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Introduction and Overview

One of the famous open problems in the 17th and 18th century was the question of the

value of the convergent series
<1

>

72.

n=1 n
This question was first asked by Mengoli in 1644. Many great mathematicians of that
time tried to solve this problem in vain. It took almost 100 years until Euler solved it

in 1734 and proved

i 1 2
2T a
—n 6

using state of the art techniques in analysis. From a nowadays point of view this formula
can be seen as the first contribution to the study of special values of L-functions. On the
other hand, at the time of Euler no one would have considered this formula as a statement
of number-theoretical interest. The bare appearance of numbers in a mathematical
statement does not make it a number-theoretical statement. So, it took another 100
years until L-functions became objects of number-theoretical interest. In 1837, Dirichlet
introduced L-functions associated with Dirichlet characters and used them to prove
the existence of an infinite number of primes in arithmetic progressions. Only shortly
afterwards, Dirichlet gave the first instance of a class number formula for quadratic
fields. The analytic class number formula

h
s—0 WK

for a general number field K goes back to Dedekind. Here, hi is the order of the class
group, 7 is the regulator, wg is the number of the roots of unity contained in K and
r1 4+ ro — 1 is the rank of the group of units of O . This beautiful formula assembles all
the basic invariants of a number field in a single equation. From the mid 19th century
on, L-functions have been a central and important object of study in number theory.
Furthermore, they provide a source of deep and beautiful conjectures. The analytic class
number formula can be seen as the prototype of the very general Tamagawa number
conjecture (TNC) of Bloch and Kato on special values of L-functions. The Tamagawa
number conjecture and its p-adic analogue, the Perrin-Riou conjecture, express special
L-values in terms of various realizations of motivic cohomology classes. While the TNC
in its general form is far out of scope of today’s methods, there has been some progress
in proving particular cases. Let us concentrate here on some results concerning progress
in the case of Hecke characters of number fields. For the Riemann zeta function the
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proof of the Tamagawa number conjecture (TNC) goes back to Bloch and Kato and
was completed by Huber and Wildeshaus in [HW98]. For Dirichlet characters it was
proven by Huber and Kings [HK03]. For non-critical L-values of CM-elliptic curves
the TNC was settled by Kings in [Kin01]. For critical L-values of Hecke characters of
imaginary quadratic fields the most general result has been obtained by Tsuji [Tsu04] as
an application of a very general explicit reciprocity law.

In order to tackle particular cases of the Tamagawa number conjecture first we need a
way to construct enough motivic cohomology classes, then we have to understand their
realizations and relate those cohomology classes to special values of L-functions. An
important source of such motivic cohomology classes is provided by the polylogarithm.
The bridge between the specializations of those polylogarithm classes and L-values is
often given via Fisenstein series and their cohomology classes. Let us take a closer look
at Eisenstein series and the elliptic polylogarithm and thereby explain the main results
of this thesis.

Eisenstein series

Eisenstein series provide a key tool in studying special values of L-functions. For exam-
ple, consider real-analytic Eisenstein series for congruence subgroups of SLo(Z). Their
values at CM-points play an important role in studying special values of L-functions
associated with Hecke characters of imaginary quadratic fields. For

(wi,ws) € GLT := {(wl,wg) € C?:Im ((wl)_l(.ug> > O} ,

let us consider the lattice I' in C spanned by wi,ws. For b > a + 2 and zg € %F the
series
(=)ol Z (T +7)°
= a b
(Im wywo) e [0} (zo + )

converges absolutely. It defines a real-analytic modular form of level N. For a = 0 the
resulting modular form is algebraic. The non-holomorphic Eisenstein series

(=)™ b! > (Zo +7)°
» a b
(Im(,U1LU2) yeT\{—z0} (330 + ’7)

can be obtained by applying a times the Weil operator
1 (_ 0 _ 0 )
= w1 + w2

to the algebraic modular form

1
—1)P7 (b — q)! — b—a>2.
e Y
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At first sight, there seems to be little hope to give an algebraic interpretation of the non-
holomorphic Eisenstein series for a > 0. However, by an ingenious insight of Katz the
Weil operator admits a cohomological interpretation. This cohomological description
allows a purely algebraic interpretation of real-analytic Eisenstein series as de Rham
cohomology classes. Let us recall the approach of Katz [Kat76], cf. the exposition in
[Tsu04, I1. §2]. To each point (wy,ws) € GLT we can associate a complex elliptic curve

E=C/(nZ+wZ), (Z/NZ)* E[N|(C),(z,y) — az% n y%

with I'(N) level structure. For N > 3 this gives us a map
GrLJr — MN ((C)

to the C-valued points of the modular curve of level I'(V). This map allows us to view
real-analytic modular forms as real-analytic sections of the line bundle w(C°)*** with
w = e*Q}Euniv M Let us denote by H, éR the first relative de Rham cohomology of the

universal elliptic curve. Following Katz, let us use the Gauss—Manin connection on H (liR
and the Kodaira—Spencer isomorphism to define the algebraic differential operator:

0: w* — Sym* Hip Y, Sym"* Hip QOny, Q}WN & SymF Hig DOy w? < Sym* 2 Hip

Composing this with the projection obtained from the Hodge decomposition, we obtain
the differential operator

G(COO) Q(Cw)k i> SymkHEéR(C‘”) _ Q(Coo)kJrQ‘

Now, Katz showed that under the above identification the Weil operator coincides with
the differential operator §(C>). The benefit of this interpretation is that the definition
of @ is purely algebraic. This gives us a purely algebraic interpretation of real-analytic
Eisenstein series as sections of

Syimﬁb ﬂtliR'

Katz’ cohomological construction of real-analytic Eisenstein series via the Gauss—Manin
connection allows us to study algebraic and p-adic properties of real-analytic Eisenstein
series. On the other hand, the usage of the differential operator # has an obvious
disadvantage. It is far from being functorial. For the definition of 8 it is essential that the
Kodaira—Spencer map is an isomorphism. As an example, let us recall that the value of
real-analytic Eisenstein series on CM elliptic curves is one of the main tools for studying
L-values of Hecke characters for imaginary quadratic fields. The non-functoriality of
the above construction forces us to study the universal situation although we are just
interested in the value of real-analytic FEisenstein classes for a single CM elliptic curve.

In [BK10b] Bannai and Kobayashi have observed that the Kronecker theta function
and certain translates of it are generating series for an important class of real-analytic
Eisenstein series, the Eisenstein—Kronecker series. These are real-analytic modular forms
defined for b > a+2 > 0 by

€ap(20,wo; ') = Z

YET\{-20}

(Z0 +7)°

(20 +7)° 0, wolr
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with (z,w)r := exp (Zﬁ(_ril)"g) and A(T") := % For general b > 0,a > 0 they can be
defined by analytic continuation, cf. [BK10b, §1.1]. For CM elliptic curves Bannai and
Kobayashi applied Mumford’s theory of algebraic theta functions to study algebraicity
properties of the Kronecker theta function. At least for CM elliptic curves this gives a
new approach for studying real-analytic Eisenstein series and their algebraic properties,
which avoids considering the universal situation. Unfortunately, the approach via the
Kronecker theta function does not directly generalize to more general elliptic curves.

The first main result of this thesis gives a new and purely algebraic construction of
cohomology classes of real-analytic Eisenstein series via the Poincaré bundle. This con-
struction is compatible with base change and works for arbitrary families of elliptic
curves F over a general base scheme S. We are building on the work of Bannai and
Kobayashi. Instead of working with theta functions, we will work with the underlying
section of the Poincaré bundle. This algebraic section will be defined in the first chapter
and will be called the canonical section

sean € T (B x5 BY, P @ O, pu/pv ([B x €] + [e x EY]))

of the Poincaré bundle P. After passing to the universal vectorial extensions of both
E and its dual, we get canonical connections on the Poincaré bundle. Applying them
iteratively to certain translates of the canonical section, allows us to give a functorial
construction of elements

ESPT e (5, Sym® Hlg (EV/S) @ Sym"' Hly (E/S))

for torsion sections s € EV[D](S) and t € E[N](S). The first main result of this thesis
is the following:

Theorem (cf. Theorem! 1.7.2). The Hodge decomposition on the universal elliptic curve
of level T'(N D) identifies E;i’tbJrl with the real-analytic Fisenstein—Kronecker series

(—1)°+ ba!b!—ezvbﬂ(m’ N?)

dz®(atb+1)
Acq!

Here, § and t are certain analytic lifts of the torsion sections s and t.

As an application of our purely algebraic construction of real-analytic Eisenstein series
via the Poincaré bundle, we will give a new construction of the two-variable p-adic
measure of Katz interpolating real-analytic Eisenstein series on the ordinary locus of
the modular curve. Like Katz we will work with the universal trivialized elliptic curve
EYY /M®Y . Norman’s theory of p-adic theta functions allows us to associate p-adic
theta functions

Dﬁs(TlaTZ) eV (Z[HF(N)) [[TlvTZJ]

! for a more detailed version of the theorem, see the main body of the text
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with coefficients in Katz’ ring V' (Z,,I'(IV)) of generalized p-adic modular forms to certain
translates of the canonical section. Via Amice’ isomorphism between functions on Gy,
and p-adic measures we obtain a two-variable measure

ub, € Meas (Z, x 2,V (2, D(N)) )

with values in p-adic modular forms. We call this measure the p-adic Fisenstein—
Kronecker measure. Our second main result gives a bridge between p-adic theta functions
and generalized p-adic modular forms:

Theorem (cf. Theorem? 4.5.3). The measure ,u%i; interpolates p-adic variants &+

of the Eisenstein—Kronecker series p-adically, i.e.:
L ahydu e, = pEhTH.
Lip X Ly

This result is motivated by the construction of two-variable p-adic measures for CM-
elliptic curves at ordinary primes by Bannai-Kobayashi [BK10b]. Further, we compare
our measure to that of Katz.

The remaining results of this thesis concern the algebraic de Rham realization and the
syntomic realization of the elliptic polylogarithm:

The elliptic polylogarithm

The cohomological polylogarithm is an important tool for constructing cohomology
classes of motivic origin as needed for studying particular cases of conjectures on special
values of L-functions. To give an example, polylogarithmic classes play a key role in the
above mentioned proofs of the TNC for Dirichlet characters by Huber-Kings [HK03] and
CM elliptic curves by Kings [Kin01].

But let us start with the classical polylogarithmic functions. The functions

oo :L‘n
1 = — >
ny an, lz| <1,k >1
n=1
have already been studied by Euler in 1768. The relation to the classical logarithm is
given by In; x = —log(1 — x). On the open unit disc these functions satisfy the integral
relation

z d
Ing x :/ Ing_4 Z—Z, lz| < 1,k > 2.
0 z

Using this identity, the classical polylogarithmic functions can be analytically continued
to multivalued holomorphic functions on C\ {0,1}. The starting point towards a mod-
ern treatment of the classical polylogarithmic functions can be seen in the monodromy
computation of Ramakrishnan of the polylogarithmic functions [Ram82], see also the

2 for a more detailed version of the theorem, see the main body of the text
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exposition by Hain [Hai94]. The above integral equation can be reformulated as a linear

differential equation. Let us define wy = % and wq := 1%’“'2 and
0O wgy O -+ 0
. wo .
W = 0 € HO(Pl(C),QIﬁl(lOg{O,1,00})) b2y Gln+1(C),
W
0 ... 0

then the multivalued polylogarithmic functions can be encoded as solutions of the linear
differential equation
dh =AW, X:C\{0,1} —C"*.

Again, we can reformulate this. Let us consider the connection

V(f)=df = fW

on the n+ 1-dimensional trivial vector bundle C"** x P1(C)\ {0, 1, 00} and let us denote
the local system of horizontal sections by Pol. This local system captures the solutions
of the above differential equation. Then, one can show that Pol sits in a non-trivial
extension

0— Log" — Pol - C—0

of local systems. Here C is the constant local system and Log" is the local system on
C\ {0} associated with the representation of m := 71(C\ {0})

Clm)/J"Y,  J:=ker (C[m] - C).

Let us observe that every unipotent representation of m; of length n is a module under
C[m1]/J""L. Thus, the sheaf Log" has a distinguished role under all unipotent local
systems of length n and is called n-th logarithm sheaf. Let us summarize the above
by saying that the classical polylogarithmic functions are encoded in the above non-
trivial extension. It is this sheaf-theoretical interpretation of the classical polylogarithm
functions which can be fruitfully generalized to other more general settings.

It was observed by Deligne that the above extension of local systems underlies a varia-
tion of mixed Hodge structures. Beilinson extended the definition of the polylogarithm
for P\ {0, 1, 00} to the theory of mixed sheaves in the l-adic setting . The motivic origin
of the polylogarithm for P\ {0, 1, co} was worked out by Huber and Wildeshaus [HW98|.
In the seminal work “The elliptic polylogarithm” Beilinson and Levin have extended the
definition of the polylogarithm to elliptic curves. They have defined the polylogarithm
for any mixed sheaf theory and have proven its motivic origin. Besides, they have shown
that the period functions of the polylogarithm in the R-Hodge realization are given by
certain Eisenstein—Kronecker series. From here on many generalizations and applica-
tions of polylogarithmic cohomology classes have been given. Let us concentrate here on
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the syntomic realization of the elliptic polylogarithm. The importance of syntomic coho-
mology comes from its interpretation as absolute p-adic Hodge cohomology, see Bannai
[Ban02] and Deglise-Niziot [DN15]. Thus, syntomic cohomology can be seen as a p-adic
version of Deligne—Beilinson cohomology. This explains the importance of syntomic co-
homology for the formulation of the p-adic Beilinson conjecture and the conjecture of
Perrin-Riou on special values of L-functions.

The rigid syntomic realization of the elliptic polylogarithm for CM elliptic curves has
been studied by Bannai, Kobayashi and Tsuji [BKT10]. They first give an explicit
description of the de Rham realization of the elliptic polylogarithm. Building on this
they relate the rigid syntomic realization of the elliptic polylogarithm to overconvergent
functions obtained as certain moment functions of the p-adic distribution interpolating
the Eisenstein—Kronecker numbers. On the other hand, the syntomic Eisenstein classes
obtained by specializing the polylogarithm class on the ordinary locus of the modular
curve have been described by Bannai and Kings [BK10a]. These Eisenstein classes are
related to moments of Katz’ two variable p-adic Eisenstein measure interpolating real-
analytic Eisenstein series. Again, the de Rham Eisenstein classes are an important
intermediate step for understanding the syntomic Eisenstein classes.

The remaining main results of this thesis are concerning the de Rham realization and
the syntomic realization of the elliptic polylogarithm. For the de Rham realization of the
elliptic polylogarithm we are building on previous results in the PhD thesis of Scheider
[Sch14]. Like Scheider, we consider arbitrary families of elliptic curves over a smooth
base scheme over a field of characteristic zero. Scheider shows that the (relative) de
Rham logarithm sheaves for families of elliptic curves can be constructed by restricting
the Poincaré bundle P! on E xg E' to infinitesimal thickenings of F x e:

£l = (prp).( P

Restricting the canonical section to such infinitesimal neighbourhoods allows us to con-
struct sections

ExInf? Ef )

LPer (E,Q};(E[D]) ® zL) :

Indeed, these logarithmic 1-forms with values in the logarithm sheaves represent the
polylogarithm in de Rham cohomology:

Theorem (cf. Theorem? 5.2.10). The de Rham realization of the D-variant of the elliptic
polylogarithm is explicitly given as follows:

([LE])WO =polp g € yLnHéR (Up,Loggr)

n

This can be seen as an algebraic version of previous results of Scheider [Sch14, §3]. To-
gether with Scheider’s result on the logarithm sheaves this gives an algebraic description
of the de Rham realization of the elliptic polylogarithm purely out of the Poincaré bun-
dle. Building on this result allows us to give an explicit description of the rigid syntomic

3 for a more detailed version of the theorem, see the main body of the text
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realization of the elliptic polylogarithm on the ordinary locus of the modular curve. This
generalizes the results of Bannai—Kings and Bannai—Kobayashi—Tsuji:

Theorem (cf. Theorem? 6.5.3). There is a compatible system of overconvergent sections
in the syntomic logarithm sheaves p, € T (cg"K,jE(Log:yn)) describing the D-variant of
the syntomic polylogarithm on the ordinary locus of the modular curve

pO[D,syn - ([pn])n20 < L%anlyn (%D’ Log:}’n(l)) ’

In tubular neighbourhoods |t| of torsion sections there is a canonical decomposition of
these overconvergent sections

pali = D & e p@l®!
k+1<n

in terms of certain generators (@[k’l])k-s-lgn of the logarithm sheaves. The rigid-analytic
functions & ;) appearing in this decomposition are moment functions of the p-adic
Eisenstein—Kronecker measure

e (s) = (D0 [ (L B ey
Ly XLy
with values in p-adic modular forms.

Both, the description of the de Rham and the syntomic realization, are developed out
of the Poincaré bundle. We hope that the approach via the Poincaré bundle might give
also new insights for studying polylogarithms for higher dimensional Abelian varieties.

Overview

Let us give a more detailed overview over the single chapters of this thesis:

Chapter 1: Eisenstein series via the Poincaré bundle

In the first chapter we will present a new construction of real-analytic Eisenstein series
via the Poincaré bundle. Let m : E — S be an elliptic curve and (P, rg,sg) be the
bi-rigidified Poincaré bundle on E xg EV. After choosing the autoduality isomorphism

ESEY, P [Op([-P]-[e)],
we get the more explicit description
(P.70,50) = (Omx(~[e x E] = [E X €] + A) @0y, Thx s a:70, 50) =

= (pr10p([e)® " @ pr3Op([e])* ™ © W On([e]) ® Thxpw e, 0, 50)

4 for a more detailed version of the theorem, see the main body of the text
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where A is the anti-diagonal and the rigidifications ro : (e x id)*P = Op and sp :
(id x €)*P = O are induced by the canonical isomorphism

" Op(=le]) = wpys-

We can view the line bundle Ogyx g(—[e X E] —[E x €]+ A) in a canonical way as a Cartier
divisor. Now, it comes with a canonical meromorphic section. This section induces a
section

scan € T (E x5 EY,P @ Qg v ([E x ] + [e x EV])).

which will be called the canonical section. Further, we will define translation operators

uly? (T, x T,)*(ID] x [N))*P —— ([D] x [N])*P.
for N, D > 1, and torsion sections s € E[N](S), t € EV[D](S). For later applications
we will further define a D-variant of the canonical section sL . Passing to the universal
vectorial extensions of both F and EV

E'xsE' » ExgEY

and denoting by P! the pullback of the Poincaré bundle gives canonical integrable
connections

2 ~
pit E, Pht g leE?ixET/Eﬁ >~ Pht Rp, Hig (EY/S)

EfxET

v, N
pht L, phf Ko Q};uxET/ET =~ phi ®os ﬂéR (E/S).

Efx et
Applying these connections iteratively to translates of the canonical section and evaluat-
ing at the zero section gives a functorial construction of algebraic Fisenstein—Kronecker
series

B e T (S, Sym* Hiy (EY/S) @ Symiy! Hip (E/S)).

Our main result of the first chapter relates the algebraic Fisenstein—Kronecker series to
real-analytic Eisenstein series via the Hodge decomposition on the analytification of the
universal elliptic curve. Furthermore, we prove a distribution relation for translates of the
canonical sections generalizing the distribution relation of Bannai-Kobayashi [BK10b].
While the definition of the canonical section a priori involves the choice of an autoduality
isomorphism, we give an intrinsic characterization of the canonical section. This intrinsic
characterization of the canonical section is motivated by the definition of the Kato—Siegel
functions of Kato [Kat04, Prop. 1.3]. The symmetry of our constructions via the Poncaré
bundle is reflected by the functional equation of the Eisenstein—Kronecker series.

Chapter 2: The geometric de Rham logarithm sheaves

In the second chapter we recall results of the PhD thesis of Scheider [Sch14]. Let us
denote the pullback of the Poincaré bundle to E xg Et by PT. Here, E' is the universal
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vectorial extension of EY. By restricting the Poincaré bundle PT along E x g Inf? ET we
obtain the geometric logarithm sheaves

L = (prE)*( PT‘ExIan Bt )

The canonical connection on P! induces an integrable S-connection V oioon Ll. One

of the main results of Scheider says that (Lf,V 1) satisfies the universal property of
the n-th relative de Rham logarithm sheaf. In the second chapter we recall the most
important properties of the geometric logarithm sheaves from [Sch14]. Along the same
lines we study the properties of

Ly = (pFE)*< Plexmtr gv )

It turns out that there are canonical inclusions £, < L. A good way to think about
L, is as the first non-trivial filtration step in the Hodge filtration of the (geometric)
logarithm sheaves L. Restricting the D-variant of the canonical section s, to E xg
Inf]' EV gives us a family of sections

lr? € F(E’ Ly, ®og QJIE/S(E[D]))

These sections will be called canonical sections of the geometric logarithm sheaves. These
sections will be important for describing the de Rham realization of the elliptic polylog-
arithm.

Chapter 3: The Katz splitting

As outlined above, the geometric logarithm sheaves serve as relative versions of the
de Rham logarithm sheaves. For studying the algebraic de Rham realization of the
polylogarithm, we need to extend the relative connections V ol to absolute connections.
In chapter 3 we develop the necessary tools for overcoming these technical difficulties.
First, we recall a construction of Katz of a functorial cross-section to the canonical
projection

E* - E

of the universal vectorial extension over the open subset U := E'\ {e}. This gives us
a U-valued point of the universal vectorial extension. A result of Mazur and Messing
[MMT74, (2.6.7)] allows us to view this U-valued point as an infinitesimal rigidification
on the line bundle P|yxpv. Restricting this infinitesimal rigidification to U x Infl EV,
gives a functorial way to split the canonical extension of the first geometric logarithm
sheaf

0 — Twpv/g L Op 0 (L)

over the open subset U = E \ {e} C E. For an elliptic curve E/S over a smooth T-
scheme this allows us at the same time to split the restriction to U of the short exact
sequence

0 —— Qg p — Qpp —— Qg — 0. ()
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Indeed, we prove that tensorizing the pushout of (L) along the Kodaira—Spencer map
W*gEV/s — W*Q}g/T R0y W*Q%;}S

with m™wpv /g = O /s gives the exact sequence (©). This allows us to transfer the
canonical splitting of the short exact sequence (L)|y to a canonical splitting of (Q)]¢.
These splittings allow us to explicitly extend the relative connection on EL to an absolute
one.

Chapter 4: P-adic interpolation of real analytic Eisenstein series via p-adic
Theta functions

In the fourth chapter we will construct Katz’ two-variable p-adic Eisenstein measure
via the Poincaré bundle. Following Norman, we will associate p-adic theta functions
to sections of the Poincaré bundle for ordinary elliptic over p-adic rings. Applying this
construction to the D-variant of the canonical section on the universal trivialized elliptic
curve BV /MUY allows us to construct p-adic theta functions

Dﬁs(TlaTZ) ev (Zpar(N)) [[TlvTZ]]

for non-trivial torsion sections e # s € EWV[N](M"Y). Here, V (Z,,T'(N)) is the ring
of (generalized) p-adic modular forms of level N. The Amice transform between p-adic
measures and functions on G, allows us to associate a two-variable p-adic measure ,u%ifs
with values in generalized p-adic modular forms to p0s(71,72). This measure will be
called D-variant of the p-adic Eisenstein—Kronecker measure. Finally, we will compare
this measure to Katz’ two-variable measure interpolating real-analytic Eisenstein series

p-adically.

Chapter 5: The algebraic de Rham realization of the elliptic polylogarithm

In this chapter we construct the algebraic de Rham realization of the elliptic polyloga-
rithm completely out of the Poincaré bundle. Let K be a field of characteristic zero and
E/S an elliptic curve over a smooth K-scheme. Following Scheider, we will recall the
definition of the D-variant of the elliptic polylogarithm in de Rham cohomology. Using
analytic methods, Scheider has already given an analytic description of the de Rham
realization via the Jacobi theta function on the universal elliptic curve [Sch14, §3]. Our
description of the algebraic de Rham realization can be seen as an algebraic version of
his results. The Katz splitting allows us to lift the relative 1-forms

lf € F(E7‘Cn ®og Q}E/S(E[D]))

to absolute ones
LY e (B, L, ®o, Qp(E[D])).
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The main theorem of this chapter is that the (D-variant of the) de Rham polylogarithm
is represented by the pro-system LZ:

([L7)nz0 = polp qr € Lim Hag (Up, Loggr) -
n

Chapter 6: The syntomic realization of the elliptic polylogarithm for
ordinary elliptic curves

In the last chapter we will give an explicit description of the rigid syntomic realization
of the elliptic polylogarithm over the ordinary locus of the modular curve. This can be
seen as a generalization of the description of the syntomic Eisenstein classes in [BK10a]
and the description of the syntomic polylogarithm for CM elliptic curves in [BKT10].

Let us consider a morphism of syntomic data & — .# - in the sense of Bannai [Ban00)]
- underlying an elliptic curve. As in Bannai-Kings and Bannai-Kobayashi—Tsuji, the
de Rham realization ([L2]),>0 determines the syntomic realization uniquely. More pre-
cisely, the differential equation

Viogg (Pn) = (1 = 6)(Ly))

characterizes a unique system p, of overconvergent sections of the syntomic logarithm
sheaves. This system describes the syntomic polylogarithm class. In the above differen-
tial equation, ¢ is obtained via the Frobenius structure of the syntomic logarithm. If we
restrict the universal elliptic curve to the ordinary locus of the modular curve, we can
describe the overconvergent sections p, more explicitly. In tubular neighbourhoods of
torsion sections the overconvergent sections p, are given by moment functions of the p-
adic Eisenstein—Kronecker measure constructed in chapter 4. The proof heavily exploits
the fact that both the de Rham realization L2 and the p-adic Eisenstein-Kronecker mea-
sure are constructed via the same object: namely, the canonical section of the Poincaré
bundle.

Notation and Conventions

All schemes are assumed to be separated and locally Noetherian. For a group scheme G
over a basis S we will usually write 7 : G — S for the structure map and e : S — G for
the unit section. If G is Abelian, the multiplication by N morphism will be denoted by
[N]. Whenever we are working over a fixed base scheme S, morphisms are supposed to
be S-morphisms. If we are working over a fixed base scheme, products are taken in the
category of S-schemes.
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1 Eisenstein series via the Poincaré bundle

In [Kat76] Katz constructed algebraic sections in symmetric powers of the first de Rham
cohomology of the universal elliptic curve representing real-analytic Eisenstein series.
His construction involves the Gauss—Manin connection and the Kodaira—Spencer iso-
morphism on the universal elliptic curve. In [BK10b] Bannai and Kobayashi observed
that the Kronecker theta function and certain translates of it are generating series for
real-analytic Eisenstein series. Motivated by this work, we will give an algebraic con-
struction of real-analytic Eisenstein series for arbitrary families of elliptic curves via the
Poincaré bundle in this chapter. To be more precise, we will construct in a functorial
way a canonical section of the Poincaré bundle for elliptic curves over arbitrary base
schemes. Passing to the universal vectorial extensions of both, the elliptic curve and
its dual, gives us two integrable connections on the Poincaré bundle. By applying them
iteratively and evaluating at torsion points allows us to construct the desired sections
representing real-analytic Eisenstein series. On the way we will prove a distribution re-
lation for the canonical section. Furthermore, the symmetry of the geometric situation
immediately yields the symmetry of the real-analytic Eisenstein series predicted by the
functional equation. As far as possible we try to make all constructions independent of
unnecessary choices like the choice of an autoduality isomorphism between E and its
dual.

1.1 The Poincaré bundle

Let E/S be an elliptic curve. Let us recall the definition of the Poincaré bundle and
thereby fix some notation. A rigidification on a line bundle £ on F is an isomorphism

r:e*L > Og.

A morphism of rigidified line bundles is a morphism of line bundles respecting the rigid-
ification. The dual elliptic curve EV represents the connected component of the functor

T — Pic(Ep/T) := {iso. classes of rigidified line bundles (£,r) on Ep/T}

on the category of S-schemes. The dual elliptic curve is again an elliptic curve. Since
a rigidified line bundle has no non-trivial automorphisms, an isomorphism class of a
rigidified line bundle determines the line bundle up to unique isomorphism. This implies
the existence of a universal rigidified line bundle (P,r) on E xg EV with the following
universal property: For any rigidified line bundle of degree zero (£,r) on Ep/T there is

15



1 FEisenstein series via the Poincaré bundle

a unique morphism
f: T — EY

such that (idg x f)*(P,ro) = (£, r). In particular, we obtain for any isogeny
o:E—FE

the dual isogeny as the morphism ¢V : (E')Y — EV classifying the rigidified line bundle
(¢ x id)*P’ obtained as the pullback of the Poincaré bundle P’ on E’ xg (E’)". By the
universal property of the Poincaré bundle, we get a unique isomorphism of rigidified line
bundles

Yid,pV - (idE X QO\/)*'P = ((p X id(E/)v)*Pl.

Of particular interest for us is the case ¢ = [N]. In this case the dual [N]¥ is just the
N-multiplication [N] on EV. Let us simplify notation and write v,v instead of iq ().
The inverse of v y will be denoted by

IN,1 - ([N] X 1d)*73 :> (ld X [N])*P

For N, D > 1 define
.ot ([N] x [D])*P = ([D] x [N])*P

as the composition in the following commutative diagram

(IN]xid)* 71, p
_—

([N] x [D])*P ([ND] x id)*P

CHEI| [Py (1.1)
. wmmy GAX[ND)*y1,p .
(id x [DN])*P ““ 88 (D] x [N])*P.

Indeed, this diagram is commutative since all maps are isomorphisms of rigidified line
bundles. Furthermore, rigidified line bundles do not have any non-trivial automorphisms,
i.e. there can be at most one isomorphism between rigidified line bundles. By the same
argument we obtain the following identities.

Lemma 1.1.1. Let N,N',D,D’' > 1 then
(a) ([D] xid)*y1,pr o (id x [D'])*v1,0 = 71,00’
(b) (id x [N])*ynr1 0 ([N'] x id)* N1 = YN
(¢) ([D] x [N])*yn7,pr o (IN'] x [D'])*yN,p = VNN, DD/

For a section s € E(S) let us write T5: E — E for the translation morphism. We can
now define the following translation operators for the Poincaré bundle.

Definition 1.1.2. For N, D > 1, s € E[N]|(S), t € EV[D](S) we define an isomorphism

UNP Ty x T,)*(ID] x [N])*P —— ([D] x [N])*P.

s
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1.1 The Poincaré bundle

of Oy ¢pv-modules via
Ugt’D ==n,po (Ts X Tt)*vD N-

In the most important case N = 1 we will simply write 2/ : Z/{el tD.

For a given torsion point ¢ € E[D](T) for some S-scheme 7' let us write Nt instead of
[N](t). We have the following behaviour under composition.

Corollary 1.1.3. Let D, D', N, N’ > 1 be integers. For s € E[N](S), s’ € E[N'|(S)
and t € EV[D]|(S), t' € EV[D'|(S) we get:

(D) IV UYLBL ) o (T T (1D = IN') U P =508

Proof. The general case decomposes into the following special cases

(D] x i) Ul ) o (id x To)* (D] x id) Uy = Ul (1.2)

(G x [N]YUl2t) o (T x id)*(id x [N Ul =ulyy) (1.3)
and

(([D] x i) Uy, ) o (T x id)*(id x [N U, = ul,” (1.4)

(Gid x IN)UL Ry ) o (id x Ty (D) x id) Uy, =uly”" (15)

Using Lemma 1.1.1(a), we will prove (1.2) and (1.4). The other cases are completely
analogous. We have

(([ | xid)* Z/let, )o(id x Ty)*([D'] x id)* ulD Def.

* (e * 11
—(ID] x id)*y1.pr 0 (D] X Ty)*1pr1 o ([D') x Ty y1.p o (ID') % Ty)*(id x T)*ypy (=

)

=([D] x id)*y1,pr o (id x Ty)* ((id x [D'])*y1,p o (id x [D])*yp,1) © ([D'] X Tiyr)*yp1 =
=([D] x id)*y1,pr o (id x [D'])*y1.p o (id x Ty)*(id x [D])*yp1 o ([D'] X Tyse')*vp .1 Lemn.

=y1,0pr © (id X Tyyp) vy = UL

and
(D] < id)yupit) o ((Tw x INDUSG,) =
—([D] x id)* (yn7.1 © (Tpy x id)*y1.n7) o (T x [N'D)* (1,0 0 (id x Tir) yp1) "=
=([D] xid)*ynr 1 © ([N/] xid)*y1,p o (Te x [D])* yi,n 0 (T x Ty)*(id x [N/D*'yD,l =
=yn'po (Ty x Ty)"yp.N' =

_,,N'.D
=Uy
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1 FEisenstein series via the Poincaré bundle

1.2 The canonical section of the Poincaré bundle

In this section we will state the characterizing property of the canonical section. The
characterizing property will not depend on a chosen autoduality isomorphism. The proof
of existence of the canonical section will be the content of the next section. There we
will choose an autoduality isomorphism and construct the canonical section quite explic-
itly. The advantage of this approach is that we have both an intrinsic characterization
independent of any choices and an explicit description useful for computations.

Let E/S be an elliptic curve over a separated locally Noetherian base scheme S. Let us
fix once and for all a rigidified line bundle (P, ry) satisfying the universal property of the
Poincaré bundle. The line bundle (id x e)*(P, o) is a trivial line bundle on E together
with a rigidification. By rigidity there is a unique isomorphism

s : (id x €)*(P,r9) = (O, can)

of rigidified line bundles. The triple (P,rg, sg) will be called the birigidified Poincaré
bundle. Let

QlEXSEV/E'V ([E x €]+ e x EY]) := Opxpv ([E x ] + [e x EV]) QOpy g5V QlE‘XSEV/EV

be the sheaf of relative Kéhler differentials on E xg EV tensorized with the line bundle
Opxpv ([E x €]+ [e x EY]). In this section we will define the canonical section of the
Poincaré bundle

sean € T (B x5 B, P @ Qv ([B x €] +[e x EV])).

1.2.1 The canonical 1-forms

Let us first recall the residue map for Kéahler differentials. Let E/S be an elliptic curve
and D > 1 invertible on S. Then, the group scheme E[D] is a finite étale group scheme
over S, i.e. there is a finite étale morphism f : T — S with Er[D] & (Z/DZ)%. We
have a Cartesian diagram

Ep - E

|, |

T$>S

and the canonical map f QL /s~ Q%ET /7 1s an isomorphism. Let us write
for the closed immersion. The residue map

Res : QIE/S(IOgE[DD — (ZE[D])*OE[D]

18



1.2 The canonical section of the Poincaré bundle

can be described explicitly after the finite étale base change to T as follows. Using the
decomposition

(i5r0)<Oprp) = D t:0s, (1.6)
teBr(D)(T)

let us write Rest, t € Ep[D](T) for the composition of Res with the projection to the
t component in (1.6). If t € Ep[D](T) is locally cut out by the equation X; = 0, then
Rest(dTXtt) = 1. Let us finally remark that the universal property of log-differentials gives
a canonical map

Qfs(log E[D)) — Qs(E[D]) := Qs ®0, Op(E[D)) (1.7)

which is easily checked to be an isomorphism. Indeed, (1.7) restricted to QF /s 1s the
identity and if ¢ € E[D] is locally cut out by X; = 0 then (1.7) maps dTXtt to dX; ®
1/X;. Since QF, /s(log E[D]) can be étale locally described as the smallest subsheaf of
(jUD)*QlUD/T generated by Q}ET/T and “%t for t € Ep[D](T'), while Og(E[D]) is locally
near t € Ep[D](S) generated as fractional ideal by 1/X;, we conclude that (1.7) is
an isomorphism. For every N > 1 define the Zariski open subset S [%] = 5 XSpecz
Spec Z[+] of S and ES[%} as the base change of E along S[+] — S. Before we state
the characterizing property of the canonical section, we will need the following result.
It is motivated by the characterization of the logarithmic derivative of the Kato—Siegel
functions. Indeed, we will see later that we obtain the logarithmic derivatives of the
Kato—Siegel functions as a special case.

Proposition 1.2.1. Let E/S be an elliptic curve, D > 1 invertible on S. For every
e #t € EY[D|(S) there exists a unique element

wi’ € D(B, Qp5(E[D)))

satisfying the following properties:

(a) For all finite étale f : T — S with |Ep[D](T)| = D? and all t € Er[D|(T) we
have
Resy(w?) = (£, ).

Here, (-,-)p denotes the canonical pairing
E[D] xs EV[D] = up.s

as in [Oda69, Section 1].
(b) For all N > 1 coprime to D we have the following trace compatibility

D
= wt
Esub])

where Tryy : Q}E‘/S — Q}E/S is the trace map induced by [N]: E — E.

Trin (wﬁt 5

S[41
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1 FEisenstein series via the Poincaré bundle

We call wP the canonical 1-form associated with the torsion section t. If we want to fix
the dependence of wP on the elliptic curve E in the notation, we will write wtl?E.

Proof. We only prove uniqueness here. The explicit construction of w7D~ is contained in
the next section. For the proof of uniqueness let w? and &P be two sections satisfying

the conditions of the statement. By (a) the difference wy := wP — &P is contained in
I'(E, ker(Res)) = T'(E, Qj/g). Choose a > 1 with N* =1 mod D. Then, by (b) we
have
T\I'[Na} (th ) = th
Estd Esi

and similarly for @”. But the trace Tr(n) acts by multiplication by N on the global

. 1 . .
sections F(ES[%], QES[%]/S[%])' This gives

N . — Tyoe — oa D _ ~D —

(WOIES[}VJ r[N}(WOIES%]) [N](Wt ‘Es[ﬁzl Wy Es%]) wO|ES[%]

and we conclude wyl ) Eg 1 ]>
N (Na—D)! NA(N®=1)"/ N q>1,Ne=1 mod D

is a Zariski covering of E implies wy = 0. O

= 0. Now, the fact that (

We would like to emphasize that the definition of w/ is intrinsic in the sense that it does
not make use of any autoduality. Furthermore, note that the characterizing property of
wy shows that wy is compatible with base change along arbitrary maps T' — S.

1.2.2 Density of torsion sections

Let us briefly recall the following definition.
Definition 1.2.2. Let X be a scheme and (fy : Zx — X)aea be a family of morphisms
of schemes.

(a) The family (fx)xea is called schematically dominant if for any U C X and any
s e I'(U, Ox)
fi(s) =0, VAeA

implies s = 0. Here, f; : T(U,Ox) — I'(f; ' (U),Oz,) denotes the pullback map
on sections.

(b) For an S-scheme X the family (f))xea is called universally schematically domi-
nant relative S if the family (f})x

A Zyxs S — X xg 8

obtained by base change is schematically dense for all S-schemes S’.
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1.2 The canonical section of the Poincaré bundle

Let us recall that we have assumed our base scheme to be separated and locally Noethe-
rian.

Proposition 1.2.3. (density of torsion sections) Let N > 1 and E/S be an elliptic
curve with N invertible on S. The family of N™-torsion points

{t ¢ E[N"|(T) :n>0, T — S finite étale}

in the category of S-schemes is universally schematically dominant for E relative S.

Proof. By [Gro66, Thm. 11.10.9] we are reduced to prove the result in the case S =
Speck for a field k. In this case the result is well-known, cf. [EGM12, (5.30) Thm, and
the remark (2) afterwards]. O

Remark 1.2.4. The restriction to étale morphisms 7" — S in the above family is just for
making the indexing family a set.

Often we will apply the following reformulation.

Corollary 1.2.5. Let N > 1 and E/S be an elliptic curve with N invertible on S. For
F a locally free Og-module of finite rank, U C E open and s € I'(U, F) we have: The
section s is zero, if and only if

t's=0

for allT — S finite étale, n > 0 and t € E[N"|(T).

Proof. By the sheaf property we may prove this locally and reduce to the case 7 = OF,
r > 0. In this case the corollary follows immediately from the above proposition. O

Remark 1.2.6. If we take all torsion points different from zero, we still get a universally
schematically dense family. Indeed, a priori the family is then only universally schemat-
ically dense in the open subscheme U = E \ {e(S)}, but the inclusion U — E is also
universally schematically dense, since it is the complement of a divisor [GW10, cf. the
remark after Lemma 11.33].

1.2.3 Characterizing property of the canonical section

In order to define the canonical section let us come back to the translation operators
US]?Q’D for s € E[N](S),t € E[D](T) defined in the previous section.

Definition 1.2.7. For U C ExgE" and f € T (U,P ® Ok, v/ ([E x e] + [e x BY)))
define
UNP (f) = (UL @ idgn ) ((Ty x T)*([D] x [N))*f) .
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1 FEisenstein series via the Poincaré bundle

Then, Uﬁ’D(f) is a section over the open set (T x T;)~!([D] x [N])~1(U) in the sheaf
(ID] x [N])* (P & (Ts x Tne) Qg ypv ([E x €] + e x EY])) =
= (D] x [N))* (P Qb oo (1B x (~N1)] + [(~Ds) x EV))
As above we write UP(f) := Uel,’tD(f) in the case N = 1.

For E/S, e #t € EY[D|(S) and f € D(E x5 EY,P ® Qv pv ([E x ] + [e x EV]))

we have
UP(f) €T (B xs BY,([D] x id)* (P & Qe vy ([ x (—D)] + [e x E]))).
Now, we compute

(id x &)*(1D] x id)* (P ®oy,_p Vsrymvymv (% (~0)] + [e x EY))

N—

—  (L8)

[12 #

=[] ((id x €)*P @0y, (id X €) Qe v /v ([B x ()] + [e x EV]))

=[D]" (s ([e])) =

=Qy,5(E[D])
where we have used the rigidification of the Poincaré bundle as well as e # t in (x). The
above identification allows us to view (idxe)* (UtD (f )) as a global section of QF, / s(E[D]).

We will implicitly use this identification in the following. The canonical section of the
Poincaré bundle is characterized by the canonical 1-forms in the following precise sense.

Theorem 1.2.8. Let E/S be an elliptic curve. There exists a section
Scan € F(E XS Ev77) ®OE><SEV QlE‘XsEV/EV([E X e] + [6 X Ev])

which is compatible with pullback and uniquely characterized by the following property:
For every D > 1 the section scan Satisfies the following condition

(x)p For every pair (T,t) consisting of a finite étale S-scheme T with D € OFf and
t € EV[D)(T) we have the following equality in T (ET, Q}ET/T(ET[D])>

wEET = (idET X e)*UtD(Scan,ET)- (1.9)

Here, we write Scan, g, for the pullback of scan to Ex/T.

The section Scan will be called canonical section of the Poincaré bundle.

Proof. Again, we just prove uniqueness and give an explicit construction in the next
section. Let us first assume that N > 1 is invertible on S, i.e. S[+] = S. We claim
that already the condition (x)yn» for all n > 1 uniquely determines scan. This follows by
a density of torsion sections argument as follows. Assume we have two candidates s, §
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1.3 Explicit construction of the canonical section of the Poincaré bundle

both satisfying condition (x)x= for all n > 1. L.e. for all n > 1 and all pairs (7,¢) as in
(*)nn the equation
(idp, x €)' U (s) = (idp, x €)"U{" (3)

holds. Using the definition of U}¥", we can restate this as

(idgr x €)"(v1,nn @ 1dgr) ((id x Ty)* ((yam 1 @ idgr) ([N"] x 1d)*(5)))) =
=(dg, x €)"(y1,nn ®idgr) ([d x Ty)* ((ynn1 @ idgr) (([N"] x id)*(s))))

and using (idg, x €)*y; y» = idp, we get

(id x )" ((vam,1 @ idgr) (([N"] x id)*(8))) =
=(id x )" ((ye 1 @ idqr) (([N"] x id)*(s))) -
Using that yyn 1 is an isomorphism and pullback of sections along [N"] is injective, we
get for all n > 0 and all pairs (7,¢) as in (x)y» the equality
(id x t)*s = (id x t)*s.
Now, we conclude s = § by density of torsion sections for E xg EV relative E.

For general base scheme S assume that s, § satisfy the condition (x)p g for all D > 1.
By the above argument we conclude

5|E

o 5l .

I Sl%]

Since (Eg1))n>1 is a Zariski covering, we conclude s = 5. O
LN>

1.3 Explicit construction of the canonical section of the
Poincaré bundle

In this section we will construct the canonical section explicitly and thereby prove its
existence. Let us choose the following autoduality isomorphism:

A E Pic, g =: EY
B/ (1.10)

P (Ox([-P] - ) @0, 7" Op([~P] - [e]) ", can)
Here, can is the canonical rigidification given by the canonical isomorphism
¢ Op([~P] ~ [e]) ®os €"Op([~P] — [e]) " = Os.

With this choice we can describe the pullback of the Poincaré bundle Py := (id x A)*P
as follows

(Px,r0,80) : = ((’)ExE(—[e X E]—[Exe]l+A)@0p,.p W*EXEQ%/_;,T0,80> =

priOp(e) ¥~ @ pr3Op([e))® ! @ wOn(le]) ® Ty g d.T0,50) -
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1 FEisenstein series via the Poincaré bundle
Here, A = ker (u: E' x E — E) is the anti-diagonal and rg, so are the ridifications in-
duced by the canonical isomorphism

" Op(—le]) = wg/s-

This description of the Poincaré bundle gives the following isomorphisms of locally free
Ogxgp-modules, i.e. all tensor products over Ogx«g:

PA@PE = Pr® (Opup(-lex B~ [Ex e+ A)@nppedd)” (11D
=~ P\ @ Opuplle x E]+[E x ]) @ (thxpwpys) @ Opxn(—A)
=~ P ® Opxi(le x E] + [E x €]) ® (priQfs) @ Opxp(=A)
>~ Py ® Opxa(le X E] + [E x €]) © Qp, /g ® Opxp(—4)
~ Py Qb (e x E] + [E x €]) ® Opx(—A)

The line bundle Oy g(—A) can be identified with the ideal sheaf Ja of the anti-diagonal
A in F xg F in a canonical way. If we combine the inclusion

Opxp(—A) = Ja — Opxe
with (1.11), we get a morphism of Ogyx g-modules
Pr@PY o Pa® Qg pyp(le x E] + [E x e)). (1.12)
Definition 1.3.1. Let
Soan € T (B x5 B, PA @0y, Vpwy(le x B+ [E x e]))
be the image of the identity element idp, under (1.12).

In the rest of this section we will prove that s,

of the canonical section under the identification

satisfies the characterizing properties

ExESExEY.

Remark 1.3.2. One could define scapn := (id x A™1)*s2, . But then it is not immediately

can-*
clear that this does not depend on the chosen autoduality. Thus, we have preferred to

first give an intrinsic characterization and then a non-intrinsic construction.

For given D > 1 and t € E[D](S) let us, by slight abuse of notation, write UZ for the
pullback of Ufgt) along the autoduality isomorphism. In particular, we get

(id x ) UP (shn) € T (B, 0y 5(B[D)))

as in (1.8). The following result is a first step towards the existence of w”. We will
construct a section w? A Later, we will prove that it satisfies the characterizing property
of wP under the autoduality isomorphism.

24



1.3 Explicit construction of the canonical section of the Poincaré bundle

Proposition 1.3.3. Let E/S be an elliptic curve with D € Og and let e # t € E[D](S).
The section
wi™ = (id x €)' UP (50u)

satisfies the following properties:

(a) For each finite étale S-scheme T with |E[D](T)| = D* we have
Resith’)‘ = (£, \(t))
for all t € E[D|(T).
(b) The section th’)‘ el (E, Q}E/S(E[D])) is contained in the Og-submodule

Qs ([P ([e] = [1])
of QIE/S(E[D])'
Further, th’)‘ is the unique section of Q}E/S(E[D]) satisfying (a) and (b).

Proof. For uniqueness let @w; and @y both satisfy (a) and (b). By (a) the difference
satisfies:

&1 — @9 € D(E, ker(Res)) = T(E, Qg q)
On the other hand, (b) shows that &, — &2 vanishes along the divisor [D]*[t] and we
conclude @1 — @&y = 0.

A

‘an 1S contained in the

Let us now prove that th * satisfies (b). By its definition s
submodule
Pr® Qpyepyple x E] + [E x €]) ® Opxp(-A)

of P\ ® Q}ExE/E([e X E] + [E x e]). By the definition of the translation operator the
global section (id x €)*UP (s2,,) of 0}, / s(E[D]) is a global section of the Og-submodule

can)
Qs ([DF*([e) = [1]) -
This proves (b).
The residue map is compatible with base change. Combining this with the isomorphism
f*QE/s(E[D}) = QIET/T(ET[D])

for f:T — S finite étale, allow us to check (a) after finite étale base change. Thus, we
may assume that |E[D](S)| = D?. Before we do the residue computation, let us recall
the definition of Oda’s pairing

(-,-) s ker ¢ xg ker ¥ — Gm,s

for an isogeny ¢ : E — E'. Let t € (kery)(S) and [£] € (kerp¥)(S). Since we
have assumed [£] € (ker ¢")(S), the line bundle ¢*L is trivial and we can choose an
isomorphism

a: L5 Op.
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1 FEisenstein series via the Poincaré bundle

The chosen isomorphism « gives rise to a chain of isomorphisms
a”! * * % T *

and (t, [L]), is defined as the image of 1 under this isomorphism. It is not hard to check
that this pairing is independent of the chosen «. In the case of ¢ = [D] we get the
pairing

(v )p : E[D] xg EY[D] — up.s.

As remarked above, we may assume |E[D](S)| = D?. Our first aim is to prove
TiwP™ = (', A1) p - w?

for every t' € E[D](S). By our choice of autoduality, A(¢) is represented by the isomor-
phism class [Og([—t] — [e])] = [(id x t)*P,]. We apply Oda’s pairing to ¢’ and [£] with
L := (id x t)*Py. We have the following canonical choice for a:

a: [DI'L = ([D] x t)*Py xTba, (id x £)*(id x [D])*P = (id x e)*P = Op.

Here, we have written 7%,1 for the isomorphism ([D] x id)*Py — (id x [D])*P, induced
from vyp,1 via autoduality. Note that

WP = (id x ) UL (shn) &

= (idx )" (|(Mpo(idx T)py) ®idar | (D x )" (scan))) = (L.13)
= ((id x )" yp1 @idgr ) ([D] x £)*stu) = (@ @ idgr) (([D] ¥ £)580)-

After tensorizing

*

Op s "L =Tie*L — Op

(t',L)
with ®0, Q2 s(E[D]), we obtain

®idg Tio®ida )

L 5(BID]) €29 o r w0l (BID) = Tie"'L © Q) (E[D]) " Qb s(E[D))

«(t',L)

This diagram together with (1.13) proves

Tjwf™ = Tj| (@ @ idgr) ([D] x )" st)| = (Tia @ idgr) (([D] x )5t ) =
= (t'.£) - (@ ®idgn) (D] x 1)"sthn) = (¢,L) - = (' M(B) -
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1.3 Explicit construction of the canonical section of the Poincaré bundle

as desired.

The equation
Tiw ™ = (¢, M) p - o

reduces the proof of (a) to the claim

DA
Rescw,””" =1

which can be checked by an explicit computation in a neighbourhood of the zero section
as follows. If we view Og(—[e]) as fractional ideal, it identifies with the ideal sheaf of the
zero section. Thus, we can choose a covering (U;);er and local generators f; € T'(U;, Op)
s.t.

Or(=le)ly, = fiOu;-

The residue map and the construction of th A are compatible with base change, thus we

may check the equality
Res, wf) |

locally on the base. In particular, we may assume that ¢(S) C U; for some i and
e(S) C U; for some j. Let us rename these open sets as U; := U; and similarly U, := Uj.
The corresponding local generators of O (—[e]) will be called f; := f; resp. fe :== f;.
Through the canonical isomorphism

¢ Op(=[e]) = wpys

the local generator f. of the ideal sheaf of the zero section gives rise to some generator
wo = e*(dfe) € T'(S,wp/s) = I'(S, e*Q}E/s) = F(E,Q}E/S). Since df. generates Q}E/S in
some neighbourhood Vj of e(S), we can write wy = gdf. for some g € I'(Vy, Op). We
have

wo = (e¥g) - (e*dfe) = e"gwy, = e'g=1 (1.14)

by the definition of wy. If we denote by wy € T'(S, WXJ/S) =T'(S, w%_sl) the dual basis,

we can trivialize the Poincaré bundle
Px = Og([e]) @ priOp(—[e]) @ pr5Op(—[e]) ® (Tpxp)"wyys
on Ui := prflUi ﬂprglUj N pu~ U} as follows:
Paly,,, = (prifi) - (prafy) - (W fr) ™" Ouy ® (TExE) Wy

For simplicity write f;j := (prifi)- (praf;) - (0" fi) "' @ (tExE)*wy for the induced local
generator of Py over U;;,. Following the above notation, let us write

Ueet := prl_er N prger N /flUt.
The intersection

U:= ([D] X id)_ertt N (ld X [D])_eree CEXE
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1 FEisenstein series via the Poincaré bundle

is non-empty, since (e X t) factors through U. The element wy in the definition of fe.
is chosen in such a way that (e x id)* fex maps to 1 € I'((e X id) "' Uess, Og) under the
canonical rigidification

(e x id)*Py = 1*e*Op(—le]) ® W*w}é/s = Og.
We deduce that the isomorphism
Yo ([D] x id)*Py = (id x [D])*Py

identifies ([D] xid)* fert with (id X [D])* feee on U. Indeed, this follows from the definition
of fexs since 71/\),1 is compatible with the rigidifications. The identity section of

Pr@ Py

was used in order to define s2,. Thus, s2,, is locally on Uy given by

((prife)™ - (orsfi) ™ - (") @ (Tim) o) © foa:
Using the explicit local description of vp ;1 and the canonical splitting, we can compute
D A
w?| € (V.0 s(EID))

onV = (idx t)~'U C E:

A

W, = (D)< ) (ortf) ™ - (rsf) ™ f) @ (mpwe)wo) |, (115)
= (DIT7 £)- (¢ f) ™ - (D) fe) ™ @ (D)o (1.16)
= (DI} £) - (¢ f) 7" (D fo) ™" @ [D]"(gdfe)

—(DIT; - (¢ f) (g NS

Since U contains (e x t), the open subset V = (id x t)~!U of E is a non-empty neigh-

borhood of e. Since [D] is étale, [D]* fe is a local parameter in some neighbourhood of

D

e. This allows us to compute the residue of w,”" as:

(114

Resowp = ¢ (IDI'T7 fi) - (¢ f) 7" (IDI"9)) = (E°F0) - (1) - ey

This finishes the proof of the proposition. O

The following result was obtained during the proof of the above proposition.

Corollary 1.3.4. Let E/S be an elliptic curve with |E[D](S)| = D? and D invertible
on S. Then we have the following equality for all t,t € E[D](S) with t # e:

* A A
Fwlt = (EA))p W)
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1.3 Explicit construction of the canonical section of the Poincaré bundle

The above proposition does not yet prove that (id x /\)*th = wf) A The problem is that

A

. . D L o
the characterizing properties of w; " and w}’ do not coincide. Our next aim is to prove

the trace compatibility for w,{j A

Lemma 1.3.5. Let E/S be an elliptic curve, N, D > 1 coprime integers and assume
that N and D are invertible on S.

(a) Assume that |E[N](S)| = N2. Then, for all s € E[N](S) and e # t € E[D](S):

N-D,\ % DX
Wstt = Z (s, Ds)n - (T_y)"wy;
s'€E[N](S)

(b) Fore#se E[N|(5): YDA [N
wy N = [D]*wy"

(c) Assume |E[N](S)| = N2. Fore#t € E[D](S):

S (@)wy = INwP?
s'€E[N](S)

Proof. Since N, D are invertible, there is a finite étale map f : T'— S s.t. |Ep[D]|(T)| =
D? and |E7[N](T)| = N?. The canonical map

f*Qs(E[D]) = Qp, 7 (Er[D))
is an isomorphism and since the construction of th A s compatible with base change,
we may assume during the proof that |E[D](S)| = D? and |E[N](S)| = N2

(a): Both sides of the equation in (a) are elements of I'(E, Q}E/S(E[ND])). In a first
step we show that the difference of both sides has no residue, i.e.

W = (@Y;?A_ 3 <s',Ds>N-(T_S,)*wﬁf) € I'(E, ker Res)).
s'€E[N](S)

Using the characterization of wI’)‘, allows us to compare the residues of both sides.
Immediately from Proposition 1.3.3 (a) we deduce
Ressw P = (3,5 +t)y.p V3 € E[ND|(S)

and again using Proposition 1.3.3:

Res; ( Z (', Ds)n - (Ty)*cuf,f‘) = Z (Ds', s) N - Resz ((T,S/)*wﬁf‘) =
s'€E[N](S) s'€E[N](S)
-y (Ds',s)N - (§—s',Nt)p 5—5" € E[D](S)
B 0 §— s ¢ E[D](S)

s'€B[N](S)
B Z (Ds',s)N - (N3,t)p D3 = Ds
B 0 D5 # Ds'

s'€E[N](S)
= <D§,S>N . <N§,t>D = <§,8+t>N.D
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1 FEisenstein series via the Poincaré bundle

This shows wp € I'(E, Q}E / g). In particular, wp is translation-invariant, i.e.

D2WO = Z T;wo .
te E[D](S)

On the other hand, we can use the behaviour of th A under translation (cf. Corol-
lary 1.3.4) to compute:

D= Y Trw= S T ( NPA =Y (8 Ds)y - (T >*w§33)=

te E[D](9S) teE[D](9) s'€E[N](9)

= Z T* é\i? A Z <8/7 D8>N . (T ) T*wﬁt)\ Coré.3.4
teB[D)(S) s'€E[N](S)

= Z (t t+ 5>ND wﬁ_tD A Z <5/7 DS>N : <£7 Nt>D : (T—s’)*wﬁf\) =
feE[D](S) s'€E[N](S)

- Y [ENyp NP <s',Ds>N-<f,Nt>D-(TSqmﬁ?)_

ieE[D](S) s'€E[N](S)
= ( Z <f, Nt>D) . (w?j_'tD’)‘ — Z <5’,DS>N . (T—s/)*wfd’\) =0
fe E[D](S) s'€E[N](S)
=0

Since D is invertible on S, we conclude wy = 0 as desired.

(b): We use the same strategy as in (a). For § € E[ND](S):
Res; Y P* = (3, 5) yp = Resg[D]*w™

Thus,
wo _wND)\ [D]* N)\GF(E QE/S)

is a global section of 2} E/S" From

Nwo= > Tiwg= Y. T (W£V-D,A _ [D]*wév’/\> _

S€E[N](S) 5€E[N](S)
= Y (Bo)wpwl P = [DFThw?) =
SEE[N](S)
= > (Gs)wpwd P = (D5, s)n[Df W) =
3€E[N](S)
= ( >, & 5>ND) (WP = [DFwd?) =0
3€E[N](S)
=0
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1.3 Explicit construction of the canonical section of the Poincaré bundle

we conclude wg = 0 since N is invertible on S.

(c): Setting s = 0 in (a) and using (b) results in:

« DX _ NDX _ « DA
[N]*w,"" = w, = Z Towny
s'€E[N](S)

O]

Corollary 1.3.6. Let E/S be an elliptic curve, N, D > 1 coprime integers with D, N €
O and e # t € E[D](S). Then:

TI‘[N] <w£{\) = th’/\

Proof. Working étale locally, we may assume |E[N](S)| = N2. In this case the statement
of the corollary is equivalent to Lemma 1.3.5 (c). O

This above corollary was the missing step to relate th A and wp.

Corollary 1.3.7. Let E/S be an elliptic curve and D > 1 invertible on S. For every
e # t € E[D](S) the uniquely characterized section wP € T'(FE, Q%E/S(E[D])) defined in
Theorem 1.2.8 exists and is explicitly given by

D _ DA\
w}\(t) = (Ut .

Proof. The residue condition characterizing wf(t) coincides with the residue condition

characterizing th A That th A also satisfies the second characterizing property of wf\)(t),
i.e. the trace-compatibility, was proven in Corollary 1.3.6.

A

Finally, we get the desired relation between sca, and sg,,.

Corollary 1.3.8. Let E/S be an elliptic curve then
Scan = (1d X )\_1)* (Séan)‘

Proof. By Proposition 1.3.3 and Corollary 1.3.7 the section s = (id x )\_1)* (Sé\an) satis-
fies for all D > 1 and all pairs (T, t)

. D DA D
(id x t)*U,” (s) = Wiy = Wi
This property characterizes scan uniquely, i.e.

Scan = (id X )‘71)* (Sé\an)'
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1 FEisenstein series via the Poincaré bundle

We close this section with a symmetry property of the canonical section. For every
choice of autoduality

\N:ESEY
the bi-rigidified line bundle Pgv := (A™! x \)*P on EY x5 E = EY x (EV)V satisfies the
universal property of the Poincaré bundle for the elliptic curve EV. Let us take Pgv as
our fixed Poincaré bundle for EY and let

seaniv € T (BY x5 B, Prv @ Qv ([EY x ] + [e x E)))
be the uniquely characterized canonical section associated with the elliptic curve EV/S.
Corollary 1.3.9. For every choice of autoduality isomorphism X : E = EY we have:

(5‘_1 X 5‘)*(Scan,E) = Scan,EV

Proof. Two autoduality isomorphisms A and A differ by an automorphism « := A1 o \.
Using our explicit description of scan = (id x /\*1)* (s2.,) for X as above, the claim boils
down to the symmetry of the line bundle

Opxp(—[E x €] —[e x E]+ A)
i.e. for any automorphism o : E = E:

(@' x a)*Opxp(—[E x €] —[e x E] + A) = Opxp(—[E x ¢] — [e x E]+ A).

1.4 The distribution relation

In this section we state a distribution relation for the canonical section. As a technical
tool we need a few relations satisfied by the canonical 1-forms.

Lemma 1.4.1. Let E/S be an elliptic curve, N, D > 1 coprime integers. Assume that
N and D are invertible on S and |EV[N](S)| = N2.

(a) For all s € EV[N](S) and e # t € EV[D](S):

wif = Y (s Ds)y - (Toy) wiy
s'€E[N](S)

(b) Fore+#se EV[N|(S):

(¢c) Fore#te EV[D](S):
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1.4 The distribution relation

(d) Fore#te EY[D](S): . .
Z wiys = Nwyy
s€EV[N](S)

Proof. (a), (b), (c) follow immediately from the corresponding properties for wi™ as

stated in Lemma 1.3.5. The remaining statement (d) follows by summing (a) over all
s € EV[N|(S):

Z wé\jr? = Z Z <5/7 DS>N ‘(T—s’)*w][\T)t = N2wll\)ft
SEEY[N](S) s'€E[N](8) seEV[N](S)

=0 for s'#e

For the proof of the distribution relation we need the following observations.

Lemma 1.4.2. Let N, D be positive integers.
(a) For s € E[N](S) and e #t € EV[D|(S) we have

(id x €)* U (scan) = Trwk; -

(b) For D>1 andt € EV[D](S) we have:
([D] x id)*yn,p © ([N] x [D])*Up; = ([D] x [N])*Uy; o (D x T;)*yw,p
Proof. (a): By definition we have
N,D ND _ . ¥ ¥
UN" (sean) = (U2 @idgy ) (T x T)*([D] x [N])"scan )
and Corollary 1.1.3 gives
Uy® = ((ID] x id)yUp;, ) o (T x INDULY, ) -

Since yn,1 is compatible with the rigidifications, we see that (id x e)*yn,1 is the canonical
isomorphism

Applying this to the definition
Ué,ve’l =N, 0 (Ts x id)* y,n
of LI;YGJ we conclude that (id x e)*Z/{ge’l is the canonical isomorphism

T:Op = Og
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1 FEisenstein series via the Poincaré bundle

induced by Ts. Thus, we compute
(id x ) ULy (sean) = T3 ((id x €)*URy(5can) ) = TiwR;.
(b): We have the following commutative diagrams. The first diagram

(dXT)* (IN]X[DD)*vp

(id x Tp)*([ND] x [D))*P (id x Tp)*([N] x [DD))*P
H l(idXTg)*’yNyDD

(id x T)* (N D] x [D))p — T PIIND i o e (D] x [N])P

follows from vy pp = ([D] x id)*yn,p o ([N] x [D])*v,  cf. Lemma 1.1.1. The second
diagram

(INIx[D)™ b

(IN] x [DD])P (IND] x [D])P
J(idXTf)*’YMDD J:YND,D
(1d x T,)"([DD] x [N])P —— PRV, (1] o [N D])P

encodes the identity

(id x T)" ((ID] % [N])¥p1 0 Yy pp) "™ " (id x Th)* ((id x [D])*w,p) =

~ Lemma 1.1.1

= (id x [D])*yn.p
=np,p © (IN] x [D])" 1 p-

)

And the last diagram

([D}Xid)*’)/]\hD ~

(IND] x [D))*P (IDD] x [N])*P
(D) x (NDYyp —PEe L (p Dy ()P

is equivalent to yyp o = ([D] x [N])*vp, o ([D] x id)*yn,p, see Lemma 1.1.1. The
composition of the upper horizontal arrows in the three diagrams is

([D] x id)*y,p o ([N] x [D])*y; p o (id x Tp)*([N] x [D])*vp,,
while the composition of the lower horizontal arrows is:
([D] x [N])"y, p o (id x Tp)*([D] x [N])*vp, o ([D] x T;)"yn,p

The commutativity shows that both compositions are equal, i.e. it gives the middle
equality in

([D] x id)*yn,p o ([N] x [D])Up; =
=([D] x id)*yn,p o ([N] x [D])*, p o (id x Tp)*([N] x [D])*yp, =
=([D] x [N])*, p o (id x Tp)*([D] x [N])*yp4 o ([D) x Ty)*yn,p =
—([D] x [N))*UD; o (D x T;)*yn.p
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1.4 The distribution relation

while the other equalities follow from the definition of the translation operators. O

Now, we can state the distribution relation which is motivated from the theta function
distribution relation given in [BK10b, Proposition 1.16].

Theorem 1.4.3. Let E/S be an elliptic curve. Assume N,N',D,D" > 1 are pair-
wise coprime and invertible on S. Furthermore, assume |EV[D'|(S)| = (D')? and

|E[N'](S)| = (N")2. Then, fort € EV[D](S), s € E[N](S):

> U (sean) = (D) - (1D] % [NDf a0, 0) ((IN'] % (D) U o (scan)
a€B[N'](S),
BEEY[D'](S)

Proof. As in the proof of Theorem 1.2.8 using the Zariski covering (S[%DDM,(D NN'DD')=1

together with a density of torsion section argument we reduce the proof of the equality

to the following claim. For all D > 1 coprime to NN'DD’ we have:

(*)5 For all pairs (T,%) with T an S-scheme, D invertible on T and e # ¢ € EV[D](T)
we have

(ld X f)* Z USA]X]Z’,;EBD (Scan) =
acB[N'](S),
BEEYID'](S)

=(id x D)*(D')? - (D] x [N))*3ve,p0) ((IN'] % (D)) Uy (scan) )

Since the pullback of sections along faithfully flat maps is injective and (id x e)*UJI\? N'E
is an isomorphism, condition (*)p is equivalent to

(*)5 For all pairs (T,7) with T an S-scheme, D invertible on T and e # € EV[D](T)
we have

(DD x e Ufy@ida) (D] x B 32 UL (sean) | =
a€E[N'](S),
BEEY[D'](S)

=(D')’- ((IDD] x &) URyi; @ ida) 0 (1.17)

o (D] x D" (D] x [N vr,07) ((IN] % (D) Upis e (scan)
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1 FEisenstein series via the Poincaré bundle

We compute the left hand side for arbitrary (T, #):

wr /DD . S0k ' DD’ Cor.1.1.3
(D) x ey UR s 2id) | (1D] x 1) UNaics (sean) | 775
aeE[N'](S),
BEEY[D'|(S)
. * NN'.DD’ D Lem.1.4.2
=(idxe) 2 U (D) (s e it (Sean) -
a€E[N'](S),
BEEY[D'|(S)
x, . DD'D
= Z (T(D)fl(sm)) NN'I+NN't+NN'g —
a€EE[N'](S),
BEEY[D'|(S)
" / Lem.1.4.1(d)
= Z (T([)) S+a) Wﬁﬁ/ﬁ]\/]\ww =
a€E[N'](S),
BEEY[D'|(S)

(T )* DD Lcm.1:,4.1(c)

=(D")?. (T(D)fls)* WDI(NN'T+NN't)

D

a€E[N'](S)

=(D")*- (Tipy-15) "IV ]*wl[))’?\ftJrD’Nt

(1.18)

Before we simplify the right hand side of the above equation, we use Lemma 1.4.2 to

simplify the following expression:

(D')? - (id x e)" [([DD'] x INN']) Uiz 0 (1D] x Ty)*([D] x [N]) 00

o ([D] x Ty)*(IN'] x

o (D] x T (IN') x

=(D')? - (id x ) [([D] % [N])* (([D] x id)*yavr,pr o ([N] x D) UE 7)o

o ([D] x Ty)*([N'] x [D]) Unis pre| =
=(D')? - (id x ¢)*[([DD] x [N])*y,pr0

o (IN'] x [D'))* ((ID] % [N))UR iz o ([D) x Ty Uiy ) | 7=
=(D')2 - (id x e)*[(IDD] x [N])ynr,pr o (IN'] < [D'D)* (UN:D2 ) | =
=(D')2 - (id x ) [(IN] x D) (UN2D s ]

[ D*UN DD/t_

=(D')? - (id x e)* [([D] x [N])*(([D

1 Lem.1.4.2(b)

[ D*Z/{N DD/t

X [N')) Uiz 0 (D] % Togg) "y, )0

Here, we have used the compatibility of v/ ps with rigidifications in the last step. Using
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1.4 The distribution relation

this and again Lemma 1.4.2, the right hand side of (1.17) is:

(D2 (id x ) ((IN') % (DD UNBE, sy (Sean)) =

=(D)?- [N Ty p-1,9R sy = (D) - (Tp-14) NI WR D4y
Comparing this last equation to (1.18) shows that the equation in ()5 holds for all pairs

(T,t). By density of torsion sections this finishes the proof of the theorem. O]

Remark 1.4.4. One can slightly generalize the above distribution relation by summing
over all torsion points in the kernel of more general isogenies ¢ : E — FE’.

In its simplest form the distribution relation specializes to the following equality:
Corollary 1.4.5. For E/S with D invertible on S and |E[D](S)| = D?:

Z UtD(scan) =D?. Y1,0 ((id X [D])*(scan)) — ([D] x id)" (Scan)
eAt€EV[DI(S)

Proof. Substituting N’, D, N by 1 in Theorem 1.4.3 gives this corollary. O

Definition 1.4.6. For E/S, D > 1 invertible on S define
st = D? - 71,0 ((id x [D])*(scan)) = ([D] x 1d)* (scan)-
This is a priori an element in
I (E xs EY,(ID] xid)* [P @ O, pv/pv ([B x BY[D]] + [E[D] x E])]).

We call s?

can the D-variant of the canonical section of the Poincaré bundle.

An immediate consequence of the above corollary is the following result which roughly
says that the above construction of the D-variant removes a pole along E X e.

Corollary 1.4.7. For E/S and D invertible on S the section sL is contained in

[ (E xs EY,([D] xid)* [P @ O, pv gy ([B x (EY[D]\ {e})] + [B[D] x E])]).

In particular, (id x e)*sL |

€ T(E, Qs (E[D]).

Proof. We can check the claim after some finite étale base change and may thus assume
|E[D](S)| = D?. Now, the claim follows from the distribution relation in Corollary 1.4.5
and the observation that UP (scan) is an element of

I (E xs EY,(ID] xid)" [P @ Qv pv ([E x ()] + [E[D] x E])]).
L]

Remark 1.4.8. Later, we will give an explicit description of scan on the analytification of
the universal elliptic curve with I'(IV)-level structure via theta functions. In this case,
the distribution relation gives back the distribution relation of [BK10b, Prop. 1.16] for
the Kronecker theta function. Thus, we can see the above distribution relation as an
algebraic version of the distribution relation in [BK10b].
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1 FEisenstein series via the Poincaré bundle

1.5 The canonical section, Kato—Siegel units and Eisenstein
series

The aim of this section is to relate the canonical section to the logarithmic derivative of
the Kato—Siegel function and to Kato’s Eisenstein series. Later, we will show that far
more general real-analytic Eisenstein series can be constructed via the Poincaré bundle.

Definition 1.5.1. Let E/S be an elliptic curve with D invertible and define

wP := (id x )*s, € T(E, Qg (E[D))).

can

Remark 1.5.2. Let E/S be an elliptic curve with D invertible. For T" — S finite étale
with |E[D](S)| = D? we have

wh = > wP (B, Qg r(Er[D]))
e#t€EL[D)(T)

by the distribution relation.

Proposition 1.5.3. Let D > 1 be an integer coprime to 6 and invertible on S. The
section wP € T'(E, Qp/s(E[D])) coincides with the logarithmic derivative of the Kato—
Siegel function p0:

w? = dlog 6

Proof. The logarithmic derivative dlog p# € I'(E, /S(E [D])) is uniquely determined
by the following two properties:

(a) Its residue is
Res(dlog ) = D*1, — Lgp
where
Res : Q}E/S(log E[D]) = (igp)+Og(p]

is the residue map and 1. resp. 1gp) are the functions in (igp))«Op(p) which
have the constant value one along e resp. E[D].

(b) Tt is trace invariant, i.e. Tryy) dlog 6 = dlog p0.

But both properties are satisfied by w?. It is trace compatible since it is a finite sum of
trace compatible elements. And étale locally we can compute the residue of w? by:

. t=e
Res;w? = Res;wl = t,t)p = N
W Z W Z {t,t)p {_1 i+

e£t€ EV[D](T) e£te EV[D)(T)

Remark 1.5.4. The restriction (D, 6) = 1 is necessary for the construction of the Kato—
Siegel function pf. It is remarkable that we do not have to assume (D,6) = 1 for the

construction of its logarithmic derivative w?.

38



1.6 Analytification of the Poincaré bundle

By abuse of notation let us write d for the map

d®1d

®k k ®@k+1
(Q}E/S) = Op @n-105 7 Wijg — Qs Oni05 1 Wi = (Q}s/s)

and let d°*w? for w? € T'(E, QL. (E[D])) be understood as d°* ( w?” for [ wP €
E/S E\E[D] E\E[D]

I'(E\ E[D],QF / g)- The definition of Kato’s geometric Eisenstein series DEgk) via loga-
rithmic derivatives of the Kato—Siegel function gives immediately the following corollary:

Corollary 1.5.5. Let D > 1 coprime to 6 and invertible on S. For N > 1 coprime to
D and s € E[N](S) we have

5* (do(k—l)wD) _ DE(k)

s

(k)

where pEg "’ are the geometric Fisenstein series defined by Kato in [Kat04, §3].

Kato’s Eisenstein series Dng) for s € E[N](S) can also be constructed in a very natural
way via the Poincaré bundle. We will give this construction later.

1.6 Analytification of the Poincaré bundle

1.6.1 Analytification of the Poincaré bundle

Let N > 3 and I'(IV) := ker (Slp (Z) — Sla (Z/NZ)). In this section we recall an explicit
model for the analytification of the universal elliptic curve En/My with T'(N)-level
structure. We follow Scheider [Sch14, §3.4] and refer there for details. As an application
we can relate the canonical section to theta functions of the Poincaré bundle. Fur-
thermore, the explicit description of the analytification of the Poincaré bundle on the
universal elliptic curve is the foundation for the proof of the main result of this chapter.

The complex-analytic space associated with the C-valued points of En/Mpy can be
described as follows. Let I'(N) act on H := {z € C : Imz > 0} via fractional linear

transformations and let ((?) , <Z Z)) € Z?>xT'(N) act on (z,7,7) € CxHx(Z/NZ)*

()¢ )

The obtained complex analytic family

(z+m7'+n ar +b )
ct +d ’CT—i-d"7

B = (2 xD(N)\ C x H x (Z/NZ)") TE L pgn = (D) \ M x (2/NZ)¥)

of complex elliptic curves gives an explicit model for the analytification of Ex/Mpy. The
universal covering spaces of EY" and My are:

By :=CxHx (Z/NZ)* 22 Egr = 72 x T(N)\ C x H x (Z/NZ)*
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1 FEisenstein series via the Poincaré bundle

and
My :=H x (Z/NZ)* 2 Mgn = T(N)\ H x (Z/NZ)* .

As a lift of e : My — Ey we choose (0) : My — Ey, (1,7) — (0,7,7). We summarize
the introduced notation in the following diagram

T PE an
Ey —22 B9

(0) ( l’?E C l”%"

DM
My —— M]‘\lf".

Using the autoduality isomorphism A : E = EY from 1.10, we get an explicit description
of the analytification of the dual elliptic curve (EY;)*" and its universal covering space

EY, :=CxHx (Z/NZ)* 225 (EY,)™ =72 x T(N)\ C x H x (Z/NZ)* .

Let us write (w,7,j) for the coordinates on EY, := C x H x (Z/NZ)*. The classical
theta function

Z2
Wz, T) := exp (217(1,7')) co(z,7T)

gives us a trivializing section for the line bundle Oa"}a\,]n(_[e]):

OF = Ol mx@mnny< — PeOFy(=le])
L Iz, 7).

Here, n(1,7) := ((2,7) — {(# + 1, 7) is the period of the Weierstrass zeta function. We
should remark that the chosen trivializing section 9(z,7) of ﬁEO%’J(ﬁvn(—[e]) induces via
the canonical isomorphism

P iz 5 Pire” O (—[el) 5 (0)PLOHn ()

a basis of pj,w B /Mg which coincides with dz. Using our fixed autoduality isomorphism,
allows us to describe the analytification of the Poincaré bundle as

P = p* Oy ([e]) ®ogr , PriOH, (—[e]) ®ogn , Pr3O%H, (—[€]) ®own , Thx BWEy /a1y
The trivializations of Of (—[e]) and wgen/pren induce a trivializing section

T._ 1 v
t:= Tle w.r) ® (dz)

of P := ppP". Here,
Yz +w,T)

T = S o,

(1.19)
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1.6 Analytification of the Poincaré bundle

is the Jacobi theta function. By the above discussion the canonical trivializations of P
are explicitly given by
(id x (0))P 5 0%, (id x (0))*t> 1
N

and .
((0) x id)*P = oF . ((0) % id)*t — 1.

By abuse of notation let us again write [D] : Ex — Ey, (2,7,7) — (D - z,7,j) for the
lift of [D] to the universal covering.

Lemma 1.6.1 ([Sch14, Lemma 3.5.10]). The canonical isomorphism
H1,p ¢ (id x [D])*P 5 ([D] x id)*P

is the unique O%" - -linear map given by
N

a
EnxXE

(id x [D])* > ([D] x id)*L.

Proof. For details we refer to [Sch14, Lemma 3.5.10]. As in the algebraic case, there is
only one isomorphism

(id x [D]))*P* 5 ([D] x id)*P*™
which is compatible with the rigidifications. The map given in the lemma descends to a
map

~

(id x [D])*P™ = ([D] x id)*P".

Indeed, this boils down to the fact that the function %
action of Z2 x T'(N), which is easily checked. Further, the given map is compatible with

the rigidifications by the above explicit formulas and the claim follows by uniqueness. [

is invariant under the

Lemma 1.6.2. The pullback of the analytification of the canonical section along the
universal covering N _
PE X PE : Eyn XMN EN —>E]C{[n XMJL{,”EX;L
is given by
gcan = (ﬁE X ﬁE)*(Scan)an = J(Z7 w, 7-) (t ® dz)

Proof. By the explicit description of the canonical section in Corollary 1.3.8, we can
describe S¢., as the image of the identity idp under
Popo! —
D ~ ~ \k an an an an * —1 ®-1 ~
:P@(pEXpE) ((’)E%an?\,ln(—[exEN]—[ N Xe]+A)®(7TE><E) ija\fn/M]%n) =
=P @ 5y (Vpgrn g g (e X ER]+ [ERF x o] = A)).

The identity is given by idp = tot ! Since t7! = J(z,w,T) ®dz, the element idp maps
to
J(z,w, Tt ® dz

under the above isomorphism. O
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1 FEisenstein series via the Poincaré bundle

1.6.2 Analytification of the universal vectorial extension

The analytification of the universal vectorial extension E;r\, of EY; can be described as
follows. By [MM74, Ch I, 4.4] E;f\}an sits in an exact sequence

0 —— RY(n4),(2miZ) —— Hig (B&/ME) —— EL™ —— 0.

In particular, the geometric vector bundle associated with %, Hlg (E& /M@ serves as
. . t,an . . . . .
a universal covering space of E,. Choosing coordinates on this universal covering

%
is equivalent to choosing a basis on the cotangent space (ﬁ s Hig (B /M ]‘\l,”)) . If we

choose [w] = [d2] and [n] = [p(z, T)dz] as basis of pi,Hig (E%/M), we obtain coordi-
nates (w',u) associated with the dual basis ([]", [w]"). L. e. via the above identification

of the cotangent space with (ﬁ\/[ﬂgm (Bt /M j{,"))v, we have
dw' =), du=w]".
With these coordinates we obtain the following universal covering of E}L\}a"
El, = C? xH x (Z/NZ)* — E\™.
This universal covering fits into the following commutative diagram, cf. [Sch14, (3.4.10)]:

El, =C?xHx (Z/NZ)* =% EY, = C x H x (Z/NZ)*

l J (1.20)

t,an V,an
El BV,

The reason for the minus sign in the above commutative diagram is the following. The
canonical projection of the universal vectorial extension in (1.20) induces the map

wry iy = Hig (BN /My) = Hig (En/My)" . (1.21)
on the cotangent spaces. Here, the isomorphism
Hlg (EX/My) S Hig (Ex/My)Y .

is the canonical isomorphism coming from Deligne’s pairing (cf. [Del74], [Ber09]). The
coordinate on the analytification of EY; was induced from the autoduality isomorphism.
Now, the minus sign appears since, by our choice of autoduality, (1.21) maps \*(dz) to

—[n]".
Let us denote the pullback of P along the canonical projection

En Xy EN = Ex oy EX
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1.6 Analytification of the Poincaré bundle

by PT. The rigidifications of P induce rigidifications on PT. We will denote the pullback
of P to E]TV by PT. Let us write

qJr : E;rv — EX,
for the canonical projection and ' for the corresponding map on covering spaces. The
commutative diagram (1.20) and our chosen trivialization of P induce a trivializing
section for the line bundle P*
1

== e

® (dz)" .

The birigidified Poincaré bundle Pt on Ey x My E}LV is equipped with a unique integrable

EJTV connection making it universal among line bundles on E with integrable connection
Vpi. For details we refer to the exposition in [Sch14, §0.1.1].

Lemma 1.6.3. The induced connection on PT is the unique E’;rv—connectwn with
Vi () = (n(1, )0’ + )t @ dz
Proof. [Schl4, eq. (3.4.16)]. O

In the same way we can describe the universal vectorial extension E’?\, of En. Again,
E%™ gits |
»  sits in an exact sequence

0 —— R (nf)«(2niZ) —— Hig (BY)™ /M§}) —— B§"™ —— 0.
In particular, the basis ([w], [n]) of
PrHin (BR /M) = 5y Hin (EX)™ /M)
induces coordinates (z,v) on the universal covering
EY = C? x H x (Z/NZ)* — E%™.
We have the following commutative diagram:

EY =C2xH x (Z/NZ)* 225 Ey = C x H x (Z/NZ)*

l i (1.22)

B B

Let us denote by P! the birigidified Poincaré bundle on E?V X pmy EY; obtained by pullback
of P and by P! its pullback to the universal covering. Let us write

qﬁ:Eg\,—)EN
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1 FEisenstein series via the Poincaré bundle

for the canonical projection and ¢! for the corresponding map on covering spaces. The
commutative diagram (1.22) and our chosen trivialization of P induce a trivializing

section for PT )

G = T

® (dz)" .

Again, the Poincaré bundle P! on E?V Xy EY is equipped with a unique integrable
E?V connection Vpy making it universal among line bundles on EY;, with integrable
connection.

Lemma 1.6.4. The induced connection on Pt is the unique Eg\,-connection with
V() = (—n(1,7)z +v)¥ @ dz
Proof. Our autoduality induces an isomorphism
PrrHar (ER /M) =y Hin (BX)™ /MR

It identifies (z,v) with (—w,u) and the result follows from Lemma 1.6.3. O
Finally, let us consider the following diagram:

E?V X My E}LV

E?V XMy (EXf)an En XMy E}LV

gt xid A

\Y
EN X My EN

We have obtained the Poincaré bundles with connections Pt resp. P by pullback of P

along the lower maps in this diagram. Let us denote the pullback of P along ¢* x ¢ by

PHE. Since it is a pullback of PT, it is equipped with an integrable E}V—connection
EN><E

LB xmy BL/BL

At the same time it is a pullback of P# and thus equipped with an integrable EEV—
connection
. pit 1 1
Vﬁ : P — P ®0E§VXE}\] QE?VXMNE}LV/E]{;.
Let us denote the pullback of P#t to the universal covering Eﬂ?\, X i Ev’;r\, by PHT. The
trivializing section t of P induces a trivializing section 1 := (¢* x ¢")*T. Let us write

44



1.6 Analytification of the Poincaré bundle

V‘r and Vﬁ for the corresponding connections on the universal covering. By the above
formulas for Vs and Vi we get the following explicit formulas for VT and Vﬁ

Vif (v, u, 7, §) ) = (0, /)T @ dz + (0, )T @ dv + f- (n(1, 7)w’ +u) T @ dz
and

Vi(f (z, 0,0 u, 7, j)BT) = (0w /)BT @ dw' + (0 )BT @ du+ f - (—n(1,7)2 +v) T @ dw'.

Here, f(z,v,w',u,7,j) is an analytic function on the universal covering of E?V X E}LV in
the coordinates introduced above.

1.6.3 The Jacobi and the Kronecker theta function

We recall some properties of the Jacobi theta function which was defined in Eq. (1.19).
Then we give an explicit description of the canonical section via the Jacobi theta function.
Furthermore, we discuss the relation to the Kronecker theta function. The Jacobi theta
function has the following behaviour under the Z? x Z2-action:

Lemma 1.6.5 ([Sch14, Corollary 3.3.14]). For m,n,k,l € Z we have:

Jz+mr+nw+kr+1,7)=J(z,w)exp (=2mi (k- z +m - w))

Let us briefly discuss the relation between the Jacobi theta function and the Kronecker
theta function as considered in [BK10b]. The Kronecker theta function and certain
translates of it have the advantage of being a generating function for the Eisenstein—
Kronecker series 6271,(20,100,7)- The FEisenstein—Kronecker series are defined for b >
a+2>0and T € H by

(20 +7)°
62,11(20,7110;7) = Z m<%wo>r
el A\ [z} 0T
with 'y = Z+7Z and (z,w), := exp (W) For general b > a > 0 the Eisenstein—

Kronecker series can be defined via analytic continuation, cf. [BK10b, §1.1]. The Kro-
necker theta function is defined as

0(z+w,T)

Ol T) = 5 8w, )

with

0(2,7) = exp (-egéﬂ,z?) o(zm), €3(r) = e5(0,0:7).

Note that the Kronecker theta function varies non-holomorphically in 7. The definitions
of J(z,w,7) and O(z,w, ) immediately yield the following equation:

J(z,w,T) = exp(—%)@(z,wﬁ) (1.23)
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1 FEisenstein series via the Poincaré bundle

with A(7) := 7'2:”% varying non-holomorphically in 7. Bannai and Kobayashi define the

following translates of ©(z,w, T)

2ZoWo + zwo + wz
O 20,wo (2, W, T) == exp ( 00 A(T()] 0) O(z + 20, w + wo, 7). (1.24)

They prove the following.

Theorem 1.6.6 ([BK10b, Thm. 1.17.]). For fized T the Laurent expansion of translates
of the Kronecker theta function ©, 4, (2, w,T) is given by

oz0) | dluo)

@Zo,wo(zuqu) :<'LU(],Z()> w

e* 20, W

b 7b+1( 0,Wo)

toa U (125)
a_ "W

where §(z) =0 for x ¢ Z+ 77 and §(z) =1 else.

In analogy with © ., (2, w, ) let us define

ZW
JmeO(Z,w,T) = €exp (_ A(T)) @zo,wo(zawaT) = (1.26)
. _Rw B ZoWo + zwo + w2z B
—exp< A(T)>ex < A0 )@(z+zo,w+wo,7)—

_ wo — Wo 20 — 20 wo — Wo
= exp (ZA(T) ) exp (wA(T) ) exp (ZOA(T) ) J(z + zp,w + wp, T).

Above we have described the canonical section of the Poincaré bundle on the uni-
versal covering P as J(z,w,7)t @ dz. A similar result holds if we apply the trans-
lation operator U;\;’D to the canonical section. For the rest of the chapter consider
coprime integers N, D > 1 and let Exp be the universal elliptic curve with I'(/V D)-level
structure. For given (a,b) € (Z/NZ)? and (c,d) € (Z/DZ)? we get torsion sections
s=5qp € ENp[N|(Mnp) and t =t.q € Enp[D](Mnp). After passing to the analytifi-
cation, we can express
s,t: Myp — END

explicitly as

. . a . b .
(7—7]) = S(Tv.]) T (NJT+ N?T)j)

. . c . d ]
(7,9) = t(7, ) == (BJT + 577',])‘

These formulas describe at the same time distinguished lifts
5,51 MND — END-

to the universal coverings.
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1.6 Analytification of the Poincaré bundle

Proposition 1.6.7. The pullback of Usﬁ’D(scan) to the universal covering is given by
the explicit formula

(D) x [N])* (Tps iz w. )t @ dz)

where we write JDs nilzw, ) for Jpsr ) Ni(rj) (2w, T) with 3(,j) == {j7 + £ and
{(r,7) = S+ .

Proof. Let us denote by 5can the pullback of the analytification of s.,, to the universal
covering. Similarly, let us write USt for the pullback of the analytlﬁcatlon of the
translation operator. Before we give an explicit description of ol st (scan), let us do the
following computation:

(T T (N] % (D) (0 = (T x T (V] x (D) (g ©5) = (1.27)
1 %~ L
- J(Nz+ ajr + b, Dw + ¢jT + d, 7) ® (IN] x [D)"w
= exp (27rz'(Nzcj + Dwaj + achT)) ([N] x [D])*(¢)

—

.6.5

By Eq. (1.26) we have

JDS:NE(DZ,N/IU,T) =
= exp (271'2' - (Nzcj + Dwaj + acj27')) J(Dz+ D&, Nw + Nt, 7).

The definition

U;X:’D(Scan) = (yv,p ®@ida) (Ts x T1)* [(vp,ny ®ida) (([D] x [N])*Scan)])

gives us the following explicit description of U SJX;D(écan):

N, p ®idq) ((Ts x T~)* [(Go.n ®idg) (([D] % [N])*5ean)]) Lem.1.6.14Lem.1.6.2

( (
(.0 @ idg) ((Ts x Tp)" [J(Dz, Nw,7)([N] x [D])"(E@ d=)]) =

= (n.p ®idq)(J(Dz + D3, Nw + Nt,7)(Ts x T;)*([N] x [D])*(t® dz))
(7.0 @ida) (Jps.xi( Dz, Nw)(IN] x [D]) (i@ dz)) =

= Jps ni(Dz Nw)([D] x [N))"({® dz) =

(ID) x [N (Jps wilz w)t @ dz)

Us]\;’D (gcan) =

(1.27)

d

Finally, we remark that the distribution relation combined with the above explicit for-
mula for the translation operators gives the following corollary. Alternatively, this can
be obtained from the distribution relation for the Kronecker theta function proved by
Bannai and Kobayashi.
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1 FEisenstein series via the Poincaré bundle

Corollary 1.6.8. For D,D' N, N' coprime and (a,b) € (Z/NZ)?, (c,d) € (Z/DZ)?
define s = s, and t =t.4 and the lifts 5,t as above. Then,

> Ipssanisg(D'z N'w,m) = D'N'Jyis pi(N'z, D'w, 7) (1.28)
a€ B [N'I(MR}),
BEEIRD)(M%)
where we denote by & resp. B are arbitrary lifts of N’ resp. D'-torsion sections to the
universal covering.

Proof. This follows by a straight forward computation from the distribution relation
Theorem 1.4.3 and the explicit description of U (Scan)- O

Remark 1.6.9. As remarked above there is no reason to choose the Jacobi theta function
to trivialize the Poincaré bundle. Every other theta function with the same divisor gives
a trivialization of the Poincaré bundle and would work equally well. We would like to
emphasize that for our purposes it would equally well be possible to view Ex as a real
manifold and work with a non-holomorphic theta function. The point is that we only
need the analytification as a tool for comparing purely algebraic constructions. Thus,
its no problem to do this comparison after the injection O%’; — CO"(E ~). In particular,

we could trivialize the Poincaré bundle using the Kronecker theta function. Then, the
algebraic distribution relation immediately specializes to the distribution relation in
[BK10b].

1.7 Real-analytic Eisenstein series via the Poincaré bundle

In this section we give a functorial construction of real-analytic Eisenstein series as
classes in

Sym¥, Hlig (E/S).

The Hodge decomposition on the universal elliptic curve
Sym"* Hig (En/My) © C¥ (M) - wit ) © C(MR")

allows us to get the link back to classical C*°-modular forms.

Let E/S be an elliptic curve over some scheme S. We denote by

f T
Et Y . F and Et %2, gV

the universal vectorial extension of E and EV. Let us write P? resp. P! for the pullbacks
of P to EfxgEY resp. ExgE'. Then, P! resp. P’ are equipped with canonical integrable
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1.7 Real-analytic Fisenstein series via the Poincaré bundle

E*- resp. E'f-connections. Let us write P%T for the pullback of P along ¢! x ¢

E?V X My E}LV

By %y (EX)™ En %y EY

\Y
EN X My EN

Then, P»T is in a natural way equipped with both an integrable Ef- and an integrable
ET-connection

7 )
Pt » PEI R0t YEixpt /B

Vi 1
PhT — P B0 s, ot Lptxpt/pt-

We have

st yme — Pt Qi ss > (Tpiemt) € Qi g = (Tgosept)* Har (EY/S) 129

Q}ganf/Ef = Pr*EuQ};n/s - (WEﬁxET)*e*QlEﬁ/S = (mgtwpt) Hag (B/S) .
Let us abbreviate for the moment
M4 = Symi, Hip (EY/S) ®os Sym), Hip (E/S).
Since both Vy and Vi are (mps, pi) "' Og-linear, we can define the following differential
operators:
L V,®id L
Vi Pht 0oy Hiv VSIS ot ®og HItLI
L Vi®id -
Vi: P o, HY 5 it e, HEIH
Applying Vy and V; iteratively leads to

ok o

A 4 s
V{;”f: Pt @p  HO ot pht R0y HITRIHT,

Let us remark that Vy and V; do in general not commute. Similarly, we can define for
N,D>1

(D) x [N)* V47 (D) x [N))*PH @0, Hi —— (D] x [N])"PH @og Hiths+r

by iteratively applying the pullback connections ([D] x [N])*Vy and ([D] x [N])*V;.
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For coprime integers N, D > 1 and e # s € E[N](S),e # t € EV[D](S) define
oi” = UNP (sean) €T (U, (IN] % [D))'P @ Qe v )

where U := ([D] x [N])"Y(Tps x Tyt) L (E x EV\{E x elle x EV}). Here, we have
implicitly used the canonical isomorphism

(ID) x [N))*(Tps X Tive) Qe gy (1B x €] + e x BY])| = Qb v,

Since we have assumed e # s,e # t and N, D coprime, the morphism
(exe):S=8%xg8— ExgE"

factors through the open subset U. Via the isomorphism in (1.29) we obtain a canonical
inclusion

(¢ x a")* [(IN) % [D)*P ®0,,, v Vv | — (N % [D)*PH @0, Hig (E/S)
which allows us to view
(¢ x a")"oli” € T ((¢* x ¢") 'O (IN] x [D])PH @0, Hig (B/S)).

Definition 1.7.1. For coprime integers N, D > 1, torsion sections e # s € E[N](95),
e #t e EY[D|(S) and k,r > 0 define

BT er (S, Symk) Hig (BY/S) ®o, Symiy! Hi (E/S))

B = (e x o) [(((DLx IN)'VE) (0 x a)oli”) |

1 - . .
We call ES{JF algebraic Eisenstein—Kronecker series.

We will prove that the algebraic Eisenstein—Kronecker series give rise to the real-analytic
Eisenstein—Kronecker series
kr+1(8,1)
AFE!
via the Hodge decomposition on the analytification of the universal elliptic curve with
['(ND)-level structure. Again, our definition of Eftr 1 is intrinsic, i. e. does not refer to
a chosen autoduality isomorphism. In order to relate

Ek tler (S Symk HdR (EY/S) ®0g4 Sym7th1 oy (E/S))

to C*°-modular forms, it will nevertheless be convenient to fix an autoduality isomor-
phism. Until the end of this section let us identify E with EV via our chosen autoduality
from Section 1.3

AN ES EY.
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1.7 Real-analytic Fisenstein series via the Poincaré bundle

Let N,D > 1 be coprime as above and let Exyp — Myp be the universal elliptic
curve with I'(ND)-level structure. Note that N, D > 1 coprime implies ND > 3 and
thus the moduli problem is representable. Let Exp be the universal elliptic curve with
I'(ND)-level structure. We take the explicit description of the analytification of Enp
as introduced in Section 1.6.

Theorem 1.7.2. Let N, D > 1 be coprime and let us write M = Myp resp. E = Eyn
for the modular curve resp. the universal elliptic curve of level I'(ND). For chosen
(0,0) # (a,b) € (Z/NZ)* and (0,0) # (¢c,d) € (Z/DZ)* let s = s, € E[N](M)
and t = t.q € EV[D|(M) ~ E[D](M) be the associated torsion sections. The alge-
braic Eisenstein—Kronecker series Ef}f“ on the universal elliptic curve with I'(ND)-
level structure is uniquely determined by its associated C*°-modular form obtained by the

Hodge decomposition

- an . an . ®(k+r+1)
(Sym’é‘:d—‘rl ﬂ(liR (E/M)) ®OX}I C (M ) —> (gEan/Man (C )) .

The C*°-modular form associated with Ei’frl is the real-analytic Fisenstein series

6z,r+1(D§7 Nf)
AkE)

dz®(k+r+1)

(—=1) TRl
where we write § = 5(7, j) = {J7 + % and t = t(7,j) = 57 + %.

Proof. The construction of E;f 1 is compatible with base change and isomorphisms of

elliptic curves. Thus, E;f g uniquely determined by its value on the universal elliptic
curve (E/M, o47) with T'(N D)-level structure. Further, M is flat over Spec Z[+5] and
Sym* "t ;1o (E/M) is locally free of finite rank. Since M is affine,

T (M, SyikarrJd ﬂ(lm (E/M))
is a flat Z[+'5]-module and the inclusion
T (M, Sym* 4! Bl (B/M)) T (M, Sym* ! Hlp (B/M)) @51, Q =
=T (Mg, Sym" ™! Hlg (Ego/Mqq))
shows that Eﬁft’D is uniquely determined by its value on the universal elliptic curve

Eq/Mg with I'(ND)-level structure over Q. Further, the map given by analytification
and Hodge decomposition

T an oor | ®k+r+1)
I (Mo, Sy Bl (Be/Mc)) < T (M2, (wpon pren (€))7

is easily seen to be injective, cf. [Urb14, §2]. We conclude that Egt’D is indeed uniquely
determined by the image under the Hodge decomposition on the universal elliptic curve.
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1 FEisenstein series via the Poincaré bundle

Thus, it remains to compute the value of Ef{“ under Hodge decomposition on the

universal elliptic curve. Let us write (Ef’fﬂ)an el (M an, (Sym""‘”*’1 Hix (E/M ))an)
for the analytification of Ek "1 evaluated on (E/M, ). In the following we use the
explicit models for the analytlﬁcations of E, EV, Ef, E* and the corresponding universal
covering spaces E, EV, Ef, E*. Let us summarize the notation from the last section in
the following diagrams:

E 22, pon

el

Man
and
Bt 1, v ANy
Tt %L g EﬁJ{ /m
v TRV v TE
M M

Let us define
~ . . o .o\ an
H = iy (M)

and Vﬁ, VT and V for the induced differential operators on P¥f. If we combine the
canonical derlvatlons with the isomorphisms from (1.29), we obtain:

d 1 1 an
dit : OFiy B Vpu . Bt/Bt » Ofiy i @0 (D) (ﬂdR (E/M))
dzy » O L) Ql ~ Oan Ryan (~ )* (Hl (E\//M))an
Ef YRt o BT Bix g Bi/Bt 0 Yhgix Bt 05 PM)T (HdR

In particular, we get
ptt HY = HIY dg  HY — HT

Using the Leibniz rule and the explicit formulas for V~ﬂ and V~ﬁ from Section 1.6.2, we
obtain

Vi (20,0 uT ) = S (’“)d;(f DAV (1) = (1.30)
=0
I k N A
=2 (y) a1z o V(e ()Y (131)
7=0
and
Vi (f(z,0,0 u, T, §)E S <T>d°E~(: DV Ol(’c) = (1.32)
=0
-y <T> (17w +u)’ a3 ()i (W) (1.33)

s
Il
o
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1.7 Real-analytic Fisenstein series via the Poincaré bundle

The pullback 55,14[) of (Ué\,ft’D)(m = Uﬁ’D(Scan))m to £ X 7 E is given according to

Proposition 1.6.7 explicitly by the formula

~N,D * 1

5" = (D] x [N))* (Jps wilz, w, )i @ dz)
This gives the following explicit description

(@ x ")&0" = (ID] x [N])* (Jpsniz —u', 1B @ [u])

an
Now, we have everything at hand to compute ((jﬁ X (jT)* (Ek’trﬂ)

S,

explicitly:

(a)™ (BS7)™ = 0% 0" [((1D) x IN)*VET) (¢ < )76 25")] =
=0 x 0)" [([D) x [N))* (VT (Jpsilz, —w', 1)) | @ [w] =

Tk . (1.30)
=(0 % 0)" [VET (Jps itz —w', )] @ [w] "2

=(0x0)* {6? (i (:) (n(1, 7w’ + w) 03" T g iz, w’jﬂﬂ ® [w] Y 2

k r
k ") gotk—i i go(r—i
=3 < ) _ (.)@f D (1,7’ + w02 d g (2, —w', 7)]

3=0 / =0 ' z=v=0
w'=u=0
- (=n(1,7)z +v)’ ® [wW]2r+D =
—_—
=0 for j#0,z=v=0 z,:_v:_oo
- r ° i qo(r—i r
= ()dEkt ((77(1,7')111’ +u) GZ( )JD§7N£(Z, —w',T) ® M@( +1) _
o b
° ~(r i go(r—i .
=1 ( 0 <i>(n(1’7)w/ +u) 90 T s iz, —w', 7) Z—v—0> ® W]t =
= w'=u=0
= d; {@r (exp [2(w'n(1,7) + u)] Jps nilz, —, T)) Z:v:O} o ® [w] ®(r+D)
© ° (1.23)
= dEjﬁf |:8Zr (eXp [Z(w,’l'](l, 7-) + u)} JD§ Nt”(Z, _w/,T))i| o ® [w]®(7'+1)
w'=u=0
2 o Zw/ r Leibniz
=d% {32 <exp [z(w'n(1,7) + u)] exp [A(T)] Opsnilz, —w ,T))] . ® [w]B(r+1) Leib
w'=u=0
_ dok r r ’ (1 Tud w Zao(r—l)@ ( o ) 2 [ ]®(7‘+1) _
— YEt - i wmn 77—> u % Ds.Ni\Z, —w , T o w —
- it
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1 FEisenstein series via the Poincaré bundle

E£0) )]

=0 for i#j w' =u=0

O OO g iz~ )| @ WP =

w =w’=0

min(k,r) r k s .

\% ®1
® (n(lm) V] + [w¥] + ﬂg) ® [V]EF) @ (W]

z=w'=0

Our choice of autoduality induces an isomorphism
an

i ((#in () ") 5 iy (i (B/20)

which identifies []Y — —[w] and [w]" + [n]. Using this, we can summarize the above
an
computation as the following equality in pj}, (Symk”‘H Hg (E/M )) ® C*°:

min(k,r)
~ * r an r k —1i no(k—1i) qo(r—1
(pM) (Efv’t —H) = Z <l> <2) (_1)k 8w(k )az( )@D§,Nf(zv —w, T) —w=0 ®
=0

o] \ |
® (—77(1,7)[01] + [n] — Ji(l)) ® [w] S+r+1=0)

To conclude the theorem it ~sufﬁces. now to remark that we have the following equality
in pi,HAR (B/M)™ @ C®(M):
[dZ] [w]
=n(1 -
A (1, 7)w] = [n] + A

Here, [dz] is the class of dz in pi, Hig (E/M)*"®C>(M) and n(1,7) = ((2,7)—((2+1,7)

is the period of the Weierstrass zeta function. The above formula can be deduced from
an

[Kat76, p. 1.3.4]. Using this formula, the image of (pas)* (Ef}’tr“) under the Hodge

decomposition is:

& W®Uktr+1)

z=w=0

Hodge [(px)" (ES7 )| = (=1)F 0350270 s il —', 7)
, ez’r 1 (D5, Nt)

This concludes the proof of the theorem. O
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1.8 Symmetry and the functional equation

Remark 1.7.3. The construction of the algebraic Eisenstein—Kronecker series is com-
patible with base change and isomorphisms of elliptic curves. Thus, we can view the

construction
(E/S,s,t) = BN/ e SymF ™+ HYp (B/S)

as a geometric nearly holomorphic modular form as discussed by Urban in [Urb14, §2].
We refer to [Urb14] for more on nearly holomorphic modular forms.

1.8 Symmetry and the functional equation

In the last section we have defined for N, D > 1 coprime integers and e # s € E[N](S),
e #t € EV[D](S) algebraic Eisenstein-Kronecker series

Ek tler (S Symk HdR (EY/S) ®o4 Symanrl (E/S))

Further, we have proved that they correspond to Eisenstein—Kronecker series

ezm_ﬂ(Dé, Nt)

(=1)"HF Kl yar

with § = 3(7,7) = {7+ N and ¢ = (1, j) = 5j7+ D under the Hodge decomposition.
It is a well-known consequence (cf. [BK10b]) of the functional equation of the Eisenstein—
Kronecker—Lerch series, which for Res > a/2 + 1 is defined by

3 (20 +7)°
K;(Z()a wo, 8;1'7) 1= 2 + ‘25 (v, wo)r
—zo#A7El T v

and for general s by analytic continuation that we have

|62,T+1(207w0) — ! r+1 k(’wo,Zo)
T N T

In our construction this aspect of the functional equattion can be seen as symmetry of
the Poincaré bundle. For every choice of autoduality A : £ = EV the maps

{wo, 20) - (F.E.)

N Hig (EY/S) = Hag (B/S), (A" Hag (B/S) = Hig (E"/S)

induce isomorphisms

(L@ A)*  Hhr+l 5 qqralk
If we apply the construction of the algebraic Eisenstein—Kronecker series to the elliptic
curve EV/S for given o € EV[N|(S), T € (EV)V[D](S) = E[D](S), we obtain

By (ovys) €T (57 Sym* Hlg (E/S) @ Sym™ Hl (EY /S)) .

The symmetry of the Poincaré bundle gives us immediately the following geometric
functional equation.
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1 FEisenstein series via the Poincaré bundle

Proposition 1.8.1 (Geometric functional equation). Let N, D > 1 coprime and con-
sider non-zero torsion sections e # s € E[N](S) and e # t € EV[D](S). For every
choice of autoduality \ : E = EV we have the following geometric functional equation:

S0 o vk kel kel
AT ONELT = Bi.50.5)

Proof. We have already seen that (5\ X X‘l)*(scamE) = Scan,pv under the identification
A X A H)*Pg = Ppv.
The isomorphism o
Ax A YD) :ExgEY 3 EYxgE
induces an isomorphism

AxA™D:Ef xg BT 3 Ef xg EF.

and we get (A X 5\*1)*77%T = Pyv One easily checks that (A x A™1)*V; = V; and
(A x A™1)*V; = V; under this identification. Now, the claim follows from the definition
of BNy O

Viewing Es’trﬂ as nearly holomorphic modular forms this means that the involution on
test objects
(B, s,t) = (B, A1), A(s))

corresponds to pullback along (A~ ® A).

Remark 1.8.2. Indeed, this reflects the functional equation. If we choose A : E = EV,
the geometric functional equation gives the following identity after applying the Hodge
decomposition:

(—1)k+rr|w _ (71)k+rk|e:+1,k(Nt’ Dg)
! P |

ArJrl

this is almost the above analytic functional equation (F.E.) up to the missing factor
(D8, Nt),. But

(D3, Nt), = (N§,Dt), = 1.
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2 The geometric de Rham logarithm
sheaves

One of the main ingredients of the proof of the Tamagawa number conjecture for CM
elliptic curves by Kings in [Kin01] is an explicit 1-motivic description of the polyloga-
rithm class in étale cohomology. At least for the logarithm sheaves a similar 1-motivic
description for the algebraic de Rham realization was worked out by Scheider in his PhD
thesis [Sch14]. He showed that the restriction of the Poincaré bundle with integrable
connection on F x E' to infinitesimal thickenings of E x e < E x ET satisfies the defining
property of the relative de Rham logarithm sheaves. For the precise statement we refer
to [Schl4, §2] or our later chapter on the de Rham realization of the elliptic polylog-
arithm. For the moment we do not even give the defining property of the abstract de
Rham logarithm sheaves. Instead, we study the basic properties of the restrictions of the
Poincaré bundle to infinitesimal thickenings of e x E. Nevertheless, it is good to keep the
result of Scheider in mind as motivation. This chapter does not contain any new results.
We are just recalling and slightly generalizing results from [Sch14] or restating results
from the first chapter in terms of infinitesimal restrictions of the Poincaré bundle.

2.1 The geometric logarithm sheaves

Most material contained in this section is scattered all over the PhD thesis of Scheider
[Sch14]. Since Scheider restricts himself to the case of smooth varieties over Q while
we want to work more generally over separated locally Noetherian schemes, sometimes
minor modifications are needed.

As always, let w : £ — S be an elliptic curve over a separated locally Noetherian base
scheme S. Let us fix once for all a bi-rigidified Poincaré bundle (P,rg,sp). By its
universal property, this choice is unique up to unique isomorphism. Let ¢f : Et — EV
be the universal vectorial extension of EY. Let us denote by P the birigidified Poincaré
bundle on E x ET obtained by pullback. It is equipped with a canonical integrable
Ef-connection

Vet : P =PI @ QL. pt/pi-
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2 The geometric de Rham logarithm sheaves

2.1.1 Definition and basic properties

Let

Bl =Inf" BT — Ef

by BY = Inf? BY «— EY
denote the inclusions of the infinitesimal thickenings of e in ET resp. EV.

Definition 2.1.1. For n > 0 define

Ll = (prg).(idg x o )*PT
Ly, = (prg)«(idg X t,)*P.

Both £, and L] are locally free Op-modules of finite rank equipped with canonical
isomorphisms

trive : "L, = Opy
trive : e* L) 5 Opt
induced by the rigidifications of the Poincaré bundle. Furthermore, Vpt induces an
integrable S-connection on EIL. We call L,, resp. EIL the n-th geometric logarithm sheaf
(resp. with connection). If it is not clear from the context to which elliptic curve we are
referring, we will write £, g.

In the following, we will write ES) resp. P() if a statement holds for both £,, and Ll
resp. P and PT. The compatibility of P() with base change along f : T — S shows
immediately that the geometric logarithm sheaves are compatible with base change, i. e.

PrEL, grs = Lolbr

where prp : By = E xgT — E is the projection. The commutative diagrams

J Ef j EVY
El,, 0 Ej
induce transition maps
‘C’Sll - L.

For L] the transition maps are horizontal. The rigidification (id x e)*P() 2 O induces

an isomorphism ﬁ(()T) = Op. Further, we have canonical injections

L, — LI
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2.1 The geometric logarithm sheaves
Indeed, the commutative diagram

.
Inf? B " (E")VY

Tl
dni=dn ’mfg ETi qu
v

Inf" BV — 4 EV

1Y*(id x 1,)*P gives

n

combined with the adjunction (id x ¢,)*P < (id x ¢} ).(id x ¢

n
Ly, — (prg).(id x qjl)*(id X q;fl)*(id X )P = (prg)«(id x LL)*(id xq"VP =L
These inclusions are compatible with transition maps and base change. Let us introduce
the notation “
*
H = ﬂflm (EV/S) = ﬂ}iR (E/S)v

where we have used the canonical isomorphism induced by Deligne’s pairing in (x).
Furthermore, we will write Hg := 7*H.

Lemma 2.1.2. The transition maps ﬁgT) — E(()T) = Og fit into the following diagram of

short exact sequences

0 —— mwpv/g L1 Og 0
| | Jid
0 Hp cl Og 0

where wpv ;g — M is the natural inclusion. Further, the lower exact sequence is hori-
zontal if we equip O and HE with the canonical S-connection obtained via pullback of
the trivial S-connections on S.

Proof. Oy pv and Oy 1 gy sit in the following short exact sequence of Og-modules

0 —— wpvys — Oppt pv Os 0
O H OInfi Bt OS 0

After applying (7g)« [((’)E 105 T () ®op, oy P} (which is exact), we obtain

0—— <7TE)* KOE R0g QEV/S) ®OE><EV 'P} L O —— 0
0 ——— (7). [(Op ©os H) @0, P cf O —— 0.
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2 The geometric de Rham logarithm sheaves

Now, the result follows from
(7E)+ [(OF ®0s H) ©0,, p, P| = H @por0, (idp x )P =
= ’HE
and

(FE)* [(OE Rog QEV/S> ®OE><EV P} =Wpv/s Qr-104 (idE X e)*P =

= W*QEV/S

The connection on the Poincaré bundle PT induces an integrable connection on

0 —— H®, 10, (idp x ¢)* P! ct Ll=0p —0

=(rg)*H

making this sequence horizontal. O

2.1.2 Extension classes of the first geometric logarithm sheaves

Above we have seen that £; and ﬁJ{ sit in short exact sequences

0 —— mwpv/g Ly OF 0 (2.1)

and

0 He cl Ok 0. (2.2)

In the following, we will have a closer look at the corresponding extension classes. The
short exact sequence (2.1) gives rise to an extension class

[51] € EXt%QE(OE,TF*QEV/S) = Hl(E, W*QEV/S).

The Leray spectral sequence gives a split short exact sequence

e*

J/\

0 —— H'(S,wpv/g) ——— HY(E, m*wgv/g) —— T(S,R'm, (W*QEV/S)) —0.

:F(S:QEV/S(@EEV/S)
Since e*L; is equipped with a canonical splitting, the class [£1] maps to 0 under e*.
Before we give an explicit description of the extension class of £ under ¢, let us remark
that §([€]) for an extension

0—— W*QEV/S 5 OE 0 (23)
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2.1 The geometric logarithm sheaves

coincides with the image of 1 € I'(S, 7.Op) = I'(S, Og) under the connecting homomor-
phism
IS, m0Og) =T (S, Rlﬂ*(ﬂ*gEv/S)) =TI'(S,wpv/s ®QEV/S)

obtained from (2.3) by applying Rm,.
Proposition 2.1.3. We have

S(L1]) = iy € D(S.whv s B0 wiv)s).

Proof. In [FC90, S. 81 f] it is stated that the extension class of the restriction of the
Poincaré bundle to the first-order infinitesimal neighbourhood of E X e coincides with
the extension class of the universal vectorial extension. Using this, the assertion of this
proposition follows immediately. Since no proof is given in loc.cit., let us reduce the
proof to a statement which will be proven in Chapter 5. The case of a smooth separated
scheme over Q will be treated in Corollary 5.1.18. We reduce the general case to this
case as follows: the claim is compatible with base change, i.e. if the claim holds for
E/S, then it also holds for Ep/T. Furthermore,

\
T Wgyr ®or Wiy T

defines a sheaf on the small étale site of S. By the compatibility with base change and
by the sheaf condition, it is enough to show the equality
6([£4]) = id

WEV/s

étale locally on the base. Using the Zariski covering (S [%])N>3 and the fact that a
I'(N)-level structure exists étale locally, we are reduced to the case (E/S,a) where
a: (Z/NZ)%4 = E[N] is a I'(N)-level structure. By compatibility with base change it
is enough to prove the claim in the universal situation, i.e. for Ex /My the universal
elliptic curve with T'(NV)-level structure. Let us write E for Ey and M for My. Since
M is flat over Spec Z[%] and QEV/M R0y WEv /M 18 locally free of rank 1, we obtain an
injection
W /ar ®ON WEY M = Wy jng © Wiy /Mg

This injection and again the compatibility with base change reduces the claim to the
case Eg/Mg. Since My g is a smooth separated Q-scheme, we have reduced the claim
to the case which will be proven in Corollary 5.1.18. O

Corollary 2.1.4. Let E/S be an elliptic curve, M be a locally free Og-module of finite
rank and let (F,o) be a pair consisting of an extension

F: 0 —— "M F Og 0

together with a splitting of e*F. I e. o is an isomorphism e*F = Og ® M which is
compatible with the extension structure. Then, there is a unique morphism

QOZQE\//S%M
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2 The geometric de Rham logarithm sheaves

such that the pair (F, o) is the pushout of the pair (L1, trive : e*L1 = Os®wpv g) along
©.

Proof. The group
ker (Extd, (Op, 7" M) S Exth, (Os, M))

classifies pairs (F, o) as above up to (unique) isomorphism. The Leray spectral sequence
gives an isomorphism

ker (Extb, (O, 7 M) % Extl (Os, M)) —~— Homoy (wpv /s, M). (2.4)

Thus, a map f: M — N induces
fi : Homog (wpv /g, M) — Homog (wpv /g, N)

and we obtain via (2.4) a map
ker (Ext%r)E(OE,ﬂ'*M) LN Ext%r)S(OS, M)) 4 ker (EX‘C}QE(OE,W*N) LN Ext%f)S(OS, N)) .

The map f. maps [(F, 0)] to the extension class which is obtained from (F, o) by pushout
along f. Since there are no non-trivial isomorphisms of an extension (F, o) compatible
with the fixed splitting, a pair (F, o) is uniquely, up to unique isomorphism, determined
by its extension class. The corollary follows now from 0([L1, can]) = idy ., - O
Similarly, the horizontal exact sequence for E]; induces a long exact sequence in relative
de Rham cohomology Hig (E/S,-). Let us denote by

0:0s = Hag (B/S) = Hig (E/S, Hp) = Hig (E/S) ®os H = H' ©os H

the connecting homomorphism.
Proposition 2.1.5 ([Sch14, Thm. 2.3.1]). We have
0(1) = idy.

Proof. If S is a smooth separated scheme over Q, this was proven by Scheider [Sch14,
Thm. 2.3.1], see also Corollary 5.1.13. The general case can be reduced to this case in
exactly the same way as in the above proof for £;. 0

Remark 2.1.6. Let us make a remark about de Rham cohomology over arbitrary schemes.
For any smooth map 7 : X — S and any Ox-module with integrable S-connection one
can define the relative de Rham cohomology as the derived direct image of the relative
de Rham complex. In general, i.e. for schemes which are not smooth over a field of
characteristic zero, this definition is not well behaved. On the other hand, for an elliptic
curve £ — S this definition is reasonable with all good properties over any base scheme.
In this case Hig (E/S) is always locally free of rank 2 and compatible with base change,
i.e. for f: T — S we have canonical isomorphisms f*Hig (E/S) = Hlg (Er/T). For
the above result this is all we need.
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2.1 The geometric logarithm sheaves

Corollary 2.1.7. Let E/S be an elliptic curve. The short exzact sequence (2.2) associated
with EJ{ is the pushout of the short exact sequence (2.1) associated with L1 along

WEv/s = H.
Proof. This can be directly seen using the fact that P is the pullback of P. Alternatively

it can be deduced from the above proposition. Indeed, the (Zariski) cohomology class of
the extension (2.2) corresponds to the canonical inclusion wpv /g — H. O

2.1.3 Behavior under isogenies

For a given isogeny ¢ : E — E’ we consider the following diagrams

/ /_i.

Inf?*(E')Y —=— (E')Y Inf?(E")! - (B

w%rapvllnfgl Lav wl:soTIInng Lof
.

Inf? BV —" 5 BV Inf? Ef —"— Et

where ¢V : (E')Y — EY and ¢ : (E")1 — ET are the induced maps on EV and its
universal vectorial extension. The adjunction maps

(id X 1) P — (id x ) )« (id x ©)*(id X 1,,)*P
induce canonical maps
(P (id x 10)P = (prig)-(id x 9. (id x 9)* (id x 1) P = (prp).(id x 1)* (i x ¥ )P
Let us denote the resulting map by
Ady 2 Ly, — (prg)«(id X ¢,)*(id x ¢¥)*P.
And similarly the adjunction for (id x ¢} ) induces
Ad, L = (prg).(id x of,)*(id x o7)*PT.

Definition 2.1.8. Let ¢ : E — E’ be an isogeny. The composition of the adjunction
maps with the isomorphism

Y1, (id X 90<T>)*7>,(§) — (¢ X id)*Pg,)

gives

AdD
o) - £ = (prp)alid x 1) (id x )Pl 22y o p

n,

We summarize some further properties of £,, and L] .
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2 The geometric de Rham logarithm sheaves

Lemma 2.1.9. Let ¢ : E — E’ be an isogeny.

(a) The maps
(1

P
Ll = o L

are compatible with the inclusions L, — LI, transition maps and base change.
Furthermore, ‘IDL is horizontal.
(b) The maps e* P, and e*<I>:fO coincide with the maps of sheaves underlying the mor-

phism o, resp. @l i e.

n’
e Py = ()" : Ot v — Orgr (1)
"ol = (SDIL)# : Ot gt — Omn (gt

(c) If oV is étale, the map
o
[,mE L) W*ﬁn,E"

is an isomorphism.

(d) If both ¢ and @V are étale, the map
P gt
En,E ¥ ‘Cn,E"
is an isomorphism.

(e) For isogenies
Y

E P E/ El//
we have
oy = ool Ll - wop) Ll

Proof. (a) and (b) follow immediately from the definitions. For (c) and (d) it is enough
to show that the adjunction maps Ad, and Ad]; are isomorphisms under the given
assumptions. We will show this in the case (d). The other case is analogous. Consider
the maps

(@h)* : Opugn ot = (1)« Oragr (11

We want to show that, under the assumptions that ¢ and ¢V are étale, these maps
are isomorphisms for all n > 0. The claim follows then by the definition of Adja. The
diagram

0 —_— Sym?)s H e — OInfg Et E— Olnf271 Et E— O

szirn"(wv)* l(@ib)# l(%’j%l)#

0 —— Symy,_ Higp (E")Y/S) —— Oypn gt —— Opygn—1 (gt —— 0
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2.1 The geometric logarithm sheaves

shows that

(oh)* Onn gt — (‘PL)*OInfg(E')T

is an isomorphism for all n > 0 if and only if
(¢V)":H = Hgg (EY/S) — Hag ((E")/S)
is an isomorphism. But the compatibility of (¢")* with the Hodge filtration shows that
(p¥)* is an isomorphism if and only if
(") : wpv /s = Wy /s
and
()" s whys = wiys
are isomorphisms. This is equivalent to ¢ and " being étale.

(e) follows immediately from the equality

((p X id)*r)/l,w\/ o ’Yl,cpv = ’Yl,('gbOgo)V‘ (25)

The most important case will be ¢ = [N] for N > 1. In this case we will often write
@%) for @S\;}.

Lemma/Definition 2.1.10. Let N > 1 be an integer and assume that N is invertible
on S.

(a) Fort € E[N](S) let us define the following translation operator

« (1) (1)
transt? : TrL$ 228, N D = (v S £

~

which is independent of the chosen V.
(b) For t € E[N](S) we obtain trivializations of L0 as

trive

. e*trans
terI : t*ﬁ;r] T;f e*EL — Olnfn Bt
€

resp.

e*trans; trive
e*L,

trivy L —= ~ OInf’; EV.

These are independent of the chosen N.

Proof. For the statement about independence on N we may assume N minimal with
t € E[N](S) and compare for arbitrary M > 1

7o OV vy = (D X )
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2 The geometric de Rham logarithm sheaves

to
£ TN oD = vareD S o)
Using
1700 =T o) oy = TrINI @l o i) = [N)*0f}) o Tr0f),
it follows immediately that the above maps coincide. O

Remark 2.1.11. For t € E[N](S) one could also use
t*¢N . t*ﬁn — t*[N]*;Cn = G*En =~ Olnfg EV

to trivialize ¢*£,,. But this trivialization is not independent of the chosen N. Indeed,
by Lemma 2.1.9 (b) they differ by the morphism

([Nt 2) 7 : Ot v — Ogr v
The same remark applies to trivz.

2.1.4 The comultiplication maps and symmetric tensors

Let us recall the construction of certain natural comultiplication maps on Eg). For the
construction of the comultiplication maps we follow [Sch14, §2.4.2] and refer to loc. cit. for
more details.

We keep the notation /Jg) resp. P for denoting either of £, or L and P or P,
Further, it will be convenient to introduce a similar notation for EY and Ef. So, let us
write E() if some statement holds for both EV and Et. As before,

W Inf? EW o B

denotes the inclusion of the infinitesimal neighbourhood. For the time being we will
work over a fixed S-scheme and use the convention to denote by x the product in the
category of S-schemes.

Recall that the Poincaré bundle P() is equipped with a natural G, s-biextension struc-
ture, i. e. isomorphisms

(pe x idgn ) PD 5 prisP@prs 3P on Ex Ex ED (2.6)
(idp X pgm ) PH 3 prisP ® prigP(T) on Ex E® x g

satisfying certain compatibilities, cf. [SGA7, exp. VII]. Here, p denotes the multiplica-
tion and pr; ; the projection on the i-th and j-th component of the product. Now, fix

some integers m,m > 1 and define Pr(LT) = (id x L(T)) P, Restricting

[ B« g s g
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2.1 The geometric logarithm sheaves

to Ey(LT) X ES,P gives
. T
Hn,m : Eg) X E?SP - ET(LJ)rm
Restricting (2.6) along
Ex EN x EN « Fx BEW x M)

results in

(PT13)*7D7(7]Z)'

Using the unit of the adjunction between (id X fin,m )« and (id X fu,m)*, we obtain

,P7(L:2m - (Pru)*Pg) o

Ex ES) ><E7<1]:)

P = (i 5 i) [(or12) P @ (pryg) P
and taking the direct image along prz gives:

b : Lol — L) @0, L)

m

For details we refer to [Sch14, §2.4.2]. For Pt the Gy, s-biextension structure is compat-
ible with the connection. This implies that &, ,, is horizontal. Using the compatibilities
of the G, s-biextension structure, one deduces the following commutative diagrams:

£, L 2P @, £
g\) loan (2.7)
£ @, )
and
gn m,
ﬁfj—f-m—f—l ;l) Eglm Xop EZ(T)
gn,erlJ/ J{gn,m@)id (28)

1id®&,,
£ 0, £0, 2 2D 00, LD 00, £,

Thus, we obtain well-defined maps

P 5 LV 9o, ... @0, L1

n times

The diagram (2.7) shows that this map is invariant under transposing any of the n
factors on the right hand side. Thus, letting the symmetric group .S, act on

Eg) Rog - 0y ,CET)

®
by permuting the factors we see that Eg) — (Lg)) * factors through the invariants of
the S, action. We denote the resulting map by

Xn Sn

£ — Tsym? £V = {(cﬁ”) (2.9)
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2 The geometric de Rham logarithm sheaves

The transition maps make (Eg))nzo a pro-system of sheaves. The maps

id®"®pr ~
Eg) Rog - Q0g ,Cg) %®p ,CET) Rop - RO [,gT) ®@E£(()T) — Eg) Rog - Q0g ,CET)

n+1 times n times n times
induce projections
+1 (1) (1)
TSym%E £y — TSyng L3

and the commutative diagram (2.8) shows that these maps are compatible with the

transition maps EnTJ)rl — £$J). In other words, (2.9) induces a morphism of pro-systems:

DO : (L) — (TSympst £f7)

n>0"

For (L) this morphism is horizontal if we equip TSym" EI with the connection induced
by V i on the tensor product. Let us summarize some properties of symmetric tensors

in the following remark:

Remark 2.1.12. In this remark let X be a scheme and F a locally free Ox-module of
finite rank. Let S,, act on F®" := F @0, ... ®o, F via permutations and define

n I ®@n\Sn
TSymg, F:= (FEm)m .
For k,1 > 0 define the following subgroup of Sk,
Ski={0 € Sk :0() <0(2) <. <o(k), o(k+1)<..<o(k+D)}.

The shuffle product of z € TSym* F and 2z’ € TSym! F is defined by

This defines a commutative ring structure on TSym?QX F = D0 TSym’éX. Further-
more,

[[]": TSymgi — TSymgi, r—z]"=r®..Qz

n times
defines a divided power structure on the ideal TSymg; Thus, one obtains a canonical
morphism
Lo, (F) — TSyméX F

from the universal P.D.-algebra L' (F) to TSymEQX F which is easily checked to be
an isomorphism. More generally this holds for flat Ox-modules [SGA4, p. 5.5.2.5.]. In
particular, TSymZQX F inherits all good properties of L', (F), e.g. compatibility with
base change. In general, i.e. for non-flat modules, TSym® is not necessary compatible
with base change. Finally, let us note that the map

Syméx F=F= TSyméX F < TSymZOX F
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2.1 The geometric logarithm sheaves

induces a canonical homomorphism of sheaves of Ox-algebras

Sym?

OX}"—>T87ym29X}".

If X is a scheme over QQ, this map is an isomorphism.

Lemma 2.1.13. If S is a scheme over a field of characteristic zero, then
.i_
£ — Tsymy £
s an isomorphism for all n > 0.

Proof. This can be shown as in [Sch14, §2.4.2]. More precisely, it is proven in loc. cit.
around equation (2.4.7). O

Next let us study the pullback of D) along e. If we combine e*D(Y) with the isomorphism

e'L1 = O v = Os Bwpv)s
e L] 3 Opyp gt = 05 D H,

we get

e* L, —< 2, TSym?)S ((95 @gEV/S> —— P, TSym’bS WEv/s
(2.10)

ercl, —“2 TSym?, (05 & H) —— @, TSym!, #.

Here, we have used the canonical isomorphisms for locally free modules of finite rank

3

TSym?, (F1 @ Fo) = P (Tsymgj Fi @ TSym!, 5)
=0

as well as the isomorphism TSym’éS Os = Og, [1]F + 1. If we define on the right
hand side of (2.10) transition maps by the projection maps

n+1 n
pr: @ TSyszS (-) = @TSymlOS (),
i=0 i=

then the maps in (2.10) are compatible with the transition maps on both sides. If we
write £V and E' for the formal completions, we get canonical isomorphisms

li{in e*L, > 1i<£n O Bv 5 N

n n

. x ot N ~

lime™ L), = lim Opypn i — Opy.
n n
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2 The geometric de Rham logarithm sheaves
Using this identification, we may rewrite the above maps as

—_—
D, : OEV — li(ine*ﬁn — TSymOSgEV/s
n

D : O — lime £}, —— Toymy, M

n

— e
where completion TSym is with respect to the respective augmentation ideals TSym=".

(1)

The next result compares D¢'’ to the map obtained by applying iteratively the universal
invariant derivation of the formal groups EV resp. ET. The most convenient way to
formulate the result is via the bigebra of invariant differential operators of the formal
groups, cf. [BKL14, Remark 1.1.8]:

Lemma 2.1.14. Let D, and D} be the maps defined above.

(a) Let us write Hy, for the sheaves of bigebras of invariant differential operators on
the formal groups ET. We have a canonical ifomorphism Op = Hompg (HET, 0Os),
and the inclusion of the Lie algebra HY of ET into H induces a canonical map

Symz,)s HV — HET
Then, the composition

Op+ = Hompg (Hgt, Os) —Homeg (Symz,)s HV,C’)S) = @OSH

coincides with D} .

(b) Similarly, in the case of EY the inclusion of the Lie algebra (wpv/g)" into the
sheaf of invariant differential operators Hp,, induces a map

Opv — Homoy (Hp,, Og) —Homey (Symés g}gv/s, (’)S) = TSymOSgEV/S
which coincides with D..

Proof. We just consider the case of E' the case of EVY is completely analog. Let

n
Optr it — €LY, = P Tsym’ggs H (2.11)
=0

be the map induced by the G,, s-biextension structure on PT. In [Schl4, S. 124] it is
shown that its dual

n
@ SymZOE HY — Homog (Ory¢n pi, Os) = H, (2.12)
i=0
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2.2 The canonical section and the geometric logarithm sheaves

is a homomorphism of Og-algebras. Thus, in order to identify this map with the mor-
phism induced by the inclusion of the Lie algebra H" into the sheaf of differential op-
erators H';, of order < n it is, by the universal property of Sym®, enough to show that
(2.12) restricted to H" is the canonical inclusion. The compatibility of (2.11), which
is dual to (2.12), with transition maps allows us to reduce to the case n = 1. But in
the case n = 1 the claim is obvious. Thus, (2.12) coincides with the map induced by
the canonical inclusion of the Lie algebra into the sheaf of differential operators of order
< n. Taking duals and passing to the limit proves the claim. O

We can reformulate this as:

Corollary 2.1.15. Let
d:OET — OET ®OSH

be the map induced by the invariant derivation. Applying d iteratively and evaluating at
zero gives a map

Opi — TSymgS H, [ e (d"f).
Then,
D! Opt — TSymOSH
is given by f > (e* (d°"f)),>o- And the analog statement holds for EVY.

Remark 2.1.16. We have chosen the notation D(Y) to emphasize that this map specializes
after pullback along e to the map taking all iterated invariant derivatives at zero.

2.2 The canonical section and the geometric logarithm sheaves
The purpose of this section is to construct sections of the geometric logarithm sheaves
via the canonical section.

Definition 2.2.1. Let E/S be an elliptic curve with D invertible on S. The canonical
isomorphism

[D]*Qpy5([e]) = Qy5(ED))
tensorized with (®p)~! gives
(®p) ' ®@can: [D*L, ®o, [D]*Q}E/S ([e]) = L, ®o, Q}E/S (E[D]) . (2.13)

Here, we have used that D is invertible on S for ®p being an isomorphism.

(a) Define
IR €T (E, L, @0, Vs (E[D)))

as the image of

(rp)«(id X 1) (s50) €T (B, [D]" | £0 @0, Qs ([€])])
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2 The geometric de Rham logarithm sheaves

under (2.13). Here, s2_ is the D-variant of the canonical section of the Poincaré
bundle defined in Chapter 1.

(b) For e #t € EV[D](S) define
1D, €T (B, L, @0, Vs (EID)))
as the image of
(Prg)e(id X 1) (UP (scan)) € T (B, [D]* | £y @0, Vs ([e])])

under (2.13).

Sometimes we will use the canonical inclusions
L, — LI
and view [ or [P as global sections of Ll @0, Q}E/S (E[D)).
Remark 2.2.2. The canonical section Scay is a global section of
P® Q}EXEV/EV ([Bxe]+[exEY]).

Restricting it to £,, and using e*Opv ([e]) = wiy /s gives a global section

by = (prp)s(id X 1) (scan) € T (B, L ®0,, (75)" [ 5] @05 Uhys(le])) -

Later, we will use the sections I2 to describe the D-variant of the elliptic polylogarithm
in de Rham cohomology. If one prefers to describe the classical elliptic polylogarithm in
de Rham cohomology, one can do this along the same lines but starting with /,, instead
of 12

2.3 Analytification of the logarithm sheaves

In [Sch14, §3.5] Scheider studied the analytification of the geometric logarithm sheaves
L!. Using the Jacobi theta function, he was able to describe the analytification of the
de Rham realization explicitly in terms of theta functions. In this section we show that
the algebraically defined sections (I2),>¢ correspond to the (relative version of the)
analytic sections used by Scheider to describe the de Rham realization of the elliptic
polylogarithm on the universal elliptic curve.

In order to compare the algebraically defined sections lf with the analytic description
given by Scheider, we follow the analytification given in [Sch14, §3.5] closely. We keep
the notation introduced in Section 1.6 for describing the analytification of the universal
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2.3 Analytification of the logarithm sheaves

elliptic curve g : Exy — My with I'(N)-level structure for N > 3. We summarize the
introduced notation in the following diagrams

En:=CxHx (Z/NZ)* 22 Ear = 72 x T(N)\ C x H x (Z/NZ)*

"Il (I

My =Hx (Z/NZ)* —P% , Men = T(N)\ H x (Z/NZ)* .

with coordinates (z,7,7j) on En. The analytification of FY; and its universal vectorial
extension is summarized in the following diagram

El, =C*xHx (Z/NZ)* =% EY, = C x H x (Z/NZ)*

l J (2.14)

t,an V,an
Ef BV,

As before, write (w', v, 7, j) for the coordinates on E]TV Furthermore, let us again write
P for the pullback of the Poincaré bundle to Ey x 7 Ex and Pt for the pullback of the

M
Poincaré bundle on E xg ET to the universal covering En x e E;f\/ Using the Jacobi

theta function, we have obtained trivializations:

D ™ an
P%OENXMNEJVV, t—1 (2.15)
P S o 1. (2.16)

~t,
ENXA'ZNEN

Restricting the isomorphisms (2.15) resp. (2.16) to Ex x Inf! EY; resp. Ey x Inf! E}LV
gives analytic trivializations

21 = ﬁEﬁl = (prEN)*(id X Zl)*'ﬁ 5 (pr'EvN)*O‘in

-, 50T o
1 *E
En XJ\'ZN Infe E]\\/] E

N

and
L} = ppL] = (pry, )o(id x i})*PT 5 0L Hi
Here, we have used the notation N“E” and 0% for the pullback of Hg and wgv /s to the

universal covering of Ey. Combining the analytic trivializations with the maps DI gives
isomorphisms

n
split : £, = TSym" £; & @TSym" WY
i=0

and .
SﬁtT L5 5 TSym™ £ 5  TSym” H.
i=0
We call these the analytic splitting maps. Note that these splittings depend on the theta
function which is chosen in the trivialization of the Poincaré bundle. We can use the
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2 The geometric de Rham logarithm sheaves

chosen generators w = dw of @ and [n]",[w]" of H to define a basis of the free
0% -modules L] and L,
En
ol = sﬁtil(w[i]), VOo<i<n
&0 = (split) ™ ()W - (W), YO <k+i<n

These form a basis for £,, resp. L} :

L, = Patloy (2.17)

L= @ ’J]O‘”‘ (2.18)

m@ ||@:

Remark 2.3.1. Scheider uses Sym instead of TSym, i.e. he uses the isomorphism

n 1 n
Lh 5 sym™ £ 5 €D Sym' HE =% €D Sym’ HE.
i=0 =0
He chooses o ) (Y
g () (W) i+ fjan
i iy o HE

as a basis to trivialize £f. It is straightforward to check that our basis is related to his
basis via: o
e'f?

e ljllil,
(n—i—j)!

Lemma 2.3.2. The inclusion

identifies O with (—1)'lH0,
Proof. Using the definitions of @[ and %), this boils down to the fact that
OF S Py any < PurHar (En/My)™" = HEE
identifies w = dw with —[n]". O

Lemma 2.3.3. The connection on L], induces a connection on L} :

AT AT an OL
V L) — L] ®o Q B /i

This connection is explicitly given by the formula

I (i 4+ (1, N@ @ dz + (5 + 1)l @ de.
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2.3 Analytification of the logarithm sheaves

Proof. The map . )
L 5 TSym" EI

is horizontal if we equip TSym" ﬁ]i with the connection induced by Vs on the tensor

1
product. The explicit description of the connection Vz; gives us the following ex-
plicit description of V s: It is explicitly given as V s (@00 = n(1, ) 4 Gl and
1 1

vﬂ (@10 = VEI (@) = 0. The isomorphism
~ n . ~
TSym" £] = @) TSym' HE
=0

identifies d)[o,o]) i) (&J[l’o]) . (d)[o’l]) g with @], Using this isomorphism, the claim

follows from:
V rgymn £ [((‘D[O’O])[n_i_ﬂ (@[170]>m (@[Qﬂ)“ )} _
:vﬁ((;,[o,O]) . (@[0,0})[n—i—j—l] . (w[l,()])[i] . (w[O’”)m _
1
=t ) (600) 7 ) )

(1) (@0 (@) (gl T g g

Let us denote the induced translation operator on the universal covering by
trans; : T L — £
and the invariance under isogenies map by
dp: LD S [DFLD.
Lemma 2.3.4 ([Schl4, Prop. 3.5.9]). We have the following explicit formulas for the
translation operators and the behaviour under isogenies.

(a) For D > 1 we have

Sisjn fig@ I —— S0 D (D) (Q[i’j])
(b) Let (a,b) € (Z/NZ)2 and consider the lift § = j{7 + % of the torsion section

s = 8qp € EX[N](MJ") corresponding to (a,b). Then, the pullback of trans, to
the universal covering is given by:

transs : T2 L} = L

Yitjen figTiathil — (Zm’gn fivj‘:’[i’jo $ eXp {_a’[l’ol Ag(;i‘)}
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2 The geometric de Rham logarithm sheaves

where the product is taken in TSym® and exp [(ZJ[LO]QO} = iy '@l for any
p e 0.

Proof. Let us first observe that in the case n = 1 the basis (e, f, g) of £J{ used by Scheider
coincides with our basis (@00, G101 01,

(a): The case n = 1 is exactly the equation (xx) in the proof of [Sch14, Prop. 3.5.9].
Further, ®p is compatible with the isomorphism

£ 5 TSym” EJ{

and we can deduce the general case from n = 1 by applying TSym".
(b): The case n = 1 is treated in [Sch14, Prop. 3.5.9] and the general case follows by
applying T'Sym". O

Lemma 2.3.5. The analytifications of the sections 12 and lt?n can be described on the
universal covering as follows:
(a) For (a,b) € (Z/NZ)? and § = JNT + % lifting s = sqp € EN[N] the section
i, € L}, ®}5*EQ]1EN/MN (En[N)) is given as
- no N ,
lé\fn = Zi! ]ff’z (z, 7)ol @ dz
i=0

N

where s3'; is defined via the expansion
)

NJ,35(Nz, —w',7) = Z sé\;(w/)i
i>0

(b) For D > 1 the section [P € L} ®}5*EQ}EN/MN (En[D]) is given as
n D .
Zi!wcﬂwl ®dz
i=0
where sP(z,7,7) is defined via the expansion
D?J(z,—Duw',7) — DJ(Dz,—w', 1) = Z SiD(Z, ) (w')?

i>0

Proof. (a): From Proposition 1.6.7 we know that the pullback of UllsN (Scan) to the
universal covering is given by

(IN] x id)* [ o 5(2, —u', )E @ dz] .

applying (prEN)(id X 1)* gives

iusgﬁm* (@0 @ dz)
=0
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2.4 Real analytic Eisenstein series via the geometric logarithm sheaves

ZN

, I, is the image of this element under

By its definition
Oy! @ can : [N]* [£], @ 550,y ([€))] S £L © 55y sy, (ENIN]) -
Now, the result follows using Lemma 2.3.4 (a) and the fact that [N]*dz maps to Ndz
under the canonical isomorphism can : [N]*lej ~ ([e]) & le: ~ (EN[N]). (b)
N N

/MN /MN
follows similarly. O

2.4 Real analytic Eisenstein series via the geometric logarithm
sheaves

We give an ‘infinitesimal’ version of our construction of Eisenstein—Kronecker series via
the Poincaré bundle (cf. Section 1.7). In order to avoid choosing level structures on
both E and EV, let us fix E = EV. For s € E[N](S) let us define

n
D} : s"Lh = @ TSymy, H
=0

as the composition

n
'Ll e L], = P TSymy, H.
1=0

Furthermore, the connection V i induces maps

\v% T@id
. -1, ®k  £n 1 -1 ®k -1 Qk+1
VLL .EL@WAOSW wWpis EL@OEQE/SQ@WAOSW Wris — £L®ﬂf1os7r Wgs -

Let us write Up := E'\ E[D]. Via the identification
(£h @ Qs (BIDD) v, = (£ @ Qhys) v

we will view 12 as section of T'(Up, L] ® Q}E/S).

Definition 2.4.1.

(a) Let N,D be coprime integers. Let E/S be an elliptic curve with I'(IV)-level
structure a. For (0,0) # (a,b) € (Z/NZ)? let s := s(qp) € E[N](S) be the
corresponding N-torsion section of £. We define

k,r+1 k ®(r+1)
pTEG €T (8, T8ymf) H o, wiys ™)

via

(pTECL), = @ @idyein)(s" {v; >(z,§’)] ).
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(b) Let N,D be coprime integers. Let E/S be an elliptic curve with I'(ND)-level
structure a.. For (0,0) # (a,b) € (Z/NZ)? and (0,0) # (¢, d) € (Z/DZ)?* consider
the torsion sections s = s(q) € E[N](S) and t = t(. 4y € EV[D](S) = E[D](S).
We define

k,r+1 k ®(r+1)
TE b ca) €T (57 TSymy, H @os wpg )

via

k,r " o . * or
(B o)y = a0 idui)(s" |95 AE))

Note that DTEEZTI:)F ! does not depend on the chosen n > k by compatibility with the

transition maps.

Remark 2.4.2. The T in the notation of T Eégar;)r ’l(c’ ) and pT E&T;)r ! is to express the usage
of TSym instead of Sym.

The construction

k1 k41
(B,0) = pTEQ" (resp. TE S 0)

is easily checked to be compatible with base change and isomorphisms of elliptic curves
with level structure. The Hodge decomposition on the universal elliptic curve induces a
projection

TSym* H* ® C*° —» TSymF wp/m(CF) = Q%I;M(COO)

where the last map is given by (dz)¥ — (dz)®F.
Theorem 2.4.3. Let N, D > 1 coprime.

(a) On the universal elliptic curve Exp — Myp with T'(ND)-level structure the
Hodge decomposition

(TSymk L HT® g%%;l)) ®C>*(Mnp) — Q%%\ITH)(COO)

O
maps
k,r+1
TE(a,b),(c,d)
to i B n
<(_1)k+rk!r!Dr+1—k ek,er(l ()l:]j" t) dz@(k-‘rr-i-l)) .
7)Fk!
k=0
(b)  On the universal elliptic curve Ex — My with I'(N)-level structure the Hodge
decomposition
(TSymf, H™ @ wiir) @ C(Myp) — wiint " (C)
maps
k,r+1
DTE(a,b)
to

- B o n
((—1)k+rk!7“! [D2€Z,T+1(S’t) _ Dr+1—kek7T+1(D8’t)‘| dz@(k-i—r-‘rl))

A(T)FE] A(T)Fk! o
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2.4 Real analytic Eisenstein series via the geometric logarithm sheaves

Proof. Tt is not hard to deduce this from Theorem 1.7.2. Let us nevertheless give a direct
proof using the analytification of the logarithm sheaves.

(a): We compute the image of

(D2 idur)(s" | T50)])

under the Hodge decomposition on the universal elliptic curve with T'(/V D)—lev~e1 struc-
ture. In this proof let us drop the subscript ND, i.e. we write E/M, E/M for
END/MNDa END/MND and so on. Let

B L} 5 @) TSy, i, Hiy (B /)"

be the lift of D} to the universal covering.
Claim: The image of
(B, @ idyes1) (5" {vg n(iP n)})

mn
n
o, <Tsym0an PiuHig (B/M)™ @ ”Mw%ﬁiﬁ}an) ® C™(M™™)
k=0
s given by

n min(r,n—k)

r—i— r 6*7‘ —i(Dg’t) =1 r
T'Z Z D=k )+k%[dz][k}([dz][])®dz@( +1)

Before we prove the claim, let us remark that the explicit description in the theorem
follows by applying the Hodge decomposition to the above equation.
Pf. of the claim: By Lemma 2.3.5 we have

n
1
= Z k!ﬁsgk(z, ok @ dz
is defined via the expansion

NJyif(Dz,—w',7) = Z sfk(w’ K

k>0

where st~ .

Further, by Lemma 2.3.3 and the Leibniz rule we have

2.0 = Z’f'Z( ) Dkai(’" DDz 7) V% (@) @ dzr =1 =

k=0 =0

n min(r,n—k) ;
_ Zk! Z (r) %60“ @) Dk(z @ [k,0] (17(1,7)03[1’0] +(D[0’l]) @ dz"H =

k=0 i=0
n min(r,n—k) A\ o1 ‘ il

= Z k! Z i! ; ﬁag(r_l)sgk(z,ﬂ@[k’o] ( (1, 7)ol 4+ ol 1]) ®dz" !
k=0 i=0
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2 The geometric de Rham logarithm sheaves

From Lemma 2.3.4 we get:

(2.19)

~ n min(r,n—k) k"Z' r
(D ® idre1)(5* {v ztn] Z Z oF <Z> (aO(T ’)sfk) .

- exp (— 1(_78@[1,0]> k0] (77(17 oo 4 @[0»1]) T aertt

We consider the formal power series ring O4}[z, w’, u] and compute the formal derivative

z=0

D .o lexp(zu) exp (— 5 ;1 gw’) Jot(D(z + 3), —w’)}

in two different ways:

Do lexp(zu) exp < gw'> Jot(D(z + 3), —w/)]

A z=0
— - T qoi 3 o(r—1) AN _
= Z 05" exp(zu) "| Do Jot(D(z+5), —w') =
im0 \! =0
-y 3 wn(]) (o) exp( ) 220
0= =5 A(T) k! 4!
On the other hand,
S (1.26)

o7 [expuu) exp (—5 v Sw’> D Jyi(D(z +8),~ 'ﬂ

= ~ /
=D. 0 lexp(zu) exp (—S I Sw’) exp (D(ZZS)U’) - ©#(D(z + 3), - /)] (124)
z=0
/
=007 [oxp [+ (2 4] - 0peit0z ]| =
z=0
[ r D' : . (1.25)
— . . ao(r—1) . o
D 2 (z) (u + A(T)) 0; @Ds’t(Dz, w') 20]
Dw'’ o~
~(r). <U+A(T)) . _ € i (D5 T)
- D ! . )\ pri 1) itk “kr—aH 1IN0 Nk
i=0 <Z>Z i = I;)< ) A(T)"E! (=u')
T * ~ _ ., _ Du ‘
— ! .D1+r*"(—1)’“+kek,rﬂ'ﬂ(DSv’5) (—u)t (~u - £5) (2.21)
i=0 k>0 A(7)* k! it
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2.4 Real analytic Eisenstein series via the geometric logarithm sheaves

Comparing (2.20) and (2.20) we obtain the equation

o(r—i §—35 w't
ZZk'z'( > (8 ( )s?k)’ _.exp (— A w’) s (2.22)

k>01:=0
Lo~ Dw' \*
a : et i1 (D5 1) (—w)r (—u— B)
! pUr—i(_qyrtk kroitl T 2.23
" kg;} (=1) A(T)F k! il (2.23)

in the formal power series ring O [w',u]. We specialize this identity using the ring
homomorphism

O%‘[[w’,u]] ZGBOTSym Hp,w' — [;O] ._><77(177)w[1,0]+@[0,1])
and obtain
3= (ot ( ) (0, i )
= = D\ z=s A(T) 7

n min(r,n—k) ' o _ol ) ( 1 T)u)[l 0] _ 5l _ A 1,0] )1
rl Z Z .Dl-‘rr—k—z(_l)r—i-k k,T*lJrl . - (‘r)
k=0 =0 A(T) ! il
Now, combining this equation with (2.19) and using the identification

Py TSym" Hig (E/M)" 5 py Hig (EY /M) 5 piyy TSym* Hig (E/M)

which maps @7 to (—1)*[w][5]l] proves the claim:

(D ® idyyrs1) (5 {v(ﬂ )(Zt’fn)}) =

n min(r,n—=k) D3 )
)

—r! Z Z D1+r7kfi(_1)r+k ek r— H—l(
i=

RN
A(T)F ] (77(177)[W]—[n]+i ] ) ®dz" ! =

n min(r,n—k) ‘ ( § ) A
fﬂz Z D1+r—k—z<_1)r+k k A(H)’“r [dz}[k][dg][l] ® dz" 1

Here, we have used the equality 1&(?']) n(1,7)[w]— [77]4—% in g, Hig (E/M)™®C (M)
where n(1,7) = ((z,7) — {(2+ 1,7) is the period of the zeta function. For example, the
formula for [dz] can be deduced from [Kat76, p. 1.3.4].

(b): Follows either by summing over all e # ¢t € EV[D] or by a similar computation. [

Corollary 2.4.4. Let E/S be an elliptic curve with T'(N)-level structure. Let (0,0) #

(a,b) € (Z/NZ)? and s, be the associated N-torsion section. The image of s*12 under

n
Ds ®id,, : 8" L @0y T wr /s — @ (TSymk &EV/S) Ros WE/s — @];JJ;}?

gives Kato’s Fisenstein series (DFEZng )k_ cf. [Kat04, §4.2].
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2 The geometric de Rham logarithm sheaves

Proof. We can reduce the proof to the universal case. Then, this follows from the
particular case r = 0 in the above theorem together with the following computation:

62,1(570) 1) ®(k+1 1) Kl;k+1(5707 1;17) 1) ©(k+1 2)
AkE! ( ?) e Akl (d2) .
(3)

= K} 10,8,k + 1;T,) (d2)®* D) =

_1)k+1
- (1I<:)'ng+b)l )(7)(2midz) @D

Here, K} ,(s,0,1;T';) is the Eisenstein-Kronecker—Lerch series defined in [BK10b, Def.
1.1]. (1) and (2) follow from [BK10b, Def. 1.5 and Prop. 1.3|. For (3) we refer to [Sch14,
Theorem 3.3.16]. O

Remark 2.4.5. Using similar methods as in Section 1.5, it is possible to prove the above
corollary algebraically.
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3 The Katz splitting

In [Kat77, Appendix C] Katz gave a geometric construction of Eisenstein series of weight
one. His main tool was a construction of a distinguished cross-section to the canonical
projection of the universal vectorial extension over the open subscheme E \ {e}. In
this chapter we will recall his construction. Then, we will use the relation between
the universal vectorial extension and various other geometric objects like the geometric
logarithm sheaves or absolute Kéhler differentials to obtain splittings of those objects
over F'\ {e}. These splittings will be important technical tools for studying the algebraic
de Rham realization of the elliptic polylogarithm. The splitting of the short exact
sequence of Kahler differentials will enable us to extend the relative integrable connection
on EI to an absolute one.

Let E/S be an elliptic curve. As always S is assumed to be separated and locally
Noetherian. Since we are following the construction in [Kat77, Appendix C], we will
assume during the whole chapter that 6 is invertible on S. We keep the introduced
notation. In particular, 7 : E — §' is the structure morphism and

¢ Bt - EY

denotes the universal vectorial extension.

3.1 The Katz section of the universal vectorial extension

Let E/S be an elliptic curve over S and assume that 6 is invertible on S. First, let us
recall Katz’ construction of a distinguished section

EV\{e} = ET

to the projection ¢. The universal vectorial extension of EV sits in the following short
exact sequence of S-group schemes

0 —— Vs(wgys) ET EY 0

where Vs(wp/g) is the vector group with T-valued points Vs(wg/)(T) = wg,/p- For
the moment let us assume that S is affine and wp 5 is a free Og-module of rank 1. After
fixing a generator wy € I'(S,wp/g), there is a unique Weierstrass equation for £/S

y? = 42% — gox — g3 g2, 93 € T(S, Os).

such that %ﬂj = wp. Now, Katz proves the following:
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3 The Katz splitting

Lemma 3.1.1 ([Kat77, p. C.2.1]). Let (E,wp) be as above and U := E\ {e}. Then, for
P € U(S) a point with Weierstrass coordinates © = a, y = b the 1-form

opi= 30 L 1B, (1] + [P])

has residues
Respwp =1, Rescwp = —1.

The construction of wp is independent of the auziliary choice of wy.

Let us come back to the general case. Let E/S be an elliptic curve and e # P € E(S).
Since wg/g is always locally free, we may construct wp locally on the base S. The fact
that wp does not depend on the auxiliary wg allows us to glue the construction and we
obtain a well-defined section

wp € (B, Qs ([e] + [P)))

with residues 1 at P and —1 at e. Using this, Katz defines an integrable S-connection
on Op([P] — le]) as

Vp : Op([P] - [e]) = Op([P] - [¢]) @0y g5, [+ df + fwp.
Now, Katz defines U — ET through its T-valued points P € U(T) by
P [(Op([P] — [e]), V)] € BN(T)

where [(Og([P] — [e]), Vp)] denotes the isomorphism class of the line bundle O g ([P]—[e])
with its integrable S-connection Vp. But unfortunately this definition makes use of the

chosen autoduality
E(T)> P [Op([P] - [e])] € EY.

However, this can easily be fixed:

Definition 3.1.2. Set V := EY \ {e} and define
pgi 2V = (¢) (V) C B
as the unique morphism of S-schemes which is given on T-valued points as
rpt 2 V(T) 3 [£] = [Op([P] - [¢]), VPl

with P € V(T') the unique point with [£] = [Og([P]—[e])]. We call K the Katz section
of the universal vectorial extension of EV.

Remark 3.1.3.
(a) The above definition does no more depend on the choice of an autoduality iso-
morphism.
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3.1 The Katz section of the universal vectorial extension

Let us write E? for the universal vectorial extension of E. The canonical isomor-
phism E 5 (EY)Y gives us a section

kg U =E\{e} - E*

to the projection ¢*.

The Katz section is compatible with base change.

Let us recall Katz’ construction of the Eisenstein series of weight 1 [Kat77]. Let N > 1
and assume that 6N is invertible on S. For e # t € E[N](S) let £ be the unique N-torsion
section of E¥ lifting t. Define A;(E,t) € I'(S, Wpv/g) via

AL(B,t) = k(1) — T € ker(¢°)(S) = Vs(wpv/s)(S) = T(S,wpv s)-

Remark 3.1.4.

(a)

If one fixes an autoduality isomorphism E = EV, one obtains a geometric mod-
ular form

(E,t) — Al(E,t) S F(S,QEV/S) = F(S,QE/S)

of level T'go(IV) and weight 1. This is Katz’ construction of a geometric Eisenstein
series of weight one.

For a moment let us identify FE with its dual using the principal polarization
A associated with the ample line bundle Og([e]). Katz gives the following
transcendental description for A;(E,t) evaluated on the complex elliptic curve
C/A; t = %T—i—%, AN =7+ 77 for 7 € H:

A(B,1) = ((c(;w %) +1 (]C\L,T+ ]l\’,f)> dz

For an elliptic curve E/S with I'(IN)-level structure we can associate to a given
pair (0,0) # (a,b) € (Z/NZ)? a torsion section s, € E[N](S). The resulting
geometric modular form

(E, a) = Al (Ea Sa,b)

coincides with Kato’s E(la p) 88 is easily seen from the above transcendental de-
scription.

We want to give a slightly different description of A;(E,t). Let E/S be an elliptic
curve and let us keep the assumption that 6V is invertible on S. For the moment let
us write [NJ*E* := E¥ X g,n] £ for the base change of E* along [N] : E — E. The
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3 The Katz splitting

N-multiplication [N] : E* — E* factors through the pullback [N]*E* as follows:

0 — Vs(wpv/s) E* E 0
v | H

0 — Vs(wpv/s) — [N]'"Ef —— E —— 0 (3.1)
H [ 2

0 — Vs(wpv/s) Ef E 0

In other words, the short exact sequence of f.p.p.f-groups over §
0 — Vs(wpv/s) — [N]'EF — E —— 0

is (uniquely) isomorphic to the pushout of

0 — Vs(wpv/s) E! E 0

along (-N) : Vs(wpgv/g) = Vs(wpv/g). This map is an isomorphism since N is invertible
on S by assumptions. Thus, we obtain a canonical isomorphism of E-schemes

E* 5 [NT*E®. (3.2)

By similar notation let us write T} ET := EF x g1, I/ for the base change of ET along
the translation T, : E — F for t € E(S). The isomorphism E* = [N]*E* induces an
isomorphism

Tr(3.2
ey T;[N]*E* = [N*Ef +~— E*

transpy , : T; E*
of E-schemes, here T} Ef = E* x e,1, E is equipped with the structure morphism to
E given by the projection. The base change of transp:, along e : S — E gives us a
canonical way to trivialize the fiber over t € E[N](S):

trivpgs 4 t*E* .= E* XptS VS(QEV/S).

The reader has certainly noticed the similarities between the above constructions and the
corresponding constructions for the geometric logarithm sheaves given in Section 2.1.3.
This is no accident. Later, we will give a construction of £; via the universal vectorial
extension Ef. The Katz section kg will induce a canonical splitting of £;]y. Then,
in order to restate Katz’ construction of the Eisenstein series of weight one in terms of
a natural splitting on the geometric logarithm sheaves, it will be convenient to have a
reformulation of Katz’ construction of Eisenstein series of weight one, which also works
on the geometric logarithm sheaves.
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3.1 The Katz section of the universal vectorial extension

Remark 3.1.5. The pullback of [N]*E* 5 Ef along t : S — F gives another trivialization
t*Eﬁ :> VS(QEV/S)'

This coincides with N - trivgs , as can be seen from (3.1). One checks easily that trivyg:
is independent of the chosen NV.

Now, consider the following diagram

triv
VS(QEV/S) <it EJr XEt S — .EJr

. _
) . UK gy
terET,tOt K gt ¢

S ——— U.
We can restate Katz’ construction as follows:
Lemma 3.1.6. We have the following equalities in Vs(wpv,s)(S) = T'(S,wpv,g):

1

Al(E,t) = N[N](K/Eﬁ ] t) = trivEn,t Ot*fﬂ}E‘ﬁ. (33)

Proof. The S-valued point [N](kgs o t)

[N]

St Uy £, gt Et

of E* is contained in ker(q*)(S) = Vs(wpv/g)(S). The first equality
1
A(Et) = N[N](K, ot)
follows from the commutative diagram

Vs(wpvys) == Vs(wpv/s) —— Vs(wpv/s)

/l ! !

[N]*Ef ———— E*.

(V]

Indeed, the composition of the lower horizontal map is [N](k ot) while kot — # followed
by the upper horizontal map gives N - (kot —%) = N - A;(E,t). For the second equality

L[N](kot) = trivgs 4 o t*k consider first

Vs(wpv/s) = t*[N]*Ef —— Ef xpn E

t*(3.2)T (3-2)T
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3 The Katz splitting

Note that N - trivg: ; coincides with the map ¢*(3.2) in this diagram, cf. Remark 3.1.3.
If we compose this diagram with the lower left corner of the diagram (3.1), we obtain

Vs(gE\//S) — .Eﬁ

N-mvEu’tT [N]T

t"Ef ——— EF.
Finally, the composition of this diagram with the commutative diagram

t*Ef — EY

x| |

S—t . p

gives the diagram
Vs(gEV/S) — E‘jj

N-trivEuytT [Nﬁ

tHEf 5 B

ex| |

St L

This diagram shows & [N](kot) = trivgs ; o t*k. O

3.2 Splitting the first geometric logarithm sheaf

The aim of this section is to combine the Katz section rp: : U — Ef with a result of
Mazur-Messing about (infinitesimally) rigidified G,,-extensions in order to split L]y .
Afterwards, we will discuss various properties of this splitting.

3.2.1 Rigidified extensions and the Katz splitting

Let us start with recalling the definition of (infinitesimally) rigidified G,,-extensions and
the relation to the universal vectorial extension.

Definition 3.2.1. An infinitesimal rigidified (or inf-rigidified) line bundle on E/S is a
pair (L, riyf) consisting of:
(a) aline bundle £ on F

(b) an isomorphism i : Ll = Orps1 > which will be called infinitesimal rigid-
ification or inf-rigidification.
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3.2 Splitting the first geometric logarithm sheaf

A morphism of inf-rigidified line bundles is a morphism of line bundles respecting the
infinitesimal rigidifications ri,s. Let Picrig% /s be the f.p.p.f sheaf on S which is locally

given by
T + Picrig? (E7/T) := {Iso. classes (£, i) : £ alg. eq. to zero }.

Remark 3.2.2. In [MMT74] a rigidified G,,-extension of E over S is defined as an extension
of f.p.p.f sheaves over S

0 —— G5 E E 0.

together with an infinitesimal section Inf! E — £ to the projection. Extrig?(E,G,,) is
defined to be the f.p.p.f sheaf of isomorphism classes of rigidified G,,-extensions. By
Barsotti-Rosenlicht—Weil (cf. [Sch14, Theorem 0.1.26]) the map

@%/S (ET/T) - m}ppf (ET7 Gm7T)

given by associating to a line bundle the underlying G,,-torsor is an isomorphism. The
additional datum of an inf-rigidification ri,f induces a rigidification in the sense of Mazur—
Messing on the G,,-extension. This gives the isomorphism

Picrig® (Er/T) 5 Extrig®(E, G,,).

Remark 3.2.3. One might wonder why we call 7;,¢ an infinitesimal rigidification and not
just rigidification as in Mazur—Messing. The reason is that we have already used the
notion rigidification for line bundles with a fixed isomorphism

e*L :> 05.

In cases where confusion might arise we will write zero-rigidification for what we have
called just rigidification before. An inf-rigidified line bundle is in particular rigidified by
restricting the infinitesimal rigidification to the zero section. This also shows that there
are no non-trivial isomorphisms of inf-rigidified line bundles and so the isomorphism
class [L, rinf] of (£, rins) determines (£, riy¢) up to unique isomorphism. In particular,
we obtain a map

PicrigOE/S — @%/s

by restricting the infinitesimal rigidification.

Recall that an S-connection
VL= Lo, Qs

on a line bundle £ on E can be equivalently be expressed as an (’)Inf1A (Ex ¢ p)-linear
isomorphism
V :piL = piLl
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3 The Katz splitting

where p; : InflA(E xsE)— ExgFE % F is the projection from the first infinitesimal
neighbourhood of the diagonal to the components [MM74, §3.1]. Now, consider an S-
scheme T" and a zero-rigidified line bundle (£, r¢) on E7/T with integrable T-connection
V. Such a datum gives rise to a T-valued point

[£,70,V ] € EY(T).

Following Mazur—Messing, we explain how one can associate to (L£,79,V,) an inf-
rigidified line bundle (£, ri,¢): Let

7:Inf! E — Inf\(E x5 E)
be the unique morphism fitting into the diagram

/ pf

Inf! B —"— Inf\(E x5 E)

i”g
€T nel B

Here, ¢ : Infl E — E is the inclusion and Tl B is the structure map to S. If we view
the connection V, as an isomorphism

V,C : pIE :> p;‘Ca
then 7"V, induces an infinitesimal rigidification on £

( Infl) To

. o Ve %
Tinf * OInfé 4> 7'1'I f1 L — (Ll) L.

This induces a map
T . .0
E'— PlCI“lgE/S.

Theorem 3.2.4 ([MM74, (2.6.7)]). The map
t . .0
E'— PlCTlgE/S
is an isomorphism of f.p.p.f.-sheaves on S.

Proof. In [MM74, (2.6.7) Proposition] this is proven for Extrig(E, G,,) and the statement
for Picrig% /s follows from the isomorphism PicrigOE /s 5 Extrig(E, G,y,) cf. Remark 3.2.2.
O
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3.2 Splitting the first geometric logarithm sheaf

This theorem allows us to construct a functorial splitting of £; using the Katz section.
Since we make use of the Katz section kg:, we assume from now on that 6 is invertible
on S. The Katz section U — E' gives an U-valued point of E? which corresponds to a
triple

(PU 70, vPU)

consisting of
(a) aline bundle Py on Eyj := EY xg U.
(b) a zero-rigidification r : e*Py = Op
(c) an integrable U-connection on Py.

The commutativity of
Ef —— (EV)Y
| |
U—F

shows that the bundle Py on EY xg U is the restriction of the Poincaré bundle P on
EY xg (EY)Y. By the above theorem we have a bijection

EXU) 5 Picrig?, 15(0)-

By the above construction we have an inf-rigidification on Py = P| BV x g Which means
an isomorphism
’I“mf . O(Il’lfé EV)XSU — (Ll X U)*P.

The pushforward of this isomorphism along pry; : Infi EY xgU —» U gives
* ( T )* in . *
e, O @ mhwpy /s = (Pr0)sOart vyt e (prp)a(1 X idy)*P = L.

Since the map £1 — Lo = Op is induced by the inclusion Inf? EV < Inf! EV, it follows
immediately that
Ov = Oy @ Thwpv s — Lily

is a section to the canonical epimorphism L;|; - Oy.
Definition 3.2.5.
(a) The map
ke, Ou ® THwey /g = Lily
corresponding to the Katz section kg € E*(U) via the isomorphism of Mazur—
Messing will be called the Katz splitting of the first geometric logarithm sheaf

and
Oy — Oy @Tr(*]QEV/S = £1|U

will be called the Katz section of the first geometric logarithm sheaf.
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3 The Katz splitting

(b) Since L’I is the pushout of

0—— W*E'QEV/S [,1 OE‘ 0

along the canonical inclusion
s E‘Q EV/S He,

we also obtain a canonical splitting
. ~ ot
K‘EJ{ Oy @ Hy — ﬁl U
of E]; which will also be called Katz splitting.

3.2.2 A characterization of the Katz splitting in terms of Eisenstein series

The geometric construction of the Eisenstein series A;(FE,t) of Katz can now be trans-
lated to the geometric logarithm sheaf £;. For T" an S-scheme and a non-zero N-torsion
section e # t € E[N|(T) = E7[N](T) we consider the image of t*k,,(1,0) under:

~ triv
t*ﬁl,E — t*ELET Tt> OInfé By = Or @QEZV,/T
By Lemma 3.1.6 it is not surprising that this gives rise to Katz’ Eisenstein series of
weight one.

Proposition 3.2.6. Let E/S be an elliptic curve with 6 invertible on S.
(a) For N > 1 invertible on S and e # t € E[N|(S) consider (1,0) € Oy ®njwWpy/s-
We have
trivy(t* ke, (1,0)) = (1, A1 (E, t)) € T'(S, Og ®wpv/s)
resp. triv](t's 1 (1,0)) = (1,241(E, 1)) € T(S, 05 & H)
1

where v: wpv g < H is the canonical inclusion.

(b) Further, kr, is the unique functorial splitting of the extension

O‘)W?}QEV/S *>£1|U OU 0

satisfying the following property for every N > 1:

(x)n  For every T-scheme S with N invertible on T, every n > 1 and every
e#t € E[N|(T) = Er[N|(T) we have

trive g, (t" ke, (1,0)) = (1, A1(E, 1))
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3.2 Splitting the first geometric logarithm sheaf

A similar property characterizes k ot
1

Proof. Once the first part of the statement is proven, the second part follows by the
compatibility of the Katz splitting with base change and density of torsion sections.
Thus, it is enough to prove

tI‘in(t*Kng(l,O)) = (1,A1(E,t)) S F(S, Og @QEV/S)'

The idea is to translate the statement via the isomorphism of Mazur—Messing to the cor-
responding statement for the Katz splitting of E*. This reduces the proof to Lemma 3.1.6.
First, recall that an inf-rigidified line bundle is in particular zero-rigidified, i.e. we have

Picrig%v/s —» @%V/S, (L, 7ing) — (L, 70).

By rigidity, i.e. the fact that there are no non-trivial isomorphisms, we deduce that for
every
(L, ring) € ker (PicrigOEv/S — EOEV/Q (S)

there is a unique isomorphism
(Yol L :> OEv

of zero rigidified line bundles, where the right hand side is equipped with the canonical
zero-rigidification. Thus, we can write every element in

ker (Picrig%v/s — ﬂ%v/s) (S)

as (Opv, rinr) with ripe a inf-rigidification compatible with the canonical zero-rigidification.
Using this, we can define

ker (PicrigOEv/S — @OEV/S> = Vs(wpv/s) (3.4)
which is given on T-valued points as:
(Opr: i) = (Pry, © 7ine) (1) € D(T, wpy /1)

where pr,, o rint is Op g1 EY 5 0re WEY/T —F WEY/T- Using the definition of the map
(3.4) and the explicit description of

N D 0
EF — PlCl"lgEv/S,
one checks the commutativity of the diagram

ker (Eﬁ — E) AT (@OEV/S - @?EV/S)

= |

Vs(wpv/s) Vs(wpv/s)-
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3 The Katz splitting

where M.M. is the map induced by Mazur—Messing. In Lemma 3.1.6 we have reformu-
lated Katz’ construction of A;(FE,t) in the following way

N - A1(E,t) = [N] O Kpt ot.
We have the following commutative diagram:

Ef(U) MM, PlCI‘lgEv/S(U)

)
l [
Ei(U) MM, Picrig), 150)
I I+
E#(S) ML, PlCI‘lgEv/S(S)
The U-valued section kpz maps under the left lower composition to [N] o kpy ot €

Vs(wpv/g) which is N - Aj(E,t). Under the upper right composition it maps to the
inf-rigidified line bundle

(8 [N))*P, (¢ x [N))"rint) € ker (Picrigh,, ¢ — Pick 5 )(S):
Thus, we know that
(& x [ND)*P, (¢ x [N])*Tia) (35)
corresponds under
ker (PicrigOEV/S —» ﬁ%v/s)(s) = Vs(wpvs)(S) =T(S,wev/s) (3.6)
to N - Aj(E,t). It remains to relate N - pr, (triv(t*sz, (1,0))) to the image of (3.5)
under (3.6). We claim that the image of (3.5) under (3.6) is:
pr,, (g )e [(8 % ) 11w 0 (8 % [N]|pygt ) 7ine(1)]) (37)

Indeed,
(tx ) yin: (Ex[N])*P S (¢ xid)*([N] x id*)P = Opv

is the unique isomorphism of zero-rigidified line bundles, here we equip Ogv with its
canonical rigidification and (¢ x [N])*P with (¢ x [N])*rg. Thus, the claim follows from
the explicit description of (3.6) given above.

It remains to relate (3.7) to N - pr,, (trive(t*#c, (1,0))) but this is straight forward:

(4)

N -pr,, (trive(t*re, (1,0))) = pr, (F*@N o t*kr, (1,0)) =

pr, (° (@ 0 iz, (1,0))) 2 pry, (¢ [® 0 (prg)arine(1,0))) C
pr,, (¢ (prp)s [(idp x 1) 1,8 0 (id X [N|pt o) rine(1,0)] ) =
Pty ((Mps gv)e [(8 X 1) 1,8 0 (X [N]liygt ) Tine (1,0)] )

Here, we have used:
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3.2 Splitting the first geometric logarithm sheaf

(A) The fact that pr, o t*®y : t*L — t*[N]"L = Os ® wpv/s — wpv g differs from
pr,, o trivy : t*L£ — wpv /g by multiplication with N, cf. Remark 2.1.11.

(B) we have used the definition of x,
(C) follows from the definition of ®y : £1 = [N]*£L; cf. Section 2.1.3.

In total, we have proven
N -pry, (triv(t*re, (1,0))) = N - A (E,1).

Since N is invertible, we conclude the desired equality. ]

3.2.3 The Katz splitting and the logarithmic derivative of the Kato—Siegel
function

Using the Katz splitting of the geometric logarithm sheaves, many natural construc-
tions for £q and ﬁ{ can be made more explicit. In this section, we will show that the
isomorphism £; = [N]*L; is closely related to the logarithmic derivative dlog 0 of
the Kato—Siegel functions. First, observe that the inclusion wpv,g < £y fits into the
following commutative diagram

W*gEV/S L

b e
W*QEV/S — [N]*ﬁl

———
=[NP*m*wpv s

Indeed, the restriction of @y to T™*wpv /g comes from the morphism wpv g = Wpv/g
induced by [N]Y = [N]: EV — EV.

Proposition 3.2.7. Let E/S be an elliptic curve and D > 1 an integer with 6D invert-

ible on S. Define the open subschemes Up := E\ E[D] and U = E \ {e}. Let us denote
by (A ®og ido,)* (dlog pb) the image of dlog 0 under the map

MR®oqido L)
D(Up,Qyys) =T (U,wiys @p10g Op) - =% T(Up,wpv/s @10, On )

=TWEY /s

induced by the autoduality isomorphism (1.10). The restriction of ®p to Up

®plup,

Lily, —— ([DI"L1)ly, = [DI* (Lily)
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3 The Katz splitting

can be expressed via the Katz splitting as follows:

®plup

Lily,, [DI" (£Lalyy)

H‘C’IW [D]*Kﬁl[

Oup, @ﬂ';}DgEV/S —— Oy, @W(?DQEV/S

(1,0) ————— (1, 5(\* @0, idoy,) (dlog ) )

Proof. Since ®p respects the extension structure, we already know that ®p is given in
terms of the Katz splitting by a map

Ou,, GBWI*JDQEV/S — Oy, EBWI*]DQEV/S

(1,0) (1,9)

for some ¥ € I'(Up, 7*wpv /g). Further, the restriction of ®p to m*wpv /g is multiplication
by D. Thus, ¥ determines ®p on Up uniquely. Our aim is to show the equality ¥ =
£(A* ®0g ido,) (dlog pf). The idea is to show

s*Y = DAl(ET, 8) — AI(ET; DS)

for all N™-torsion points for an auxiliary integer N and the desired equality will follow by
density of torsion sections. Let NV be some integer prime to D and assume we have some
N™ torsion section e # s € Ep[N"]|(T) = E[N"|(T) with n > 1 and T some S-scheme
with N invertible on 7. The commutative diagram

* N"["® ni*
[N"] ELET[]*P[D-N 1" L1,y

‘I)NnT [D]*@MT

]
Lyp, —— [D"L1E,

proven in Lemma 2.1.9 (e) shows the commutativity of

€*q>D
G*LI,ET _— G*ELET

trivsT triVDsT

P
S*ELET S*D> (Ds)*[’l,ET-
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3.2 Splitting the first geometric logarithm sheaf

This fits into the big commutative diagram

ida(-D)
Or ®wpyr —— Or ®wpyr

*
% e*dp %
(& ‘Cl,ET —— € £1,ET

*

S L1y ——P s (Ds)* L1,

s*mﬁ (Ds)*mﬁ

Or @ wgyr — Or @wpy)r

(1,0) ——— (1,s*0)
The composition of the left vertical and the upper horizontal map applied to (1,0) gives
e*dp ((trivs 08"k, ) (1, 0)),
while the composition of the lower horizontal with the right vertical map gives
((trivps o (Ds)*ke, ) (1,0)) + (0,59).
Comparing both sides and observing Proposition 3.2.6 gives:
D-Ai(Ep,s) = A1(E,Ds) + s

ie. s*9=D-A(Er,s)— Ai1(E, Ds). Observing Remark 3.1.4, dlog 0 is by density of
torsion sections uniquely determined by the following property: For all N prime to D,
all S-schemes T" with N invertible on 7" and all e # s € Ep[N"|(T) for some n > 1 we
have

s*dlogDH = ()\_1)* |:D2 . Al(ET, S) - D- Al(ET, DS)} .

And we can conclude ¥ = (A\* ®o, ido,,) (dlog pb) as desired. O

Remark 3.2.8. We are trying to avoid choosing autoduality isomorphisms. Since the
Katz splitting and ®p are defined intrinsically, i.e. without choosing any autoduality,
the appearance of (A* ®p ido,) (dlog pf) in the above statement seams to be strange
and there should be an intrinsic way to define (A* ®o, ido,) (dlog pf). Indeed, this
is possible. It is not hard to see, using the symmetry of the Poincaré bundle and the
equality (idg x e)*s2 = dlog 0 that

(V" @0y idoy) (dlog pb) = (idp x €)*(sqanv) € T(E, T*wpv /s @0, O(E[D]))

where sCDan, pv is the D-variant of the canonical section associated with the elliptic curve
EY instead of E. It is just because of readability that we have preferred to use the
established Kato—Siegel functions instead of (idg X e)*(sc’ém Bv)-
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3 The Katz splitting

Since L’J{ and K c} are obtained by pushout from £; and x.,, we deduce the following:

Corollary 3.2.9. Let E/S be an elliptic curve D > 1 and 6D invertible on S. The
restriction of <I>TD to Up := E \ E[D] can be expressed via the Katz splitting as follows:

(I’TDlUD

“lly, o1 (<l],)
NQW [D]*KﬁlW
OUD D HUD OUD D HUD

(1,0) ——— (1,i [ (V" ®oy idoy) (dlog pb)] )

where we consider (A ®o4ido,) (dlog pf) € I'(Up, T*wpv/g) as element of T'(Up, HE)
via the inclusion i : wpv /g < H.

3.2.4 The Katz splitting and the connection on the geometric logarithm
sheaves

The geometric logarithm sheaf EI is equipped with a canonical connection V ;. The
1

Katz splitting is not horizontal if we equip Oy @ Hy with the canonical S-connection
obtained by pullback of the trivial connection on each summands. The aim of this section
is to describe the corresponding connection on Oy & Hy explicitly.

Let us first recall that the canonical short exact sequence

0 Hp cl Og 0

is horizontal if we equip Hp with the canonical S-connection obtained from pullback
of the trivial S-connection on H. The Katz splitting can be seen as an isomorphism of
short exact sequences

0 — Hy cl], Oy —— 0
| |
0 —— Hy —— Oy ® Hy Oy 0

Thus, the S-connection
Ov@Hy — (OU EBHU) RO Q}g/g

on Oy ® Hy making k ot horizontal is the unique S-connection V, with
1

(a) Vil is the pullback connection on the subspace Hy and
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3.2 Splitting the first geometric logarithm sheaf

_ 1
(b) V(1,00 =V (%1(1,0)) € T(U, Hu ® O}y g).
We will describe V(1,0) explicitly. By restricting the counit of the adjunction
(7E)* (7E)+ Qg5 (2[e]) = Qf5(2[e]) (3.8)
to j : U — E we obtain
(m0)* (7B)« Q5 (2[e]) = 7" Q5 (2[e]) = Q).
On the other hand, we have the morphism
(71)« Qs (2le]) = (78)jsQyys = (T0)Qyys — Har (U/S) & Hag (E/S),

which is in fact an isomorphism [Kat73, A 1.2.3]. This morphism induces after pullback
to U the isomorphism

(m0)* () s Q5 (2le]) = 7 Hag (E/S) = HY- (3.9)

Now, (3.9)" ® (3.8) gives the map

((m)" (r) Qs (21e))) @0 ((0)* ()25 20e))) = Hor @0, Uys.

The image of the identity

\

iy )01 o 2]) € T (U, ((m0)* ()45 2e]))~ @0, ((w)*(m)mg/s@[en))

under this morphism gives rise to some element
Idy €T (U, Hu ©oy Uyys) -
Remark 3.2.10. A more explicit description of
Idy €T (Hu ®0, Ofy/s)

can be given as follows. Let us first assume wp g is free and generated by w € I'(S,wp/g)
since we are still assuming that 6 is invertible on S we get a Weierstrass equation with w =
df. The elements w and n = :r%:‘C form a basis of the free Og-module (WE)*Q}E/S(Z[e]).
Via the isomorphism

(75)+ Q5 (2lel) = (18)4 Qs = (70): Qs — Hag (U/S) & Hag (E/S)

we obtain a basis of ([w],[n]) of the free Og-module Hly (E/S). Let ([w],[n]Y) be the
dual basis of Hig (E/S) = Hig (EV/S). The element Id 4 is then explicitly given by

Iy =W @w+ MY ©nel (U Hig (E/S) @ Q).

It is straightforward to check that this explicit definition of Id3 does not depend on the
chosen generator w of I'(S,wp/g). Since wg/g is locally free of rank one, we can glue
this local definition. This gives an alternative way to define Id .
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3 The Katz splitting

Proposition 3.2.11. Let V,; be the unique integrable S-connection on Oy ® Hy making
K’LJ{ : (OU ® Hu, vli) = (‘CL VLJ{)

horizontal. Then, V, is the unique S-connection which is the pullback connection on
Hy and satisfies
Vi(1,0) = Id3 € T(U, Hu ®0y Qr/s)-

Proof. By the above discussion the connection is uniquely determined by its restriction
to Hy and by V,(1,0). Thus, it is enough to prove the equality
Vi(1,0) = Idy.

Since all constructions are compatible with base change, this equality can be checked
locally on the base. Thus, we can assume that S is affine, that there exists some D > 1
which is invertible on S and that wg/g is freely generated by w € I'(S,wp/g). In par-

ticular, the associated Weierstrass equation gives us generators [w], [] of Hig (U/S) =
Hly (E/S) and we can write

Idy =[w]Y@w+ Y en

The short exact sequence

0 — Hy — Ouv @ Hy Ou 0
is horizontal if we equip Oy ® Hy with V. Thus, the connecting homomorphism
§:0s = Hag (U/S) = Har (U/S, Hyu) = Hig (U/S)" ®0, Har (U/S)
in relative de Rham cohomology can be computed as
0(1) = [Vk(1,0)].
Here, [-] is the canonical map
[1: T (U H @ Qlys) = T (S, Hig (U/9)" @05 Hig (U/S)).
Now, Proposition 2.1.5 tells us that
[Vi(1,0)] = 6(1) = [Id#] (3.10)

and the rest of the proof will consist in showing that the equation [V (1,0)] = [Id 4]
lifts along [] to an equality in

T (U, Hy ® Q) -
By equation (3.10) we know that

Vi(1,0) = [w] @ w + [0 @1+ [w]” @ w1 + [n]" @ w (3.11)
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3.2 Splitting the first geometric logarithm sheaf
with
wi,wp €T (U,Im (d Oy — Q}]/S)) .

Recall that the map CIJL : EI — [D}*EI is horizontal. Now, Corollary 3.2.9 shows that
this map is given via the Katz splitting by:

Oup, ® Hupy — Ovup & Hup, = [D]* (Ov @& Hu)
(3.12)
(1,0) ——— (1i (5(\* @0, idog) (dlog o) )

This map is horizontal if we equip the left hand side with the connection V, and the
right hand side with the connection [D]*V. Here, i : n; wpv/g — Hup is the nat-
ural inclusion. Let us write for a moment @ for the map (3.12). In particular, the
horizontality of (3.12) implies the equality

(ID]V,)(@'(1,0)) = (@' 9idgy ) (V(1,0)) (3.13)

Before we make this equality explicitly, let us consider the image of the logarithmic
derivative of the Kato-Siegel function (\* ®og id)(dlog p0) € I'(Up, 7f;, wpv,g) under

Lo _ -1 d®d 1
d: TFUDQEV/S = WUDQEV/S ®7T{/;OS OUD — WUDQEV/S ®OUD QUD/S'

It is given by the formula
— D*(\w) @+ D(\*w) @ [D]*n. (3.14)

This can be checked by a direct transcendental computation in the universal situation
which boils down to

0. |D*((2,7) = D((Dz,7)dz| = —~D?p(2,7)dz + D[D]* (p(2, 7)dz)

or see [Kat04, (3.5.1)] but observe the missing minus sign in loc. cit. The left hand side
of (3.13) can be computed as follows:

([D]*V,0)(@'(1,0)) = ([D]*V,) (u (éu* ® id)(dlogD6)>> _

=([D]"V)(1,0) + (i @ id%D/s) (d {;()\* 2 id)(dlogDG)D (3.11),(3.14)

= ([w]" @ [D]*(w +w1) + [0]" ® [D]*(n + w2)) — D - i(XN*w) @ n +i(\w) ® [D]*n =
= ([w]" @ [D]*(w~+w1) + [0 @ [DI*(n+w2)) + D - [n]Y @n—[n]" @ [DI'n =
=Dw] @ w+ w]" @ [D*w1 + [n]" @ [D]*w2 + D - n]¥ @ n

While the right hand side of (3.13) gives:
(¥ ®idgy ) (Va(1,0)) = (@ ©idgy ) (1] @ (0 +w1) + 1" @ (7 + wn) =
= D)’ ® (w+wi) + D[] @ (n+ wo)
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Comparing both sides of (3.13) gives the equations
[D]*w1 = Dwy, [D]*ws = Dws.
But this implies wy,wy € T'(U, Tr_lgE/S). From wg/g — Hlp (U/S) we deduce
I'(U, Im(d) N7 'wp/g) =0
and we conclude w; = wy = 0. O

Remark 3.2.12. For a family of complex elliptic curves we have explained in Section 2.3
how to construct an analytic splitting starting from a Theta function, which trivializes
the Poincaré bundle. It is straightforward to show that the Katz splitting coincides with
the analytic splitting obtained via the Theta function Z(z, w) appearing in [BKT10, §1].
Further, in [BKT10] an explicit splitting of the first logarithm sheaf for en elliptic curve
over C is constructed from an explicit Cech cocycle. Also, this splitting coincides with
the Katz splitting. This explains why the explicit formula for the connection on the first
logarithm sheaf in loc. cit. coincides with the above formula.

3.3 The Katz splitting for relative Kahler differentials

In this section we consider the following setup. Let f : .S — T be a smooth morphism,
let 7 : E — S be an elliptic curve and assume that 6 is invertible on S. We have the
following fundamental short exact sequences of Kéhler differentials:

0 —— 7*Q%p —— Qpp —— Qg —— 0 (3.15)

and
0 —— I/ — e*Qpp —— Qgp —— 0

with Z the ideal sheaf defining the zero section e : S — E. Using Z/Z? = Wr/s = e*Q}E/S,

allows us to rewrite the second short exact sequence as:

— e*Q)

0 —— 0!

/s — 6*7'(*9}9/71 — 0 (3.16)

1
E/T
This exact sequence provides us with a splitting of the pullback of (3.15) along e. For
later reference let us fix this observation in a lemma:

Lemma 3.3.1. Let E/S/T as above then the short exact sequence (3.16) provides a
canonical splitting to the pullback of the short exact sequence

— 0L . ——0

— E/S

0 —— 7*0OL BT

S/T
along e : S — E. Let us denote the resulting splitting
o: e*Q}E/S ® Q}g/T = e*Q}E/T

by o.
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Let us denote by KS : wpv,g — Q}S‘/T ®og Qé/s the Kodaira—Spencer map. By pullback

v
along 7 we obtain a map KSp : m*wpv /g — W*QE/T Qo (Q}E/S> . If we tensorize the
pushout of the first geometric logarithm sheaf

0 —— W*QEV/S [,1 OE 0
along the Kodaira—Spencer map with ®o, Q}E /5> We obtain a short exact sequence
1 1 1\ 1 1
0=k~ (L1 11 <W*QS/T® (2h)s) ) ® Qg+ Qg+ 0. (317)
(T*wpv g

Here, we write [] for the coproduct in the category of Og-modules. The canonical
splitting of the geometric logarithm sheaf along e induces a canonical splitting

~ v
cangs : e*Q}E/S ® le/T Ser o 1 (W*QE/T ® (Q}E/S) ) ® Q}E/S
(T*wpv/g)
of the short exact sequence (3.17).

Proposition 3.3.2. There is a unique isomorphism between the short exact sequence
(3.17) and the short exact sequence

1 1 1
0 —— ﬂ'*QS/T — QE/T — QE/S — 0
which is compatible with the canonical splittings o and canks along e.

Proof. There are many equivalent ways to define the Kodaira—Spencer map. We recall
the following definition from [FC90, p. 80] which fits best for our purposes. Let

0 —— 1 @0, (Uys) — Uyr ®o, (Uys) Op 0

be the short exact sequence obtained by tensorizing the short exact sequence of Kéahler

v
differentials with ®o, <Q}E / S) . The connecting homomorphism obtained by applying
Rm, to this sequence gives a map

\Y%
§:0g=m0p — R'm, {W*Q}S‘/T Qop (Q}a/s> ] = R'm.0p ®05 Qg7 ®0s we/s-

Using Rm,Ofp = g}év/s, the Kodaira—Spencer map is the image of 1 € I'(S, Og) under
0. Using this definition of the Kodaira—Spencer map the claim follows immediately from
Corollary 2.1.4. O
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The Katz splitting of £1]y induces a splitting on the pushout of £;|y along KSg. If we
tensorize with Q}E /50 We obtain a canonical splitting of the short exact sequence (3.17)
restricted to U. The above proposition allows us to define a splitting of the short exact
sequence of Kéhler differentials restricted to U:

Definition 3.3.3. The splitting
ko Ve @ HQL - 5Ol
Q- 38y/s Udts/T U/T

induced by Proposition 3.3.2 and the Katz splitting on £; will be called Katz splitting
of Q}] I

Let us note that the Katz splitting is compatible with base change.

Remark 3.3.4. If the Kodaira—Spencer map is an isomorphism, e.g. in the case of the
universal elliptic curve with some level structure, the short exact sequence of Kéhler
differentials is essentially equivalent to the first geometric logarithm sheaf £;.
3.3.1 Characterization of the Katz splitting for Kadhler differentials
For N > 1 and t € E[S] we obtain a canonical isomorphism
*l ~ 1
Ty Qg — Qg

which induces
trive g : t*Q}E/T — e*Q}E/T =wp/s® Q}g/T-

The following characterization is an immediate consequence of the corresponding result
for ,Cl.

Proposition 3.3.5. The Katz splitting
. Ql * Ql ~ Ql ~ Ql
ko My s © Tyl e = Sy = Sy

is the unique splitting of the short exact sequence of relative Kdhler differentials with the
following property: For every N > 1 and every S-scheme X with N invertible on X and
every e £t € Ex[N]|(X) we have

trive o(t* (ka(@,0))) = (0, KSpy ('O © A1(Ex, 1)), V& e T (U, Q)

where
KSg :wg/s ®og wpv s — Qé*/T

is the Kodaira—Spencer map.

Proof. This follows immediately from Proposition 3.2.6 and the fact that ko was defined
by pushout of k., along the Kodaira—Spencer map. O
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3.3.2 The Katz splitting of Kadhler differentials on the Weierstrass curve

The definition of the Katz splitting for Kéhler differentials was rather indirect. Indeed,
one can give a very explicit description of the Katz splitting in terms of Weierstrass
equations. We do the computation in the universal case. Let EWeier /AfWeier he the uni-

versal elliptic curve with a fixed invariant differential, i.e. MWel®" = Spec Z[g1, g3] [6%}
where A = g3 — 27g% and EWVe is given explicitly by the Weierstrass equation:

y? = 42’ — gox — g3
We have a fixed invariant differential w = d?x on fWeier /) Weier,

Proposition 3.3.6. Let EWVeier /MWeler pe a5 agbove and U := EWVer \ {e}. Then, the
Katz splitting is the unique Oy -linear map

1 1
QU/MWeler @ TrUQMWeler/Z — QEWeler/Z

which induces on TFUQMWClcr/Z the canonical inclusion

1 1
TF;}QMWeier/Z — QEWeier/Z

and on Q} the map Q} — O given by

U/MWeler U/MVVeler EWeler/Z

dx g2 g3 > g2 72 g3 3g
s (—1822 gy 4 272 + (122222 — 18%8 p o2
y ( 8==xy ==y | dx 8=—x — dy 5 ydgs.

Proof. Let us write

2
- g2 93 92,0 1993, o9 392
@ < 18A y+27Ay>dx+<12A 1837 2A>d + Ayalgz

From the definition of @ it is not even clear that © maps to w under the restriction of
Kéhler differentials

1 1
QU - QU/MWCicr

which is a necessary condition for w — @& defining a section of QU —» Qllj /

using y? = 42 — gax — g3 and the corresponding equation on Kéhler differentials 2ydy =

A Weer - Indeed,
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3 The Katz splitting

(1222 — go)dx — xdgs — dgs allows us to reformulate:

2
- (1592 g3 92,2 139, 9% 392 4 _
w.—( 18Aﬂzy+27Ay>dﬂs+<12Aa: 18Aa: 2A>dy+2Ayd92_
_(_15%2 93\ (42 — g — )
—( 18Aa:+27A> (43: gox 93) y—i—
2 2
92 o .93 95\ (1222 — go)dx — zdgy — dgs) . 3g2 odgo
122222 — 1822 — 222 RNy LA
+< NN A) 2% toAY

A
2\ ((1222 — — —
+<12g2 2189395292) (1222 — go)dz — wdgs — dgs)

_(_18%2 93 (42® — goz — aa) &
_( 18 I+27A>(4I gox gg)y—l—

A" A A 2y
+?2)'f(4x3—92$—gg)(?:
- <—18~22:p n 27?) (42° = gow — g3) + ( %:ﬁ - 9%3:5 - gj) (1202 - g») dr,
+ Bij (41‘3—92:3—93) —x( fo—Qix—gj)] d;n_
oy ( el 33293) o ( P2 g, i) o (3.15)

From the last expression it is obvious that @ lifts 2. It remains to prove fm(%x, 0) =a.
This equality can be checked after extensions of scalars to C and analytification. We
have the following explicit description of the C-valued points of M Weler:

(C x H/Z? x Sly(Z)) x C* ~ EWeier(C)

! |

(H/Sla(Z)) x C* ———— MW (C) = {(g2,93) € C*: g} — 2793 # 0}
Here, the lower horizontal map is given by

(7—> )‘) — (92(>\A7)7 93()‘AT))

with A; = Z + 7Z and g2 and g3 the classical invariants associated with the lattice A;.
The upper horizontal map in the diagram is the map

(277—7 )‘) = (ac,y) = (/\72@(277—)7)‘73829(277-))

given by complex uniformization. The fixed invariant differential df corresponds via this

isomorphism to
A 2dp(z,7)

= Adz.
AP0z m)

106



3.3 The Katz splitting for relative Kéahler differentials

Using g2(AT) = A4ga(7), g3(A7) = A" %g3(7) and A(\7) = A"12A(7), the analytification
of @ expresses via the above isomorphism as:

& :)\Sd ()\—2@(27 T))

9.(2,7)
g3(7) ga2(1)? 392(7)g3(7) \ d(A\"*g2(7))
+ A0 <9A3(T) o(z,7)% — 22(7) o(z,7) — 22A(73) ) 8zp(2?7) -
a7 (g2 e g9s(T) ~g2(1)*\ d(A"Cg3(7))
4 (GAW(’ R Am) 0.(z.7)

For the following calculations let us agree on dropping the variable, i.e. we will write

0, 92, g3 for p(z,7), g2(T), g3(7) etc. Furthermore, let us write (-)" := 9,(-) for partial
derivation with respect to 7 if a function only depends on 7:

d(A%p)
~ :)\3
“ 0z
pL ( 950 9 39293) d(\"g)

_l’_

AY T oA T oA 8o

_y( 92 0 _ o9 _9%>6W693>_
A

AYTA) o
=dz+
=Adz+
+ —2@—2*‘75@—54‘2%4 5?@ Def. &
=\dz+

This can be simplified further using Ramanujan’s identities. Let Fs; be the classical
Eisenstein series with normalized constant term in the g-expansion, i.e.

Ey=1-24) 01(n)q", E;=1+240) o3(n)q", Es=1-504) o05(n)q"
n>1 n>1 n>1
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3 The Katz splitting

Then, we have the following identities due to Ramanujan, cf. [Ram00, eq. (30)] or [SS12,
(3.1)-(3.4)]:

Ly Yime -k
i 4 3( 2By = Es)
1 1 )
5P =3 (E2E6 —E4)
1N
27 omi A

The Eisenstein series F4 and Eg are related to the Eisenstein series go, g3 defined above
via ga = %7?4E4 and g3 = %7’(’6Eﬁ. Furthermore, Fs is related to the period function
n(1,7) = ((z+1,7) — ((z,7) of the Weierstrass zeta function via n(1,7) = (27”) E5. We
can restate Ramanujan’s identities as:

1A 6
gp = 3A92+213 (R1)
1A/ 1 g2
93 = SAIBT 52712_2 (R2)
1 A
7](1, T) 27TZEK (R3)

Using Ramanujan’s identities, we can further simplify the analytic expression for @ by
a straightforward computation:

W =Adz+
2 2
93 2 95 39293\ , (.92 2 93 A, dr (RLR2)
A 8T@+<9A oA TaA >~"2 <6A NG A)g?’] oo
=dz+

3 1A 6
+ |00+ <99A3@2—§Zp— gzg3> <3A 2+gg)

(622 g%, 9\ (1A 1gs\jdr _
(Ap N A><2A 93 350 ]8Zp_
1, 1A 192}&

- o2~
AdzJFA[a@ 2 T 6 AY T 320 .0

N.B.: This is a good point to remark that the above computations show that the ana-

lytification of the map

dx
1 1 ~
QU/MWeier — QU7 g = w

does not depend on \. Indeed, the above computations show that this map is analytically

given by
1 A 14/ 1 g9 dr
Mz Aodz+ N |Orp—2——p° — ——p+ - =
dr A dz A0 = 2o 0~ s N 30m ] B
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3.3 The Katz splitting for relative Kéahler differentials

or equivalently by

1A 5, 1A 1g2] dr

(3.19)

The independence of X is a necessary condition in order to give ¢ — & a chance to

coincide with kq. The Katz splitting does not depend on a chosen invariant differential.
The corresponding property that 22 — @ is independent of the choice of the invariant
differential is exactly reflected by the fact that this map is independence of A.

In order to compare the above map with the Katz splitting we should describe the Katz
splitting on EWVeier(C) /M Weier (C) analytically. We claim that the map

1 1 ~ Ol
QU/MWeier — QU/MWeier @ W*QMWeier — QU

is analytically given by

1
dz — dz + o (=, 1) +n(l,7)-2)dr (3.20)
Indeed, it is easily checked that the 1-form on the right hand side is invariant under the
action of Z? x SLy(Z) and thus defines a holomorphic 1-form on U(C). If we view

1
dz + 5 (C(z,7)+n(1,7)-2)dr.
as holomorphic 1-form on the complex elliptic curve C x H/Z? where (m,n) € Z? acts
as (z,7) = (z 4+ m7 + n), we see that 5= (((z,7) +n(1,7) - z) dr specializes along the
map 7+ (&7 + £) to

1(«@ b )+ (a L b >>d
i NI TN TINNT TN )T

but by the explicit formula for A;(E,t) this coincides with KS(dz ® A;(E,t)). Thus,
the map (3.20) coincides with the analytification of kg on a dense subset and the claim
follows.

Thus, by the above equations (3.20) and (3.19) it remains to prove the following equality
of meromorphic functions on C x H

1A, 1A 1g

1
5 (C(zm) (L) - 2) = 2 A 6 A 32w

21
27 (3 )

1
— |Orp—2
9.0 3
We first show that applying 9, to both sides gives equality and then care about the
constant term in the Laurent series expansion in z. Using again one of the Ramanujan
identities, the left hand side gives

1 n(l,7) Rz 1 1 A

1
82%(((277-)4_77(177-)'2) = —%P‘FW = _%p+ﬁA‘
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3 The Katz splitting

Before we apply 0, to the right hand side, let us note that we obtain the following
equations by differentiating the Weierstrass equation (9,p)? = 4¢> — g3p — ga:

1
azazp = 6@2 - 592 (I)
) 1, 1 1,
0:9 - 0:0:p = 69°0rp — 5095 — 5020-9 — 505 (II)

Using these equations, we can simplify d, applied to the r.h.s:

1 1A , 1A 1g
(s [k By 18 1Ty
(azp[ i A T AT 32m

1 1 1A
{ -0, 0 6 A p] +

0. 271
0,0 0,0 1 1A 1
20rp Oz z@Q . [879—2@2—@4—92} —
0. (0.9) 271 6 A 327
1 1A
=4 -y
271 6 A
1 1 1A 1g]\W
(0.0 0.0, — 0.0, |Orp— 22— — ~ D:
+ (82@)2 ( 280 007§ 20240 |:T@ 27_”.@ 6Ap+32m
W_, 1 1A
- Y s A
1 1 1 1A/ 1 ¢ (I,IT)
——— (0.0 0.0-0 — 0.0.0 - 0r 60> — =gz ) - [2—p" + - — _77]) =
+(8zp)2( b v p+(p 292> [27rip+6 = 39m
1 1A
=—d—p— -+
271 6 A
1 1, 1, 1o, A g2 o 1A 1 g3
— | —Zpd,— = 12— o R 92 ) =
+(azp)2< 259> 293+( o TAY T30 T 1A% 5om
/ ’ 2
L LA Dot X6’ 38 - (R0t k) ot b
T MY T 6 A (029 =
VA 12 2
1IN 1250+ X 0° - 38207 - (150 + 2ios) o+ 352
T 6 9% — g3 — go -
1 1A 3 A1 1A

i T6a T’ Taa T ¥ T 2A
Comparing the above formulas we get

1 1 1A 1A 1 g
—0, 1 . =0 | =— |0rp—2-—— P o— Q29 7 ’
2m,8 (C(z,7) +n(1l,7)-2) =0 (@p [8@ QmAp 6Ap+32mD

In order to prove the theorem it remains to compare the constant terms in the Laurent
expansion of both sides. The Laurent series of the left hand side of (3.21) starts as
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3.3 The Katz splitting for relative Kéahler differentials

follows:

S (G +n(1,7) 2) = 5=+ 0(2)

Thus, there is no constant term in the Laurent expansion in z. Recall that p(z,7) =
272 + O(2?) which implies %p = —32% 4+ O(z°). Using this, we have
1
0.

1A/ 1 g2
W’ A" :mJ =0()

and using p?(z) = z7* + O(1) gives

1 1 A 1 _

Combining the above gives

L
0.

which concludes the proof. O

1A, 1A 192}: 1
omi A 6 AY T 32m

—2 14 0(2),

21

[&p -2

Remark 3.3.7. Since wp /g is always locally free of rank 1, this gives us, at least locally
on the base, a quite explicit and purely algebraic description of the Katz splitting for
Kaéhler differentials.

3.3.3 Lifting the connection via the Katz splitting

The geometric logarithm sheaf EL comes with an integrable S-connection. Our aim is to
extend this connection to an integrable T-connection whenever S is a smooth T-scheme.
In a first step we want to relate the Katz splitting of Kéhler differentials to the Gauss—
Manin connection. Let again E/S be an elliptic curve with 6 invertible on S and let
S be smooth over T'. The relative de Rham cohomology is equipped with a canonical
connection

Ve : Hig (E/S) = Qyr ®0, Hig (E/S)

coming from the spectral sequence associated with the filtration induced by the short
exact sequence of relative Kéahler differentials for £/S/T cf. [KO68] resp. [Kat70]. An
explicit way to compute the Gauss—Manin connection is already given in [KO68]. We
follow the exposition in [Ked08, §3.3, §3.4]. The canonical surjection

(m0)- Qs — Hag (U/S) = Hig (E/S) (322)
induces an isomorphism (cf. [Kat73, A1.2,p. 163]):
T 5(2le]) = Hog (E/S) (3.23)
Observe that we can use this isomorphism to split the surjection (3.22) via

Hig (E/S) =m0 5(2le]) = mjelys = (70)« Qs (3.24)
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3 The Katz splitting

where j : U — FE is the inclusion. The short exact sequence
0 —— (TrU)*Qé/T — Q%]/T — QIU/S —— 0
induces a canonical surjection
O p = NQp e — (1) Qe @0, /s

Applying (7)., which is exact since it is affine, and using the projection formula we
obtain:

(1)o7 = (70)s (70)" 7 @0y Oy js) = Wyjr @05 (10).Qhyys. (3:25)

The explicit method from [Ked08, §3.3, §3.4] can be summarized in the commutative
diagram:

dyy
(7)1 > (T0) Yy ——— (7)1
l(325)
(3.24) (3.22) Q}S‘/T ®og (FU)*QlU/S (3.26)
lid®(3.22)
\Y
Hgg (E/S) o QE/T ®os Har (£/5)

Here, the dotted arrow in the upper left corner is an arbitrary section to the canonical
projection. One possible and natural choice for the dotted arrow is the map induced by
the Katz splitting for relative Kéhler differentials, but every other choice works equally
well. The choice of the Katz splitting for the dotted arrow makes the above diagram
compatible with the canonical splittings on both sides.

Lemma 3.3.8. For S — T smooth with 6 invertible on S and E/S an elliptic curve the
following diagram commutes:

P d
(70) ey s —2 (1) —— > (7)1

/ Tid/\lﬁ
we/s Qfr ®0s (T0): ) (3.27)
Tid®(3.24)
v
Hgg (E/S) o Q}q/T ®os Har (£/5)

Proof. The Gauss—Manin connection as well as the Katz splitting are compatible with
base change. Thus, the claim can be checked locally on the base and we may assume
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3.3 The Katz splitting for relative Kéahler differentials

that wp/g is freely generated by w € I'(S,wg/g). Again, by compatibility with base
change we can prove the claim in the universal situation, i.e. we can reduce to the
case of the Weierstrass curve F = EWeler g — pfWeier and T = SpecZ[1/6] with
invariant differential w = 9. Since both compositions in the above diagram are Op-
linear derivations on wg/g, it suffices to check the commutativity on the generator w.
Using the explicit description of the Katz splitting in terms of the Weierstrass equation,
a straightforward but lengthy computation with Kéhler differentials gives:

du (ko(w)) =
2
_ 1892 93 92, 9 193 % 392 _
=dy l( 18Aaty+27Ay> dzr + (12Aw 18Aa; 2A> dy + 2Ayd921 =..

g2 9gs dr 1dA dzr 1 (3 9 192)
= (3%2dgs - 2Lag ) A2 - — 2 A L 2 (202 - 292 gy nd
(Ag3 2A92) T A Ny Ty AT T ga)tee s

In particular, we deduce from this formula and the commutative diagram (3.26) the
following formula for Vg (w):

(39244, 292 _Llda
Vou(w) = (352 - 3 Rdga) 1) - 355 ©

where [w] and [n] are the de Rham cohomology classes associated with %’” resp. xdf. It
remains to compute the image of Vgy(w) under

id®(3.24) idAk
Q]l\/l ®OIW ﬂcllR (E/M) — lew ®(’)M (ﬁU)*Q%]/M */\> (WU)*Q%]'

By the above formula for Vgy(w) this is given by:

((id A ) o (id® (3.24))) (Ve (@) =
= 3@@3 - 993d92) AR (mdyx) _lda AK <dm> (319)

A 2 A 12 A "
_ (39244, - 293 dz
= 3Ad 2Adgg) AN +
92 993 9B 2 9% 39293 \ dg2 92 o 93 95 dgs
92 4o — 2934 9.2 92 .. 992 (92,2 o993, _92) 998
T 3A% T oA 92>A [(9&” oAT T oA | Ty AT TIATT A
1dA de
12 A Y
o 1dA 1093 o 95 3993\ dga (92 » (g3 g3 dgs| _
12 A AY TATT oA ) Ty A AYTA Ty
g2 9 gs3 de 1dA dx {3 9 192} dgs N dgs
=(322dgs — 2224 el i S B N R
(3A BTN 92) ANyt aT i Y
Now, a comparison with the above equation for dyy (kq(w)) proves the result. O
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3 The Katz splitting

Remark 3.3.9. In the proof we have deduced, as a by product, an explicit formula for
the Gauss—Manin connection on the Weierstrass family:

A

Voulw) = ) (3%dgn - 3 %dn) - 5kl © 3

A 2A 12

As a consistency check one can compare our formula for Vg (w) with the transcendental
description of the Gauss-Manin connection on C x H/Z? given by Katz, cf. [Kat73,
§A1.3]. Our above formula gives the transcendental formula

_ 9293_9939&) _Lleda
Voulw) =) (328 - 28% ) 4r - Slue 2.

Using Ramanujan’s identities (cf. proof of Proposition 3.3.6)

!
_ =2 1
92 =g N2 T 559 (R1)
1A 1 g3
/ 2
= —— — == 2
g3 2A93+32m. (R2)
1A
we can rewrite this as
1 1
Vem(w) = == ®@dr — -—n(1,7)w] ®dr
211 21

which is exactly the formula in [Kat73, A1.3].

Corollary 3.3.10. Let E/S/T be an elliptic curve over S with 6 invertible and let S be
smooth over T. Let us write Hy := 7 Hig (E/S)" = 7, HAg (EV/S). Then, there is a
unique integrable T-connection

Vo : Ly = Lllv @0, yjr

on

0 Hy £1|U Ou 0
satisfying the following conditions:

(a) If we restrict the T-connection Vi to an S-connection, then we obtain the canon-
ical connection V .+|u.
1

(b)  The above short exact sequence is T-horizontal if we equip EJ“U with Vy, Oy with
the canonical T-derivation and Hy with the pullback connection of the Gauss—
Manin connection.

(¢) We have the explicit lifting formula

Vi (s(1,0) = (idq ® m) (Id ).
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3.3 The Katz splitting for relative Kéahler differentials

Proof. Indeed, we have EI = Oy @ Hy under the Katz splitting. Thus, it is straight-
forward to construct a unique connection satisfying (b) and (c). (a) is an immediate
consequence of (b) and (c) using Vq(/ﬁg(l,O)) = Id3. The crucial point is to prove
that the defined T-connection is integrable.

The pullback of the Gauss—Manin connection induces a canonical T-connection on Hy.
Let

dyy)  Hu @0, Uy r — Hu @0, Oy
be the second differential in the de Rham complex €27, /T(’HU). The dual H); is equipped
with a canonical T-connection. Now, let

df(ﬁ?]@%v ‘Hy @HY — Hy @ HY @o, Qi

be the first differential in the de Rham complex of Hy ®o,, H; with the tensor product
connection induced by Hy and Hy;. Then, we claim that

. 4
id®k
Hu @oy Qzlj/s —=5 Hy Qoy Q(lj/T — Hy Qoy Q2U/T
4 id@(mdﬁ
Hu ®oy THWE/s Hu ®oy Qs @0y Qyr
J o id@w;;((am)ﬁ

Hy@HY

Hu ®o, 1Y Hy ®o, My @oy ®OUQ[1]/T

commutes. Both compositions are Op-linear derivations on Hy ® Q}] /s with values in
Huy ® QQU /s We may check the commutativity locally. By working locally on the base
we may assume that wp/g is freely generated by w € I'(S,wp/g). Then, Hy @ Q}]/S is a
free Opy-module of rank 2 with generators []Y ® w and [w]¥ ® w. By the Leibniz rule it
is enough to show that both compositions in the diagram coincide on those generators.
But this follows immediately from Lemma 3.3.8.

Using the commutativity of the above diagram, allows us to show the integrability of
Vu. The pullback of the Gauss—Manin connection is integrable. Thus, the claimed
integrability of Vi boils down to the equation:

dyy), (Vu(s(1,0))) = 0.
By (c) this is equivalent to
dyy) ((ild @ k) (Id3))) = 0.

Using the above commutative diagram, this is equivalent to Id3 mapping to 0 under
the other composition of the diagram. But Id4 maps by definition of Idy to idy, €
I'(U, Hy®@HMy;) under the left vertical composition. Since the identity idy,, : Hy — Hy is
horizontal for the canonical connection on Hy, it maps to zero under the lower horizontal
map. This finishes the proof. O
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4 P-adic interpolation of
Eisenstein—Kronecker series via p-adic
theta functions

In the paper [Kat76] Katz constructs p-adic variants of real-analytic Eisenstein series
and proves the existence of a two-variable p-adic measure interpolating them. The
construction of the p-adic real-analytic Eisenstein series is completely analogous to his
construction via the Gauss—Manin connection in the C* case. Let us briefly recall Katz’
construction. By applying the Gauss—Manin connection on the universal elliptic curve
iteratively to classical algebraic Eisenstein series one obtains global sections of the sheaf
of symmetric powers of the first relative de Rham cohomology. In order to construct
real-analytic Eisenstein series from those classes one can pass to the analytification and
apply the Hodge-decomposition. Instead of passing to the analytification one can restrict
to the ordinary locus and pass to the moduli space of trivialized elliptic curves. Here, one
can use the unit-root decomposition instead of the Hodge-decomposition to construct
p-adic modular forms out of those classes in symmetric powers of the first de Rham
cohomology.

In Chapter 1 we have provided a different construction of real-analytic Eisenstein series
via the Poincaré bundle. The aim of this section is to provide a new construction of
Katz’ two variable p-adic measure via our approach. We will proceed as follows: for
every elliptic curve we have trivializations

e*En :> OIan EV.

of the geometric logarithm sheaves along e. For elliptic curves over p-adic rings with
ordinary reduction we will extend this splitting to infinitesimal neighbourhoods of the
zero section. This gives us an infinitesimal trivialization

lim L] = O

n

ExgEV'

If one further assumes the existence of a rigidification on F, i. e. an isomorphism @m,S =
E‘, one can use this isomorphism to construct p-adic theta functions associated with
translates of the canonical section. In the main theorem of this chapter we will show
that the Amice transform of this p-adic theta function gives rise to a variant of Katz’
two variable p-adic measure interpolating real-analytic Eisenstein series p-adically.

This approach is motivated by the construction of a two-variable p-adic L-function for
CMe-elliptic curves by Bannai and Kobayashi [BK10b]. They are using Mumford’s theory
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4 P-adic interpolation of Eisenstein—Kronecker series via p-adic theta functions

of algebraic theta functions to deduce algebraicity results for the coefficients. This allows
them to construct a p-adic measure via the Kronecker theta function. Our result can
be seen as a generalization of this to arbitrary families of ordinary elliptic curves. The
infinitesimal trivialization of the Poincaré bundle which is used in our construction is
motivated by the work [Nor86] of Norman. While his theory does not verbatim apply
to our situation the essential idea goes back to his construction of p-adic theta functions
in the ordinary case.

As always we assume our base scheme to be separated and locally Noetherian.

4.1 Trivializing the geometric logarithm sheaf along finite
subgroups

Let E/S be an elliptic curve and i¢c : C < FE a finite subgroup scheme over S. Let us
consider the isogeny
0:E—FE/C=F

and assume that the dual isogeny ¢V : (E')V — EV is étale. The aim of this section is
to construct an isomorphism of O¢-modules

Lnle = (pre)«Ocx gntn BV -
Let Ec := F xg C. The diagonal A¢ : C — E¢ induces a canonical C-valued point of
ker (g@c : Eo »Xidc E’C>

Let us write ¢, : Inf? EY < EV. The composition
O xgInf? BY 2% 0 wg B xg BY 225 B xg BY

coincides with i¢ X t,,. Thus, we have an isomorphism of Og-modules
(%)

~Y

Lylo =1Ly = (pro)s«(ic X tn) PE = (pro)«(Ac X 1) priypvPe =
= (pre)«(Ac X tn) " Prs = AGLn Ec
where we have used the compatibility of the Poincaré bundle with base change in (*).
Composing this morphism with the morphism

ALD e*d
. CcCTP 1] ~
terAC : A*C“Cn,EC — *C’SOZ'E’H,,E/C = e*ﬁn,E/C = e*ﬁn,Ec = (prc)*OCXslan EVY

~

(cf. Section 2.1.3) gives our trivialization along C'

. ~ trivAc
trive : Lple =2 AGLy B, — (prc)*OCXSInf? EV.

Here, @, is an isomorphism since we have assumed ¢ being étale, cf. Lemma 2.1.9.
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4.2 The infinitesimal splitting and p-adic theta functions

Let p be a fixed prime. In this section we apply the construction of the last section to
the subgroup given by the connected component C,, of the subgroup scheme E[p"] for
an elliptic curve E/Spec R with ordinary reduction over a p-adic ring R. Finally, this
will give trivializations of £,, along the formal completion of E along torsion sections.

Let R be a p-adic ring, i.e. R is complete and separated in its p-adic topology. An elliptic
curve E/S with S = Spec R will be said to have ordinary reduction if E xg Spec R/pR
is fiber-wise an ordinary elliptic curve. Let C,, be the connected component of E[p"].
We define

on: E— E/C,

and note that its dual is étale since we assumed E/S to have ordinary reduction. Thus,
we are in a situation where we can apply the construction of the last section and obtain
isomorphisms

trive, - £"|C'm = (prcm)*ocmxslnfg EV.

These trivializations along C, are compatible with the canonical morphisms obtained
by restriction along

Cm

w

[ E
icm

Cerl +

as well as with the transition maps of the geometric logarithm sheaves. Let E be the
formal completion of the elliptic curve with respect to the unit section e and

LE:E‘—>E

the inclusion of the formal scheme E. Let us write L,| i = (tp)*Ly. The inclusions
C,, <= F induce an isomorphism of formal schemes hgnm ' = E. We define the

following isomorphism of O -modules

l'gltrivcm

. o . _

trivy : Lp|p = limig, L, < lim(pre, )«Oc,, xsitr Bv = Of ®0g Omer pv -
m m

Since triv is compatible with transition maps, we obtain

l'£1 triv g,
. R
B~ Op®0os0py.

trivy, mn Ly
For s € E[N](S) and (N,p) = 1 we have isomorphisms

TLn = Ly
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4 P-adic interpolation of Eisenstein—Kronecker series via p-adic theta functions

which are compatible with transition maps. Restricting this isomorphism to E and
applying triv, gives:

(TsLn)lp = Lalp = Op ®0g Owmer v (4.1)

and passing to the limit

lim (77 L)

n

B OE®OSOEV-

If we denote by E, the completion of E along the torsion section s and observe that
translation by s induces a commutative diagram
By =
E

o

E—2,F

w

14

T.

A 125
L

we can rewrite the above isomorphism (4.1) as
triVEs : £n|ES — OE ®0g OInfg EV.

Definition 4.2.1. Let p be fixed and E/S an ordinary elliptic curve over a p-adic ring.
Let N, D > 1 such that N, D, p are pairwise coprime. For e # s € E[N](S) define

pUs el (E X EV, OEXSEV Rog QE/S>

as the image of

D A .
(t15.) 0 € T (Elglﬁn £, s u)E/S>

under
trivy, @idy 2 lim Lnlp ©swp/s = Opy pv ©0s Wiys
n

We call pds the p-adic theta function associated with UM (s2 ).

Remark 4.2.2. In the first chapter we constructed real-analytic Eisenstein series via
the Poincaré bundle. Later, we reformulated the construction ‘infinitesimally’ along
E x e — E x EV in terms of the geometric logarithm sheaves. In this chapter we again
had the choice of formulating results either ’globally’ or ’infinitesimally’. We decided
to present only the ‘infinitesimal’ formulation of all constructions since this formulation
has the advantage of fitting better to our later application on the rigid syntomic real-
ization of the elliptic polylogarithm. The global formulation has the advantage of being
more symmetric. Thus, let us at least mention that what we did above is actually a
construction of an infinitesimal trivialization of the Poincaré bundle for ordinary elliptic
curves

Plgs ~ Osv
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4.2 The infinitesimal splitting and p-adic theta functions

This trivialization allows us to associate a function on the formal completion of E x EV
to sections of the Poincaré bundle. From this point of view, the name p-adic theta
function is justified for the above construction. In this sense p¥; can be seen as the

theta function associated with the section U (s2).

Let us close this section with some results about the compatibility of the infinitesimal
trivialization of £,, with ®, where ¢ is the quotient isogeny associated with the canonical
subgroup.

Lemma 4.2.3. Let ¢ : E — E/Cy =: E' the quotient map by the canonical subgroup. Let
@ be the induced map on the formal groups and let us denote by o, : Inf?(E")Y — Inf? EV

the restriction of " to the n-th infinitesimal neighbourhood. Then, the following diagram
commutes:

EP .
Lnlg - (P* L) |

ltrivE J/(ﬁ* tI‘iVEl
can® ()

Op ®0s Omer gy —— ¢"Ops @05 Ongn (1)

Proof. Let C!,_; be the connected component of E'[p™~!] and eor B E'/Cy .
Since the image of Cy, under ¢ is C/ _,, we can identify the composition

Po!
E 2% E/Ci=E —"3 F'/C! | =E/Cpn

with the isogeny corresponding to the quotient ¢¢, : E — E/C,. By Lemma 2.1.9 we
have the following commutative diagram

P
£n,E = Qp*ﬁn,E’
lq)‘pcm l@*éwcl -1
P Lon(B/Cp) === P P01 Ln (8/Cpn)-

This proves the commutativity of the left upper two squares in the following diagram:

Az @
Nby L, — 2 Np ¢ Loy, —— (¢len)" AL Lo,
m—1
AL, Pec, Aom® Pocr (Plom) A% Pos
€ L (E/Crn)oy, = € Ln(B/Cr)oy — (<P|cm)*6*511,(13/0,,1)%71
Py, ew*%c‘in_l (W‘C’")*e*q}“’cin,l
e* L Ec, % e Lyp, —— (Plon) e Ly, 1
m m—

id®(%">f)# can®id
Oc,, ®0g Omer pv ——+ Oc,, ®0g Omer ey —— (@lc,,) Ocr | ®0g Omer (mr)v

121



4 P-adic interpolation of Eisenstein—Kronecker series via p-adic theta functions

The commutativity of the lower left square is Lemma 2.1.9 (b). The squares in the right
column of the above diagram commute by the compatibility of the geometric logarithm
sheaves and the maps ®, with base change. Indeed, let us for example consider the
upper right square in the above diagram. The Cartesian diagram

E/Cmidx(‘»olcgn) /C’/ 1
C/ (@'Cm) C;n L

induces a canonical isomorphism

Lop, = (dx (#le,)) L,

m—1

The compatibility of @, o with base change can be expressed as the commutative

diagram

Logy, = (id x (¢l ) Ln, s,

m—1

m—1 -1

J‘%r i(idxﬂplcm))*‘%c/

cpzfin—lﬁn’(E/Cm)an é (ld X (SOICm)>*¢z‘;n—1£n7(E/Cm)O;nfl

If we pullback this diagram along (A, )*¢* and use the commutativity of

Ac
Cp, ————=—— FEg¢,,

G

#lcm E' x Cp = B},

idX(,D|c
Agr l "

! m—1 7o / . nli
Cipoy —5 E'x Gy = By

we obtain the upper right square of the above big diagram. The commutativity of the
remaining squares follows in a similar way.

The left vertical composition in the above big diagram yields the isomorphism
trivae, 1 A, LnEc,, = Oc,, ®0g Owmer BV,
while the vertical right composition gives (¢|c,,)"triva_, . Thus, we can rewrite the
1

above big diagram as

(q)W)lCm

Lo, 5l0,n (¢ Lap) low —— (Plen) (Lnpler,_,)

J{trivcm J{(<p|cn)*trivc/
m—1
can® ()

Oc,, ®0s Omir BV (len) Oc,, ®os Omer pv-
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4.2 The infinitesimal splitting and p-adic theta functions

One easily checks compatibility with restriction C,, — Cj,11 and passing to the limit
gives the desired diagram

(®o)lz " ~ «
Loplp ——=— (" Lop) g —— (@lp)" (Lnperlg)

JtrivE, l(gp@)*triv]@/
can®(py ) #
(¢

Op ®0g Omer pv ) 0p ®0g Omer gv.

O]

Finally, let us remark that we cannot directly trivialize £} via the same construction.
The reason is that @L is not an isomorphism for ¢ : E — E/C,, since ¢ : E — E/C,, is

not étale for n > 1. But we already know that L’I is the pushout of £;. This allows us
at least to construct an infinitesimal trivialization of the first geometric logarithm sheaf

T

triv K

c B = O ®0g Ot pt
via pushout. This, combined with the canonical map
D : £ - TSym™ £},
is often enough for our purposes. As immediate corollary of the above lemma we obtain:

Corollary 4.2.4. Let ¢ : E — E/Cy =: E' be the quotient map by the canonical
subgroup. The map ¢ induces morphisms ¢ : E = E and ot (E’)Jf — ET. Let
us denote by gp]; : Infé(E’)Jf — Infé ET the restriction of ¢! to the first infinitesimal
neighbourhood. Then, the following diagram commutes:

cl . ol ((p*qﬂ) .

.t ps
ltrlvé J{(p*trlvE/
can®(ipY)*

Of ®os Olnf; pt — ¢"0p Rog OInfé(E")T

Proof. This follows immediately from Lemma 4.2.3. O

We define the isomorphism

split : (TSym’éE L1)|p — O ®og (@ TSymléS wE\//S)
k=0

as the composition of

tI‘iVE
.~ TSymp, (05 ®05 Opy

(TSym%E El) B

QE‘\//S)
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4 P-adic interpolation of Eisenstein—Kronecker series via p-adic theta functions

with the canonical isomorphisms:
OE Rog TSym%S (OS D gEV/S) = OE Rog TSymgS (OS D gEV/S> =

n
= OE Rog (@ TSym]éS WEv/S RKog TSymn_k OS) &
k=0

n
>~ OE Rog (@ TSyHlIéS CUE\//S> .
k=0

We can define in the same way the isomorphism

3. T n -
split : (TSymOE ED]E — Of ®@0g (@ TSymgs ’H) . (4.2)
k=0

4.3 The infinitesimal splitting for the universal trivialized
elliptic curve

Let E/S = Spec R be an elliptic curve over a p-adic ring R. A trivialization of E is an
isomorphism
B ES @mﬂ

of formal groups over R. For N > 1 a natural number coprime to p, a trivialized
elliptic curve with I'(N)-level structure is a triple (E, [, an) consisting of an ellip-
tic curve E/S a rigidification 8 and a level structure ay : (Z/NZ)% = E[N]. Let
(E™V, 3, an) be the universal trivialized elliptic curve with I'(IV)-level structure over
M"Y = SpecV (Zy,T'(N)). For more details we refer to [Kat76, Ch. V]. The ring
V (Z,,T'(N)) will be called ring of generalized p-adic modular forms.

4.3.1 The unit root decomposition

Let us recall the definition of the unit root decomposition. Dividing E' by its canonical
subgroup C, again gives a trivialized elliptic curve

(E/ —_ EtriV/C’ B/’QQV)
with I'(IV)-level structure over SpecV (Z,,I'(N)). The corresponding morphism
Frob : V (Z,,T(N)) = V (Z,, T(N))

classifying this quotient will be called Frobenius morphism of V (Z,,I'(N)). In particular,
the quotient map E"Y — E' = E'V/C induces a Frob-linear map

F : Frob*Hly (Etriv/MtriV) = Hly (E'/Mtriv> — Hlp (Emv/MtriV)

124



4.3 The infinitesimal splitting for the universal trivialized elliptic curve

which is easily seen to respect the Hodge filtration

1 tri tri Vv
0—— W ptriv / pfriv. —— HdR (E 1HV/JM er) — Q(Etriv)\//Mtriv > 0.

Further, the induced Frob-linear endomorphism of gVEmv v/ Mtsiv is bijective while the
induced Frob-linear map on wpuiv/psuiv is divisible by p. This induces a decomposition

ﬂéR (EtriV/MtriV) = W ptriv / pftriv eU (43)

where U C Hlg (EY/M"Y) is the unique F-invariant Ojuiv-submodule on which F
is invertible. U is called the unit root space and (4.3) is called unit root decomposition.
The unit root decomposition induces via the Deligne pairing

ﬂéR ((Etriv)\//Mtriv) % ﬂéR (EtriV/Mtriv) — Ot
a decomposition
H = Hig ((B"™)"/M"™) 5 wiguyv jpgine ® V
where wgrivyv /pperiv SUYand VS W triv Jaqtriv- Note that the dual of the Frobenius
FY :H — Frob™H

respects the above decomposition. It is invertible on w(guiv)v /v and divisible by p on
the subspace V.

4.3.2 The Frobenius lift

Let ¢ : BV — E' = E"IV/C be the quotient of the universal trivialized elliptic curve
by its canonical subgroup. We have the following commutative diagram

Etriv ¥ E/ Frob s Etriv

N iﬂ; lﬂ (4.4)

Mtriv Frob Mtriv

Let us define o

¢ := Frobo ¢ : BV — E™V,
Then, ¢ gives us a canonical lift of the absolute Frobenius morphism. We can define a
canonical Oguiv-linear map

ot Ll — ¢ Ll

ptriv. = EL, g by the Cartesian
diagram in (4.4) and the compatibility of the geometric logarithm sheaves with base
change. Combining this with the morphism

as follows. We have a canonical isomorphism l?r\/da*ﬁil

th . ‘CIL — QD*ACIL?E/

125



4 P-adic interpolation of Eisenstein—Kronecker series via p-adic theta functions

gives
ol oh - w*EL,E/ >~ o*Frob L] = ¢*L].

Since both maps I*/“;J)*L’L Ftriv

horizontal for the canonical M"V-connections on both sides. In the same way we obtain

UL, — ¢ L,

= EL g and @, are horizontal, we deduce that VAT

The map V¥ is invertible since @, is an isomorphism. Let us define
O "L, — Ly (4.5)

as the inverse of ¥. The map W' : £I — ¢*£! will be important for the p-adic realization
since it induces a canonical Frobenius structure on L] .

4.3.3 Tensor symmetric powers of the geometric logarithm sheaves

We have already observed that we cannot trivialize £} along F in the same way as L,
since ¢ : E"Y — E' is not étale. But the fact that EJ{ is the pushout of £; allows us to
define a trivialization of CJ{. Since V (Z,,I'(N)) is flat over Z,, the canonical map

Ll — TSym" E];

is injective. And we can split TSym" LJ{ via the isomorphism

AT T k
split : (TSyng EI)\E — Op ®0, iriv (@ TSymOva 7—[) :
k=0

defined in (4.2). The above injection combined with this splitting is sufficient to describe
many constructions of the geometric logarithm sheaves on the universal trivialized elliptic

curve explicitly. The trivialization [ gives us a canonical generator w := * ((l(iTT)) of
Wpeiv/ppenv. Let us define a generator w € U by the normalization (w,u) = 1. The

dual basis u",w" gives us generators of # = Hig (E™ /M), Let us observe that
[u]" generates the submodule w(guiv)v/ppeniv, while [w]" generates the submodule V' of
H. Using the basis [u]¥, [w]Y of H, we define

okl = (spAlitJr)_]L [([u]v)[k] . ([w]v)[l]} k+1<n.

Then, (@), 1<, gives us a basis for (TSym” CD

£+ We have the following explicit

description of the Frobenius structure on £} under the canonical inclusion:

Lemma 4.3.1. The Oguiv-linear map
(TSym" £]) |5 — ¢" (TSym" £]) |
induced by W : EI — qﬁ*/ﬂ; is explicitly given by

ol P o* (@[k,l]> ‘
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4.3 The infinitesimal splitting for the universal trivialized elliptic curve

Proof. Since the map in the statement is induced from the case n = 1 by applying TSym,
v

it is enough to prove the statement in the case n = 1. The generators @00 G0l = []
and Q01 = [w]" are induced via the infinitesimal trivialization

TSym* E]i

E:£I|EA:>OE@W*E%'

It follows from Corollary 4.2.4 that ¥ maps &% to ¢*(@[0%) and coincides on WEH
with the dual of the Frobenius:

TH(FY) s mpH — mpFrob™H = ¢*H.

This map sends [u]" to ¢*([u]Y) and [w]Y to p - ¢*(Jw]"), which can be deduced as in
[BK10a, §4.3, p.22]. 0

Let us now give an explicit description of the connection on TSym"™ EJ{
finitesimal splitting:

5 Vvia the in-

Lemma 4.3.2. Let Vsyry, be the M"Y _connection on TSym™ EJ{ induced from the M-

connection on E]{. Then,

vTSym (dj[k’l]) = (l + 1)w[k,l+1} Quw e F(Ev Tsymn E;’Ev ®0E91E'/Mtri")'

Proof. For simplicity, let us write E for E"Y during the proof. Let us first prove the
following:
Claim: Let s : L4

£ 50 5 ® W*Eg Ev/ueiv be any splitting of the short exact sequence

*
0—— WEQE\//Mtriv £1 B OE 0

and define s' : EJ{

B 50 5 WE’H via pushout. Then,

* ~ V‘A A ~ * A pr
OE @WEH - [’“E -+ ‘CJ“E ®QIE/Mtriv — (OE@WE“/H) ®QlE/Mtriv -

pr * Vv A1 ~ Al A1 Vv A1
- (OE @ 7T‘EAQE'/M”W> ® QE/Mtriv — QE/Mtriv @ (QE/Mtriv> ® QE‘/Mtriv

does not depend on the chosen splitting. Furthermore, this map is explicitly given by

(1,0) = (o,mm )

E/Mtriv

Let us first prove this claim. For independence of s, let s; and ss be two such splittings.

Since SJ{ and sg are defined via pushout and since we have a canonical decomposition
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4 P-adic interpolation of Eisenstein—Kronecker series via p-adic theta functions

H=wpgyv v @V, we get a commutative diagram

* . *
OE @ WEAQE\//MUIV @ 7TEA,V

81—/
id 0 0
\ 0 0 id
s}

* ) *
OE @ WEQE\//MHW @ ﬂ-EA'V

P

for some f € Homp (Op, mpwpv /preiv). From this we obtain

Vi (D)7 (1,0,0)) =V, ()7 (1,0,0)) =
Ve (697 0,500,0) = Vg ()7 (1,0.0)) =
=V, ((f(1))) € F(E TRWEY My Q0 QE/MW)
where @ : W*Eg BV /My < W*EH. But this is contained in the kernel of the quotient map

(O O i H) & QlE/va Ef? (OE @W*E (@E/Mtriv> ) ®QE/va

which is induced by the Hodge filtration. This shows the independence of the chosen

infinitesimal splitting. It remains to show that the map in the above claim maps (1,0) €

Op® W*E’H to <0 idg1 ) We can show this after passing to some finite étale cover
) E/]\/Itrlv

T — M"Y of the base. Thus, we may assume, at least after some finite étale base change,

that there exists some t € U(M™) where U = E\ {e(M"V)}, e.g. take e # t € E[D](T)

for D prime to p and T finite étale over M. Translation by ¢ induces an isomorphism

E S E,
between the completion at e and the completion at ¢. Using this isomorphism and the

Katz splitting! for £, induces another infinitesimal splitting

HlEt

sk L1 o) =5 ﬁl‘Et = (ﬁl‘U)|Et 5 OEt @W*EtQEV/MmV 5 OEEBTF*EQE\//MMW.

For this particular splitting it follows from

Vi (5e(1,0)) = Iy = w e (0] + 7.0 [1]"

! For the construction of the Katz splitting we had to assume that 6 is invertible on the base. So for
p = 2,3 a minor modification in the proof is necessary. V (Z,,I'(IV)) is flat over Z, thus we can prove
the explicit formula in the claim after tensorizing with Q, and proceed as above.
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4.3 The infinitesimal splitting for the universal trivialized elliptic curve

that
(170) = (Oaw ®wV) = (07idQlA )
E

/M
under the map in the claim.

Let us now come to the proof of the lemma. The M'""V-connection on TSym" EJ{ is

induced by the M'V-connection on [,J{. Thus, we can reduce the proof of the lemma to
the case n = 1 and we have to prove V ¢ (@) = ol ® w and
1

Vi (@0 =0 =v i (@1.

c c

The last two equalities hold since V . coincides with the pullback of the trivial M-
1

connection on H. Let us show V . (@00 = GO @ w. We already know that
1

since the connection and the splitting are both compatible with the extension structure
of EJ{. Thus, we make the following ansatz:

Vi @) = Alu]Y @w+ folw] @ w

for fi, fo e T(E, 0 ;). By the above claim we already know fa = 1. It remains to show
J1 = 0 but this is easily deduced from the fact that V ,; is compatible with the Frobenius
1

structure. The horizontality of
ULl ool

expresses, using Corollary 4.2.4, as
fe" @) @ w +p- g7 @) ®w =" @) ® 67 (frw) + ¢7 (@) @ ¢" (w).
Using ¢*(w) = pw, this equation reduces to
fiw=¢"(fiw).

If f1 # 0, there exists a minimal r > 0 with f; € p"Op. But on the other hand we have

¢*(fiw) € p’"HQ}@/MmV. This is in contradiction to the equation fijw = ¢*(fiw) and the

minimality of r. Thus, we conclude f; = 0 and obtain
V@) = g

as desired. ]
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4 P-adic interpolation of Eisenstein—Kronecker series via p-adic theta functions

4.4 Real analytic Eisenstein series as p-adic modular forms

As explained in the introduction to this chapter, Katz defines p-adic variants of real
analytic Eisenstein series via the unit root decomposition on the universal trivialized
elliptic curve. For simplicity let us write E for E™V and M for M in this section. In
Section 2.4, we have defined

kr+1 k ®(r+1)
pTEEY, eF(M,TSymOM’H®onE/M )

We use these classes and the unit root decomposition in order to construct generalized
p-adic modular forms. Let us use our chosen autoduality isomorphism

TSymk 7‘[ Q0 WE5 AR TSymk ﬂ(liR (E/M) @0, Q%%\}_l)

in this section. The trivialization [ gives a canonical generator w := * (1 +T) of wg/n-

Definition 4.4.1. Let E/M be the universal trivialized elliptic curve with I'(V)-level
structure. For (0,0) # (a,b) € (Z/NZ)? define

pEG! €V (2, D(N)) =T (M, Oy)

as the image of

k,r+1 ®(r+1
pTEG €T (M, TSymb,  Hip (E/M) @0, wiy )

under

+1)

TSymb,  Hig (B/M) @0, wiih" = TSymb) wpny @0, wity ) = Ou

where the last isomorphism is given by

(r T
TSym§, 0, WE/M ®Oy wEﬁM )30y, WM @w®r ) 1,

Katz defines generalized p-adic modular forms 2®y,,. ¢ € V (Z,,I'(N)) for k,7 > 1 and
f:(Z/NZ)*> — Z,. For the precise definition we refer to [Kat76, §5.11]. Essentially, he
applies the differential operator

© : Sym" Hjp (E/M) = Sym" Hiy (E/M) ®0,, Qzlw/zp < Sym**? Hyp (E/M)

obtained by Gauss—Manin connection and Kodaira—Spencer isomorphism to classical
Eisenstein series and finally uses the unit root decomposition in order to obtain p-adic
modular forms. We have the following comparison result.

Proposition 4.4.2. We have the following equality of p-adic modular forms:

Dg’(“ ol =2N" [D2<I)r7k7§(a7b) _ prti-kg

where §(qp) is the function on (Z/NZ)?* with b, p)(a,b) =1 and zero else.

7,k,6(Da,Db)
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4.4 Real analytic Eisenstein series as p-adic modular forms

Proof. Let us start with recalling the definition of Katz [Kat76, Lemma 5.11.4]: Let f
be a Z,-valued function on (Z/NZ)?. Let 2Gy o ¢ be the algebraic Eisenstein series of
level T'(N) defined in [Kat76, Theorem 3.6.9]. Let us for a moment assume the following
setup: Let E/S be an elliptic curve with level N-structure and S — T be a smooth
morphism. Let us further assume that the Kodaira—Spencer map

2 1
Q%/s — Qg
is an isomorphism. For k > r > 1 define
20k € T (S, Sym** 4! Hip (E/9))
as the image of 2G1_, 0,5 under

(N-0)7 : wild ™ = Symh =" Hip (B/S) — Sym* ™+ Hlp (B/S).

For r > k > 1 define 2¢y, ; as the image of 2Gr+lfk,0,f under N* . ©°% where f is the
symplectic Fourier transformation as in [Kat76, p. 3.0.1]2. If we apply this construc-
tion to the universal trivialized elliptic curve with level N-structure, we can describe
the p-adic modular forms 2®;,, r of Katz as the image of 2¢; , ; under the unit root

decomposition:
Sym* 7 Hig (B/M) — wiir ™ 3V (2, T(N)).

In order to compare ¢, ¢ to DTE@’TI;)LI we have to embed both Sym*+" ! Hip (E/M)

and TSym” ®g§%\}r1) into TSym* ™"+ Hip (E/M). For the moment, let us write Hig

for Hip (E/M). Since V (Z,,T'(N)) is flat over Z,, the canonical map

Sym® Hag (E/M) = TSym® Hag (E/M) (4.6)
is a monomorphism. Consider the following commutative diagram:
Mk+r+1 ﬂ(liR SyikarrJrl QE/M _~ Y (Zp7 F(N))
J{-(k—i—r—s—l)

TSym" " ' Hlp ————— TSym*"" ' wp )\, —=— V (Z,,I(N))
klrlmult klr! T(k—i—r—&—l)!

TSym”* Hly ® TSym" ! Wr/n P TSymkgE/M ® TSym" 1 wi/m >V (Zp, T'(N))

i) ——— TSymFwpy @ Wi — V (2, T(N))

k 1 ®
TSym" Hyr ® Wp E/M

2 Katz works with a I'(IV)** _level structure which is probably the better choice. But in order to
be consistent with the previous chapters we keep to our choice of a I'(N)-level structure. Anyway,
for our applications N is always invertible on the base and in this case there is not much difference
between a T'(N) and a T'(N)*"*"_structure. This leads to minor modifications, e.g. the appearance of
symplectic Fourier transforms instead of transposition cf. the discussion in [Kat76, §2.0, §3.6, | and
[Kat76, Lemma3.2.4].
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4 P-adic interpolation of Eisenstein—Kronecker series via p-adic theta functions

Here, all isomorphisms are induced by identifying the canonical generators, i.e. w®k,
wlfl resp. 1, of the free V (Z,, T'(N))-modules Q%I;M, TSym” wg/ resp. V (Zy,I'(N)).
All epimorphisms are induced by the unit root decomposition and all monomorphisms
are induced by (4.6). To check the commutativity of the diagram is straightforward.
The image of

oN—F [DQQSk,T,(S(b,a) - Dr+l—k¢k77‘,6(Db,Da):| (47)

under the upper horizontal map gives the p-adic modular form in the right hand side of
the statement. The image of DTEk "1 ynder the lower horizontal map gives the p-adic
modular form in the left hand side of the statement. Thus, by the commutativity of the
diagram it is enough to show the equality of (4.7) and DTE@’TI;)L Uin TSymk“'T‘H Hgir !
Let us denote by

1 Symk-i-?“-‘rl E(liR N Tsymk+T+1 ﬂ}iR

and

i9 : TSym Hiy ® %%}rl) < TSym**" ! gl Hlp

the inclusions in the above diagram. The construction of DTEk g compatible with

arbitrary base change. As we have indicated above, the constructlon of Katz via the
Gauss—Manin connection works whenever the Kodaira—Spencer map is an isomorphism.
Since Gauss—Manin connection and Kodaira—Spencer map are compatible with base
change, we are reduced to check the equality

it (2N [D20rks0) = D™ bk s on] ) = 20T Ef ")

on the universal elliptic curve with I'(IV)-level structure. By the usual argument we are
reduced to show this equality after analytification. Thus, it is enough to show that the
corresponding C*°-modular forms obtained via the Hodge decomposition coincide. The
C*°-modular form associated with

2¢k,r,f
is according to Katz [Kat76, pp. 3.6.5, 3.0.5] given by

(200" = (2Grsrinn)™ = (VR ((G55) Guar (g 1m 1))

where (i4,41 is the Epstein zeta function obtained by analytic continuation of

Ce(s, 1,7, f)=N>* > f(n,m) Re(s) > 1. (4.8)

k 25—k’
0,0y (M7 1) [mT + 1|

The Eisenstein—Kronecker series ej . +1(%7’ + %, 0) appearing in the description of the

C*°-modular form pT E@T;g ! can be defined as

62,7‘+1(%7— + %)O) _ K;+T+1(%T + %,O,T + 1,7') F.E
A(T)kE! A(r )kk'
K0 fm+ j b+ 1,7)
N A(T)rr!
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4.5 p-adic interpolation of Eisenstein—Kronecker series via p-adic theta functions

with the Eisenstein-Kronecker-Lerch K}(0, %T—i—L s, T) series which is given by analytic

N>
continuation of

a b (mT + n)k .ma — nb
K (0, —7+ — = Yy 0 o2 4.
i (0, NT+ N,S,T) oo ———T exp( T ) (4.9)

Comparing (4.8) and (4.9) shows

* a b k 1-2s Iy
Kk (O, NT+N,S+2,T> =N Ck(S,l,T,é(a’b)). (410)

Using this, we compute

N \" k—r+1 N
-k o oNan _ nt—k/__1\k+r+1 —
N7R26, 5, ) = N TR R (A(T)) Gerrin (Cg 17 ) =
N \"
—k k+r k—r g
=N""(-1) trlp (A(T)) N Kk+r+l(0737k+1;7_):
e*
—(—1 k+r+1k! ! k,r+1
- "A()RE!

Finally, let us recall from [Kat76] the identity ¢ 5 = &, , i Now, the analytic identity

NF {DQ (2¢r,k,5a,b)(m — Dk (2¢T7k:6Da,Db>anj| -

e;..11(s,0) e;...1(Ds,0)
—(—1 k+7‘+1k! | D2 k,r+1 - DT’—‘rl—k k,r+1
(=1) r l A(r)FH A(r)FR!

proves the desired algebraic identity on the universal elliptic curve and thereby the
proposition. ]

4.5 p-adic interpolation of Eisenstein—Kronecker series via
p-adic theta functions

Let (EY™V /M"Y B3 ay) be the universal trivialized elliptic curve with I'(V)-level struc-
ture. Katz’ construction of the p-adic measure interpolating the p-adic modular forms
@y, . r consists essentially in checking the predicted congruences among the @y . r on the
Tate curve by using the g-expansion principle for p-adic modular forms. On the other
hand, the very definition of the moduli problem for trivialized elliptic curves includes an
isomorphism

~

B Gy (z, vy — BT

The Amice transform

r (R, Op &0

o n Gm,R) = Meas(ZIQ,, R)
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4 P-adic interpolation of Eisenstein—Kronecker series via p-adic theta functions

between functions on the formal group @m, R X @m r and R-valued measures for a p-adic
ring R suggests a construction of Katz’ Eisenstein measure via functions on the formal
completion of E™V x E"V The aim of this section will be to show that the p-adic theta

function pds, , corresponds to a two-variable p-adic measure with values in generalized
p-adic modular forms interpolating the p-adic modular forms ( DS](C rng) Jer-

Let R be a p-adic ring. A p-adic measure on a pro-finite Abelian group G is an R-
linear continuous map C(G, R) — R, where C(G, R) denotes the R-module of R-valued
continuous functions on G. Let us write Meas(Zg, R) for the set of all R-valued measures
on Z2.

P

Proposition 4.5.1. Let R be a p-adic ring. There is an isomorphism

r (R, Og, 80z

Gm,R) = Meas(Z;,R), =y

which is uniquely characterized by

/ 2ybdus(w,y) = 705" |
Lip X Lp

ThW=T>=

where Ty, Ty are the coordinates of @m,R X @m,R and 01 = (1 +T1)8iT1, d2 = (1 4—T2)3T2
are the invariant derivatives associated with the coordinates. The inverse is given by

po AT )= [ (L TP+ T e, y)
Lp XL
and will be called Amice transform of the measure p.
Proof. For a proof see e.g. [Hid93, §3.7., Theorem 1] O

Let us use our autoduality A and the trivialization § to obtain an isomorphism
Etriv X (EtriV)V :> @m7Mtriv X @myMtriv

of formal groups. Here, the products are taken in the category of formal schemes over
M™Y. Let us denote the coordinates on G Mtxiv X ppriv G m, v by T1 and Ty and let
us use the canonical generator w = [*-4L i +T of wpuiv/peiv t0 obtain the isomorphism

QEtriv/Mtriv :> OMtriv.
Definition 4.5.2. For e # s € EV[N](M"Y) let us write

pYs(T1,T2) € V (Zy, T(N)) [T1, To] =T (M“iv, Oz  ©0,un05 )
m,]Wt“V m,]V[t“V

for the image of pvs under the isomorphism

A~

OEtriv x (Etriv)v ®OI\/It“V 7Etr1v/Mtr1v —) O/\ ®01\4triv

~
Mtriv Gm’lwtriv
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4.5 p-adic interpolation of Eisenstein—Kronecker series via p-adic theta functions

induced by the trivialization § and the generator w. Let
Eis
uby € Meas (Z, x Z,,V (Z,, T(N)) )

be the p-adic measure having the p-adic theta function s as Amice transform. The
measure u%fs will be called D-variant of the p-adic Eisenstein—Kronecker measure.

Eis 3 1 3 3 k,T+1 .
Indeed, the measure p1py% has the p-adic Eisenstein series p& (@,p) @S moments:

Theorem 4.5.3. For e # s € EV[N](M™Y) corresponding to (0,0) # (a,b) via o we
have
o k,r+1

0y 05" pis(Th, T) N L

where T, Ty are the coordinates on @mﬂ X @m,R and 01 = (1+T1)%, Oy = (1+T2)%
are the invariant derivatives associated with the coordinates. Stated differently,

i kr+l
/ xkyrdﬂ%l,ss(ffay) = Dg(arb) .
ZpXZLp ’

Proof. Let us simply write E for E™ and M for M"V in the following proof. Denote
by dz and dg. the universal continuous derivations on the formal groups F and EVY,i.e.

.M. A1 ~ i .
dE : OE — QE/Mtriv —&E/Mtrlv ®O]wtriv OE
and
) A1 ~
dEv : OE‘\/ — QEV/Mtriv = Wpv/M @0y OEV‘

Since dg, and dj, are Op-linear, we get differential operators

: . deid ; ,
O . ®i ®j B L. ®(i+1) ®j
dy - Oy v @0y W @on Wiy g » Opyiv oy Wen Oom Wev

and similarly for d iv- We can reformulate the statement of the theorem in the following
more intrinsic way

* or jo . k,r r—+1
(ep % ep )" [d7d3E, p9] = (u x idynr) (pTELL) € DM W\ @ wiliiY) (411)
where u is the map

u s TSym* H — TSym" wpv/nr = wih

induced by the unit root decomposition. Recall that we have constructed

SpAlit : (TSyng Ll)|E - OE Qo <@ TSﬂéM wEV/M>
k=0
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4 P-adic interpolation of Eisenstein—Kronecker series via p-adic theta functions

and

Ae T n T
split : (TsﬂoE ['JD|E — O ®oy (@ TSﬂéM H) '
k=0

Let us write for the moment M := TSym’éM H and g%]V/M = TSym'éM WEv /M- We
claim that the equality (4.11) follows once we have shown the commutativity of the

following diagram:

. i * or ‘E § .
(Ts ﬁn)’E - (Ts EIL) A (Ts £:f1 ®OE (Q%}/M)® ) )
transg transS|E (transl@id)\E
ver | .
TE r
D| 4 Df|, (Deid)| 5
n n pt Vrsym n  pf 1
(TSymp, £1) |5 —— (TSymf £])15 =% [(TSym? £]) ®o, U] |5
split split * split @id
Op ®on (69 w[b]ﬂV/M> — Op ®oy <k@OHW) Of ®oy (kﬂ_?o’ﬂ[k] ® wE/M)
‘ id®u idRu®id

n n dor
O @0y, (EP wE\//M) = 0p Qoy, <€_B WEV/M) * Of @0y (EB wEV/M ®WE/M>

All squares in the above diagram are easily seen to be commutative except the one
denoted by . Before we prove the commutativity of v, let us explain how it proves
the theorem. Consider the composition of the upper horizontal maps followed by the

right vertical maps and tensor the resulting map with ®o,,wg/y- The image of s* 1P

under the pullback of this map along e gives (u x id,r+1) ( DTE?J;{ 1). Since the lower
horizontal map of the diagram is d, it suffices in view of (4.11) to show that the left
horizontal map tensorized with wg/,, sends TP to ((id i xe)r [do ', pUs D This again

follows from the following commutative diagram
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4.6 Restriction of the measure and the Frobenius morphism

S*ZE € T:£n|E‘ QOoy WE/M

J{transs | p®id

D| »®id
Lnlp ®wp/m = (TSym” 51) |5 ®Wr/Mm
ltrivE lTSym(trivE)
id®D.®id n Ay o
pUs € OE Koy OInfg EvV® WM OE RO TSymoM (Olnfé EV) ® Wg/p  |split®id

E

: * o " b k
((ldg x e) [dEkv Dﬁs} ) o € Op® k@o%]v /M O YE/M

where we have used Corollary 2.1.15 for

pUs — ((idE xe)” [doEkV Dﬁs})::o'

It remains to show the commutativity of . It is enough to consider the case r = 1. The
general case follows by composing r times the following diagram. For r = 1 the diagram
* is:
vTS m
(TSym" [,D g —— [(TSym” ED ®0p QJIE/M} |5
lspAlit lspiit@id
™ xqlk N xqylk A1
(keaoﬂEH[ | k@owE/H[ | B0y QE/M
J» J»
Nk [k 2 Nk [k 51
(k@o mhw ) —F— N il ) ®o, O

The commutativity of this diagram follows from the explicit formulas for Vrsym, given
in Lemma 4.3.2. O

4.6 Restriction of the measure and the Frobenius morphism

As always when one has a p-adic measure p on Z, having some sequence of interest as
moments, it is only possible to define the moment function

Zp > s+ /ZX (x)*dp(x)

with (-): Z) = (1+pZp) X pip—1 — (1+pZy) after restriction to Z,. Let us consider again
the universal trivialized elliptic curve (E™Y /MY 3 «yx) with I'(IV)-level structure. For
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4 P-adic interpolation of Eisenstein—Kronecker series via p-adic theta functions

e # s € EMV[N])(M™) corresponding to (a,b) via the level structure we have defined
the p-adic measure p%’ss. From Katz [Kat76, §6.3] and Proposition 4.4.2 we can easily

deduce

L, tawdi= [ faydiBi-Frob [ f0-zy)deB.

Z) XZp ’ Zp X Ty ’ Zp XLy ’

Katz deduces this result by comparing the g-expansions of the moments of both sides.
In this section we sketch an alternative proof of this result. In some sense it can be seen
as a shadow of the distribution relation for the canonical section.

Let us define

Eis,(p) ._ | Eis
Hps == :“D,s|Z; XZp"

(p)

. . . . . Eis . .
Sometimes it will be convenient to view pp, .’ as a measure on Z, X Z, which is
9

supported on Z; X Zyp. In particular, we use Proposition 4.5.1 to define Dﬁgp ) as the

Amice transform of MIE;Z(p). It is well-known how the Amice transform of a p-adic

measure behaves under the operation of restricting to Z;. In the particular case of the
p-adic ring V' (Z,,'(N)) this reads as:

Lemma 4.6.1. As before, let Ty and Ts be the coordinates of@mva X @m’Mtriv. Define
R :=V (Zy,T(N)) @z, Zplup] by adjoining the p-th roots of unity. Then,

Z pVs(C +Gm T, Ty) € pOGm,RXGm,R
CEG,, pponivIPl(R)

and we have

1
PP (T T) = pds(T1Te) = 30 pislte, T Th).

C€G,, pririv [PI(R)

Proof. [Sha87, §3.3, (7)] or [Col04, §1.5.2)]. 0

The following result can be deduced from a slightly generalized version of the distribution
relation, see Remark 1.4.4.

Lemma 4.6.2. Let ¢ : BV — E' := E™V/C be the quotient of E™Y by its canonical
subgroup. Write R :=V (Zy,T'(N)) ®z, Zp|pp) and let EFY and Ef, be the base changes
of E™Y and E' to Spec R. We have the following equation in £n’Egiv ® QlEniV/R:

Z trans, (T:lﬁEmv) = p‘b;l (‘P*(lr?,E’)) .
T7€C(R)

Proof. Let us give a direct proof, since we did not formulate the distribution relation for

more general isogenies than multiplication by N. Since V' (Z,,['(N)) ®z, Zp[u,] is flat
over Zy and p*L,, B, ®Q}Emv /R is locally free, we may check the equality after base change
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4.6 Restriction of the measure and the Frobenius morphism

to Qp. Now, the claim can be deduced by some density of torsion sections argument:
the pullback of the left hand side along some [™-torsion points s gives according to

Corollary 2.4.4
n+1
(k)
DFS+T
TEKker @ k=1

while observing Lemma 2.1.9 (b), the pullback of the right hand side gives

(p ’ DF;]?j)l)):zo’

Now, the claimed equality of the lemma follows from

(k) _ (k+1)
> pFel.=p- SFots) (4.12)
TEker ¢

and density of torsion sections. The distribution property (4.12) can be deduced from
the explicit g-expansion formulas given in [Kat76, Lemma 5.11.0.] observing the equality

k) __ 2 2—k
DF'(Sa?b =D Gkvovda,b -D Gk‘,OﬁDa,Db'

O]

In (4.5) we have defined a canonical lift of the absolute Frobenius ¢ : E#Y — E'V and
defined

D: "L, — Ly,
Corollary 4.6.3. Under the map
(1&1 ETL ® QlE‘triv/Mtriv) . :> O@ atriv % OMtriv O@ atriv (413)
n By m, m,

the compatible system
(@2 -owiD) _|1s.
corresponds to Dﬁ?’) (Th, Ts).

Proof. From the definition of ® : ¢*L,, — L,, we deduce

B($ 1 i) = O, (910 ) -

Combined with the above lemma, we obtain:

l,,lZEtriV - ©(¢*l7?’Etriv) - l,,ll)’EtriV -

Z tranST (T: lY?Etriv)

1
)
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4 P-adic interpolation of Eisenstein—Kronecker series via p-adic theta functions

The right hand side restricted to £y maps under (4.13) to

1
pUs(Th, T3) — » > pUs(C+g, T, T2)
CEG,,, privlpl(R)
and the corollary follows from Lemma 4.6.1.

Now, we can easily deduce Katz’ result:

Corollary 4.6.4. The moments of the restricted measure are given as follows:

L. fewans= [ s -Frob [ fp-ay)dufs.
Ly XLy ZpXZp ZpXZp

Proof. From the above corollary together with the commutativity of

¢| Etriv

[rtriv [rtriv
FE FE

s s

-~ i [p]xFrob ~ -
szp XZP ]\4“IV E— szp XZp .7\4tler

we deduce
DI (T, Ty) = i (Th, Ty) — Frob[pﬁs ([p](T1)7T2)]

The statement of the corollary follows by passing to the corresponding measure under

the Amice transform.
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5 The algebraic de Rham realization of the
elliptic polylogarithm

The aim of this section is to give an explicit description of the algebraic de Rham real-
ization of the elliptic polylogarithm in terms of the Poincaré bundle. We are building on
previous results of the PhD-thesis of Scheider [Sch14]. Scheider has given a purely alge-
braic description of the de Rham logarithm sheaves in terms of infinitesimal restrictions
of the Poincaré bundle. In our terminology this means that the geometric logarithm
sheaves satisfy the universal property of the relative de Rham logarithm sheaves. Build-
ing on this, he gave an explicit analytic description of the differential forms representing
the elliptic polylogarithm in de Rham cohomology on the C-valued points of the univer-
sal elliptic curve using the Jacobi theta function. The canonical section of the Poincaré
bundle allows us to make his description algebraic, i.e we give a purely algebraic de-
scription of the de Rham realization of the elliptic polylogarithm for arbitrary families
of elliptic curves over smooth schemes over a field of characteristic zero. One of the
technical difficulties we have to overcome is that the Poincaré bundle a priori gives only
relative connections. But as already explained in Chapter 3 the Katz splitting gives us
an explicit way to extend the connections.

For the whole chapter, let us fix a field K of characteristic zero. Our base scheme S will
always be assumed to be a smooth and separated K-scheme.

5.1 The de Rham logarithm sheaves

Let us recall the basic definitions and properties of the de Rham logarithm sheaves.
Most material of this section can be found in a more detailed way in the PhD-thesis of
[Sch14].

5.1.1 The universal property of the de Rham logarithm sheaves

For a smooth morphism 7 : § — T between smooth separated schemes of finite type over
K let us denote by VIC (S/T) the category of vector bundles on S with integrable T-
connection and horizontal maps as morphisms. Since every coherent Og-module with in-
tegrable K-connection is a vector bundle, the category VIC (S/K) is Abelian (cf. [BOT7S,
§2, Note 2.17]). The pullback along a smooth map 7 : S — T of smooth K-schemes
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5 The algebraic de Rham realization of the elliptic polylogarithm

induces an exact functor
7 : VIC(T/K) — VIC(S/K).
By restricting the connection we get a forgetful map
VIC (S/K) — VIC (5/T) .
For details we refer to [Sch14, §0.2].

Definition 5.1.1. Let 7 : S — T be a smooth morphism of smooth separated K-schemes
and E/S an elliptic curve.

(a) An object U € obVIC (E/T) is called unipotent of length n for E/S/T if there
exists a descending filtration in the category VIC (E/T)

U=AUCAUC.CATY=0
such that for all 0 < i < n, gr%?/{ = AU/ATU = 1*Y; for some Y; € VIC (S/T).

(b) Let Ul(E/S/K) be the full subcategory of objects of VIC (E/K) which are unipo-
tent of length n for E/S/K.

(c) Let Ul(E/S) be the full subcategory of objects of VIC (E/S) which are unipotent
of length n for E/S/S.

Restricting the forgetful functor VIC (E/K) — VIC (E/S) to the full subcategories of
unipotent objects gives U (E/S/K) — Ul(E/S). Further, the category VIC (S/K) is
equipped in a natural way with a tensor product
® : VIC(S/K) x VIC(S/K) — VIC (S/K)

and an internal Hom functor

Hom : VIC (S/K )" x VIC (S/K) — VIC (S/K)
making VIC (S/K) a closed symmetric monoidal category. For F,G € VIC (S/K) let us
write Homyyo(g/x) (£, G) for the sheaf of horizontal morphisms. We have

mHomyc s/ i) (F, G) = Hig (S/T, Hom(F,QG)).
In particular, the Gauss-Manin connection gives a K-connection on m.Homyyc g/ i) (F, G).

Lemma/Definition 5.1.2. There exists a pair (Logjg,1"), consisting of a unipotent
vector bundle with K-connection

Logir = (Logdr, Viogy,) € UL (E/S/K)

and a horizontal section 1™ € I'(S, e*Loggg ), such that the following universal property
holds: The pair (Loglg,1") is the unique pair such that for all 4 € Uj, (E/S/K) the
map

mHomyic (g, k) (Logdr.U) — U, [+ (e"f)(1")
is an isomorphism in VIC (S/K). The pair (Logjig,1") is called the n-th (absolute de
Rham) logarithm sheaf.
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5.1 The de Rham logarithm sheaves

Proof. The uniqueness is clear by the universal property. We refer to [Sch14, Theorem
1.3.6] for a proof of existence. Indeed, Logjy is defined differently in [Sch14, §1.1] and
the universal property is shown as one of its properties. ]

Remark 5.1.3. Another way to formulate the universal property is as follows. Consider
the category consisting of pairs (U,s) with & € UJ (F/S/K) and a fixed horizontal
section s € I'(S, e*U). Morphisms are supposed to be horizontal and respect the fixed
section after pullback along e. Then, the universal property reformulates as the fact that
this category has an initial object. This initial object is (Logig,1™).

By restricting the K-connection on the logarithm sheaf to an S-connection we obtain
a pair (LOggR,relSJln) with LOg(TiLR,relS € U:lf"l (E/S) and 1 € F(Sv e*LOgHR,relS)' The
universal property for Logjg implies the following universal property for Logig ;e g

Corollary 5.1.4. The pair (Logig v s, 1") is uniquely characterized by the following
property: for allU € Ul (E/S) the map
mHomyc(g/s) (Logdr re15:U) — €U, f = (e"f)(1)

is an isomorphism. The pair (Logdg a5, 1") is called the n-th relative (de Rham)
logarithm sheaf.

5.1.2 Basic properties of the de Rham logarithm sheaves

Let us list the basic properties of Logly. Let us write H := Hig (F/S)" and Hp := n5H.
The pullback of the Gauss—Manin connection induces a canonical K-connection on Hg.

Proposition 5.1.5. Letn > 1.

(a) (Transition maps) There are horizontal transition maps Loght! — Loghy iden-
tifying 1™ with 1™ after pullback along e.

(b)  (short exact sequence) The transition map Loghg — Loglg fits into a short exact
sequence of vector bundles with integrable K -connections

0 —— Hp — Loglp Og 0. (5.1)

Here, HE is equipped with the pullback of the Gauss—Manin connection.

(¢) (invariance) There is a horizontal isomorphism Loghy = [N]*Loglhy identifying
1™ with 1™ after pullback along e.

(d) (symmetric powers) There are horizontal isomorphisms Loghr — Sym™ Logigr

mapping 1™ to ayer after pullback along e.

n!
(e) (Extension class) The connecting homomorphism of the short exact sequence
(5.1) in relative de Rham cohomology gives a connecting homomorphism

§:0g=H4 (E/S) — Hig (E/S,HE) = H®0s H”

mapping 1 to idy.
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5 The algebraic de Rham realization of the elliptic polylogarithm

(f) (Compatibility with base change) For a Cartesian diagram

E -2, F

s

s 1,9

the pullback of (Logir,1) along the Cartesian diagram satisfies the universal
property of the n-th logarithm sheaf for E'/S’.

Proof. These are more or less trivial consequences of the universal property. We refer
to [Sch14, Chapter 1.1, and Chapter 1.3] where all properties are discussed. ]

Remark 5.1.6. We have used Sym™ in Proposition 5.1.5 (d) to be consistent with [Sch14].
The appearance of (ﬂln)!m already indicates that the better choice is using TSym"™ as we
did for the geometric logarithm sheaves. Since we are working over a field of characteristic

zero, there is not much difference between either of both.

The short exact sequence (5.1) gives an extension class [Loglg] € Ext{,IC( #/K) (O, HE).

Corollary 5.1.7. The Leray spectral sequence gives us a split short exact sequence

*

0 — Extiyos/m) (05, H) o Extliom (O, He) - Homyios/x)(Os, H@&HY) — 0.

The class [Loglr] is the unique class with e*[Logir] = 0 and §([Loglg]) = idy.

Proof. This is the way [Sch14, §1] defines the first de Rham logarithm sheaf, see the
remark below. By the universal property [Sch14, Theorem 1.3.6] both definitions are
equivalent. O

Remark 5.1.8. An extension

0 HEe & OF 0

representing [Logig] has in general non-trivial automorphisms. If one additionally fixes
a splitting

g:e"E S 05 DH,
then the identity is the only automorphism of the extension class respecting the fixed
splitting. This gives an alternative definition of Log(liR as an extension together with a

fixed splitting. Then, Logiy can be defined by taking symmetric powers. This is the
definition of Scheider cf. [Sch14, Chapter 1.1].
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5.1.3 The geometric logarithm sheaves

The aim of this section is to show that the geometric logarithm sheaves L] give us
a concrete geometric realization of the abstractly defined relative de Rham logarithm
sheaves. This is one of the main results of Scheider [Sch14, Theorem 2.3.1]. By taking
the universal property seriously we can give a much simpler proof then the original one.

As in Scheider’s proof, we need an interpretation of L'L as a Fourier—-Mukai transform.
Thus, we start recalling some definitions and results appearing in the work of Scheider.
As before, let ET be the universal vectorial extension of EV.

Definition 5.1.9. Let J be the ideal sheaf of O+ defined by the unit section. Let
U, (Mod@E ‘) J'nJrl) be the full subcategory of the category of quasi-coherent Og+-modules

F,st. JMF =0and J'F/JHF is a locally free Og = Opi /J-module of finite rank
fori=0,...,n.

In particular, Qg /T = Omgn gt 1s an object in Uy, (MOdoET / Jn+1>. For an object
Fel, (MOdOEf/J”“) let us define

PT) .

The integrable Ef-connection Vp: on P induces a canonical S-connection V 7t on Ff.

Fi= (prp). ((prT)*]: ®o

ExgET

We call F1 the Fourier—Mukai transform of F. The following result can be seen as a
particular case of the general Fourier-Mukai equivalence due to Laumon [Lau96] between
the derived category of Opi-modules and the derived category of D g-modules. The
reason for the following non-derived version is that the derived Fourier—Mukai transform

of F e U, (ModoE ‘) Jn+1) is cohomologically concentrated in one degree.
Proposition 5.1.10 ([Sch14, Thm. 2.2.12, Prop. 2.2.16]).

(a) The Fourier—Mukai transform induces an equivalence of categories:

Un (Modo, je1) 5 UL (B/S),  F s (F1,V 1)

(b) For F €U, (MOdOET/er»l) there is a canonical isomorphism
e FI' 3 (1), F.
Here, 70, : Inf" ET — S is the structure morphism of Inf? ET.

The geometric logarithm sheaves can be expressed as follows:

ef. . * * g !
£ P (prp).(id x of)*PT = (prp). ((PI"ET) Ot gt @0, 4 PT) = (Opt/T™T)

Furthermore, the canonical trivialization of £
6*52 = Olnfg Et = OET/jnH

gives us a canonical section 1 € I'(S, Opyn i) = T'(S, e*Lh) of e* L]
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5 The algebraic de Rham realization of the elliptic polylogarithm

Theorem 5.1.11 ([Sch14, §2.3, cf. Thm 2.3.1]). The pair (L} ,1) satisfies the universal
property of the n-th relative de Rham logarithm sheaf.

Proof. Let us sketch a simpler proof than the original one in [Sch14]. Let G € U} (E/S).

By the equivalence

~T ~
() : Un (Modo,, /gns1) = Uf, (B/S)

we may assume G = FT for some F € Ul (E/S). Then, we have the following chain of
isomorphisms

(4
= (my,)«Hom

— T
+1
TI'*HOIHUIL(E/S) <OET /jn y g) Un (Modo T/jn+1
E

) (O /T4, F) =
B) .
= (mp)sF = e Fl=¢e*g

where (A) is induced by the Fourier-Mukai type equivalence of categories and (B) is
Proposition 5.1.10 (b). It is straightforward to check that this chain of isomorphisms

—
sends f to (e*f)(1), which proves the universal property of (OET/jn+1 , 1). O

Remark 5.1.12. We have already remarked that (Loggg 15, 1") can be seen as initial
object in the category of pairs (U, s) withif € Ul (F/S) and s € T'(S, e*U). Similarly, one
can define the category of pairs (F, s) with F € U, (MOdoET/jnJrl) and s € T'(S, (7))« F)
whose morphisms are assumed to identify the chosen sections. This category has an
obvious initial object (Ogt/J""1,1). Then, the above result is nothing else than the
observation that (A) induces an equivalence of categories between both categories of
pairs. In particular, it identifies initial objects.

Corollary 5.1.13. The connecting homomorphism

§:0g=Hig (E/S) = Hig (E/S,HE) = Homy, (H,H)

associated with the short exact sequence of CJ{ in relative de Rham cohomology satisfies

5(1) = idy.
Proof. We have [L]] = [LogliR .1 5] Now, use Proposition 5.1.5 (e). O

Up to now we have considered just the geometric logarithm sheaves £f in this section.
In Chapter 2 we also defined and studied £,,. Indeed, in complete analogy we can define
and prove a corresponding universal property for the pair (£,,1) with 1 € I'(S,e*L,,):

Definition 5.1.14.

(a) Write VB(FE) for the category of vector bundles on E. A vector bundle U on E
is called unipotent of length n for E/S if there is a descending filtration AU

U=AUCAUC..CA"U=0
s.t. grly = AU/A™UY = 7*G for some vector bundle G on S.

146



5.1 The de Rham logarithm sheaves

(b) Let U,(E/S) be the full subcategory of VB(FE) consisting of unipotent vector
bundles of length n for E/S.

(¢) Let Z C Opv be the ideal sheaf of the zero section. Let U, (ModOEv /In+l> be

the full subcategory of the category of quasi-coherent Ogv-modules consisting of
F € Modp,,, jzn+1 s.t. T'F /T F is a locally free Og-module of finite rank.

For F € U, (ModoEv /In+1) we define the Fourier-Mukai transform

A

F = (prg). ((orpy)* F @0, 0 P) -
In complete analogy to Proposition 5.1.10 we have:

Proposition 5.1.15.

(a) The Fourier—Mukai transform induces an equivalence of categories:

Un (Modo,, jzne1) = Un(B/S), Fi> F

(b) For F eU, (Mod@Ev /InJrl) there is a canonical isomorphism:
St F S (70) & F -
Here, m, : Inf? BV — S is the structure morphism of Inf EV.

Proof. The proof of the corresponding result in [Sch14, Thm. 2.2.12, Prop. 2.2.16]
transfers verbatim to the situation without connection by replacing the Fourier—-Mukai—
Laumon equivalence by the classical Fourier—Mukai equivalence. O

We have

Lo (prg)aid x 1) P = (prg)e ((pr5v) Oty bv 0y, s P) = O [T

Theorem 5.1.16. The pair (L, 1) is the unique pair, up to unique isomorphism, con-
sisting of a unipotent vector bundle of length n for E/S and a section

1e F(S, e*ﬁn) = F(S, Olnfg Ev)
such that the following universal property holds: For allU € U,(E/S) the map
mHome , (L£n,G) = €°G, [ (e"f)(1)

s an isomorphism of Og-modules.

Proof. ”Un-daggering” the proof of Theorem 5.1.11. O
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5 The algebraic de Rham realization of the elliptic polylogarithm

Corollary 5.1.17. By forgetting the connection of L} the universal property of L., gives
a map L, — L. This map coincides with the canonical inclusion

Lo L]

Proof. The pullback of the canonical inclusion along e maps 1 to 1. O

Corollary 5.1.18. Let
0 : ker (ExtéE(OE,W*gE/S) SN EXt%QS(OSuHE/SD = Homog (Wg/s,Wr/s)

be the isomorphism obtained from the Leray spectral sequence in Zariski cohomology.
Then
6([£1]) = id € Homog (wr/s, WE/s)-

Proof. Let us recall from Section 2.1.2 that the group
ker (Ext}QE((’)E,W*gE/S) LN Extggs((’)g,gE/S))

classifies pairs (F, o) consisting of an extension F of O by n*wp /s together with a

fixed splitting o : Os ®wp/g 5 e*F. Such a pair has no non-trivial automorphisms. In
particular, there is a unique class

[(£,0)] € ker (Extb, (O, m*wpys) > Exth, (Os,wpys))

corresponding to the identity id, s This class is unique up to unique isomorphism.
Further, any other extension with a fixed splitting is obtained in a unique way as a
pushout of (L,0) (cf. proof of Corollary 2.1.4). But this is just a reformulation of the
fact that the pair

(£,0(1,0))

satisfies the universal property of Theorem 5.1.16. Thus, there is a unique isomorphism
between £ and £ compatible with the splittings along e. In particular, the extension
classes coincide and the corollary follows. O

5.1.4 Extending the connection of the logarithm sheaves

Owing to Theorem 5.1.11 we have a geometric interpretation of the relative de Rham
logarithm sheaves. For the description of the de Rham realization of the elliptic poly-
logarithm we will need the absolute versions. Let

res/s : VIC(E/K) — VIC(E/S), (F,Vz) = (F,res;5(VF))

be the functor restricting an absolute connection to an S-connection. As already ob-
served by Scheider one can immediately deduce the following result from the universal
property of the de Rham logarithm sheaves:
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5.1 The de Rham logarithm sheaves

Lemma/Definition 5.1.19. There exists a unique K-connection V on the ge-

ch LL,abs) = Vi
such that ((LIL, N abs) ,]l") satisfies the universal property of the absolute n-th de

ﬁL ,abs

ometric logarithm sheaf £ extending the connection V .i, i.e. res /s(V

Rham logarithm sheaf.

Proof. [Sch14, Prop. 2.1.4] Let us sketch the proof. Let ((LogQLR,VLOgER),]l) sat-
isfy the universal property of the absolute de Rham logarithm sheaf. Then, the pair
((LoggR, res, S(VLOggR)), ]l) satisfies the universal property of the n-th relative de Rham
logarithm sheaf. Thus, there is a unique S-horizontal isomorphism

a: LI 5 Loghy.

By transport of structure along the isomorphism « we obtain an integrable K-connection
@ VLOgn on ET which restricts to V ot and satisfies the universal property of the absolute
de Rham logarithm sheaves. This proves existence. Uniqueness follows after applying
res/g and using the universal property of the relative logarithm sheaf. O

Let us define Hy := nf;H for my the structure map of U = E'\ e(S). The aim of this
section is to give a more explicit description of the absolute connection on the geometric
de Rham logarithm sheaves via the Katz splitting. More precisely, in Corollary 3.3.10 we
have already constructed an integrable K-connection Vy prolonging V ci and making

0 Hy E“U Oy — 0.

horizontal. We want to prove that Vi coincides with the unique prolongation defined
in Lemma/Definition 5.1.19. While (Logjr,1") satisfies a universal property, there
is no characterizing property for Logir|v. Indeed, Logigr |y has in general non-trivial
automorphism, which is an obvious obstruction against a universal property. This makes
it more difficult to characterize the unique K-connection on Logjr|y. Let us have a
slightly closer look on the automorphisms of the extension

0 HEe Loglg Og 0. (5.2)
It is easily seen that the automorphism group of (5.2) is given by
Homvyc(g/k) (Op, HE) = Hig (E/K,Hg) = Hig (S/K,H).

Similarly, the automorphism group of

0 —— Hy —— Loglglv Oy 0.

is
Homyicwy k) (Ov, Hu) = Hig (U/K, Hy) = Hag (S/K, H) -

In this context the following result is useful:
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5 The algebraic de Rham realization of the elliptic polylogarithm

Lemma 5.1.20. Let N > 3 and En /My be the universal elliptic curve with T'(N)-level
structure over K. Then

Hip (My, Sym*H) =0
forall k > 1.

Proof. A purely algebraic proof is implicitly given in [Sch98]. Alternatively, one can

show the vanishing of HgR (M ~, Sym” H) after analytification. Then, the statement

boils down, using the Riemann—Hilbert correspondence, to the obvious vanishing result
HY(D(N),Sym*z?) =0, k>1

in group cohomology. Here, Z? is the regular representation of I'(N) C Sly(Z) on Z2. [

We get immediately the following corollaries:

Corollary 5.1.21. Let Enx /My be the universal elliptic curve with T'(N)-level structure
over K and let LogéR be the first absolute de Rham logarithm sheaf for En/My. Then,
the short exact sequences in the Abelian category VIC (E/K) resp. VIC (U/K)

0 HE Log}m OE 0.

and

0 —— Hy — Loglrlu Ou 0.

have no non-trivial automorphisms.

This result will be helpful since it makes the above extensions of Loglg resp. Loglg|u
in the universal situation rigid without fixing some additional structure like a splitting.
Let us return to the general situation of this chapter i.e. an elliptic curve E/S/K.
Restricting an extension on F to U gives an isomorphism of short exact sequences:

0 — Extyres/ ) (Os: H) = Extyic(s, i) (O, Hi) — Homyie(s ) (H, H) — 0

| 5 |

0 — Bxtyices/r) (Os, H) o Extyo,1)(Ovs Hu) — Homyiesyi)(H, 1) — 0

Using the above rigidity result allows us to characterize the absolute connection V .
1

on U as follows:

Corollary 5.1.22. Let Enx /My be the universal elliptic curve with T'(N)-level structure
over K and let (LJ{, V1) be the first geometric logarithm sheaf for En/My. The K-
1

connection V .t wpslU 38 the unique integrable K -connection on £I|U which extends the
1

S-connection V . |u, makes
1

0 Hy Ll Oy 0

a short exact sequence in VIC (U/K) and satisfies [,CJ{, Vci,abs] = [Loglgr|v]-

150



5.1 The de Rham logarithm sheaves

Proof. Assume we have a second integrable K-connection Vi on EI extending the S-
connection V . and giving rise to the extension class of the absolute logarithm sheaf.
1

By the above rigidity property (cf. Corollary 5.1.21) and the above isomorphism
Extyics i) (Or, He) = Extyiow ) (Ov, Ho)

both connections Vi and V ot | extend uniquely to integrable K-connections on £, Let

us denote the extended K-connection of Vi by V. The unique extension of V ot abs|U is
1

vﬁi ,abs’
isomorphism

By the universal property of ((EJ{, vﬁl,abs)’ 1) there is a unique K-horizontal

w: (E];’vﬁl,abs) = (‘CL@)

which identifies 1 € T'(S, e*EI) with 1. Applying the restriction functor res,g to this
morphism gives an S-horizontal isomorphism

(L], V) 5 (£l res s (V).

Since V .+ and res;s(V) coincide on the schematically dense open subset U, we deduce
1
V,+ =res;5(V). Thus, ¢ is an automorphism of (£I, V +) mapping 1 to 1 after applying

e”. By its universal property we conclude ¢ = id and thereby V .; =V. O

n,abs

Now, we can prove the following result.

Proposition 5.1.23. Let E/S/K be an elliptic curve over a smooth separated K-

scheme. Let Vy be the K-connection defined in Corollary 3.3.10. Then, V i = Vy,
1
i. e. the absolute connection V .+ abs‘U is the unique K -connection making
1
0 Hu »CUU Oy —— 0. (5.3)

horizontal and satisfying V .+ . (kc(1,0)) = (idy, @ kq) (Id3q).
10

Proof. Let us first show that (E“U, Vi) defines the same extension class as Loglg|v-.
The commutative diagram

5
Extyou/x) (Ov, Hu) %y Homyiogs k) (H, H)

[resss j

0
EXt%/IC(U/S) (Ov, Huv) /LN Homo, (H,H)

and the definition of Vi show that [E]i, Vy] maps to idy under 0y . By the charac-
terization of the class [Logig] in Corollary 5.1.7 and the isomorphism

Extp i (O, Hu) = Extyy e (Ov, Hu)
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5 The algebraic de Rham realization of the elliptic polylogarithm

it remains to prove that [EL V] maps to zero under

Ethlj/K(OU,/HU) vas EXt}E/K(OE,’HE) i)EX‘C}S/K(Os,/7"[) =
A*
=iy (/K. ) =
=Hiw (S/K Hiw (B/S)) . (5.4)

Here, we have used our fixed autoduality ), as in Eq. (1.10), to identify H with Hlz (E/S).
Let us write £g/g € Hig (S/K, Hig (E/S)) for the image of [EJ{, Vy] under (5.4). The
assignment

B[S~ &5 € Hi (S/K, Hin (E/S))

gives a well-defined cohomology class for any elliptic curve over a smooth separated
K-scheme. Furthermore, the assignment is compatible with base change. Thus, {g/g
defines (the cohomology class of) a modular form of weight 3 and full level Slp(Z). Since
there is no such non-zero modular form, we conclude /s = 0 for any E/S. This proves
that [EI, Vy] = [Loglg]- It remains to show Vi = VLT,abs|U' So far, we only know that
they are isomorphic. But we can prove the asserted 1equali‘cy after a finite étale base
change. In particular, if we fix N > 3 we may assume that F/S is equipped with a level
N-structure. Since both Vi and V LLabs’U are compatible with base change, it is enough
to prove the equality for the universal elliptic curve En with level N-structure. But in
this case the equality of both connections follows from the ‘rigidity’ in the universal
situation, cf. Corollary 5.1.22. O

The above proposition gives us an explicit way to describe the absolute logarithm sheaf
via the Poincaré bundle and the Katz splitting.

5.2 The de Rham realization of the elliptic polylogarithm

The aim of this section is to give an explicit description of the de Rham realization of
the elliptic polylogarithm in terms of the canonical section of the Poincaré bundle for
arbitrary families of elliptic curves E/S over a smooth separated K-scheme S. This can
be seen as an algebraic version of the work of Scheider. Indeed, on the analytification
of the universal elliptic curve with level I'(/V)-structure we can choose the Jacobi theta
function as trivializing section of the Poincaré bundle. Then, it is straight-forward
to check that the analytification of our description specializes to the explicit analytic
description in [Sch14, §3].

As before, we assume S to be smooth separated over Spec K.
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5.2 The de Rham realization of the elliptic polylogarithm

5.2.1 Definition of the polylogarithm class

Let us recall the definition of the de Rham cohomology class of the polylogarithm. We
refer to [Sch14, Chapter 1.5] for more details. The kernel ker(Logfy — Logig) for
0 < i < n defines the unipotent filtration on Loggg. The spectral sequence associated
with this filtration allows to compute the relative de Rham cohomology of the logarithm
sheaves:

Proposition 5.2.1 ([Sch14, Thm 1.2.1]).
(a) Fori=0,1 the transition maps Logiit' — Loghy induce the zero map
. 0 .
Hiy (E/S, Logit!) & Hig (B/S, Loghy)
in de Rham cohomology. In particular, the pro-system (7211% (E/S, LoggR))
n
is Mittag-Leffler zero for i =0, 1.

>0

(b) Fori =2 the transition maps induce the following chain of isomorphisms
Hip (E/S, Loghy) 5 Hig (E/S, Loghy') = ... Hig (E/S, 05) 5 Og
where the last isomorphism is the trace isomorphism H3g (E/S,Og) = Os.

Let us fix some D > 1. Let us define the sections 1., 1gp) € T(E[D], Ogp;) as follows:
Let 1gp) correspond to 1 € Ogp) and 1. correspond to the image of 1 € e.Og under
the canonical map

ex0g — OE[D]

Combining the above result about the cohomology of Logir with the localization se-
quence for

Up = E\ E[D] <22 E «2 E[D]
. (5.5)

TUp TE[D]

in de Rham cohomology gives the following.

Lemma 5.2.2 ([Schl4, §1.5.2, Lemma 1.5.4]). Let us write Hgp) = W*E[D}’H and

Hup = 7, H. The localization sequence in de Rham cohomology for (5.5) induces
an exact sequence:

0 — lim Hly (Up/K, Logiy) 8% [17% His (E[D)/K, Sym* Hpp)) % K.

If we view the horizontal section D? -1, — lgp) € D(E[D], Ogp)) as sitting in degree
zero of

[T 2 (EIDI/K, Sym* Hpip)
k=0

it 1is contained in the kernel of the augmentation map o.
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5 The algebraic de Rham realization of the elliptic polylogarithm

Proof. For details see [Sch14, §1.5.2]. For the convenience of the reader let us recall how
to deduce the above sequence from the localization sequence. The localization sequence
and the vanishing of lim H 1z (B, Loglip) = 0 gives

0 — lim Hap (Up, Loggr) B lim HY, (E[D], ipLoggr) — lim Hip (E, Loggg) -
n n n

Now, the exact sequence in the claim follows by Proposition 5.2.1 and the isomorphism

ipLogdr — ip[D]*Loglr = 7 pje*Logdr — € Sym"* Hpp).

O]

Definition 5.2.3. Let polp gg = (pol} qr)n>0 € lim Hlg (Up/K,Loghs) be the unique
pro-system of cohomology classes which maps to D?1, — 1 g(p) under the residue map.
We call polp, gr the (D-variant) of the elliptic polylogarithm.

Remark 5.2.4. The classical polylogarithm in de Rham cohomology
(POl Jnz0 € lim Hag (U/K, HY; ®0, Logir)
n

is defined as the unique element mapping to idyg under the isomorphism

::18

lim Hip, (U/K, 1Y ®0, Logir) = [] Hin (/K 1’ 20, Sym* H).

k=1

This isomorphism comes from the localization sequence for U := E \ {e} — E. For
details we refer to [Sch14, §1.5.1]. Indeed, there is not much difference between the
classical polylogarithm and its D-variant. For a comparison of both we refer to [Sch14,
§1.5.3].

5.2.2 Lifting the canonical sections of the geometric logarithm sheaves

In the previous section we saw that the canonical S-connection V cloon ET extends

uniquely to an integrable K-connection V " abs such that £! satisfies the universal
property of the n-th absolute de Rham logarlthm sheaf. We would like to relate the
canonical sections of the geometric logarithm sheaves

17 € T (B, £n 0, Os(EID)) C T (B, £}, @0, Qys(EID)

to the de Rham realization of the elliptic polylogarithm. In a first step we have to lift
them to absolute 1-forms with values in the logarithm sheaves which are in the kernel
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5.2 The de Rham realization of the elliptic polylogarithm

for the differential in the absolute de Rham complex of L’I. As always it is the Katz
splitting which allows us to do this. The map induced by the Katz splitting

n
split,, : Lnlu = EDTSymk i (wev/s)
k=0

is an isomorphism since we are working over a field of characteristic zero. Further, recall
that this splitting is compatible with the transition maps of L,, i.e., by passing to the
limit we obtain

oo
L%HEMU 5 I TSym” 7 (wpv )

(5.6)
k=0

Define (AP)gso, AP €T (UD,TSymk LT (gEV/S)) as the image of [” under (5.6). For
7 >0 let

KSip ¢ (TSym'™ mf (wpv)s)) @0y, s = (TSym' wi, (Wrv)s)) ®ou, Uiy
be the composition of

' mult oid
N i+1
(TSym™* it (@ s)) @00, Py s

—— T,

(TSymi wpv/s ®os WEv /s ®0s QE/S)
with the Kodaira—Spencer map

. - T (Id@KS) | -
U, (TSym’gEV/S Rog WEv/S Rog QE/S) — Ty, (TSymZ Wpv/g Rog Qé“/K)
and the inclusion

T (TsiymZ wpv/s ®os Q}S”/K) —— TSym' 7y wpv /s ®0y,, Y, /K
Definition 5.2.5. Define
AP = (id ® ko) (AP) = KSkp1 (M) € T (U, TSym* iy wipv /s @ O )
and let

L2 €T (Up, Lo ® Qi)
be the image of (AP)?_, under

Split;l ®id : @TSymk WE(QEV/S) ® QIIJD/K 5 Ll ® QIIJD/K’
k=0

Let us call AkD the k-th absolute connection form and )\kD the k-th relative connection
form.
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5 The algebraic de Rham realization of the elliptic polylogarithm

Remark 5.2.6. The name connection form is chosen in analogy to the connection func-
tions defined by Bannai, Kobayashi and Tsuji in [BKT10, Def. 1.4.]. Indeed, if we
consider a CM-elliptic curve E/Spec K together with a fixed invariant differential w
over O, one can use the differential to trivialize TSym®* i (wpy/g) ® QIIJD/K = Oy,.
It is not hard to prove that )\kD are D-variants of the connection functions defined in
[BKT10]. The reason is that the analytic splitting of the logarithm sheaves obtained
by choosing the theta function Z(z,w,7) coincides with the Katz splitting. Thus, the
relative and absolute connection forms defined above can be seen as generalizations of
the connection functions appearing in [BKT10].

A first step in proving that the absolute connection forms represent the polylogarithm
is the following:

Proposition 5.2.7. Let us view LY as section of L],|v7,, @0y, Q%JD/K via the inclusion
L, < LI. Then

(€Y)

where dV) is the second differential in the absolute de Rham complez of (LIZ, ch abs)'
Proof. We want to show the vanishing of
(V21 s Nid +id @ d) (L) € T (Up, £}, 00, 93c) (5.7)

Since (E;Q, \Y% ot ﬂbs) and the construction of LE are compatible with base change, we may
check the vanishing étale locally on the base. Thus, we may assume the existence of a
I'(NV)-level structure for some N > 3 prime to D and reduce, again by compatibility with
base change, to the situation of the universal elliptic curve En g /My, i . Furthermore, we
can check the vanishing of (5.7) after analytification. Passing to the universal covering
and using the explicit model for M3 and its universal covering M from Section 1.6,
allows us to compute the analytification of the left hand side of Eq. (5.7) explicitly.
Indeed, we will show that the system (L2 Jn>0 corresponds to the analytic pro-system
of 1-forms used in [Sch14] to describe the analytification of the de Rham realization of
the elliptic polylogarithm on the universal elliptic curve.

Let us write w3 ), for the pullback of wpv /s to the universal covering E of ES'. Recall

that the choice of the Jacobi theta function as trivializing section of the Poincaré bundle
and the basis dw = A\*dz of & induce a basis

_ ~ [i] yan
L= P a"og
i+j<n
on fIL, cf. Section 2.3. Let Up be the preimage of U on the universal covering. The
Katz splitting gives another isomorphism

n
split,, : Lalg,, = @TSymé%n WEv /M-
k=0 Up
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5.2 The de Rham realization of the elliptic polylogarithm
Via ' o '
wlil .= split,,” (dw)!
we obtain a different basis (w,[f])ign of En|UD- Let us first compare both bases. Therefore,
let us write Ey(z,7) := ((z,7) + n(1,7) - 2.
Claim 1: We have

W;Li] = ol . exp ((Dm (Eq(#, 7)))
ol =l exp (—WE] (B (=, 7')))
where exp in the ring TSiym' is understood as
exp (fall) = 3 f@t) = 3 ri(at)
i=0 =0

and the product is taken in TSym® H, i.e using the shuffle product.
Pf. of claim 1: The splittings are compatible with the isomorphism

L, = TSym"™ L.
This allows us to reduce to the case n = 1. In the case n =1 it only remains to show
Wl = o0 4 (B (z,7)) - @l

and
Wl = Y — (Ba(z,7)) - !

Indeed, both equations are equivalent since we have &ltl = dw = w,[.@l} in £;. Since both
bases are compatible with the extension structure of ,CJ{, we already know that

WLO] =&l 4 f(z,7) ol
for some holomorphic function f on Up. It remains to show
f(za T) = (E1(2,7'>) .

This can be done using the characterizing property of the Katz splitting. For N’ with
N|N’ we have a finite étale map

MN’,K — MN,K‘

Let (a,b) € (Z/N'Z)? and t (o) : M+, g — En g be the corresponding N'-torsion point.
By Lemma 2.3.4 (b) and Lemma 2.3.2 we get the formula

. ~ ~ g E_Lf Y an ~an
ter{(w[O] + folly = (1, lf(t,T) + A(T)‘| dw) € I(M, 0% © QFY /u)-
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5 The algebraic de Rham realization of the elliptic polylogarithm

where £ is a lift of the torsion section ¢ to the universal covering. On the other hand the
characterizing property of the Katz splitting in terms of the Eisenstein series A;(Ey,t)
gives

trivy (7 (@Y + foll)) = trivp(* (W) = trivi(#*k., (1,0)) = (1, A (Ey, 1)) =
= (1, [¢(t, 7) 4+ n(t,7)] dw).

Comparing both formulas and using the Legendre relation n(7, 7) = 2wi+n(1,7) -7 gives

N - - t

[t ) =<t 7) +n(t,7) - = ¢t 1) +n(L,7) T =Ei(f, 7). (5-8)

—f
A(r)
The image of all lifts ¢ of all N’-torsion sections e # t for all N’ with N|N’ is a dense
subset of the universal covering U. Thus, the holomorphic functions f(z,7) and Eq(z, 1)
coincide, since they coincide by (5.8) on this dense subset.

By essentially the same argument we obtain the following explicit form of the analytifi-
cation of the Katz splitting of absolute Kéahler differentials

1
kao(dz) = dz + ol Ey(z,7)dT,

™

compare also Eq. (3.20).
Claim 2: The composition

Zn+1|UD ® QlUt/lX/[ ZH|UD ® QIU(/IZ
%’lsplit ®id %T(splitn)*1®id
KS
Dty Tsym* @ @ Q5 S @y TSym* @ @ Qi

maps ZZI& axo® @ dz to
—% <— (Ei(z,7)) - (Z akﬂb[k]> + ak+1@[k]) ®dr.
m k=0 k=0

Pf. of claim 2: We have defined @ as the pullback of wgv /s to the universal covering
U and we have chosen dw as basis of @. Define

n+1 n+1
0 : @TSym w%@TSym w, Zakdw — Zakﬂdw[k]
k=0 k=0 k=0 k=0

This corresponds under the isomorphism of O“ﬁ”—algebras

o [t/ — ED TSym* @, ¢ dw
k=0
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5.2 The de Rham realization of the elliptic polylogarithm

to the usual formal derivation with respect to t. In particular, O satisfies all the properties
of the formal derivation, e.g. the Leibniz rule. By the definition of KSi; we have

B
KSp 1 (dwl ) @ dz) = KSkH(W) — dwKS(dw ® dz)
1 1
- (k] = [k+1]
57 dw'™ @ dr 27mﬁ(dw ) @ dr.

By linearity we deduce

1
(@rKSk11) (f ®@dz) = —Tm@f ® dr.

for f € @"H TSym @. From the first claim we deduce

n+1
(split,, ® id) <Z apol® © dz) = exp (* (Er(2,7)) dw 1]) (Z arduw! ) ®dz
k=0
where exp and multiplication are understood in TSym as above. We compute:
n+1 (5.10)
(®rKSk11) o (split,, ® id) Z o @ dz) =
k=0
n+1 (5.9)
—(@xKSk11) <exp (=B - (dw)V) - (Z ak<dw>“ﬂ> ® dz) s
k=0
my. (37 #
__ . 1) . k _
= 27”3 lexp( (dw) ) <kz::0 ag(dw) )1 ®dr =
1 n
- —E; - (1)) . (] _
== 5 (8 exp ( E; - (dw) )) (;} ag(dw) ) ®dr
L .o (S "
—Q—Mexp( 1 (dw) )-8(};)%((&0) )@dT:
1 1 - k - k
== 5. eXD ( - (dw)! ]) . l—El . (I;)ak(dw)[ ]> + l;)akﬂ(dw)[ ]

This maps to

1

l (Ei(z,7)) (Zakw”>+zak+1w ]@’dT

271

under spfit,{i1 ®1id, cf. (5.10). This finishes the proof of claim 2.

(5.10)

® dt

Let us recall from Lemma 2.3.5 that the section l;]';) is given in terms of the analytic basis

as
n

Z(fl)kk!skD@m ® dz

k=0
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5 The algebraic de Rham realization of the elliptic polylogarithm

where SZD is defined via the expansion

D?J(z,—w,7) — DJ(Dz, —%,T) = Z siD(z,T)wi.
i>0

Let us write LY for the analytification of L2.
Claim 3: We have

n

N 1
LD =3 (-DFklsPoM @ dz — —(-1)F (k + 1)1sp 0 @ dr.

Pf. of claim 3: Tt follows from the definition of LY that LD is the image of [ under
the composition

~ l,an ~ l,an
%lspﬁtﬁ®id ETspfitK71®id
n+1 k ~ l,an id®ro—®rKSk 41 n k ~ l,an
Do TSym*w ® QU/M Dr—o TSym" 0 ® QU/M

By claim 2 and the explicit formula for kg, the image of 1D = 37 (—1)kk!s? olFl @ dz
under this composition is

(Z(—n%!s,?@“ﬂ) ® (dz + El.m) +
=0 211

B Y (—DRRIsPoM + 3 ()R ke + )P0l | @ dr
k=0 k=0

1

211

which simplifies to
n

1
S (DR RIsPoM © de — — (1) (k + 11500 @ dr.
= 271

This proves the third claim.
Now, we observe that the injection
L, < LI
maps @l to (—1)‘@% and we obtain the formula
n

LP = Z klsPol0 @ dz — 5

1
—(k+ D)sP 00 @ dr.
pry T

Finally, using Remark 2.3.1 this expresses as

5 n n—k rk 1 en—kfk:
[ - A M N ST 1 S
" kgsk( g @4 g R DSk s @47
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5.2 The de Rham realization of the elliptic polylogarithm

in the basis (%) e chosen by Scheider in [Sch14]. From here on we can follow
: n

the proof of [Sch14, Theorem 3.6.2]. The essential point is that one can use the explicit
description of L? and translate the vanishing of

(V0 Nid +id @ d) (L)
into the system of differential equations

k+1
D
Orsy = —— —0: - Sk

This is satisfied by the mized heat equation for the Jacobi theta function:
2110- J (z,w, T) = 0,0, J (2, w, T)
We refer to [Sch14, Theorem 3.6.2] and [Sch14, Proposition 3.5.22] for details. O

Remark 5.2.8. The above result shows that [(L2)],>0 defines a cohomology class in
lim Hly, (Up /K, Loglhy)
n

Using the Leray spectral sequence combined with the vanishing results of Proposi-
tion 5.2.1, we deduce an isomorphism:

lim Hip, (Up/K, Logly) = lim Hiy (S/K, Hir (Up/S,Logi)) . (5.11)
The relative 1-forms (I2),,>0 define a compatible system

(5 ]GL ( ,Hlg (Up/S, LOng))

and the above result shows that this is a horizontal section of Hly (Up/S, Loghy) with
respect to the Gauss—Manin connection. From this point of view, the Picard—Fuchs
equation expressing the horizontality of [I2] in a suitable trivialization of Logllz turns

out to be the mixed heat equation of the Jacobi theta function.

Remark 5.2.9. The pullback of the absolute logarithm sheaves (L], V o1 ape) 2long some
torsion section ¢ is isomorphic to 7

n
P TSym" 1
k=0
with each summand equipped with the connection induced by the Gauss—Manin connec-
tion. With this observation we can use the vanishing of

dY(LP) =0

to relate our construction of real-analytic Eisenstein series via V ot to the construction of
Katz via the Gauss—Manin connection on the universal elliptic curve. In other words, the
mixed heat equation can be seen as a bridge between both constructions of real-analytic
Eisenstein series: Katz’ approach via the Gauss—Manin connection and our approach via
the connection of the Poincaré bundle.
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5 The algebraic de Rham realization of the elliptic polylogarithm

5.2.3 The polylogarithm class via the Poincaré bundle

As before, let E/S/K be an elliptic curve with S a smooth separated K-scheme over some
field K of characteristic zero. Let us fix ((E;[L, Vit abe)s 1) as absolute de Rham logarithm

sheaf. The Hodge filtration on H induces a descending filtration of Og-modules on £I
such that all morphisms in

0—>7—LE—>£J{—>OE—>0

are strictly compatible with the filtration. Here, O is considered to be concentrated in
filtration step 0. Explicitly this filtration is given as

Figl=cl o FLl =2, D F'Li =0
The edge morphism E;’O — E' in the Hodge-to-de-Rham spectral sequence

EY? = HY(Up, £}, ®0,,, Q = Bt = g (Up /K, L)

U )
D/K
induces a morphism

(1) .
r (UD,ker (ﬁL ©0u, Ui o L ©oy, O /K>> g, (UD /K, c;) . (5.12)

We show that polp, 4g is represented by the compatible system (LP), >0 under (5.12).

Theorem 5.2.10. The D-variant of the elliptic polylogarithm in de Rham cohomology
is explicitly given by
polp ar = ([L])n>0

where [LP] is the de Rham cohomology class associated with LY via (5.12).

Proof. First let us recall that
(1)
L) eT (UD,ker (L‘IL ®05, Wiy/x o L} ®0y, B /K)>

by Proposition 5.2.7. Thus, [L?] is well-defined. Further, the question is étale locally
on the base. Indeed, for a Cartesian diagram

Er -1 E

| ]

T%S

with f finite étale we have an isomorphism

F (EL ® QIE/K) 5 LY gy © Uy
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5.2 The de Rham realization of the elliptic polylogarithm

which identifies ( f LD Jn>0 with (L Jn>0. Furthermore, the canonical map

Hin (Up, £}) = Hig (Up x5 T, £}, 5, )

is an isomorphism and identifies the polylogarithm classes. Thus, we may prove the claim
after a finite étale base change. Now, choose an arbitrary N > 3. Since we are working
over a scheme of characteristic zero, the integer N is invertible and there exists étale
locally a T'(N)-level structure. Again, by compatibility with base change it is enough
to prove the claim for the universal elliptic curve Ey g with I'(V)-level structure over
Mp k. From now on let ¥ := Ey g and M := My k. By the defining property of the
polylogarithm we have to show

Res (([LE))nx0) = D*1e = 1gp).
We split this into two parts:
(A) ResL§ = D*1. — lgp
(B) The image of Res (([LE])nzo) under

]‘[ H (E[D], TSym* Hpp)) — ]'[ Hi (E[D], TSym* H )

is zero.

(A): Since M is affine, the Leray spectral sequence for de Rham cohomology shows that
we obtain the localization sequence for n = 1 by applying H3y (M, ) to

0 —— Hig (E/S) — Hlg (Up/S) == Hi (E/S).
This exact sequence can be obtained by applying Rm, to the short exact sequence

0 — Qg — QJ.E/S(E[D]) —== (igp))«Opp)[—1] —— 0

of complexes. Thus, it is enough to show res(if’) = D?1, — 1 E[p]- But we have already
shown this residue property in the proof of Proposition 1.5.3. This proves (A).

(B): By the vanishing of
Y% (E[D], TSym* HE[D]> —0, fork>0,
which is Lemma 5.1.20, there is nothing to show. O

Remark 5.2.11. Let us note that it is possible to construct the classical elliptic polylog-
arithm along the same lines. Using the canonical section S, instead of its D-variant,
it is possible to construct a section

ln € H; ® L], ® Q) 5([e]),
cf. Remark 2.2.2. Using the Katz splitting, it is then possible to lift it to a section
Ln € Hf ® L}, © Qpyx([e])

representing the classical elliptic polylogarithm.
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5 The algebraic de Rham realization of the elliptic polylogarithm

5.2.4 Uniqueness of the absolute connection forms

In the previous section we constructed lifts of the I2 to absolute 1-forms L2 with values
in the logarithm sheaves. Further, we showed that they represent the pro-system of
polylogarithm classes in de Rham cohomology. Still one might expect that this com-
patible system is only one of many ways to represent the polylogarithm class explicitly.
In this section we will show that this is not the case. The constructed system is essen-
tially unique. The edge morphism in the Hodge-to-de-Rham spectral sequence gives the
following map:

(1)
[]:T <UD,ker <£; ®0p Ui T L] ®0, 0% /K>> — Hlp (Up/K,L}) .

Proposition 5.2.12. The compatible system (Lﬁ))nzo s the unique compatible system
of sections in the projective system

(1)
r (UD, ker (ﬁl ®op Uy L} ®0, O /K) N (O @ cn)>
n>0

representing the polylogarithm class in de Rham cohomology.

Proof. We already know that the pro-system (LZ),>¢ satisfies the above properties.
By compatibility with base change we may check the uniqueness locally on the base.
We may thus assume S = Spec R is affine with wp/ g being freely generated by some
wel(Swg / g)- There exists a unique Weierstrass equation with df” = w. Let us define
n:i= xdf’. Let

0: OUD — OUD

be the derivation dual to w. We have

() T(Up,Im 8°) = {0}.
k>0

One possible way to see this is by a direct computation on the affine locus using the
Weierstrass equation. In a first step we show that there is no compatible system of
relative coboundaries contained in £, ® QIIJD /s
Claim: If

(an)nzo el (UD, (Im VEL) N (ﬁn Rog QE/S))

is compatible with the transition maps, then a,, = 0 for all n > 0.
Pf. of the claim: Since Up is affine, the sequence

n>0

n

0 —— I'(Up,kerV ) —— I'(Up, Lf,) —— I'(Up,ImV ;) —— 0

is exact. The localization sequence for Up < E induces an isomorphism

Hy (B/5.£}) % Hin (Un/S.£})
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5.2 The de Rham realization of the elliptic polylogarithm

which is compatible with transition maps. Thus, we deduce from Proposition 5.2.1 that
HYy (UD/S, EL) =kerV ¢

is Mittag-Leffler zero. In particular, the above short exact sequence induces an isomor-
phism:

Im (Up, £}) 5 im T'(Up, Im V1 )

n

The transition maps on the left hand side are surjective. In particular, there is a unique
compatible sequence (b, )n>0 with b, € T'(Up, L]) and Vi (bp) = ay, for all n > 0. Since
we are working over a field of characteristic zero, the Katz splitting induces isomorphisms

n
split] : EL‘UD = @TSymk Hup,-
k=0

We obtain an explicit basis
wlfd) = (splith) (V)™ - ([w]")P)
of L]. Using this basis, let us write

bn= > Bwll, B € T(Up,Oup).
k+I<n

Observe that 8 ; does not depend on the chosen n > k-1 by compatibility with transition
maps. Similarly, let us write

n
Ap = Z akka,O] Qw, o€ F(UD,OUD).
k=0

The explicit formula for V i in Proposition 3.2.11 implies

Vi (WFY = (k + DY @ n + (1 + 1w @ w.

With this formula we can rewrite the differential equation V(b,) = a,, as the formal
sum:

> (9Bl @ w+ (k+ 1)l @+ (1 + DBl g w) = 3 gl low.
k>0 k>0

We claim that this implies 8;; = 0 for all k,l > 0. Let us prove this by induction

on k. For k = 0 comparing coefficients of the form w,LO g gives the following system of

differential equations for (5p);>0:

0Bo,0 = ap
85(” =1 ﬁ071_1 for I >0
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5 The algebraic de Rham realization of the elliptic polylogarithm

In particular, this implies for any [ > 0

9Bos € () T(Up,Im0°%) = {0}.

k>0

We conclude (8o,);>0 = (0);>0. For the induction step, let us assume (8;;);>0 = (0)1>0

for all j < k. Comparing coefficients of w,Lk’*] under the induction hypothesis gives

0Bk = o
8,8;@71 =—/- /Bkz,l—l forl >0

and as above we conclude (8)i>0 = (0);>0. This proves b, = 0 for all £ > 0 and thereby
ar =V i (b) = 0 for all £ > 0 as desired. The claim follows.

For the uniqueness in the statement of the proposition, we consider the difference between
two compatible systems. This difference gives a compatible system of coboundaries

(An)nz0 € D(Up, Im(V 14 ) N (Ln @0y, U,y 5 In0

thus the proposition follows from the following:
Claim 2: Every sequence

(An)nz0 € T(Up, Im(V 44 ) N (Ln @0y, Uy /5 In0
which is compatible with the transition maps is the zero sequence, i.e A, = 0 for all
n > 0.

Pf. of Claim 2: As in the previous claim one proves that there is a unique compatible
system (Bp)p>0 with Vi abs(B”) = A,. Restricting A, € I'(Up, L, ® QlljD/K) to a
1-form relative S gives a compatible system

(an)nz0 € T(Up, Ly @0y, Uiy ys)n>0-

Since

r (UD,£L®Q§]D/K)

r (UD, c;)

vﬁ\)

U (Up, £, 29, s)
commutes, we have V i (B,) = a, for all n > 0. The proof of Claim 2 shows then

B, =0 for all n > 0. In particular, we have 4, =V .; abs(Bn) =0 for all n > 0. This
proves the second claim and thereby the proposition. 7 O
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5.2 The de Rham realization of the elliptic polylogarithm

Remark 5.2.13. The de Rham realization of the elliptic polylogarithm can be seen as
an invariant in de Rham cohomology of an elliptic curve. From this point of view we
have the following interpretation of the above result. The connection forms (A2),>q
or equivalently the compatible system (LZ),>o forms a distinguished system of cocycles
representing the cohomology class of the polylogarithm. Thus, we can see the connection
forms as a distinguished and functorial refinement of the invariant given by the elliptic
polylogarithm. On the other hand, the theory of the canonical section developed in the
first and the second chapter shows that this distinguished refinement has also a nice ge-
ometric interpretation via the Poincaré bundle. Even better: It is not only a refinement
in the sense that we have found a canonical representative of the underlying cohomology
class, it even allows constructions which have not been possible so far. While a construc-
tion of real-analytical Eisenstein series or their p-adic analogue seems to be impossible
via the cohomology class of the elliptic polylogarithm, the results of Section 2.4 and Sec-
tion 4.5 show that the refined invariant (I2),> allows such a construction. From this
point of view this thesis fits into the frame of the collaborative research center! ‘Higher
Invariants’ whose scope is studying structural and hierarchical refinements of classical
invariants.

1 SFB 1085, ‘Higher Invariants - Interactions between Arithmetic Geometry and Global Analysis’,
Funded by the DFG
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6 The syntomic realization of the elliptic
polylogarithm for ordinary elliptic curves

The aim of this chapter is to describe the rigid syntomic realization of the elliptic polylog-
arithm for families of ordinary elliptic curves. The case of a single CM elliptic curve has
been treated by Bannai, Kobayashi and Tsuji in [BKT10]. On the other hand the syn-
tomic Eisenstein classes obtained by specializing the polylogarithm class on the ordinary
locus of the modular curve have been described by Bannai and Kings in [BK10a]. Thus,
loosely speaking our result can be seen as the least common generalization of [BKT10)]
(for ordinary primes) and [BK10a]. So, it is not surprising that the used methods are
very much inspired by both [BKT10] and [BK10a/.

For this chapter it might be helpful to recall two steps used in [BKT10] to describe
the polylogarithm for a single CM-elliptic curve. Once the de Rham realization is set-
tled Bannai, Kobayashi and Tsuji proceed in two steps to describe the rigid syntomic
realization for CM elliptic curves. In a first step they build a system of differential
equations for overconvergent functions starting with the connection functions appear-
ing in the de Rham realization. The solution of this differential equation describes the
Frobenius structure on the polylogarithm sheaf. In a second step this system of differ-
ential equations is solved on tubular neighbourhoods of torsion sections. This is possible
since the connection functions on such tubular neighbourhoods are closely related to
moment functions of p-adic distributions. In this step it is exploited that the p-adic
Fourier transform of Schneider—Teitelbaum translates this differential equation into a
differential equation which is more or less obviously satisfied by the moment functions.

6.1 Rigid syntomic cohomology

Syntomic cohomology can be seen as the p-adic analogue of Deligne—Beilinson cohomol-
ogy. Indeed, in the case of good reduction Bannai has proven that syntomic cohomology
can be seen as absolute p-adic Hodge cohomology [Ban02]. The recent work of Deglise
and Niziol generalizes this to arbitrary smooth proper schemes over a discretely valued
field of mixed characteristic]lDN15]. The approach of Deglise—Niziol allows further the
construction of a ring spectrum in the motivic homotopy category of Morel-Voevodsky
representing syntomic cohomology. In their approach coefficients for syntomic cohomol-
ogy can be defined abstractly as modules over this ring spectrum. Nevertheless, we
will use rigid syntomic cohomology as developed by Bannai for describing the syntomic
realization of the elliptic polylogarithm. Indeed, since we want an explicit description of
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6 The syntomic realization of the elliptic polylogarithm for ordinary elliptic curves

the polylogarithm class, we need explicit complexes computing syntomic cohomology.

In this section we briefly recall the definition and basic properties of rigid syntomic
cohomology. We follow closely the appendix of [BK10a]. In particular, we use their
modification of the definition of smooth pair allowing overconvergent Frobenii which are
not globally defined. Let K/Q, be a finite unramified extension with ring of integers
Ok, residue field k and Frobenius morphism o : K — K.

Definition 6.1.1.

(a) A smooth pair is a tuple 2~ = (X, X) consisting of a smooth scheme X of finite
type over Ok together with a smooth compactification X of X with complement
D:=X \ X a simple normal crossing divisor relative Spec Og. We denote the
formal completion of X with respect to X, := X Xgpeco, Speck by X and the
formal completion of X with respect to Xj by X. The rigid analytic spaces
associated with X resp. X will be denoted by Xx resp. Xx.

(b)  An overconvergent Frobenius ¢x = (¢, #y’) on a smooth pair 2" = (X, X) con-
sists of: A morphism of Og-formal schemes

o X =X

lifting the absolute Frobenius on X} and an extension of ¢ to a morphism of rigid
analytic spaces B
oy V = Xk

to some strict neighbourhood V' of Xk in Xr.

(c) A smooth pair together with an overconvergent Frobenius 2~ = (X, X, ¢, ¢v)
will be called syntomic datum.

For a smooth pair 2" = (X, X) let us write X and X for the generic fibers and X ¢
resp. X" for the associated rigid analytic spaces. Then, X7 is a strict neighbourhood
of j : X — Xk. A coherent module M on Xx with integrable connection

V:M— MeQg, (logD)

and logarithmic poles along D induces an overconvergent connection (M9 V") on
M9 = T (M| X(;(n). The category of filtered overconvergent F-isocrystals on 2~ serves
as coefficients for rigid syntomic cohomology and may be realized as follows.

Definition 6.1.2. Let the category S (Z") of filtered overconvergent F-isocrystals on
2 = (X, X) be the category consisting of 4-tuples

M= (M,V,F* &)
with: M a coherent O g, -module with integrable connection

V:M— MQ% (logD)
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6.1 Rigid syntomic cohomology

with logarithmic poles along D = X \ Xf. F* a descending exhaustive and separating
filtration on M satisfying Griffith transversality:

V(F*M) C F*~1(M) @ Q, (log D)
And a horizontal isomorphism
Dy FEM™ — M™.

where F, is the Frobenius endofunctor on the category of overconvergent isocrystals
defined in [Ber97]. ®,; will be called a Frobenius structure. Morphisms in this category
are morphisms of O, -modules respecting the additional structures.

If one has a fixed overconvergent Frobenius on the smooth pair 2" = (X X ), one can
realize a Frobenius structure more concretely as a horizontal morphism

G M — M™Y.

A morphism of pairs 2 = (X,X) — % = (Y,Y) is a morphism f : X — Y such that
f(X) €Y . A morphism of pairs is called smooth, proper, ... etc, if f|x is smooth,
proper, etc. For smooth morphisms of smooth pairs we define the higher direct image
as follows. Let D' := Y \ Y. The sheaf of relative logarithmic differentials is defined as
the cokernel in the following short exact sequence:

0 —— f*Q5(log D') —— Q% (log D) —— Q% — 0

X /Y Jlog

and Q?—(/)—/Jog = APQ}(/YJOg. For M = (M,V,F*, &) € S(Z) we can define the

following algebraic and rigid relative de Rham complexes

DR;(/Y(M) =M ®0)’( Q}(/Y,log

and
. 9\ . j +l
DRX/Y(]Mmg) =M ®jTOXK ]TQ/\?K/?K
and their higher direct images

RPf,.DR% )y (M),  R? frig DR )y (M").

In the special case 2 Iy .= (Ok,Ok) both

HY: (X, M) := RPf.DRY 0, (M), HY,

B (X, M%) = RP fig DR 0, (M)

are K-vector spaces.
While R? f,.DRY /Y(M ) is equipped with the Hodge-Filtration F'* and the Gauss—Manin

connection Vg, the rigid cohomology R frig+DRY /Y(M "i9) is equipped with a Frobe-

nius structure ®. If we write jy : Vg — Yk for the inclusion, we have a comparison
map

Oy : Y (B f.DRY jy (M)lyge ) = B frig DRy (M%),
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6 The syntomic realization of the elliptic polylogarithm for ordinary elliptic curves

Whenever © -5 is an isomorphism, we obtain a structure of a filtered overconvergent
F-isocrystal over %'

HE (2/%, M) = (REDRYy (M), Vo, F®, ®) € (%),
It is known that for proper maps 7 : 2~ — % the comparison map © 5,4 is always an
isomorphism [BK10a, Prop. A.7.].

Definition 6.1.3. A filtered overconvergent F-isocrystal M = (M,V,F* &) € S(27)
is called admissible if:

(a) The Hodge to de Rham spectral sequence
EP? = HP(X g, grp DR i (M) — HER? (Xx, M)
degenerates at Fj.
b) Ou /0. 0n) : Hin (X, M) — HE (Xp, M™9) is an isomorphism.
/(Ok,0OK) dR

rig

(c) The K-vector space Hjp (Xg, M) = Hp, (Xy, M™) with Hodge filtration com-
ing from H. gR and Frobenius structure coming from Hﬁg is weakly admissible in

the sense of Fontaine.

Let us write S(.27)%4™ for the full subcategory of admissible objects.

We will also need the following relative version of ‘admissible’ from [Sol08, Def. 5.8.12]:

Definition 6.1.4. Let 7 : 2" — % be a smooth morphism of smooth pairs. A filtered
overconvergent F-isocrystal M = (M,V,F* ®y;) € S(Z) is called w-admissible if:

(a) ©x/y is an isomorphism.
(b) The obtained filtered overconvergent F-isocrystals over %

HY (2] M) = (Rpf*DR}/Y(M),VGM,F',Q) € S(X).

are admissible.

Let us write S(.27)™ %™ for the full subcategory of m-admissible objects.

For m: 2" — % a smooth morphism of smooth pairs we obtain functors
HEo (2] ) 2 S(2)7 0 — S(&) .

Let us briefly recall the definition of rigid-syntomic cohomology as given by Bannai.
We follow the exposition in [BK10a]: Let 2" = (X, X,®,¢v) be a syntomic datum
and M = (M,V,F*® ®,/) be a filtered overconvergent F-isocrystal. For a finite Zariski
covering 4 = (U;)ser of X set Uio,...,in,K = No<j<n Uij,K. il induces a covering (U i )icr
of Xk obtained via the completion of U; N X along its special fiber. Let us write

Jigwsin Uiyl = [ Uiy i = Xic
0<j<n
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6.1 Rigid syntomic cohomology

for the inclusion. The total complex associated with the Cech complex

HF( Uik, DRar (M )—> HF( Uip,ir ks DR3g (M ))—>...

10,81

will be denoted by Ry (4, M). Similarly, let us define Ry, (4, M) as the total complex
associated with:

Hr (%, DR (M719)) — [T T (¥, 55, 5, D2y (M) —

10,21

The Frobenius structure ®,; together with the overconvergent Frobenius ¢x = (¢, ¢v)
induce
by K ®p k Ryg (U, M) — Ry, (U, M)

and the comparison map Oy, induces

Oy : RSx (4, M) — RS, (41, M).

Tig
Let
R?,, (4L, M) := Cone <F0R§R(u, M) U000, pe M)) ]

where F'® is the filtration induced by the Hodge filtration.

Definition 6.1.5. The rigid syntomic cohomology of 2~ with coefficients in M is defined
as

Hip (27, M) 1= T H" (Rl (84, M)
o
where the limit is taken over all coverings with respect to refinements.
By its very definition we have a long exact sequence

—— FOHT (Xg, M) —— H (Xg, MT9) —— Hg;jl (2 M) ——

Above we have defined functors

HP ()% ,): S(Z) —vdm — §(@)edm,

=——Ssyn

The reason for the chosen notation is the following spectral sequence [Sol08, Theorem
5.9.1]. For M = (M,V,F* &) € S(2)™ %™ and 7 : 2 — % a smooth morphism of
smooth pairs there is a Leray spectral sequence:

B3 = HE, (%, HE, (2%, M)) = BV = HEL (2, M)

) ==syn

Either by this spectral sequence or directly by the above long exact sequence, we deduce
the following:
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6 The syntomic realization of the elliptic polylogarithm for ordinary elliptic curves

Corollary 6.1.6. For ¥ := (Ok,Ok) we have the short exact sequence:

0= Hiy, (7, Hipy (27, M)) — HEt (27, M) = HYy, (¥, Hnt (2, M) =0

syn £Zsyn syn syn £Zsyn
Definition 6.1.7. The boundary map

0:Hy (X' M) = Hig (XK, M)

syn

is defined as the composition

HZ (2, M) = HY, (7 Hiy (2, M)

syn £isyn

with the inclusion

HYy, (7, Hip, (27, M)) = ker (FOHQE{ (Xx, M) =% g (Xk,M”'g)) C H™ (Xx, M)

syn ££syn rig

In general, the category S(Z") is not Abelian. As in [Ban00, Rem 1.15] we will regard
the category S(2") as an exact category with exact sequences given by sequences

0—-M —-M-—M"—0

such that the underlying sequence of O <, ~modules is exact and the morphisms in the
sequence are strictly compatible with the filtrations. The Tate objects K(n) € S(Z")
are defined as

K(n) = (Ox,.,d, F*, ®)
with F_jOXK =0%, C F_j+10XK =0and ®(1) =p~7.

Proposition 6.1.8 ([Ban00, Proposition 4.4]). Fori = 0,1 there is a canonical isomor-
phism

syn

fitting into the commutative diagram

B =

Hiyy (27, M) ————— Hig (X, M)
where For is the map forgetting the Hodge filtration and the Frobenius structure.

Last but not least, let us recall the following useful description of classes in Hslyn (Z M)
if FOM = 0:
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6.2 Definition of the rigid syntomic logarithm sheaves

Proposition 6.1.9 ([BK10a, Proposition A.16]). Let M = (M,V, F,®) be an admissi-
ble filtered overconvergent F-isocrystal with FOM = 0. A cohomology class

[a] € H]

syn

(27, M)
is given uniquely by a pair (a,§) with

a € T(Xg, M™), ¢eT(Xk,F'M® Q% (logD))
satisfying the conditions:

Via) = (1 =2)(E), V() =0

In particular, this result will apply to the polylogarithm class. Indeed, we will see
that the differential equation of overconvergent functions describing the rigid syntomic
polylogarithm class is just a restatement of the abstract differential equation

V(a) = (1= 2)(&)
in terms of the basis obtained by the Katz splitting.

Corollary 6.1.10 ([BK10a, Corollary A.17]). Suppose (a,§) = [o] € Hg,
as in the previous proposition. Then, the image of [a] under

(2L M) is

Hl (%7M) %HAR(‘%yM)

syn

is given by [£].

Remark 6.1.11. In particular, this corollary shows that forgetting the Frobenius structure
of the syntomic polylogarithm class gives a distinguished system of cocycles representing
the de Rham cohomology class. We have shown in Proposition 5.2.12 that this conclusion
holds even without referring to any compatibility with the Frobenius structure.

6.2 Definition of the rigid syntomic logarithm sheaves

We recall the definitions of the rigid syntomic logarithm sheaves. As before, let K /Q, be
a finite unramified extension. Let 7 : & = (E, E, ¢g) — . = (S, S, ¢s) be a morphism
of syntomic data with 7 : £ — S an elliptic curve over some affine scheme S.

Since 7 is proper, H := ﬂ;yn (&), K1) € S(#) and H" € S(.7)* are well defined
admissible filtered overconvergent F-isocrystals. Applying the Leray spectral sequence
for syntomic cohomology to Hg := 7*H and using Proposition 6.1.8 gives a split short

exact sequence:

e*

/\

0 —— Exth (K (0),H) —=— Extl ) (K(0),Hz) —— Homgs)(H, H) — 0
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6 The syntomic realization of the elliptic polylogarithm for ordinary elliptic curves

Lemma/Definition 6.2.1. Let [Log;yn] € Ext}q(g) (K(0),HE) be the extension class

which is uniquely determined by e*[Log;yn] =0 and & [Lag;yn] = idy in the above split
short exact sequence. For every sequence

0 HEe Logt —— K(0) —— 0 (6.1)

syn
representing [ng;yn] there is exactly one splitting
e*Locq;yn S K(0)®oH

in the category S(.#). In particular, there are no non-trivial automorphisms of (6.1).

We call

1 _ 1 . _
Loﬂsyn = (Logsyn|EK y vLagSyna Fngsyna (@Logsyn) -

1
syn’

the first syntomic logarithm sheaf. We define Log:yn := TSym" Log

Proof. The only assertion to check that there is only one splitting
e*Locq;yn S K(0)oH

compatible with filtration, connection and Frobenius structure. Two splittings differ
by a map f € Homg s (K(0),H). Compatibility with filtration shows that f factors
through FH. By compatibility with the connection we deduce f = 0. O

The canonical map Log;yn — K (0) induces transition maps Lo‘g’:yfll — Logo . The
canonical isomorphism
1 ~
e*LogSyn - K0)oH
induces isomorphisms

n
e*Log’;yn 5 @ TSym"* H.
k=0
n

In particular, 1 € K(0) gives us a canonical horizontal section 1" in e*LogSyn.

Remark 6.2.2.

(a) The Hodge filtrations on Hp and K (0) determine the Hodge filtration on Log! |
since we have assumed morphisms in exact sequences to be strictly compatigle
with the filtrations.

(b) Assume we have fixed an absolute de Rham logarithm sheaf (Logdg; Viogn, 1")
for E/S. Then, the universal property of the de Rham logarithm sheaves gives
us a unique horizontal isomorphism

(Logng vLOgQ‘R) = (Loggym VLUJ]S),“”EK

identifying 1" with 1™. In particular, the Frobenius structure on Log:yn induces

a unique Frobenius structure on (Loglz)™. Applying this to the geometric

logarithm sheaves with its absolute connection (£}, V 2t abs? 1) gives us a unique
Frobenius structure ®, on (L),
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6.2 Definition of the rigid syntomic logarithm sheaves

By the above two remarks we may assume
1 T
(LOgSyn ’EK’ vLqﬂsyn’ sz’ggsyn7 q)[‘ggsyn) - ([:17 V»C'Labs’ F.7 (I)['> )

Here, (,C];, V i abs) is the absolute connection on the first geometric logarithm sheaf, F'®
1
is the Hodge filtration

Ll=rF Ll o FLl = £, D F'Ll =0

and @, is the unique Frobenius structure described above. Later, we will give a more
explicit description of the Frobenius structure in some cases.

Since 7 is proper, the map O¢,» is an isomorphism. In particular,
Hi, (), Logl,) € S()

is well defined. Along the same lines as in the de Rham realization [Sch14, §1.2], one
can prove the following result:

Proposition 6.2.3 ([Sol08, Lemma 6.3.3.]). Let w: & — . be as before.

(a)

TSym* H i=0
Hgyn (éa/f, wa?yn> =~ {TSym H H(-1) i=1
K(-1) i=2

(b) The transition maps

ﬂéyn (g/y’ Logg;;l) = i, ((g’/y, Log:yn>

£Zisyn

are zero for i = 0,1 and are isomorphisms for i = 2. In particular, the trace
isomorphism for i = 2 gives canonical isomorphisms

ﬂgyn (cf/&”, Log:yn) S5 ﬂzyn (é"/Y, Loggyn) = K(0)
Using Liebermann’s trick, i.e. the isomorphism [KLL15, Theorem 3.2.3.]
H (7, TSym* H(j)) = HFF (&5 K(j + k) (ex)

for 7 € {dR,rig,syn}, one can deduce that TSym* H(j) is admissible. This combined
with the above computation of the relative cohomology of Lo‘g:yn shows:

Corollary 6.2.4. The overconvergent filtered F'-isocrystals nggyn are m-admissible.
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6 The syntomic realization of the elliptic polylogarithm for ordinary elliptic curves

6.3 Definition of the rigid syntomic polylogarithm class

For the definition of the (D-variant) of the elliptic polylogarithm in rigid syntomic coho-
mology consider the following diagram of smooth pairs: For D > 1 define Up := E\ E[D].

Up = (Up, E) 22 & .= (B, E) ‘2. &[D]:= (E[D],E[D))

T%p lﬂg %

< =(S,S5)
Lemma 6.3.1. The localization sequence induces an exact sequence:

0 —— lim Hy, (%D,Laggyn(l)) — lim HQ, (@‘"[D],ngn (1)‘(5@]) _aug g

syn

Proof. Let us first note that the localization sequences for de Rham and rigid cohomology
induce the following exact sequence in the category S(7') for ¥ = (Ok, Ok):

0 — HY, (6/7, Logh (1) — Hi, ()7, Logty (1)) — HY, (£[D)/7, Logl, (Vlerp)) — K(0)

£4syn

The strict compatibility of filtrations can be deduced from Hodge theory since we are
considering de Rham cohomology over a field of characteristic 0. The compatibility of
the localization sequence in rigid cohomology with Frobenii is shown in [Tsu99]. The
term K (0) follows from Proposition 6.2.3.

The exact sequence in the statement follows now by applying HSOyn (7,-) and observing
Corollary 6.1.6 as well as the vanishing results

l'&nﬂslyn (éa/”//, Log’;yn(l)) =0, @ﬂyn (%D/”I/,Log:yn(l)) =0
which are deduced from Proposition 6.2.3. 0

Let D21, — 1gp) be defined as in Section 5.2.1. The exact sequence
. . 1-¢
0 —— lim HY, (&[D], Lol ) — lim FOHS (E[D]k, Logly) —

1-¢ . i
— lim HY, (E[Dly, (Logir)"™™)

allows us to view D1, — 1g(p) € ker(1 — ¢) as element of lim Hgyn (éa[D], Log:yn).
Definition 6.3.2. The D-variant of the syntomic polylogarithm pol D.syn is the unique
pro-system in

H! (%D, Log” (1))

Wm Hgy, yn
n

mapping to D?1, — 1 g[p] under the residue map Res in the localization sequence.
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6.4 The differential equation associated with the Katz splitting

6.4 The differential equation associated with the Katz splitting

In this section we want to set up a system of overconvergent differential equations de-
scribing the Frobenius structure of the polylogarithm class. This works for any syntomic
datum underlying an elliptic curve.

Let 7 : & = (E,E,¢p) — & = (5,5,¢5) be a morphism of syntomic data with
m : E — S an elliptic curve over some affine scheme S. For simplicity let us further
assume that wp /g is freely generated by some w € I'(S,wp/g). By Remark 6.2.2 we may
assume:

(Loggyn|EK7 VLUgsynv FZagSyn7 cI)LUgsyn) = (E;rw vﬁL,abs’ F*, (I)ﬁ) (6'2)

Further, observe F 1[,;2 =0 and F OEIL = L,,. Let us recall the definition of the map ¢
used in the definition of rigid syntomic cohomology:

(I)Lﬂgsyn

_ . ¢* — N . — ri
¢ : F(gK’ (Logsyn)”g) _—E_> F(gKa ¢E(L0gsyn)mg) — F(5K7 (LOgsyn) ’Lg)
Combining [BK10a, Proposition A.16] with Theorem 5.2.10 we obtain:
Corollary 6.4.1. There exists a unique compatible sequence (pn)n>0 0of overconvergent

sections p, € I’ ((?K,jTD(Longn)) satisfying

vE*,abs(ﬂ”) = (1 - ¢)(Lr?) (63)

where we refer to Definition 5.2.5 for the definition of LY € T' ((UD)K, FLl ® Q%UD)K)‘
The pair (pn, Lg)n>0 is the unique pair representing po[gsyn € ﬂslyn (%D, Log” (1))

syn

Proof. By [BK10a, Proposition A.16] there exists a unique pair (pn,&,) representing
pol’y, ., with p, € T(éx, jh(Logl.,)) and &, € T'(Ex, F'Logl,, @ Qf (log D)) satisfy-
ing
1
Vior,,, (n) = (1= 0)(&n), vg;_,syn (€0) = 0.

The restriction to Up and the identification (6.2) give an injection:

I (Ex, Loghy ®0, O (0gD)) ST ((Un)i, £} @0y, . Uiy /i) 5 Slup -

By Corollary 6.1.10, &, represents the corresponding de Rham class under the boundary
map 6, i.e [,] = polp qr. In Proposition 5.2.12 we have characterized

(LR)uz0 €T ((Un)ie, £ @ Qyyic) (6.4)

as the unique compatible system representing polp 4z which is contained in the filtration
step FOL! ® QIIJD/K =L, ® Q%fD/K' Since & vy, satisfies these properties, we obtain
£n]UD7 = LY and the corollary follows. Let us note that, by slightly abusing notation,
we have identified L2 with the preimage of L under the inclusion (6.4). O

179



6 The syntomic realization of the elliptic polylogarithm for ordinary elliptic curves

This corollary gives a differential equation V ot g, (pn) = (1 — ¢)(LE) for p,. In partic-
ular, the functions p, satisfy the relative version of this differential equation

Vetlpn) = (1= 0) (1))
since LY was defined as a lift of [” with respect to the forgetful map
Loy, k= Lo, s
We will use the Katz splitting in order to reformulate it as a differential equation for
overconvergent functions. The Katz splitting gives isomorphisms

n
split,, : EL‘ Up = TSym" EHUD = @TSymk Hup-
k=0

Recall that we have fixed a generator w of wp,g. The inclusion wg/g C Hlix (E/S)

gives us a global section [w] of Hlg (E/S). Let us extend [w] to some basis [w'], [w]
of Hig (E/S) with o' € T\(E, Q}E/S(Q[e])). The dual basis [w']V, [w]" generates Hy,, as
Ou,-module. Let us write

wlt = split ! (([w") ¥ ([w]")1).

Remark 6.4.2. Usually we will make the choice w’ =7 := :cd?“". In some situations there

might be other bases for Hly (E/S) which might be better suited. For example for a
CM elliptic curve the basis w,w* with w* = —n — edw used in [BKT10] is compatible
with the Frobenius structure on Hlg (E/S).

Thus, we obtain

L, = @ oy, (6.5)
k+l<n
and via (L£])" = jjjﬁfl .
(Lh)y = @ ™j}0g, . (6.6)
k+1<n

These decompositions are compatible with the transition maps. Using this isomorphism,
let us decompose

(1—¢)(12) = 3 APl @ o

k<n

with overconvergent functions )\gﬁp ) € I'(&k, jEOgK). Since (6.6) is compatible with

transition maps, the overconvergent functions )\I(Cp ) do not depend on the chosen n > k.

Proposition 6.4.3. There is a unique family of overconvergent functions (Dg;)n)m’nzo
satisfying the following system of differential equations:

dD{) = kD ' + APw, k>0
dDY) = —kDy_1' — 1Dygrw, k> 0,0> 0.
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6.4 The differential equation associated with the Katz splitting

Here, we use the convention that Dy, ,, := 0 whenever m < 0 orn < 0. Furthermore, the

(p) )

unique system (pn)n>0 describing the syntomic polylogarithm class is related to (Dm'n

as follows:
Pn = Z Dl(fl)w[k’l]
k+l<n

Proof. Let us denote by

0: nggK — jTDOgK
the derivative dual to w, i.e. ds = (9s)w for s € F(EK,jLOgK) .
Claim: T(Ex, ker d N Im 9) = 0.

Pf. of Claim: Let us first observe the following properties of the relative rigid cohomology
of Up over S:

3505, ®0s, Why /s, = R'TrigsDRY, /5 (7508,), (A)
7505, 7 R'mig . DRY 1s(750¢, ) (B)
where jg : Sk — Sk is the inclusion of the rigid analytic spaces associated with the

completions of S and S with respect to their special fibers. These properties are easily
shown directly or deduced from the comparison isomorphism [Ger07, (2.2)]

R'mig DRy 5(i508,) = 3505, ®0s, Hig (Up,x/Sk)

and the corresponding statements for de Rham cohomology. The isomorphism (B)
implies - B
(€. kerd) = T(Ex, 7 'jLOg, ) (6.7)

while the injection (A) gives
r (gK, Imdn 7T71 (];Og}( ®OSK QEK/SK)) = {0}
This can be reformulated as
['(€x,Imd N~ 1iL0g ) = {0}. (6.8)

Combining (6.7) and (6.8) proves the claim.

Let us now prove uniqueness of the solution in the statement. By considering the differ-
ence of two solutions it is enough to prove that (Dy )i, = (0)r >0 is the only sequence
satisfying:

dblﬁo = —k‘ﬁk_LQUJ,, vk > 0
de,l = —kf)k_l,lw’ — le,l_lw, Vk > 0,1 >0.

Here, again we use the convention that ]_N?k,o := 0 for £k < 0. Assume there were a
non-zero sequence (Dy, )y satisfying this differential equation. Then

N :=min{k : 3l > 0 s.t. Dk,l # 0}
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6 The syntomic realization of the elliptic polylogarithm for ordinary elliptic curves

exists. The sequence (DN,l)lZO satisfies then:

dDno =0
8[)]\;7; = _ZDN,l—h [>0

Using Claim 1, we prove by induction DN’Z = 0 for all [ > 0. This contradicts the
minimality of N and we conclude the uniqueness.

Existence of the solution in the statement is a direct translation of the differential equa-
tion

Veilon) = (1= 6)(1) (6.9)
in terms of the basis wl®! obtained via the Katz splitting. Let us write

= Dl(c,l)w[k’l]

k,l<n

with overconvergent functions D,(Cp l) € I'(ék, jTDOgK). The explicit description of the

relative connection V i gives:
1

Vi WP = WY Wl @ W + W)Y - WP @ w =

_ (k‘ + 1)w[k+1,l] ®w/ + (l + 1)w[k,l+1} Qw
This allows us to rewrite (6.9) as:

> (ADF)™ 4 (k+ )DPwE N @ o 4 (14 1) DR @ w) = (6.10)
k+1l<n

= Z )\](fp)w[k,o] Qw
k<n

for all n > 0. With the convention that D,(fl) =0 for £ < 0 or ! < 0 the system (6.10) is
equivalent to the following system of differential equations:

d(Dl(cZ,)())) = —kDIS;p—)LoW/ A e, k20
D) — kDt 1D, #2015 0

Thus, D,(f l) is the unique solution of the system of differential equations in the statement.
By construction we have:
k,l
Pn = Z D,??l)w[ i,

k,l<n
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6.5 The rigid syntomic polylogarithm for ordinary elliptic curves

Remark 6.4.4.

(a) The map ¢ and thus also the definition of )\%p ) depend on the overconvergent
Frobenius chosen in the fixed syntomic datum. The functions D,(Cp l)
on the chosen basis w, w'.

further depend

(b) In the case of a CM-elliptic curve we have a canonical Frobenius lift. If we
choose w' = w* as in [BKT10], the above differential equation is a D-variant of
the differential equation considered in [BKT10, Theorem 3.3.].

(c) For ordinary elliptic curves we have a canonical overconvergent Frobenius lift
obtained by dividing by the canonical subgroup. From this point one might
try to proceed as in [BKT10] and relate this differential equation to moment
functions of p-adic measures in tubular neighbourhoods of torsion sections. But
we have already remarked that the above explicit differential equation is just a
shadow of the abstract differential equation

vgl (pn) = 11?

under the Katz splitting. For ordinary elliptic curves we have another splitting,
the infinitesimal splitting, in tubular neighbourhoods around torsion sections.
Since the infinitesimal splitting gave rise to the p-adic Eisenstein—Kronecker mea-
sure, it will be much more natural to work with the infinitesimal splitting instead
of the Katz splitting when we want to relate the p-adic realization of the poly-
logarithm to moment functions of the Eisenstein measure.

6.5 The rigid syntomic polylogarithm for ordinary elliptic curves

Let p be a prime and N > 3 be an integer prime to p. Let K = Q, and denote by 7" the
smooth pair ¥ = (SpecZy, SpecZ,) over Z,. For the modular curve M = My z, with
I'(N)-level structure over Z, choose a smooth compactification M and let (£ = En, an)
be the universal elliptic curve with level N-structure over M. Let E be the Neron model
of E over M. Then

(E,E) 5 (M, M)

is a smooth proper morphism of smooth pairs. If we restrict to the ordinary locus
M°d C M defined as the complement of the vanishing locus of the Eisenstein series

Ep-1) € F(M,g%%}l)) and define B := E x,; M°9, we obtain a smooth proper

morphism of smooth pairs: B B
(Eord’E) N (Mord’M)

6.5.1 Canonical Frobenius structures

Let £29 € resp. M°™ M be the formal completions of E°™, E resp. M4, M with
respect to their special fibers. Then, M9 classifies ordinary elliptic curves with level
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6 The syntomic realization of the elliptic polylogarithm for ordinary elliptic curves

N-structure over p-adic rings. If we divide an ordinary elliptic curve with level N-
structure (F,«) by its canonical subgroup, we obtain another ordinary elliptic curve
(E' = E/C,d/) with level N-structure. In particular, the map (E,«a) — (E/C,d)
induces a map

Frob : M4 — Aqord

lifting the Frobenius morphism on the special fiber. By [Kat73, Chapter 3] the induced
Frobenius ng — M&? on the associated rigid analytic space Mﬁé{j is overconvergent.
In particular, we have a canonical overconvergent Frobenius ¢;; on the smooth pair
(M°™d, M). The associated syntomic datum will be denoted by

'/lord (Mord M ¢M)

For the moment let us write E°| mord for the pullback of the universal elliptic curve to
the formal completion. Similarly, as in Eq. (4.4) the commutative diagram

Eord’Mord *> E ‘Mord :: Eord/C)’Mord M Eord|Mord

\ - Jﬂ

Mord Mord

induces a Frobenius lift | yjora — E™|pora on EY| jora which gives us a canonical
overconvergent Frobenius ¢z on the smooth pair (E°™ E). The associated syntomic
datum is

@(aord (Eord E ¢E)

and 7 : &9 — #°"d is a morphism of syntomic data. As remarked above, if we fix the
de Rham part

(L5, Vi b F?) (6.11)

)
n,abs

there is a unique Frobenius structure
rig rig
by 0k (£) = (21)

which is compatible with the structure in the given de Rham datum (5.8). We can
construct such a morphism along the same lines as in Eq. (4.5). The isogeny

QO . (Eord)|Mord - E/|Mord = (Eord/c)‘Mord

induces the morphism <I>T<p : EL — go*EL - Combining this with the compatibility of EL
with base change gives:

o} %
whe Ll =5 oLl = " Frob £ = ¢3L].

Further, this map is horizontal and compatible with the Hodge filtration. While @L
is not an isomorphism since ¢ is not étale, the induced map on the generic fiber is
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6.5 The rigid syntomic polylogarithm for ordinary elliptic curves

an isomorphism. Thus, on the associated rigid analytic space the map \I/}( induces an
isomorphism and its inverse gives us the unique Frobenius structure

oy (21) (1)

compatible with the connection and the Hodge filtration.

Remark 6.5.1. Thus, for ordinary elliptic curves we can construct the syntomic logarithm
sheaves in a canonical way out of the Poincaré bundle:

('CIL’ vﬁl,abs’ F.’ (I)L)

The geometric logarithm sheaf with connection (L}, V o1 aps) Was constructed in Chap-
ter 2 by restricting Pt to E x Inf” ET. The Hodge filtration is induced by the inclusion
Ly — E]; and the Frobenius structure arises naturally by dividing by the canonical
subgroup.

Our next aim is to describe the syntomic polylogarithm class for &°™ more explicitly
along tubular neighborhoods of torsion sections. Let (a,b) € (Z/NZ)? and let t = t (4
be the associated torsion section of F°™ /M, Let ][ be the tubular neighbourhood in
ngd of the reduction of t. As in the previous section choose D > 0 prime to p and let
p be the syntomic datum associated to the complement of E[D] in E. Let (py)n>0 be
the unique system describing the pro-system

([Pnlnz0 = (POl )0 € lim Hi, (%, Logl, (1))

Our aim will be to relate py[); € T'(J¢], (L£1)79) to moment functions of the two-variable
Eisenstein—Kronecker measure constructed in Chapter 4. In order to do this it will be
convenient to pass to the moduli space of trivialized elliptic curves.

6.5.2 Passing to the moduli space of trivialized elliptic curves

Let EMY — M"Y = SpfV (Z,,I'(N)) be the formal moduli space classifying elliptic
curves with level N-structure and a given rigidification

A

ﬁ:E%@mR.

The formal moduli space M"Y = SpfV (Z,,T'(N)) is the formal completion of the
moduli space MV = SpecV (Z,,T'(N)), considered in Section 4.3, along its special
fiber. The existence of a trivialization on an elliptic curve already implies that the curve
is ordinary. Thus, the forgetful map

(E,a,8) — (E,«)
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6 The syntomic realization of the elliptic polylogarithm for ordinary elliptic curves

induces a map M™ — M°d The induced map on rigid analytic spaces sits in the
following Cartesian diagram

triv p d
e —2o ey
Mg

Let £ = %, be the associated torsion section on E and ]Z[ be the tubular neigh-
bourhood of the reduction of £ in 5&". Pullback along the covering map p induces an
injection

(e[ (L] pora) ™) = T (L] ps)™).

The advantage of describing p*(p,,) instead of p,, is that the infinitesimal splitting gives

a canonical basis ®F! of (ET weiv )9
n,E

i ~ NI
(L] o)y = P o ]O%@(o,l)xME”
k+i<n P

Indeed, in Section 4.3.3 we have constructed a basis

(TSym" L)) v = @D MO,
k+1<n

Combining this with
L} o = (TSym™ £])] guene = (TSym™ L1) g
and the canonical isomorphism

OEtriv — O@m,lp XMtriv

gives after analytification a canonical isomorphism

j ~ NR
(EL,Etriv)mghf[ - @ ! ]O?f(og)x/\/{g“'
k4i<n P

where B~ (0, 1) is the open unit disc obtained as the rigid analytic space associated with
ijzp. This allows us to write

Pl = D ol = Y &1,k
k+1<n
with &) € T B=(0,1) x MtV OaBn(o,l)ng;V) It will be convenient to view & ()

as analytic functions on the open unit disc with values in the ring of generalized p-adic
modular forms V' (Z,,I'(N)) ®z, Qp = F(M%;V, OM&V):

B7(0,1) = V (Zp, T(N)) ©z, Qp, & = & (k1) (2)
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6.5 The rigid syntomic polylogarithm for ordinary elliptic curves

We want to describe & ;) explicitly. The idea is the same as in Section 6.4. We will
use the infinitesimal splitting and reformulate the differential equation

Ve(pn) = (1 0)(1)

to characterize the functions & (5, ;). But as in the CM-case [BKT10}, it turns out that the
corresponding differential equation on the open unit ball does not have a unique solution.
In [BKT10, Lem. 3.9] this problem is solved by imposing a trace-zero condition making
the solution unique. We follow this strategy and prove in a first step that x — & () (z)
satisfies a trace-zero condition:

Lemma 6.5.2. The functions s — & ,1)(s) satisfy:

> ewwn (s+g, ) =0, Vs€B(0,1)(Cy)
¢EGmp](Cp)

Proof. Let us recall the algebraic translation operators

T*® ot
trans, : TX L, — ¢* L, —— Ly,

for some torsion section 7 € ker ¢.
Claim:

> trans (T3 [(1- 9)(1D)]) = 0.

reftriv [p]

Pf. of Claim: Indeed, in Lemma 4.6.2 we have proven the equation

Z trans, (T12) = p(I@l (SO*Z,,-E)’Etriv/C) . (6.12)
TEEtriV[])]

The claim follows by summing this equation over all torsion sections in the canonical
subgroup 7 € EV[p]: The definition of the map ¢ gives us the equality

o) = Pc(op(ly)) = .1 (D', g )
Using this, we compute:
trans, (T710) = (@1 0 T70,) (77 [(1 - 9)(1D)]) =
= trans, (T717) — (@' o Tr®,) (170, [T10"1D gy ) =
= trans, (T710) = (@) (¢15 g )

Summing this over all torsion sections 7 in the canonical subgroup and using (6.12)
proves the claim.

Passing to the associated rigid analytic space gives translation operators

trans! : T (L5)™9 — (£])"
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6 The syntomic realization of the elliptic polylogarithm for ordinary elliptic curves

which are horizontal with respect to the canonical connections on both sides. Further,
they are compatible with trans, via the inclusion (£,)" < (£)". In particular, we
get the differential equation:

\a Z trans! (T 5,) | = Z trans! (77 [(1 — (ﬁ)lﬂ).
reftriv [p] reptriv [p]

Using the above claim, this can be written as:

\a Z trans, (T p,) | =0 (6.13)
reftriv [p]

In the proof of Proposition 6.4.3 we have shown implicitly that D,, = (0),,>0 is the only
solution of the differential equation

Vi (Dy) = 0.
Applying this to the system (6.13) gives

Z trans, (T p,) =0, VYn > 0.
TeEtriv[p]

Restricting this equality to the tubular neighbourhood ][ proves the equality
Z ét,(k,l) (S +@m C) = 07 Vo € Bi(oa 1)(Cp)
CECm[pI(Cy)

cf. Corollary 4.6.3 for a similar argument. O

6.5.3 The syntomic realization on the ordinary locus of the modular curve

Finally, we give an explicit description of the syntomic realization of the elliptic poly-
logarithm on the ordinary locus of the modular curve in tubular neighbourhoods of
torsion sections. We keep the notation from the beginning of this section. As above, let
&' - _#°" be the syntomic datum associated with the ordinary locus of the modu-
lar curve with I'(\V)-level structure. Further, let p = (E°™4\ E[D], E°4, ¢) be the
syntomic datum associated with the complement of D-torsion points. The syntomic
polylogarithm class for £°'4/.#°" is uniquely given by the compatible system

(Pn)n>0-

Let us write as above py |z = p* (pnht[) for the image of p, ;[ under the inclusion

Tt (£ pora)™™) = T (L] ) "™).
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6.5 The rigid syntomic polylogarithm for ordinary elliptic curves

Theorem 6.5.3. For (a,b) # (0,0) let t = tq be the associated N -torsion section on
the universal elliptic curve E°™ with T'(N)-level structure. The decomposition

Prlye = > ét,(k,l)@[k’”
k+1<n

gives us rigid analytic functions (s = & (1)(5))ki>0 on the open unit disc with values
in the ring of generalized p-adic modular forms which are explicitly given by:

G (s) = (D0 [ (1P )
Ly XZp

Proof. In the following let us consider the elliptic curve E"1, i.e. when we write 2 we

mean [P o puiv and so on. Recall from Corollary 4.6.3 that ((1 - (b)(l,?)) . is mapped to
Za D’l9( Tl,TQ)‘TZ ow[k 0] X w
k>0
under
triv £
<L£n L, ® Q}Emv/s> Y @ Ox . o0 @ w.
n By k>0 Em,

From now on let us write B~(0, 1) for the rigid analytic space associated with @m,zp-
Thus

pVf” (11, T2) € V (2, T(N)) [11, T3]
induces an analytic function
B7(0,1) x B7(0,1) = V (Zp,I(N)) ®z, Qp

and we will write (s, s) for the coordinates on B~(0,1) x B~(0,1) induced by T1,Ts.
Thus, the differential equation

Vi (n) = (1= 9)(1)

can be rewritten using the infinitesimal splitting as:

&Ikl R®w, Yn=>0
s'=0

. . “ a9 \°k
Vz;jl ( Z et,(k,l)(s)w[k’l]) = Z <(1+8/)8s/> Dﬂgp)(s,s')

k+1<n k=0
Recall from Lemma 4.3.2 that the connection V i expresses via the infinitesimal splitting
on B> Op w0l as

m’Mtriv

Vg, @) = @+ et @ w.
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6 The syntomic realization of the elliptic polylogarithm for ordinary elliptic curves

Further, let us recall that Dﬁﬁ” )(s,s’ ) is the Amice transform of the p-adic measure

ugii’(p). Thus, we obtain the following explicit system of differential equations satisfied

by ét,(k,l)(s):
a N €T 18,
() gtpo() = [ o 0+ iy @y, k>0
S Z ><Zp

0 . .
(L4 8) 5 80 (s) = ~l&xi-1)(s), >0,k =0.

Here, we have used the fact that Dﬁ? ) is the Amice transform of the measure ,u%ist’(p ),

Further, by Lemma 6.5.2 the functions & ( ;) (s) satisfy the following trace-zero condition:

Z ét,(lc,l) (S +@m C) = 07 Vs € Bi(ov 1)((:17)
CE@m[p](Cp)

Claim: The system (ét’(k’l)(8)>k,l>0 is the only system of analytic functions on B~(0, 1)
with values in V' (Z,,I'(N)) ® Q, satisfying:

(a) (14 9)8e00)(9) = Jz g, v* (0 + ) dupy ™ (@), k20

(b) (1 +S)&ét,(kl (8) = —l& (i-1)(s), 1>0,k>0

(©) Xietmic,) kn(stg, O =0, Vs B7(0,1)(Cp).

Pf. of the claim: The functions & (;)(s) satisfy the above conditions. For uniqueness
let k,1 > 0. By induction it is enough to show that any analytic function F' on B~(0,1)
with values in V (Z,,I'(NV)) ® Q, satisfying
T (p) :
X + d xZ, f =0
(A) (1 +8)8SF fZ X Ly Yy ( S) /'1/ ( y) 1
—let7(k7l,1)( ) ifl>0
(B) ZCG@m[p}(Cp) F(s +@m ¢)=0, Vse B (0, 1)((CP)

satisfies F' = & (;5). Indeed, since any analytic function is given by a power series, one
deduces from (A) that the difference of two solutions is a constant ¢ € V' (Z,,I'(N)) ®Q,.
By (B) we conclude p-c =" ceBmlpl(C) €= 0 which implies ¢ = 0 and proves the claim.

m D

Now, the theorem follows from the following observation: The sequence (%,z)k,lzo defined
by

ha(s)i= (00 [ gr D sV o)
VA
satisfies:
(a) (1+8)2ehols) = fox az, v" (1 + )7 dupy ™ (2,9), k=0
(b) (L+s)2e) (s) =~ €, 4(s), k=>0,0>0
(©) ectnpic, ki ta, O =0, Vs B7(0,1)(Cp), k1 > 0.
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6.5 The rigid syntomic polylogarithm for ordinary elliptic curves

Indeed, (a) and (b) are obvious and (c) follows since € ; is the Amice transform of a p-adic
measure which is supported on Z,'. From the above claim we deduce e} ;(s) = &, x,)(s)
which proves the theorem. O
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