

Optimizing the Cross-entropy Error Another error function is the cross-entropy

error [NasrJoun2002]

E = −
∑
k

yk log ok −
∑
k

(1− yk) log(1− ok),

where again yk is the desired output value of node k in the output layer and ok is the

actual output value. The derivative of error E with respect to a weight wkj from node

j in the last hidden layer to node k in the output layer is then

∂E

∂wkj

= (ok − yk)oj.

[GolikNey2013] note that using the cross-entropy error function requires less up-

dates, since the gradient for the sum-of-squared-differences error function becomes low

not only when the actual output ok is near the desired output yk, but also when ok is

near 0 or 1 (see equation 27).
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9.2.3 Parameters in Training a Neural Network

Although described here for multilayer perceptrons, the parameters apply to most

artificial neural networks, not just multilayer perceptrons.

Random Weight and Bias Initialization At the start of training, weights w and

biases b have to be initialized. They must not all be initialized to the same value,

because then the activations in the output layer ok would become equal, leading to an

equal error gradient for the weights and biases, which would prevent learning. Ideally,

the hidden and output layer activations oj should be in the linear region of the acti-

vation function, so that the error derivatives are large. As [LeCunMuller1998] note,

this requires coordinating the training set normalization, the choice of the activation

function, and the weight and bias initialization.

Usually the biases are initialized to zero, and the weights are drawn from a uniform

random distribution in [-1;1], or from a normal distribution with mean 0 and standard

deviation 1. Another possibility is to use “fan-in” initialization, where the number

of incoming connections m to a node are taken into account. Then the weights are

randomly drawn from a normal distribution with mean 0 and standard deviation

σ = m−1/2.

Activation Function The activation of hidden and visible nodes are a function of

the sum of their inputs. The function that maps the sum of the inputs of a node to its

value is called the activation function.

The sigmoid activation function

σ(x) =
1

1 + e−x

is a standard activation function, often used in neural networks. It is almost linear for

inputs around zero, tends to 1 as its inputs go to positive infinity and to 0 as inputs

go to negative infinity (see figure 3 on page 19).

Another commonly used activation function is the hyperbolic tangent function

tanh(x) =
1− e−2x

1 + e−2x
.

Its graph looks very similar to the graph of the sigmoid function. While the output

range of the sigmoid is [0; 1], it is [−1; 1] for the hyperbolic tangent function.



68 9 ARTIFICIAL NEURAL NETWORKS

In this work only the sigmoid activation function was used.

Momentum of the Learning Rule Usually, the learning rule includes a momentum

term. In this case, the weight and bias deltas from equation 26 are replaced with a

momentum weight delta ∆wmomentum and momentum bias delta ∆bmomentum. The

momentum term

∆w
(t)
momentum = µ∆w

(t−1)
momentum + (1− µ)∆w(t)

∆b
(t)
momentum = µ∆b

(t−1)
momentum + (1− µ)∆b(t),

includes a coefficient µ that is the fraction of the weight and bias deltas of the previous

time step t − 1 to be added to the current weight deltas where ∆w(t) and ∆b(t) are

taken from equation 26.

Momentum works like a low-pass filter and reduces oscillations during learning

by smoothing the weight and bias deltas added to the parameters of the network.

However, too large a momentum coefficient can cause “explosion”, or non-convergence

of the model during training. To prevent this, µ is usually gradually increased to its

final value during the early steps of training.

The coefficient µ is an additional meta-parameter in training.

9.2.4 Difficulties in Training Multi-layer Neural Networks

Training a randomly initialized feed-forward neural network with more than one hid-

den layer using back-propagation is difficult and usually does not succeed. When at-

tempting to train such a network, each node in the output layer often just outputs the

mean value of the desired output of the training cases, independently of the input. One

problem is that there are many local minima (generated by repeatedly adding weighted

sigmoid functions) in the implicitly optimized energy function during back-propagation

[GoriTesi1992]. Another problem is that in discriminative learning, each training case

only contributes as many bits to the specification of the network parameters as needed

to specify the label [Hinton2010].

9.3 Regularizations of Neural Networks

Several regularization methods for neural networks have been developed over the years.

They have in common that they artificially constrain the search space of weights and

biases in order to let the model find better error minima or to prevent overfitting. The
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neural network should do less “learning by heart” and instead make its predictions

apply to more unseen test set data.

The regularizations described here apply to most artificial neural networks, not just

multilayer perceptrons.

9.3.1 L1 and L2 Weight Decay

L1 and L2 weight decay penalize large weights by moving them towards zero. Both

weight decay methods decrease the absolute value of each weight in each training

iteration, in order to prevent large weights. This can be necessary because for some

training samples, some weights tend to “escape”, i.e. become larger and larger in

absolute value, making subsequent changes to the weights more difficult.

Instead of the normal weight delta ∆w defined in equation 26, L1 weight decay uses

a penalized weight delta

∆wL1 = ∆w − c ∗ sgn(w),

where c ∈ R+ is a small positive constant meta-parameter, the “weight-cost” of L1

weight decay, and sgn(w) is the sign of the weight, i.e. -1, 0, 1, for the weight w being

negative, zero, positive, respectively.

L2 weight decay uses

∆wL2 = ∆w − w ∗ c,

where c ∈ R+ is the small positive “weight-cost” of L2 weight decay.

[Hinton2010] notes that there are four different reasons for using weight decay:

better generalization of the resulting network, making the weights more interpretable

by shrinking large weights, penalize network nodes that are always firmly on or off due

to large inputs caused by large weights, and improve the mixing rate of contrastive

divergence6, a training procedure for Restricted Boltzmann Machines, where small

weights increase the mixing rate of the Gibbs chain.

As [FischerIgel2012] note, using an L2 weight decay term in the updating term

corresponds to assuming a zero-mean Gaussian prior on the parameters in a Bayesian

framework.

6Contrastive divergence is explained in section 9.6.1.
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9.3.2 Sparsity

Sparsity regularization is a method to make only a small fraction of hidden nodes output

an activation very different from zero. Sparse activity helps in the network’s ability to

generalize, and also makes the trained network more interpretable [Ng2011, Hinton2010,

NairHinton2009]. Like other regularization methods, sparsity regularization constrains

the space of possible parameters of the model.

Average Activation We first have to define what we mean by sparse activity. We

can define an average activation qj of each hidden node j, and encourage the node

to have an average activation qj close to a sparsity target 0 < p � 1. We want to

approximately enforce that qj ≈ p.

One way to define the average activation qj of node j is to take into account the

node’s activations in the previous training iterations. The average activation qj can be

defined to be an exponentially decaying average of the activation o
(t)
j

q
(t)
j = λq

(t−1)
j + (1− λ)o

(t)
j ,

where λ ∈ (0; 1) is the decay rate, o
(t)
j is the activation of node j at training iteration

t, and q
(t)
j is its average activation at training iteration t.

Alternatively, we can measure the average activation qj within one training iteration,

by defining qj as the average activation over all m training samples

qj =
1

m

m∑
s

o
(s)
j ,

where o
(s)
j is the activation of hidden node j when the input layer of the network has

been set to training sample s.

Sparsity Error Term The idea is to add to the error term ∂E
∂oj

of a hidden node

j an additional term that encourages the node to have an average activation qj close

to the sparsity target p. The term should be small when the average activation qj is

close to the sparsity target p and become larger when it deviates. One such term is the

Kullback-Leibler divergence between a Bernoulli random variable with mean p and a
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Bernoulli random variable with mean qj

Esparsity = DKL(PBernoulli(p)||PBernoulli(qj))

= p log
p

qj
+ (1− p) log

1− p
1− qj

.

It is zero for qj = p, and approaches infinity when qj = 0 or qj = 1. Differentiating

this sparsity error with respect to the weight wji of a connection from node i to node

j, and approximating the average activation qj to be equal to the activation oj gives

∂Esparsity

∂wji

=
∂Esparsity

∂oj
· ∂oj
∂vj
· ∂vj
∂wji

≈
(
∂

∂oj
p log

p

oj
+ (1− p) log

1− p
1− oj

)
· ∂oj
∂vj
· ∂vj
∂wji

=

(
1− p
1− oj

− p

oj

)
· ∂oj
∂vj
· ∂vj
∂wji

=

(
1− p
1− oj

− p

oj

)
· oj(1− oj) · oi

= (oj − p) · oi.

Substituting qj back for oj gives

∂Esparsity

∂wji

≈ (qj − p) · oi.

Analogously, the derivative of the sparsity error with respect to the bias bj of node j is

∂Esparsity

∂bj
=

∂Esparsity

∂oj
· ∂oj
∂vj
· ∂vj
∂wji

≈ (qj − p) · 1.

Complete Updating Rule For a training iteration, both the bias bj of node j and

its incoming weights wji must be adjusted by the derivative of the sparsity error, scaled

by the sparsity cost λ

∆wji = −ε
(
∂E

∂wji

+ λ
∂Esparsity

∂wji

)
≈ −ε

((∑
k

∂E

∂ok

∂ok
∂vk

wkjoj(1− oj)

)
+ λ(qj − p)

)
oi

∆bj = −ε
(
∂E

∂bj
+ λ

∂Esparsity

∂wji

)
≈ −ε

((∑
k

∂E

∂ok

∂ok
∂vk

wkjoj(1− oj)

)
+ λ(qj − p)

)
.
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9.3.3 Dropout

Dropout is a regularization method to make the nodes in the hidden layers, which can be

seen as feature detectors, less dependent on each other [SrivastavaSalakhutdinov2014].

This is enforced by “dropping” during each training iteration a random subset of nodes

in a hidden or visible layer. This prevents subsequent layers from adapting to specific

combinations of node activations in the previous layer, in which nodes are only useful in

the context of a large number of other nodes. It thereby reduces overfitting. Dropout

can be used in any neural network whose input to a node is computed from several

input nodes.

Dropout specifies a probability d for nodes in a layer with n nodes to be active

during a training iteration. In each iteration, on average only d ∗ n nodes’ output

values oj are computed and the other nodes are set to contribute nothing (i.e. oj := 0)

to the input to the next layer. To utilize all trained nodes during testing, all nodes

contribute to the computation of input to a layer, but their total input must then be

multiplied by d, to simulate that only a fraction of d nodes are active.

The reasoning behind dropout is that for a network with n nodes, there are 2n

possible ways to drop out those nodes. During testing, a network trained with dropout

implicitly averages its output over all these 2n networks. This is faster than to do

explicit model averaging over 2n networks with shared weights.

Dropping out a random fraction of nodes prevents single nodes from co-adapting to

the specific workings of a large number of other nodes. [SrivastavaSalakhutdinov2014]

note that a side-effect of dropout is that the activations of nodes become sparse, without

another sparsity-inducing regularization method being used.

9.3.4 Early Stopping

Early stopping is not a regularization method, but still a method to prevent overfitting

in supervised training of an artificial neural network. The training data set is split

into a training data set and a validation data set, and uses only the training data set

for adapting the weights and biases during learning. After each learning iteration, the

validation data set is used to compute the output error of the current network. After

a defined number of training iterations, the neural network that had the lowest output

error on the validation data set is used for predictions.

This prevents the training procedure from overfitting to sampling error present in

the training data set [Prechelt1997].
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A B

Figure 11: Training of an autoencoder iteratively adds hidden layers. The layers are
depicted as rectangles. A: It starts with a network architecture of an input layer,
one hidden layer, and an output layer with the same size as the input layer. The
parameters of this small network are initialized randomly (light gray area) and the
network is trained. B: The hidden layer is copied and another hidden layer is inserted
between encoder and decoder. The added weights are initialized randomly (light gray
area), and the whole network (including the previously trained weights, dark gray area)
is trained. This procedure continues until the network has enough layers.

9.4 Autoencoder

An algorithm that can train an artificial neural network deterministically with more

than one hidden layer is the auto-associator , or autoencoder [BengioLarochelle2007].

The algorithm is unsupervised and iteratively constructs deeper and deeper networks.

Its essential idea is the construction of an encoder network and its anti-symmetric

counterpart, the decoder network. Both are trained using back-propagation, wherein

the target output to be achieved in the output layer is the same unsupervised training

sample as presented to the network in the input layer, hence the name of the algorithm.

The encoder starts in the first iteration as a network that consists of the input layer

and one hidden layer on top. The (overlapping) decoder network consists of the very

same hidden layer and the output layer on top, which must have the same dimensions

as the input layer. Training an autoencoder slowly adds internal layers to en- and

decoder, see figure 11. The network starts with three layers: input, hidden, and output

layer. This network is trained using back-propagation. Once back-propagation does

not improve the reconstruction error on the test set anymore, the second step starts.

In the second step, both encoder and decoder are extended by one layer. The existing

middle hidden layer is copied and a new hidden layer is inserted in the middle. The

new weights are initialized randomly, for example by drawing from a uniform [-1;1]

distribution or from a normal distribution with mean 0 and standard deviation 1, and

the new biases are initialized to zero. Then back-propagation is used again to determine

the parameters of the whole network. This process can be repeated until a sufficient
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number of hidden layers has been trained.

Network size increases iteratively from 3 layers, to 5 layers, to 7 layers, and so

on, and only 2 weight layers are initialized randomly in each iteration. Therefore, the

deep network is not stuck in a poor local optimum, because there are only few new

added weights each iteration, and back-propagation finds parameters for a good (local)

optimum.

The goal of training is that the network reconstructs as output patterns the input

patterns. One might think that that is too easy, since the network could just learn

the identity function at every layer, but usually the number of nodes in at least one

hidden layer is chosen to be smaller than the number of nodes in the input (and output)

layer. In this way the autoencoder is forced to reconstruct its input from a compressed

representation. Another way to obtain interesting features in the middle hidden layer

is to use a regularization method on the network.

9.4.1 Encoder with a Classifier on Top

The autoencoder as described is an unsupervised algorithm, because it only recon-

structs its input. The autoencoder can however be used in a supervised fashion by first

training its encoder and decoder networks up to sufficient depth, and then removing the

decoder network and replacing it by a single output layer that has the dimension of the

training label. The weights between the last hidden layer of the encoder and the new

output layer as well as the biases of the new output layer are initialized randomly (by

drawing from a uniform or normal distribution), and trained using back-propagation.

An encoder network trained using an autoencoder is a generative model, because it

was trained with the goal to reconstruct its input, and the encoder’s last hidden layer

contains a compressed representation of the input. Hence, an encoder with a classifier

on top is a generative model with a discriminative part put on top.

9.5 Boltzmann Machines

Structure A Boltzmann Machine is a stochastic version of a Hopfield network. It is

an undirected graphical model that has a specific form of the conditional probability

distribution defined at each node [Neal1992]. A schematic example can be seen in figure

12. There are visible nodes V and hidden nodes H, all of which have a binary state.

The visible nodes correspond to variables in a training sample, while the hidden nodes

model dependencies between those variables, and can be seen as feature detectors. Any
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Figure 12: A schematic example of a Boltzmann Machine. There are visible nodes
V1 to V5 and hidden nodes H1 to H3, each of which have a real-valued bias. Pairs
of nodes are connected with an undirected and real-valued weight. All pairs of nodes
can be connected by a weight different from 0, but self-connections are not allowed. A
Boltzmann Machine stores a joint probability distribution (see text).

two nodes i and j may be connected using an undirected connection with weight wij,

with the restrictions that there are no self-connections (wii = 0) and all connections are

symmetric (wij = wji). A Boltzmann Machine stores a joint probability distribution.

The conditional probability distribution for a hidden node Hi ∈ H depends on the

states of all other nodes Sj and is defined by [HintonSejnowski1986] as

P (Hi = 1 | Sj = sj : j 6= i) = σ

(∑
j

sjwij − bi

)
, (28)

where S = V ∪H, sj is the state of node Sj, σ(x) = 1
1+exp(−x) , wij ∈ R is the weight

between hidden node Hi and (visible or hidden) node Sj, and bi is the bias of hidden

node Hi. Similarly,

P (Vj = 1 | Si = si : i 6= j) = σ

(∑
i

siwij − cj

)
,

where Vj is a visible node, wij = wji is the weight between node Si and visible node

Vj
7, and cj is the bias of visible node Vj.

7this wij is the same as in equation 28
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Gibbs Sampling in Boltzmann Machines A Boltzmann Machine is an undirected

graphical model. Therefore the approximate Gibbs sampling inference algorithm from

[Neal1993] applies, which works by iteratively drawing the state of an unknown variable

si ∈ S = H ∪ V from its conditional probability distribution, given the states of all

other variables sj:j 6=i. See section 8.4.3.

9.5.1 Training Boltzmann Machines

The goal of training a Boltzmann Machine is to find parameters, i.e. weights and

biases, such that the probability of the training data becomes maximal. Remember

that Boltzmann Machines store a joint probability distribution. The log-likelihood is

L = log
∏
v∈T

P (V = v),

where T is the set of training data (to be applied to the visible nodes) and its derivative

with respect to a weight wij is

∂L

∂wij

=
∑
v∈T

(∑
s

P (S = s | V = v)sisj −
∑
s

P (S = s)sisj

)
,

where S is V∪H, and si is the state of node Si [Neal1992]. The goal is to find a delta

∆wij for each weight wij, which can be added to the weight, so that the likelihood for the

training sample using the updated weights wij + ∆wij increases. The derivative of the

log-likelihood with respect to a weight wij multiplied by a learning rate provides such

a delta. This derivative can be approximated by the difference between two parallel

Gibbs Sampling steps: the positive phase, where P (S = s | V = v)sisj is approximated,

and the negative phase, where P (S = s)sisj is approximated [Neal1992].

Positive Phase In the positive phase of training a Boltzmann Machine, the visible

nodes V are clamped (i.e. their state is held fixed) to their states as they are in the

training sample v, and then the states of the remaining (i.e. hidden) nodes are sampled

via Gibbs Sampling. We start in any (for example random) configuration of the hidden

nodes, repeatedly sample each remaining variable S from its conditional probability dis-

tribution given the states of all other variables (i.e. P (Si = si | Sj = sj : j 6= i)) until

the Gibbs sampler reaches equilibrium, and record the state si that each remaining vari-
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able Si had assumed in equilibrium. By repeatedly sampling the si a few times t when

the Markov chain is in equilibrium, we determine their probability distributions, where

t depends on the desired resolution of the probabilities. The conditional probability

distribution of the remaining variables P (S = s|V = v) is determined. Therefore the

term
∑

s P (S = s|V = v)sisj can be determined, which completes the positive phase.

Negative Phase In the negative phase no nodes are clamped, and the states of

all variables in equilibrium are recorded. Again, we start in any configuration of the

network. Then we repeatedly sample from the conditional probability distributions

P (Si = si | Sj = sj : j 6= i) for all variables Si until equilibrium, and record the state

si each variable Si had in equilibrium. Sampling a few more steps in equilibrium, we

can determine their distributions P (S = s) and therefore the term
∑

s P (S = s)sisj.

Training Iterations The derivatives obtained by the positive and negative phases

are multiplied by the learning rate ε (a small positive real constant) and added to the

current weights

w
(t+1)
ij = w

(t)
ij + ε

∂L

∂wij

= w
(t)
ij + ∆w

(t)
ij .

Then another training iteration is started. This is repeated until the derivatives all

converge to zero.

Connections to other Graphical Models [Neal1993] notes that the Boltzmann

Machine is a generalization of the Ising model of ferromagnetism: “Generalized to allow

[parameters] to vary from spin to spin, and to allow interactions between any two spins,

the Ising model becomes the “Boltzmann machine” of Ackley, Hinton, and Sejnowski.”

9.6 Restricted Boltzmann Machines

Structure A Restricted Boltzmann Machine(RBM) is a restricted variant of a Boltz-

mann Machine. Hence, it also is a way to store a joint probability distribution. An

schematic example of a Restricted Boltzmann Machine can be seen in figure 13. It

has a bipartite topology: there are visible nodes V and hidden nodes H, and each

node in the visible layer is connected to all hidden nodes by undirected edges, but in

contrast to general Boltzmann Machines no visible-to-visible node connections and no

hidden-to-hidden node connections are allowed. In a Restricted Boltzmann Machine,
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H3

V1 V2 V3

H2

V4
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Figure 13: A schematic example of a Restricted Boltzmann Machine. There are two
layers: the visible layers with nodes V1 to V5 and the hidden layer with nodes H1 to H3,
each of which have a real-valued bias. Node pairs from different layers are connected
with an undirected and real-valued weight. Connections between nodes from the same
layer and self-connections are not allowed. A Restricted Boltzmann Machine stores a
joint probability distribution (see text).

the visible nodes represent the observable features of a training set, while the hidden

nodes are feature detectors which are computed from the states of all visible nodes.

As originally proposed by [Smolensky1986], a Restricted Boltzmann Machine has

binary visible and hidden nodes. There are extensions to real-valued nodes, however.

See for example [FischerIgel2012].

The conditional probabilities at the nodes are defined analogous to Boltzmann Ma-

chines (see equation 28):

P (Hi = 1 | V = v) = σ

(∑
j

vjwij − bi

)

P (Vj = 1 | H = h) = σ

(∑
i

hiwij − cj

)
,

where Hi is the binary state of hidden node i, σ(·) is the sigmoid function, j is an

index over all visible nodes, vj is the state of visible node j, wij is the weight of the

connection between hidden node i and visible node j, bi is the bias of hidden node i,

and Vj is the state of visible node j, i is an index over all hidden nodes, hi is the state

of hidden node i, and cj is the bias of visible node j.
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9.6.1 Contrastive Divergence Learning

A Restricted Boltzmann Machine is a restricted form of the more general Boltzmann

Machine. Therefore, it can be trained using the training procedure for Boltzmann

Machines. However, there is also a more direct learning procedure called contrastive

divergence, where the positive phase is simpler, because the hidden and visible nodes

are conditionally independent, given the nodes of other type. Contrastive divergence is

obtained by approximating the derivative of the log-likelihood with respect to a weight

wij.

Like for Boltzmann Machines, the goal of training is to find parameters such that

the probability of the training data becomes maximal. The log-likelihood is

L = log
∏
v∈T

P (V = v),

where T is the set of training data (to be applied to the visible nodes) and its derivative

with respect to a weight wij is

∂L

∂wij

=
∑
v∈T

(
P (Hi = 1 | V = v)vj −

∑
v

P (V = v)P (Hi = 1 | v)vj

)
(29)

(see e.g. [FischerIgel2012]). The difference in equation 29 is called the difference

between the positive and negative phase.

Positive Phase The positive phase, i.e. P (Hi = 1 | V = v)vj can be computed

directly by setting the visible nodes to the training sample, and then computing P (Hi =

1 | V = v) = σ
(∑

j vjwij − bi
)

. Multiplying by vj completes the positive phase of

computing the delta for wij.

Negative Phase The negative phase
∑

v P (V = v)P (Hi = 1 | v) is not as straight-

forward to compute. It may be approximated by running a Gibbs chain until con-

vergence. We first initialize the network with any state, then alternatingly compute

P (H | V) and P (V | H) until the stationary distribution is reached. The number of

iterations is k and the gradient computed by contrastive divergence (i.e. the difference

of positive phase and negative phase) is called CDk. Often k = 1 is used at the begin-

ning of training and later k is incremented. v and h are sampled from the stationary

distribution and allow computing
∑

v P (V = v)P (Hi = 1 | v)vj.
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9.6.2 Parameters of Training a Restricted Boltzmann Machine

In addition to the parameters for training a Multilayer Perceptron, i.e. the amount

of momentum, the choice of the activation function, and how to randomly initialize

weights and biases (see section 9.2.3), there are the following:

Interpreting the Output of a Node as a Continuous Value The output of a

node in a Restricted Boltzmann Machine is binary (i.e. either 0 or 1). However the

sigmoid activation function outputs continuous values between 0 and 1. This output of

the sigmoid activation function is interpreted as the probability that the node outputs

value 1, and 0 otherwise. Using this output value directly, without sampling from a

binomial distribution, allows the output to be from the interval {0, 1}.

Linear nodes with independent Gaussian noise [HintonSalakhutdinov2006] pro-

posed a way to extend Restricted Boltzmann Machines with only binary values to nodes

with real values. However, this extension was largely replaced by rectified linear nodes

because they performed better.

Rectified linear activation function [NairHinton2010] then modified the idea in

[HintonSalakhutdinov2006] to rectified linear nodes, in which the sampled output of a

node is given by max(0, x + N(0, σ(x)) where x is the sum of the inputs of the node,

σ(x) is the sigmoid function, and N(0, σ(x)) is normally distributed noise with mean 0

and variance σ(x). This allows using any positive real value for the random variables

of a RBM.

9.7 Deep Belief Networks

Structure Belief Network is another name for directed graphical model. Deep Belief

Networks (DBNs) are Belief Networks in which the nodes are organized in layers,

and where the value of a node in a layer only depends on the values of nodes in the

layer above. There are no loops in Deep Belief Networks. The word “deep” refers

to the number of (more than a few) hidden layers of a Deep Belief Network. Deep

Belief Networks can be seen as the stochastic counterpart of deterministic feed-forward

networks.

Deep Belief Networks are directed graphical models, therefore the computation of

the values of children nodes does not affect the value of parent nodes. In contrast to

undirected graphical models, this allows generating (drawing a sample) from the model
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in a single pass. Thus, a Deep Belief Network can be used in an unsupervised algorithm

to generate samples distributed like a training data set.

Sigmoid Belief Networks Sigmoid Belief Networks were defined by [Neal1992] as

a directed graphical model with a sigmoid conditional probability function. A Sigmoid

Belief Network is a Belief Network in which the conditional probability associated with

node Ni depends only on previous nodes Nj (where parents must come before children).

The conditional probabilities can be expressed as a sigmoid function

P (Ni = 1i | Nj = nj : j < i) = σ(
∑
j<i

njwij − bi),

where nj is the binary state of node Nj, wij is the directed weight from node Nj to

node Ni, and bi is the bias of node Ni. Thus the conditional probabilities of a Sigmoid

Belief Network are parameterized with the weights and biases.

Arbitrary Modelling Capability Both Boltzmann machines and Sigmoid Belief

Networks can represent arbitrary probability distributions over a set of an arbitrary

number of visible nodes, provided that a sufficient number of hidden nodes is available

[Neal1992]. However, as [Hastad1987] showed, a network with one hidden layer less

needs up to an exponential factor more hidden nodes. Thus, a Deep Belief Network

with the same total number of hidden nodes needs less computation steps to draw from

a probability distribution.

9.7.1 Training Samples Viewed as Generated by a Deep Belief Network

Training a Deep Belief Network is unsupervised, and we have unlabeled training data

consisting of a set of vectors vp, each with the same dimension. (Hence the training data

can be represented by a matrix.) We view these training samples as being the result

of the probabilistic evaluation of a Deep Belief Network. This is depicted in figure 14.

Unsupervised training of a Deep Belief Network means finding weights between hidden

and visible nodes such that the likelihood given the training samples becomes maximal.

Gradient Ascent of the Whole Model is Infeasible We could try doing gradient

ascent of the whole model. [Neal1992] showed that this would mean computing the

derivative of the likelihood L with respect to a weight wkj of the connection from node
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G1

H1

G2

V1 V2

H2

G3

V3

F1 F2

observable effects
(training samples)

hidden causes

Figure 14: The training samples are generated by a Deep Belief Network, a directed
graphical model. In the depicted example, the top layer F consists of the random
variables that represent the causes, leading to an observable training sample in the
bottom layer V. The distribution of a random variable in the layers below the first
(G, H, and V) is determined by the states of the random variables in the layer above.
Only the states of the random variables in the bottom visible layer V are observable.
Training a Deep Belief Network means finding weights for the connections between the
layers and biases for each variable, so that the whole model could have generated the
training data.

j to node k

∂L

∂wkj

=
∑
h

P (H = h | V = v)hjσ

(
−hk

∑
i

hiwji

)
,

where H = (Hi)i=1,..n are the nodes from layers above the visible layer, h = (hi)i=1,..n

are their states, V and v are the visible nodes and their states, hj is the state of node

j, and hi is the state of node i, which is in the layer above node j. In the derivative

we would have to evaluate the conditional probability P (H = h | V = v), which is

an inference problem. However, exact inference of the hidden nodes given the visible

nodes is intractable. Therefore we would have to resort to approximate Gibbs Sampling.

This would work by alternatingly updating each random variable using the conditional

probability of the variable given all other variables (see page 59). However, in Gibbs

Sampling, all hidden variables (of all layers simultaneously) are inferred together (at

the same time), and this scales poorly as models become larger. Therefore another

learning algorithm is needed.
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9.7.2 A Fast Learning Algorithm for Deep Belief Networks

[HintonTeh2006] showed that there is a fast greedy learning algorithm for Deep Belief

Networks, even with many hidden layers and millions of parameters. It does not train

the weights between all layers at once, but starts with the weights between the lowest

two layers, and iteratively adds layers and their weights.

There are computational problems with inferring the hidden variables from visible

ones: Inference requires marginalizing out all variables of a layer except one due to

explaining away, and it requires integrating over all variables above that layer (see

section 8.3.4). In addition, updating a weight requires knowing all weights above in

the network. The problems would go away if the posterior of the hidden given the

visible nodes were independent between individual hidden nodes, because this would

eliminate explaining away.

Hence, [HintonTeh2006] came up with a trick: The posterior is equal to the product

of prior times likelihood. If the prior were so that it would cancel the correlations of

the likelihood, then the product would factor according to the hidden nodes H

P (H | V) =
∏
i

P (Hi = hi | V),

where V are the visible nodes. They showed that such complementary priors exist and

are a functional family of the form

P (H) =
1

C
exp

(
log Ω(h) +

∑
i

αi(hi)

)
,

where C is a normalization constant, Ω is a function of the states of the hidden variables

and the αi are functions depending on the hidden states individually. In the desired

factorial form of the posterior all the Hi must be conditionally independent (given

visible variables V). By the Hammersley-Clifford theorem (see 8.2.1) these conditions

are fulfilled in an undirected graphical model that has edges between a hidden and a

visible variable and edges between all visible nodes with a joint probability of the form

P (V,H) =
1

C
exp

(∑
i

Φi(v, hi) + β(v) +
∑
i

αi(hi)

)
. (30)

For reasons that will be explained in a moment, we also want to get rid of the edges

(i.e. dependencies) between the visible nodes. The conditional probabilities are then
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of the form

P (H | V) =
∏
i

P (hi | v). (31)

P (V | H) =
∏
k

P (vk | h) (32)

Also by the Hammersley-Clifford theorem, the joint probability then specializes from

equation 30 to

P (V,H) =
1

C
exp

(∑
i

Φi(v, hi) +
∑
k

γk(vk) +
∑
i

αi(hi)

)
.

The reason we wanted to have both independencies as encoded by equations 32 and

31 is that these are the (in)dependecies described by a Restricted Boltzmann Machine.

Inference in an RBM works by repeatedly and alternatingly evaluating these two con-

ditional probabilities. The correctly inferred distribution is obtained once the Markov

chain reaches equilibrium in iterating. However, we can also view this iterative infer-

ence as taking place in an infinitely deep directed graphical model that has alternating

visible and hidden layers and has shared (“tied”) weights at all layers. The weights

matrix between the layers in the directed graphical model are W from hidden to visible

and W T from visible to hidden layers. It is this idea of unrolling the RBM in time that

gives rise to the following training procedure for the weights of a Deep Belief Network.

The Greedy Training Procedure The idea is to train a stack of Restricted Boltz-

mann Machines, where in each individual RBM, the hidden nodes infer features derived

from the visible nodes, and serve as input to be used in the visible layer of the next

RBM in the stack. Training starts with a single RBM, whose visible variables are set

to a training sample. After training it to represent the joint probability distribution

of the whole training data set, we obtain, for each training sample, the states of the

hidden nodes. These hidden features comprise a new training data set, to be used

in the next RBM. Iteratively deriving new features and using these to train the next

RBM, we therefore obtain parameters for each RBM in the stack.

We will now more formally describe the training procedure. At the first layer, start

with a single RBM containing visible nodes V and hidden nodes H0 and train it using

contrastive divergence to learn the weights W0. Use these weights in the first layer

of the Deep Belief Network. Split each of the undirected connections between V and

H0 into a connection going upwards and one going downwards. The upward weights
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W T
0 serve the purpose of inferring the H0 representation of the training data, and the

downward weights W0 are generative and part of the model.

Then infer a training data set for another RBM on hidden layers H0 and H1. This

RBM needs training data in H0, but our training samples are for layer V. The re-

representation works by placing a training sample into the V nodes, and then the

upward connections are used to get a new representation of the data at H0. This is

done for all training samples.

We now place an RBM between hidden layers H0 and H1. Up to now the model

is equivalent to running the RBM for one more iteration, which is implemented by the

extra directed layer below the RBM. This is because the weights between the two sets

of layers are constrained to be equal. Now “untie” the upward weights W T
0 between

V and H0 from the weights Wi (where i > 0), which are constrained to be the same.

Train the RBM between H0 and H1 on the converted training samples, obtaining new

weights W1. As we untied the weights W T
0 from W1, the inferring weights W T

0 between

V → H0 became incorrect in theory. In practice, however, this does not matter that

much. As [HintonTeh2006] note, the gain by training the RBM on top of re-represented

data outweighs the incorrectness of inference. They argue that the greedy algorithm

is guaranteed to improve the generative model, because P (V) has a lower bound that

increases (or stays the same for a fully trained model) when training an additional layer.

This guarantee is given only for maximum likelihood Restricted Boltzmann Machine

learning. In practice we use contrastive divergence (CD) for speed. However, the

guarantee still holds if we use CDk with a large enough number of iterations k.

The greedy algorithm now proceeds iteratively, i.e. the steps of inferring a training

data set for a deeper layer and training an RBM on this data continue until the model

is sufficiently deep. Above, we constrained the model to have an equal number of

nodes in each layer. The greedy training procedure also works for layers of different

sizes. Thus training using gradient descent and approximate Gibbs Sampling, which

is feasible only for a few layers and variables, can be replaced by the tractable greedy

algorithm.

9.7.3 Deep Belief Networks Interpreted as Feed-forward Neural Networks

Pre-training A trained DBN can be reinterpreted as a feed-forward neural network.

In particular, the weights and biases of an unsupervisedly trained DBN can be trans-

ferred to a multi-layer feed-forward neural network with the same architecture as the

DBN, thereby making the stochastic DBN a deterministic neural network. The process
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of training a DBN using stacks of RBMs, and transferring the weights and biases is

called pre-training .

Fine-tuning Furthermore, another neural network can be put on top of the pre-

trained converted DBN, where the final (output) layer has neurons corresponding to

variables to be predicted. Usually the network consists of only one layer, due to diffi-

culties in training freshly initialized multi-layer neural networks. The resulting network

can then be fine-tuned , using standard back-propagation, into a configuration that can

predict from input variables (input at the bottom of the network) the output variables

(read off at the top of the network).

Re-representation of the Data In such a composite structure, the (unsupervisedly

trained) DBN weights take on the responsibility of re-representing the data so that it is

in an abstracted form that is easier to learn on. Correlated variables, for example, are

represented by a single variable indicating whether a feature is present in the sample or

not. The (supervisedly trained) weights on top of the network have the responsibility

to label the sample, i.e. indicate whether the abstracted representation of the sample

is of a certain form or not.
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Part III

Results

10 General Remarks

10.1 Treatment Sensitivity Prediction for Personalized Medicine

The goal of personalized medicine is to provide custom-tailored medicine to every

patient. An essential part of this is to select an appropriate treatment for a specific

patient out of the available treatments. The treatment should have a high probability of

succeeding. One way of approaching this is through machine learning on the expression

data from a patient’s tissue to predict treatment outcome. Such a prediction requires

similar expression data from multiple patients that already underwent the treatment

and where the therapy outcome is known.

In order to evaluate the usefulness of deep learning in the context of personalized

medicine, we analyzed a data set that had something to do with drug sensitivity and

resistance. GSE25055 and GSE25065 are microarray expression data sets produced for

the same paper, namely [HatzisSymmans2011]. Table 3 shows the number of samples

of each label in both data sets. The authors used GSE25055 to generate a classifier

for the prognosis of breast cancer patients that received reductive surgery preceded

by taxane-anthracycline chemotherapy. All patients had ERBB2 (also called HER2

or HER2/neu)-negative breast cancer. From each patient, tissue was extracted in

reductive surgery and measured for genome-wide gene expression on Affymetrix HG-

U133A microarrays.

After an observation period of a couple of years, the mean of which was 3 years,

the patients were labeled as either showing pCR or RD to chemotherapy. pCR is an

abbreviation of pathologic complete response and means that there was no sign of a

remaining breast cancer. In the following it will be labeled as “class 1” or “label 1”.

RD abbreviates residual disease and means there was still cancerous tissue. It will be

termed “class 0” or “label 0”.

[HatzisSymmans2011] then tested their classifier on an independently measured

data set, GSE25065. The input to the prediction was the expression data and the

desired output a label of either RD or pCR.
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label 0, RD label 1, pCR label NA
∑

GSE25055 249 57 4 310
GSE25065 140 42 16 198

Table 3: Number of samples in GEO datasets GSE25055 and GSE25065. “label 0,
RD” means “residual disease”; “label 1, pCR” means “pathologic complete response”.
“label NA” means that microarray data for the patient is available, but not his/her
disease status.

10.2 Goal of this Work

The context of this work is the use of classifiers on high-dimensional data as supporting

tools for treatment decisions. Three types of neural networks that lend themselves to

semi-supervised training were used: autoencoders, Restricted Boltzmann Machines and

Deep Belief Networks. Parallel to these, the performance of a semi-supervised version

of Support Vector Machines, namely the Transductive SVM was evaluated.

The specific goals were:

1. to find out whether incorporating unlabeled expression data in the training of

deep artificial neural networks enhances a classifier’s performance.

2. to assess performance of the classifier on an independently measured data set.

3. to evaluate whether artificial neural networks can compete with established clas-

sification algorithms like SVMs.

10.3 How Unlabeled Data Was Used in Training

In the following, we will discuss how we used unlabeled data in semi-supervised training.

10.3.1 How Unlabeled Data was Used in Pre-Training Autoencoders and

Fine-tuning Using Back-propagation

Autoencoders are composed of an encoder and a decoder. The encoder tries to compress

the input data and the decoder tries to reconstruct the input from its compressed form.

Training autoencoders is unsupervised. As a general rule only the samples designated

as “unlabeled” were used in training the unsupervised part of an algorithm.

The decoder network of the trained autoencoder was then discarded, so that only

the encoder remained. Classification was done on the compressed representation of the
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Figure 15: Example scheme showing how the supervised network is trained on top of
a pre-trained unsupervised network. The network receives input from the bottom, and
the resulting label is read off at the top. The unsupervised network can be more than
2 layers deep. It is trained first during pre-training. Then the supervised network is
appended onto the top and trained together with the unsupervised network.

input. The classifier network was built on top of the encoder (see figure 15), and the

compressed output layer of the encoder was used as the input layer of the classifier.

The weights of the classifier were initialized randomly, and standard back-

propagation was used to train the whole network to classify samples. Hence, the

encoder can be modified by back-propagation training, but pre-training with the au-

toencoder initializes it to a configuration that “knows” about the unlabeled samples.

The learning rate of the second training run (fine-tuning) should be small enough not

to diverge from the unlabeled training configuration in too large steps (per iteration).

Algorithm 1 shows the pseduo-code for pre-training using a DBN and fine-tuning

using backpropagation.

10.3.2 How Unlabeled Data was Used When Pre-training a Restricted

Boltzmann Machine and Fine-tuning Using Back-propagation

When using the unsupervised Restricted Boltzmann Machine to find the approximate

weights of a neural network, the unlabeled data were used to train the Restricted Boltz-

mann Machine. The resulting neural network was then extended with the network layer

for supervised classification, and the complete network was trained using (supervised)

back-propagation on the labeled data.

Algorithm 2 shows the pseduo-code for pre-training using a DBN and fine-tuning

using backpropagation.
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Algorithm 1 Pre-training on unlabeled data using an autoencoder and backpropaga-
tion fine-tuning with labeled data.

1. initialize the autoencoder A

2. for all unlabeled training samples U in the unlabeled training data set:

(a) set the input of A to U

(b) train A with the goal of reconstructing U

3. repeat step 2 until the reconstruction error is small enough

4. replace the decoder part of A with a randomly initialized classifier to form the
feed-forward network C

5. for all labeled training data, consisting of input samples X and corresponding
desired output sample Y :

(a) set the input of C to X

(b) train C using back-propagation to output Y

6. repeat step 5 until the classification error is small enough (subject to early stop-
ping or model selection)

Algorithm 2 Pre-training on unlabeled data using a Restricted Boltzmann Machine
and backpropagation fine-tuning with labeled data.

1. initialize the Restricted Boltzmann Machine R

2. for all unlabeled training samples U in the unlabeled training data set:

(a) train R with the goal of learning the probability distribution of U

3. repeat step 2 until the reconstruction error is small enough

4. put a classifier on top of R to form the feed-forward network C

5. for all labeled training data, consisting of input samples X and corresponding
desired output sample Y :

(a) set the input of C to X

(b) train C using back-propagation to output Y

6. repeat step 5 until the classification error is small enough (subject to early stop-
ping or model selection)
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Algorithm 3 Pre-training on unlabeled data using a Deep Belief Network and back-
propagation fine-tuning with labeled data.

1. initialize the Deep Belief Network D to a Restricted Boltzmann Machine with
visible and hidden layer sizes equal to the first two layers of the DBN

2. for layer l = 2 . . . n in the Deep Belief Network:

(a) for all unlabeled training samples U in the unlabeled training data set:

i. set re-represented data R to the representation of U in layer l − 1

ii. think of layers l− 1 and l in D as a Restricted Boltzmann Machine and
train it with the goal of learning the probability distribution of R

(b) repeat step 2a until the reconstruction error is small enough

3. put a classifier on top of D to form the feed-forward network C

4. for all labeled training data, consisting of input samples X and corresponding
desired output sample Y :

(a) set the input of C to X

(b) train C using back-propagation to output Y

5. repeat step 4 until the classification error is small enough (subject to early stop-
ping or model selection)

10.3.3 How Unlabeled Data was Used in Training Deep Belief Networks

Deep Belief Networks are an unsupervised algorithm and thus were trained using un-

labeled data. As with Restricted Boltzmann Machines, the resulting network was then

extended with the classifier layer, and the complete network was fine-tuned using back-

propagation on the labeled data.

Initializing the complete network with the weights and biases of a trained DBN

serves the purpose of initializing the complete network to a low energy configuration

that has a higher chance to be trainable using back-propagation. It does not prevent

back-propagation from settling in a configuration that is far away from the weights and

biases of the trained DBN.

Algorithm 3 shows the pseduo-code for pre-training using a DBN and fine-tuning

using backpropagation. It is identical to pre-training using a Restricted Boltzmann

Machine and fine-tuning using back-propagation, except that we pre-train the n layers

of the Deep Belief Network using RBMs on re-represented data.
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10.4 Issues in Running deepnet

deepnet is a neural network implementation written by Nitish Srivastava, which

uses a matrix library (called cudamat) written by Vlad Mnih and Alex Krizhevsky

[Deepnet2014]. It can run on graphics cards (supporting CUDA). Since graphics cards

have a highly parallel architecture, training times are faster. However, because graphics

cards have to process large data, their RAM is more expensive than normal RAM for

PCs. The graphics cards used have 4 GB of RAM installed. deepnet loads all data sets

onto the graphics card at the beginning of the computation. In addition, the parameter

matrices have to be held in memory. However, there is another matrix library (called

eigenmat and with the same interface as cudamat), which runs on the normal floating-

point unit of a normal CPU. Most of the data sets were trained on a computer that has

256GB of RAM and 32 cores, which was more than enough for the data sets tested.

There was a bug in this library when run on 64-bit CPUs, which we fixed. The deepnet

version used can be downloaded from https://github.com/moa1/deepnet/tree/nnet,

revision 963C.

10.5 Training Iterations and Evaluations

We trained both the unsupervised as well as the supervised network for a pre-

determined number of iterations. This number was determined by a trial training run on

the data set in question. The trial training run was continued as long as we considered

the reconstruction error (for unsupervised training) or accuracy changes (for super-

vised networks) of the neural network substantial. There were usually between 100,000

and 1,000,000 iterations (deepnet setting stopcondition.steps in train.pbtxt), and we

evaluated the neural network after every 500 iterations (deepnet setting eval after in

train.pbtxt). Evaluation means computing the training set, validation set, and testing

set reconstruction error (in unsupervised training) or accuracy (in supervised train-

ing). The neural network itself was saved every 10,000 iterations (deepnet setting

checkpoint after in train.pbtxt).

Tables 4 and 5 show the approximate training times of selected neural network

training runs. For example, training 100,000 (unsupervised) DBN iterations of the

first hidden layer of classification run breast cancer 15 aa, which consists of a 22283-

10-10-10-1 network, took 2 hours on 1 core of the aforementioned 32 cores computer.

The second and third hidden layer took about 15 minutes. Computing 1,000,000 (su-

pervised) back-propagation iterations of the same run took a little less than 4 hours.

https://github.com/moa1/deepnet/tree/nnet
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name of training run type architecture run-time

breast cancer 03 ai AE 500-1000-500 0.25 h
breast cancer 03 al AE 500-1000-500 1.00 h
breast cancer 03 am AE 500-1000-500 1.00 h
breast cancer 03 ao AE 500-1000-500 0.50 h
breast cancer 04 bg RBM 500-500 3.25 h
breast cancer 04 bh RBM 500-1000 5.50 h
breast cancer 04 bi RBM 500-1000 5.50 h
breast cancer 04 bj RBM 500-1000 5.50 h

breast cancer 06 aa/ n018 cv1 FFN 500-500-1 1.00 h
breast cancer 06 ab/ n018 cv1 FFN 500-1000-1 2.75 h
breast cancer 06 ac/ n018 cv1 FFN 500-1000-1 2.75 h
breast cancer 06 ad/ n018 cv1 FFN 500-1000-1 2.75 h
breast cancer 06 ae/ n018 cv1 FFN 500-1000-1 0.75 h
breast cancer 06 af/ n018 cv1 FFN 500-1000-1 0.75 h
breast cancer 06 ag/ n018 cv1 FFN 500-1000-1 1.00 h
breast cancer 06 ah/ n018 cv1 FFN 500-1000-1 1.00 h
breast cancer 07 aa/ n006 cv1 FFN 500-500-1 0.75 h
breast cancer 07 ab/ n006 cv1 FFN 500-1000-1 1.25 h
breast cancer 07 ac/ n006 cv1 FFN 500-1000-1 3.00 h
breast cancer 07 ad/ n006 cv1 FFN 500-1000-1 1.00 h
breast cancer 07 ae/ n006 cv1 FFN 500-1000-1 1.25 h
breast cancer 07 af/ n006 cv1 FFN 500-1000-1 2.75 h
breast cancer 07 ag/ n006 cv1 FFN 500-1000-1 3.00 h
breast cancer 07 ah/ n006 cv1 FFN 500-1000-1 2.50 h
breast cancer 07 ai/ n006 cv1 FFN 500-1000-1 0.50 h
breast cancer 07 aj/ n006 cv1 FFN 500-1000-1 0.50 h

Table 4: Selected running times of training neural networks on data sets
breast cancer 03 to breast cancer 07. Column “type” describes the network type
trained: “AE” means autoencoder, “RBM” means Restricted Boltzmann Machine,
“FFN” means feed forward network trained using backpropagation. Column “archi-
tecture” describes the sizes of the layers of the respective network. Column “run-time”
denotes approximate run-times, and “h” means hours.
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name of training run type architecture run-time

breast cancer 08 bb AE 500-1000-500 7.00 h
breast cancer 08 bb FFN 500-1000-1 4.00 h
breast cancer 08 bx AE 500-1000-500 23.00 h
breast cancer 08 bx FFN 500-1000-1 6.50 h
breast cancer 08 by AE 500-1000-500 7.00 h
breast cancer 08 by FFN 500-1000-1 6.50 h
breast cancer 08 cu AE 500-1000-500 17.50 h
breast cancer 08 cu FFN 500-1000-1 6.00 h
breast cancer 08 ep AE 500-1000-500 8.00 h
breast cancer 08 ep FFN 500-1000-1 5.50 h
breast cancer 08 fl AE 500-1000-500 19.00 h
breast cancer 08 fl FFN 500-1000-1 6.50 h

breast cancer 08 fm AE 500-1000-500 8.00 h
breast cancer 08 fm FFN 500-1000-1 5.45 h
breast cancer 08 gi AE 500-1000-500 17.50 h
breast cancer 08 gi FFN 500-1000-1 6.15h
breast cancer 12 aa DBN1 500-1000 0.50 h
breast cancer 12 aa DBN2 500-1000-1000 1.75 h
breast cancer 12 aa DBN3 500-1000-1000-2000 2.50 h
breast cancer 12 aa FFN 500-1000-1000-2000-1 39.00 h
breast cancer 12 dv DBN1 500-1000 2.25 h
breast cancer 12 dv DBN2 500-1000-1000 6.25 h
breast cancer 12 dv DBN3 500-1000-1000-2000 10.25 h
breast cancer 12 dv FFN 500-1000-1000-2000-1 12.25 h
breast cancer 15 aa DBN1 22283-10 2.00 h
breast cancer 15 aa DBN2 22283-10-10 0.25 h
breast cancer 15 aa DBN3 22283-10-10-10 0.25 h
breast cancer 15 aa FFN 22283-10-10-10-1 4.00 h
breast cancer 15 dv DBN1 22283-10 11.00 h
breast cancer 15 dv DBN2 22283-10-10 1.50 h
breast cancer 15 dv DBN3 22283-10-10-10 1.50 h
breast cancer 15 dv FFN 22283-10-10-10-1 3.50 h

Table 5: Running times of training neural networks on data sets breast cancer 08 to
breast cancer 15. Column “type” describes the network type trained: “AE” means
autoencoder, “RBM” means Restricted Boltzmann Machine, “FFN” means feed for-
ward network trained using backpropagation. Column “architecture” describes the
sizes of the layers of the respective network. Column “run-time” denotes approximate
run-times, and “h” means hours.
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The running time mainly depends on the network architecture, the learning rate, and

number of training iterations. Classifying a sample took about as long as 1 supervised

training iteration and thus was almost instant.

As Transductive Support Vector Machine implementation we used SVMlight, and

as Support Vector Machine implementation we used the R package e1071 svm function

[Joachims1999, R2008]. SVMlight and the R package e1071 svm function took a few

minutes to train and classify breast cancer 15 aa.

10.6 Model Selection

Training an artificial neural network is an iterative process. Hence, there are as many

models as there are iterations. The question is which one to choose for testing the

performance. We did not use “early stopping”, i.e. aborting training when the error

on the validation data set becomes too large due to overfitting, but selected the neural

network that was best on the validation data among all evaluated iterations.

Select the Most Trained Model for Unsupervised Training We normally did

not use any model selection for the unsupervised training, since the reconstruction

error plots of pre-training using autoencoder or RBM did not show overfitting on the

validation data set. Instead we selected the neural network from the last iteration that

was computed. For example, in the plot in figure 18 on page 104, we selected the

network producing the right-most error.

Select the Model With Best Validation Error for Supervised Training We

used model selection in training the (supervised) classifiers, because training a neural

network for too many iterations using back-propagation has the tendency to overfit

the training data and generalize poorly on the validation and test data. Therefore we

defined three data sets: a training data set, which was used to iteratively train the

neural network; a validation data set, which was used to select the model (see below);

and a test data set, which was used to evaluate the accuracy of the neural network

picked using the validation data set.

Smoothing the Accuracies for Model Selection Usually model selection means

picking the neural network from the iteration with the highest validation data set

accuracy. However, we sometimes had only few (in the tens) labeled samples in the

validation data set. This led to a very coarse resolution in accuracy plots, and also to
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Figure 16: Example of supervised model selection using accuracy smoothing. The x-
axis is the training iteration, the y-axis the accuracy. The turquoise, green, and black
circle clouds are the raw accuracies on the training, validation, and test set, respectively.
They are in discrete steps, because there are only 20 samples. The thin lines overlayed
on the point clouds are the loess smoothed curves used for model selection. The dashed
vertical line is the iteration where the accuracy on the validation data set is maximal,
and the model at that iteration was selected.

noisy validation data set accuracy plots, which often jittered between two accuracies

from one iteration to the next. See figure 16 for an example. We therefore smoothed

each of the validation set accuracies, and test set accuracies using the standard R loess

smoother with a span of 0.125. Then we selected the iteration where the smoothed

validation set accuracy was highest, and reported the smoothed test set accuracy at

that iteration. (If there were more than one iteration that had the highest validation

set accuracy, we reported the mean and the median of the smoothed test set accuracies

at these iterations, and plotted all these accuracies in a box plot.)

Note that this procedure allows reporting test set accuracies which seem impossible.

For example in a test set with 10 samples, only an accuracy in {0, 0.1, 0.2, ..., 1} would

be possible, but smoothing allows all rational numbers between 0 and 1 to be returned.
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10.7 Software Used and Parameters

Besides using deepnet by Nitish Srivastava as the neural network implementation, we

used the R CRAN package e1071 [R2008] for the SVM implementation and TSVM.

SVMlight and the R package e1071 svm function [Joachims1999, R2008] took a few

minutes to train and classify breast cancer 15 aa.

The default settings for SVM were used, except the kernel, which was a linear

kernel. In particular, the calls to the svm function were like the following:

SVM <- svm(labeled_training_matrix, labeled_training_labels, kernel="linear")

The default settings for TSVM were used. In particular, the command lines were

equivalent to the following:

echo "learning model"

svm_learn training-input.txt model.model

echo "classifying testing data"

svm_classify testing-input.txt model.model predictions.txt

10.8 deepnet Parameters

The deepnet parameters are set in a configuration file which first describes default

parameters, and then layer-wise parameters taking precedence over the default param-

eters, if set. The different types of parameters are described in the following.

base epsilon One of the crucial settings when training artificial neural networks is

the learning rate. It is named base epsilon in deepnet. It controls by what factor

the gradient of each weight is multiplied with to influence the parameters of the

neural network in the next iteration. If it is too large, the neural network will

alter weights in too large steps and oscillate, and will not be able to reach an

energy optimum. If it is too small, learning will take too long.

The optimal value can vary greatly between different data sets. It was selected on

each data set separately in neural network training trials using a grid search. For

example, table 6 shows the reconstruction error reached for 5 different learning

rates in a training trial on data set breast cancer 02. In this exemplary case, 0.01

was a good tradeoff between accuracy and training speed. However, the optimal

learning rate must be determined for each data set anew.
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configs outputs
base epsilon min. T E note

breast cancer 02 e 0.0001 0.74625 converging T E
breast cancer 02 d 0.001 0.70599 converging T E
breast cancer 02 a 0.01 0.70362 converging T E
breast cancer 02 b 0.1 NA network in a chaotic state
breast cancer 02 c 1.0 3.2056 oscillating T E

Table 6: Example of the effect of the learning rate base epsilon on reconstruction error.
“T E” is the reconstruction error on the training data set. “min T E” is the minimal
reconstruction error of 5,100,000 iterations. “NA” means not applicable. The table
shows that the learning rate base epsilon has a large effect on the minimal reconstruc-
tion error.

activation This is the type of activation function used for the nodes in the described

layer. “LOGISTIC” is the sigmoid activation function (defined on page 67).

“RECTIFIED LINEAR” is the rectified linear activation function (see page 80).

initial momentum, final momentum, momentum change steps These are the

settings for the momentum of the learning rate, see page 68. The momentum is

linearly scaled up from initial momentum at iteration 0 to final momentum at

iteration momentum change steps.

sparsity, sparsity target, sparsity cost, sparsity damping These are the pa-

rameters of the sparsity regularization. sparsity is either true or false and controls

whether sparsity regularization is used or not, and the other three parameters

were described on page 70.

dropout, dropout prob dropout controls whether the dropout regularization is en-

abled or not, and dropout prob is the dropout probability, described on page 72.

apply l2 decay, l2 decay apply l2 decay controls whether l2 decay regularization is

used or not, and l2 decay is its constant weight cost, described on page 69.

dimensions This parameter sets the number of nodes in the described layer.

loss function If set to “SQUARED LOSS”, the sum of squared differences is opti-

mized, while “CROSS ENTROPY” optimizes the cross entropy. Both are de-

scribed on page 66.
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10.9 Overview Over the Following Sections

In section 11 we compress the 10,000 most variable genes of GSE25055 into only 50

numbers and observe only little reconstruction error for most genes.

Then the performance benefit of neural networks using an increasing number of

labeled samples is assessed. The benefit of using more labeled training samples on

testing set accuracy is well-established in machine learning, and is also observed in

section 12.

In section 13, we begin to investigate the question whether adding unlabeled sam-

ples to pre-training improves the testing set accuracy. To diminish the possibility that

the input to the algorithms does not contain the information required for prediction,

we measure prediction accuracy after using four normalization methods: Robust Multi-

Chip Average (RMA) [BolstadSpeed2003], and MAS5 [Affymetrix2001], without and

with subsequent ComBat batch-effect correction [JohnsonRabinovic2007].

In section 14, we use Deep Belief Networks instead of RBM and autoencoder used

previously for pre-training, and systematically compare SVM, TSVM, and supervised

and semi-supervised neural network variants.

Finally, in section 15, we drastically reduce the number of neural network param-

eters by reducing the number of hidden nodes compared to the previous networks. At

the same time, we increase the number of input genes from the 500 most variable genes

to all 22,283 genes.

As we will see, only the attempts with artificial neural networks in section 15 show

partially that adding unlabeled data in training leads to better classifiers. This is also

true for the established semi-supervised TSVM, which only show improvement when

adding unlabeled data to training for the last tried data sets in section 15. We therefore

believe that it is mainly a property of the data set whether a semi-supervised machine

learning algorithm can benefit from unlabelled data.

Nomenclature of Data Sets and Training Runs The various data sets created

from the GEO data sets GSE25055 and GSE25065 differ mainly in how the training,

validation, and testing data sets were selected.

They all have a prefix of “breast cancer ”, followed by a consecutive number. For

example, “breast cancer 04” is the fourth data set created.

A training run on a data set is indicated by appending two letters to the name of

the data set, for example “breast cancer 04 aa”.
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GSE25055 GSE25065
∑

training 273 185 458
testing 37 13 50∑

310 198 508

Table 7: Split of GEO data sets GSE25055 and GSE25065 into training and test set.

11 Unsupervised Reconstruction of Expression Val-

ues

To evaluate the (lossy) compression potential of Restricted Boltzmann Machines, an

RBM was trained on unlabeled data of GSE25055 and GSE25065. This procedure is

similar to the one performed by [ChenXie2015] (summarized in section 5.2), who found

compression using deep learning to be superior to linear regression and k-Nearest-

Neighbor on expression data of ≈22,000 genes on ≈111,000 gene expression profiles

from GEO.

11.1 Data Set Design

Both data sets were split randomly into training and test set, regardless of label,

according to table 7. The test set here served the purpose of measuring reconstruction

error on unseen samples. The data set was named breast cancer 0.

Then the 10,000 most variable genes (of 22,283 genes) on GSE25055 were deter-

mined. Only these were used as input genes, to halve computation time.

11.2 Reconstruction Error

An RBM with 10,000 input nodes and 50 hidden nodes was trained for about 70,000

iterations. Both layer’s node types were gaussian [HintonSalakhutdinov2006].

The reconstruction error was computed after each iteration. The reconstructed

value of a visible node is obtained by initializing the visible layer with the original

data, computing the hidden layer’s nodes from the visible layer, computing the visible

layer from the hidden layer’s nodes, and these visible nodes’ values are the recon-

structed values. The reconstruction error of a visible node is the euclidean distance

between its original value in the data set and the visible node’s reconstructed value.

The reconstruction error is a measure of how well a network can compress visible data

in the hidden layer.



101

Figure 17: Rectionstruction error of data set breast cancer 0. Left: True (x-axis) versus
reconstructed (y-axis) expression values of data set breast cancer 0. The heatmap
shows pixels from red over yellow to white. A pixel in red means zero genes and
the brighter a pixel is, the more genes there are in the pixel’s respective true and
reconstructed expression value intervals. Middle: Boxplot of reconstruction errors of
the 10,000 most variable genes. Right: Histogram of reconstruction errors of the 10,000
most variable genes. Most genes have a low reconstruction error. Displayed is the mean
reconstruction error over all test samples.

During the last iterations, training and testing data set reconstruction errors were

still decreasing by small amounts each iteration. (The decreasing was stochastic, i.e.

some iterations had slightly higher reconstruction error than the one of the iteration

before, but on average, the reconstruction error of both training and test set decreased.)

Although the 10,000 numbers were compressed into only 50 numbers, the mean re-

construction error of the 10,000 genes was only 0.563 (see figure 17 middle). Considering

that the possible range (log2-intensities) of microarray values is in the interval [0;16],

this is equivalent to a relative error of 3.5%. This demonstrated that RBMs are able

to reduce dimensionality of an expression data set while preserving most information.

12 Prediction Quality From Labeled Samples

12.1 Increasing Number of Labeled Samples

The goal of data set breast cancer 06 was to verify if basic training works. This was

verified by testing whether the classifier improves with an increasing amount of labeled

samples. Therefore we trained using all unlabeled samples, and defined supervised

learning data sets which have less and less labeled training and test samples. Models

were pre-trained using either an RBM or autoencoder and fine-tuned with supervised

back-propagation.
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GSE17705 GSE25055 GSE25065
∑

training 239 248 159 646
validation 29 31 19 79

testing 30 31 20 81

Table 8: Sources of the unlabeled data sets.

fraction rep training samples validation samples
∑

label 0 label 1
∑

label 0 label 1
∑

0.99 5 197 45 242 49 11 60 302
0.5 5 100 23 123 24 5 29 152
0.25 5 50 12 62 12 2 14 76
0.125 5 25 6 31 6 1 7 38
0.0625 5 12 3 15 3 0 3 18

Table 9: Sample distribution of training and validation sets of data set breast cancer 06.
The “fraction” in a data set denotes the fraction of the 306 labeled samples GSE25055.
The fraction of labeled samples used in a row is split between training and validation
data. Each of the 5 defined data sets (rows) has 5 sub-sampled repetitions (“rep”), to
be able to draw error bars. Note that the number of samples is not balanced between
label 0 and label 1 samples.

Definition of unlabeled data sets A summary of unlabeled training, validation,

and testing data sets is shown in table 8. Validation samples were defined in case they

were needed. Samples from GSE17705 were included to give unsupervised training

access to more samples. (In later experiments, GSE17705 was left out to increase the

probability that samples are from the same distribution.)

Definition of labeled data sets To define the smaller and smaller labeled training

data sets, we took smaller and smaller fractions of the total 306 available labeled

GSE25055 samples. The fractions were as displayed in table 9.

The testing set consists of all labeled GSE25065 samples, and no GSE25055 samples.

(See table 10.) Thus, betting on the largest group 0 yields an accuracy of 140/182 ≈
0.769.

In the next subsections, we describe the settings for pre-training and fine-tuning.
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GSE17705 GSE25055 GSE25065 ∑
label 0 label 1 label 0 label 1

testing GSE25065 0 0 0 140 42 182

Table 10: The testing set for data set breast cancer 06 consists of all labeled GSE25065
samples.

network instance 04 bg 04 bh 04 bi 04 bj

network setting value value value value

base epsilon 0.001
activation LOGISTIC

initial momentum 0.5
final momentum 0.9

momentum change steps 3000
sparsity true

sparsity target 0.5 0.5 0.25 0.1
sparsity cost 0.01

sparsity damping 0.9
dropout false

apply l2 decay true
l2 decay 0.001

input layer setting value value value value

dimensions 500
sparsity false

hidden layer 1 setting value value value value

dimensions 500 1000 1000 1000

Table 11: deepnet settings for unsupervised pre-training RBMs breast cancer 04 bg -
bj. No entry in a cell means that it has the same value as the cell to the left.

12.1.1 Unsupervised Pre-training Using RBM

For unsupervised pre-training of the RBM, we tried four different configurations that

are denoted in table 11. (They were re-used from the runs labeled breast cancer 04,

which are not described here.)

The reconstruction errors observed at the input layer during training are shown in

figure 18. In each training step, they (stochastically) decrease for all four configurations

and for training, validation, and testing data set. Of note in this plot is that there is

no overfitting since training reconstruction error does not rise at the end of training.

Also note that the reconstruction error was not normalized to the number of samples.
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Figure 18: Reconstruction errors of training (T E), validation (V E) and testing (E E)
data sets for unsupervised training of an RBM with configurations breast cancer 04 bg,
bh, bi, bj. The y-axis is the reconstruction error, not normalized for the number of
samples, and the x-axis is the training step of neural network training.

12.1.2 Supervised Classification with Unsupervisedly Pre-trained RBM

The settings for the supervised training runs breast cancer 06 aa - ad were as described

in table 12. Four different models were tested, differing in number of nodes in hidden

layer 1 (setting dimensions) and the pre-trained weights and biases between the input

layer and hidden layer 1 (setting pretrained model).

For each of the 5 differently sized training data sets, for each of the 5 repetitions, and

for each of the 4 differently pre-trained RBMs, a classifier was trained. (So altogether

5 ∗ 5 ∗ 4 = 100 classifiers were trained.) Performance was then assessed through the

accuracy, as shown in figure 19.

Surprisingly, the neural network accuracies do not improve with increasing number

of labeled samples. Instead it seems that the classifiers using the least and most (18 and

302) samples perform best, and all others (especially those using 76 samples) perform

worst. As we will see, this is due to an unbalanced number of label 0 and label 1

samples in the training set. The tendency that the accuracies for 18 labeled samples

are about as high as those for 302 labeled samples, and are the lower the closer the

number of labeled samples are to 76 samples, could be due to using the same pre-trained

hidden-layer weights and biases across the 5 repetitions. (The supervised training and

validation data are sampled independelty though.)

We also tried using 2 hidden layers instead of 1. This did not improve accuracy.
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network instance 06 aa 06 ab 06 ac 06 ad

network setting value value value value

base epsilon 0.001
activation LOGISTIC

initial momentum 0.5
final momentum 0.9

momentum change steps 3000
dropout true

dropout prob 0.5
apply l2 decay true

l2 decay 0.001

input layer setting value value value value

dimensions 500
dropout prob 0.2

hidden layer 1 setting value value value value

dimensions 500 1000 1000 1000
pretrained model 04 bg 04 bh 04 bi 04 bj

output layer setting value value value value

dimensions 1
loss function CROSS ENTROPY
activation SOFTMAX
dropout false

Table 12: deepnet settings for the classifiers breast cancer 06 aa - ad. Each classifier is
initialized using an unsupervisedly pre-trained RBM, and trained supervisedly on data
set breast cancer 06. No entry in a cell means that it has the same value as the cell to
the left. The only difference between the four configurations is the hidden layer 1 size
(dimensions) and initialization (pretrained model).
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Figure 19: Box plots showing the accuracies of the models breast cancer 06 aa - ad.
Each panel shows one of the four configurations breast cancer 06 aa - ad. In each panel,
the x-axis shows the number of labeled samples in the 5 different data sets. The y-axis
shows the smoothed accuracy, as described in section 10.6. Each dot is the accuracy
of a repetition in the respective data set.
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network instance 03 ai 03 al 03 am 03 ao

network setting value value value value

base epsilon 1.0 0.01 0.01 0.1
activation LOGISTIC RECTIFIED LINEAR LOGISTIC

initial momentum 0.5
final momentum 0.99

momentum change steps 50000
dropout true

dropout prob 0.5
apply l2 decay false

l2 decay 0.0001

input layer setting value value value value

dimensions 500
dropout prob 0.2

hidden layer 1 setting value value value value

dimensions 1000

Table 13: Settings for the unsupervised pre-training autoencoders breast cancer 03 ai,
03 al, 03 am, and 03 ao. No entry in a cell means that it has the same value as the

cell to the left.

12.1.3 Unsupervised Pre-training Using Autoencoder

Settings for unsupervised pre-training of the autoencoders are given in table 13

(named breast cancer 03 ai - am,ao). The only differences between the models are

in base epsilon and activation.

12.1.4 Supervised Classification with Unsupervisedly Pre-trained Autoen-

coder

When training a neural network using back-propagation that was pre-trained using one

of the four autoencoders described in the previous section, the resulting accuracy plots

looked similar to the ones when pre-training with an RBM (plots not shown). As we

will see, similar to pre-training using RBMs, this is due to an uneven number of label

0 and label 1 samples in the training set.

Like for RBMs, we also tried using 2 hidden layers instead of 1, but this did not

improve accuracy.
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label 0 label 1

training 240 2
validation 58 2

testing 182 0

Table 14: Predictions of the network breast cancer 06 aa/ n302 cv1.

data set rep
training samples validation samples ∑

label 0 label 1
∑

label 0 label 1
∑

1 5 45 45 90 49 11 60 150
2 5 23 23 46 24 5 29 75
3 5 12 12 24 12 2 14 38
4 5 6 6 12 6 1 7 19
5 5 3 3 6 3 0 3 9

Table 15: Samples in data set breast cancer 07. “rep” is the number of subsamplings
from all samples described by a line in the table. Note that there is an equal number
of training samples for each class, but an unequal number in the validation data sets.

12.1.5 High Label Prediction Bias

The lack of the accuracy increasing with the number of labeled training samples can

be explained by the following observation.

When examining the predictions of model breast cancer 06 aa/ n302 cv1 (the first

network pre-trained on 302 samples), it becomes evident that the training is sub-

optimal, because label 0 is predicted almost exclusively. Table 14 shows the predicted

classes.

There is a heavy bias in favor of label 0. Our hypothesis was that this is due to the

unbalanced class label distribution in data set breast cancer 06. Therefore, the next

data set is balanced in this regard.

12.2 Equal Number of Class Labels

As in the previous section on breast cancer 06, in data set breast cancer 07, we wanted

to check whether the artificial neural networks accuracies improve with an increasing

number of labeled samples. Unlabeled data sets were the same as for breast cancer 06,

see table 8 on page 102. In contrast to the previous data set breast cancer 06, each

labeled data set contains as many label 0 samples as label 1 samples (see table 15). The

testing data set is the same as in breast cancer 06 and exclusively consists of GSE25065

samples, see table 10 on page 103.
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Figure 20: Accuracy box plots of SVM predicting the testing data of breast cancer 07.
On the x-axis are the sizes of the data sets containing an increasing number of labeled
samples. On the y-axis are the accuracies obtained on the testing data.

Only the 500 most variable genes were used. The training and validation data sets

were generated from subsets of GSE25055. Each training data set had an equal number

of samples from class 0 and class 1. However, the validation data sets contained a larger

number of class 0 samples, because there were only 57 label 1 samples in GSE25055,

and 45 of them were needed for training. The test data set is composed of all GSE25065

samples. Each data set was drawn 5 times from the samples as described for training

and validation data set. This is to repeat the experiment 5 times and to be able to

obtain error bars for the accuracies.

If we were to bet on the larger test set class we would achieve an accuracy of

140/182 = 0.769, because the test set contains 140 label 0 samples, but only 42 la-

bel 1 samples. However, because the training data set contains an equal number of

label 0 and label 1 samples, the test set accuracy should not be as biased as data set

breast cancer 06, whose training data set is imbalanced.

The following machine learning algorithms were tested on this data set: SVM,

TSVM, supervised classification with unsupervised pre-trained RBM, supervised classi-

fication with unsupervisedly pre-trained autoencoder, supervised classification without

pre-training. Unsupervised pre-training was performed as for breast cancer 06.
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Figure 21: Accuracy box plots of TSVM predicting the testing data set of
breast cancer 07. On the x-axis are the sizes of the data sets containing an increasing
number of labeled samples. On the y-axis are the accuracies obtained on the testing
data.

12.2.1 SVM Accuracies

Figure 20 shows there is the tendency that adding more samples to supervised learning

yields better accuracy. Although the 25%- and 75%-quantile of the boxplots suggest

different variances, we believe that the boxplots should not be over-interpreted, as there

are only 5 data points (5 subsamplings).

12.2.2 TSVM Accuracies

TSVM can utilize incomplete and unlabelled data to improve supervised classification

(“transductive SVM”). Figure 21 shows that TSVM sometimes fails to learn a model

for the data sets with less than 46 labeled samples and otherwise performs similarly to

a normal SVM.

12.2.3 Supervised Classification with Unsupervisedly Pre-trained RBM

The deepnet settings for training runs breast cancer 07 aa - ad were the same as those

for breast cancer 06 aa - ad (see table 12 on page 105).

As expected, the accuracy plots in figure 22 show that all 4 neural networks perform

better the more labeled samples there are in training. In addition the variance of the

accuracies decreases, the more labeled samples there are in training.



12.2 Equal Number of Class Labels 111

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●●

●
●

●

●

●

●

●

●●●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

aa ab

ac ad

0.4

0.5

0.6

0.7

0.4

0.5

0.6

0.7

6 12 24 46 90 6 12 24 46 90
data set

te
st

in
g 

se
t a

cc
ur

ac
y

Figure 22: Accuracy box plots of a feed-forward neural network pre-trained with an
RBM, predicting the testing data set of breast cancer 07. On the x-axis are the sizes
of the data sets containing an increasing number of labeled samples. On the y-axis are
the accuracies obtained on the testing data.
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network instance 07 ai 07 aj

network setting value value

base epsilon 0.001
activation LOGISTIC

initial momentum 0.5
final momentum 0.9

momentum change steps 3000
dropout true false

dropout prob 0.5
apply l2 decay true

l2 decay 0.001

input layer setting value value

dimensions 500
dropout prob 0.2

hidden layer 1 setting value value

dimensions 1000
initialization CONSTANT

output layer setting value value

dimensions 1
loss function CROSS ENTROPY
activation SOFTMAX
dropout false

Table 16: Settings for the classifiers breast cancer 07 ai - aj, which is trained using
backpropagation only (without pre-training). Each classifier is trained supervisedly on
data set breast cancer 07. The only difference between the two configurations is the
use of dropout in breast cancer 07 ai. No entry in a cell means that it has the same
value as the cell to the left.

12.2.4 Supervised Classification with Unsupervisedly Pre-trained Autoen-

coder

The settings for deepnet training of breast cancer 07 ae - ah were as those for

breast cancer 06 ae - ah. As is shown in figure 23, pre-training with an autoencoder

yields similar accuracies as pre-training with an RBM.

12.2.5 Supervised Classification without Pre-training

Finally, in breast cancer 07 ai - aj, we trained the neural networks with no pre-training

at all, but using only back-propagation. The deepnet settings are shown in table 16.

The accuracy plots are shown in figure 24. As can be seen, using dropout
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Figure 23: Accuracy box plots of a feed-forward neural network pre-trained with an
autoencoder, predicting the testing data set of breast cancer 07. On the x-axis are
the sizes of the data sets containing an increasing number of labeled samples. On the
y-axis are the accuracies obtained on the testing data.
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Figure 24: Accuracy box plots of feed-forward neural networks not pre-trained, pre-
dicting the testing data set of breast cancer 07. On the x-axis are the sizes of the
data sets containing an increasing number of labeled samples. On the y-axis are
the accuracies obtained on the testing data. The panel “ai” stands for the classifier
“breast cancer 07 ai”, “aj” for “breast cancer 07 aj”.
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label 0 label 1

training 44 46
validation 38 22

testing 117 65

Table 17: Labels predicted by breast cancer 07 aa/ n090 cv1 on training, validation,
and testing data set.

true label 0 true label 1

predicted label 0 101 16
predicted label 1 39 26

Table 18: Confusion table of the predictions made by breast cancer 07 aa/ n090 cv1
(which was trained on 90 labeled samples) on the testing data set of data set
breast cancer 07.

(breast cancer 07 ai) yields better accuracies than not using it (breast cancer 07 aj).

An explanation can be that dropout reduces overfitting. In addition, comparing with

the neural networks pre-trained using RBM or autoencoder (e.g. breast cancer 07 ai

versus breast cancer 07 ag) might indicate a slight advantage of not using pre-training

(but using dropout) in the data sets with little labeled samples. However, this assertion

should be re-done with more than 5 repetitions.

The accuracies of the classifiers on breast cancer 07 are lower than those on

breast cancer 06. This indicates the higher difficulty of the classification task when

the labels are balanced. We will look into this in the following.

12.2.6 Confusion Table of Predicted Classes

Like for breast cancer 06, we looked at the output of one of the neuronal networks

trained on data set breast cancer 07. As can be seen in table 17 and in contrast to the

predictions on data set breast cancer 06, the predicted classes are now more balanced.

Confusion table on the test set samples The confusion table 18 shows the pre-

dicted and true labels in the testing data set. It shows that most predicted label 1

samples are actually label 0 samples ( 39
39+26

). Of the true label 0 samples, 101
101+39

≈ 0.72

are classified correctly, and 26
26+16

≈ 0.62 of the true label 1 samples. This may indicate

that predicting label 1 samples, which means “pathologic complete response”, i.e. no

remaining breast cancer, is more difficult than predicting “residual disease”.

The predicted probabilities of the true class of the mis-classified samples (i.e. those
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Figure 25: Histogram of probabilities of samples predicted wrongly by
breast cancer 07 aa/ n090 cv1. The x-axis is the predicted probability of the true
class; the y-axis the counts of samples.

not on the main diagonal) can be displayed in a histogram, see figure 25. The histogram

shows that the probabilities for the true class of mis-classified samples are not mostly

near 0.5, but in the middle of the possible range. 0.5 is the maximum probability,

otherwise the sample would not be mis-classified.

13 Different Normalizations

One of the goals of this work was to show that adding unlabeled samples increases

accuracy in semi-supervised classification. To achieve that goal, in breast cancer 08,

we built data sets with a constant number of labeled samples and an increasing number

of unlabeled samples.

To alleviate the effects of systematic errors in the raw data, we tried different nor-

malizations in order to search for normalizations that are beneficial to classification ac-

curacy. We assessed the effect of different normalizations on unsupervised pre-training
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data source data set 1 data set 2 data set 3 data set 4

labeled training GSE25055 28|28 28|28 28|28 28|28

unlabeled training
GSE25055 15|15 29|29 58|29 58|29
GSE25065 0|0 0|0 0|0 58|0

labeled validation
GSE25055 221|29 221|29 221|29 221|29
GSE25065 0|0 0|0 0|0 0|0

labeled testing GSE25065 42|42 42|42 42|42 42|42
repeats 5 5 5 5

proportions 0:1 1:1 1:1 2:1 4:1

Table 19: The design of data set breast cancer 08. There are 4 sub-data-sets that have
a constant number of labeled training, labeled validation, and labeled testing samples.
The unlabeled data sets have an increasing number of samples. The syntax “x|y” in a
table cell means that there are x samples having label 0, and y samples having label 1.
The row “repeats” means that each data set was created 5 times, by random sampling.
The row “proportions 0:1” describes the relative proportions of label 0 and label 1
samples in the “unlabeled training” rows.

using an autoencoder and supervised classification accuracy.

13.1 Data Set Design

Table 19 shows the assignment of samples to data sets. Note that labeled training and

validation data are almost exclusively from GSE25055, and labeled testing data are

exclusively from GSE25065.

Labeled training and testing data are balanced with respect to the number of label

0 and label 1 samples. An unbalanced data set leads to a biased classifier which prefers

the label it was shown more often during training. (As was demonstrated on page 108.)

The increasing number of unlabeled training data are mostly from GSE25055, except

data set 4, which also has unlabeled data from GSE25065. The unlabeled training data

are balanced in data sets 1 and 2, and in proportions 1:2 and 1:4 in data sets 3 and 4,

respectively.
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configuration normalization normalizations applied

breast cancer 08 bb - bx rma RMA
breast cancer 08 by - cu mas5 MAS5
breast cancer 08 ep - fl rma,combat RMA, ComBat batch effect correction
breast cancer 08 fm - gi mas5,combat MAS5, ComBat batch effect correction

Table 20: Data set normalizations tested in breast cancer 08.

normalization
data set

1 2 3 4

rma 0.23 (.0032) 0.41 (.0075) 0.61 (.0061) 1.02 (.016)
mas5 0.045 (.0022) 0.053 (.00041) 0.058 (.002) 0.068 (.0029)

rma,combat 0.24 (.0038) 0.4 (.0028) 0.6 (.0052) 1.02 (.016)
mas5,combat 0.057 (.0035) 0.07 (.0011) 0.079 (.0033) 0.088 (.0034)

Table 21: Reconstruction error for differently normalized data. In the rows are the
different normalizations, and in the columns the data sets. Each cell in the table
contains the mean (and standard deviation in brackets) of the reconstruction error
over all repeats. The numbers are rounded to two significant digits. Reconstruction
errors shown for MAS5 were computed on not logarithmized data.

13.2 Normalizations

We used RMA [BolstadSpeed2003], MAS5 [Affymetrix2001], MAS5+log2, RMA+ComBat,

MAS5+ComBat, and MAS5+log2+ComBat to normalize the raw microarray data (for

ComBat, see [JohnsonRabinovic2007]). Because MAS5 does not logarithmize the data,

but RMA does, MAS5 was tried with additional logarithmizing of the data. ComBat

was designed as a batch-effect correction method. It produces a data set with the same

size as the original one, but with batch-effects between samples removed. As input,

ComBat needs the expression matrix and, for each sample, the batch. We defined

samples from the two sources GSE25055 and GSE25065 as batches. Table 20 shows a

list of different normalizations.

For each of 4 different normalization pre-processing combinations, we created each

of the 4 data sets by random sampling from the designated samples described in table

19. The normalization steps were done in this order: first RMA/MAS5 normalization

and summarization (to default HG U133A probe sets), then ComBat (if enabled), then

splitting of the data matrices into the sub-data-sets according to table 19.
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13.3 Unsupervised Reconstruction Error in Autoencoder Pre-

training

Before looking at the accuracies of the supervised classifier, we looked at unsupervised

pre-training using an autoencoder. The reconstruction error for each normalization is

shown in table 21. Of note in this table are the following:

• The reconstruction error increases the more unlabeled data there are.

• The MAS5 normalizations all have lower reconstruction errors than their RMA

counterpart with same concomitant normalization steps (vertically alternating

high and low mean).

– The standard deviation of the reconstruction errors across replicates (i.e.

with different unlabeled data) is consistently smaller for MAS5 than for

RMA.

• Additional ComBat batch effect correction does not improve the reconstruction

error of RMA or MAS5 normalized data.

– There is no clear trend in the table above how ComBat influences standard

deviation (across replications) of reconstruction errors.

Although it may seem beneficial to achieve reconstruction error as a low as possible,

we will see that a better (lower) reconstruction error does not necessarily translate into

a better (higher) accuracy.

After pre-training, the artificial neural networks were fine-tuned using backpropa-

gation and their accuracy to predict chemotherapy efficacy was measured.

13.4 Supervised Classification with Unsupervised Pre-trained

Autoencoder

The architecture of the classifier network was 500-1000-1. Figure 26 shows the resulting

accuracy box plots for the different normalizations. None of the plots show a clear

increasing accuracy from data set 1 to data set 4. However, the silhouettes of the

box-plots seem to show increasing accuracy. “Silhouette” means, for each data set, the

interval from the accuracy of the repetition with lowest to the accuracy of the repetition

with highest accuracy; or differently, the maximal outliers. In addition, the median of
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Figure 26: Box-plot for neural network prediction pre-trained with an autoencoder on
the 4 differently normalized data sets rma-data.pbtxt, mas5-data.pbtxt, rma combat-
data.pbtxt, and mas5 combat-data.pbtxt in breast cancer 08. The box-plot shows on
the x-axis the 4 data sets, and on the y-axis the achieved accuracies on the testing data
set for each of the 5 repetitions.
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normalization data set
1 2 3 4

rma 0.65 0.67 0.69 0.67
mas5 0.58 0.58 0.63 0.61

mas5,log2 0.59 0.61 0.6 0.62
rma,combat 0.61 0.61 0.62 0.61
mas5,combat 0.60 0.59 0.63 0.64

mas5,log2,combat 0.64 0.66 0.64 0.64

Table 22: Mean accuracies for each normalization and data set in breast cancer 08.

the accuracies of data set 1 is smaller than the median of the accuracies of both data

set 3 and 4, for every normalization. The fact that the median of the accuracies of data

set 2 is not always greater than the median of the accuracies of data set 1 could be due

to randomness in data subsampling when creating the 5 repetitions. Another reason

could be that the 28 additional unlabeled samples (29− 15 = 14 label 0 samples, and

14 label 1 samples) provide little benefit to a pre-trained classifier.

13.4.1 Different Normalizations

When comparing the accuracies yielded by the different normalizations to each other, a

table of the mean accuracies for each normalization and data sets 1-4 is helpful. Table

22 shows the following:

• RMA alone (i.e. without ComBat pre-processing) out-performs all other tested

combinations of normalization method and pre-processing in all data sets tested.

• Using ComBat as pre-processing leads to worse accuracies on the RMA-

normalized data, but improves accuracies when using MAS5 (except in data set

3).

• RMA seems to perform consistently better than MAS5 without log2 (an exception

is data set 3 with ComBat pre-processing), but MAS5 with log2 and ComBat

perform better than RMA with ComBat (due to RMA taking a performance hit

when used together with ComBat).

• Taking the log2 of MAS5-normalized data only improves accuracies when the

data is ComBat pre-processed.
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13.4.2 ZCA Normalization

We also tried applying ZCA normalization after all 4 normalizations tried above. This

step helped in face recognition, for example [KrizhevskyHinton2009]. However, for our

data set it resulted in random classifiers, i.e. their accuracies were around 0.5.

14 Comparison of SVM, TSVM, FFN, DBN

A problem in the design of the data sets of breast cancer 08 is that the number of label

0 and label 1 samples is not balanced. This is due to the class imbalance in GSE25055

and GSE25065. The next data set breast cancer 12 thus had balanced classes in the

unlabeled training samples.

To be able to statistically detect a possible rise in accuracy with a rising number

of unlabeled samples, we also increased the number of sub-sampling repetitions. Also,

instead of using autoencoder or RBM for pre-training, we used a Deep Belief Network.

14.1 Data Set Design

Following the same arguments as in creating data set breast cancer 08, we aimed for

the following properties. All training/validation data sets should have an equal number

of 0/1 samples, otherwise deepnet ’s predictions are biased towards the larger group.

Samples used in the unlabeled training/validation data set were also used for labeled

training/validation, otherwise there are not enough samples. Unlabeled validation data

sets were defined to be able to do model selection during unsupervised training. As

before, performance was measured on the unseen test data sets.

There are the following differences between breast cancer 12 and breast cancer 08.

breast cancer 12 includes an unlabeled validation data set whose purpose is to be able

to early-stop pre-training, which was necessary for learning multiple hidden layers in a

DBN. The only normalization used was RMA (without ComBat), because it performed

best in data set breast cancer 08. There are 20 instead of 5 repetitions for each data

set. Again the sub-sampling repetitions were made by selecting the samples at random

from the eligible samples. The labeled samples were held constant across all 6 data sets

within one repetition, to be able to directly compare performance between e.g. data

sets 1 and 3 within a repetition. The only difference between data sets 1 and 3 is the

unlabeled pre-training data.

Table 23 shows the number of samples used in the 6 data sets of breast cancer 12.
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data set 1 2 3 4 5 6

(labeled) testing
GSE25055 0|0 0|0 0|0 0|0 0|0 0|0
GSE25065 42|42 42|42 42|42 42|42 42|42 42|42

labeled
training

GSE25055 10|10 10|10 10|10 10|10 10|10 10|10
GSE25065 0|0 0|0 0|0 0|0 0|0 0|0

validation
GSE25055 10|10 10|10 10|10 10|10 10|10 10|10
GSE25065 0|0 0|0 0|0 0|0 0|0 0|0

unlabeled

training
GSE25055 0|0 6|6 12|12 17|17 23|23 29|29
GSE25065 0|0 4|4 8|8 13|13 17|17 21|21∑

Training 0|0 10|10 20|20 30|30 40|40 50|50

validation
GSE25055 0|0 6|6 11|11 17|17 22|22 28|28
GSE25065 0|0 4|4 9|9 12|12 17|17 21|21∑

V alidation 0|0 10|10 20|20 29|29 39|39 49|49
repeats 20 20 20 20 20 20

Table 23: Data set design of breast cancer 12. There are always 42|42 testing samples.
There is no overlap between unlabeled training, unlabeled validation, labeled training,
and labeled validation samples. The number of labeled samples is held constant at
20|20 (10|10 for training and validation) across data sets. The number of training and
validation samples is almost equal in each data set (the difference is at most 1, for
the unlabeled data). The number of unlabeled samples is increased linearly from 0|0
to the maximum number of remaining samples 50|50 (29|29 in GSE25055 and 21|21
in GSE25065). The labeled data are equal across all data sets (but different between
different repetitions). “repeats” are the number of sub-samples drawn.



124 14 COMPARISON OF SVM, TSVM, FFN, DBN

14.2 DBN Training

breast cancer 12 aa - dv is like breast cancer 08 jh, except that in pre-training the

hidden layers, it uses the model performing best on the validation data, not the model

of the last training iteration. This is possible because there is an unlabeled validation

data set in breast cancer 12. In addition, instead of using RBMs or autoencoders,

DBNs were used for pre-training.

The architecture of the DBNs was 500-1000-1000-2000-1, that means the input layer

has 500 nodes for the 500 most significant genes, then there are three hidden layers

with sizes 1000, 1000, and 2000, and the output layer has 1 node which outputs the

probability that the input sample has label 1.

We reduced the unsupervised learning rate from “base epsilon: 0.01” to 0.001,

and increased “sparsity damping: 0.9” to 0.99 in layer 2 and 3. We do this because

otherwise these layers have their best model on the labeled validation data set very

early in training, and also sometimes “explode”8.

Another difference is that the supervised learning rate in breast cancer 12 aa -

dv is 0.0001, not 0.001. [SrivastavaSalakhutdinov2014] says that when choosing the

learning rate smaller than the best learning rate for randomly initialized nets, the

information in the pretrained weights seems to be retained, and finetuning improves

the final generalization error compared to not using dropout when finetuning.

We also changed “eval after: 500” to 100 in train supervised.pbtxt, in order to

check more often for the optimal solution, because supervised training sometimes finds

the best model on the validation data set very early in training.

Deep Belief Networks need unlabeled samples during pre-training. Thus, data set

1, which does not contain unlabeled samples, cannot be used to train DBNs. Therefore

we trained DBNs only on data sets 2 to 6.

14.3 Using Both Training and Validation Data Sets for Train-

ing TSVMs

To predict using TSVM, for every repetition and every data set, we joined labeled

training, labeled validation data, unlabeled training, and unlabeled validation data to

the training input file to be used by TSVM. This was done to be fair to TSVM, because

8A network “explodes” when its parameters (weights and biases) and reconstruction error oscillate.
This happens because neural network training is a gradient descent method, with the size of the
gradient decent step depending on the learning rate and the sparsity meta-parameters (refer to section
9.3.2). A too large step can cause the network’s error to get worse.
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deepnet also has access to these labeled and unlabeled samples. The testing data set

was the same as that used for the neural networks.

14.4 Comparison of Neural Networks with Support Vector

Machines

Paired and Two-Sided Wilcoxon Test Figure 27 shows that there is no clear

improvement by increasing the number of unlabeled samples, neither when using a

DBN, nor a TSVM.

This can be quantified using a paired and two-sided Wilcoxon test. It is paired over

the repetitions because the labeled training and validation sets are constant across data

sets 1-6 within a repetition and the only difference is the amount of unlabeled data

used during training. It is two-sided because we do not know before the experiment

which algorithm on a data set will perform better than another. The null hypothesis

is that the true accuracy shift between the two compared experiments is zero.

By experiment we mean the set of accuracies in figure 27 when keeping the predic-

tion method and sub-data-set of breast cancer 12 constant, but varying the repetition.

Hence there are 1 FFN, 5 DBN, 1 SVM, and 6 TSVM experiments.

We could now compare all experiments against all other experiments using a

Wilcoxon test. However, this would be “fishing for significance”, and we would have

to correct the p-values for multiple testing. If comparing all against all, there are

(1 + 5 + 1 + 6) ∗ (1 + 5 + 1 + 6 − 1)/2 = 78 comparisons, and we would lose a lot of

power due to comparisons that are not interesting. That is why we only compare the

experiments in figure 27 row-wise and column-wise, because these comparisons allow

an interpretation. That way there are only 1∗ 5 + 1∗ 6 + 1∗ 1 + 5∗ 6 = 42 comparisons.

We adjust the p-values within each comparison only.

14.4.1 Comparison of FFN With DBN

Table 24 compares a supervised Feed-Forward Network (FFN) against a semi-

supervised Deep Belief Network (DBN). Because the FFN is trained supervisedly, it

cannot be trained on data sets 2-6, which contain unlabeled samples.

The lowest adjusted p-value is 0.637, which means there is no significant difference

between FFN and DBN.
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(c) SVM (d) TSVM
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Figure 27: Accuracy comparison of (a) supervised feed-forward network, (b) semi-
supervised Deep Belief Network, (c) supervised support vector machine, and (d) semi-
supervised transductive support vector machine. On the x-axis of each plot are the
sub-data-sets (of breast cancer 12) predicted for each algorithm, on the y-axis is the
accuracy.
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14.4.2 Comparison of SVM With TSVM

Table 25 compares a supervised Support Vector Machine (SVM) against a semi-

supervised Transductive Support Vector Machine (TSVM). Because the SVM is trained

supervisedly, it cannot be trained on data sets 2-6, which contain unlabeled samples.

The lowest adjusted p-value is 0.158 between SVM and TSVM on data set 1.

14.4.3 Comparison of FFN With SVM

Table 26 compares a non-linear Feed-Forward Network against a Support Vector Ma-

chine with linear kernel. Both algorithms are supervised.

The p-value is 0.926 and not significant.

14.4.4 Comparison of DBN With TSVM

Table 27 compares a non-linear Deep Belief Network against a Transductive Support

Vector Machine with linear kernel. Both algorithms are semi-supervised.

Due to their p-values being smaller than 5%, we can conclude that the TSVM on

data set 1 is significantly better than the DBN on all data sets. In addition, the SVM

on data set 2 is significantly better than the DBN on data set 3. For example, the

TSVM trained on sub-data-set 1 is better than the DBN trained on sub-data-set 2 by

2.3 percent points in accuracy.

The result that the TSVM on data set 1 is better than the DBNs, and not on data

set 5 or 6, which consist of more unlabeled data, is contrary to the expected hypothesis

that a semi-supervised TSVM trained on more unlabeled samples is better than one

on less unlabeled samples.

The table also shows that the advantage of using a TSVM over a DBN becomes

negligible when adding more unlabeled data to training. (The “estimate” value declines

with increasing data set, from 2.0% on data set 2 versus data set 2 to 0.1% on data set

6 versus data set 6.)

14.4.5 Comparison of TSVM With TSVM

The largest differences in prediction accuracy are within TSVM. Due to it being semi-

supervised we were interested in whether there are significant accuracy differences

within the sub-data-sets of breast cancer 12. Table 28 compares all TSVMs on the

sub-data-sets against all other TSVM on the sub-data-sets.
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n1 method1 n2 method2 p value estimate ci lower ci upper p adjust

1 FFN 2 DBN 0.896 0.000 -0.007 0.009 0.955
1 FFN 3 DBN 0.255 0.005 -0.004 0.013 0.637
1 FFN 4 DBN 0.723 0.001 -0.009 0.009 0.955
1 FFN 5 DBN 0.255 0.004 -0.003 0.011 0.637
1 FFN 6 DBN 0.955 0.000 -0.010 0.007 0.955

Table 24: Comparison of FFN with DBN. Columns n1 and n2 are the sub-data-set
indices to be compared. (A higher index means means this sub-data-set has more
unlabeled samples than a lower index.) method1 and method2 are the methods to be
compared. p value is the unadjusted p-value, estimate is the estimated difference in
accuracy of the comparison (e.g. 0.1 would mean method1’s accuracy is better by an
estimated 10 percent points), ci lower and ci upper are the lower and upper confidence
interval for the estimated accuracy difference. p adjust is the p-value corrected for
multiple testing. Raw and adjusted p-values below 5% are written in bold font.

n1 method1 n2 method2 p value estimate ci lower ci upper p adjust

1 SVM 1 TSVM 0.026 -0.024 -0.054 0.000 0.158
1 SVM 2 TSVM 0.104 -0.018 -0.042 0.006 0.313
1 SVM 3 TSVM 0.240 -0.012 -0.042 0.012 0.359
1 SVM 4 TSVM 0.191 -0.012 -0.036 0.012 0.359
1 SVM 5 TSVM 0.779 0.000 -0.030 0.024 0.779
1 SVM 6 TSVM 0.588 -0.006 -0.024 0.018 0.706

Table 25: Comparison of SVM with TSVM. See table 24 for the legend.

n1 method1 n2 method2 p value estimate ci lower ci upper p adjust

1 FFN 1 SVM 0.926 -0.003 -0.023 0.021 0.926

Table 26: Comparison of FFN with SVM. See table 24 for the legend.



14.4 Comparison of Neural Networks with Support Vector Machines 129

n1 method1 n2 method2 p value estimate ci lower ci upper p adjust

1 TSVM 2 DBN 0.002 0.023 0.009 0.043 0.012
1 TSVM 3 DBN 0.000 0.031 0.018 0.044 0.004
1 TSVM 4 DBN 0.000 0.025 0.014 0.037 0.004
1 TSVM 5 DBN 0.000 0.029 0.018 0.040 0.004
1 TSVM 6 DBN 0.001 0.027 0.013 0.043 0.011
2 TSVM 2 DBN 0.065 0.020 -0.001 0.043 0.129
2 TSVM 3 DBN 0.009 0.023 0.006 0.039 0.047
2 TSVM 4 DBN 0.016 0.021 0.005 0.036 0.060
2 TSVM 5 DBN 0.016 0.022 0.005 0.038 0.060
2 TSVM 6 DBN 0.029 0.022 0.003 0.040 0.087
3 TSVM 2 DBN 0.113 0.016 -0.003 0.035 0.199
3 TSVM 3 DBN 0.050 0.017 0.000 0.036 0.115
3 TSVM 4 DBN 0.035 0.016 0.004 0.029 0.095
3 TSVM 5 DBN 0.024 0.017 0.003 0.031 0.080
3 TSVM 6 DBN 0.042 0.014 0.001 0.030 0.105
4 TSVM 2 DBN 0.211 0.012 -0.009 0.035 0.333
4 TSVM 3 DBN 0.070 0.018 -0.001 0.032 0.132
4 TSVM 4 DBN 0.131 0.013 -0.003 0.026 0.218
4 TSVM 5 DBN 0.059 0.014 -0.001 0.030 0.127
4 TSVM 6 DBN 0.225 0.011 -0.006 0.028 0.338
5 TSVM 2 DBN 0.614 0.005 -0.018 0.029 0.658
5 TSVM 3 DBN 0.467 0.007 -0.013 0.025 0.538
5 TSVM 4 DBN 0.422 0.007 -0.011 0.021 0.533
5 TSVM 5 DBN 0.444 0.007 -0.011 0.024 0.533
5 TSVM 6 DBN 0.641 0.003 -0.014 0.021 0.663
6 TSVM 2 DBN 0.514 0.006 -0.012 0.025 0.571
6 TSVM 3 DBN 0.380 0.006 -0.006 0.020 0.519
6 TSVM 4 DBN 0.444 0.005 -0.011 0.018 0.533
6 TSVM 5 DBN 0.360 0.006 -0.009 0.021 0.515
6 TSVM 6 DBN 0.896 0.001 -0.012 0.017 0.896

Table 27: Comparison of DBN with TSVM. See table 24 for the legend.



130 15 LESS NETWORK PARAMETERS

n1 method1 n2 method2 p value estimate ci lower ci upper p adjust

1 TSVM 2 TSVM 0.254 0.012 -0.012 0.030 0.347
1 TSVM 3 TSVM 0.184 0.018 -0.006 0.036 0.320
1 TSVM 4 TSVM 0.061 0.018 0.000 0.036 0.182
1 TSVM 5 TSVM 0.023 0.030 0.006 0.048 0.113
1 TSVM 6 TSVM 0.007 0.030 0.012 0.048 0.098
2 TSVM 3 TSVM 0.588 0.006 -0.006 0.024 0.679
2 TSVM 4 TSVM 0.222 0.012 -0.006 0.024 0.332
2 TSVM 5 TSVM 0.015 0.018 0.006 0.030 0.110
2 TSVM 6 TSVM 0.031 0.024 0.006 0.030 0.115
3 TSVM 4 TSVM 0.759 0.000 -0.012 0.018 0.813
3 TSVM 5 TSVM 0.192 0.012 -0.006 0.024 0.320
3 TSVM 6 TSVM 0.154 0.012 -0.006 0.030 0.320
4 TSVM 5 TSVM 0.313 0.012 -0.012 0.030 0.391
4 TSVM 6 TSVM 0.110 0.012 0.000 0.024 0.274
5 TSVM 6 TSVM 0.977 0.000 -0.024 0.018 0.977

Table 28: Comparison of TSVM with TSVM on different numbers of unlabeled samples.
See table 24 for the legend. Duplicate rows were removed.

The lowest adjusted p-value is 0.098 between data set 1 and data set 6. Again, this

is contrary to the expected hypothesis that adding unlabeled data in the training of

the semi-supervised TSVM is beneficial to its prediction accuracy.

15 Less Network Parameters

Since breast cancer 12 has a negative result in summary, because it cannot confirm

the benefit of adding unlabeled samples to training, in data set breast cancer 15 we

considered the differences in data sources and artificial neural network configurations

between our and the ones in image recognition, where DBNs are successful. We also

increased the number of input genes from the 500 most variable genes used as input

genes in previous data sets to all 22,283 available genes.

15.1 Too Many Free Parameters

[HintonTeh2006] write that they use a 3-hidden-layer network with about 1.7 ∗ 106

weights. They used 44000 training samples with 28*28 pixels each. So altogether they

have about 34.5 million “training numbers”, and 1.7 million weights that have to be
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determined. Precisely, their ratio of input numbers to number of weights is

input numbers

weights
=

44000 ∗ 28 ∗ 28

28 ∗ 28 ∗ 500 + 500 ∗ 500 + 500 ∗ 2000 + 2000 ∗ 10
≈ 20.8.

In contrast to that we have (in data set breast cancer 12, data set 6) 238 training

and validation samples, each of which has 500 expression levels, i.e. 238 ∗ 500 =

119, 000 “training numbers” used totally in the input. The breast cancer 12 artificial

neural networks all have an architecture of 500-1000-1000-2000-1 (500 input nodes, 1000

hidden layer 1 nodes, 1000 hidden layer 2 nodes, 2000 hidden layer 3 nodes, and 1 output

layer node). Hence, there are 500∗1000+1000∗1000+1000∗2000+2000∗1 ≈ 3.5∗106

weights to be learnt. The ratio of
input numbers

weights
≈ 0.034� 20.8 is much lower in our

case than in the image recognition case.

This can be changed by using all i = 22, 283 genes as inputs, and only a very small

number of hidden nodes h (assuming for simplicity that all hidden layers have the same

number of nodes). If we take i = 22, 283, and there are 238 training samples (in fact

we have only 20 labeled plus 100 unlabeled training samples in breast cancer 12), then

we have 22, 283 ∗ 238 = 5, 303, 354 measured numbers. The ratio formula is

r(h) =
22283 ∗ 238

22283 ∗ h+ h ∗ h+ h ∗ h+ h ∗ o
,

where h is the number of hidden nodes and o is the number of output samples and is

equal to 1, because the labeled cases have a binary label.

15.2 Data Set Design

To exclude that a batch effect between GSE25055 and GSE25065 negatively affects

semi-supervised learning, in breast cancer 15 we only use GSE25055, also for testing.

Again we use 10|10 labeled training and validation samples. This leaves us with re-

maining 57 − 20 = 37 label 1 samples for testing, and we also use 37 label 0 samples.

Like in previous data sets, all samples for the labeled training and validation data sets

can be re-used in the unlabeled data set, because the labels are not given to the neural

network during pre-training.

We choose a reasonably large unlabeled validation data set of 28 samples like in

breast cancer 12 (although in breast cancer 12 we used 21 GSE25065 samples in ad-

dition). The ratio of label 0 to label 1 samples is 249/57 ≈ 4.37. To have a sufficient

number of label 1 unlabeled validation samples, we use 100|25 (where x|y means x
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data set 1 2 3 4 5 6

tquad 2*10 2*(10+24) 2*(10+52) 2*(10+76) 2*(10+104) 2*(10+128)
r(10, tquad) 2.00 6.79 12.39 17.18 22.78 27.57
tindiv 2*10 20+24+6 20+52+13 20+76+19 20+104+26 20+128+32

r(10, tindiv) 2.00 5.00 8.49 11.49 14.99 17.98

Table 29: The ratio of training samples to network parameters, r, for 10 hidden nodes
in data set breast cancer 15. tquad is the number of samples when counting quadrupled
samples as 4 samples. tindiv is the number of samples when quadrupled samples are
counted as 1 sample.

label 0 samples and y label 1 samples) unlabeled validation samples, where the 25 label

1 samples are replicated 4 times (written 100|25 ∗ 4). This leaves 57 − 25 = 32 label

1 samples for the unlabeled training data set. Replicating label 1 samples 4 times in

the data set to have the same ratio of different label 0 and label 1 samples as in the

unlabeled validation data set gives 128|32 ∗ 4 = 128|128 samples.

Altogether, there are in the labeled and unlabeled training data 10|10+128|32∗4 =

138|138 samples = 276 samples, when counting the quadrupled label 1 samples as 4

individual samples. When counting the quadrupled samples as only 1 real sample,

there are 10|10+128|32 = 10∗2+128+32 = 180 samples. So tquad = 276, tindiv = 180,

o = 1.

The ratio is then

r(h, t) =
22283 ∗ t

22283 ∗ h+ h ∗ h+ h ∗ h+ h ∗ o
.

For a hidden layer size of h = 10, r(h, t) is shown in table 29 for the 6 different data

sets (containing an increasing number of samples t). As the values for r in the table

are around 20 (for data set 6), both for tquad and tindiv, we choose a hidden layer node

size h = 10. The architecture for the artificial neural networks of breast cancer 15 is

22283-10-10-10-1.

Another big change compared to previous data sets is the use of all 22,283 genes as

input instead of only the 500 most variable genes.

The complete data set is shown in table 30.

15.2.1 Different Training Parameters

In comparison to breast cancer 12, the unsupervised learning rate (base epsilon) was

decreased from 0.01 to 0.001 for the pre-training of hidden layer 1, and from 0.001 to
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data set 1 2 3 4 5 6

la
b

el
ed

testing
GSE25055 37|37
GSE25065 0|0

training
GSE25055 10|10
GSE25065 0|0

validation
GSE25055 10|10
GSE25065 0|0

u
n
la

b
el

ed training
GSE25055 0|0 24|6*4 52|13*4 76|19*4 104|26*4 128|32*4
GSE25065 0|0∑

Training 0|0 24|6*4 52|13*4 76|19*4 104|26*4 128|32*4

validation
GSE25055 0|0 20|5*4 40|10*4 60|15*4 80|20*4 100|25*4
GSE25065 0|0∑

V alidation 0|0 20|5*4 40|10*4 60|15*4 80|20*4 100|25*4
repeats 20 20 20 20 20 20

Table 30: Data set design of breast cancer 15. It contains 37|37 labeled testing, 10|10
labeled training, 10|10 labeled validation, 128|32 ∗ 4 unlabeled training, and 100|25 ∗ 4
unlabeled validation samples (where x|y ∗ f means x label 0 samples, and y label 1
samples duplicated f times). 6 sub-data-sets are created, with the first one having no
unlabeled data at all, the last one having 128|32 ∗ 4 training and 100|25 ∗ 4 validation
samples, and interpolated numbers in-between. The labeled data are equal across
all data sets (but different between different repetitions). There are 20 sub-sampling
repeats per sub-data-set. All samples are from GSE25055, to avoid a possible batch-
effect.
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Figure 28: Box plots of test set accuracies for different data sets with more and more un-
labeled training samples in a neural network pre-trained with DBN on breast cancer 15.
The x-axis is the data sets in the order of rising number of unlabeled samples; the y-
axis is the test set accuracy. Data set 1 cannot be used in DBNs because it does not
contain unlabeled data. The y-axis is the accuracy. Each dot represents the accuracy
on a repetition.

0.0001 for pre-training hidden layers 2 and 3. We also changed the mini-batch9 size

from 100 to 1000, which leads to slower training, but iterates over all training samples

before changing weights, and thus approximates the derivative of the weights more

faithfully.

15.3 Accuracy of DBN Fine-tuned with Back-propagation

Figure 28 shows the accuracies obtained for data set breast cancer 15. The accuracies

are better than those obtained in breast cancer 12: The median accuracy is near 0.7

for all data sets except data set 3, while it was slightly above 0.65 in breast cancer 12.

9In training, the network parameters’ deltas are alternatingly computed, then the parameters are
updated. (See equation 26 in backpropagation training.) The mini-batch is the number of samples
whose deltas are accumulated before the network parameters are updated.
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This may be due to less overfitting because there are less model parameters, but it may

also be due to the training having used more input data (22,283 genes instead of the

500 most significant).

To check whether there is a dependence of accuracies on the amount of unlabeled

samples available to training, we use a paired (over the repetitions) and two-sided

Wilcoxon test. The p-value for the accuracy difference between data sets 2 and 6

is 0.089. The estimated difference between accuracies of data sets 2 and 6 is 2.8

percent points (0.028). (The 95% confidence interval for the difference is [-0.46; 6.7]

percent points.) This shows a slight dependence of accuracy on the number of unlabeled

samples.

15.4 TSVM Accuracies

A TSVM was trained on the training and validation data of each repetition of all data

sets in breast cancer 15. Figure 29 shows the accuracies on the test sets. Inexplicably,

training failed in data set 2. Except for data set 2, one can see a slight accuracy increase

from data set 1 to data set 6, i.e. from the data set with no unlabeled samples to the

data set with the most unlabeled samples. The accuracy difference between data sets

1 and 6 was tested for significance with a paired (over the repetitions) and two-sided

Wilcoxon test. It is significant with a p-value of 0.0029, and the accuracy difference

between data sets 1 and 6 is an estimated 3.38 percent points (0.0338), while its 95%

confidence interval is [2.02; 6.08] percent points. Thus, in breast cancer 15, the TSVM

succeeded in increasing accuracy slightly by learning from unlabeled samples.

When training a TSVM only on the training data (but leaving away the validation

data), in addition to data set 2, also data set 3 fails to train a proper model with almost

all their accuracies at 0.5, and data set 4 has a median accuracy of only ≈0.575 (data

not shown). This may show that semi-supervised training using a TSVM fails when

not a sufficient number of unlabeled training samples is available. Training the TSVM

(supervisedly) using data set 1 did not fail.
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Figure 29: TSVM accuracies box plots on data set breast cancer 15. On the x-axis are
the data sets in order of increasing number of unlabeled samples. On the y-axis are the
accuracies. Each dot is the accuracy of a repetition of a data set of breast cancer 15.
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Part IV

Discussion

16 Discussion

We evaluated whether adding unlabeled data to semi-supervised training is beneficial

in deep neural networks, when predicting breast cancer recurrence after chemotherapy.

16.1 Related Work

Using Tumour Expression Data Directly to Classify Recurrence We pre-

dicted breast cancer recurrence after reductive surgery with neoadjuvant chemotherapy

directly from expression data. Papers that use neural networks to classify cancerous

tissue are for example [ChenHuang2002] and [ErcalMoss1994]. In [SharafTsokos2015],

Sharaf and Tsokos predict from 4 input variables the survival time by training a neural

network on 69,000 patients.

We selected the GSE25055 and GSE25065 data sets because they are among the

largest labeled cancer data sets in GEO that come from a single source. Like in

[HatzisSymmans2011], the larger data set GSE25055 was used for training a classi-

fier, and the data set of independent cases GSE25065 was used to test the classifier.

We used artificial neural networks as classifiers by predicting the class 1 probability of

the samples.

Neural Networks are Attractive In our view, neural networks have attractive

properties: they are non-linear, they can be used generatively, their implementations

are often modular (e.g. regularizations and network parameters), and in prediction

deep neural networks often are among the best predictors in several machine learning

fields. As [BiganzoliMarubini1998] put it: “Feed forward ANNs are strictly equivalent

to non-linear multivariate regression methods.” They can be used unsupervisedly as

well as supervisedly. For example, to obtain a probability for a class like done in

[AppelSpang2011] is straightforward, because the network outputs class probabilities

anyways. Last, but not least, artificial neural networks are plausible models of the real

biological neural networks, which are the control centers of animals, and were shaped

by evolution during millions of years. However, neural networks’ versatility can also
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be a disadvantage: it is often not clear what component or parameter to modify to

achieve a desired result.

Differences Between Object Recognition Tasks and Cancer Recurrence Pre-

diction In different settings the pre-training and back-propagation approach worked

well [ErhanBengio2010]. There are some differences between those fields and the sce-

nario of microarray expression data: The dimensionality of microarrays is usually higher

than that of images or phonemes (˜1000 pixels versus ˜20,000 genes), but the train-

ing set sizes are several magnitudes smaller (thousands to tenthousands images versus

tens to hundreds microarray data sets). For example, in the image classification task

in the ImageNet Large Scale Visual Recognition Challenge [RussakovskyFeiFei2015],

there are an average of ≈1,200 images per class, while in the GSE25055 data set, there

are 249 class 0 and 57 class 1 samples.

The fact that there is a much smaller number of labeled and unlabeled samples in

expression data than in image recognition is probably due to several factors: price, lo-

gistical and ethical issues. The price of microarrays (and RNASeq) is magnitudes larger

(hundreds of Euros or dollars) than the price to take and label pictures of hand-written

digits or objects (images are ubiquitous on the internet, and manual or computer-

assisted labeling is relatively cheap). In addition, expression data aquisition does not

merely consist of putting cDNA onto microarrays, but the process also involves select-

ing patients according to ethical criteria, keeping track of patients’ whereabouts and

collecting clinical parameters over an extended time-span (“follow-up”).

The difficulty of the learning task seems higher than that of recognizing digits,

where accuracies of 96% can be achieved by nearest neighbor classifiers. However, it

may be comparable to the object recognition tasks, that had accuracies around 70%

using SVMs in the ImageNet Large Scale Visual Recognition Challenge.

16.2 Summary of Own Approaches

To sum up, we tried different training parameters, different network architectures (with

many free parameters relative to training data set size, and with few free parameters),

different normalizations, different data set compositions. A small improvement in test-

ing set accuracy was achieved by using additional unlabeled data during training.

Different Network Configurations As pre-training algorithms we assessed au-

toencoders, Restricted Boltzmann Machines, and Deep Belief Networks. There seemed
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to be only little difference in test set accuracy between these pre-training algorithms.

However, some authors have reported that autoencoders are harder to train. In gen-

eral, reconstruction error during pre-training converged well for our cases. Sometimes

one has to wait a few iterations for the network to travel through configurations that

do not seem to change the resulting reconstruction error.

Different Normalizations We tried using different normalizations of the raw ex-

pression data: RMA and MAS5 normalization, logarithmizing, COMBAT batch effect

correction, and ZCA whitening. We observed the effect of normalization on reconstruc-

tion error during pre-training as well as on classification accuracy. The reconstruction

error plots seem to depend on the normalization used. MAS5 normalized data seem

to have lower reconstruction error than RMA normalized data. The effect of different

normalizations on classification accuracy were the other way around: Of all normal-

izations tested, RMA with no additional pre-processing yielded the best accuracies in

all data sets tested. Of note is that a low reconstruction error rate does not imply a

good accuracy on the test set: Although the neuronal nets using MAS5 normalized

data had a lower reconstruction error than their RMA counterparts, MAS5 yielded a

lower accuracy than RMA.

Deep Networks We also tried deeper networks with more than one hidden layer.

Using these did not always improve accuracy. However, using more than a few hidden

layers was not systematically investigated due to limits in computation time.

Model Selection We always selected the iteration/model of the neural network that

had the highest validation set accuracy. Few samples lead to few different possible

accuracy values. To be able to choose the best model among candidates that have

only few possible accuracies, we smoothed the accuracies over time (or iterations),

because the network’s state of parameters at a specific iteration is closest to its state

of parameters at the closest iterations. In other words, the artificial neural networks

change only little every iteration, and we want to select a model from a stable learning

period.

Compared Methods: Neural Networks, SVM and TSVM We compared Sup-

port Vector Machine (SVM) and Transductive Support Vector Machine (TSVM) to the

artificial neural networks. TSVM is a semi-supervised version of the normal supervised



140 16 DISCUSSION

SVM, and the artificial neural networks were used with (semi-supervised) and with-

out (supervised) pre-training. We compared the semi-supervised and the supervised

versions of both neuronal network and Support Vector Machine.

Does Semi-supervised Learning Lead to Better Neural Network Classifiers?

We used an increasing number of unlabeled samples during pre-training to find out

whether this has an effect on the accuracy achieved during fine-tuning. In terms of

[Zhu2005], we are learning an efficient coding of the domain from unlabeled data and

then perform supervised learning on the coded samples (see their chapter 8). The

approach is similar to that of [ChenXie2015], where they used the representation of a

sample at the deepest hidden layer to do regression on (whereas we classify the sample,

using a supervised algorithm). Like [Zhu2005], we also noticed that during data set

creation for semi-supervised learning, one has to constrain the class proportions – in

our case to 50% for class 0 and 50% for class 1, otherwise the semi-supervised training

often fails with predictions biased in favor of the larger class.

Only the very last approaches tried (data set breast cancer 15, section 15) showed a

(small) significant benefit between those networks trained using more unlabeled samples

over those trained using less unlabeled samples. There are three differences between

these approaches and the ones before: First, we used less hidden layer neurons. Second,

we used all 22,283 genes as input instead of only the 500 most variable genes. Third,

we tested on GSE25055 instead of GSE25065. The benefit using unlabeled samples is

not due to less hidden layer neurons, since TSVM was not influenced by this point, but

also showed the benefit. Whether the benefit is due to using all 22,283 genes or testing

on the same data set as used for training remains to be seen.

16.3 Outlook

More Advanced Prediction Schemes More sophisticated prediction schemes can

be imagined so that the prediction made produces more than one number: For example,

in addition to the severity of the disease after therapy (a number between 0 and 1),

the number of (visibly large) metastases (a natural number) could be trained and

predicted. Such a prediction is not made in this work, because only little clinical data

was recorded in GSE25055 and GSE25065. However, in the neural network it would be

straightforward to predict such two numbers by adding an additional (properly scaled)

number to the output layer in the training set.
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Multiplying of Training Samples In most applications of deep learning there is

some algorithm involved to multiply the number of available training data sets. For

example, in image classification the training images are usually translated by pixel or

subpixel shifts, or small non-linear deformations are applied using a warped mesh. This

has the effect that a local feature of an input training image (for example, a red pixel

on green background) is present in different input pixels in the transformed training

images. This allows producing a large number of similar training images from an input

training set. The neural network is thereby forced to learn the property of a feature

regardless of its position in the image. Nevertheless the position of the feature will

probably vary in “real” (not modified) images as well.

Having such a transformation for expression data would be very useful, not only

for classification using neural networks, but also other machine learning algorithms.

However, it is not at all clear what a pre-processing equivalent to the local image

deformations could look like for mRNA abundance. Straightforward application of the

image deformation scheme would provide the neural network with input for a gene in

the dimension of a maybe completely unrelated gene. (Note that adding some sort

of noise onto the expression levels would be equivalent to adding noise to the image,

which is not equivalent to shifting the image.)

One approach could be to use different normalization methods, parameters, and

random number seeds used in some normalization methods to obtain multiple copies

of the same raw data set, but with small changes providing different “points of view”

of the data.

Another possible approach could be to look for gene modules that consist of re-

dundant genes, and permute their expression values among the redundacy group. This

would require knowledge about gene modules in advance.

A third approach could be to increase the number of input samples by creating

additional samples by composing them of random subsets of other input samples. For

example, take gene 1-1000 from sample 1, gene 1001-2001 from samples 2, and so on.

Or maybe even better use gene modules as learned by an RBM (see the hub features

in Figure S3 of [ChenXie2015]). There seem to be hub networks, that have outgoing

connections to many output layer genes, with many of the hub networks having either

positive outgoing weights (i.e. that positively affect the expression of a target gene) or

negative outgoing weights, but not both.

The algorithm would work like this: Determine for each measured input sample the

gene hub activation (by unsupervisedly training an RBM or DBN on all input samples).
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This results in a vector of numbers, one vector for each input sample; each number

stands for one gene hub activation. Permute the gene hub activations between the

learned representations, but only use representations from samples that have the same

class label. Due to the number of permutations this creates a large number of labeled

training samples (each training sample is labeled like the measured samples used in

the training sample generation). Use these generated training samples as input for a

supervised DBN.
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