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ABSTRACT (in English) 

Mycotoxins are secondary metabolites of mould, which are ubiquitous in a large variety of 

food and feed commodities. Thousands of mycotoxins exist, but only a few present significant 

damages and poisonous properties. Among them, the aflatoxins and ochratoxins are 

considered to be the most toxic and widely spread in the world and therefore, represent a real 

threat for human/animal life. Depending on a number of factors like the intake levels, duration 

of exposure, mechanisms of action, metabolism and defense mechanisms, mycotoxins elicit a 

wide spectrum of toxicological effects leading to both acute and chronic disease, liver and 

kidney damage, skin irritation, cancer, immune suppression, birth defects or even death.  

To address the adverse effects of mycotoxin contaminants in food and feed, health authorities 

in many countries all over the world have become active in establishing regulations to protect 

their citizens and livestock from the potential damages caused by those compounds. The 

European Commission, the US Food and Drug Administration (FDA), the World Health 

Organization and the Food and Agriculture Organization of the United Nations have set up 

regulations and maximum levels for major mycotoxins in foods and feeds. To fulfill 

expectations of these regulatory limits, there is an increasing need for the development and 

validation of new, simple, fast and precise methods for toxins detection.  

Therefore, this thesis reveals different strategies for rapid, cost-effective and ultrasensitive 

bioanalysis of two major mycotoxins: aflatoxin M1 and ochratoxin A. Inhibition competitive 

assays with surface plasmon resonance spectroscopy (SPR, optical technique), quartz crystal 

microbalance (QCM, acoustic device) and electrochemical based readout were developed and 

compared. Presented biosensors were challenged in a red wine and milk samples with no need 

for pre-treatment or pre-concentration of the sample extract.  

In order to prevent fouling on the sensor surface by the constituents present in milk samples, 

the gold surface of the sensor chip was modified and different surface architecture and 

compared (antifouling polymer brushes and self-assembled monolayer - SAM). Complete 

resistance to the non-specific interactions was observed for coating with p(HEMA) brushes 

resulting in two times lower LOD compared to that on thiol SAM. The SPR biosensor for 

AFM1 allowed for highly sensitive detection in milk with an excellent precision (the average 

calculated CV was below 4%), limit of detection of 18 pg mL
−1

 for p(HEMA) brushes and 38 

pg mL
-1

 for thiol SAM and with the analysis time of 55 min. It is worth highlighting that it is 
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the first time that an SPR chip modified with such polymer brushes was used for real time 

detection of a small target antigen opening a new avenue for highly precise analysis.  

In the case of wine samples tested for OTA detection, a simple but very effective pre-

treatment procedure was successfully applied. It was proved that the addition of the 3% of the 

binding agent poly(vinylpyrrolidone) (PVP) to red wine completely reduces non-specific 

interactions by binding polyphenolic compounds (which may be responsible for inactivation 

of antibody and blocking the sensor surface) through hydrogen bonding, making their 

elimination easier. Moreover, in this study, the authors evaluated the influence of gold 

nanoparticles (AuNPs) on signal enhancement and thereby biosensor sensitivity. For this 

purpose two assays were performed: with and without implementation of NPs. Obtained 

results allowed for OTA detection at concentrations as low as 0.75 ng mL
−1

 however, its limit 

of detection was improved by more than one order of magnitude to 0.068 ng mL
−1

 by 

applying AuNPs as a signal enhancer.  

The combination of indirect competitive assay and AuNPs with QCM-D gave a 

straightforward tool, which can simultaneously measure frequency and dissipation changes 

resulting in information about the sensitivity but also about the mass attached to the sensor 

surface as well as viscoelastic properties and the hydration state of the film. A linear detection 

range of 0.2–40 ng mL
-1

 has been achieved with LOD of 0.16 ng mL
-1

. 

The same assay format was also tested in voltammetric detection of mycotoxins using 

modified gold screen printed electrodes (AuSPE). An excellent LOD of 15 ng mL
-1

 for OTA 

and 37 pg mL
-1

 for AFM1 were obtained. Additionally, AuSPE modified with SAMs based on 

different types of alkanethiols (long and short chains) were tested and compared in terms of 

electron transfer resistance.  

Proposed biosensors offer vast range of advantages such as high sensitivity (at pg or ng 

levels), short analysis time (55 min) in comparison to for example, ELISA which require 

multiple steps that translates to prolonged analysis time, possibility for online monitoring, 

characterization of binding kinetics, low consumption of primary antibody (cost reduction), 

excellent antifouling surface and simple pre-treatment procedure.  

Combining all most desirable aspects of a good biosensor such as high sensitivity, low costs, 

short analysis time and simple but effective cleaning-up technique make proposed approaches 

an important and very promising tools for widespread biosensing applications. 
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Kurzfassung (in Deutsch) 

Mykotoxine sind sekundäre Schimmel-Metaboliten, die allgegenwärtig in einer großen 

Anzahl von Lebensmittel und Futter-Erzeugnissen enthalten sind. Tausende von Mykotoxinen 

existieren, aber nur einige wenige haben signifikante Schadens- und 

Vergiftungseigenschaften. Unter diesen sind die Aflatoxine und die Ochratoxine die am 

meisten toxischen und auch am weitesten verbreiteten, und stellen deshalb eine reale Gefahr 

für das menschliche und tierische Leben dar.   Abhängig von einer Anzahl von Faktoren wie 

dem Aufnahme-Niveau, der Dauer der Belastung, dem Wirkungsmechanismus, dem 

Metabolismus und Schutzmechanismen, Mykotoxine rufen ein weites Spektrum an 

toxikologischen Effekten hervor, die sowohl zu akuten als auch zu chronischen Krankheiten, 

Leber und Nieren-Schäden, Hautirritationen, Immunerkrankungen, zu Geburtsschäden und 

sogar zum Tod  führen können.      

Um die nachteiligen Effekte der Mykotoxin-Kontamination in Lebensmitteln und Futter zu 

adressieren, sind Gesundheitsbehörden in vielen Ländern auf der ganzen Welt aktiv, 

Betimmungen zu erlassen, um ihre Einwohner und den Tierbestand für eine potentiellen 

Gefährdung durch diese Verbindungen zu schützen. Die europäische Kommission, die US 

Food and Drug Administration (FDA) als auch die Weltgesundheitsorganisation der 

Vereinigten Nationen haben Verordnungen erlassen und maximale Niveaus für die Haupt-

Mykotoxine in Lebensmitteln und im Futter erlassen. Um die Erwartungen dieser 

regulatorischen Grenzwerte zu erfüllen, ist es im wachsenden Masse erforderlich, neue, 

einfache, schnelle und präzise Methoden des Nachweises von Mykotoxinen zu entwickeln. 

Aus diesem Grunde werden in der Promotionsarbeit verschiedene Strategien für eine schnelle, 

kosten-effektive und ultrasensitive Bioanalyse von 2 Haupt-Mykotoxinen: Aflotoxin M1 und 

Ochratoxin A vorgestellt. Ein Inhibitions-kompetitiver Assay unter Nutzung der 

Oberflächenplasmonenresonanz (SPR, optische Technik), der Quarzkristall-Mikrowaage 

(QCM, akustische Technik) sowie ein elektrochemisch-basierter Ansatz werden entwickelt 

und verglichen. Die vorgestellten Biosensoren wurden in Rotwein und in Milchproben 

eingesetzt ohne jegliche Vorbereitung oder Anreicherung des Probenextraktes. 

Um einen möglichen Faulprozess auf der Sensoroberfläche durch die Bestandteile, die in der 

Milch vorhanden sind zu verhindern, wird die Goldoberfläche des Sensorchips modifiziert 

und verschiedene Oberflächenarchitekturen wurden getestet und verglichen (Antifaul-
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Polymerbürsten und selbst-organisierende Monoschichten - SAM). Eine komplette 

Unterdrückung von nicht-spezifischen Wechselwirkungen wurde beobachtet durch eine 

Beschichtung mit p(HEMA)-Bürsten, was zu einer um den Faktor zwei verringerten LOD 

verglichen mit den des Thiol-SAM führt. Der SPR-Biosensor für das AFM1 ermöglicht einen 

hoch-sensitiven Nachweis in der Milch mit einer exzellenten Genauigkeit (der mittlere 

berechnete CV war unter 4 %), einer Nachweisgrenze von 18 pg/ml für p(HEMA) – Bürsten 

und 38 pg/ml für das Thiol-SAM und mit einer Analysezeit von 55 min. Es sollte darauf 

hingewiesen werden, dass damit zum ersten Mal ein SPR-Chip benutzt wurde, der mit solchen 

Polymerbürsten modifiziert wurde für den Echtzeit-Nachweis eines kleinen Ziel-Antigens, 

was eine völlig neue Richtung für die hochpräzise Analyse eröffnet. 

Im Falle der Weinproben, die für die OTA-Detektion getestet wurden, wurde eine simple aber 

sehr effektive Vorbehandlungsprozedur angewendet. Es konnte gezeigt werden, dass die 

Zugabe von 3 % einer Bindungssubstanz ((Poly(vinylpyrrolidon), PVP)  zum Rotwein die 

nichtspezifischen Wechselwirkungen total reduziert, indem die polyphenolischen 

Verbindungen (die für die Inaktivierung des Antikörpers und dem Blockieren der 

Sensoroberfläche verantwortlich zu sein scheinen) durch Wasserstoffbrückenbindungen 

gebunden werden. Dieses Verfahren hat wesentliche Vorteile bei der Eliminierung der 

polyphenolischen Komponenten im Wein. Des weiteren wurde im Rahmen der Dissertation 

der Einfluss von Gold-Nanopartikeln (AuNPs) auf die Signalverstärkung und somit die 

Sensorempfindlichkeit untersucht.  Für diesen Zweck wurden zwei Assays entwickelt: mit 

und ohne Benutzung von NPs. The erhaltenen Ergebnisse erlaubten es, OTA bis zu 

Konzentrationen von 0,75 ng/ml (Nachweisgrenze) zu detektieren, während die 

Nachweisgrenze durch die Anwendung von NPs als Signalverstärker um eine Größenordnung 

auf 0,068 ng/ml verringert werden konnte.  

Die Kombination von indirektem kompetitiven Assay und NPs mit QCM-D liefert ein ideales 

Werkzeug, das simultan die Frequenz und Dissipationsänderungen messen kann, was sowohl 

zu einer Information über die Empfindlichkeit, über die Masse, die an der Sensoroberfläche 

angelagert ist, als auch über die visko-elastischen Eigenschaften und den Hydrationszustand 

des Filmes führt. Ein linearer Nachweisbereich von 0,2 – 40 ng/ml mit einem LOD von 0,16 

ng/ml wurde erreicht. 

Dasselbe Assayformat wurde auch für eine voltammetrische Detektion der Mykotoxine bei 

Nutzung von modifizierten gedruckten Goldelektroden (AuSPE) getestet.  Ein exzellentes 
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LOD von 15 ng/ml für OTA und 37 pg/ml für AFM1 wurde erhalten. Zusätzlich wurden 

AuSPEs modifiziert mit SAMs basierend auf unterschiedlichen Typen von Alkanethiolen 

(lang- und kurzkettigen) getestet und in Bezug auf den Elektronentransferwiderstand 

verglichen.    

Die vorgeschlagenen Biosensoren bieten sehr vielfältige Vorteile, wie eine sehr hohe 

Sensitivität (im pg oder ng Bereich), kurze Analysenzeiten (55 Minuten) im Vergleich zu z. 

B. ELISA, was multiple Schritte benötigt, und dazu führt, das solche Faktoren, wie die 

Analysenzeit, die Möglichkeit eines on-line-Monitorings, der Charakterisierung von 

Bindungskinetiken, dem geringen Verbrauch an Antikörpern (Kostenreduktion), der 

exzellenten Antifaul-Oberfläche und nicht zuletzt mit einer einfachen Vorbereitungsprozedur 

vorteilhaft sind.  

Indem man die wichtigsten Aspekte eines guten Biosensors wie hohe Sensitivität, geringe 

Kosten, kurze Analysezeit und einfache UND effektive Reinigungstechniken betrachtet, zeigt 

sich, dass der vorgeschlagene Zugang ein wichtiges und sehr erfolgversprechendes Werkzeug 

für weitgespannte Biosensor-Anwendungen darstellt.             
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CHAPTER ONE, INTRODUCTION  

1.1. Thesis outline and objectives 

The main aim of presented thesis concerns the development of biosensors applied to the 

determination of naturally occurring secondary metabolites: aflatoxin M1 (AFM1) and 

ochratoxin A (OTA), chosen for this study as they represent two of the most important 

mycotoxins classes. The major goal was to create a biosensor exhibiting all most desirable 

properties: high sensitivity and specificity, rapidity of analysis, low costs and portability. For 

this purpose different strategies were applied, tested and compared.   

Current routine analysis of those compounds in foodstuff is mostly performed by 

chromatographical methods including thin layer chromatography, high-performance liquid 

chromatography with fluorescence detection or capillary electrophoresis. Those techniques 

are generally straightforward and yield reliable results however, they require extensive 

preparation steps and are time-consuming. Thus, alternative approaches offering high 

sensitivity and simplicity are urgently needed. To fulfill those expectation and the European 

Union regulations in the field of food control and safety, the author propose novel strategies 

of biosensors utilizing indirect competitive immunoassay combined with three different 

detection techniques: 

 surface plasmon resonance spectroscopy (SPR) 

 quartz crystal microbalance (QCM) 

 electrochemistry. 

Those methods, although based on different principles and readouts can provide all desired 

properties of a good biosensor (such as sensitivity, rapidity etc.) however, a deep knowledge 

about their functioning is still urgently needed. Due to the increased complexity in the food 

industry and competition within companies, new, well-described and tested approaches for 

rapid mycotoxin analysis have become increasingly important.  

Here, the question arises as what actually do we mean by "rapid method". This term usually 

refers to a method which is faster than respective reference methods and has a tendency of 

promoting the method [2]. Nevertheless, such rapid techniques should have also other 

common features: should be simple, user-friendly, relatively fast (yielding results within 

minutes) and able to work in the field [2]. Resented in this thesis approaches (SPR, QCM, 
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electrochemistry) fulfill all abovementioned expectations. Moreover, a detailed analysis of 

each technique has been performed, providing a wide range of information, paying attention 

to challenges and difficulties which can arise during analysis and showing their possible 

solutions as well as highlighting pros and cons of every used method.  

The structure of this work is divided into five main parts, from which independent 

conclusions are drawn. 

The first chapter gives a general overview about classes of mycotoxins (putting special 

attention to aflatoxins and ochratoxins description which are compounds chosen for 

investigation in this thesis), their toxic effect on humans and animal health, occurrence in a 

daily life products as well provides information about international regulations and limitations 

concerning food and beverages safety. Moreover, brief description supplemented with a large 

number of examples from the literature of conventional analytical methods for mycotoxins 

analysis is presented. Important part of this chapter is related to the alternative techniques 

based on biosensing systems posing the base of the current research. Therefore, 

methodologies such as SPR, QCM and electrochemistry are described in detail.  

The second and the third chapters show results of the rapid and sensitive detection of AFM1 in 

milk and OTA in red wine utilizing gold nanoparticles-enhanced surface plasmon resonance 

spectroscopy. To overcome the matter concerning low molecular weight of the analyte that 

hampers its detection using SPR, an indirect competitive inhibition assay was performed. To 

reduce matrix interferences coming from real samples, different strategies were applied:  

modification of the surface architectures (in case of milk analysis) and simple pre-treatment of 

sample (red wine) with binding agent. Moreover, the influence of gold nanoparticles on signal 

enhancement was investigated as well as a detailed analysis of kinetic parameters 

(association/dissociation constants and association/dissociation rate constants) was provided 

and compared with available literature. 

Chapter four is focused on the OTA determination in wine using quartz crystal microbalance 

with dissipation (QCM-D) as a detection technique. The combination of indirect competitive 

assay with QCM-D was shown to give a straightforward device, which can simultaneously 

measure frequency (Δf) and dissipation (ΔD) changes resulting not only in information about 

the sensitivity of the assay but also providing a detailed description about the mechanical and 

viscoelastic properties of the biofilm. 
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In chapter five the author presents an electrochemical biosensor for AFM1 and OTA analysis. 

A competitive immunoassay that uses a secondary antibody conjugated with an enzyme 

(alkaline phosphatase) as a tag was explored for the voltammetric detection using modified 

gold screen printed electrodes (AuSPE). Additionally, AuSPE modified with self-assembled 

monolayers based on different types of alkanethiols (long and short chains) were tested and 

compared in terms of electron transfer resistance. 

Last, sixth chapter summarizes all developed biosensors based on different detection 

techniques and provides a detailed comparison between them taking into account various 

aspects which need to be considered when choosing the best methodology for mycotoxins 

detection. 

Summarizing, in the presented thesis, the author proposed three strategies based on 

combination of biosensors methodology with indirect competitive immunoassay and surface 

plasmon resonance spectroscopy, quartz crystal microbalance and electrochemistry as a 

readout. Proposed biosensors offer vast range of advantages such as high sensitivity (at pg or 

ng levels), short analysis time (55 min) in comparison to for example, ELISA which require 

multiple steps that translates to prolonged analysis time, possibility for online monitoring, 

characterization of binding kinetics, low consumption of primary antibody (cost reduction), 

excellent antifouling surface and simple pre-treatment procedure.  

Therefore, all most desirable aspects of a good biosensor - sensitivity, low costs, short 

analysis time and simple but effective cleaning-up technique are shown and supported with 

detail characterization. 

Thus, this thesis comprises an important and very promising study not only for small 

molecules determination in food and beverages but is also a valuable development in the field 

of biosensing and food safety and/or control.  
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1.2. Mycotoxins 

Mycotoxins are low-molecular-weight natural compounds produced as secondary metabolites 

by certain filamentous fungi (more specifically, the molds) that may occur in almost all food 

and feed commodities (Table 1.1) [3]. They are known since more than a half century - the 

first report about mycotoxins existence dates back to 1962, as a consequence of unusual and 

mysterious veterinary crisis near London (England), which killed over one hundred thousand 

turkeys (later called turkey ‘X’ disease) [4]. After an extensive investigation, abstruse deaths 

were linked to a peanut meal coming from Brazil which had become mouldy during the 

shipment. Further researches demonstrated that the transported feed was heavily contaminated 

with secondary metabolites from Aspergillus flavus (hence the name Aflatoxin) causing 

incurable liver cancer in the poultry [5]. Information about carcinogenic properties of 

aflatoxin gave a concern that other occult mold metabolites might be toxic or even deadly. In 

later studies, it was shown that the target and metabolite concentration are playing the main 

role. Thus, although all mycotoxins are of fungal origin, not all toxic compounds produced by 

fungi are called mycotoxins, e.g. fungal products toxic to bacteria are called antibiotics, the 

name - phytotoxins refers to compounds imposing a hazard on plants [6]. 

Fungi are pervasive in nature and part of the microflora of the worldwide food chain. Under 

suitable conditions (temperature, humidity) they can grow on a large variety of foods and 

feeds. The most important mycotoxigenic fungi belong to the genera Aspergillus, Fusarium 

and Penicillium [7]. Mycotoxins are a structurally diverse group; they vary from teeny, simple 

molecules like moniliformin, to large complexes such as phomopsins [8, 9]. Hundreds of 

mycotoxins have been identified till now, although only a few (proven to be carcinogenic 

and/or toxic) are under scientific attention. The major mycotoxin classes (considering also 

public health, agro-economic significance and an impact on global agriculture) are aflatoxins, 

ochratoxins, fumonisins, trichothecenes (most importantly deoxynivelanol), patulin and 

zearalenone [10]. 
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Table 1.1. Mycotoxins and associated with them commodities, toxic effects and producing fungal species [3]. 

Mycotoxin Matrix Toxic effect Fungal species 

Aflatoxins 

Peanuts, maize, 

tree nuts, 

cottonseed, milk 

Hepatotoxicity, cancer, 

probable immune suppression 

and childhood stunting 

reduced growth  

Aspergillus flavus, 

A. parasiticus 

Ochratoxins 

Cereals, coffee, 

cocoa, wine, beer, 

grapes, dried 

fruits 

Nephrotoxicity, 

hepatotoxicity, neurotoxicity, 

teratogenicity, 

immunotoxicity 

Aspergillus 

ochraceus, 

A.carbonarius, 

Penicillium 

verrucosum 

Fumonisins Maize 
Neurotoxicity, genotoxicity, 

immunotoxicity, cancer 

Fusarium 

verticillioides, F. 

proliferatum 

Trichothecenes Grains 

Inhibition of protein 

synthesis, human intestinal 

upsets 

Fusarium 

graminearum 

Patulin Apples 
Genotoxicity, teratogenicity, 

cancer 

Penicillium 

expansum 

Zearalenone Corn, oats 
Hepatotoxicity, genotoxicity, 

immunotoxicity 

Fusarium 

graminearum 

 

Even if mycotoxin-producing fungi differ according to ecological conditions, it is important to 

emphasize that mycotoxins exist all over the world mainly due to the trade that contributes to 

their worldwide dispersal [11]. Fig.1.1 shows a very recent and detailed study  that depicts the 

relation between geographical origin and mycotoxins [11]. The number of reports about 

different mycotoxins strongly depends on the location, climate and conditions in which fungal 

growth is preferable. Thus, e.g. the mixture of aflatoxins (noted as AFs) and fumonisins 

(FUM) dominates in Africa, Asia, and South America. Maize harvested in the tropical and 

subtropical areas of the world with hot and humid climates is the major commodity 

contaminated with those two toxins. Nevertheless, because of the movement of agricultural 

goods around the globe, no region of the world is aflatoxin-free [11]. In Europe and North 

America, considered as relatively colder regions, mixture of trichothecenes (deoxynivalenol, 
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DON) and zearalenone (ZEA) are the most common, emphasizing the role of the climate 

conditions on fungal contamination, growth and metabolism.  

 

Fig.1.1. Main mycotoxins citied in literature depending on their geographical origin. Reprinted from [11]. Abbreviations: 

DON - deoxynivalenol, ZEA - zearalenone, AFs - aflatoxins, FUM - fumonisins, OTA - ochratoxins, T2 - toxin belonging 

to the group of trichothecenes. 

The main route of exposure to mycotoxins is through the consumption of contaminated plant-

derived foods, although it may also occur via the ingestion of mycotoxins and their 

metabolites present in animal products such as meat, eggs or milk, which can cause their 

accumulation in different organs and tissues [12, 13]. It is well established that these 

compounds elicit a wide spectrum of toxicological effects leading to both acute and chronic 

disease, liver and kidney damage, cancer or immune suppression (Table 1.1) [3]. Therefore, 

they impose a hazard on both human and animal health. Due to this fact, in 1993, the 

International Agency for Research on Cancer (IARC) classified aflatoxins as carcinogenic to 

humans (Group 1), while ochratoxins, fumonisins and patulin were placed in a Group 2 as a 

possible carcinogens [14]. Trichothecenes and zearalenone were not classified as human 

carcinogens (Group 3) [10]. Since then, health authorities in many countries all over the world 

have become active in establishing regulations to protect their citizens and livestock from the 

potential damages caused by mycotoxins [15]. Several times in recent decades (1981, 1987, 

1995, 2003) international inquiries were held and published about regulations for mycotoxins 

in food and feed [16]. The most recent one, conducted by the National Institute for Public 

Health and the Environment, under contract to the FAO (Food and Agriculture Organization), 
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gathered information from 119 countries about the existence or absence of specific mycotoxin 

limits and regulations in food and feed (Table 1.2). Therefore, specific, broaden with newer 

requirements of sampling procedures and analytical methods regulations exist for thirteen 

mycotoxins [16]. 

Table 1.2. Maximum limits for mycotoxins in foods in various countries [7]. 

Mycotoxin Country 
Maximum level 

[μg kg
-1

] 
Matrix 

Patulin 
Japan, Moldavia 50 

Apple juice 
EU countries 25 

Trichothecenes 

USA 1000 Wheat 

Russia 1000 Cereals 

Austria 750 Wheat 

Zearalenone 

Romania 30 
Cereals, 

vegetable oils 
France 200 

Russia 1000 

Fumonisins 
Bulgaria, France, 

Switzerland 
1000 

Maize and processed 

products 

Ochratoxin 

Czech Rep. 5 Children’s food 

Denmark 25 Pigs 

Sudan, Turkey 15 Wheat, dried raisins 

The Netherlands 0 Cereals 

Aflatoxin B1 

Finland, Germany 2 All 

Belgium, Spain, 

Luxembourg, 

Ireland, Greece 

5 Cereals 

Portugal 25 Peanuts 

Aflatoxin B1, B2, G1 

and G2 

Norway, Belgium 5 Peanuts 

Italy 50  

Germany, England 4-5 All 

Aflatoxin M1 

Sweden, Austria, 

Germany, Belgium 
0.05 

Milk 

USA 0.5 

Switzerland 0.25 Cheese 

The Netherlands 0.2 Butter 
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1.2.1. Patulin 

Patulin (Fig.1.2) is a toxic fungal metabolite produced by a wide range of fungal species of 

the genera Penicillium, Aspergillus and Byssochlamys, from which Penicillium expansum is 

the most important due to its existence in damaged fruits 

[17]. Patulin occurs mostly in apples that have been spoiled 

by mold growth. Furthermore, pears, peaches and berries can 

also be affected. It has been also found in vegetables, cereal 

grains and cheese [18]. Nevertheless, apples and apple 

products (juices, pies, conserves) are considered to be the main 

vectors of this mycotoxin. The European Union (EU) maximum 

permissible level is between 10 and 50 µg kg
-1 

[19]. Patulin has been shown to be mutagenic 

[20], carcinogenic [21] and teratogenic [22]. In vitro studies have demonstrated that patulin 

inhibits several macrophage functions. Some of these studies conducted on mice revealed bad 

influence on immune system (e.g. increase in the number of neutrophilsers) [1, 23].  

1.2.2. Trichothecenes 

Trichothecenes are a group of over hundred structurally related compounds with the same 

basic structure, occurring worldwide in grains and other commodities (corn, wheat, barley, 

oats etc.) [24]. All of them contain an epoxide at the C12,13 position, recognized to be a culprit 

of their toxicological activity [3]. This class of mycotoxins has been divided into four groups 

according to their molecular structure. Type A is represented by HT-2 and T-2 toxins, while 

type B includes well-known deoxynivalenol (DON) [1]. Types C and D contain less important 

compounds, in terms of toxicity. The structures of the mentioned examples of trichothecenes 

are shown in Fig.1.3. The major effects on human and animal health – related to toxin 

concentration in the commodity – are reduced feed uptake, vomiting and immune 

suppression. Moreover, they are in general very stable, both during storage and food 

processing (e.g. cooking) and do not degrade at high temperature [25]. 

Fig.1.2. Molecular structure of 

patulin [1]. 
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Fig.1.3. Molecular structures of T-2 toxin (A), DON (B) and HT-2 (C) [1]. 

1.2.3. Zearalenone 

Zearalenone (Fig.1.4) is a mycotoxin produced by several Fusarium species (mainly Fusaria 

graminearum) using corn, oats and sorghum as substrates [3]. Generally, they grow in moist, 

cool field conditions during blooming [26]. This toxin 

exhibits oestrogen-like activity in certain animals such as 

sheep, pigs or cattle [3]. Zearalenone is stable upon 

heating (up to 150ºC) and degrade only under alkaline 

conditions and very high temperatures [27]. 

1.2.4. Fumonisins 

Fumonisins (FB1 and FB2) are cancer-promoting mycotoxins possessing a long-chain 

hydrocarbon unit responsible for their toxicity [3]. At least twelve structurally similar 

compounds are known, although the most important ones are fumonisin B1 and B2 (Fig.1.5). 

From the toxicological point of view, FB1 gives rise to a real threat for humans and animals 

health. It can cause leucoencephalomalacia in horses and porcine pulmonary edema, while in 

humans fumonisins are associated with cancer growth [28]. Moreover, hepatotoxic, 

nephrotoxic and embryotoxic properties have been also reported [29]. Fumonisins are 

frequently found in corn and corn-based foods [30]. FB1 can be also found in beer, rice, 

sorghum, triticale, cowpea seeds, soybeans and asparagus [28]. They are all heat-stable and 

their content can be minimized only during processes where the temperature exceeds 150 ºC 

[31]. 

Fig. 1.4. Molecular structure of 

zearalenone [1]. 
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Fig.1.5. Molecular structures of FB1 (A) and FB2 (B) [1]. 

 

1.2.5. Ochratoxins 

Ochratoxins are a group of mycotoxins produced by a variety of fungal species (see Table 

1.1) containing in their structure two moieties: a 

substituted dihydroisocoumarin and L-phenylalanine 

[32]. The main forms are ochratoxin A (OTA), B 

(OTB, non-chlorinated form of OTA) and C (OTC, an 

ethyl ester of OTA) but the most prevalent and 

relevant member of this family is OTA (Fig.1.6) [33].  

OTA is a colorless crystalline compound soluble in organic solvents and in alkaline water, 

optically active and exhibiting blue fluorescence  under UV light, but the ultraviolet spectrum 

varies with pH and with the solvent polarity [34]. Fluorescence emission is maximum at 467 

nm in 96 % ethanol and 428 nm in absolute ethanol [35]. OTA is a very stable mycotoxin in 

different solvents, possesses a resistance to acidity and high temperatures. Thus, once 

foodstuffs are contaminated, it is very difficult to totally remove this molecule [34].  

Ochratoxin A is a frequent natural contaminant of a daily life foodstuff such as cereals, 

coffee, cacao, grapes, wine, fish, soy, peanuts, beer and so on [33]. Fig.1.7 shows the 

contributions to the total human OTA exposure reported by the European Union [36].   

Fig. 1.6. Molecular structure of OTA [1]. 
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Fig.1.7. Contribution to the total human adult OTA exposure. 

 As it can be seen, cereals are the most important dietary source of this mycotoxin 

contributing to 44% of the intake. The reason of such high value is the fact that cereals have a 

variety of uses as a food which is consumed almost every day by humans e.g. bread, breakfast 

cereals, cookies or cakes. Another common usage of cereals is in the preparation of alcoholic 

drinks such as whiskey, beer, vodka or Japanese sake [37]. The second major source of OTA 

consumption by EU population is wine (10%) which is one of the products taken under 

investigation in the presented thesis. Wine is an important beverage in the world trade with 

France, Italy and Spain known as the main exporters [32]. In general, red wines have higher 

levels of OTA than rose and white wines due to the increased contact time between berry 

skins and grape juice during the mashing stage [38]. Some results suggest also that wines 

from the South contain more OTA than those from the North, at least in Europe and North 

Africa [39]. This difference is attributed to climate, grape cultivation and storage conditions. 

Examples of OTA occurrences in three types of wine (red, white, rose) produced in different 

places are shown in Table 1.3 [40]. 

 

 

 

 

Cereals 
44% 

Others 
15% 

Wine 
10% 

Coffee 
9% 

Beer 
7% 

Cacao 
5% 

Dried 
fruits 

4% 

Meat 
3% 

Spices 
3% 
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Table 1.3. Occurrence of OTA in wines produced in different places and estimated exposure to this toxin [40]. 

Place Type Estimated exposure [ng kg
-1

] 

Brazil 
Red < 0.04-11.25 

White < 0.07 

China 

Red < 0.07-14.12 

White < 0.07-0.17 

Rose < 0.07-0.55 

Spain 
Red 0.001-0.23 

Rose 0.017-0.22 

Italy 

Red < 0.18-2.35 

White 0.025-2.42 

Rose < 0.025-2.88 

France Red < 0.025-0.6 

Portugal 
Red 2.50-6.00 

White 2.50-3.08 

Greece 
Rose 0.47-6.3 

Red < 0.0251.78 

 

This chlorophenolic mycotoxin is widely recognized as a significant threat for human and 

animal life. OTA has been reported to be teratogenic, genotoxic, carcinogenic and 

immunotoxic [41]. Therefore, it has been classified by the International Agency on Cancer as 

a possible human carcinogen (Group 2B) [42]. OTA exhibits unusual toxicokinetics, with a 

half-life time in blood of 840 h after oral ingestion and its elimination from the body is slower 

in humans than in all other species, providing more time for damage to occur [43]. It was also 

found that its toxicity is most acute in the kidney, recognized as potent nephtrotoxin [1]. 

Therefore, OTA has been linked to the so-called Balkan Endemic Nephtropathy (BEN) 

disease which causes kidney damage.   

Taking into account the global importance of cereals, wine, coffee and other products which 

might be contaminated with OTA, the Panel of Contaminants in Food Chain (CONTAM) of 

the European Food Safety Authority derived a Tolerable Weekly Intake (TWI) for OTA of 

120 ng kg
-1

 [44]. Recent analysis of the human dietary exposure (mainly via food and 

beverages) of adult European consumers to OTA, shows that the weekly exposure ranges 

from 15 to 60 ng OTA kg
-1

, which is lower than TWI [32]. Moreover, due to the worldwide 

OTA occurrence and its wide spectrum of toxicological and carcinogenic effects, maximum 

permitted level of ochratoxin A have been set up by nations all over the world (see Table 1.2). 

Also, the European Commission has conducted detailed risk assessments and defined a 
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maximum allowable level for different types of food and feed (e.g. 5 ng mL
−1

 for unprocessed 

cereals, 3 ng mL
−1

 for products derived from unprocessed cereals, 10 ng mL
−1

 for coffee 

beans and 2 ng mL
−1

 for all types of wine [45]).  

Ochratoxin-producing fungi can contaminate agricultural products in the field (pre-harvest 

spoilage), during storage (post-harvest spoilage) or during food processing (e.g. sorting, 

cleaning, brewing, cooking, roasting, frying etc.) and therefore, the deep knowledge about the 

stability and reactivity of toxins as well as possible methods for their elimination from the 

food chain is essential [46]. Thus, several strategies, classified into three categories: 

prevention of mycotoxin contamination, decontamination of affected foods and inhibition of 

the absorption of consumed toxin, have been proposed to minimize the toxic effect of those 

molecules in foods and feeds. The best and most common approach for lowering the pre-

harvest contamination is field treatment with fungicides. It was demonstrated that 

organophosphate fungicide, dichlorovos or iprodione can successfully inhibit OTA production 

of A. ochraceus, A verrucosum and A. westerdijkiae by disrupting cell division through 

linking to the nuclear spindle, which slow down the fungal growth  [47-49]. The effect of 

such a treatment has been tested (among others) on the OTA content of wines involving 

Euparen (sulfamide type of fungicide), Mycodifol and captan as an effective solutions against 

black aspergilli, which colonize grape berries [46, 50].  

Nevertheless, pre-harvesting procedures of contamination reduction are usually not sufficient 

enough and mycotoxins formation is unavoidable under environmental conditions. Thus, the 

main goal of post-harvest strategies is to lower fungal contamination of agricultural products 

during further stages - storage, handling, processing and transport. Those approaches are 

based on the improvement of storage conditions together with the use of chemical and natural 

agents as well as irradiation [46]. The major factors influencing the mycotoxins presence in 

food and feed, which affect the physiology of fungal producer, are temperature, moisture 

content and insect activity [51]. Moulds grow over a temperature range of 10-40 ºC, a pH 

range of 4 to 8 and above 14.5% moisture content [52]. Therefore, those parameters must be 

regularly controlled and kept under a safe storage conditions. Since mycotoxin-producing 

moulds are aerobic, the modification of atmospheric gases (such as CO2, N2, O2 and SO2) in 

storage silos may reduce theirs formation. It has been demonstrated (on example of P. 

verrucosum and A. ochraceus) that at least 50% CO2 is needed to inhibit growth and OTA 

production showing also that the spore germination is not markedly affected, although germ 

tube extension and thus colonization is significantly reduced [46, 53]. Another possibility for 
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fungi growth inhibition is the use of chemical preservatives (e.g. potassium sorbate, calcium 

propionate), antioxidants (e.g. vanillic acid), essential oils extracts, cinnamon and clove leaf 

which affect mould evolution and OTA synthesis [54-57]. The mechanisms of phenolic 

antioxidant activity may be directly or indirectly related to primary metabolism, as evidenced 

by effects on fungal growth, or involved in secondary metabolism, or a combination of the 

two [55].  

Unfortunately, the prevention methods for mycotoxins elimination during pre- and post-

harvesting are usually not able to their complete removal from food and feed. The processes 

which may have an influence on mycotoxins include sorting, cleaning, brewing, cooking, 

baking etc. Therefore, various detoxification approaches (physical, chemical and/or 

biological) have to be employed to assure toxin-free commodities. During the segregation and 

sorting of damaged, discolored crops with visible mould growth, the clean product is 

separated from the contaminated grains mechanically however, those operation do not destroy 

mycotoxins itself. Similar results might be obtained during milling, where the toxins 

contamination can be redistributed and concentrated in certain mill fractions, but without 

mycotoxins destruction [58]. Cleaning steps eliminate dust, hair and shallow particles while 

washing procedures which involve the use of water or sodium carbonate can significantly 

reduce the amount of Fusarium mycotoxins [59]. Most mycotoxins, including OTA are 

relatively stable upon heating within typical food processing temperatures (80-121ºC) 

therefore, may survive normal cooking conditions such as boiling or frying [52]. However, 

the degradation level strongly depends on the type of mycotoxin, its concentration, the degree 

of heat penetration as well as heating temperature and/or time. Several examples of OTA 

content reduction during roasting using varies conditions (time, temperature) are shown in 

Table 1.4. The differences between obtained results may be caused by different spiking 

techniques, initial concentration of OTA in the sample or inhomogeneous toxin distribution 

[46]. 

Tabel 1.4. OTA reduction during heat-treatment[46] . 

Heating conditions OTA content reduction [%] References 

180 ºC, 10 min 31.1 [60] 

200 ºC, 20 min 77-87 [61] 

250 ºC, 150 sec 14-62 [62] 

223 ºC, 4 min 84 [63] 

175-204 ºC, 7-9 min >90 [64] 
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There is no exact explanation of the mechanism of observed OTA reduction during heating 

however, in several studies it was shown that the physical removal of OTA with the 

silverskins (chaff) may be one the reason [63]. Another possible explanation given by Studer-

Rohr et al. is related to the isomerization of the C-3 position into a less toxic diastereomer  

[62]. Moreover, the thermal degradation with  the possible involvement of moisture can also 

play an important role in decrease of OTA contamination [65]. In turn of the opposite process 

- freezing (-20 ºC), the reduction of toxins was also observed what could be explained by 

lesions induces by ice crystals in the spores [66]. Another largely used practice improving 

toxicological safety of wine making process is microfiltration through a 0.45 µm membrane 

which can reduce OTA contamination by even 80%.  This reduction was likely a result of 

retaining the toxin by the filtration bed formed on a 0.45-μm membrane by wine 

macromolecules during treatment [67].  

Detoxification of mycotoxins can be also performed by implementation of adsorbent materials 

which have the ability to tightly bind and immobilize toxins. Minerals (e.g. aluminosilicates), 

biological adsorbents (e.g. yeast, bacterial cells) and synthetic resins (e.g. 

polyvinylpyrrolidone, cholestyramine) are examples of fining agents mainly used in lowering 

OTA contamination on wine and must [46]. However, they may also influence on the 

reduction of some important wine constituents such as aroma compounds and polyphenols 

responsible for the quality, color, bitterness, oxidative level as well as health beneficial effects 

of wine. In general, adsorption is based on the accumulation of molecules from a solvent onto 

the exterior and interior (i.e. pore) surfaces of an adsorbent and therefore it is curtail that the 

interaction between e.g. OTA and adsorbent are stronger than the one between OTA and 

solvent [68]. The efficiency of the binding is strongly dependent on the molecular size and 

physico-chemical properties of toxin. OTA is a weak acid with a pKa value for the carboxyl 

group of the phenylalanine moiety of 4.4, suggesting partial dissociation of OTA at the wine 

pH (ca.3.5) what result in negatively charged molecule that can interact with positively 

charged surface [68, 69]. Nevertheless, adsorption may also occur onto a negatively charged 

surface via hydrogen bonding and/or charge transfer when phenol moiety and carboxylic 

groups are involved [70]. Thus, fining agents like activated carbon, egg albumin and 

potassium caseinate have been shown to be the most effective solutions for reduction of OTA 

(even up to 90%) content in wine [67, 68]. 

Recently, a biological approaches have gained a lot of interest in the field of detoxification as 

a very promising alternative to physical and chemical methods for toxins elimination form 
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food (restricted due to the safety issues, possible losses in the quality of treated commodities 

combined with the limited efficiency [52]). OTA can be biodegraded through the hydrolysis 

of the amide bond that links the L-β-phenylalanine molecule to the OTα moiety (Fig. 1.8). 

Since OTα and L-β-phenylalanine are non-toxic this mechanism can be considered to be a 

detoxification pathway [71].  

 

Figure 1.8. Degradation of Ochratoxin A [71]. 

A number of different fungi, bacteria, yeasts and protozoa have been shown to detoxify OTA. 

Moreover, some enzymes, lipases and commercial proteases have been identified to carry out 

the reaction of OTA degradation. Examples of aforementioned compounds and references are 

summarized in Table 1.5. 

 It is clear that mycotoxins can contaminate a wide range of agricultural products in the field, 

during storage and processing. Pre- and post-harvest prevention strategies nowadays are 

commonly used as most effective methodologies for the reduction of toxins occurrence. 

However, it is impossible to entirely eliminate production of harmful molecules and therefore, 

additional decontamination and detoxification approaches are necessary to minimize toxicity 

of commodities.     

Table 1.5. Microbes and enzymes with the ability of OTA degradation [71, 72]. 

Microbes or enzyme References 

Bacteria 
Acinetobacter calcoaceticus [73] 

Phenylobacterium immobile [74] 

Protozoa  [75, 76] 

Fungi 
Aspergillus niger, A. fumigatus [77] 

Saccharomyces cerevisiae [78] 

Enzymes 

Carboxypeptidase A [79] 

Commercial proteases (Protease A 

and Prolyve PAC) 
[72] 

Commercial hydrolases (Amano A) [80] 
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1.2.6. Aflatoxins 

Aflatoxins (AFs) are a group of toxic metabolites produced by certain fungi in/on foods and 

feeds and probably the most studied mycotoxins in the world (>5000 publications) since their 

discovery in 1962 as the cause of the Turkey disease (see section 1.1). There are four major 

aflatoxins B1, B2, G1, G2 (the nomenclature is based on their fluorescence under UV light – 

Blue or Green) plus two additional metabolic products, M1 (derivative of aflatoxin B1) and M2 

(derivative of aflatoxin G2) occurring in Milk and milk products, that are of significance as 

direct contaminants (Fig.1.9) [3]. These mycotoxins, produced by at least three Aspergillus 

species, are able to colonize a wide range of crops both in the field as non-destructive plant 

pathogens and in storage, and can grow and produce aflatoxins at quite low moisture levels 

over a broad temperature range (13-41 
o
C) [81]. However, the level of contamination strongly 

depends on different parameters such as temperature, humidity, water activity and other 

storage conditions [1].  

 

Fig. 1.9 Molecular structures of  AFB1 (A), AFB2 (B), AFG1 (C), AFG2 (D), AFM1 (E) and AFM2 (F) [1]. 

From the physico-chemical and biochemical point of view (important in case of 

detoxification), the characteristics of the AFB1 reveals two sites for toxicological activity 

[82]: 

 Double bond in position 8,9 of the furo-furan ring. The aflatoxin-DNA and -protein 

interactions which occur at this site can change the normal biochemical functions of 

these macromolecules, leading to deleterious effects at the cellular level [83].  

 The lactone ring in the coumarin moiety - can be easily hydrolyzed and therefore a 

vulnerable site for aflatoxin degradation [82]. 

http://poisonousplants.ansci.cornell.edu/toxicagents/aflatoxin/image2.html
http://poisonousplants.ansci.cornell.edu/toxicagents/aflatoxin/image3.html
http://poisonousplants.ansci.cornell.edu/toxicagents/aflatoxin/image4.html
http://poisonousplants.ansci.cornell.edu/toxicagents/aflatoxin/image5.html
http://poisonousplants.ansci.cornell.edu/toxicagents/aflatoxin/image6.html
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Therefore, all actions undertaken to prevent aflatoxins occurrence should be aimed at 

removing the double bond of the terminal furan ring or in opening the lactone ring [82]. 

General methods for minimization mycotoxins existence in food during pre- and post-

harvesting were described in section 1.2.5. However, the application of physical and chemical 

approaches is dependent on the type of mycotoxin, its structure, properties and can differ one 

from each other.  

Aflatoxins are quite stable compounds and survive relatively high temperatures 

(decomposition temperatures ranging from 237 ºC to 306 ºC [52]) with little degradation but 

their heat stability is influenced also by other factors, such as moisture level and pH. Rustom 

et.al. suggested that a high level of humidity may amplify degradation via hydrolysis of the 

lactone ring and formation of a terminal carboxylic acid which undergo a heat-driven 

decarboxylation, but on the other hand AFs can also be "protected" in food by their ability to 

bind with proteins [84]. It has been shown that the minimum temperature required for (at 

least) partial detoxification should be above 100 ºC. The varying degree of AFs degradation 

during different heat-treatment procedures are shown in Table 1.6. 

Aflatoxins are also sensitivity to UV radiation at 222, 265, and 362 nm, with the greatest 

absorption occurring at 362 nm which activates AFB1 and increases it possibility of affecting 

the structure of the terminal furan ring and thus eliminating the active binding sites [82]. For 

example, 56.2% of AFM1 in milk was destroyed by UV radiation at 365 nm for 20 min [85]. 
 

Table 1.6. Aflatoxins reduction during different heat-treatment procedures [82]. 

Heating conditions AFs degradation [%] Matrix References 

Boiling 28 Corn [86] 

Baking at 120 ºC, 30 min 80 Wheat flour [87] 

Heat up 120 ºC, 10 min 50 Peanut oil [88] 

Heat up to 250 ºC 65 Olive oil [89] 

Frying 33-53 Corn [86] 

Roasting at 190 ºC, 15 min 80 Pecans [90] 

 

In case of chemical detoxification, a wide range of substances such as sodium hypochlorite, 

chlorine dioxide, hydrogen peroxide, ozone, sodium disulphide and the hydrolytic agents 

(acids and alkalis) have been already tested and described with very effective way for 

aflatoxins elimination. Those reagents can either oxidize the double bond of the terminal 

furan ring or hydrolyze and oxidize the lactone ring of AFB1 [82]. Hypochlorite anion which 

is a strong oxidizing agent, under acidic conditions, is able to convert ABM1 into unstable 
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8,9-dichloro-AFB (exhibiting carcinogenic properties) which further easily hydrolyze to 8,9-

dihydroxy-AFB (non-toxic compound) [91]. Hydrolysis of the lactone ring followed by 

decarboxylation to two non-toxic molecules as a result of treatment with ammonia has been 

shown to reduce AFB1 concentration [92]. Another example - very powerful oxidizing agent, 

ozone, is promoting the reaction across the 8,9- double bond of the furan ring through 

electrophilic attack (at a room temperature, within few minutes) and therefore, can affect on 

AFs existence [82]. However, it is worth to mention that aflatoxins which do not have a 

double C=C bond in the furan ring (AFG and AFM) are resistant to oxidation by ozone [52]. 

Besides chemical and physical methods for AFs detoxification, biological or enzymatic 

approaches (Table 1.7.) can also affect and modify the structure of toxic compounds resulting 

in less toxic or even non-toxic derivatives. Generally, they are based on two pathways: 

modification of the difuran ring or modification of the coumarin structure [93]. 

 

Table 1.7. Biological degradation of aflatoxins [93]. 

Microorganism References 

Fungi 

Phanetochaete sordida [94] 

Pleurotus ostreatus [95] 

Pseudomonas putida [96] 

Bacteria 
Rhodococcus erythropolis [97] 

Flavobacterium aurantiacum [98] 

Enzyme Laccases [99] 

 

Degradation of AFB1 into AFB1-8,9-dihydrodiol was performed by manganese peroxidase 

from the white rot fungi Phanerochaete sordida - the authors suggested that aflatoxin 

degradation initially involves formation of AFB1-8,9-epoxide, after which a hydrolysis 

resulted in a non-toxic dihydrodiol-derivate [94]. Another studies involving microorganism 

showed that 91.76% of AFB1 was converted into a component which could be a hydrolyte of 

AFB1, named dihydrohydroxy aflatoxin B1 (AFB2a) which also has a reduced mutagenicity 

[95]. 

Aflatoxins may be present particularly in cereals, oilseeds, spices and tree nuts but also maize, 

groundnuts (peanuts), pistachios, brazils, chilies, black pepper, dried fruit and figs are known 

to be high-risk foods for AFs contamination [100].  

Aflatoxins are associated with both toxicity and carcinogenicity in humans and animals with a 

high risk of death or immune suppression [3]. Nevertheless, both aflatoxin B1 (AFB1) and 
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aflatoxin G1 (AFG1) have been shown to cause various types of cancer in different animal 

species, only AFB1 has been identified by the IARC as carcinogenic to humans (Group 1). 

Therefore, AFB1 is considered as the most toxic aflatoxin and the biggest threat for humans. It 

has been demonstrated that liver is the principal organ affected, followed by lungs, kidneys 

and brain [101]. Low levels of AFs ingestion was often times linked to primary liver cancer, 

chronic hepatitis, jaundice, childhood stunting growth reduction and Reye’s syndrome [101]. 

Considering the hazard impact on people health and the wide occurrence of aflatoxins, the EU 

sets limits for AFB1 and total aflatoxins (B1, B2, G1 and G2) in nuts, dried fruits, cereals and 

spices. Limits vary according to the commodity, but range from 2 to 12 μg kg
-1

 for B1 and 4-

15 μg kg
-1

 for total AFs. In US, food safety regulations include a limit of 20 μg kg
-1

 for total 

aflatoxins in all foods except milk [102].   

More recent studies show that the most threatening aspect of AFB1 contamination is now 

related to AFM1 – the main monohydroxylated metabolite of AFB1 [1, 7]. About 0.3-6.2% of 

AFB1 feed is transformed into AFM1 through enzymatic hydroxylation process [103]. 

Mammals who ingest AFB1-contaminated diets eliminate into milk amounts of metabolite 

known as "milk toxin" or AFM1 [104]. Its occurrence was confirmed in human and animal 

milk, infant formula, dried milk, cheese, yoghurt, butter and eggs.  

Even though AFM1 is less toxic than its parent compound, IARC has recently reconsidered its 

carcinogenicity categorization, initially classified as a Group 2B human carcinogen, and 

changed it to Group 1. Besides carcinogenic properties, it is also hepatotoxic and mutagenic 

[105]. 

Since milk can be proceeded in numerous ways, its storage (temperature, time) and 

preparation methods are of great concern. It has been shown that the amount of AFM1 

decreases by 25% after 3 days at 5ºC, 40% after 4 days at 0ºC and even 80% after 6 days at 

0ºC [104]. Moreover, milk stored at -18ºC for one month reduces AFM1 content by 14% and 

85% after two months [106]. Some authors have also linked AFM1 with the year season, 

indicating that during winters its concentration in milk samples is higher than during other 

warm months [104]. Nevertheless, AFM1 has been demonstrated to be stable during the 

pasteurization, storage and processing, and therefore, implies a significant threat to human 

health [105]. Due to this fact, more than one hundred countries have implemented regulations 

in order to control the content of AFM1 in daily products. In US, the maximum permissible 
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level in milk is 500 pg mL
-1

 whereas the one set up by the EU is much more restrictive - 50 pg 

mL
-1

 [107]. 

The consumption of milk and milk products by the human population is very high, especially 

in infants and children, who are the major group exposed to aflatoxin M1. Due to its 

persistence in the food chain, high stability, resistance during food processing and most 

importantly evidence of hazard on both human and animal health, it is essential to provide 

rapid, sensitive and selective methods for their early detection. Thus, in this thesis we took 

this challenge and proposed different ways for AFM1 analysis. 

1.3. Conventional analysis techniques 

The common occurrence of mycotoxins in food and feed creates a real threat all over the 

world due to their wide spectrum of toxicological properties affecting humans and animals 

health. National and international institutions/organizations, such as the European 

Commission (EC), the US Food and Drug Administration (FDA), the World Health 

Organization (WHO) and the Food and Agriculture Organization have recognized the 

potential harmful impact of mycotoxins and set up regulatory limits for major classes and 

selected individual molecules [108]. Ochratoxins and aflatoxins are the most spread 

mycotoxins and hence, in order to protect population and minimize economic losses, their 

control in daily products has become a main objective for researchers worldwide. In the last 

century there was a great development of analytical methods for toxins detection. However, 

the diversity of chemical structures and varying concentration ranges in different types of 

commodities make it impossible to use a single standard technique for all mycotoxins analysis 

and/or detection. Therefore, analytical methods used nowadays typically require additional 

steps prior to detection, including extraction, clean-up and separation. Those steps are crucial 

(though time consuming) for a successful protocol and directly affect the final choice for the 

detection procedure. On the one hand they may result in the partial loss of some compounds, 

increase labor and costs, but on the other hand insufficient pre-cleaning can cause unfavorable 

effects like masking of residue by matrix components, occurrence of false positives and/or 

inaccurate quantification [109]. In the extraction step, the presence of co-extractives can mask 

the analytical signal of the target analyte and thus, increase the limit of detection (LOD). 

Generally, liquid-liquid partitioning, solid-phase extraction (SP), supercritical fluid extraction, 

gel permeation chromatography, immunoaffinity clean-up (IAC) and multifunctional clean-up 

columns (MCC) are used for the purification of extracts [110]. 
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 The most common quantitative methods for almost all kinds of mycotoxins use 

immunoaffinity clean-up combined with high-performance liquid chromatography (HPLC) 

with UV or fluorescence detection [111]. Another frequently used technology is thin layer 

chromatography (TLC), which provides qualitative or semi-quantitative results. Recently, 

capillary electrophoresis (CE) has gained a great interest, especially in ochratoxins and 

aflatoxins detection. Moreover, the discovery of antibodies for the most abundant mycotoxins 

in 1970’s led to an increasing use of enzyme-linked immunosorbent assays (ELISAs). Over 

the years, this technology has been significantly improved, validated, commercialized, and 

become a useful, rapid and sensitive tool for screening.   

Due to the emerging need for newer, faster and more sensitive technologies for food control 

and safety, a significant increase in development of alternative solutions in the field of 

mycotoxins detection has been recently noted. Nevertheless, up to now, none of them has 

elicited such popularity as the separation methods aforementioned, which have been already 

validated by the Association of Official Analytical Chemists (AOAC) – an international 

organization in which scientists worldwide contribute with their expertise to standard and 

method development and the systematic evaluation and review of already-in-use methods. A 

compilation of  methods for the detection of major mycotoxins in different types of food is 

presented in Table 1.8 [112]. 

Table 1.8. Examples of validated and official methods for mycotoxins detection in food [112]. 

Mycotoxin Matrix Method Reference 

DON Grain TLC [113] 

FB1 Grain HPLC [114] 

FB1 Corn, rice ELISA [115] 

FB2 Cornflakes HPLC [116] 

OTA Beer HPLC [112] 

OTA Roasted coffee HPLC [117] 

OTA Wine, white HPLC [112] 

OTA Wine, red HPLC [118] 

ZEA Cereal TLC [119] 

Patulin Apple products HPLC [120] 

AFs Peanut butter ELISA [121] 

AFs Nuts HPLC [122] 

AFs - TLC [123] 
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1.3.1. High performance liquid chromatography (HPLC) 

As mentioned above, HPLC is one of the most frequently used technique for aflatoxins and 

ochratoxins quantification in food. In essence, all HPLC protocols are similar and used jointly 

with detection techniques such as UV absorption, fluorescence (which rely on the presence of 

a fluorophore in the molecule) or mass spectrometry. To minimize matrix interferences, 

sample pretreatment with  immunoaffinity clean-up [124, 125] or conventional SP [118, 126] 

is typically required.  Among all detection methods, fluorescence (FD) ranks the first place, 

due to its high specificity and sensitivity. Although a number of toxins exhibit natural 

florescence activity, there is a small group of them that require a previous derivatization step 

in order to be detected after the chromatographic column.  

HPLC-FD is most often used for OTA detection and thus, a well-defined protocol has been 

set for its determination in various food stuff and beverages such as dried fruits [127], green 

or roasted coffee [128], blue cheese [129] or wine [130]. The latter product has gained a lot of 

interest of researchers around the world resulting in a large number of published reports. For 

instance, the presence of OTA in wine has been determined using commercial IAC and 

separation with reverse-phase C18 column [131].  The implementation of FD allowed for OTA 

detection in 0.01 ng mL
-1

 concentration. In a similar study, HPLC-FD was used with 

dispersive liquid-liquid microextraction with ionic liquid as a solvent which enabled to 

achieve LOD of 0.005 ng mL
-1

 [132]. Obtained LOD levels are comparable to the protocols’ 

utilizing fluorescence (e.g. [130, 133, 134]).  

Aflatoxins can also be detected using HPLC-FD. However, in this case the analysis becomes 

more complicated due to the quenching effect of their native fluorescence emission by 

aqueous mixtures used for reversed-phase chromatography [135]. Fluorescence amplification 

can be achieved by pre- or post-column addition of cyclodextrins to the HPLC eluent [136] or 

by pre-column derivatization of the hemiacetal [135, 137]. The usual chromatographic 

conditions are reverse-phase (C18) column and isocratic mobile phase regime, consisting of a 

mixture of methanol, acetonitrile and water [138]. Nevertheless, the usage of HPLC-FD is 

less popular for AFs detection then for OTs.  

The determination of other mycotoxins (trichothecenes, FUM, ZEA) is usually based on 

HPLC combined with mass spectrometry detection (HPLC-MS) due to the absence of natural 

fluorescence. Recently, a great development has been noticed in this field, allowing for highly 

accurate and specific analysis. Accordingly, fumonisins were detected using positive ion 
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electrospray ionization (ESI) mode as they elute from a C18 reverse-phase column during a 

methanol-water gradient containing acetic acid to facilitate the elution [139]. DON detection 

involved positive or negative ions in the atmospheric pressure chemical ionization (APCI) 

mode resulting in LOD of 1 μg g
-1

 [139]. 

Compared to fluorescence and mass spectrometry, alternative detections such as UV 

absorption are rarely used mostly because of higher LOD unable to trace the amount of the 

investigated substances and lack of specificity. Moreover, some mycotoxins do not absorb in 

the UV part of spectra (trichothecenes, FUM), or absorb only at rather non-specific 

wavelengths in a range of 200-225 nm (DON, OTs, ZEA) [138].  

HPLC clearly has a useful place in mycotoxins analysis. As an analytical tool it offers the 

advantages of high resolution, sensitivity and the possibility to combine multiple detection 

systems allowing for simultaneous detections of compounds from one sample. On the other 

hand, chromatographic assays are expensive, time-consuming and require expensive 

equipment and clean-up procedures [140].  

1.3.3. Thin layer chromatography (TLC) 

One of the most effective, simple, widely used and also the first chromatographic screening 

method for mycotoxins detection is thin layer chromatography (TLC). In general, it is non-

destructive, cheap and rapid analytical technique, yielding qualitative or semi-quantitative 

information [138]. Moreover, the ease of identification of targets using UV-Vis spectral 

analysis, a wide choice of stationary and mobile phases as well as an array of spraying agents 

used for the detection make this technology  a powerful tool in the field of food safety [138, 

141]. Nevertheless, it requires intrinsic need for sample preparation and clean-up methods 

dependent on the type of studied toxin. Besides the most common silica gel columns used for 

purification there are also reports describing the use of ELISA for AFs in corn and peanuts 

[142], C2, C8 and C18 pH-bonded phases for AFs in maize [143], SP [144] or IAC [145]. TLC 

is widely used for AFs and OTs detection in food samples since they are naturally fluorescent 

compounds. For instance, one-dimensional TLC involving IAC clean-up procedure was used 

for the determination of AFB1, AFB2, AFG1 and AFG2 in different food matrixes. The limit of 

quantification was found to be significantly lower than current regulatory limits for AFs 

[146]. The same protocol was used for OTA determination in green coffee achieving LOD of 

0.5 μg kg
-1

 [147]. There are also some studies showing even greater accuracy than TLC when 

compared with comprehensive HPLC on the example of OTA detection [148]. TLC 
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methodology is cost effective, user friendly and fast methods for mycotoxin analysis however, 

further development of more sensitive systems and improved automation could make this 

technique a more popular tool in the future [110]. However, nowadays TLC is still the method 

of choice when HPLC is not available and the precise determination of aflatoxins is not 

required [146].  

1.3.4. Capillary electrophoresis (CE) 

Capillary electrophoresis (CE) leads to a fast separation of components based on charge- and 

mass-dependent migration in electric fields [140]. It is described as a rapid analytical 

technique with high column efficiency and fast separation accomplished in aqueous buffer 

solutions (minimal use of organic solvents) [149]. CE systems are available with laser-

induced fluorescence (LIF) and diode array (DAD) detectors that extend the range of 

compounds that can be analyzed and allows the detection of mycotoxins at trace levels  [150].  

Capillary zone electrophoresis with diode array detection (CZE-DAD) and micellar 

electrokinetic capillary chromatography with diode array detection (MECC-DAD) have been 

developed for quantitation of AFs achieving LOD of 15 pg AFB1 in 30 nL of buffer [150]. 

However, in further studies, sensitivity has been significantly improved by the 

implementation of a LIF system. This way, FB1 was detected in corn within the range of 0.25 

to 5.0 μg g
-1

. Other studies present OTA analysis utilizing CE-LIF in serum [151, 152], beer 

[153] and in wine [154] with satisfying results. In contrast to CE-LIF methods, UV detection 

of OTA wine has given too high quantification limits and therefore, this technique is rarely 

used nowadays [155].  

Nevertheless, despite a wide range of advantages, CE has never gained such popularity as 

HPLC, mostly due to lower sensitivity [138].  

1.3.5. Enzyme-Linked Immunosorbent Assay (ELISA) 

A widely used application based on interactions between antibody (Ab) and antigen (Ag), and 

therefore, estimation of the amount of target molecules in the sample, is the enzyme-linked 

immunosorbent assay, introduced in 1971 at Stockholm University in Sweden [156, 157]. 

Since that time, ELISA has been significantly improved and become an extraordinary useful 

tool for the screening and quantification of a wide range of analytes. This methodology is a 

plate based (typically performed in 96-well polystyrene plates) assay in which the antigen (in 

fluid phase) is immobilized to a solid surface [158].  



26 | P a g e  

 

ELISAs involve the stepwise addition and reaction of reagents to a solid phase-bound 

substance through incubation and separation of bound and free reagents using washing steps 

[159]. The antigen is allowed to bind to a specific antibody, which is itself further detected by 

a secondary, enzyme-coupled antibody [158]. The final stage in all ELISA systems is the 

detection of bounded Ab or Ag. An enzymatic reaction is utilized to yield color and to 

quantify the reaction through the use of enzyme labeled reactant [159]. The intensity of 

recorded signal should be directly proportional to the amount of antigen immobilized on the 

microtitre plate and bound by the detection reagents. The most popular and widespread 

enzymes used in ELISA are horse radish peroxidase (HRP) and alkaline phosphatase (AP) 

due to their flexibility and accessibility of a variety of substrates for chromogenic, 

chemifluorescent and chemiluminescent imaging [160]. The basic protocol of ELISA can 

provide a wealth of information.  However, this technique can be also performed in more 

complex versions providing signal amplification and more precise results. Therefore, there are 

three major types of ELISAs: direct, sandwich and indirect presented in Fig. 1.10 [161]. 

  

 

Fig. 1.10. Types of ELISA formats: direct (a), sandwich (B) and Indirect (C). Abbreviation: Ag - antigen. 
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A. Direct assay 

A direct assay is considered to be the simplest type of ELISA which relies on the antigen 

immobilization onto the plate followed by blocking the remaining binding sites by the 

addition of another protein (usually bovine serum albumin, BSA) [162]. Afterwards, an 

antibody conjugated to an enzyme is applied to recognize the Ag. The aim is to allow 

development of a color reaction through enzymatic catalysis (for a defined period, after which 

the reaction is stopped by altering the pH of the system, or adding an inhibiting reactant [159]. 

Afterwards, the color is quantified by the use of a spectrophotometer reading at the 

appropriate wavelength for the color produced. This format is fast, since only few steps are 

required and eliminates cross-reactivity between other Ab. On the other hand, the primary Ab 

must be labeled individually, which significantly extends a time and also obtained signal is 

not as high as compare to other formats, resulting in a lower sensitivity.  

 

B. Sandwich assay 

In a sandwich format of ELISA, the Ag to be measured must contain at least two antigenic 

epitope capable of binding to Ab, since in this assay at least two Ab are involved. The first Ab 

(called capture Ab) is attached to the microtiter well. Next, the analyte or sample solution is 

added, followed by the injection of detection Ab. If the latter Ab is labeled with an enzyme, 

the assay is called a direct sandwich ELISA which involves the passive attachment of 

antibodies to the solid phase that subsequently bind antigen [159]. After incubation and 

washing, the captured Ag is detected by the addition of enzyme-labeled specific antibodies.  

At the last step, the bound enzyme is developed by the addition of substrate/chromogen, 

stopped and finally read using a plate reader. However, if injected antibody is not conjugated, 

then a second detection Ab is required resulting in so-called indirect sandwich assay. 

Sandwich format provides a high specificity and sensitivity. It is suitable for complex samples 

due to the fact that the Ag does not require purification prior the measurement and offers a big 

flexibility, since direct and indirect methods can be used [158].  

C. Indirect assay 

Another commonly used type of ELISA format is indirect assay. In this technique, the target 

is immobilized on the platform surface followed by the addition of the sample containing 

primary antibodies (unlabeled, specific for the Ag) [162]. Next, the secondary Ab (Ab2, which 
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has the specificity for the primary Ab) labeled with an enzyme are added to bind with the 

primary Ab. A substrate for the enzyme is introduced to quantify the primary antibody 

through a color change [158]. The concentration of primary antibody present in the serum 

directly correlates with the intensity of the color. An indirect ELISA combines a lot of 

advantages such as high sensitivity, flexibility or cost savings. Moreover, a wide variety of 

labeled secondary Ab is commercially available. However, the use of Ab2 might result in high 

cross-reactivity and therefore, non-specific signals may occur [162].  

Beside three main ELISA formats described above, it is worth to mention about one other 

existing type – Competitive ELISA, used especially for the detection of small molecules 

(low molecular weight compounds) with only one epitope. This strategy is based on antigen 

immobilization on the surface followed by the injection of the mixture of primary antibody 

and sample containing free antigen [163]. Therefore, the higher the Ag concentration in the 

sample, the lower the amount of antibodies available for binding the antigen linked to the 

surface. After washing, labeled Ab2 are added and the enzymatic reaction is measured.  

Due to the high sensitivity, strong specificity, flexibility in the choice of detection methods, 

and time effectivity, ELISA has become a useful and powerful technique with a large variety 

of applications, either in scientific research or clinical diagnosis of diseases. Recently, a lot of 

commercially available ELISA kits have been developed offering portable, rapid and user 

friendly method for the detection of different target molecules. In the field of food control, 

ELISA is considered to be a suitable alternative for all chromatographic technologies. In the 

last years there have been a lot of reports about the use of ELISA as an analytical tool for 

mycotoxins determination in food and beverages. Some examples of protocols which employ 

different formats of ELISA for ochratoxins and aflatoxins are shown in Table 1.9.  
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Table 1.9. Examples of different ELISA formats used for the detection of most common mycotoxins 

Mycotoxin Protocol Matrix Reference 

AFs Indirect Peanuts [164] 

AFs Indirect competitive Maize [165] 

AFB1 Direct competitive Grain [2] 

AFB1 Direct competitive Corn, soybeans, [166] 

AFM1 Indirect competitive Milk [167] 

AFM1 Competitive (Ridascreen AFM1) Cheese [168] 

AFs, OTA Direct competitive Cereals, feed [119] 

OTA Direct competitive (AgraQuant) 
Corn, wheat, 

soybeans, green coffee 
[169] 

OTA Direct competitive French wine [170] 

OTA Indirect competitive Wine, beer [171] 

 

As it can be observed, both direct and indirect ELISA formats are widely used for the 

detection of mycotoxins. All of those techniques have advantages and some limitations 

described above. The choice of a proper format belongs only to the researcher who considers 

pros and cons of each methodology. However, worth to notice is the fact that in all 

publications regarding mycotoxins detection the authors combine a direct/indirect style with 

competition step due to the small size of analyzed toxins which preclude the use of ELISA in 

easier way.  

1.4. Biosensors 

The availability of fast, sensitive, simple, portable and cheap methods for rapid determination 

of food contaminants is an increasing need for human safety. Official techniques such as 

HPLC, TLC or CE offer high sensitivity and selectivity at the expense of time, cost and a 

need for sample pre-treatment or pre-concentration. Therefore, the use of analytical 

procedures based on affinity biosensors has recently gained a lot of interest, mainly due to 

their capability to resolve a potentially large number of analytical problems and challenges in 

very diverse areas such as defense, homeland security, agriculture and food safety, 

environmental monitoring, medicine, pharmacology, industry, etc. [172]. 

The term biosensor (schematically depicted in Fig. 1.11) can be, in general, described as a 

device containing a biological recognition component (e.g. enzymes, antibodies, nucleic acids 

or artificial receptors) combined with a sensor element (transducer/detector).  
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Fig. 1.11. Elements and selected components of a typical biosensor. Reprinted from [172]  

 

The official IUPAC (International Union of Pure and Applied Chemistry) definition states "A 

biosensor is a self-contained integrated device, which is capable of providing specific 

quantitative or semi-quantitative analytical information using a biological recognition 

element (biochemical receptor) which is retained in direct spatial contact with an 

transduction element.” [173].  

Related to the physicochemical properties of mycotoxins and/or the type of transduction, 

biosensors technology can be divided into three groups [174]: 

 Optical sensors (e.g. SPR) 

 Piezoelectric sensors (e.g. QCM)  

 Electrochemical sensors.  

The main advantages of biosensors in comparison with traditional analytical methods are 

summarized in rapid detection, high sensitivity, easy preparation, reusability and low costs 

[175]. In the last 30 years there has been a significant increasing interest in the field of 

biosensors development. Such a fast growth is driven by several factors including medical and 

health problems like growing population with a high risk of diabetes and obesity, the rising 

incidence of chronic diseases such as heart disease, stroke, cancer, chronic respiratory 

diseases, tuberculosis, significant problems with environmental monitoring; and of course 

serious challenges in security and military applications and agriculture/food safety [172, 176]. 

In the latter one, the biosensor technology is currently the most active area of mycotoxins 

https://iupac.org/
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analytical research. Examples of major mycotoxins determination in food and beverages 

utilizing biosensors with optical, acoustic and electrochemical detection are shown in Table 

1.10. 

Table 1.10. Examples of mycotoxins detection utilizing various types of biosensors 

Mycotoxin Matrix Detection Reference 

AFM1 Milk SPR + fluorescence [177] 

AFM1 Milk Electrochemical [178, 179] 

AFB1 Groundnut Piezoelectric [180] 

OTA Wheat Electrochemical [181] 

OTA Coffee Piezoelectric [182] 

OTA Cereals SPR [45] 

DON Wheat SPR [183] 

T-2, HT-2 toxins 
Cereals, maize-based 

baby food 
SPR [184] 

ZEA Milk, wheat Electrochemical [185] 

 

1.4.1. Optical biosensors (Surface Plasmon Resonance Spectroscopy - SPR) 

A very promising technology for rapid and sensitive detection of chemical and biological 

analytes is surface plasmon resonance spectroscopy (SPR). This technique has become 

increasingly popular with the commercialization of biosensors by the company Biacore in the 

90's offering a novel and powerful approach for the determination of kinetic parameters 

(association and dissociation rate constants) but also providing thermodynamic information 

(e.g. affinity constants) [186, 187].  

 

Fig. 1.12. SPR biosensor principle, surface plasmons are excited by polarized laser beam at certain angle Ɵ and the 

intensity of reflected light is measured. 
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SPR is an opto-electronic phenomenon utilizing a thin metal (preferably gold or silver) film 

between two transparent medias of different refractive index (e.g. a glass prism and sample 

solution) [186]. When a polarized light beam passes through the higher refractive index 

medium (e.g. glass prism) it can undergo a total internal reflection above a critical angle of 

incidence, generating an evanescence wave penetrating the metal layer [186, 188]. This 

evanescence wave propagates along the interface with a propagation constant which can be 

adjusted to match that of surface plasmons, by controlling the angle of incidence (the so 

called attenuated total reflection (ATR) method) [188].  When the wavelength of the photon 

equals the resonance wavelength of the metal, the photon couples with the surface and 

induces the electrons in the metal film to oscillate as a single electrical entity (called plasmon) 

[163]. This movement creates an electromagnetic field that decays exponentially out from the 

metal surface, with significant electric field strength occurring within 300 nm of the surface 

[163]. If the molecule binds to the surface within this range, the plasmon might be disturbed, 

causing a change in the resonance angle of incoming photons. Thus, the SPR system is 

sensitive for changes in the refractive index of the surface layer of a solution in contact with 

the sensor chip (Fig. 1.12) [186].  

A change in the refractive index of the dielectric material gives rise to a change in the 

propagation constant of the surface plasmon, which alerts the characteristics of the light wave 

coupled to the surface plasmon (e.g. coupling angle, wavelength, intensity, phase) [189].   

Therefore, SPR sensors with angular modulation use monochromatic light wave for plasmon 

excitation which is observed as a dip in the angular spectrum of reflected light (at a fixed 

wavelength, Fig. 1.13 A, upper plot). The angle of incidence providing the strongest coupling 

is measured and used as a sensor output [189]. In SPR with wavelength modulation a 

polychromatic light source is utilized, where the plasmon excitation is seen as a dip in the 

wavelength spectrum of reflected light (at a fixed angle of incidence, Fig.1.13 B). SPR with 

intensity modulation rely on measurements of coupling strength between the light wave and 

the surface plasmons at a single angle of incidence and wavelength (Fig.1.13 B) [190]. 

Sensors with phase modulation measure the shift in phase of the light wave coupled to the 

surface plasmon at a single angle of incidence and wavelength of the light wave (Fig.1.13 A, 

lower plot) [189, 191].   
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Fig. 1.13. Reflectivity and phase for light wave exciting surface plasma wave vs. (A) the angle of incidence for two 

different refractive indices of the dielectric and (B)wavelength for two different refractive indices of the dielectric. 

Reprinted from [188].  

In general, SPR biosensors use resonance units (RU) to quantify changes in the refractive 

index. The signal is proportional to the amount of bounded molecules and therefore, e.g. for 

proteins 1000 RU corresponds to the surface coverage of 1 ng mm
-2

. Due to the fact that this 

technique is sensitive to mass changes occurring at the noble metal surface interface, it has 

found an application mostly in bioassays of large molecules (with molecular weight > 2 kDa, 

such as antibody - approximately 150 kDa) utilizing sandwich immunoassay format. 

Nevertheless, there has recently been an increasing number of reports focusing on strategies 

involving other formats for the detection of various chemical and biological analytes. Small 

compounds (such as mycotoxins) usually do not generate a sufficient change in the reflective 

index and thus are more challenging for the determination using SPR, suffering from low 

signal and poor sensitivity [163]. However, in combination with competitive or inhibition 

detection formats and the utilization of additional high mass labels, a clear enhancement of 

sensitivity can be achieved. In competitive methodologies, the sensor surface is coated with 

antibody interacting with analyte; when a conjugated antigen is added to the sample, it 

competes with the analyte for a limited number of biding sites on the surface. Therefore, the 

recorded signal is inversely proportional to the analyte concentration. The inhibition assay 

rely on the mixture of a fixed concentration of antibody with a sample containing unknown 

concentration of antigen which is subsequently injected into the flow cell and passed through 

a sensor surface, to which antigen is immobilized. Then, the amount of bounded antigen to the 

modified surface antibody is measured and the obtained signal is proportional to the 

concentration of analyte [189]. In those cases, the mass is provided by the use of primary 
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antibody which let obtain the optimum assay sensitivity. However, the signal can be further 

amplified by the use of secondary antibodies either with or without conjugation to large 

particles. Other approaches involve the use of fluorescence for LOD improvement or 

modification of the sensor chip with metallic nanoparticles. The latter ones are widely used in 

the construction of biosensors due to their unique physical and chemical properties, good 

biocompatibility and high catalytic activity for many chemical reactions.  

 Among a large variety of nanomaterials available nowadays, the implementation of gold 

nanoparticles (AuNPs) has gained the highest interest.  

AuNPs - signal amplification 

The outstanding optical properties of AuNPs result from participation of their free electrons in 

the collective oscillation of electrons, called localized surface plasmon (LSP) [187]. When 

metal nanostructures interact with a light beam, part of the incident photons are absorbed and 

part are scattered in different directions. Both absorption and scattering are greatly enhanced 

when the LSPR is excited [192]. The general principle behind LSPR involves the shift in 

wavelength and/or the change in absorption intensity of the LSPR band upon analyte 

detection [187]. Therefore, this type of sensors are recently used as an alternative to simple 

SPR sensors due to the highly localized electromagnetic fields on NPs surfaces which can 

significantly improve detection of nanoscale biological analytes [193]. Moreover, AuNPs 

have another advantage - they concentrate a high mass into a small volume, followed by the 

simple formation of coordinate bonds with thiol functional groups on their surface what 

results in an easy conjugation of AuNPs to the biomolecules as signal enhancement labels 

[163].  

In case of AuNPs-based biosensors, signal amplification can be achieved by implementation 

of antigen/antibody-labeled AuNPs to bind with the ligand immobilized on the SPR sensor. 

The main idea standing behind such tremendous enhancement is linked to the artificial 

increased mass of the analyte due to the linked AuNPs which results in higher refractive index 

changes causing a larger SPR shift [187]. However, besides this fact, it is expected that the 

dominant role belongs to the electromagnetic field coupling between LSP field of NPs and the 

surface plasmon field of the gold sensor surface [187].  

In SPR biosensors, the recognition element (e.g. antigen, antibody/aptamer) is immobilized on 

a solid surface on a sensor chip. This step is crucial for obtaining a high sensitivity, selectivity 
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and low LOD. Therefore, the design of surface chemistry must enable immobilization of a 

sufficient number of biomolecules while keeping their biological activity and minimizing 

non-specific bindings which may occur during this process [189]. The most widely used 

immobilization on the sensing (gold) surface is via self-assembled monolayers (SAMs) of 

alkanethiolates or disulfides.  

Self-assembled monolayer  

Since the 1980’s, with the discovery of spontaneous assembling of alkanethiols on noble 

metals, a new avenue offering a simple way of creating surfaces of virtually any desired 

chemistry has been opened. SAMs are ordered molecular assemblies formed by the simple 

immersion of a substrate and adsorption of an active surfactant solution onto a solid surface  

(Fig 1.14 A) [194].  

 

Fig. 1.14. Self-assembled monolayer formations (A) and schematics of the adsorption of thiols on gold (B) Reprinted from 

[195]. 

Despite of the existence of different SAMs systems (e.g. silanes on hydroxylated surfaces, 

fatty acids, organosilicon derivatives) the majority of papers in recent years deal with thiols 

on gold. Why is gold so popular? There are five main reasons: 

 It is easy to obtain, both as a thin film (utilizing e.g. physical vapor deposition, 

sputtering or electrodeposition)  and as a colloid; 

 It is simple to pattern by photolithography, micromachining or chemical etchants; 

 Au is considered as an inert metal allowing for handling samples under atmospheric 

conditions; 

 Thin films of gold are common substrates used in a number of analytical methods 

(SPR, QCM, ellipsometry etc.); 

 Gold is compatible with cells [196].  
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Spontaneous adsorption of thiols on gold leading to the formation of exceptionally strong 

bond makes this system the most commonly used. There are several driving forces 

responsible for this assembly: the affinity of sulfur for the gold surface (45 kcal mol
-1

 – 

creation of a stable, semi-covalent bond [197]) and hydrophobic, van der Waals interactions 

between the methylene carbons on the alkane chains [198]. The longer the chain is, the more 

ordered SAMs with higher integrity and thermal stability is created (it has been reported that 

well-ordered monolayer is formed from an alkane chain of at least ten carbons [199]). It has 

been demonstrated that the mechanism of covalent bond creation consists of charging and 

discharging steps while releasing H2 (Fig.1.14 B). The first step of layer formation – 

attachment of –SH groups to Au atoms is very fast whereas the process of organization of 

thiols to maximize van der Waals interactions takes place much slower [195].    

The most common and the simplest protocol for thiol monolayer preparation providing 

maximum density of molecules and minimizing defects in the SAM is based on immersion of 

substrate into ethanolic solution of thiols (usually at the concentration ranging from 1 to 10 

mM) for 12-18 h at room temperature. Nevertheless, the structure of the formed layer is also 

dependent on a number of experimental factors (solvent, temperature, concentration, 

immersion time, purity of reagents, concentration of oxygen in solution, cleanliness of the 

substrate, and chain length) which have to be taken into account during gold surface 

functionalization.  

As mentioned before, long alkyl chain thiols are the best solution for formation of a  well-

organized and stable monolayer. This strategy is successfully used in such techniques as SPR 

or QCM. However, the limitation of using SAMs of thiols for electroanalytical applications 

derives from the necessity of a conducting interface. For this reason, usually short chains of 

alkanethiols are used, which not only enable electron transfer across the layer, but also reduce 

the stability of the interface. Nevertheless, it was intensively investigated and demonstrated 

that also those constraints can be overcome by implementation of a proper compounds [195, 

200].   

Design flexibility, simplicity, dense and stable structures – all those properties makes SAMs 

important components for many researches. They have found an application in a large variety 

of areas e.g. corrosion prevention, wear protection, surface wetting, non-fouling property, 

electro-optic devices or chemical and biochemical sensing systems (protein binding, DNA 

assembly, biological arrays, and cell interactions).  
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Coming back to SPR, this technology offers a number of benefits over other methodologies 

such as label-free detection, real-time monitoring, ability to handle complex samples and 

replicate measurements, possibility to reuse a sensor chip (regeneration of the surface) which 

significantly reduces cost. Therefore, it has found an application e.g. in medical diagnostics, 

environmental monitoring and food safety and security. The acceptance of SPR biosensors in 

food analysis caused an interest among researches all over the world resulting in an increasing 

number of publications which appeared recently. Several assays employing SPR for 

measuring mycotoxins concentration were described - Table 1.11 shows examples of major 

toxins determination and obtained LOD.  

Table 1.11. Mycotoxin detection utilizing SPR spectroscopy 

Mycotoxin Type of detection LOD Reference 

DON Indirect 0.05 mg kg
-1

 [201] 

FB1 Direct 10 ng mL
-1

 [202] 

FB1 Direct 50 ng mL
-1

 [203] 

ZEA Direct 30 ng g
-1 

[204] 

ZEA Indirect 0.01 ng g
-1 

[186] 

T-2 toxin Direct 0.05 pg mL
-1

 [205] 

OTA Indirect 0.05 ng mL
-1 

[206] 

OTA Indirect 0.042 ng mL
-1 

[45] 

AFM1 Indirect 0.6 pg mL
-1 

[177] 

AFB1 Indirect 0.2 ng g
-1

 [207] 

AFB1 Indirect 3 ng mL
-1

 [208] 

 

1.4.2. Acoustic biosensors (Quartz Crystal Microbalance - QCM) 

Another example of exceptional technique which has gained importance in the field of 

biosensors is an acoustic device - quartz crystal microbalance (QCM), introduced in late 

1950s' by Sauerbrey, who demonstrated the dependence of quartz oscillation frequency on the 

change in surface mass. This phenomenon led to the use of quartz plate resonators as sensitive 

microbalances for thin films [209]. A QCM is a shear mode device which includes a quartz 

crystal wafer (cut to a specific orientation with respect to the crystal axes – AT or BT where 

the acoustic wave propagates perpendicularly to the crystal surface [209]) sandwiched 

between two metal electrodes [210].  
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 Fig.  1.15. QCM principles - the application of the electric field produces deformation that results in an acoustic wave 

which propagates across the crustal material. Reprinted from [211]. 

When electric field is applied, it induces oscillations of the crystal at a specific frequency by 

producing a shear deformation where both surfaces move in parallel but opposite direction 

and thereby generating acoustic waves which propagate through the bulk of the material 

across the crystal, in a direction that is perpendicular to the surface (Fig. 1.15) [211]. The 

change in mass on the quartz surface is directly related to the change in frequency of the 

oscillating crystal, as shown in the Sauerbrey equation [212]: 

  

  
  

   
 

   
  

where Δf is the frequency shift, Δm is the surface mass density change on the active sensor’s 

surface, ρ is the quartz density, v the propagation velocity of the wave in the AT cut crystal, fn 

is the frequency of the selected harmonic resonant mode and n is the harmonic number (n=1 

for the fundamental mode). However, this equation is valid only for coatings exhibiting elastic 

properties which do not dissipate any energy during oscillation [209]. In case of inelastic 

subjects (e.g. cells, polymers) this formula cannot be applied due to the energy loss caused by 

damping during oscillation. When the change in mass is greater than 2% of the crystal mass, 

the Sauerbrey equation becomes inaccurate - there is no linear relationship between Δf and 

Δm [209]. Therefore, the so-called QCM with dissipation (QCM-D) device was developed to 

enable simultaneous monitoring of the changes in frequency and dissipation, and thus 

provides an unique information about the effective layer thickness, conformational changes, 

viscoelastic properties and the hydration state of the film [213]. Thus, acoustic sensor 

technology has become a powerful methodology providing a detailed description of analyzed 

subjects. Due to this fact QCM technology has found a broad range of applications in the field 
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of biochemistry, biotechnology, environmental monitoring or food control as an excellent tool 

for detection of a variety of analytes; from interfacial chemistries and lipid membranes to 

small molecules, whole cells, disease biomarkers and pathogens [214]. In the case of 

mycotoxins determination utilizing QCM technology only few examples have been found in 

the literature: OTA [215], AFB1 [216, 217], patulin [218] and T-2 toxin [219]. 

Nowadays, these biosensors are widely used for the direct, marker-free measurements of a 

specific interactions between immobilized molecules and analytes in solution [220]. The 

sensitivity and specificity highly depend on the immobilization process of recognition layer. 

The most common strategy is based on generation of strongly bonded carboxyl groups 

(SAMs) on the QCM gold surface by treatment with appropriate thiols followed by the 

activation of modified surface and generation of active moieties able to bind antibody. When 

a target proteins are captured by the immobilized receptor, the effective mass of the oscillator 

increases, resulting in the decrease in the resonance frequency of the oscillator [220]. 

Subsequently, an injection of washing solution causes dissociation of the target and recovery 

of the resonance frequency (Fig. 1.16). 

 

Fig.  1.16. Scheme of the antibody–antigen on sensor surface (sensor) and resulting frequency versus time curve changes 

(data) [220]. 

Therefore, the possibility of a real-time monitoring of association and dissociation reactions 

between molecules provides quantitative information about their binding affinity.  

In the quartz crystal microbalance, similarly to the SPR technology, the bioreaction generates 

a change in the mass, and thus, gives a rise to a change in the resonant frequency of the 
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microbalance [214]. Hence, the use of AuNPs labels in immunoassays is widely applied to 

increase the mass of the immune complex, what allows for the sensitivity improvement (lower 

LOD). Studies about implementation of metallic nanoparticles in different strategies 

(Fig.1.12) were already reported e.g. in the detection of human IgG [221], bacteria (e.g. 

Escherichia coli) [222]  and mycotoxins (e.g.AFB1) [223]. 

Concluding, utilization of QCM-based biosensors which offer high sensitivity and stability, 

fast response, portability and non-hazardous label-free real-time monitoring of various 

molecules is an excellent alternative (or complementary) to conventional methods. 

1.4.3. Electrochemical biosensors 

Electrochemical biosensors have been the subject of research in a large range of applications, 

including food analysis. For more than sixty years due to their unique properties which 

combine simplicity and rapidity of the measurement, portability, low-cost of the equipment 

and integration in automated devices thereby offering high sensitivity and selectivity [174]. 

Therefore, they have become a novel and very promising alternative tool, which do not 

require sophisticated instrumentation and well-trained personnel.  

Typically, electrochemical biosensors utilize the presence of electroactive analytes that are 

oxidized or reduced on the working electrode surface and further, generating an 

electrochemical signal, which is measured by the detector [224]. The choice of a proper 

working electrode is a key for successful measurements. Recently, due to the fast 

development in the field of photolithography, microcontact printing etc., commonly used 

solid electrodes of gold, platinum, silver, nickel or copper have been more often replaced by 

microelectrodes (2 mm dimension) which have found an application in in vivo and in vitro 

studies offering a significant reduction of analyte and reagents volumes. Moreover, the 

possibility to use inexpensive, highly reproducible and disposable sensors offered by screen-

printed technology is currently undergoing widespread growth [225]. The great versatility, 

commercial availability and easy modification (addition to the printing ink or deposition on 

the surface different substances such as metals, enzymes, polymers) of screen-printed 

electrodes (SPEs) makes this approach an interesting solution in the field of electrochemical 

biosensing.   

Most of electrochemical biosensors for mycotoxins are based on the use of specific 

antibodies, aptamers or artificial receptors as affinity ligands which allows binding the analyte 
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to the sensor for the measurement with minimum interference from other components that can 

occur in the sample [224]. Such affinity based sensors that comprise an electrode with the 

bioreceptors – e.g. antibody (or antigen) labelled with an enzyme (usually horseradish 

peroxidase or alkaline phosphatase) which generate an electroactive signal, offer great 

selectivity and sensitivity [226]. Based on their operating principles, a variety of 

electrochemical techniques have been used to convert the chemical information into a 

measurable analytical response [227]: 

 Potentiometric: based on ion-selective electrodes (ISE) and ion-sensitive field effect 

transistors (ISFET). The primary outputting signal is possibly due to ions 

accumulated at the ion-selective membrane interface [227]. The signal is measured 

as the potential difference between the working and the reference electrodes. 

 Amperometric: based on the measurement of the current resulting from the oxidation 

or reduction of an electroactive biological element providing specific quantitative 

analytical information [228]. 

 Impedimetric: combines the analysis of both the resistive and capacitive properties of 

materials. Measures the resistance of the generated electric current at certain applied 

voltage. 

Electrochemical detection strategy which assures simplicity, frugality, high sensitivity and 

selectivity has gained recently a lot of attention if the field of food control. These kinds of 

biosensors have been the most popular solution used for detection of various analytes 

including mycotoxins due to a numerous advances leading to their well-understood 

biointeraction and detection process [224]. Table 1.12 shows some examples of 

electrochemical affinity sensors for major mycotoxins detection found in the literature.  

 

 

 

 

 



42 | P a g e  

 

Table 1.12. Electrochemical immunosensors for mycotoxins 

Mycotoxin Technique LOD [ng mL
-1

] Matrix Reference 

AFB1 IC/AMP on SPE 0.09 Barley [229] 

AFB1 IC/DPV on SPE 0.03 Barley [230] 

AFB1 
IC/DPV on ITO 

electrodes 
0.006

 
Red paprika [231] 

AFM1 EIS 1 Milk [232] 

AFM1 DC/AMP on SPE 0.039 Milk [179] 

AFM1 DC/POT 0.04 Milk [233] 

OTA DC/DPV 0.18 - [234] 

OTA IC/AMP 0.3 Wine [235] 

OTA IC with AuNPs/DPV 0.2 Wheat [236] 

OTA DC/EIS 0.0008 Coffee [237] 

ZEA DC/AMP 0.01 
Maize, cereal, 

baby food 
[238] 

ZEA DC/AMP 0.41 Foodstuff [174] 

FB1+FB2 DC/AMP on SPE 5 Corn [239] 

DON DC/EIS 0.0003 Food samples [174] 

T-2 toxin IC/AMP 0.3 Corn [240] 
 

Abbreviations: IC - indirect competitive assay; DC - direct competitive assay; AMP - amperometry, DPV - differential 

pulse voltammetry; POT - potentiometry; SPE - screen printed electrodes; GCE - glassy-carbon electrode; ITO - indium 

tin oxide electrode. 

Still, there are many avenues to be opened in the field of electrochemical sensors aiming at 

amplification of electron transfer in order to improve sensitivity. One of them may combine 

the recent development in nanotechnology and discovery of newer and better nanomaterials. 

For example, the versatility and high applicability of nanoparticles and carbon nanotubes 

makes them clear candidates to be further used in electrochemical nanosensors for food 

analysis utilizing their unique properties like good conductivity and high electrocatalytic 

activity [224]. Undoubtedly, the integration of novel nanobiotechnological concepts in 

electrochemical biosensors for the analysis of toxins require further investigation to fulfill the 

demand for more robust systems capable of detecting genetically modified ingredients and 

allergens [224]. 
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CHAPTER TWO, SENSITIVE AND RAPID 

DETECTION OF AFLATOXIN M1 IN MILK 

UTILIZING ENHANCED SPR AND p(HEMA) 

BRUSHES 

The content of this chapter has been already published in Biosensors and Bioelectronics Journal. 

Authors and their contribution: 

 A. Karczmarczyk - study conception and design, acquisition of data, analysis and interpretation of 

data, drafting of manuscript, 

 M. Dubiak-Szepietowska - critical revision of the article, 

 M. Vorobii -  p(HEMA) brushes provider,  

 C. Rodriguez-Emmenegger - scientific advisor, critical revision of the article, 

 J. Dostalek - conception and design, scientific advisor, critical revision of the article, 

 K-H. Feller - scientific advisor, critical revision of the article, final approval of the version to be 

published. 

Sensitive and rapid detection of aflatoxin M1 in milk utilizing enhanced SPR and p (HEMA) brushes. Biosensors 

and Bioelectronics, 2016. 81: p. 159-165 

 

2.1. Introduction 

Aflatoxins are a family of extremely toxic and carcinogenic secondary metabolites 

(mycotoxins) secreted by certain species of Aspergillus. In particular, Aspergillus flavus, A. 

parasiticus and A. nominus contaminate a large variety of food and feed commodities [7]. 

Aflatoxin M1 (AFM1) is the hydroxylated derivative of aflatoxin B1 (AFB1) originating from 

the activity of cytochrome P450-associated enzyme in liver. It is excreted into the milk of 

both human and animals that have been fed with AFB1 polluted diet [241, 242]. About 0.3–

6.2% of AFB1 in animal feed is transformed to AFM1 in milk [243]. This compound elicits a 

wide spectrum of toxicological and carcinogenic effects causing liver cirrhosis, tumors or 

liver damage of human as well as animals [244-246]. The International Agency for Research 

on Cancer (IARC) recently reconsidered its carcinogenicity categorization, initially classified 

as a Group 2B human carcinogen, and changed it to Group 1 [247]. Despite the fact that milk 

and dairy products, such as cheese and yoghurt are an important source of many essential 

nutrients like proteins, magnesium, calcium or vitamins B12 and A, unfortunately, they are 

also the most potent providers of AFM1 among foods. Due to the relative stability during heat 

treatments (e.g. pasteurization) and significant threat to human health, especially to children 
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who are the major consumers of milk, many countries have implemented regulations to 

control the content of AFM1 in daily products [104]. The European Commission stipulates a 

maximum permissible level of 50 ng L
-1

 for AFM1 in milk and dried or processed milk 

products [248]. In China and United States the regulations mandate AFM1 levels below 

500 ng L
-1

 [249].  

Sampling and analysis of mycotoxins are regulated by the European Commission Directives. 

The stipulated methods include high performance liquid chromatography with fluorimetric 

detection (HPLC-FD) coupled with the pre-cleaning by immunoaffinity columns [250]. This 

procedure relies on extensive sample preparation and the analysis requires couple of hours. 

Other, currently performed, techniques such as thin-layer chromatography (TLC) [251, 252] 

or enzyme-linked immunosorbent assay (ELISA) [167] are also time consuming and require 

highly trained personnel, expensive equipment deployed in specialized laboratories. In order 

to simplify the analysis of mycotoxins, research is carried out to provide faster and sensitive 

techniques suitable for routine assay of milk and other dairy products. Over the last years we 

witnessed efforts to expedite AFM1 detection based on immunoassays combined with 

fluorescence [253], electrochemistry [178], colorimetry [254] or chemiluminescence [255] 

readout.  

A promising alternative to fluorescence assays are label-free biosensors based on surface 

plasmon resonance (SPR) [189]. This technology exploits the measurement of changes in the 

reflective index occurring upon the affinity binding of molecules in the proximity of a 

metallic surface. As the response of SPR sensor is proportional to the mass of target molecule, 

direct detection of small molecules, such as mycotoxins, and/or analytes at very low 

concentration is challenging. Therefore, alternative assay formats are required for mycotoxin 

detection by using SPR. In order to enhance the sensor response, it was utilized a competition 

for binding to the surface between an antigen conjugated with a high molecular weight label 

and the un-labeled sample antigen. An alternative way is to immobilized the same molecule 

—antigen— which will be measured to the sensor surface, followed by injection of the 

primary antibodies and sample containing free antigen mixture. In this latter case, the signal 

can be further amplified by using the secondary antibodies labeled with metallic nanoparticles 

(NPs), magnetic nanoparticles (MNPs), fluorophores or quantum dots (QDs) [256-259]. 

Recently, several studies have reported the signal amplification by the implementation of gold 

nanoparticles (AuNPs). It can be designed to harness several effects including enhanced 

surface area, refractive index changes by the particles mass, and electromagnetic field 
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coupling between the plasmonic properties of the particles and propagating plasmons [187, 

260]. 

Another challenging aspect in SPR analysis of complex samples such as milk and dairy 

products is the non-specific interaction at the surface that is associated with the deposition of 

non-targeted molecules or entities. SPR biosensors require an interface design for anchoring 

specific bioreceptors that is at the same time resistant to non-specific sorption [261]. To 

overcome the problem with fouling, different strategies of surface modification were 

proposed: grafting of carboxymethyl dextran [262], passivation with albumin [263] or a 

relatively new, however, very promising modification with various types of non-fouling 

polymer brushes. Such surface architecture has been shown to provide significantly higher 

fouling suppression [264-267], demonstrating their applications in a real-world biosensing 

[258, 265, 268, 269]. Considering milk analysis, it has been reported remarkably ultra-low 

fouling properties of antibody functionalized poly(2-hydroxyethyl methacrylate) p(HEMA) 

for the direct detection of Cronobacter in milk [261].  

In this work, we describe an SPR biosensing for rapid, sensitive and specific detection of low 

molecular weight analyte AFM1 in complex milk samples. The resistance to non-specific 

adsorption from milk was assessed by using the p(HEMA) brushes and the assay performance 

was compared to recent state-of-the-art antifouling polyethylene glycol (PEG) moieties. An 

indirect competitive immunoassay was developed for the analysis of low molecular analyte 

and the amplification of the sensor response by using secondary antibodies with metallic 

nanoparticles labels.  

2.2. Materials and methods 

2.2.1. Reagents 

All reagents were used as received without further purification. Dithiol PEG6-COOH and 

dithiol PEG3-OH were purchased from SensoPath Technologies. 1-ethyl-3-(3-

dimethylaminopropyl) carbodiimide hydrochloride (EDC) and N-hydroxysuccinimide (NHS) 

were obtained from Pierce (USA). N,N-dimethylformamide (DMF, 99.8%), 4-

(dimethylamino) pyridine (DMAP), N,N’-disuccinimidyl carbonate (DSC), aflatoxin M1 

(AFM1), the conjugate of AFM1 with bovine serum albumin (BSA-AFM1), PBS buffer tablets 

and Tween 20 were from Sigma-Aldrich. The primary rabbit antibody against AFM1 (Ab1) 

was from AntiProt and gold nanoparticles (AuNPs, 20 nm)-labeled goat anti-rabbit secondary 
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antibody (Ab2-AuNPs) from Abcam. The experiments were performed in PBS-Tween buffer 

(PBS-T) (pH 7.4) prepared by adding Tween 20 (0.05%) in PBS buffer solution. 20 mM 

acetate buffer (ACT, pH 4) was prepared from sodium acetate trihydrate and acetic acid (both 

from Sigma-Aldrich) and the pH was adjusted by HCl and NaOH. Glycine buffer with pH 1.5 

and ethanolamine were purchased from Biocore (Germany). The ERM (European Reference 

Material) BD282 (zero level of AFM1) was obtained from the Institute for Reference 

Materials and Measurements (Belgium).  

2.2.2. Optical setup 

An optical SPR biosensor setup utilizing angular spectroscopy of surface plasmons (SPs) was 

used. A transverse magnetically (TM) polarized beam with a wavelength of λ = 632.8 nm 

emitted from a HeNe laser (2 mW) was coupled to a right angle LASFN9 glass prism. To the 

prism base, a sensor chip was optically matched by using immersion oil. The sensor chip was 

prepared on the top of a BK7 glass substrate that was coated by sputtering (UNIVEX 450C 

form Leybold, Germany) with 41 nm thick gold layer. Then, the gold surface was either 

modified by bicomponent SAM of thiols or polymer brushes for subsequent covalent 

immobilization of BSA-AFM1 conjugates. A transparent flow-cell with a volume of 

approximately 10 μL was pressed against the surface of the sensor chip in order to flow liquid 

samples over the sensor surface by using a peristaltic pump at a flow rate of 500 μL min
-1

. 

The intensity of the laser beam reflected from the sensor surface was measured using a 

photodiode detector. The resonant coupling to the SP is manifested as a resonance dip in the 

angular reflectivity spectrum R(Ө). The binding of molecules to the gold layer was observed 

as a shift in the reflectivity dip, ΔӨ, and evaluated by fitting with a transfer matrix-based 

model implemented in the software Winspall (developed at the Max Planck Institute for 

Polymer Research in Mainz, Germany). The whole sensor system and the supporting 

electronics were controlled by using the customized software Wasplas. 

Since the refractive index is a linear function of concentration over a wide range of 

concentrations, the absolute amount of biomolecules bound at the surface (Г) can be 

calculated using Feijter’s formula [270]:  

  
         

    ⁄
               (1) 

where    and    are the refractive indices of a protein monolayer (  =1.5) and a buffer, 

respectively. The factor of     ⁄ =0.18 cm
3
 g

-1
 relates to the refractive index changes with 
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the concentration of molecules and it was obtained from the literature [271]. The thickness of 

a layer    where the biomolecular binding occurs was determined by fitting the respective 

SPR spectrum using the following parameters: refractive index of the prism   =1.845, 

complex refractive index for the gold film   =0.22+3.67i, refractive index of the PBS-T 

buffer   =1.3337. 

2.2.3. Preparation of the chip 

As Fig. 2.1 shows, two surface architectures were used for the attachment of AFM1-BSA 

conjugate. The first (A) was based on mixed thiols SAM with PEG moieties and the second 

(B) utilized p(HEMA) polymer brushes. The thiol SAM was formed by overnight incubation 

of a gold surface at room temperature in a mixture of carboxyl-terminated and PEG-

terminated dithiols (molar ratio 1:9) dissolved in ethanol at a total concentration of 1 mM. 

Subsequently, the sensor surface was rinsed with ethanol and dried in a stream of nitrogen. 

Afterwards, BSA-AFM1 conjugate was in situ immobilized by using standard amine coupling 

chemistry. First, the carboxylic terminal groups were activated with a solution of EDC and 

NHS (concentrations in deionized water of 37.5 and 10.5 mg mL
-1

, respectively) for 7 min. 

Afterward, a 40 μg mL
-1

 solution of BSA-AFM1 conjugate in ACT buffer was circulated 

through the flow cell for 15 min to react via their amine groups with the sensor surface. The 

unreacted active ester groups were then blocked by 10 min incubation in 1 M ethanolamine at 

pH 8.5.  

Polymer brushes of 2-hydroxyethyl methacrylate p(HEMA) were polymerized from a SAM of 

ω-mercaptoundecyl bromoisobutyrate on gold as described elsewhere [261]. Briefly, 

p(HEMA) brushes were grown using a solution of CuBr2, 2,2´dipyridyl, HEMA and CuCl in 

a mixture of water:ethanol 1:1 as a solvent (for the advancing and receding water contact 

angles measurement as well as FTIR-GASR spectra of p(HEMA) brushes. Brushes with 

thickness of 23.0±0.3 nm were used for further experiments. Hydroxyl groups in p(HEMA) 

brushes were activated with a solution of DSC and DMAP (26 and 12 mg mL
-1

, respectively, 

in anhydrous DMF) overnight at room temperature. Afterwards, the chips were rinsed with 

dry DMF, deionized water, blow dried with nitrogen and plugged to the SPR flow cell. BSA-

AFM1 conjugate was pumped through the flow cell and subsequently, unreacted groups 

reacted with ethanolamine. 
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Fig. 2.1. The scheme of the optical setup and sensor chip with different surface architecture (A) mixed SAM and 

p(HEMA) brushes (B). 

2.2.4. Immunoassav procedure 

For the detection of AFM1, an inhibition immunoassay was carried out. PBS-T buffer or milk 

was spiked with AFM1 at concentrations ranging from 10
-1

 to 10
3
 ng mL

-1
. These samples 

were prepared by sequential diluting of AFM1 stock solution (concentration of 10 μg mL
-1

 in 

PBS buffer). The ERM-BD282 milk powder was dissolved in deionized water at the 

concentration of 0.1 g mL
-1

.
 
Then, samples containing AFM1 were centrifuged at 5000 rpm 

for 20 min at the temperature of 4°C. The upper fat layer was completely removed, and the 

obtained aqueous phase was directly used for the further analysis.  

The analyzed sample was pre-incubated with Ab1 antibody (concentration of 70 ng mL
-1

) for 

30 min. The mixture of sample and Ab1 was flowed through the sensor for 10 min in order to 

allow the unreacted free Ab1 to bind the BSA-AFM1 conjugate immobilized on the surface. 

Subsequently, the sensor surface was washed with PBS-T buffer for 2 min to remove weakly 

bound Ab1 molecules. Afterward, the Ab2-AuNPs antibody (concentration of 0.1 μg mL
-1

) 

was circulated through the sensor for 10 min, followed by 2 min rinsing with PBS-T. After 

each detection cycle, the sensor surface was regenerated by 5 min incubation in glycine buffer 

(pH 1.5, 20 mM) followed by rinsing with sodium hydroxide (20 mM).  
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2.3. Results and discussion 

2.3.1. Affinity binding at thiol SAM and p(HEMA) brush architectures 

SPR was used for the in situ observation of the covalent immobilization of BSA-AFM1 and 

the subsequent affinity binding of Ab1 and Ab2-AuNPs. SPR reflectivity curves R(Ө) were 

recorded for gold surface modified with thiol SAM and p(HEMA)-based brush, surfaces with 

immobilized BSA-AFM1 conjugate, and after its affinity reaction with primary antibody Ab1 

and secondary antibody Ab2 conjugated with AuNPs. On the chip modified by a mixed thiol 

SAM with PEG moieties, the resonant excitation of SPs occurs at Ө=57.1° which is 

manifested as a dip in the reflectivity spectrum R(Ө), see Fig.2.2A. In case of chips 

functionalized with p(HEMA) brushes, this resonance is observed at higher angle of Ө=58° 

(Fig.2.2B) as a consequence of the higher thickness. Upon the binding of biomolecules to the 

sensor surface, the surface mass density Г increases which leads to a shift in SPR angle Ө. As 

seen in Fig.2.2, after the covalent functionalization with BSA-AFM1 conjugate the resonant 

angle shift ΔӨ=0.11° and ΔӨ=0.14° for the PEG-SAM and p(HEMA) brush, respectively. By 

using Eq.1, the corresponding surface mass density of BSA-AFM1 was estimated to be 

Г=1.6 ng mm
-2

 on the mixed SAM. The analysis of the reflectivity curves in Fig.2.2B showed 

that a bare p(HEMA) brushes exhibit the thickness of 23 nm and refractive index of    

      . These data correspond to a surface mass density of Г=17.5 ng mm
-2

. After the 

immobilization of BSA-AFM1 in p(HEMA) brushes the surface mass density increases to 

20.3 ng mm
-2

 indicating that the net surface mass density of coupled BSA-AFM1 is 2.8 ng 

mm
-2

. Afterward, the affinity binding of Ab1 was tested for both tested architectures. Obtained 

results reveal a small shift of ΔӨ ≈ 0.02° corresponding to Г ≈ 0.16 ng mm
-2

. Although, the 

molecular weight of IgG antibody is about 2.2 times higher than BSA-AMF1, the surface 

mass density is significantly lower. The low concentration of the primary antibody Ab1, short 

incubation time for which the binding may not reached the saturation and lack of antigen 

exposed for binding are among the feasible reasons for the low Ab1 binding. Nevertheless, a 

very strong amplification of the sensor response ΔӨ was obtained by the subsequent reaction 

of the captured Ab1 with Ab2-AuNPs. An order of magnitude higher shift of ΔӨ=0.23° was 

measured for the mixed SAM and lower shift ΔӨ=0.13° was recorded for p(HEMA) 

architectures. This indicates that the affinity binding of large objects such as AuNPs decorated 

with Ab2 to BSA-AFM1 conjugate is partially hindered by the surrounding brush polymer 

chains. In order to check for the specificity of the interaction of Ab1 and Ab2 conjugated with 
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AuNPs, the previous experiment was repeated for a sensor chip with immobilized BSA that 

was not conjugated with AFM1. Not measurable response was observed after the flow of 

either Ab1or Ab2-AuNPs antibodies (data not shown).  

The obtained results are in a good agreement with previous studies which showed that the 

immobilization density strongly depends on the surface density of hydroxyl groups [261]. In a 

mixed SAM only carboxylic end groups can participate in the binding process, while in the 

case of p(HEMA) brushes, only the external layer of brushes with high density of functional 

groups provided by the polymer chain takes part in immobilization resulting in a similar range 

of functionalization [272].  

 

Fig. 2.2. Angular reflectivity spectra measured from a sensor chip for mixed SAM (A) and p(HEMA) brushes (B) prior the 

modification (1, only thiols SAM), after the immobilization of BSA-AFM1 conjugate (2), and after affinity binding of Ab1 

(3) and Ab2-AuNPs (4). The spectra were measured for the surface brought in contact with buffer. 

2.3.2. Resistance to fouling from milk 

Milk is a complex biological fluid composed of constituents including whey proteins 

(particularly β-lactoglobulin), lipids and calcium phosphate, which are involved in the fouling 
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process through interacting mechanisms (denaturation, aggregation, local supersaturation) 

[273]. The used surface architectures were exposed to the prepared standard milk samples and 

compared. As seen in the measured data in Fig.2.3, these observations were made in real time 

and SPR changes were measured for an angle of incidence Ө fixed at the resonance edge 

where the highest slope ΔR/ΔӨ is occurs. The angle of incidence was set to Ө=56.7° and 

Ө=57.3° for mixed SAM and p(HEMA), respectively. 

 

Fig. 2.3. (A) Resistance to the non-specific interactions on the sensor coated with p(HEMA) brushes. (B) Adsorption of 

milk components on mixed SAM. 

After obtaining a stable baseline in PBS-T, a milk sample was circulated over the sensor for 

ca 10 min, followed by 2 min washing with buffer. The amount of deposited material, fouling, 

was quantified as the difference in the resonance signal measured before and after the 

injection. As shown in Fig.2.3, non-specific adsorption of components from milk is clearly 

visible on commonly used thiol SAMs with PEG moieties (Fig.2.3B). Contrary to these 

results, excellent resistance to the non-specific interactions is observed for the sensor coated 

with p(HEMA) brush (Fig.2.3A). After the washing step the reflectivity change is negligible. 

The sensitivity of SPR to fouling is more than 1 order of magnitude smaller than the fouling 
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recorded in SAMs. According to previous studies, this phenomenon might be due to a water 

barrier resulting in minimization of hydrophobic effect with the lipids components form milk 

as well as to entropic barrier resulting from the brush architecture [261].   

2.3.3. Aflatoxin M1 detection 

In order to push the limit of detection of low molecular weight analyte AFM1 to 

concentrations stipulated by regulatory bodies, a competitive assay format was applied and 

the mass provided by the binding of primary antibodies Ab1 was amplified by secondary 

antibodies Ab2 labeled with gold nanoparticles AuNPs. The sensor response was evaluated as 

the difference in the reflectivity ΔR before and after the assay cycle for series AFM1 

concentrations. Fig.2.4 shows the obtained calibration curves normalized with the sensor 

response ΔR0 measured in the absence of AFM1 for the above-mentioned assay format. For 

each concentration, the sensor response ΔR was measured in triplicate and the standard 

deviation (SD) is indicated further as an error bar. The calibration curves were fitted with a 

sigmoidal function and the limit of detection (LOD) was determined as the concentration of 

AFM1 which correspond to a sensor output equal to three standard deviation of the sensor 

output for the non-spiked liquids (blank samples). As seen in Fig.2.4, the reflectivity change 

ΔR decreases with the increasing AFM1 concentration due to the blocking of Ab1 binding sites 

resulting in its lower surface mass density at the sensor surface with AFM1 conjugate.  

The LOD for a sensor with thiol mixed SAM with PEG moieties was determined as 26 pg 

mL
-1

 and 38 pg mL
-1

 for the buffer and milk samples, respectively. The difference between 

LOD can be ascribed to the non-specific adsorption of milk constituents to the surface 

resulting in higher background response and deteriorated reproducibility.  
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Fig. 2.4. Normalized calibration curves for the detection of AFM1 using inhibition immunoassay on mixed SAM 

performed in a buffer (red circles) and milk (black squares). 

In order to reduce fouling from the milk samples, the assay was performed on the surface 

modified with p(HEMA) brush moieties. Fig.2.5 shows a comparison of calibration curves 

obtained for two studied surface architectures. LOD of the sensor with p(HEMA) was 

determined as 18 pg mL
-1

 which is more than two-times lower compared to that on thiol SAM 

with PEG groups. The improvement of the LOD can be attributed to the elimination of the 

non-specific adsorption to the surface. This concomitantly, leaded to better reproducibility 

represented by error bars and lower background signal.       
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Fig. 2.5. Comparison of normalized calibration curves for the detection of AFM1 in milk on the sensor surface coated with 

p(HEMA) brushes (black squares) and mixed SAM (green circles). 

Compared to the performance of the other reported methods for the detection of aflatoxin M1 

in milk and milk products including electrochemistry [178, 232] or indirect and direct ELISA 

[250, 274, 275] the presented biosensor provides about one order of magnitude higher 

sensitivity. Regarding the chemiluminescent technique reported by Magliulo et al. (2005) or 

LSPR detection described by Wang et al. (2009) where the obtained LOD was lower, the 

presently developed sensor offers shorter analysis time (ca. 55 min) and permits the detection 

of AFM1 without compensation for the fouling. Nevertheless, the LOD of the developed 

biosensor can be further reduced by increasing the number of AFM1 per BSA molecules, 

increasing the size of the gold nanoparticles and the time could be decreased by 

implementation of microfluidics, where smaller volume of the samples would reduce the time 

as well as improve the efficiency of binding. 

2.4. Conclusions 

A novel and highly sensitive SPR biosensor for AFM1 analysis in milk was developed using 

inhibition assay format that allowed for the detection of toxin of interest at pg mL
-1

 levels. 
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The limit of the detection was one order of magnitude lower than the maximum permissible 

level required by the European Commission. Modification of a gold chip surface with 

p(HEMA) showed excellent specificity and complete resistance to non-specific interaction, 

fouling. This is the first time that an SPR chip modified with such polymer brushes was used 

for real time detection of a small target antigen (AFM1) utilizing indirect competitive 

immunoassay with AuNPs in milk samples. SPR-based sensors for small molecules suffer 

from high LOD due to high concentration of Ab1 being needed to generate a sufficient signal. 

The current study shows that a combination of SPR and AuNPs enables signal enhancement 

and sensitivity improvement. Furthermore, such a system uses cheap reagents (Ab2 and 

AuNPs) and significantly reduces the concentration of valuable Ab1.  
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CHAPTER THREE, FAST AND SENSITIVE 

DETECTION OF OCHRATOXIN A IN RED 

WINE BY NANOPARTICLE-ENHANCED SPR 

The content of this chapter has been already published in Analytica Chimica Acta Journal. 

Authors and their contribution: 
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 S. Hageneder - critical revision of the article,  

 C. Reiner-Rozman - affinity constants calculations, 

 J. Dostalek - conception and design, scientific advisor, critical revision of the article, 

 K-H. Feller - scientific advisor, critical revision of the article, final approval of the version to be 

published. 

Fast and sensitive detection of ochratoxin A in red wine by nanoparticle-enhanced SPR. Analytica chimica acta, 

2016. 937: p. 143-150. 

 

3.1. Introduction 

Ochratoxin A (OTA), a highly toxic fungal secondary metabolite of Aspergillus ochraceus 

and Penicillium verrucosum is one of the most widely spread mycotoxin that contaminates a 

large variety of agricultural commodities [276]. It exhibits multiple toxicities in animals and 

mankind, including nephrotoxic, hepatotoxic, immunotoxic, teratogenic and carcinogenic 

effects, which represent serious health risks to livestock and the general population [277]. It 

has been linked to the Balkan Endemic Nephropathy (BEN), a kidney disease occurring in 

some regions in south-eastern Europe (Croatia, Bosnia, Serbia, Croatia, Bulgaria and 

Romania) and development of tumors in the urinary tract in humans [278, 279]. As a result, 

the International Agency for Research on Cancer (IARC) has classified OTA as a potential 

carcinogen (group 2B) for humans [280]. 

The worldwide occurrence of OTA pollution has been already precisely reported. It 

contaminates a various foodstuffs and beverages including cereal grains, oil seeds, dried 

fruits, coffee, cocoa beans, grape juice, beer and wine [281-283]. It has been established that 

wine is the second major source of OTA daily intake in EU, following cereals. After the first 

report on the occurrence of OTA in wine [284] several studies were performed to assess the 

pertinence of this toxin [285-287]. Ottender and Majerus noticed the fact that higher level of 
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OTA occurs in a red wine then in a white and rose which may be due to differences in 

winemaking process [38].  

Due to the persistence of OTA in the food chain, high stability and resistance during food 

processing (e.g. cooking, roasting or fermenting), this mycotoxin represents a serious threat 

for human health. Therefore, the European Commission has established maximum 

permissible level of OTA in food, feed products, raw materials and beverages (e.g. 5 ng mL
-1

 

for unprocessed cereals, 3 ng mL
-1

 for products derived from unprocessed cereals, 10 ng mL
-1

 

for coffee beans and 2 ng mL
-1

 for all types of wine) (EC No. 123/2005). Such low allowable 

levels require very sensitive and precise methods of detection. Analysis of OTA is nowadays 

performed by established analytical techniques including thin-layer chromatography (TLC) 

[281], gas chromatography (GC) [288] and high-performance liquid chromatography (HPLC) 

[289] with immunoaffinity columns and fluorescence detection. These technologies provide 

sufficient detection limit but relay on multiple steps prior to the detection, sophisticated 

equipment and trained personnel, which cannot meet the requirements of on-site and rapid 

detection. Therefore, alternative methods such as capillary electrophoresis with diode array 

detection [155], immunochemical techniques like enzyme-linked immunosorbent assays 

(ELISA) [290], electrochemical immunosensors [234] or optical techniques either using the 

optical waveguide light mode spectroscopy or surface plasmon resonance (SPR) has been 

successfully developed. These methods present good sensitivity and selectivity with the 

potential for high-throughput screening. In particular, SPR spectroscopy is a powerful, label-

free technique enabling monitoring of affinity molecular interactions in a real time and in a 

noninvasive manner. This opto-electronic phenomenon utilizes refractive index changes to 

detect mass changes occurring at noble metal surface interfaces [291]. Moreover, the kinetics 

information on the affinity binding between native biomolecules can be also provided. 

Nevertheless, SPR biosensors were shown to be suitable for the direct analysis of medium and 

large molecular weight analytes which induce measurable refractive index changes upon their 

binding on the surface from samples with the analyte concentration above ng mL
-1 

[292]. 

Regrettably, mycotoxins are small chemical compounds that possess inadequate mass to cause 

significant changes in the refractive index. In order to overcome this limitation, sandwich or 

indirect competitive inhibition assays are developed to detect such molecules. In addition, 

signal amplification by gold nanoparticles (AuNPs) offers efficient means to increase the SPR 

response in order to detect binding of minute amounts of target molecules on the surface. It 

has been already demonstrated that, electronic coupling between the localized surface 
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plasmons of AuNPs and the surface plasmons wave associated with the SPR gold chip can 

significantly enhance the SPR response [187]. AuNPs exhibit several distinct physical and 

chemical attributes that make them an excellent scaffold for novel biochemical and chemical 

sensors. Relatively easy and inexpensive synthesis, stability, unique optoelectronic properties, 

high surface-to-volume ratio with excellent biocompatibility,  safety for humans and small 

amounts of AuNPs needed in the test allow researchers to develop sensing strategies with 

higher sensitivity, stability and selectivity [293]. AuNPs have been successfully applied in 

SPR detection of DNA, proteins and drug molecules. Despite of broad use of AuNPs in SPR 

biosensors, the role of the size of NPs in the interactions with SPR surface is not fully 

understood. Studies performed by Uludag and Tothill [294] show higher sensor response with 

increasing size of AuNPs. On the other hand, Mitchell et al. [260] observed no significant 

differences in signal amplification for AuNPs with diameter ranging from 25 to 50 nm. The 

competing effect of enhanced SPR signal, steric hindrance and diffusion mass transfer rate 

depending on the size of AuNP was investigated by Springer et al. [295]. 

In this work, we report on the development of fast and sensitive SPR assay for ochratoxin A 

detection in a red wine. To overcome the matter concerning low molecular weight of the 

analyte that hampers its detection using SPR, an indirect competitive inhibition assay was 

performed. Moreover, the signal amplification and sensitivity improvement was achieved by 

using secondary antibodies conjugated with gold nanoparticles labels. In this study, we also 

investigate the ability of functionalized AuNPs to enhance the response of an SPR biosensor 

in a biomolecular detection assay with special attention given to the study of the effect of the 

size of AuNPs. Furthermore, a detailed analysis of kinetic parameters 

(association/dissociation constants and association/dissociation rate constants) was made and 

compared with available literature. To reduce matrix interferences in untreated wine (e.g. 

ethanol, polyphenols) that imposes unspecific sorption and potential inactivation of used 

antibodies, a very simple pre-treatment of samples with binding agent poly(vinylpyrrolidone) 

(PVP) was successfully applied.  

3.2. Materials and methods 

3.2.1. Reagents 

All reagents were used as received without further purification. Dithiol PEG6-COOH and 

dithiol PEG3-OH were purchased from SensoPath Technologies (USA). 1-ethyl-3-(3-
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dimethylaminopropyl) carbodiimide hydrochloride (EDC) and N-hydroxysuccinimide (NHS) 

were obtained from Pierce (USA). Ochratoxin A (OTA), the conjugate of OTA with bovine 

serum albumin (BSA-OTA), poly(vinylpyrrolidinone) (PVP), PBS buffer tablets and Tween 

20 were from Sigma-Aldrich (Austria). The primary rabbit antibody against OTA (Ab1) was 

from AntiProt. Goat anti-rabbit secondary antibody (Ab2) and gold nanoparticles (AuNPs, 10, 

20 and 40 nm)-labeled goat anti-rabbit secondary antibody (Ab2-AuNPs) were from Abcam 

(UK). The experiments were performed in PBS-Tween buffer (PBS-T) (pH 7.4) prepared by 

adding Tween 20 (0.05%) in PBS buffer solution. 20 mM acetate buffer (ACT, pH 4) was 

prepared from sodium acetate trihydrate and acetic acid (both from Sigma-Aldrich) and the 

pH was adjusted by HCl and NaOH. Glycine buffer with pH of 1.5 and ethanolamine were 

purchased from Biocore (Germany). The ERM (European Reference Material) BD476 (OTA 

in red wine) was obtained from the Institute for Reference Materials and Measurements 

(Belgium). This material was prepared from commercial wine sources intended for human 

consumption and it was characterized by mass spectrometry and HPLC.  The concentration of 

OTA was determined as 0.52 ±0.11 ng mL
-1

. 

3.2.2. Optical setup 

Surface plasmon (SP) resonance measurements were carried out by using the Kretschmann-

type of attenuated total reflection configuration, as described previously [103]. Briefly, a 

monochromatic light beam at a wavelength of λ=632.8 nm emitted from a HeNe laser (2mW) 

passed through a chopper and a polarizer selecting transversal magnetic (TM) polarization. 

Then it was made incident at a surface of a sensor chip with gold film that was optically 

matched using immersion oil to an optical prism. The sensor chip was made of BK7 glass 

substrate which was coated by sputtering (UNIVEX 450C form Leybold, Germany) with 37 

nm thick gold film. To the sensor chip, a transparent flow-cell with a volume of 

approximately 10 μL was attached in order to flow aqueous samples by using a peristaltic 

pump at the a flow of 0.5 mL min
-1

. The assembly of the sensor chip and prim was mounted 

on a rotation stage in order to control the angle of incidence of the laser beam θ. The resonant 

coupling to SP is manifested as a narrow dip in the reflectivity spectrum R(Ө). The binding of 

molecules to the gold layer was observed as a shift of the angular position of the reflectivity 

dip, ΔӨ, and evaluated by fitting with a transfer matrix-based model implemented in the 

software Winspall (developed at the Max Planck Institute for Polymer Research in Mainz, 

Germany). The whole sensor system and the supporting electronics were controlled by using 
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the customized software Wasplas (developed at the Max Planck Institute for Polymer 

Research in Mainz, Germany). 

Surface mass density Г of biomolecules adsorbed to the surface was calculated using Feijter’s 

formula [270]: 

  
        

    ⁄
      (1) 

where the refractive index of the protein sublayer and a buffer is denoted by n=1.465 and 

nb=1.3337, respectively. The ratio     ⁄                 at a wavelength of 632.8 nm 

was taken from literature [270]. The thickness dh was determined by fitting the respective SPR 

spectrum using following parameters: refractive index of the prism   =1.845, complex 

refractive index for the gold film   =0.22+3.67i. 

For the SPR measurements of kinetics of surface reactions, the angle of incidence was fixed 

close to the angle Ө=55.6° where resonance edge with the highest slope ΔR/ΔӨ occurs. At 

this angle, the time dependent reflectivity signal was measured. The reflectivity changes were 

converted to variations in refractive index by calibrating the sensor with series of standard 

aqueous samples. These standards were prepared with known refractive index in refractive 

index units (RIU). 

3.2.3. Sensor chip functionalization and detection format 

The gold surface of the sensor chip was modified with a mixed thiol self-assembled 

monolayer (SAM). First, the gold chip was incubated overnight at room temperature in a 

molar ratio 1:9 mixture of dithiols: PEG6-COOH and PEG3-OH (dissolved in ethanol at the 

total concentration of 1 mM). Subsequently, the sensor surface was rinsed with ethanol and 

dried in a stream of nitrogen. The covalent in situ immobilization of BSA-OTA was carried 

by using amine coupling. By using EDC/NHS (concentrations in deionized water of 37.5 and 

10.5 mg mL
-1

, respectively) carboxylic acid groups at the gold surface were activated. 

Afterward, BSA-OTA conjugate dissolved in ACT buffer at a concentration of 30 μg mL
-1

 

was circulated through the flow cell for 15 min in order to react via their amine groups with 

the activated carboxyl groups at the sensor surface. Finally, the unreacted active ester moities 

were deactivated by 10 min incubation in ethanolamine (1M and pH 8.5).  

For the detection of OTA, an indirect competitive immunoassay was applied. Analyzed 

samples were prepared by spiking the PBS-T buffer or certified red wine standard with 
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purified OTA (at concentrations between10
-1

 and 10
3
 ng mL

-1
). To minimize the matrix effect 

that may interfere with the OTA analysis in wine, samples were spiked with 3% of PVP and 

subsequently shaken for 5 min at room temperature, filtrated, and the pH of each aliquot was 

adjusted to 7.4 with NaOH prior to analysis. The standards were then mixed and incubated 

(for 30 min) with an equal volume of Ab1 (concentration of 100 ng mL
-1

), followed by the 

detection of unreacted Ab1. Subsequently, the mixture was passed over the chip for 10 min to 

allow binding the free Ab1 to the BSA-OTA conjugate. To remove unbounded molecules, the 

sensor surface was then washed for 2 min with PBS-T buffer. Afterward, the Ab2-AuNPs 

antibody was flowed through the sensor for 10 min, followed by 2 min rinsing with PBS-T. 

After each detection cycle, the substrate surface was regenerated by 5 min incubation in 

glycine buffer (pH 1.5, 20 mM) followed by rinsing with NaOH (20 mM).  

3.3. Results and discussion 

3.3.1. Sensor chip and assay characterization 

Firstly, the surface mass density of in situ immobilized BSA-OTA and its ability to bind Ab1 

was evaluated. As shown in Fig.3.1, SPR reflectivity curves R(Ө) were recorded upon the 

subsequent modification of the sensor surface with mixed thiol SAM, BSA-OTA, and after 

the affinity binding of Ab1 and Ab2. Prior to the surface modification by protein molecules, 

the resonant excitation of SPs occurs at Ө=57.04° on a gold surface with mixed thiol SAM. 

This resonance shifts to higher angles by ΔӨ=0.27° after the covalent binding of BSA-OTA 

conjugate to the sensor surface that is associated with increased thickness of an adlayer 

(dh=2.05 nm was determined by fitting the reflectivity curve). Based on Eq.1, the surface 

mass density of covalently bounded BSA-OTA was estimated to be Г=1.48 ng mm
-2

. 

Additional shift of ΔӨ=0.06° was observed after the affinity binding of Ab1 which 

corresponds to Г=0.32 ng mm
-2

. These values are much lower than those for the BSA-OTA 

due to the very low concentration of Ab1 and incubation time not long enough to reach 

saturation. Nevertheless, the application of an additional high mass provided by secondary 

antibodies Ab2 labeled with gold nanoparticles (Ab2-AuNPs, here example with 20 nm 

AuNPs) caused significant enhancement of the SPR shift ΔӨ of 0.2º. 
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Fig.3.1. Angular reflectivity spectra measured for a sensor chip prior to the modification (1, thiol SAM on Au), after the 

immobilization of OTA-BSA conjugate (2), after affinity binding of Ab1 (3) and after reaction with Ab2-AuNPs (4). The 

spectra were measured for the surface in contact with PBS-T. 

The non-specific binding of species in a sample at the sensor surface with tethered ligands 

[296] can lead to false positive results in screening assays and incorrect determination of 

analyte concentration. In biomolecular interaction analysis, non-specific binding generally 

gives results that do not fit to an interaction model and the binding constants are way off the 

results from the literature. Therefore, the specificity of primary Ab1 and secondary Ab2 

antibodies used in the detection format was tested. For this purpose, BSA (not conjugated 

with OTA) was immobilized on a sensor chip, followed by the injection of Ab1 and Ab2-

AuNPs. The assay showed an excellent specificity as no significant SPR response was 

recorded for antibodies (data not shown).   

Wine is a complex alcoholic beverage and it contains constituents that may have a strong 

influence on the sensitivity of the detection. Wine matrix is composed of two main fractions, 

the non-volatile fraction containing ethanol, polyphenols, variety of proteins, and the volatile 
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fraction, that include flavor and aroma compounds [297]. The presence of mentioned 

polyphenolic compounds may cause inactivation of antibodies and unspecific sorption that 

blocks the sensor surface. To overcome this matter, a simple pre-treatment of the wine sample 

with the binding agent poly(vinylpyrrolidone) (PVP) was applied. 

In order to evaluate the unspecific sorption of constituents in wine to the surface and its 

reducing by PVP, SPR observation of surface mass density change was carried out. First, a 

stable baseline was established upon the flow of PBS-T. Then, 3% PVP was injected for 10 

min followed by rinsing with PBS-T. The sensorgram in Fig.3.2 shows no measurable change 

in the SPR response which returned back to the baseline. Afterwards, the surface was 

regenerated and wine sample spiked with 3% PVP was injected. After the subsequent rinsing 

with PBS-T, a small increase in the SPR response of 4×10
-5

 RU was observed which can be 

attributed by a weak non-specific interactions coming from the wine. After the regeneration 

step, the SPR response returns to the original baseline indicating fully reversible assay cycle. 

Finally, un-treated wine was injected and after the rinsing with PBS-T a huge SPR sensor 

signal change of 1.2×10
-3

 RU was measured. The regeneration allowed to removing most of 

the deposit but substantial fraction of the adsorbed constituents corresponding to 1.7×10
-4

 RU 

fouled the surface irreversibly. These data reveal the excellent ability of PVP to bind 

polyphenols through hydrogen bonding making it easier to eliminate them from the solution 

[298]. 
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Fig.3.2. Sensorgrams showing SPR signal recorded upon injections  before and after injection of 3% PVP in PBS-T 

(green line), wine spiked with 3% PVP (blue line) and pure wine sample (red line) followed by regeneration step. 

The SPR was used for the measurement of affinity binding constants of interaction between 

Ab1 and the OTA moieties. The equilibrium association and dissociation constants KA and KD, 

respectively, were calculated by the Langmuir binding theory [299] (Fig.3.3). KD is related to 

the rate of complex formation (described by association rate constant kon) and the rate of 

breakdown (described by dissociation rate constant koff) such that    
    

   
. Association 

constant (KA) can be then calculated as KD
-1

.  
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Fig.3.3.(A) Binding kinetics of the titration of OTA antibody. The arrows mark the injection of the spiked concentrations. 

The binding kinetics for each injection were fitted with simple exponential fits, obtaining the observed binding parameters 

k. (B) Plot of the observed binding parameters k for each measured concentration against the respective concentrations. 

The linear fit gives a direct relation to k=conc[c]+koff, therefore association and dissociation rate constants are obtained 

from the slope and intercept of the linear fit. The calculated binding affinity KA is shown in the insert. (C) Injected 

concentration plotted against the sensor response signal. The red line is the best fitted Langmuir isotherm, showing a half 

saturation concentration of around 2x10-6M, which corresponds to the KD value. (D) Surface coverage of the biosensor, 

calculated for the response signals. The estimated KD from this fitting routine - the IC50 concentration - gives very 

comparable results to the values obtained from the analysis of the kinetic reaction. 

The limit of detection (LOD) was found below 300 ng mL
-1

 and the measured binding affinity 

of 2.7×10
-6

 M (806 ng mL
-1

) was determined for the interaction of Ab1 to surface immobilized 

BSA-OTA. This values indicates weaker affinity in comparison to other works reported in 

literature. Houwlingen et al. [300] obtained affinity values for the binding of ochratoxin A to 

several antibody fragments ranging between KD=12 ng mL
-1

 up to 476 ng mL
-1

. Bodarenko et 

al. [301] obtained affinity values between KD=14 to < 500 ng mL
-1

 when detecting OTA using 

a fluorescence polarization immunoassay with various tracers. The deviation from the results 

obtained in this work can be ascribed to the different antibodies used, and/or the inhibition of 

affinity by the used wine matrix. In the work of Heusser et al. [302] a monoclonal antibody 

was used for the detection of ochratoxin A using ELISA. This experiment is most comparable 

to our results, since authors have obtained an IC50 value of 5.7×10
-6 

M and a LOD of 320 
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nM, which is slightly higher than the demonstrated LOD in this work, but very comparable 

since the measured LOD in this work still has a good signal strength and could be even lower 

if the corresponding concentrations were tested. 

3.3.2. AuNPs enhancement 

SPR analysis of small molecules (MW<1kDa) or analytes at extremely low concentration is 

hindered by weak refractive index changes occurring upon their capture on the sensor surface 

[303]. To overcome this major impediment of SPR biosensor technology, gold nanoparticles 

have been demonstrated as efficient signal enhancers [258]. 

In order to maximize the enhancement of SPR biosensor response for the OTA 

immounoassay, Ab2-AuNPs conjugates with diameters of 10, 20 and 40 nm were tested. As 

shown in Fig.3.4A and 3.4B, the binding of non-labeled Ab2 dissolved at concentration of 2 

μg mL
-1 

to affinity captured Ab1 induced a change in SPR signal of δR=0.01 and resonance 

shift to higher angles θ. This value is approximately two times higher than that recorded for 

the primary antibodies Ab1. When the Ab2 was conjugated with AuNPs and diluted at one 

order of magnitude lower concentration (0.2 μg mL
-1

), the sensor response increased to 

δR=0.018 for 10 nm diameter and to δR=0.026 for 20 nm diameter which corresponds to the 

enhancement factors of 3.2 and 5, respectively. Even when the AuNP-Ab2 conjugate with the 

diameter of 40 nm was diluted at the two orders of magnitude lower concentration (0.02 μg 

mL
-1

), recorded signal δR=0.061 was 10-fold amplified compared to that for non-labeled Ab2. 

Obtained results are in a good agreement with previously reported studies on the dependence 

of the optical enhancement on the size of AuNPs [295, 304]. The magnitude of the reflectivity 

shift depends on the particle size and the bigger particles lead to larger shifts. When an object 

with a high mass (like AuNPs) is applied when the effect of diffusion-limited mass transfer is 

weak, higher mass is allowed to bind to the surface which leads to the stronger SPR shift. 

Nevertheless, SPR response is influenced not only by size of NPs but also by the 

electromagnetic field coupling between localized surface plasmons of the nanoparticle and 

propagating plasmon field of the surface [187].  

Furthermore the enhancement factor strongly depends on the distance between the NPs and 

the gold surface. This effect is dominant especially at certain sizes of the NPs. From Leveque 

and Martin it is known that for distances d < 50 nm most of the energy is concentrated 

between the particle and the film leading to enhancement factors between 10
2
 and 10

3 
[305]. 

Due to the fact that a distribution of distances between NP and gold surface is to be expected 
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the presented results are in good agreement with the theoretical calculations by various 

authors [187, 305]. Work is in progress to verify the distance dependency by measurements of 

the signal enhancement at various fixed distances between the NPs and the gold surface.  

 

Fig.3.4. (A) Sensogram showing affinity binding ofAb1 and subsequent reaction with non-labeled Ab2 and Ab2-AuNPs 

conjugates (size 10, 20 and 40 nm).(B) Angular reflectivity spectra measured from a sensor chip after affinity binding of 

Ab1 (black line) and non-labeled Ab2 (red line) and Ab2-AuNPs (10 nm - blue line, 20 nm – green line and 40 nm – orange 

line). The spectra were measured for the surface brought in contact with PBS-T. 

3.3.3. Ochratoxin A detection 

Ochratoxin A was detected using indirect competitive format described in section 2.3. For 

calibration of the OTA biosensor, Ab2-AuNPs conjugates with the diameter of 40 nm were 

chosen due to the highest recorded enhancement of the signal from all tested Ab2-AuNPs (see 

section 3.3). To evaluate the effect of the SPR sensor signal enhancement by AuNPs, two 

types of assays were performed. In the first one, only the binding of Ab1 antibody mixed with 

analyzed samples was measured. In second assay, the binding of Ab1 was followed by the 

reaction with secondary antibodies conjugated with AuNPs. Fig.3.5 shows obtained 
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calibration curves normalized with the sensor response measured for the blank sample (not 

spiked with OTA). The sensor response ΔR was defined as a difference in the SPR sensor 

signal R before the reaction of the surface with spiked sample and after the rinsing with PBS-

T. The sensor response ΔR was measured for series of buffer and red wine samples spiked 

with OTA at concentrations ranging from 1.5×10
-1

 to 10
3
 ng mL

-1
. The calibration curves 

were fitted with a sigmoidal function. The limit of the detection (LOD) and the limit of 

quantification (LOQ) were defined as the concentration of  OTA equivalent to three times (for 

LOD) and ten times (for LOQ) the value of the standard deviation (SD), measured in the 

absence of OTA (no competition point). The sensitivity of the AuNPs enhanced format was 

significantly better comparing to the one non-enhanced. For those two assays (performed in 

PBS-T buffer) LOD was found to be 0.068 ng mL
-1

 and 0.75 ng mL
-1

, respectively (Fig.3.5). 

The higher signal has clearly reduced the errors in the determination of LOD, and in the case 

of low antibody concentration this reduction in coefficient of variation (CV, estimated to be 

10,2% and 35% for assay with and without AuNPs, respectively) has been so significant that 

it made the LOD of the enhanced format significantly lower than without enhancement.  

When such detection format (utilizing AuNPs) was performed in red wine samples, LOD and 

LOQ of 0.19 ng mL
-1

 and 0.68 ng mL
-1

, respectively, were calculated. Higher LOD in 

comparison to the assay established in PBS indicate some non-specific adsorption of wine 

components to the surface resulting in higher background response (Fig.3.5B). Nevertheless, 

both values are one order of magnitude lower than maximum allowed level of OTA in red 

wine established by European Commission. Thereby, presented biosensor could be considered 

as a new, sensitive and fast tool for mycotoxins detection in food and beverages. 
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Fig.3.5. (A) Normalized calibration curves for the detection of OTA using inhibition immunoassay with Ab2-AuNPs 

(40nm, black squares) and without secondary antibodies measured in buffer solution (blue circles). (B) Comparison of 

calibration plots performed in PBS-T and red wine (red triangles). 

Comparing to the conventional methods for OTA detection in foodstuff including TLC [306], 

HPLC and GC-MS [307] that offer a very good sensitivity at the expense of complicated and 

time consuming pre-cleaning techniques. Most methods used for determination of a 

mycotoxin must rely on the correct extraction and clean-up procedures like liquid-liquid 

extraction (LLE) [131], supercritical fluid extraction (SFE) [308] or solid phase extraction 

(SP) [309]. An interesting study reported by Maier [310] shows a two-dimensional extraction 

procedure employed SP and MIP (molecularly imprinted polymers) for the extraction of 

OTA. Prior removal of the interfering acidic matrix compounds by C-18 SPE was shown to 

be successful and direct sample loading onto the MIP resulted in low recoveries. The extracts 

after the combined SPE protocol enabled OTA quantification by HPLC–FD. However, in this 

study, a similar result was observed in control experiments in which the MIP was replaced by 

the corresponding non-imprinted polymer (NIP). In yet another study, detection of OTA using 

SPME–LC–MS/MS has been reported [311]. High-throughput was achieved by simultaneous 
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preparation of up to 96 samples using multi-fibre SPME (Solid phase micro extraction) device 

and multi-well plates. A carbon-tape coating was chosen for extracting phase. The SPME 

technique was reported to be successful as clean-up procedures for OTA extraction from urine 

with LOD and LOQ of 0.3 and 0.7 ng mL
−1

 in urine, respectively. Pelegri et al. [312] 

presented  a sensitive protocol for OTA detection and quantification using SAX (strong anion 

exchange) columns in clean up resulting with LOD of 0.02 ng mL
−1

 with HPLC–FD readout. 

There are several types of very sensitive chromatographic methods (TLC, HPLC, GC) 

available for mycotoxin analysis however, in all cases sample pre-treatment plays a major part 

in the analysis. Presented biosensor combine both aspects – detection of toxin of interest at ng 

mL
-1

 level as well as a very simple and fast treatment utilizing addition of 3% PVP to 

analyzed sample.  

Among other separation techniques, ELISA became very popular recently due to its relatively 

low cost and easy application [313]. Commercially available ELISA kits offer highly specific 

as well as simple-to-use tool for mycotoxins detection. The disadvantage of these kits lies in 

the fact that they are for single use, which can increase costs of bulk screening, require 

multiple steps that translates to prolonged analysis time, and in the lower sensitivity compared 

to chromatographic methods [314]. Flajs et al. [130] reported a comparison of ELISA kit for 

OTA detection in red wine with HPLC and showed that the method of OTA-extraction 

recommended by the ELISA manufacturer is not appropriate for red wines due to the 

interference of chromogenes. The introduction additional clean-up with bicarbonate eliminate 

this interference, and the latter method gives results that correlate well with the results 

obtained by HPLC. In contrast to HPLC, ELISA could not detect very low OTA 

concentrations. In other study, Barthelmebs [315] modified typical ELISA by using aptamer 

instead of antibody. The limit of detection attained (1 ng mL
-1

), the midpoint value obtained 

(5 ng mL
-1

) and the analysis time needed (125 min) for the real sample.  

Nowadays, also other alternative methods for OTA detection eg. electrochemistry or 

chemiluminescent has been intensively investigated. Barthelmebs [316] proposed an 

aptasensor, based on disposable screen-printed electrodes with electrochemical detection 

using differential pulse voltammetry. The aptasensor obtained using this approach allowed 

detection limit of 0.11 ng mL
-1

, and was also validated for real sample analysis. Another very 

interesting work done by Novo et al. [279] demonstrates an integrated analytical system that 

conjugates an indirect competitive enzyme-linked immunosorbent assay strategy developed in 

PDMS microfluidics with integrated microfabricated hydrogenated amorphous silicon 

photodiodes for chemiluminescence detection. A limit of detection of 0.85 ng mL
-1

 was 
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obtained for OTA detection in a PBS solution using a straight-channel configuration. 

Comparable limits of detection were obtained for beer extracts but for red wine extracts a 

higher limit of detection of OTA of 28 ng mL
-1

 was obtained. 

Presented in this work sensor offers shorter analysis time (ca. 55 min) with sensitivity 

reaching the most sensitive techniques. Indeed, the LOD of the developed biosensor can be 

further improved by increasing the binding capacity of the sensor surface and by using higher 

affinity antibodies. The analysis time can be decreased by the implementation of more 

sophisticated microfluidic devices with smaller volume of e.g. additional means for sample 

mixing. 

3.4. Conclusions 

Fast indirect competitive-based biosensor with application of AuNPs as a signal amplifier for 

OTA detection in red wine has been successfully developed. The analysis relies on the SPR 

readout that offers a real-time, label-free aspect of measurements. Estimated LOD of 

nanogold-enhanced assay of 68 pg mL
-1

 is 10 times more sensitive than non-enhanced one 

and one order of magnitude lower than the maximum level of OTA in wine specified by the 

European Commission. The LOD performed in red wine is slightly higher than the LOD of 

the pure assay indicating a certain amount of unspecific adsorption of red wine components to 

the surface resulting in higher background signal response. Moreover, to reduce interference 

of polyphenols which impede the analysis, a simple pre-treatment of the wine samples with 

the binging agent PVP was applied. It was shown that the addition of 3 % PVP to red wine 

completely reduces non-specific interactions. This is due to the excellent ability of PVP to 

bind polyphenols through hydrogen bonding and the possibility to eliminate them from the 

solution with a simple washing step. To overcome a matter of the small size (low molecular 

weight) of antigen that hampers its detection via SPR, secondary antibodies with metallic 

nanoparticle (NPs) labels with different sizes of AuNPs have been used as a signal enhancer. 

The highest signal amplification was obtained for 40 nm AuNPs and for distances d > 50 nm 

between the nanoparticles and the gold surface leading to enhancement factors of more than 

100. The precision of the agreement between the theoretical prediction [21, 38] and the 

experimental results with a distribution of the distances is so excellent that the enhancement 

factor becomes a good measure of the averaged distance. 
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The low limit of detection, the superior signal response time of less than one hour and low 

consumption of primary antibodies (reduction of costs) make the developed assay an excellent 

alternative to conventional methods for the detection of OTA in red wine and other beverages.   
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CHAPTER FOUR, DEVELOPMENT OF A 

QCM-D BIOSENSOR FOR OCHRATOXIN A 

DETECTION IN RED WINE 

The content of this chapter has been already published in Talanta Journal. 
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Development of a QCM-D biosensor for Ochratoxin A detection in red wine. Talanta, 2017. 

 

4.1. Introduction 

Ochratoxis are a group of highly toxic fungal secondary metabolites produced mainly by 

Aspergillus (chiefly A. ochraceus and A. niger) and some Penicillium species (P. verrucosum 

and P. carbonarius) [317]. The most ubiquitous and toxic ochratoxin occurring in agricultural 

products is Ochratoxin A (OTA). Other structurally related ochratoxins (Ochratoxin B, C, α 

and β) are much less harmful or even do not exist in food [34]. The worldwide OTA 

occurrence in a broad range of raw and processed food commodities e.g. cereals, wine, coffee, 

dried fruits, beer, cocoa, nuts, beans, peas, bread and rice has already been amply described 

[45, 281, 283, 318].  

Studies show that this molecule can have several toxicological effects such as nephrotoxicity, 

hepatotoxicity, neurotoxicity, teratogenicity and immunotoxicity [34]. It is also suspected of 

being the main etiological factor responsible for Balkan endemic nephropathy and its 

association to urinary tract tumors has also been proven [319]. Due to the general concern 

about the OTA present in the food chain, its high stability and potentially negative effects on 

human and animal health, a number of countries have set up regulations including maximum 

permitted, or recommended levels for specific commodities. The European Union (E.U.) has 

established limits for OTA depending on the food product: 5 µg kg
-1

 for unprocessed cereals, 

10 µg kg
-1

 for dried fruits, 15 µg kg
-1

 for spices, including chili powder, paprika, pepper or 

nutmeg, and 2 mg mL
-1

 for all types of wines [45].  
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Currently, routine analysis of OTA in foodstuff is mostly performed by chromatographical 

methods including thin layer chromatography (TLC) [320], liquid chromatography (LC) [276, 

321], gas chromatography (GC) [322] and high-performance liquid chromatography with 

fluorescence detection (HPLC) [131, 323]. Those techniques are generally straightforward 

and yield reliable results, however, they require extensive preparation steps and are time-

consuming. Thus, alternative approaches offering high sensitivity and simplicity such as 

enzyme-linked immunosorbent assay (ELISA) [130, 324], electrochemistry [325], 

fluorescence [133] or chemiluminescence [326] have been developed. Moreover, label-free 

immunosensors for real-time toxins detection based on optical (e.g., surface plasmon 

resonance spectroscopy, SPR) [318] and piezoelectric or acoustic devices (e.g., quartz crystal 

microbalance, QCM) [182] have recently been investigated.  

Biosensors with QCM-based readout are gaining increasing popularity in the detection of 

chemicals and biomolecules. This technique is a powerful and well-established noninvasive 

tool for online monitoring and quantification of molecular interactions on a solid surfaces 

[327]. The transducer in a QCM sensor is an oscillating quartz crystal whose resonance 

frequency (Δf) changes with the change in the mass (Δm) according to the Sauerbrey equation 

[212].  In addition to adsorbed mass (ng cm
-2

 sensitivity), the damping behavior of the crystal 

related to the conformational or structural properties of the viscous layer can be defined by 

measuring the energy dissipation loss (ΔD) of the freely oscillating crystal [327-329]. The so-

called QCM-D device enables simultaneous monitoring of the changes in frequency and 

dissipation, and thus provides additional information about the effective layer thickness, 

conformational changes, viscoelastic properties and the hydration state of the film [330].  

Despite a wide variety of approaches, these sensors do not always fulfil the requirements of 

high sensitivity, especially regarding detection of small molecules. Mycotoxins are low 

molecular weight compounds and therefore, cannot generate sufficient QCM-D signal 

(frequency change). In order to obtain optimal assay sensitivity, that is, increase the signal, 

reduce the background, while keeping the detection time short, the competitive inhibition 

immunoassay format was applied in the present study. This format is based on antigen 

immobilization on the sensor surface followed by the injection of the mixture of primary 

antibody and sample containing free antigen [163]. To reach a lower limit of detection, the 

signal can be amplified by the use of additional high mass compounds such as a secondary 

antibody with or without conjugation to gold nanoparticles (AuNPs).  

In this work, we present the development of a fast and sensitive QCM-D biosensor for the 

detection of ochratoxin A in red wine. We have reached good QCM-D sensitivity with the 
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specific detection format of indirect competitive assay. To increase sensitivity, the signal was 

further amplified by the implementation of a secondary antibody labeled with gold 

nanoparticles. With this system we were able to reach a detection limit at the ng mL
-1

 level. 

Additionally, by combining simultaneous monitoring of the frequency and dissipation 

changes, the mechanical and viscoelastic properties of the biofilm were characterized. 

Moreover, to minimize the matrix effect and non-specific adsorption of wine commodities 

such as polyphenols (resulting in antibodies inactivation), a very simple procedure (addition 

of 3% of binding agent poly(vinylpyrrolidone) (PVP)) was employed with no need for 

cleanup or preconcentration of the sample extract [318].  

4.2. Materials and methods 

4.2.1. Reagents 

All reagents were used as received without further purification. 1-ethyl-3-(3-

dimethylaminopropyl) carbodiimide hydrochloride (EDC) and N-hydroxysuccinimide (NHS) 

were obtained from ThermoFisher Scientific (Germany). Thiols: (11-

mercaptoundecyl)tetra(ethylene glycol) (MUTEG) and 16-mercaptohexadecanoic acid 

(MHDA), ochratoxin A (OTA), the conjugate of OTA with bovine serum albumin (BSA-

OTA), poly(vinylpyrrolidinone) (PVP), Tween 20, hydrogen peroxide (30%), ethanolamine 

and glycine were purchased from Sigma-Aldrich (Germany). The primary rabbit antibody 

against OTA (Ab1) was from AntiProt. Gold nanoparticles (AuNPs, 20 nm)-labeled goat anti-

rabbit secondary antibody (Ab2-AuNPs) were from Abcam (UK). 20 mM acetate buffer 

(ACT, pH 4) was prepared from sodium acetate trihydrate and acetic acid (both from Sigma-

Aldrich) and the pH was adjusted by HCl and NaOH. Phosphate-buffered saline pH 7.4 (PBS) 

(0.12 g KH2PO4, 0.72 g Na2HPO4, 4g NaCl and 0.1 g KCl in 0.5 L distilled water) or PBS 

containing 0.1% Tween 20 (PBS-T) were used as running buffers. The ERM (European 

Reference Material) BD476 (OTA in red wine) was obtained from the Institute for Reference 

Materials and Measurements (Geel, Belgium). This material was prepared from commercial 

wine sources intended for human consumption and it was characterized by mass spectrometry 

and HPLC with optical detection.  The concentration of OTA was determined as 0.52 ±0.11 

ng mL
-1

. 
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4.2.2. Apparatus 

Piezoelectric measurements were performed with AT-cut gold-coated quartz crystals (Ø 14 

mm, 100 nm thickness) with a resonance frequency of 5 MHz (LOT-Quantum Design GmbH, 

Germany) in flow-through mode (flow rate = 50 μL min
-1

) with a quartz crystal microbalance 

with dissipation monitoring QCM-D (E1 model, Q-Sense AB, Sweden) at 22°C. In a QCM-D 

measurements, the fundamental resonance frequency of the crystal is excited and the 

variations in the resonance frequency, Δf, and energy dissipation ΔD, are recorded 

simultaneously for several overtones [331]. The oscillating frequency of the piezoelectric 

crystal decreases with the adsorption of a foreign substances on the surface. To calculate the 

mass uptakes (Δm) the simplified relation between the shift in frequency (Δf) and the mass of 

the adsorbed layer described by the Sauerbrey equation was used [212]: 

        
      

 
       (1) 

where C is the mass sensitivity constant (C = 17.7 ng cm
-2

Hz
-1

 at f = 5 MHz), n = 1 for the 

fundamental frequency and n > 1 is the overtone number (n = 3,5, …). In the QCM-D 

measurements, Δf is not only related to the mass uptake but may also be caused by the 

hydration of proteins and water trapped in the pores of the layer. In very dissipative systems it 

is required to utilize a more complex model for surface mass density estimation, e.g. the Voigt 

model [332]. However, in the current paper the frequency shift of the 5
th

 overtone was chosen 

(due to appropriate sensitivity and reproducibility as compared to other overtones) and the 

Sauerbrey equation was employed in the data analysis.   

4.2.3. Sensor chip functionalization and detection format 

As shown in Fig.4.1, the gold surface of the sensor chip was modified with a mixed thiol self-

assembled monolayer (SAM) to which the BSA-OTA conjugate was attached. Prior the 

functionalization, the QCM resonator wafers were cleaned with a 3:1 (v/v) piranha solution 

(concentrated H2SO4 and 30% H2O2) for 10 min, followed by rinsing with water. Afterwards, 

the sensor was dried in a nitrogen stream and treated with a UV/ozon cleaner for 30 min. The 

thiol SAM was formed on the gold surface upon overnight incubation in a mixture of 

MUTEG and MHDA (molar ratio 9:1) dissolved in ethanol at the total concentration of 1 

mM. Afterwards, the sensor surface was rinsed with ethanol and dried in a stream of nitrogen. 

The carboxylic terminal groups were activated by immersing the chip in EDC/NHS solution 

(concentrations in deionized water of 37.5 and 10.5 mg mL
-1

, respectively) for 45 min. Then, 
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the sensor was rinsed with water, dried in a nitrogen stream and inserted into the QCM-D cell. 

Subsequently, the immobilization of BSA-OTA (dissolved in ACT buffer at a concentration 

of 40 μg mL
-1

) was done by 20 min circulation of the conjugate solution over the flow cell, 

followed by deactivation of unreacted active ester moieties using 10 min incubation in 

ethanolamine (1M and pH 8.5).  

 

Fig. 4.1. Scheme of the interfacial molecular architecture for the detection of OTA by a competitive immunoassay 

utilizing QCM. 

For the detection of OTA, an inhibition immunoassay was applied. In this assay, the samples 

were pre-incubated with Ab1 for 15 min (with an equal volume) followed by detection of the 

amount of unreacted Ab1 antibody. PBS-T buffer or certified red wine standard were spiked 

with OTA at concentrations between 10
-2

 and 10
4
 ng mL

-1
. In order to decrease the influence 

of polyphenolic compound (matrix effect) that may interfere with the OTA analysis 

(inactivation of antibodies or unspecific sorption) in wine, samples were mixed with 3% of 

PVP and subsequently shaken for 5 min at room temperature, filtrated, and the pH of each 

aliquot was adjusted to 7.4 with NaOH prior to analysis. The mixture of Ab1 with sample was 

pumped through the sensor for 10 min followed by washing with PBS-T buffer for 2 min to 

remove weakly bounded Ab1 molecules. Afterward, the Ab2–AuNPs antibody (concentration 

of 0.1 μg mL
−1

) was flowed through the sensor for 10 min. Finally, the sensor surface was 

washed for 3 min with PBS-T buffer and the changes in the frequency owing to the binding of 

Ab2-AuNPs to the captured Ab1 were recorded. After each detection cycle, the sensor surface 

was regenerated by 10 min incubation in glycine buffer (pH 2.0, 20 mM). 
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4.3. Results and discussion 

4.3.1. Sensor chip and assay characterization 

The QCM-D is an acoustic wave device measuring the resonance of a piezoelectric quartz 

crystal upon electrical excitation (bulk excitation). The resonance frequency decreases 

linearly with addition of mass on the sensor surface. BSA-OTA immobilization showed a 

slight increase in dissipation energy (ΔD = 10.77 × 10
-6

) therefore, the frequency 

measurement was directly converted to mass by using the Sauerbrey equation (Eq.1) and the 

recorded frequency shift (Δf = 57.31 Hz). The surface coverage of the covalently bound 

antigen conjugate was calculated to be 202.84 ng cm
-1

. A typical QCM-D plot, with real-time 

changes in the frequency and dissipation of adsorption sequence is shown in the Figure 4.2. 

Due to the very low concentration of the primary antibody, the recorded signal for both the 

frequency and dissipation is weak (Δf = 17.97 Hz and ΔD = 2.02 × 10
-6

). Hence, an additional 

high mass provided by Ab2-AuNPs injection was applied resulting in a signal enhancement 

(Δf = 52.53 Hz) and consequently an improvement of immunoassay sensitivity.  

The combined Δf and ΔD data analysis provide also information about the viscoelastic and 

mechanical properties of the protein layer. Moreover, according to the general understanding 

of the dissipative behavior of the biofilm, water is known to be trapped and sensed as 

additional mass [333]. A larger dissipation or ΔD/Δf ratio are usually correlated with high 

water content, loose bindings between interacting molecules or creation of a soft and 

dissipative film. On the other hand, the low dissipation per mass unit could be attributed to the 

formation of a well-structured complex with a high affinity binding and low degree of 

hydration [327]. Estimated ΔD/Δf = 1.7 × 10
-7 

for BSA-OTA layer indicates formation of a 

homogeneous and fairly rigid film. 
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Fig. 4.2. QCM-D curves showing the frequency (Δf, green curve) and dissipation (ΔD, blue curve) changes during the 

adsorption sequence of the indirect immunoassay. Red arrows represent the washing steps. 

Surface regeneration for cyclic use of the same chip is an important part of QCM-D 

immunoassays. In order to reuse the sensor chip surface, a simple regeneration protocol based 

on breaking the strong non-covalent interaction between toxin and antibody was applied 

[334]. This was accomplished by injection of glycine buffer at pH 2.0 over the sensor surface. 

As shown in Figure 4.2, after the regeneration step the frequency and dissipation signals 

return almost to the original baseline level (negligible increase of Δf and ΔD ≈ 0. 1%) 

indicating complete breakdown of the immuno-complex interaction and revealing fully 

reversible assay cycle. In this case, the immobilized antigen was still present at the sensor 

surface and hence, the assay procedure for the next cycle started with the injection of the 

primary antibody.  

After six cycles, the used quartz crystals were cleaned with piranha solution to remove all 

adsorbed on the gold surface materials including antigen (BSA-OTA) as well as SAM. SAMs 

are mechanically fragile surfaces, and thus, techniques for polishing or roughening surfaces of 

metals can remove the SAM and expose a clean surface on bulk metal substrates [196]. There 
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are a number of different techniques for removing SAMs from gold substrates such as: 

thermal desorption [335], ion sputtering [336] or UV/ozonolysis [337]. Chemical oxidants or 

reductants such as concentrated acids or bases or piranha solutions also are effective for 

cleaning substrates [338]. In our work piranha solution was used both for cleaning the surface 

before SAM functionalization as well was for removing thiols from the sensor surface. 

Moreover, a gold surface exposed to UV light (also used in this study) can be purged of sulfur 

impurities via oxidation of chemisorbed sulfur to sulfonates which can then be removed by 

washing with water [339]. The UV/ozone method allows one to remove old thiol monolayers 

and to provide a fresh surface for additional experiments. After such a treatment, the gold 

surface could be reused – a new SAM could be created followed by a fresh antigen solution 

immobilization.  

The detection scheme is based on an indirect competitive format where Ab2-AuNPs are used 

as a signal enhancement tag. The antigen attached to the surface (BSA-OTA conjugate) 

competes with toxins from the sample to bind with the added primary antibodies. 

Subsequently, captured Ab1 bind with secondary antibodies labeled with AuNPs resulting in 

signal amplification and improvement of the assay sensitivity. In order to check the specificity 

of antibodies a simple experiment was performed. Briefly, BSA was immobilized on a chip, 

followed by Ab1 injection and incubation for 10 minutes. After washing with PBS-T, only a 

negligible increase of the signal was recorded, indicating no adsorption of Ab1. Naturally, in 

the absence of Ab1, no non-specific binding of the secondary antibodies was observed (data 

not shown). 

Due to the fact that wine is a very complex beverage containing a large variety of 

macromolecules which can interfere with the affinity binding on the surface, it is required to 

implement a pre-treatment of the wine samples prior the analysis. It might also seem that the 

percentage of alcohol (≈ 12%) in wine can influence the proper functionality of the assay. 

However, Ngundi et al. [340] demonstrated that the amount of ethanol is not a major factor 

which hampers the analysis. On the other hand, Ogunjimi and Choudary [341] have shown 

antibody inactivation due to the presence of polyphenols in fruit juice, wines and vegetables. 

Thus, a simple pre-treatment of wine samples involving the use of 3% PVP, a binding agent 

commonly used to remove polyphenols from plant extracts, was applied. We have previously 

proved an excellent ability of PVP to eliminate unwanted compounds from the solution and 

therefore preserve antibody activity [318].  
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4.3.2. Ochratoxin A detection 

The sensor response was measured for series of buffer and wine samples spiked with OTA at 

concentrations ranging from 10
-2

 to 10
4
 ng mL

-1
. Fig.4.3 shows the calibration curves 

normalized with the sensor response for the blank sample (not spiked with OTA). The 

calibration curves were fitted with a sigmoidal function. The limit of the detection (LOD) and 

the limit of quantification (LOQ) were defined as the concentration of OTA equivalent to 

three times (for LOD) and ten times (for LOQ) the value of the standard deviation (SD), 

measured in the absence of OTA. 

 

Fig. 4.3. Normalized calibration curves for the detection of OTA using inhibition immunoassay performed in PBS-T 

buffer (black squares) and red wine (red circles). Each point is an average of three replicates. 

 Fig.4.3 clearly shows that the recorded signal is proportional to the amount of bound 

antibody (gradual decrease when increasing the concentration of OTA in the sample assigned 

to the blocking of Ab1 binding sites). The LOD and LOQ for the assay established in a PBS-T 

buffer were 0.04 and 0.13 ng mL
-1

, respectively. The same parameters estimated for 

experiments performed in red wine samples were 0.16 and 0.55 ng mL
-1

 with the working 

linear range (IC20-IC80) between 0.2-40 ng mL
-1

. The coefficient of variation (CV) of the 
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standard points of the calibration curves were 8.77% and 3.79% for the assay carried out in 

red wine and PBS-T, respectively, showing a good repeatability of the detection method. A 

midpoint value (IC50) of 2.53 and 2.58 ng mL
-1

 were obtained during competition assays 

performed in PBS and red wine, respectively.  The higher LOD value obtained from wine 

measurements indicates adsorption of wine components on the sensor surface causing a 

somewhat higher background. However, this value is still one order of magnitude lower than 

the maximum residue level of OTA required by the European Commission.  

The presented QCM-D biosensor offers higher sensitivity, shorter analysis time and avoids 

complicated and time consuming pre-cleaning methods with respect to other reports on the 

detection of this toxin [37, 39, 110, 135, 342, 343]. High-performance liquid chromatography 

(HPLC) [307], gas chromatography-mass spectrometry, thin-layer chromatography (TLC) 

[306], enzyme linked immunosorbent assay (ELISA) [313] and immunochromatographic 

assays as lateral flow strips [344] show good performance for OTA detection however, they 

all require multiple steps prior to the detection (including extraction and clean-up procedures), 

what extend the analysis time and causing extra costs. Compared to other alternative methods 

such as capillary electrophoresis with diode array detection [155],  electrochemical or optical 

techniques like surface plasmon resonance (SPR) [45, 318], our QCM sensor offers a similar 

detection limit but shorter detection time. 

4.4. Conclusions 

An indirect competitive bioassay was successfully established for the detection of Ochratoxin 

A in red wine utilizing gold nanoparticles for QCM-D signal enhancement. Small molecules 

(such as OTA) suffer from poor LOD due to the high concentration of Ab1 being needed to 

generate adequate signal. To overcome this problem, in the present study we have reported 

implementation of a secondary antibody with gold nanoparticle label resulting in the 

enhancement of the sensitivity of the low molecular weight compound assay. The decrease of 

the frequency and dissipation changes (Δf and ΔD) are proportional to the mass of molecules 

adsorbed on the chip surface and therefore, an additional mass provided by AuNPs results in a 

great signal amplification in comparison to the assay only with Ab1. A linear range 0.2-40 ng 

mL
-1

 has been achieved with excellent LOD of 0.16 ng mL
-1

, which is one order of magnitude 

lower then LOD specified by E.U. legislation concerning limit of exposure in food. 

Additionally, the biosensor can be easily regenerated with 10 min incubation in glycine 

buffer. Moreover, a real-world application of the system was tested with the determination of 
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OTA in spiked red wine samples. Finally, a matrix effect (caused by the occurrence of 

polyphenol in wine) and associated non-specific interactions with the sensor surface was 

minimized by a simple pre-treatment of the wine with the addition of 3% of the binding agent 

PVP. 

The method described here is a rapid (less than one hour detection time), sensitive and cost 

effective (inexpensive reagents, reduction of the concentration of the valuable primary 

antibody) alternative for the detection of various mycotoxins in food and beverages and 

therefore, an important tool in the field of food security and thus, human health.   
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5.1. Introduction 

Mycotoxins are secondary metabolites of fungi (the major mycotoxigenic fungi belonging to 

the genera Aspergillus, Fusarium and Penicillium) that may appear in almost all food and feed 

commodities [343]. Examples of mycotoxins of greatest public health and agroeconomic 

significance include aflatoxins, ochratoxins, trichothecenes, zearalenone, fumonisins and 

ergot alkaloids [10]. Due to high exposure to mycotoxins through a large variety of daily life 

products, they are widely recognized as a serious hazard for both human and animal health 

[345]. When present in a foodstuff at significantly high levels, they can cause adverse and 

toxic effects leading to liver and kidney damage, cancer or even immune suppression [12].  

Among all mycotoxins, the most toxic/carcinogenic are aflatoxins (secondary metabolites 

produced by Aspergillus flavus and Aspergillus parasiticus [346]). Aflatoxin M1 (AFM1) is a 

major derivative of aflatoxin B1, found in milk of animals that have ingested feed 

contaminated with AFB1 (about 0.3–6.2% of AFB1 in animal feed is transformed to AFM1 

[243]). Because of the relatively high stability during milk pasteurization or other thermal 

treatments, AFM1 can also occur in milk-derived dairy products, such as cheese and yogurt 

[347]. The toxic and carcinogenic effects of AFM1 have been convincingly demonstrated 

[348] and therefore, WHO–International Agency for Research on Cancer (IARC) has 

classified AFM1 as Group 1 carcinogen [247]. Because of a high human consumption of milk 
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products (especially children), AFM1 contamination poses a significant threat to human 

health. Hence, the European Commission stipulates a maximum permissible level of 50 ng L
-1

 

for AFM1 in milk and dried or processed milk products [103]. 

Ochratoxins belong to a family of structurally related secondary fungal metabolites, constitute 

another example of highly toxic mycotoxins which can be found mainly in cereals, coffee, 

cacao, grapes, wine, soy, nuts, beer and so on [45, 281, 283, 318]. The main forms are 

ochratoxin A, B, and C, which differ in that ochratoxin B (OTB) is a non-chlorinated form of 

ochratoxin A (OTA) and ochratoxin C (OTC) is an ethyl ester of OTA [33]. However, among 

all these forms, the most harmful and dominant is OTA, which has demonstrated to be 

nephrotoxic, carcinogenic, teratogenic and immunotoxic [349]. The main source of OTA 

intake by the European Union population are cereals, followed by wine and peanuts [206]. 

Due to its existence in the food chain, relatively high stability during food processing and 

therefore hazard imposed on both human and animal life, maximum permitted levels of OTA 

have been established by nations all over the word. For example, the European Commission 

has conducted detailed risk assessments and set up maximum allowable levels for different 

types of food and feed (e.g. 5 ng mL
−1

 for unprocessed cereals, 3 ng mL
−1

 for products 

derived from unprocessed cereals, 10 ng mL
−1

 for coffee beans and 2 ng mL
−1

 for all types of 

wine [45]). 

To minimize the occurrence of mycotoxins, it is essential to trace the sources of 

contamination by using fast, sensitive and cost-effective techniques. Most of the established 

conventional analytical methods for their detection involve enzyme-linked immunosorbent 

assay (ELISA) [350], thin layer chromatography (TLC) [351], high performance liquid 

chromatography (HPLC) in combination with the appropriate detection methods [352] and 

liquid chromatography/electrospray – tandem mass spectrometry [276, 321, 353]. However, 

these techniques require extensive sample preparation, highly trained personnel and thereby 

are time and cost consuming. Thus, the development of rapid, simple and sensitive 

methodologies for analysis of mycotoxins in our dairy products is necessary. Recently, some 

new technologies have emerged for the detection of small molecules utilizing e.g. surface 

plasmon resonance spectroscopy (SPR) [45, 263, 318] or quartz crystal microbalance (QCM) 

[213, 354]. The main advantages of those methods rely on real-time, label-free and non-

invasive measurements at the expense of high-priced equipment (SPR, QCM devices, sensor 

chips). However, the majority of novel approaches are based on immunoassays with 

colorimetric [355], fluorescence [253] or electrochemical [105, 235] detection. The latter, 
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electrochemistry, has been reported as a sensitive (in the ng cm
-2

 range), practical and fast tool 

used for various biosensor applications therefore, opening a new path for their development 

[356-358]. 

In this regard, the use of screen-printed electrodes (SPE) has spread widely over the last years 

as a simple, fast and inexpensive approach for the development and production of disposable 

biosensors. The ease of surface modification and broad variety of transducer compositions 

allow the design of on-demand working sensors, suitable to multiple analytes [359]. 

Furthermore, the miniaturization of these electrochemical sensing platforms results in 

significantly lower sample consumption, facilitating the integration to microfluidic and point-

of-care devices, as well as portable diagnostic systems [360].  

The immobilization of biomolecules (e.g., biotin, DNAs, saccharides, peptides, and proteins) 

on transducers is an important requirement for the fabrication of biosensors. Self-assembled 

monolayers (SAMs) can facilitate this process. The spontaneous formation of a monolayer 

containing functional molecules [361] is most often employed with gold substrates taking 

advantage of the strong bond between thiol groups and gold. Biomolecules are in turn 

anchored to the SAM by covalent attachment to the functional molecules available on the 

SAM surface [362, 363].  

In this article, the development of an electrochemical biosensor for rapid and sensitive 

mycotoxins (OTA and AFM1) determination is reported. Detection is achieved by using a 

competitive immunoassay format based on the immobilization of the antigen onto the 

modified gold surface, followed by the injection of the mixture of primary antibody and 

sample containing free antigen [213]. Detection is accomplished via a secondary antibody 

labeled with alkaline phosphatase. The voltammetric signal associated to the enzymatically 

generated product was measured in gold screen-printed electrodes. The biosensor was tested 

in red wine and milk samples with no need for pre-treatment or preconcentration of the 

sample extract.  Moreover, AuSPE modified with SAMs based on different types of 

alkanethiols (long (MHDA) and short (MPA) chains) were investigated and compared in 

terms of electron transfer resistance and thus, better substrate for assay performance. 
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5.2. Materials and methods 

5.2.1. Reagents 

All reagents were used as received without further purification. 1-ethyl-3-(3-

dimethylaminopropyl) carbodiimide hydrochloride (EDC) and N-hydroxysuccinimide (NHS) 

were obtained from ThermoFisher Scientific (Germany). Thiols: (11-

mercaptoundecyl)tetra(ethylene glycol) (MUTEG), 16-mercaptohexadecanoic acid (MHDA), 

and 3-mercaptopropionic acid (MPA), ochratoxin A (OTA), aflatoxin M1 (AFM1), the 

conjugates of OTA and AFM1 with bovine serum albumin (BSA-OTA, BSA-AFM1, 

respectively), poly(vinylpyrrolidinone) (PVP), potassium ferricyanide (K3Fe(CN)6) and 

ferrocyanide (K4Fe(CN)6), Tween 20, ethanolamine were purchased from Sigma-Aldrich 

(Germany). The primary rabbit antibody against OTA and AFM1 (Ab1-OTA, Ab1-AFM1, 

respectively) were from AntiProt. Alkaline phosphatase-labeled (ALP) goat anti-rabbit 

secondary antibody (Ab2) was from Abcam (UK). 1-naphtyl phosphate disodium salt (α-NP) 

was from VWR (Germany). The ERM (European Reference Material) BD476 (OTA in red 

wine) was obtained from the Institute for Reference Materials and Measurements (Geel, 

Belgium). This material was prepared from commercial wine sources intended for human 

consumption, and was characterized by mass spectrometry and HPLC with optical detection.  

The concentration of OTA was determined as 0.52 ±0.11 ng mL
-1

. The ERM BD282 (zero 

level of AFM1) was also obtained from the Institute for reference Materials and 

Measurements. 

The compositions of the buffers used for the experiments were as follows: 

 Immobilization solution: 20 mM acetate buffer (ACT, pH 4) was prepared from 

sodium acetate trihydrate and acetic acid (both from Sigma-Aldrich) and the pH was 

adjusted by HCl and NaOH (Buffer A) 

 Affinity solution: Phosphate-buffered saline pH 7.4 (PBS) (0.12 g KH2PO4, 0.72 g 

Na2HPO4, 4g NaCl and 0.1 g KCl in 0.5 L distilled water) (Buffer B) 

 Washing solution: Buffer B+ 0.1% Tween 20 (PBS-T, Buffer C) 

 Detection solution: 0.2 M Tris-HCl pH 9.8 (Buffer D) 

5.2.2. Electrochemical measurements 

Electrochemical measurements were carried out with a computer-controlled potentiostat with 

CV50W software at room temperature. Screen printed gold electrodes (AuSPE) were obtained 
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from DropSens (Spain, ref. DRP-C220AT). The electrodes incorporate a conventional three-

electrode configuration, which comprises a disk-shaped Au working (0.4 mm diameter), Au 

counter and silver pseudo-reference electrodes. Cyclic voltammetry (CV) was performed in 

0.1 M buffer B in the presence of 10 mM Fe(CN)6
3-/4-

as a redox probe from -0.2 V to +0.6 V 

at a scan rate of 100 mV s
-1

. Differential pulse voltammetry (DPV) was carried out from -0.1 

V to 0.55 V at a scan rate of 100 mV s
-1

 [364]. 

5.2.3. Analysis of samples 

The determination of AFM1 in milk was carried out by spiking a milk sample (before 

centrifugation). ERM-BD282 milk powder was dissolved in deionized water at a 

concentration of 0.1g mL
-1

. Then, samples containing AFM1 were centrifuged for 20 min. The 

upper fat layer was removed completely, and the obtained aqueous phase was directly used 

for further analysis. 

In order to decrease the influence of polyphenolic compound (matrix effect) that may interfere 

with the OTA analysis in wine, samples were mixed with 3% of PVP and subsequently 

shaken for 5 min at room temperature, filtrated, and the pH of each aliquot was adjusted to 7.4 

with NaOH prior to analysis [318]. 

5.2.4. Competitive assay procedure 

Immobilization of BSA-toxin conjugates (BSA-OTA or BSA-AFM1) was based on the 

covalent attachment to a self-assembled monolayer of MPA (3-mercaptopropionic acid) on 

the gold surface of screen-printed electrode (Fig. 5.1). Briefly, AuSPE were first modified 

overnight by incubation with a 1 mM ethanolic solution of MPA at room temperature. 

Subsequently, the gold surface was rinsed with ethanol followed by deionized water to 

remove all unattached species. The MPA-modified Au electrode was then treated with 

EDC/NHS solution (concentrations in deionized water of 37.5 and 10.5 mg mL
-1

, 

respectively) for 45 min to convert the terminal carboxylic groups into an active NHS ester. 

After rinsing with water and drying, the AuSPE surface was covered with a droplet (40 μL) of 

BSA-toxin conjugate (BSA-OTA or BSA-AFM1, both dissolved in a buffer A at a 

concentration of 40 μg mL
-1

) for 40 min. Afterwards, the unbound molecules were removed 

from the electrode by slow dipping into buffer A, followed by deactivation of unreacted active 

ester moieties using 10 min incubation with 1M ethanolamine. 
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For the detection of toxins – OTA or AFM1, competitive immunoassay was used. Samples 

were pre-incubated with Ab1 (concentration of 100 ng mL
-1

) for 20 min (equal volume) 

followed by the detection of the amount of unreacted Ab1 antibody. Buffer B, certified red 

wine (for OTA detection) and milk (for AFM1 detection) standards were spiked with toxins 

(OTA or AMF1) at concentrations between 10
-2

 and 10
4
 ng mL

-1
. The droplet (40 μL) of the 

mixture of Ab1 containing the sample was placed on the electrode surface for 30 min followed 

by a washing step with buffer C to remove weakly bounded Ab1 molecules. Afterwards, a 

droplet with Ab2 (labeled with ALP enzyme) was added to the surface and incubated for 30 

min. Finally, the sensor was washed with buffer C. Once the enzymatic conjugate was 

attached, both the enzymatic reaction and the electrochemical measurements were carried out. 

For this purpose, a droplet (40 μL) of the enzymatic substrate (α-NP) prepared in buffer D (at 

a concentration of 4 mM) was placed on the modified AuSPE. After 10 min of enzymatic 

reaction, the product, α-naphthol (α-N) was detected by DPV. 
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Fig.5.1. Schematic illustration of the preparation of the biosensor for toxin detection utilizing a competitive immunoassay 

format. 

5.3. Results and discussion 

5.3.1. Cyclic voltammetry studies 

Cyclic voltammetry is an efficient analytical technique commonly used to monitor surface 

modifications, since it provides useful and rapid information on the changes of the electrode 

behavior after the assembly step. In our previous study (utilizing SPR and QCM for toxin 

detection) we used mixed thiols solutions (e.g. MHDA+MUTEG) for surface modification 

[103, 213, 318]. In this case, long aliphatic chains led to strong van der Waals interactions and 

hence, produced well-ordered SAMs with high integrity and thermal stability [195]. However, 

SAMs generated from such a long thiols typically block the electrode surface and render it 
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less reactive. For this reason, in electrochemical approaches usually short chains of 

alkanethiols are used enabling electron transfer across the layer, but unfortunately typically 

also present a reduced stability of the interface in comparison to longer chain alkanethiols 

[195]. The short-chain thiol (MPA) was tested in the present work and the voltammetric 

response compared to two other thiol-SAMs (MHDA and MHDA+MUTEG) and bare AuSPE 

as shown in Fig.5.2. The reversible redox couple, Fe(CN)6
3-/4- 

was selected as a redox probe.  

 

Fig.5.2. Cyclic voltammogram of 10 mM Fe(CN)6
3-/ Fe(CN)6

4- (scan rate 100 mV s-1) on a bare AuSPE (a, black curve), 

modified with MPA (b, red curve), MHDA (c, blue curve) and MHDA+MUTEG (d, green curve). 

As expected, Fe(CN)6
3-/4-

 showed a reversible behavior on the bare AuSPE with a peak-to-

peak separation (ΔEp) of 113 mV (Fig.5.2a, black curve). However, the reduction and 

oxidation reactions were blocked after the modification of the Au surface with MHDA 

(Fig.5.2c, blue curve) and MHDA+MUTEG (Fig.5.2d, green curve) thiols solutions. This was 

most likely caused by densely packed MHDA+MUTEG molecules. In the case of the short 

chain thiol – MPA (Fig.5.2b, red curve) the redox reactions can still occur, however with 

slower electron transfer kinetics as observed through lower peak current and bigger peak-to-
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peak separation (ΔEp approximately 240 mV) when compared to a bare AuSPE. The 

carboxylic groups of the SAM can experience ionization and become negatively charged and 

hence hinder the electron transfer due to electrostatic repulsion [200]. Nevertheless, the 

electron transfer can occur partially through bare spots on the electrode and by tunneling 

across the SAM [365].Thus, the MPA based SAM was used for further immobilization steps.  

5.3.2. Assay characterization 

The gold surface modification with an MPA SAM provided a film containing –COOH groups 

on the surface that could be used for covalent bonding to the antigen. After activation with a 

mixture of EDC/NHS, the carboxyl terminal groups of MPA reacted with NH2-groups of the 

BSA-toxin covalently attaching the antigen to the electrode surface. This immobilized antigen 

competes with the free toxin molecules for binding to Ab1. Thus, the immobilization of BSA-

toxin conjugate is a crucial step since the competitive immunoreaction is dependent on the 

amount and functionality of BSA-toxin on the surface. In our previous study with SPR and 

QCM methods for toxins detection [213, 318], the incubation times for antigen and antibody 

immobilization were monitored online. The recorded signal reached a plateau after 10 min 

(for BSA-toxin conjugate) and 15 min (for Ab1) indicating surface saturation. However, in 

both techniques the analyte was transported by a flow system to the surface limiting the effect 

of the diffusion-limited mass transport. As in the electrochemical set-up a droplet format was 

chosen in which no active mixing or mass-transport occurs, the optimum incubation times 

were investigated (Fig. 5.3) testing five different times. As expected, the amount of BSA-

toxin conjugate increased with longer incubation times, reaching a plateau after 40 minutes 

which was used for further experiments. Also, a similar experiment was performed for the 

determination of the optimal antibody incubation time (data not shown). A comparable 

response curve was obtained indicating that 30 min incubation was sufficient to obtain 

maximum signals.  
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Fig.5.32. Determination of the assay optimal BSA-toxin conjugate immobilization time. 

5.3.3. Toxins detection 

Once the experimental conditions were optimized, the competitive assay was performed as 

explained above, testing OTA and AFM1 solutions at concentrations ranging from 10
-2

 to 10
3
 

ng mL
-1

. Fig.5.4 shows the calibration curves normalized with the sensor response for the 

blank sample (not spiked with OTA - Fig.5.4A or AFM1 – Fig.5.4B). The calibration curves 

were fitted to a sigmoidal function. The limit of detection (LOD) and the limit of 

quantification (LOQ) were defined as the concentration of toxin equivalent to three times (for 

LOD) and ten times (for LOQ) the value of the standard deviation (SD), measured in the 

absence of toxins. The working range of the assay is defined as the most linear part of 

calibration curve, usually between 15-20% and 80-85% inhibition and is represented by IC20 

and IC80 values [366]. 
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Fig.5.4. Normalized calibration curves for the detection of (A) OTA performed in PBS buffer (black circles) and red wine 

(red squares) and (B) AFM1 in PBS buffer (black circles) and milk (blue squares). Each point is an average of three 

replicates. 

As a competitive immunoassay was used, signals decreased with higher toxin concentrations 

in the sample. One can notice that the calibration curves for measurements performed in real 

samples (red wine – Fig.5.4A and milk – Fig.5.4B) are shifted towards higher concentrations 

with respect to the curves obtained from experiments carried out in PBS buffer. This 

difference can be ascribed to the non-specific adsorption of milk constituents or wine 

components to the surface resulting in higher background response. Nevertheless, the 

developed assay shows excellent values of relevant analytical parameters summarized in 

Table 5.1. As it can be observed, the current electrochemical approach with the LOD and 

IC50 of 15 and 2.75 ng mL
-1

 for OTA and 37 pg mL
-1

 and 3.04 ng mL
-1

for AFM1 detection, 

can be a good method for the analysis of various mycotoxins in food and beverages. 

Estimated LODs values are well below of the most restricted limits set by the European Union 

(for both toxins) indicating the suitability of the immunosensor as a novel tool for small 

molecules analysis.  
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Table 5.1. Analytical characterization of OTA and AFM1 biosensors utilizing competitive immunoassay preformed in red 

wine and milk samples, respectively. 

 
LOD 

[ng mL
-1

] 

LOQ 

[ng mL
-1

] 

IC50 

[ng mL
-1

] 

IC20-IC50 

[ng mL
-1

] 

CV 

[%] 

OTA (in red wine) 15 50 2.75 0.05-136 9.65 

AFM1 (in milk) 0.037 0.123 3.04 0.04-205 11.61 

 

The developed biosensors for the two toxins combine the most desirable aspects for 

mycotoxins detection such as high sensitivity, low cost and short analysis time making it a 

competitive method in comparison to conventional analytical methods including thin-layer 

chromatography [320], high-performance liquid chromatography [131, 323] and gas 

chromatography [322]. These techniques offer good sensitivity at the expense of long analysis 

time and extra costs because they employ solid phase column clean-up of extracts procedures 

to remove interferences occurring during real samples analysis. Though, known for more than 

a decade, mycotoxin ELISAs typically require multiple steps and sample pre-treatment with 

those described for red wine not always being sufficient enough to remove interference of 

chromogenes [130]. Our biosensor merges mycotoxins detection at ng mL
-1

 level and simple 

pre-treatment of the sample. Recently developed, alternative approaches based on optical (e.g. 

SPR [103]) or acoustic (e.g. QCM [213]) technologies show comparable LODs and shorter 

analysis time however, require highly trained personnel and very expensive equipment. Gold 

screen printed electrodes used in this study have the advantages to be miniaturized (thus, the 

volume of reagents is reduced to the size of a droplet - ca.15-50 µL), mass produced and cost-

effective.  

5.4. Conclusions 

An electrochemical immunosensor for the detection of mycotoxins (Aflatoxin M1 and 

Ochratoxin A) utilizing a competitive assay format was carried out on a MPA-modified gold 

screen-printed electrodes (SPEs). Indeed, the use of SPEs has made it possible to design a 

low-cost, disposable and sensitive biosensor for the analysis of the aforementioned toxins, 

operating in a wide working linear range with a limit of detection at the low ng mL
-1

 level. It 

becomes worth highlighting that this level remains one order of magnitude below (for both 

analyzed compounds) the maximum residue level required by the European Commission. In 

fact, utilization of SPEs implies remarkable advantages when it comes to the development of 
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biosensors, such as smaller needed volumes of sample [225] and reagents, as well as the 

inherent miniaturization of the biosensor itself [367]. We have harnessed these benefits 

coming forward with a fully-miniaturized, fast electrochemical biosensor, in comparison with 

other methodologies described for these particular analytes in literature [178, 368] . 

Moreover, the use of short-chain alkanethiol SAMs enabled simple immobilization of the 

antigens and helped protect the electrode surface from unwanted matrix effects from red wine 

and milk samples. The high sensitivity, low costs (use of inexpensive and disposable SPE and 

the reagents volume reduction to the size of a droplet), short analysis time and simple but 

effective cleaning-up technique makes this approach an important and very promising tool for 

widespread biosensing applications of small molecules in food and beverage samples. 
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CHAPTER SIX, FINAL DISCUSSION AND 

CONCLUSIONS 

In the presented thesis, the author proposed three strategies based on combination of 

biosensors methodology (utilizing biological recognition component - antibody) with indirect 

competitive immunoassay and surface plasmon resonance spectroscopy, quartz crystal 

microbalance and electrochemistry as a readout. Biosensors for aflatoxin M1 and ochratoxin 

A detection (chosen for this study as they represent two of the most important mycotoxins 

classes) were challenged in red wine and milk to proof the usability of offered approaches for 

real samples analysis.  

The work of this thesis can be clustered into three main parts as follows: 

(I) Biosensors for mycotoxins detection utilizing surface plasmon resonance 

spectroscopy (based on [103, 318]).  

This study revealed a novel and highly sensitive biosensors for the detection of aflatoxin M1 

in milk and ochratoxin A in red wine by using SPR spectroscopy. Taking into account that 

SPR response is proportional to the mass of analyzed molecule and the fact that mycotoxins 

are small chemical compounds that possess inadequate mass to cause significant changes in 

the refractive index, an indirect competitive immunoassay was applied to overcome those 

limitations. For further signal amplification and sensitivity improvement secondary antibodies 

conjugated with gold nanoparticle labels were used and the interplay of size of AuNPs and 

affinity of recognition elements affecting the efficiency of the signal enhancement were 

examined. Obtained results showed that with increasing size of AuNPs the magnitude of the 

reflectivity shift is larger, what is in a good agreement with the theoretical divagations 

(weaker effect of diffusion-limited mass transfer allow for higher mass binding to the 

surface). Moreover, in order to prevent fouling on the sensor surface by the constituents 

present in analyzed milk samples, the gold surface of the sensor chip was modified and 

different surface architecture were tested and compared (antifouling polymer brushes and self-

assembled monolayer (SAM) using a mixture of thiols). Complete resistance to the non-

specific interactions was observed for coating with p(HEMA) brushes resulting in two times 

lower LOD compared to that on thiol SAM with PEG groups. The biosensor for AFM1 

determination allowed for highly sensitive detection in milk with an excellent precision (the 

average calculated CV was below 4%), limit of detection of 18 pg mL
−1

 for p(HEMA) 
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brushes and 38 pg mL
-1

 for thiol SAM and with the analysis time of 55 min. It is worth 

highlighting that it is the first time that an SPR chip modified with such polymer brushes was 

used for real time detection of a small target antigen opening a new avenue for highly precise 

analysis.  

In the case of wine samples tested for OTA detection, a simple but very effective pre-

treatment procedure was successfully applied. It was proved that the addition of the 3% of the 

binding agent poly(vinylpyrrolidone) (PVP) to red wine completely reduces non-specific 

interactions by binding polyphenolic compounds (which may be responsible for inactivation 

of antibody and blocking the sensor surface) through hydrogen bonding, making their 

elimination easier. Moreover, in this study, the authors evaluated the influence of AuNPs on 

signal enhancement and thereby biosensor sensitivity. For this purpose two assays were 

performed: with and without implementation of NPs. Obtained results allowed for OTA 

detection at concentrations as low as 0.75 ng mL
−1

 however, its limit of detection was 

improved by more than one order of magnitude to 0.068 ng mL
−1

 by applying AuNPs as a 

signal enhancer. 

Proposed biosensors offer vast range of advantages such as high sensitivity (at pg or ng 

levels), short analysis time (55 min) in comparison to for example, ELISA which require 

multiple steps that translates to prolonged analysis time, possibility for online monitoring, 

characterization of binding kinetics, low consumption of primary antibody (cost reduction), 

excellent antifouling surface and simple pre-treatment procedure.  

(II) Biosensor for ochratoxin A detection utilizing quartz crystal microbalance (based on 

[213].  

Successful and detailed studies on mycotoxins detection with mentioned above SPR 

spectroscopy became a base for further research and development in this field. The author 

used previously optimized and well characterized parameters of the assay (with AuNPs 

implementation) for OTA detection in wine, to create another novel biosensor however, this 

time utilizing the quartz crystal microbalance with dissipation as a readout device. The 

combination of indirect competitive assay and AuNPs for signal amplification with QCM-D 

gave a straightforward tool, which can simultaneously measure frequency (Δf) and dissipation 

(ΔD) changes resulting in information not only about the sensitivity but also about the mass 

attached to the sensor surface as well as viscoelastic properties and the hydration state of the 

film. Therefore, obtained results indicated the formation of a homogeneous and fairly rigid 
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film and let for sensitivity parameters estimation. A linear detection range of 0.2–40 ng mL
-1

 

has been achieved with an excellent LOD of 0.16 ng mL
-1

, which is one order of magnitude 

lower than LOD specified by European Union legislation concerning the limit of OTA in 

food. 

 (III) Electrochemical biosensors for mycotoxins detection.  

SPR and QCM are two very powerful techniques receiving an increasing attention in the field 

of biosensing systems. However, beside a number of advantages, as every other method, they 

exhibit some drawbacks and limitations (e.g. high-priced equipment, lack of sensitivity when 

monitoring low molecular weight molecules, problems with mass transport etc.). Among 

different approaches used for analysis of toxins, electrochemical detection seems especially 

promising due to high sensitivity, feasibility of low cost, compatibility with portability and 

miniaturization. Therefore, this part of thesis is based on the on a competitive immunoassay 

that uses a secondary antibody conjugated with an enzyme (alkaline phosphatase) as a tag for 

the voltammetric detection of mycotoxins (OTA and AFM1) using modified gold screen 

printed electrodes (AuSPE). The analytical signal of presented biosensor was proportional to 

the toxin concentration in a wide working linear range, showing an excellent limit of detection 

of 15 ng mL
-1

 for OTA in red wine and 37 pg mL
-1

 for AFM1 in milk. Additionally, AuSPE 

modified with self-assembled monolayers based on different types of alkanethiols (long and 

short chains) were tested and compared in terms of electron transfer resistance. As expected, 

the reduction and oxidation reactions were blocked after the modification of the Au surface 

with long chain thiols and therefore, MPA (3-mercaptopropionic acid) was chosen for SAM 

formation allowing for electron transfer occurrence.  
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Table 6.1. Characterization of presented in this thesis OTA and AFM1 biosensors utilizing different detection techniques: 

SPR, QCM and electrochemistry. 

 
SPR QCM Electrochemistry 

AFM1 OTA OTA AFM1 OTA 

LOD [ng mL
-1

] 0.04 0.07 0.16 0.04 15 

Time ≈55 ≈55 ≈80 

Cost $$$ $$ $ 

Volume > 1 mL > 1 mL 40 µL 

Regeneration +++ ++ - 

Online 

monitoring 
yes yes no 

Limitations 
Small analytes, non-

specific adsorption 

Temperature, non-

specific adsorption 
Need of a label 

Sample 

consumption 
++ ++ + 

 

Table 6.1 summarizes the most important properties of presented biosensors utilizing three 

different detection techniques: SPR, QCM and electrochemistry. As it can be seen, every 

methodology has its strong and weak points what will be further discussed in detail. All 

proposed approaches exhibit a very high sensitivity with LOD at least one order of magnitude 

lower than the one specified by European Union. This parameter describes the smallest 

amount of target molecules adsorbed onto the sensor that can be detected however, is also 

highly dependent on the matrix effect and interferences resulting in some non-specific 

adsorption of food components to the surface. This can lead to the higher background 

response, influence on the accuracy, reproducibility, linearity and sensitivity and therefore, 

causing erroneous quantitation. Consequently, is it necessary to study those effects and 

employ efficient methods for their minimization, prior the development and validation of any 

new method in order to obtain reliable and satisfying results. One of the limitations of QCM 

and SPR devices is non-specific adsorption of molecules present in real matrices, since they 

are both mass sensitive, any molecule able to bind or to be adsorbed on the surface is a 

potential interference. Due to the fact that wine is a complex alcoholic beverage and it 

contains constituents such as polyphenols, which can bind with proteins by hydrophobic 

interactions, hydrogen bonds and covalent bonds as well as may cause inactivation of 
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antibodies what results in unspecific sorption that blocks the sensor surface and strongly 

influence on the sensitivity of the detection. In order to evaluate the unspecific sorption of 

constituents in wine to the surface, in the presented work, a simple pre-treatment with a 

binding agent poly(vinylpyrrolidone) (PVP) was applied and SPR observation of surface mass 

density change was carried out. Obtained results revealed the excellent ability of PVP to bind 

polyphenols through hydrogen bonding making it easier to eliminate them from the solution 

and therefore minimize the possibility of their influence on sensitivity. In case of milk, which 

is also a complex biological fluid composed of constituents including whey proteins 

(particularly β-lactoglobulin), lipids and calcium phosphate, which are involved in the fouling 

process through interacting mechanisms (denaturation, aggregation, local supersaturation), the 

use of surfaces coated with p(HEMA) showed excellent resistance to the non-specific 

interactions. This phenomenon might be due to a water barrier resulting in minimization of 

hydrophobic effect with the lipids components form milk as well as to entropic barrier 

resulting from the brush architecture. Due to the large variety of matrices and to the 

unpredictable effect that they might have on the final results, it is impossible to propose a 

uniform protocol for ME elimination however, it must be considered, tested and 

minimized/eliminated to ensure acceptable and credible quantitative results. It is also 

important to remember about the methods which can prevent mycotoxins occurrence (see. 

Section 1.2.5) during pre- and post-harvesting. This can significantly reduce/eliminate the 

content of toxic molecules, simplify further detection, save time dedicated for additional pre-

cleaning, lower general costs and therefore, simplify the whole procedure of analysis.    

Considering SPR and QCM - techniques based on different principles however, both being 

mass sensitive devices, estimated LOD diverge from each other. LOD is determined not only 

by the mass sensitivity but also how precisely the sensor signal can be measured (frequency in 

QCM and angular shift in SPR). For QCM generally LOD is about 2 ng cm
-1

 when in case of 

SPR, this parameter is usually at the level of 0.1 ng cm
-2

, which is significantly better than 

that of QCM. Moreover, the sensing area of QCM is typically around 1 cm
2
 whereas for SPR 

is determined by the size of illumination spot and usually is smaller than 10
-5

 cm
2
. Therefore, 

the LOD defined as a total detectable mass will be always on much lower level for SPR. 

Moreover, any external pressure applied to the QCM may reduce the oscillation of the crystal 

and destroy the sensing performance. This problem can be overcome by increasing the cell 

volume at the expense of sample consumption. The level of sensitivity of SPR is comparable 
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to the one obtained from electrochemical measurements, which are able to detect every single 

electron behavior involved in electrochemical reaction what can affect on recorded signal.  

Moreover, SPR measures the changes in the refractive index of material binding to the sensor 

surface but is also dependent on the optical properties of the used materials and therefore, 

small chemical compounds (with low molecular weight, such as mycotoxins) that possess 

inadequate mass to cause significant changes in the refractive index, are a limiting factor for 

this methodology. This problem can be overcome by the use of very high concentration of 

active immobilized ligand however, at such high concentration accurate kinetic analysis is not 

possible because of mass-transport limitations. On the contrary, the most applied principle of 

detection in acoustic sensing for biochemical applications is based on mass (gravimetric) 

properties and it is, therefore, independent of the optical properties of the materials, allowing 

to perform studies over a great variety of surfaces (4). On the other hand, QCM is sensitive 

for temperature changes, as it is easily disrupted by internal stresses caused by temperature 

gradients (low and high with respect to room temperature, ~25 °C) what can cause 

undesirable frequency shifts in the crystal, decreasing its accuracy.  

Another aspect that has an influence on good biosensing system creation is time. In presented 

study, the analysis based on SPR and QCM offered desirable rapid readout within 55 min. In 

the both techniques the analyte was transported by a flow system to the surface limiting the 

effect of the diffusion-limited mass transport. As in the electrochemical set-up a droplet 

format was chosen in which no active mixing or mass-transport occurs, the detection time was 

extended to 80 min. Conventional analytical methods for mycotoxins (TLC, HPLC, GC etc.) 

employ solid phase column cleanup of extracts and immunoaffinity techniques to remove 

interferences to improve the measurement and therefore, yield results within hours or days. 

Rapid methods presented in this thesis are less expensive, easier to use and can be moved to 

an on-site environment. Nevertheless, the strategy involving the droplet formation, beside 

aforementioned drawback, offers also an improvement in the field of samples volume and 

thus, overtops two other approaches. Unlike SPR and QCM, where more than 1 mL of 

reagents was necessary for the assays performance, electrochemical detection based on a 

droplet, dramatically reduces this amount - it required only 40 µL of the solution. For 

biosensing applications, sensor chips have to be modified with an appropriate layer of ligand 

or a layer of matrix to reduce non-specific adsorption. The methodology for both QCM and 

SPR are similar due to the fact that the most commonly used platforms utilize gold-coated 

surfaces. However, for in-situ or real-time pre-functionalization, QCM requires more reagents 
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because of its larger surface area and cell volume. In a typical QCM, the flow-cell volume is 

40 µL and the flow rate vary from 50 to 200 μL min
-1

, while in SPR measurements are carried 

out usually with a flow rate of 5-50 μL min
-1

 in a 1 μL flow-cell. Therefore, when for example 

the sample consumption in SPR for a single injection of 5 min at 50 µL min
-1

 is 250 µL, the 

QCM has to run at 350 µL min
-1

, which means 2.2 mL for one injection.  

Next issue worth consideration pertain costs. SPR and QCM are relatively expensive 

methodologies requiring very sophisticated equipment. The main distributors of SPR 

technology - Biacore Company and Q-Sense - Biolin Technologies, in case of QCM, offer 

highly sensitive tools for various applications supported with detailed information about their 

capabilities. Nevertheless, beside the high price of the instruments itself, all additional items 

like sensing chips, fitting to the desirable device which design, project and properties are 

usually encompassed with a trade secret, increase the total costs of those approaches. The 

Biocore instrument is priced at 112.000$, the chip costs about 200$, with one chip capable of 

performing 100 analyses. A QCM system, although much cheaper (approximately 13.000$) 

offers sensing elements (e.g. crystals) for 25$ but allowing up to 25 analyses per surface 

[369]. However, in this study, SPR measurements were performed in the home-build system 

with the home-made sensors what significantly reduced the expenses and offered more 

flexibility. Regarding experiments carried out in QCM, the commercial instrument was used, 

what resulted in additional costs due to the need of purchasing chips which would meet all 

expectations (size, design, properties) of the provided QCM device to assure reliable results. 

As opposed to SPR and QCM, electrochemical analysis, in general, belongs to inexpensive 

approaches which do not require complicated instrumentation and offer easy and cheap 

possibility of creation home-build systems. When talking about costs, it is also worth to 

mention about the regeneration of the sensor chip which has a significant influence on the 

total expenses (lower consumption of reagents, lower amount of sensor chips). This process is 

based on the removal of bound analyte from the surface after an analysis without destroying 

the ligand. The successful regeneration after each detection cycle was obtain for SPR and 

QCM measurements allowing for the reuse of the sensor for further experiments. After the 

regeneration step the SPR and QCM signals return almost to the original baseline level 

(negligible increase of 0. 1%) indicating complete breakdown of the immuno-complex 

interaction and revealing fully reversible assay cycle. The immobilized antigen was still 

present at the sensor surface and hence, the assay procedure for the next cycle started with the 

injection of the primary antibody. In the case of SPR the sensors could have been regenerated 
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more than 20 times without a change in its performance. It means that once the antigen is 

immobilized on the surface, 20 analysis per day could be done.  For the QCM measurements, 

after six cycles of regeneration, crystals did not show the reproducible results and therefore, 

were cleaned with piranha solution to remove all adsorbed on the gold surface materials 

including SAM. After such a treatment, the gold surface could be reused – a new SAM could 

be created followed by a fresh antigen solution immobilization. The variations between the 

number of possible regenerations in QCM and SPR can be assigned to the quality of gold 

(differences in a crystallographic structure) used for chip formation. The same protocol was 

applied to screen printed electrodes however, the final result was not satisfactory, as expected. 

SPEs are meant to be disposable and for only one use. There is no concrete methodology on 

the reusability of the electrodes and for better results achievement; the provider (DropSens) 

recommends their utilization only for one measurement. Probably due to this reason, at least 

the price of commercially available SPEs is relatively low and affordable for everyone.  

The use of SPR and QCM technologies has another advantage - provides a simple but very 

useful way to observe how different biomolecules interact in real time allowing also for 

binding kinetics determination. Moreover, it enables the control of every step of performed 

assay, giving online information about bindings at exactly the same time when the sample is 

injected. Thanks to this fact, researchers know which parts of the tested protocols are working 

perfectly well and which could be improved. In electrochemical measurements, only the final 

step is recorded. Therefore, the determination of any problem/deviation that may occur and 

influence on the assay sensitivity is much more complicated and thus, is time-consuming.    

To sum up, in all presented in this thesis approaches a number of advantages significantly 

exceeded drawbacks. Nevertheless, the choice of the best detection system depends on varied 

factors (e.g. purpose, budget etc.) and the final decision must be carefully made after a 

detailed analysis of every single advantage and disadvantage of considered methodology. 

However, there are still open ways for further improvement and elimination of limitations in 

offered biosensors. For example, the LOD could be reduced by increasing the number of toxin 

per BSA molecules or by increasing the size of the gold nanoparticles, in case of SPR and 

QCM techniques. Another aspect worth consideration concerns surface modification and the 

development of new antifouling materials in order to reduce/eliminate matrix effects and non-

specific adsorption of constituents present in real samples. Moreover, the performance of 

combined techniques (e.g. SPR with fluorescence detection) may result in higher sensitivity 

as well as the replacement of antibodies with very promising technologies based on aptamers 
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or molecularly imprinted polymers can have a significant influence on this parameter. Screen 

printed electrodes could be exchanged with microelectrodes where the signal to noise ratio is 

enhanced due to lowered capacitive current and increased rates of mass transfer to the 

electrode surface. The time and reagents consumption could be decreased by implementation 

of microfluidics, where smaller volume of the samples are required what further would reduce 

the time as well as improve the efficiency of binding.  

Those are only a couple of examples which can be used for further development in the field of 

food safety and control. Nevertheless, all most desirable aspects of a good biosensor such as 

high sensitivity, low costs, short analysis time and simple but effective cleaning-up technique 

were obtained in this thesis and supported with detail characterization, making proposed 

approaches an important and very promising tools for widespread biosensing applications. 
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