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INTRODUCTION

Breast cancer is the most frequent cause of female mortality in Europe. Radiation therapy is often one of the few drastic 
means to fight this disease. High Dose Rate Brachytherapy (HDR-BT) marks a recent major progress in radiation 
therapy [1]. After surgical excision of the tumorous tissue often a radiation treatment follows where the tumor bed 
is irradiated with high energy radiation [2,3] stemming from highly active radioactive compounds like 192Ir. Because 
of the high energy dose (30-50) [Gy] deposited in the tissue by these radioisotopes, a precise determination of the 
locations, where the radiation source has to be placed, is essential. To place the radiation source as close as possible 
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ABSTRACT

Background: High dose rate brachytherapy (HDR-BT) of female breast cancer patients relies on electromagnetic 
tracking (EMT) for localizing the prescribed dwell positions of the radiation source. A collection of machine learning 
techniques like Particle Filtering (PF), Singular Spectrum Analysis (SSA), Ensemble and Multivariate Empirical 
Mode Decomposition (EEMD/MEMD) represent powerful signal processing techniques and are employed in this 
study to achieve this goal. Information-theoretic similarity measures allow comparing extracted signal components 
for artifact identification and elimination.

New toolbox: We present a new toolbox, called EMTLAB, which is designed as an extensible toolbox for electromagnetic 
tracking data analysis. It contains all machine learning techniques mentioned above and is written in MATLAB®.

Results: EMTLAB offers the practitioner a convenient way to easily and efficiently perform particle filtering, signal 
decomposition and manual or automatic artifact removal with an SSA, an EEMD or MEMD in combination with 
three similarity measures: Pearson correlation, Jensen-Shannon divergence or Kull back-Leibler divergence. As 
demonstrated with illustrative examples, EMTLAB offers a complete and almost fully automatic signal processing 
chain for an analysis of EMT data sets collected during a HDR-BT. In addition, EMTLAB represents a user-friendly 
graphical user interface (GUI), which also provides convenient means to visualize the results in illustrative graphs. A 
number of screen shots helps in understanding the functioning of the signal processing chain and the use of the GUI.

Conclusion: EMTLAB is a reliable, efficient and automated solution for processing and analyzing EMT sensor 
data from a HDR-BT, while employing different physical models of system dynamics. This sensor tracking by particle 
filtering allows to adapt the analysis to different dynamical models and the SSA and EMD algorithms provide an easy 
means to remove  from the data artifacts stemming from breathing modes or measurement device malfunctioning.
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to the tumor bed, a number of catheters is implanted into the female breast by a surgical intervention. The position of 
the catheters with respect to the anatomy is verified by an X-ray computed tomography (CT) image, where a medical 
physicist tracks by hand the shape of the catheters and inputs this information into a treatment plan. The latter defines 
so-called dwell positions and dwell times for the later radiation treatment [4,5]. The treatment usually extends over 
several days with, usually, short treatment sessions one or two times a day. Between these sessions the patients can 
move around freely which might cause some small catheter displacements. The latter may also be caused by tissue 
swelling (edemata) as a consequence of the surgical intervention. Hence, before any treatment session, the validity of 
the existing treatment plan needs to be controlled by test measurements of the dwell positions with a sensor, which is 
moved inside the catheters to the prescribed dwell positions. The sensor position is determined by an electromagnetic 
tracking device, which encompasses a magnetic field generator (FG) and a remote after loader. The former generates 
an inhomogeneous magnetic field and the latter moves the solenoid sensor inside the catheters in accord with the 
treatment plan. A precise determination of the sensor positions during these test measurements is hampered by the 
breathing activity of the patients. Even worse, patients often speak during the measurements, rendering their breathing 
motions rather irregular. In addition, due to patient movements between the sessions, catheter displacements may 
occur. Because of the high energy dose deposited by the radiation, it is tantamount to follow the treatment plan as 
closely as possible. This constraint seems unrealistic in clinical practice.      

In a recent study, Goetz et al. [6] pursued the possibility to reconstruct catheter shapes and concomitant sensor dwell 
positions from electromagnetic tracking (EMT) measurements alone without recourse to an external reference such as 
fiducial sensors. This EMT only protocol avoids additional errors which might be introduced by external referencing. 
Because of frequent re-positioning of the field generator (FG), multi-dimensional scaling (MDS) [7-9] had to be 
employed to estimate an optimal common coordinate system for comparison of the different measurements [6]. The 
latter, however, are inevitably fraught with measurement noise. In a subsequent study, Goetz et al. [10,11] thus proposed 
applying several machine learning techniques like particle filters (PF) [12,13], empirical mode decomposition (EMD) 
[14-17] and singular spectrum analysis (SSA) [18-20] accompanied by information-theoretic similarity measures 
[21], to achieve an artifact-free and noise reduced sensor signal, which best reflects the true sensor dwell positions, 
hence catheter shapes.  It was shown that any dwell position deviations from the treatment plan can be quantified, and 
possible error sources identified early enough to be corrected or for the treatment plan to be adapted. In critical cases 
treatment can even be stopped on the basis of the particle filter tracking.

The current study designs a toolbox which implements all these techniques. It thus provides convenient means for any 
potential user to apply such data analysis techniques to EMT signals recorded during test measurements. The latter 
need to be performed before any radiation treatment within an HDR-BT. The signal processing chain implemented in 
this toolbox starts with a particle filtering of the raw sensor signal. The latter is inevitably ballasted with measurement 
noise, hence any tracking device observes noise-contaminated dwell positions while, after particle filtering, the 
underlying system states are obtained. To apply a particle filter, a state evolution model needs to be designed from 
prior knowledge about the dynamical system under consideration. As an additional complication, the observed sensor 
states also contain contributions from breathing activities. The latter can be removed by applying empirical mode 
decomposition to the sensor signal. Both an ensemble EMD and a multivariate EMD are implemented. Often also high 
amplitude artifacts, resulting from device malfunctions, appear in the recorded signals. They can be suppressed by 
applying an SSA to the recorded signals. Both signal decomposition techniques, EMD and SSA, achieve artifact-free 
sensor signal tracks by omitting during reconstruction those signal components which can be assigned to the artifacts. 
The assignment task is achieved via information-theoretic similarity measures like Pearson or Spearman correlation, 
Kullback-Leiber divergence and Jensen-Shannon divergence, all of which are implemented in the toolbox as well.  

EMTLAB TOOLBOX

EMTLAB is an interactive MATLAB toolbox for processing EMT data. It provides a graphical user interface (GUI) 
which enables users to flexibly and interactively process their data and tuning their parameters. EMTLAB provides 
plenty of methods for importing, visualizing, preprocessing data and remove artifacts. Using EMTLAB, users can 
apply advanced signal processing techniques to their data such as:

•	 Particle filter tracking (PF)
•	 Artifact removal (automatically or manually)
•	 Visualizing their results
In Figure 1, the basic concept of the EMTLAB toolbox is illustrated. One can start with the raw EMT data which 

consist of:
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•	 Electromagnetic tracking (EMT) data from a 5 DoF sensor,
•	 Coordinates reflecting basic knowledge about the observed sensor trajectory (BK) and
•	 Electromagnetic tracking data from the 6 DoF fiducial sensors (FID), which monitor breathing artifacts.

These data represent noise-contaminated versions ( )  tz t z≡ of the underlying states of the system 0:tx which are 
unobservable thus unknown. The goal is to estimate the sequence 0:tx of these system states from the time-dependent 
observations. Such an estimate can be achieved by applying the particle filter toolbox to the data to obtain a denoised 
EMT signal. The results are saved in a data structure called 'PF'. The tracked data still contains artifacts like the 
breathing and movement artifacts as well as artifacts due to a malfunctioning of the measuring device. Several signal 
decomposition techniques like singular spectrum analysis (SSA) and ensemble or multivariate empirical mode 
decomposition (EEMD (MEMD)) are implemented. Employing similarity measures like Spearman correlation (SP), 
the Jensen-Shannon divergence (JS) and the Kullback-Leibler divergence (KL) help to identify artifact-related signal 
components which then can be removed automatically, or manually, by neglecting their contribution to the signal 
reconstruction from its components. Different strategies are followed:

•	 Large amplitude artifacts often correspond to the principal component obtained via SSA. They can be suppressed 
by subtracting them during the reconstruction process.

•	 Artifacts with characteristic periods can be identified by comparing them to intrinsic modes resulting from an 
EEMD decomposition. A good example represent breathing modes in EMT recordings, which form one of the 
characteristic intrinisc modes and are similar to the fiducial sensor signals, hence can be identified via any of the 
similarity measures implemented, either automatically or manually (HH). 

The results are saved according to the used artifact removal method (AR_*).

METHODS

Electromagnetic tracking (EMT) is an appealing method for measuring solenoid sensor movements in magnetic 
fields without the need of an external reference signal. A typical example is the dwell position tracking of solenoid 
sensors inside catheters during an HDR-BT. Hence, the algorithms are illustrated with EMT sensor data measuring 
a superposition of the sensor movement along a catheter implanted in a female breast and a breathing motion during 
an HDR-BT treatment (Figure 2). These signals can be analyzed favorably with the EMTLAB, especially as they are 
generally non-linear and non-stationary. 

Figure 1: Flowchart of the EMTLAB toolbox
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Three steps which have to be performed, namely signal denoising by applying PF, artifact removal by applying 
EEMD/MEMD and SSA, and comparing components employing similarity measures.

PARTICLE FILTER

The toolbox realizes sensor tracking via a sequential Monte Carlo sampling technique [22,23], called Particle Filter, 
which approximates the posterior density by a weighted sum of particles (set of random samples)  according to 

1 1 .)( ( )k kx t x etc+ +≡

( )1 1: 1| 1 1
1

 ( | )  
N

i i
k k k k k k

i
p x z w x xδ+ + + +

=

≈ −∑

Where, 1|
i
k kw +  represents the weight of particle 1

i
kx + . Based on the weights and the samples, relevant statistics can 

be estimated. For a very large number of samples the particle filter approaches an optimal Bayesian estimate of the 
posterior probability density.

A solution for this state estimation problem is Bayesian filtering by iteratively computing the posterior density 
:( | )k l kp x z . In the toolbox, the latent state of the sensor kx  at discrete time kt can be estimated by knowing the 

history of observations : , ,  l k l kz z z= …  at times 1, , kt t… . For the posterior distribution of the latent state variables 

(filtering density), one obtains by marginalizing the Chapman-Kolmogorow equation the following relation

1: 1: 1( | ) ( | ) ( | )k k k k k kp x z p z x p x z −∝

Where, 1: 1( | )k kp x z −  represents the model prior and ( | )k kp z x  the data likelihood.

The state evolution model is based on a physical model of the dynamical system 
( )( , )x

k kf x  . The measurements 1:kz  

can be represented by an observation model ( , )m
k kh x  , where m

k  represents the measurement noise and
( )x
k  denotes 

the state noise, respectively. By repeating predictions of the state evolution model and updates of the observation 

model, the filtering density 1:( | ) k kp x z  can be obtained. Particle filters are especially well suited for non-linear 

dynamical models with non-Gaussian error distributions [24].

Figure 2: Example data where five catheters were measured by an EMT sensor. A superposition of the movement along the catheter and a 
breathing motion is clearly visible.
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THE MODEL EQUATIONS

As input for the particle filter, a state evolution model as well as an observation model is needed. The dynamical 
variables of the system can be collected in a state vector ( ) Nx t ∈ , which describes the dynamic state of the system. 
The state evolution model (...)f  describes the dynamic evolution of the system.

( )( )
1 1 0: 1: 1  , ( | , ) |  ( ) x

k k k k k k k kx f x p x x z p x x+ + += = 						                   (1)

Where, ( )x N∈   denotes the state noise and 1,2,.......k =  denotes discrete time instances kx . The sequence of 

state vectors kx  is assumed independent of the sequence of observations 1:kz  and forms a Markov process [25].

In the toolbox, the state evolution model implements the spatial dependence of the dynamic state via a polynomial 
function, and its time dependence by a Fourier series. The EMTLAB was originally constructed for tracking 
sensor movement along a catheter which is inserted into a female breast. The physical model of this situation is a 
superposition of the movement along the catheter, represented by a polynomial function, and the breathing motion, 
which is approximated by a Fourier expansion. The user can choose whether he wants to consider a superposition of 
both functions, and only one of them.

If the spatial dependence should be modeled by a polynomial function, prior knowledge of the observed sensor 
trajectory needs to be available in form of coordinates ( , , )i i i ir x y z= . From this set of 3D coordinates, a static 

trajectory 1 ( )T kf l  can be computed, i.e., a sequence of points is calculated, where kl denotes the distance from the 

start position for the considered trajectory c :

3

11 12 13 14 2

1 21 22 23 24

31 32 33 34

( )

1

 

k

k
T k

k

l
a a a a

l
f l a a a a A L

l
a a a a

 
   
   = ⋅ = ⋅         

 

Where, 3 4A∈ × 

and kl ∈ . The order of the polynomial function can be chosen between 1 and 5 by the user.

The length of the sensor movement kl  is computed as, 0
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
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 				                            (2)

For each distance, the evolution model 1 ( )CT kf l  provides the corresponding ( , , )x y z  coordinates of the sensor along 
the trajectory. Figure 3 exemplifies how a fit to a polynomial function can be achieved from known dwell positions 
from the treatment plan. This results in a model for the corresponding sensor trajectory.

With HDR-BT applications, it is regularly the case that the trajectory of the sensor is known in a coordinate system 
differing from the treatment plan system. For this reason, the evolution model 1 ( )T kf l  needs to be transformed to 
the coordinate system of interest. To estimate this transformation, we take the first measured EMT sensor position, 
because its distance from the endpoint of the catheter is known precisely. This location can be estimated in the EMT 
coordinate system and then enters the state evolution model [10]. A shift vector s  and a rotation matrix R complete 
the transformation according to: 

  x R x s′ = ⋅ + 								                                                             (3)

Consequently, the state evolution model 1( )kf l  can be expressed in EMT-coordinates as:  

1 1( ) ( )k T kf l R f l s= ⋅ + 			   					                                           (4)
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Hence, the trajectory 1( )kf l now refers to the EMT-coordinate system. The coordinate transformation is updated 
after each tenth iteration, and after removing the artifacts of the measured signal by applying an EEMD and using the 
Pearson correlation to identify the artifacts. In Figure 4, the coordinate transformation is calculated exemplarily for a 
late time point where already many system states have been estimated.

However, the state estimation model also depends on time. To account for any superimposed breathing motion, or 
other time-dependent distortion, the sensor motion needs to be modeled by a Fourier series, yielding:

1 2

1 2
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Where, 3, ,k ka b c ∈ and m  is the order of the Fourier series, which can be chosen by the user between 0 and 10. 
For this model, the positional data, received from the fiducial sensors, is used. First, noise reduction of the signal is 
achieved by applying an EEMD. Afterwards, a Fourier series is fit to the data. In Figure 5, these steps are shown for 
measured EMT data, where a breathing motion is superimposed.

The observation vector z collects all observations at 1kt + and can be related with the state vector x  via the observation 

model (...)h

Figure 3: Known treatment plan dwell positions (red stars) of the sensor trajectory and a polynomial t of oder 3 (blue line)

Figure 4: One catheter, where the points correspond to the information from the treatment plan, are transformed to the particle 
filtered blue points, which result after removing the breathing artifact
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Where, m N∈   denotes the measurement noise. Assuming, that the probability of an observation forms a Markov 
process with respect to the history of the state vector kx , then any observation h  depends on the current state only. 

The various noise distributions ( )( )xp   and 
( )( )mp   are also assumed to be mutually independent and known.

For the observation model h , the simplest possible choice is implemented, corresponding to a normally distributed 
measurement noise. This finally yields:
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THE SAMPLING-IMPORTANCE-RESAMPLING SCHEME

The filtering density 1 1:( 1)( | )k kp x z+ + , can be approximated by a weighted set of particles 0: 1{ , }i i N
k k ix w = . The particle filter 

(PF) updates the Bayesian recursion relations at each iteration by generating and evaluating N different trajectories 
according to:

( ) ( )0: 1:( 1) 1| 1 1| |i i i i
k k k k k kp x z w p x x− − − −=

Where, the weights correspond to ( )| 0: 1:| i i
k k k kw p x z= . For the current grid point, the weighted sum of transition 

Figure 5: A breathing signal for one spatial direction measured by fiducial sensors (green), the denoised signal (red) and the Fourier series (blue)
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probabilities is computed with the state evolution model. By importance sampling from the likelihood of the 

observations ( )| k kp z x , the latter can be changed dynamically [10,26]. Given a strongly peaked likelihood and a 
flat prior, one gets for the filtering density employing the Markov assumption,

( ) ( )1:( ) 1    ( | ) | , |i
k k k k k k kp x z p x x z p z x−≈ ∝ 						                (7)

The following weighted update, based on the state evolution model, results if samples are drawn from the likelihood

( )| 1| 1 1 |i i i i
k k k k k kw w p x x− − −= 								                                (8)

Finally, the weights | 1{ }i N
k k iw =  are normalized to sum to one.

The importance sampling from the likelihood becomes unstable with increasing N. It can be stabilized by resampling 
[27,28]. By multiplying particles with an importance weight and eliminating particles with low weights, a new set of 
N particles can be draw. Finally, the following approximate distribution is obtained [29].

( )0: 1: 0: 0:
1

ˆ , ( )
N

ii
k k k k

i

np x z x x
N
δ

=

= −∑ 							                               (9)

Where, 0:
i

kx  is the number of copies of particle trajectory 0:
i

kx . In the toolbox, re-sampling is performed for each time 
step.
The toolbox offers the following three re-sampling schemes, from which the user can choose:

•	 multinomial resampling

•	 systematic resampling

•	 residual resampling

These resampling schemes are based on a multinomial selection of N particles with replacement from the original 

particle set 1{ }i N
ix = [10,30].

To sum up, particle filtering is realized employing the Sampling Importance Resampling (SIR) algorithm [31]. The 

re-sampling is applied at every iteration and the state transition probability ( )1 |  i
k kp x x+ is used as proposal density. 

By looking at the system evolution from t{k-1} to kt , the following steps can be applied [13]:

Step 1: For 1, ,i N= … new particles 
i
kx  from the importance density can be draw by employing the transition model

( )1 1
1

 ( )  |
N

i i
k k k k

i
q x w p x x− −

=

=∑
To do so, choose particle i r= and choose a random number r  uniformly from [0,1], then sample from the prior 

density ( )1 | i
k kp x x − .

Calculate corresponding weights by using the corresponding likelihood  

( ) |  i i
k k kw p z x=

The samples i
kx  are taken from ( )1: 1  |k kp x z −  and re-weighting them accounts for the evidence of the observations 

kz .

Step 2: Calculate the total weight
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1

N
i

k k
i

W w
=

=∑
and normalize the particle weights

1 1,....,i i
k k kw W w i N−= ∀ =

Step 3: Re-sample the particles by doing the following:

Compute the cumulative sum of weights 0
1 ; 1, , , 0i i i

k k kW W w i N W−= + ∀ = … =

Let 1i =  and draw a starting point 1u from a uniform distribution 1(0, )U N −

For 1, ,j N= …  do the following 

•	 move along the cumulative sum of weights by setting 1
1 ( 1)ju u N j−= + −

•	 while 1i
ju W set i i> = +

•	 assign samples  j i
k kx x=

•	 assign weights 1j
kw N −=

Having many degenerate particles with very small weights can be avoided by this resampling procedure. If the 
resulting samples contain many redundant particles, it can lead to a loss of diversity. This sample impoverishment is 
often observed in case of small process noise. In Figure 6, showing 200 estimated particles per data point, the resulting 
sensor trajectory and the measured points are illustrated for example data.

SINGULAR SPECTRUM ANALYSIS

Depending on the EMT measurement system, the tracked particle trajectory can still contain large amplitude artifacts 
(outliers) and time dependent mode contributions, i.e., breathing motion. Through a singular spectrum analysis 
(SSA) [18,32], the recorded non-stationary time series can be decomposed, and artifacts can be removed from the 
EMT recordings during signal reconstruction. Thus, if the EMT of the sensor movement contains a breathing mode 
superimposed on its motion inside the catheter, an independent measure of the artifact-related motion component can 
be obtained by 6 DoF fiducial sensors fixed to the chest of the patient. This contaminating breathing signal can be 
decomposed also within the toolbox by applying an SSA. For further processing, usually only the dominant principal 
component needs to be retained.

The well-known signal analysis technique, Singular Spectrum Analysis (SSA), decomposes the original time series 
into a sum of orthogonal components. These components can be interpreted as trends, oscillatory components or 
structureless white noise [18-20].

Figure 6: Estimated particles (green), EMT-measured points (blue) and the resulting trajectory (red) are compared in a three dimensional plot
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Let ( )1 1( ) ( ) ( )  ( )T T
T T Tx t x t x t x x x= ≡ =   be a sensor signal with zero mean and a total length T . We can obtain by 

( 1)( , , )T
k k k Lx x x + −= …  selecting an embedding dimension K  and a proper segment length L T

 such that

1T K L= + − . The analysis of a time series with SSA can be done in two steps [20,33]:

A decomposition step, which encompasses embedding of the time series into K delayed coordinates combined with 
an eigendecomposition of a correlation matrix, and 

A reconstruction step, which encompasses reverting the embedding and anti-diagonal averaging.

Especially the latter step reconstitutes an ( )L K×  - dimensional trajectory matrix [33], from which the reconstructed 
time series can be obtained by reverting the initial concatenation step. The trajectory matrix then reads

[ ]

1 2 3

2 3 4 1

3 4 5 2
1

1 2 1
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K
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L L L L K

x x x x
x x x x
x x x x

X x x

x x x x
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+

+ + + −

 
 
 
 

= =  
 
 
 
  









   

   



				                           (10)

Where, the columns of this Hankel matrix are formed by the time series segment of length L T≤  and its delayed 
versions. An alternative representation yielding trajectory matrices with a Toeplitz structure would also be possible 
[20]. A K K×  - Dimensional, real-valued and symmetric matrix can be obtained by considering the matrix dot 
product TX X  . This matrix possess an eigendecomposition.

( )  T
k k kX X v vλ= 	 								                               (11)

Where, the kv denote the corresponding eigenvectors and 1 Kλ λ≥…≥  the non-zero, ordered, orthogonal 

and normalized eigenvalues. The eigenspectrum of the trajectory matrix X  is represented by the eigenvalues 

{ , 1, , }k k Kλ = … . The projection of the data onto them yields proper features according to

k kz Xv=  										           	            (12)

Now signal denoising can be achieved by neglecting components during reconstruction with eigenvalues smaller than 
a certain threshold. The latter must be low enough to indicate that the related variance reflects noise contributions. 
This, however, implies that the reconstructed trajectory matrix doesn't have the structure of a Hankel matrix anymore. 
By anti-diagonal averaging of the latter an approximation to the original time series is obtained.

In summary, by applying an SSA to the recorded EMT solenoid sensor signals, large amplitude artifacts can be 
removed by deleting the principal mode related with the largest eigenvalue which typically reflects such large 
amplitude artifacts.

ENSEMBLE EMPIRICAL MODE DECOMPOSITION

After the raw EMT sensor signal is noise-reduced and particle filtered, the sensor signal still contains artifacts. More 
precisely, because the recorded EMT sensor signals contain several motion components, i.e., the sensor movement 
inside a catheter and the overlaid breathing motions, the toolbox offers a signal decomposition employing either an 
EEMD or an MEMD. An EEMD can be used to identify those modes which contain information about the artifact-
related contributions similar to the independently measured fiducial sensor signals. In Figure 7, the decomposition of 
a fiducial signal into its intrinsic modes is shown.
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Figure 7: The top row represents the original breathing signal as measured by the ducial sensors. The following two rows contain the 
intrinsic modes, which result from applying an EEMD and which are ordered from top left to bottom right with increasing period

Any non-stationary and non-linear time series can be decomposed by an EEMD [14,15,34] into a list of oscillatory 
components with characteristic time scales ordered with increasing period. A signal is decomposed in a sum of intrinsic 
modes (IMFs) with zero-mean amplitude- and frequency-modulated components.

One can express the original signal ( )x t as:

( ){ } ( ){ }( ) ( )( ) ( ) ( ) ( ) ( )lim ( ) ( ) ( ) ( ) exp ( ) ( ) exp ( )
tj j

n n n n n j j j jnj
x t x t t c t r t x t x t c t Re a t i t Re a t i t dtφ ω

−∞→∞
′ ′= + = + = = =∑ ∫ 13)

Where, ( )n t denotes random noise contributions, ( ) ( ) ( )j j
n nc c t= +  represents the intrinsic mode obtained for the nth 

noise observation, ( )x t  is the true signal and ( )nr t  the remaining non-oscillating trend. By averaging all the ( )jc of 

the ensemble the resultant IMF ( )jc  is obtained. The related instantaneous frequency is denoted by 
( )

[ / ] j
j

d t
rad s

dt
φ

ω = , 

the time-dependent amplitude by ( )ja t  and ( ) ( )j jt t dtφ ω= ∫  represents a time-dependent phase. Thus, compared 

with alternative decomposition techniques like Exploratory Matrix Factorization (EMF) [35], EMD is not based on 
any a priori defined basis system [34,36,37]. 

MULTIVARIATE EMPIRICAL MODE DECOMPOSITION

The plain EMD can be extended to a Multivariate Empirical Mode Decomposition MEMD [17,38]. Plain EMD 
can only decompose one-dimensional time courses. MEMD can be interpreted as a multivariate approach by taking 
the response of a system from several channels as a signal in an n-dimensional space. This multivariate signal is 
tried to be decomposed into IMFs, which can no longer be seen as oscillatory modes rather should be considered 
rotational modes. To solve the problem of no proper definition of extrema in n dimensions, the aspect of creating 
envelopes around the time course is generalized to n dimensions [17]. To sample the n-dimensional space as uniformly 
as possible, a set of Hammersly-sequenced n-dimensional direction vectors is introduced. To extract the extrema 
of one-dimensional representations of the signal, it is projected onto each direction vector. Afterwards the signal 
is re-projected into the n-dimensional space, resulting in sets of n-dimensional minima and maxima for each one-
dimensional projection. With these optima, n-dimensional envelopes can be constructed. From now on, the procedure 
and the stopping criterion are as in a plain EMD. The only differences concern the comparison of the number of zero 
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crossings and the number of extrema. Zero crossings in n-dimensional space are not properly defined. An advantage 
of the MEMD compared to its univariate counterpart is that frequency scales of corresponding IMFs align [17]. 

Also a noise assisted (NA-MEMD) or an ensemble noise assisted (ENA-MEMD) variant is proposed for MEMD 
[39,40]. The NA-EMD introduces, in addition to the signal channels spanning the n-dimensional space of the 
multivariate signal, a number l of noise channels carrying white Gaussian noise with noise amplitude of 2-10% of the 
signal amplitude [40]. After EMD is performed, the l noise channels are discarded. The principle of several realizations 
of IMFs by using different random initializations of noise contributions to several NA-MEMD runs resembles the 
same principle as used within an EEMD in the univariate case and is called ENA-MEMD.

After particle tracking and denoising the raw EMT signal, artifacts can be removed by applying the EEMD or MEMD 
to the sensor signal and also to the fiducial signal overlapping the moving sensor signal. After decomposing both signal 
the intrinsic mode which best represents the fiducial signal can be identified. Tracked EMT signal reconstruction while 
omitting the contribution from the intrinsic fiducial mode yields an uncontaminated sensor signal. The decomposition 
has to be repeated, depending on the signal to remove all the artifacts. The choice of IMF can be drawn by human or 
automatically with the aid of similarity measures.

SIMILARITY MEASURES

The EMT system measures a superposition of the sensor motion inside the catheter and the periodic motions of the 
sensor as a consequence of breathing. The latter contribution can be independently measured with fiducial sensors 
fixed to the chest of the patient. Separating both motions can be achieved by sensor signal decomposition with 
an EEMD or an MEMD [10]. To identify those intrinsic modes, which most closely resemble the breathing mode 
contribution, similarity measures are used. The selected contaminating intrinsic modes will be neglected during signal 
reconstruction. The user can choose between several alternative measures of similarity offered by the toolbox.

To measure point-wise, linear correlations between stochastic, normally distributed variables, the most frequently 

used measure is the Pearson correlation coefficient [41]. Let 1( )T
Lx x x=   and  1( )T

Ly y y=   be two time series 

segments with size L T≤  represented as L-dimensional vectors. The Pearson correlation coefficient c is calculated 
as follows

1 1 1

2 2
2 2
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		                                        (14)

However, Pearson correlation fails if the data sets also contain nonlinear correlations. In such cases, entropy-
based similarity measures might be more appropriate. The Shannon entropy ( )H X  [42,43] and its related mutual 
information ( , )I X Y  as well as several divergences [44] are based on distances between distributions of the variables. 
The following similarity measures are available in the toolbox:

The Kullback-Leibler divergence (KLD) [45] or relative Entropy measure a non-symmetric similarity between two 
distributions P and Q

1

ˆ( )ˆ( ) ( ( ) ( )) ( ) ln
ˆ( )

L
l

KL KL l
l l

p xD X Y D p x q y p x
q y=
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 
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Where, the stochastic variables are normalized according to:
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If ( )p x  is modeled by means of ( )q y , information is lost. Considering the relation of mutual information ( , )I X Y  to 

relative entropy KLD , we obtain for two stochastic variables X and Y the following expression

( )
, 1

( , )( ( ), ( )) ( , ) ( ) ( ) ( , ) ln
( ) ( )

 
L

l l
KL l l

l l l l

p x yI p x p y D p x y p x p y p x y
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′
′

′= ′

 
= =  

 
∑

The Jensen-Shannon divergence (JSD) [46,47] is a smoothed and symmetrized version of the KLD. The square root of 

the Jensen-Shannon divergence is a metric often referred to as Jensen-Shannon distance JSd JSD= .

Let ( ), ( )p x q y be two realizations of discrete probability distributions P,Q. The ( )JSD P Q  then is defined as:

( )
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2 2 2 2
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 	                                     (16)

Where, 1 2 1/ 2w w= = and for the second equality N = 2, 1 2,P P Q P≡ ≡ , is used. Thus, the JSD measures the similarity 
of each of the two considered distributions to their corresponding mixture distribution. 

A comparison of the results of different similarity measures contained in the toolbox and the judgment of a human observer 
considering deviations between EMT data collected during a Breast Brachytherapy is discussed by Goetz [11].

RESULTS

The basic functionality of the EMTLAB toolbox is to provide a proper data processing chain for analyzing EMT data 
with PF, SSA, EMD and MEMD. Thus, the toolbox includes a group of MATLAB functions for applying PF, SSA 
[48,49], EEMD [15], MEMD [17] and the similarity measures PC, JS and KL.

The EMTLAB menu includes three main parts:

•	 The first part is used to set parameters and settings for the particle filtering. Afterwards, the single channel or 
multi-channel results can be visualized conveniently.

•	 The second part contains various methods to automatically remove artifacts from the particle filtered signal and, 
again, visualize the results.

•	 The third part offers the possibility to manually remove artifacts by the user through an interactive interface.

DATA STRUCTURE

The data processed by the toolbox has to have an array structure to be used in MATLAB. For each EMT measured 
channel, three fields exists: the  measured raw data points saved as EMT, the raw fiducial signals saved as FID and, 
finally, the dwell positions from the treatment plan, considered as basic knowledge and saved as BK. Therefore 
the input data are represented by a 6 M×  structure, where n is the number of measured channels. In Figure 8, the 
workspace in MATLAB is exemplified for some the test data. The structure is extended after particle filtering (PF) 
and after artifact removal (AR). The whole structure is saved in the input folder with the filenames extended with 'PF' 
or 'AR'.

The EMT measurements are saved as a 6 M×  matrix where M is the number of measured points (Figure 9). The six 
dimensions contain the following information:

1.	 dim.: time from start of the measurement in seconds
2.	 dim.: x-values according to the measurement defined origin
3.	 dim.: y-values according to the measurement defined origin
4.	 dim.: z-values according to the measurement defined origin
5.	 dim.: length how far the sensor was moved away from start
6.	 dim.: information of the status of the sensor ('stop', 'in' or 'out')
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The second input matrix in the structure is denoted FID, where the four dimensions are identical to the first four 
dimensions of the EMT matrix. The BK matrix has a dimension 3 P×  where P is the number of known dwell 
positions from the treatment plan, and the three dimensions reflect the spatial coordinates of the data points in an 
arbitrary coordinate system. 

RUN PARTICLE FILTERING AND VISUALIZE RESULTS

Figure 10 presents the main window of the EMTLAB toolbox. It contains the following topics:

State evolution model

The first part is used to perform the particle filtering. In the top box, named 'State evolution model', the user can set 
the order of the polynomial function as well as of the Fourier series to model the system dynamics. Furthermore, the 
number of measured points is fixed, after which the coordinate transformation of the time-dependent model should 
be updated. If the order is set to zero, either the temporal or the spatial model is set to be constant. To specify the 
uncertainty of the model, the standard deviation for each spatial direction, for the length of the sensor movement and 
for the time stamps can be inserted by the user also. Finally, the first measured position needs to be modeled to be able 
to estimate particles. Therefore, the number of FID data has to be larger than the EMT data, and for a certain number 
of points their spatial locations have to be specified for use in the first model estimates.

Figure 8: Screen shot of the MATLAB workspace of the 5 3 structure of the test data

Figure 9: Screen shot from the MATLAB workspace of the 6M matrix of the EMT test data
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Observation model 

In the second box, named 'Observation model', the following quantities can be set by the user: the standard deviation 
in each spatial direction, the total length of the sensor trajectory, measured from the starting point and the time stamp 
of the dwell positions. With these parameters, the accuracy of the measured data can be individually specified.

Particle tracking

In a third box, named 'Particle tracking', the sampling frequency of the EMT system, the number of particles and the 
distance between two possible sensor 'stop'-positions can be set. Moreover, the user can choose between the following 
three resampling schemes in a pop up menu:

•	 Systematic resampling

•	 Residual resampling

•	 Multinomial resampling

By pushing the button 'calculate', particle filtering is applied in parallel to the spatio-temporal sensor data of all 
channels, i.e., catheters, while the toolbox freezes its state. These calculations need some time, obviously; hence, 
intermediate results are stored in an output folder. The latter is in the same folder as the toolbox. After particle filtering 
the sensor EMT data from all catheters, the initial MATLAB structure becomes extended with the PF matrix and is 
saved in the Input folder under a filename with the extension .pf (Figure 11). 

Figure 10: The EMTLAB main user interface. This window is used for particle filtering. Through this window, users can choose the data, model 
settings and appropriate parameters for the filtering
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To visualize the results, the user has to push the button 'illustrate'. Then a window (Figure 11) will appear where he 
can choose if the estimated dwell positions of all catheters should be visualized together or only from one catheter 
(Figure 12). 

Artifact removal - Automatically 

Particle filtering usually cannot remove all signal artifacts. Those remaining can be removed either automatically 
or manually. To automatically remove these remaining artifacts, the signal can be decomposed by an EEMD or an 
MEMD. After the decomposition, those IMFs, which contain artifact signals, can be identified by choosing from 
one of three similarity measures. The user also can decide how often the signal should be decomposed by setting 
the 'repeat' parameter accordingly. In addition, a threshold can be defined for the similarity measure, which decides 
when an IMF should be deleted. The identification and elimination of artifact-related signal components will start by 
clicking on the button 'calculate'. Again, the interface will freeze its current status to prevent unintentional parameter 
changes (Figure 13).

By pushing the bottom 'illustrate', again the query window (Figure 11) will pop up. The toolbox automatically 
recognizes, if the artifact-free data, which is asked for, exist, and then either all catheters or a single one can be 
visualized as shown in Figure 13.

Artifact removal - Manually 

Figure 11: Screen shot from the query window where the channel to be visualized can be chosen

Figure 12: Illustration of all sensor trajectories, corresponding to the implanted catheters, in the top and a three dimensional plot of one catheter 
on the bottom
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Figure 13: Illustration of all artifact-removed sensor trajectories inside the catheters in the top, including one catheter for which no artifact could 
be identified automatically and the three dimensional plot of one catheter without artifact on the bottom

Another possibility to remove signal artifacts, remaining after particle filtering, is to manually select IMFs containing 
information artifacts, for example about breathing mode contributions to the EMT signal. By choosing a proper 
similarity measure 'by hand' and pushing the button 'calculate', a new window shows up. The interactive graphical user 
interface offers plenty of possibilities to analyze the signal as is illustrate in Figure 14. 

First of all, the data for signal analysis are loaded by clicking to the small folder symbol. A window from the file 
management will arise where the '*.mat' file can be selected. After choosing the data set, the particle filtered signal 
and the signal recorded from the fiducial sensors are visualized in two line plots in the middle and at the bottom, as 
illustrated in Figure 14. In the first line under the topic 'File Status', the following information is given:

•	 Filename of the selected data set

•	 The selected channel

•	 The spatial direction of the selected channel

The GUI has several buttons at the top which can be used at every editing step. The functionality of the single items 
are:

•	 Folder: load data set

•	 Disk: save work 

•	 Left arrow: undo last action

•	 Right arrow: redo action

•	 Loupe with plus: firstly push the button, then click in one of the line plots to zoom in

•	 Loupe with minus: firstly push the button, then click in one of the line plots to zoom out
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Figure 14: Screen shot from the user interface to remove artifacts manually

•	 Hand: firstly push the button, then click in one of the line plots to move the zoomed region

Further analysis can be done following the menu from top to bottom. Important for a proper data analysis is to do 
some signal editing at the beginning. By pushing the first button 'Remove artifacts', a small window will pop up, where 
an upper and lower limit for cutting the signal can be inserted. Border artifacts have a high influence on the EMD. 
Therefore it is very important to manually cut the signal to a length where no high amplitudes will remain at the border. 
After removal of the artifacts at the borders, for the MEMD it is very important that all the signals have the same 
length. For this reason, the signals could be extended by clicking onto the button 'Resize'. The signal will be repeated 
as long as the size of the longest channel signal will be reached. This step is not necessary in case of the EEMD. In the 
next step, high amplitude artifacts in the signal can be cleaned with SSA by pushing the button 'Clean with SSA'. A 
different number of embedding’s can be chosen for the sensor signal and the fiducial signal in an upcoming window. 
For the fiducial signal, a higher number of embedding’s should be inserted to have only the motion and no noise on 
the data. For the sensor data it is also important not to lose the lower frequency modes because of information about 
the stopping motions they contain.

In the second box, the 'Figure Settings' can be chosen. The user can select the channel and the spatial direction of the 
signal, which is visualized in the line plots on the left side. The plot will be updated immediately after selection.

In the following box, the algorithm which, should be applied, can be chosen. There are two possibilities; either 
performs an EEMD or a MEMD, where the second one needs more computational time than the first one. To start the 
calculation, the button 'Start calculation' has to be pushed. If the calculation is ready, the determined IMFs will arise 
as line plots on top. All calculated IMFs are illustrated by default. The number of IMFs depends on the length of the 
signal.

To have a closer look to the IMFs, and to find similarities, some IMFs can be selected by pushing the button 'IMF 
Settings'. In Figure 15 one determined IMF for the example data is illustrated in the GUI. As can be seen, the breathing 
mode artifact is contained in the sensor signal. In a separate window, the user can choose one or more IMFs, and 
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affirm the input by clicking to 'OK'. Afterwards, the upper line plot will show only the selected IMFs. To get rid of 
the signal components which contain the breathing signal, the 'Remove IMFs' button can be pushed to choose IMFs 
which should be neglected while reconstructing the signal. The resulting signal is then visualized in the lower line 
plot. These steps can be repeated until the sensor signal is free of artifacts. The clean signal can be saved by clicking 
on the disk symbol.

In the left corner an action log is shown, where all actions which were performed can be seen.

With this interactive user interface, the user is able to interactively analyze data and remove artifacts (Figure 15).

CONCLUSION

In this contribution, we present a new toolbox, called EMTLAB, which allows users to conveniently analyze non-
stationary time series data sets, as exemplified in case of EMT data, employing a signal tracking technique called 
Particle Filtering. Afterwards, the noise-reduced signal still contains outliers and large amplitude artifacts, which can 
be removed by applying a Singular Spectrum Analysis. Depending on the physical situation, one often observes a 
superposition of several motions, as exemplified with EMT data containing breathing mode contaminations. To get 
rid of such artifacts, an Ensemble Empirical Mode Decomposition or a Multivariate Empirical Mode Decomposition 
is applied to decompose the recorded signal, for example the EMT signal and the fiducial signal into Intrinsic Mode 
Functions. To identify similar signal components, three different similarity measures can be chosen either automatically 
or manually. The plug-in allows using any data visualization tool.
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