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1 Increases in Soil Sequestered Carbon under Conservation Agriculture Cropping 

2 Decrease the Estimated Greenhouse Gas Emissions of Wetland Rice using Life Cycle 

3 Assessment 

4 Abstract 

5 Wetland rainfed rice (Oryza sativa L.), which covers 60 million hectares in South Asia, 

6 contributes significantly to agricultural greenhouse gas (GHG) emissions. Mitigation 

7 strategies for GHG emissions by wetland rice production are of considerable importance. Life 

8 cycle assessment of GHG emissions can be used to assess the mitigation potential of new rice 

9 production practices such as seedling establishment on non-puddled soil. The aim of the 

10 study was firstly to determine the GHG mitigation potential of rain-fed rice production by 

11 changing to non-puddled transplanting and increased crop residue retention and secondly to 

12 determine the addition contribution of soil carbon sequestration to net GHG emissions with 

13 the altered crop establishment approach. A cradle to farm-gate Life Cycle Analysis was used 

14 to calculate GHG emissions associated with monsoon rice production in rice-based intensive 

15 cropping systems of Northwest Bangladesh. The non-puddled transplanting and low residue 

16 retention decreased the net life cycle assessment GHG emissions (CO2eq) by 31 % in 

17 comparison with the current puddled transplanting and increased crop residue retention.  By 

18 contrast, non-puddling with increased residue retention reduced emission of the net GHG by 

19 16 % in comparison with current puddling and low residue retention. Regardless of rice 

20 establishment practices, CH4 was the most prevalent GHG emission comprising 63 to 67 % 

21 of the total GHGs, followed by 17–20 % from CO2 emissions from the field. The GHG 

22 emissions tonne-1 rice after accounting for soil carbon storage ranged from 1.04 to 1.18 tonne 

23 CO2eq for non-puddling with low and increased crop residue retention, respectively. The 

24 inclusion of soil carbon in the footprint equation represents a 26 % reduction of estimated 

25 GHG emissions under non-puddled soil with increased residue retention. Overall, non-
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26 puddled transplanting with increased crop residue retention was an effective GHG mitigation 

27 option in wetland monsoon rice production because the increased yield and extra soil organic 

28 carbon storage more than offset its higher CH4 emissions than with low residue retention.

29

30 Key words: Barind area, global warming potential (GWP) mitigation, labour requirement, 

31 non-puddled transplanting, puddling, rice-based cropping systems. 

32 Abbreviations:

33 ACIAR–Australian Centre for International Agricultural Research

34 ADB–Asian Development Bank

35 CA–Conservation agriculture

36 C–Carbon

37 CH4–Methane

38 CO2–Carbon dioxide

39 CO2eq–Carbon dioxide equivalent

40 CT–Conventional puddling

41 DECC–Department of Energy and Climate Change 

42 DEFRA–Department for Environment, Food and Rural Affairs 

43 DSR–Direct-seeding of rice

44 Eh–Redox potential

45 EGP–Eastern Gangetic plains

46 GHG–Greenhouse gas 

47 GoB–Government of Bangladesh

48 GWP–Global Warming Potential

49 ha–Hectare

50 HR–High residue retention
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51 IEA–International Energy Agency

52 IFA–International Fertilizers Association 

53 IPCC–Inter–Governmental Panel on Climate Change

54 ISO–International Organization of Standardization

55 LCA–Life Cycle Assessment

56 LCI–Life Cycle Inventory

57 LSD–Least significant difference

58 LR–Low residue retention

59 MOEF–Ministry of Environment and Forest, Peoples Republic of Bangladesh

60 MoP–Muriate of potash

61 N–Nitrogen

62 N2O–Nitrous Oxide

63 NPP–Net primary production

64 SOC–Soil organic carbon

65 SPSS–Statistical Package for the Social Sciences 

66 t–Tonne

67 TOC–Total organic carbon 

68 UN-FCCC–United Nations Framework Convention on Climate Change

69 NP–Non-puddled transplanting of rice

70 NT–No-tillage

71 US$–United States Dollar

72 USA–United States of America

73

74
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75 1. Introduction

76 Wetland rice (Oryza sativa L.) production contributes more than half of the world’s 

77 agricultural greenhouse gas (GHG) emissions (The IPCC, 2007a), which correspond to 

78 around 15 % of the total enhanced global warming (IPCC, 2013). Intensive rice production 

79 under both irrigated (boro) and rainfed (aman season) conditions will strongly influence 

80 aggregate on-farm GHG emissions (Tilman et al., 2002) across South Asia. However, 

81 irrigated and monsoon rice cultivation vary in consumption of energy and grain yields and 

82 hence are likely to vary in emissions of GHGs. The input use for monsoon rice cultivation is 

83 also lower than the irrigated rice (Lal et al., 2017). Alam et al. (2016) conducted life cycle 

84 analysis of GHG emissions for rice production in the EGP for the irrigated boro season. 

85 Irrigation application contributed 15 to 25 % of the total on-farm GHGs of the boro rice crop 

86 while the rainfed monsoon rice crops in the EGP can save on energy and fuel consumption 

87 from irrigation (Lal, 2015). Although rice yield in the monsoon season is lower relative to 

88 yield in the irrigated boro season (Amin et al., 2015), the monsoon rice is a major contributor 

89 to food security in South Asia and accounts for more than half of annual production in 

90 Bangladesh.  However, it remains unclear how GHGs of rice production differ in monsoon 

91 rice production relative to rice growing in other seasons and how it differs with novel crop 

92 establishment practices compared to the conventional approach. Conservation agriculture 

93 (CA) cropping is a potential strategy for mitigating climate change in rice-based systems of 

94 the EGP (Alam et al., 2016). However, the GWP of the rainfed monsoon rice crop in the EGP 

95 using a CA approach has not been quantified using a life cycle analysis methodology.

96 Any strategies which would reduce both CH4 and N2O emissions from wetland soils by 

97 keeping redox potential within an intermediate range (Hou et al., 2012) can contribute 

98 significantly to mitigation of GWP by rice (Alam et al., 2016). Avoiding puddling of soils for 

99 rice establishment is an emerging form of CA that has outperformed conventional 
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100 transplanting into puddled soil in system productivity (Salahin, 2017), profitability (Haque et 

101 al., 2016), soil health improvement (Alam et al., 2018) and fuel consumption (Islam et al., 

102 2013). Non-puddling of soil also reduces labour and water requirements for rice 

103 establishment (Islam, 2017). However, rice crop establishment practices and residue return at 

104 an increased rate have in some cases increased emissions of agricultural GHGs (Naser, 2005; 

105 CH4 and N2O), while in other cases they diminished emissions of the major GHGs (Zou et 

106 al., 2005; Yan et al., 2005), so further clarification is needed on the effect of CA practices on 

107 GHG emissions from rainfed rice in the EGP. 

108

109 The measurement of GHG emissions of wetland rice production has been done by several 

110 researchers (Hayashi and Itsubo, 2005; Koga et al., 2006; Masuda, 2006). According to those 

111 studies, the driving factors for GHGs are provision of irrigation, production and delivery of 

112 inputs like N-containing fertilizers and chemicals related to crop protection and the usage and 

113 manufacture of machinery (Architectural Institute of Japan, 2003). According to Adhya et al. 

114 (2000), , the net CH4 emission from paddy fields was a major contributor to GHG emissions 

115 but that depends on the field water regime (Gathorne-Hardy, 2013) and the quantity of 

116 organic material in the soil (Yan et al., 2005). Kasmaprapruet et al. (2009) reported that 

117 during the life–cycle of rice, cultivation accounted for 95 % of GWP, while harvesting and 

118 seeding and milling processes contributed 2 % each of GWP. In a LCA study with the system 

119 boundary up to the farm-gate, Harada et al. (2007) reported that CH4 emission decreased by 

120 43 % and total emission diminished by 1.78 tonne CO2eq ha-1 with no-tillage rice relative to 

121 puddled rice. On the other hand, Eshun et al. (2013) and Woods et al. (2008) reported N2O 

122 accounted for the major share of GHG emissions for upland rice (70 %) and wheat 

123 production (80 %), respectively. The N2O emissions from flooded rice are significantly lower 

124 than from upland crops (Linquist et al., 2012). However, nitrification takes place in the 
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125 oxidised rhizosphere of rice roots and when coupled with denitrification processes in the 

126 reduced layer below the surface of flooded paddy soils result in losses of N2O (Patrick et al., 

127 1985). The relative contributions of CH4 and CO2 between irrigated and rained rice may also 

128 be different. 

129 For the EGP where rainfed monsoon rice covers over 60 million hectares, GHGs including 

130 pre-farm input related emissions, on-farm emissions and sequestered SOC have not been 

131 estimated for the rice crop. Khoshnevisan et al. (2014), Yusoff and Panchakaran (2015) and 

132 Jimmy et al. (2017) conducted LCA on rice production but they used secondary data from 

133 different sources which might not reflect the scenarios prevailing in the EGP. While Jimmy et 

134 al. (2017) conducted a study in a typical rice scenario of Bangladesh, the rice growing season 

135 was not specified. As summarised in Table 1, most of the LCA studies were conducted in 

136 rainfed conditions in other rice growing areas. By contrast, Bautista and Saito (2015) in 

137 Philippines and Thanawong et al. (2014) in North East Thailand conducted studies in both 

138 rainfed and irrigated conditions and showed that GHGs up to farmgate stage were lower 

139 under rainfed conditions. The LCA studies have examined the effects of rice crop 

140 establishment and production systems like direct water seeding, organic rice, environment-

141 friendly, dry and wet direct seeding, while Harada et al. (2007) contrasted no-tilling and non-

142 puddling practices for irrigated rice production with puddling practices (Table 1). In the 

143 study, the net GHG up to milling (brown rice) for puddling, no-tilling and non-puddling were 

144 0.94, 0.44 and 0.76 t CO2eq t-1 brown rice. The non-puddling practice adopted in the study of 

145 Harada et al. (2007) was conventional tillage and planting without puddling. The elimination 

146 of puddling, therefore, saved 0.18 t CO2eq t-1 brown rice. The emerging non-puddled 

147 transplanting of rice following minimal disturbance of soil (strip tillage) in a rice-based triple 

148 cropping system (where other upland crops are established by strip planting) has performed 

149 well in both biogenic GHGs and yield scale GHG reduction under flooded, irrigated 
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150 conditions (Alam et al., 2016). However, there is a need for accurate GHG emission estimates 

151 under rainfed conditions in the monsoon season when the rice field experiences variations in 

152 standing water depth. 

153 Table 1. Summary of life cycle greenhouse gas emission data of studies on rice production in 

154 the rice growing areas around the world

Study (ref.) Cultivation 

practices

Emission (t CO2eq t-1 

rice)

Yield (t ha-1) Growing 

environment

Alam et al. 

(2016), 

Bangladesh

Conventional 

puddling

Non-puddling

Total net life cycle GHG  

emissions to farm gate 

(1.11- non-puddling; 

1.57-puddling) 

6.36 (puddling)

6.68 (non-

puddling)

Irrigated (dry 

season)

Brodt et al. 

(2014), USA 

(California)

Direct water-

seeding practices

100-year GWP: 1.47 kg 

CO2eq t-1 of milled rice 

(to farmgate 1.01);

IPCC Tier 1 estimates: 

3.60 (to farmgate 1.09).

9.3 (dried 

paddy rice)

Continuously 

flooded (rain-

fed)

Hokazono 

and Hayashi 

(2012), Japan

Conventional, 

environment-

friendly and 

organic rice 

farming

Total net life cycle GHG 

of milled rice

Conventional-1.46

Environmentally 

friendly-1.58

Organic-2.0

Organic (3.38), 

environmentally 

friendly (4.44), 

and 

conventional 

rice (4.36), 

respectively

Rain-fed

Ecoinvent 

Centre (2008)

Existing/traditional Total net life cycle GHG 

to farm gate (0.47)

7.5 Rain-fed

Blengini and Traditional rice Total net life cycle GHG 6.1 Rice cultivated 
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Busto (2009), 

Italy

establishment to milling 2.52–2.66 without flooding 

and grown under 

a reduced water 

regime.

Thanawong et 

al. (2014), NE 

Thailand

Sowing by dry 

seeded and wet 

seeded/ 

transplanting 

(nursery)

Total net life cycle GHG 

to farmgate 2.97–5.55

2.36-3.02 Both rain-fed 

and irrigated 

systems

Wang et al. 

(2010), China

Traditional rice 

establishment

Total net life cycle GHG 

to farmgate (1.50)

8.8 Rice–wheat 

system where 

rice grown in 

monsoon season

Bautista and 

Saito (2015), 

Philippines

Traditional rice 

establishment 

Total net life cycle GHG 

to farm gate (0.93)

Total net life cycle GHG 

to farm gate (0.47)

4.21 (Irrigated)

2.93 (rain-fed)

Irrigated

and rain-fed

Harada et al. 

(2007)

Puddling

No-tilling,

Non-puddling

Net life cycle GHG to 

milling (Brown rice)

Puddling-0.94

No-tilling-0.44

Non-puddling-0.76

Puddling-4.43 

No-tilling-5.49 

Non-puddling-

5.63 

Irrigated

155 ᶲ Life cycle GHG-Life cycle greenhouse gas emission

156

157 Soil C sequestration counterbalances fossil fuel emission of GHGs (Lal, 2004). The practices 

158 of CA (minimum disturbance of soil, residue return of previous crops and growing diverse 

159 crops in rotation,) may also sequester SOC over time. Soil carbon sequestration accounting is 
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160 necessary for estimating the net contribution of the crop grown under novel crop or soil 

161 management practices that alter SOC over time otherwise there will be an overestimation of GHG 

162 emissions (Marble et al., 2011). The GHG estimation can additionally be made from a C budget 

163 after summing C inputs and outputs. To estimate exactly the impact of agricultural practices on 

164 the net GWP, soil C stock change should be quantified together with biogenic GHG (CH4 & N2O) 

165 fluxes. Therefore, the effects of the novel non-puddled rice establishment and related 

166 management practices on net GHG emissions from rice fields needed to be estimated, after 

167 accounting for both GHG emissions and the changes in SOC. 

168

169 Objectives of the study were to determine:

170 1. Greenhouse gas emissions (CO2eq) for 1 tonne of paddy rice production for CA practices 

171 compared to conventional practices. 

172 2. The hotspots and processes from cradle to farm-gate boundary of rainfed wetland rice 

173 production that were most responsible for the GHG emissions.

174

175 2. Materials and methods

176

177 2.1 Study site and experimental design

178 A summary of the study site and other details are given in Table 1. Further details of the 

179 study site and experimental design can be found in Alam et al. (2016).

180
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181 Table 2. Summary of the characteristics of the study site used to assess GHG emissions

Characteristics of study 
site

Details

Location Northwest Bangladesh at Alipur village, Durgapur upazilla, 

Rajshahi division

Texture class Silt loam

Soil type Calcareous Brown Flood Plain 

Subgroup (USDA) Aeric Eutrochrept

Parent material types Ganges river alluvium 
Location

(Latitude and longitude)

24° North latitude, 88° East longitude.

Landform Narrow terraced strips on the gently undulating hill slopes. 

Altitude 8 m above sea level

Rainfall 1047 to 1693 mm; lower than other parts of the country; 

concentrated in monsoon season (June to September) 

Dominant minerals Mica–vermiculite–smectite (interstratified) and kaolinite–

smectite (interstratified), Mica, Kaolinite (Moslehuddin et al. 

2009)

Drainage Moderate

182 mm=millimetre;  m=metre; USDA= United States Department of Agriculture

183

184 The field study covered the period from the July 19, 2016 to October 15, 2016 and tested 

185 conventionally puddled (CT) and non-puddling rice establishment practices, both with high 

186 crop residue retention (HR) and low residue retention (LR). The non-puddling practice of rice 

187 crop establishment was done following strip tillage and then flooding of soils for ~ 24 hours 

188 (Haque et al., 2016). The experiment was commenced in 2010 with four replicates of each 

189 practice in a split plot design (Islam, 2017). The low crop residue retention practices were 

190 based on farmers’ practice in the region where rice residue was retained at a low rate (20 % 

191 by height) while high residue retention involved retention of 50 % by height of standing rice 

192 residue. Residues of all the previous crops (lentil (Lens culinaris L.), mungbean (Vigna 

193 mungo L.) and mustard (Brassica juncea L.)) in the rotation were removed based on the 



ACCEPTED MANUSCRIPT

11

194 current farmers’ practice for LR. On the other hand, HR involved return of all residues of 

195 these crops to the respective sub plots. Lentil, mungbean and monsoon rice were grown on 

196 the field in a sequence for the first three years. Mustard, irrigated rice and monsoon rice were 

197 grown in a sequence in the following three years on the same field. Chemicals for crop 

198 nutrition and protection were characteristic of the practice followed in the locality and were 

199 recorded. 

200 Greenhouse gas emissions (CO2, CH4 and N2O) from soil were measured using chambers 

201 similar to the study of Alam et al. (2016). The gas samplings from each subplot are repeated 

202 every 7 days throughout the study period using a closed chamber system. The measurement 

203 frequency for GHGs was increased to 2 or 3 days after application of split doses of N.

204

205 2.2 Soil sampling method and soil C sequestration estimation

206 The carbon sequestered in soils due to the continual application of the treatments above was 

207 also included in the carbon accounting. Soils at 0-30 cm depth from each treatment were 

208 collected in cores to determine bulk density and analysed for SOC content. In this study, C 

209 sequestration estimation only uses data from crop 15 to crop 18 to represent recent trends 

210 because the rate of SOC accumulation during the initial years of CA establishment and after 

211 three years may not be the same. Soil C accumulation was calculated from the increase in 

212 SOC between crops 15 and 18. The total organic carbon (TOC) content in soil was calculated 

213 from the organic carbon content (wet oxidation method) (Alam et al., 2016), while the TOC 

214 stock was calculated according to Ellert and Bettany (1995). The details of C stock 

215 calculation can be found at Alam et al. (2018). The TOC was then divided by the number of 

216 crops to approximate the C accumulated over a single crop growing season. A comparative C 

217 balance was estimated by using C inputs and outputs. The C balance was calculated by 
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218 subtracting C loss through C gaseous emission (CO2 and CH4) and crop C harvest (grain 

219 consumption and residue removal) from net primary production (NPP) (Naser, 2005). 

220 C sequestration = NPP – (CO2 emission + CH4 emission + Grain C harvest + Straw C harvest 

221 + C in residue lost by decomposition)

222 Where, NPP (Net Primary Production) includes C in residue retained from the previous 

223 irrigated rice crop and total biomass C of monsoon rice including roots. 

224

225 The field study to determine the amount of irrigated rice residue remaining after the monsoon 

226 season was conducted using the mesh litterbag technique (Bocock and Gilbert, 1957). Known 

227 quantities of rice residues (30 g) and rice roots (30 g) were put in sealed non-degradable mesh 

228 (1 mm) bags that were placed on the soil surface. Bags were recovered after 88 days to 

229 determine the loss of mass assuming that all the mass lost from litterbags was mineralized 

230 (Curtin et al., 2008). Four randomly pre-selected hills of rice were sampled for root 

231 distribution at maximum vegetative stage. The roots were collected up to 50 cm depth. The 

232 samples for residue retention and removal were collected from three 1.5 m2 quadrats which 

233 were marked immediately after sowing. The collected samples were then oven dried at 65-

234 70°C and weighed for biomass calculation per hectare.  

235

236 2.3 GHGs measurement and gas flux calculations

237 A detailed description of gas sample collection for measuring GHG emissions is reported in 

238 Alam et al. (2016). The following variations were used for the present study. For measuring 

239 CH4 and N2O, triplicate transparent chambers made with 5 mm thick acrylic sheets with the 

240 dimensions of 60 cm × 30 cm × 100 cm (length × width × height) were installed in each plot. 

241 The measurements of soil CO2 efflux representing the product of heterotrophic respiration 
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242 were done with chambers of dimensions 30 cm × 30 cm × 60 cm (length × width × height) 

243 made with 3 mm thick acrylic sheets (Hutchinson and Livingston, 1993). 

244

245 The calculation of gas flux over the season was done in line with Yagi et al. (1991). It was 

246 assumed that GHG emissions fluctuated linearly during the period between gas sampling 

247 times. Then, the total GHG fluxes over the rice growing season were summed up from the 

248 average gas emissions as done by Alam et al. (2016) who interpolated average gas emissions 

249 between the sampling days.

250

251 2.4 Life cycle GHG emissions during monsoon rice production 

252 The LCA conducted was a single impact, focused LCA used only for investigating the 

253 emissions that are responsible for global warming impact (Finkbeiner et al., 2011).  The 

254 streamlined LCA was applied to account for GHGs resulting from the stages of ‘cradle–to–

255 farm gate’ of monsoon rice production (Todd and Curran, 1999). According to ISO 14040-44 

256 (2006), the four steps of the LCA approach that were considered for estimation of the GHG 

257 emissions are: setting of goal and definition of scope; preparation of life cycle inventory 

258 (LCI); life cycle impact assessment and; interpreting the results. The breakdown of GHG 

259 emissions in terms of inputs and outputs of the stages (i.e. cradle–farm gate) was analysed to 

260 identify hotspot(s), i.e. the inputs and outputs causing the most GHG emissions, and then to 

261 propose strategies to mitigate greenhouse gas emissions from monsoon rice production.
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262

263 Figure 1. System boundaries and input–output relationships for monsoon rice production

264

265 2.4.1 Goal setting and scope definition

266 The emission of GHGs associated with the production of monsoon rice was calculated for 

267 four cropping practices: i) Transplanting of rice following puddling of soil with low residue 

268 retention (CTLR), or ii) with high residue retention (CTHR); iii) non-puddled transplanting 

269 with low residue retention (NPLR) or iv) with high residue retention (NPHR). The system 

270 boundary of the study was determined up to farm-gate (pre-farm and on-farm stages) of the 

271 production of monsoon rice (Figure 1). The functional unit of the LCA is one tonne of 

272 monsoon rice grain (paddy rice). A mass balance has been conducted to estimate the inputs 

273 and outputs per tonne production of monsoon rice grain during pre-farm and on-farm stages, 

274 which is also known as a life cycle inventory. The GHGs associated with the pre-farm 

275 activities were estimated by multiplying the emission factors (EF) with the amount of inputs 

276 required for their production and transportation to the field of the current study, while GHGs 

277 emanated by on-farm activities are outputs associated with operating farm machineries and 

278 applying chemicals. The total GHG emission from the production of one tonne of monsoon 

279 was calculated by adding emissions from both the stages (pre- and on-farm). 
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280 2.4.2 Life cycle inventory 

281 The factors related to the production of each tonne of rice (e.g., chemicals for crop nutrition 

282 and crop protection, machinery) were used to develop a complete LCI, which is a pre-

283 requisite to estimate the emitted GHGs for the manufacturing, transport and use of inputs and 

284 outputs. Soil emissions (CO2, CH4 and N2O) are positive outputs and soil C-sequestration is a 

285 negative output of pre– and on–farm stages (Table 3) of monsoon rice production. 

286 2.4.2.1 Inputs and outputs 

287 For the rainfed rice cultivation under both the novel non-puddled and conventional puddled 

288 transplanting system, the insecticides, fungicides and herbicides used were tabulated (Table 

289 3). The fertilizers applied for crop production are also listed in Table 3. Regarding the 

290 fertilizers, urea, triple superphosphate (TSP), murate of potash (MoP), gypsum, zinc sulphate 

291 monohydrate and boric acid were applied as sources of N, P, K, S, Zn and B nutrients. They 

292 were considered as inputs. Light-duty diesel trucks capable of carrying ca. 5 t were used for 

293 carrying inputs in Bangladesh. Trans-oceanic freighters were used for inputs imported from 

294 other countries (Table 3). All distances of the system inputs are specifically shown in Table 

295 3. Additionally, the details of inputs can be found in Table 3-4. The three major greenhouse 

296 gases (CO2, CH4 and N2O), the savings of C in soil and the harvested products (grain and 

297 residues) were considered as the outputs of the production systems and of the study.

298 Table 3. Life Cycle Inventory of farm activities, inputs and outputs for the production of one 

299 tonne of rice on the Eastern Gangetic Plain in the monsoon season

Inputs (units) Rice establishment treatments

 CTLRa CTHRb NPLRc NPHRd

Pre–farm 
a) Seeds and chemicals (kg tonne-1 of rice production)   

1. Seeds 9.88 9.45 9.3 8.53

2. Nitrogen 42.86 40.88 40.29 36.93

3. Phosphorus 24.18 23.06 22.73 20.83
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4. Potassium 29.67 28.3 27.89 25.57

5. Sulfur 13.19 12.58 12.4 11.36

6. Zinc 1.76 1.68 1.65 1.52

7. Boron 0.55 0.52 0.52 0.47

8. Fungicides 0.35 0.34 0.33 0.3

9. Herbicides 0.4 0.38 0.37 0.34

10. Insecticides 0.55 0.52 0.52 0.47

b) Transport (km for road + t–nm for sea)1

1. Urea 86.8 82.8 81.6 74.9

2. Triple superphosphate 114.8+ 752 109.6+717 108.0+707 99.1+648

3. Muriate of potash 114.8+ 525 109.6+500 108.0+494 99.1+453

4. Gypsum 114.8+ 525 109.6+500 108.0+494 99.1+453

5. Zinc 114.8+ 525 109.6+500 108.0+494 99.1+453

6. Boric acid 114.8+ 366 109.6+350 108.0+345 99.1+316

7. Insecticides 91.65429 87.42704 86.18802 78.94545

8. Fungicides 27.28344 28.2171 33.95192 37.72218

9. Herbicides 114.8+ 239 109.6+227 108.0+225 99.1+206

c) Farm machinery (US$ tonne-1 of rice production)
1. Power Tiller/Versatile Multi–

crop Planter

0.14 0.14 0.06 0.06

2. Harvester 0.02 0.02 0.02 0.02

d) Farm machinery transport (km for road + t–nm for sea)
1. Harvester 114.8+ 366 109.6+350 108.0+345 99.1+316

2. Power tiller 114.8+ 366 109.6+350 − − 

3. VMP  − − 108.0+345 99.1+316

On–farm (litre tonne-1 of rice production)
1. Power tiller/Versatile Multi–crop 

Planter

3.3 3.2 1.3 1.2

2. Harvester 21.8 24.2 25.4 30.2

Rice yield (tonne ha-1) 4.55 4.77 4.84 5.28

300 1t–nm=tonne–nautical mile; apuddled transplanting with low residue retention (CTLR); 
301 bpuddled transplanting with high residue retention (CTHR); cnon-puddled transplanting with 
302 low residue retention (NPLR) and dnon-puddled transplanting with high residue retention 
303 (NPHR)
304
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305 Table 4. Different inputs use for rainfed rice cultivation, their emission factors and sources of 

306 data   

Input Emission 
factor Comment/References

Fertilizer

Urea-N 5.5 kg 
CO2/kg N Alam et al., 2016

TSP-P 0.34 kg 
CO2/kg P Alam et al., 2016

MoP-K 0.58 kg 
CO2/kg K Alam et al., 2016

Gypsum-S 0.3 kg 
CO2/kg S Wells, 2001; Saunders et al., 2006

Herbicides

Glyphosate 33.4 kg 
CO2/kg a.i. Bosch and Kuenen, 2009; Brander et al., 2011

Refit 50EC 16.1 kg 
CO2/kg a.i. Bosch and Kuenen, 2009; Brander et al., 2011

Fungicides
Amistar 250EC 
(Propiconazole)

17.5 kg 
CO2/kg a.i. Lal, 2004

Tilt 250EC 
(Propiconazole)

17.3 kg 
CO2/kg a.i. Lal, 2004

Rovral 50WP 
(Ipridione)

16.9 kg 
CO2/kg a.i. DEFRA, 2008

Insecticides
Malathion 
(Organophosphorus)

17.7 kg 
CO2/kg a.i. Alam et al., 2016

Sumithion 
(Organophosphorus)

17.7 kg 
CO2/kg a.i. Alam et al., 2016

Wonder 5WG 
(Emamectin 
Benzoate)

17.7 kg 
CO2/kg a.i. Alam et al., 2016

Light-duty diesel 
truck 

2.85 kg 
CO2/L

HBEFA, 2014

Vehicle
Trans-oceanic 
freighter 

14.5 g CO2/t-
nm Spielman et al., 2007

Electricity Electricity 
Generation

0.64 kg 
CO2eq kWh-1 UN–FCCC, 2017

Machinery Farm machinery 
production

0.15 kg 
CO2eq US$-1 Suh, 2004

Fuel Fuel use (Diesel) 3.1 kg CO2/L Lal, 2004
307

308
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309 2.4.2.2 Pre–farm emissions

310 Greenhouse gas emissions of activities related to input production (chemicals, energy and 

311 machinery) and their delivery to the field were estimated. Based on the LCA study conducted 

312 for boro rice production, indirect emissions from manufacturing of farm machinery were 

313 calculated by following the database of inputs and outputs (Suh, 2004) as described by Alam 

314 et al. (2016). The EF of farm machinery production (0.15 kg CO2eq US$-1) was multiplied by 

315 the cost of machinery manufacture for each functional unit determined according to 1998 

316 US$ value (WB, 2014). 

317

318 The chemicals used for rice production following the establishment practices under study 

319 were recorded per tonne of rice production. These EFs were sourced from Alam et al. (2016) 

320 as they represent the general condition in Northwest Bangladesh. The EFs of crop nutrients 

321 used from Alam et al. (2016) were for fertilizers (urea, TSP), crop protection insecticides 

322 (Malathion™, Sumithion™), fungicides (Amistar™ and Tilt™) and herbicides (Refit™ and 

323 glyphosate). For the insecticide, Wonder 5WG (Emamectin Benzoate), and fungicide, Rovral 

324 50WP (Ipridione), the local EF was determined from the embodied electrical energy 

325 consumption (DEFRA, 2008) of these chemicals, multiplied by the local EFs for electrical 

326 energy production (Brander et al., 2011). The GHG EFs of urea, TSP and pesticide 

327 production were sourced from the work of Alam et al. (2016) who considered the EF for 

328 electricity generation was 0.64 kg CO2eq kWh-1 following UN–FCCC (2017). The source 

329 countries of imported inputs were collected from Bangladesh Business News (2013), while 

330 the EFs of the inputs imported to Bangladesh (urea, TSP, MoP, gypsum, zinc sulphate 

331 monohydrate and boric acid) were obtained from Alam et al. (2016) as the EF values 

332 represent the overall situation of the study area. 

333
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334 The GHG emissions of each mode of transport associated with this rice production were 

335 obtained from the database of HBEFA (2014). The modes of transportation include the 

336 transportation by sea (trans-oceanic bulk cargo carrier) and trucks (3–7 tonnes) for road 

337 transport. The emission of GHGs for input deliveries from factory to crop field are expressed 

338 in terms of tonne kilometres (tkm) travelled by road and tonne-nautical miles (t-nm) travelled 

339 by sea. The distance between the paddy field and its source was multiplied by the weight of 

340 input to determine ‘tkm’ (Alam et al., 2016). 

341 2.4.2.3 On–farm emissions

342 Greenhouse gas emitting activities in the monsoon rice season start with the preparation of 

343 land by a wet tillage (crop establishment) operation, include soil emissions after application 

344 of chemicals for crop nutrition and protection and intercultural operations and finally fuel use 

345 for harvesting. For the rain-fed monsoon season, the rice crop required no irrigation so 

346 required no use of diesel for operating a pump. 

347

348 Farm machinery–In the case of the conventional system, a rotary tiller was used for land 

349 preparation and for the puddling of soil, and a strip planter was used to prepare strips for 

350 transplanting rice crop into non-puddled soil (Haque et al., 2016). A harvester of 9 kW was 

351 used for harvesting rice. Fuel consumption in terms of litres per hectare by the farm 

352 machinery was measured during farming operations and was dependent on area of land, 

353 operating width of the machinery (tiller and harvester) and the number of machinery passes 

354 across the land (Alam et al., 2016). The EFs of fuel combustion for the usage of light 

355 machinery (≤500kW) were collected from Suh (2004) and these values were used to calculate 

356 GHG emissions. The light machinery considered for this experiment is commonly used in the 

357 EGP region. The fuel use (litres ha-1) was based on machinery usage in the region (for 
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358 Versatile Multi-crop Planter 1.25, for rotary tiller 3.22 to 3.32 and for harvester 1.82 to 2.11 

359 L t–1). 

360

361 Soil – The major GHGs (CO2, CH4 and N2O) emitted directly from soil of the experimental 

362 site were measured as detailed in the GHGs measurement and gas flux calculations section 

363 above. The emissions of N2O that occur indirectly via volatilization of ammonia and leaching 

364 of nitrate were excluded from the study owing to lack of data. In addition for this soil, 

365 occurrence of a hard pan beneath the plough layer (Islam, 2017) restricts leaching loss of N 

366 from the root zone (Patil and Das, 2013) while continuous standing water in the field 

367 (Appendix 1) lowers the risk of synthesis of N2O via denitrification (Dobbie and Smith, 

368 2006).

369

370 2.4.3 Impact assessment

371 A global warming impact value for the 100-year time horizon was used to estimate the CO2 

372 equivalent GHG emissions for the production of each functional unit (1 tonne) of monsoon 

373 rice. The conversion factors used for converting CH4 and N2O to the baseline unit, CO2, were 

374 25 and 298 (IPCC, 2007b). To calculate the total CO2eq emitted per hectare (kg CO2eq ha–1), 

375 the CO2eq emissions were summed for the studied rice season covering the period from late 

376 June to October. Finally, the net GHGs were calculated by subtracting sequestered C in the 

377 monsoon rice season from the total GHGs in order to obtain a net GHG value for production 

378 of each unit (one tonne) of monsoon rice. Excel spreadsheet was used to multiply LCI inputs 

379 with the corresponding EFs to determine the overall global warming intensity (Engelbrecht et 

380 al., 2015). 

381

382
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383 2.5 Statistical analysis

384 The effects of soil disturbance for crop establishment and residue return on the CO2eq 

385 emission from pre-farm, on-farm, total and net GHG emissions and on soil sequestered 

386 carbon were statistically analysed with a two–factor split plot analysis of variance by using 

387 SPSS software v21 (SPSS Inc., Chicago, IL, USA). Least significant difference (LSD) values 

388 were calculated to test differences among means at 5 % significance level. 

389

390 3. Results

391 The study estimated life cycle assessed GHG emissions for rainfed rice crops with and 

392 without accounting for soil C sequestration recorded under four practices over five years. The 

393 results covered single GHG emissions, overall GHG emissions, the implications of the 

394 practices employed on GHGs and their hotspots and processes responsible for major GHG 

395 contributions. 

396

397 3.1 Greenhouse gas emissions under on-farm stage

398 Non-puddled rice crop establishment regardless of crop residue retention practices reduced 

399 on-farm emissions of CO2, CH4 and N2O (P<0.05) under rainfed conditions. The non-

400 puddling practice with low crop residue retention had the lowest emissions of all three 

401 important GHGs (CO2, CH4 and N2O). The conventional puddling with increased residue 

402 retention practice had 24, 52 and 18 % higher CO2 emission than CTLR, NPLR and NPHR, 

403 respectively. The CH4 emission from soil under CTHR was 31, 56 and 22 % higher than 

404 emissions from soils under CTLR, NPLR and NPHR, respectively. On the other hand, the CT 

405 with LR and HR had similar N2O emissions (P>0.05), while NP with LR and HR also had 

406 similar emission (P>0.05). The CT practice irrespective of the residue retention levels emitted 

407 higher amounts of N2O than in soils under NP with LR and HR (P<0.05) (Figure 2).

408
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409

410

411

412 Figure 2. Effect of rice establishment techniques and crop residue retention on the on-farm 

413 emission of greenhouse gases (p < 0.05). Bars with the same letter above them are not 

414 significantly different at p < 0.05. SE (±) for CO2, CH4 and N2O emissions are 35.9, 6.60 and 

415 0.041. [Legend: CT - Conventional puddled transplanting of rice; NP – non-puddled 

416 transplanting of rice; LR - Low residue retention level; HR - Increased residue retention 

417 level].
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418

419 3.2 GHG emission for monsoon rice production under crop establishment and residue 

420 return practices 

421 Non-puddling with low and increased residue return (NPLR and NPHR) had a lower carbon 

422 footprint than conventional puddling with low and increased residue retention (p < 0.05) 

423 (Figure 3, 4 and 5A). Among the studied practices, CTHR led the total GHG emissions for 

424 the production of a single tonne of monsoon rice. Non-puddling of rice with low residue 

425 retention saved 47 and 20 % GHG emissions relative to CTHR and CTLR, respectively, 

426 while with NPHR savings were 26 % relative to CTHR. Non-puddling with HR and CTLR 

427 had similar total GHGs (p > 0.05) (Figure 4 and 5A). However, NPLR reduced CH4 

428 emissions associated with the aerobic digestion of residues and thereby on–farm emissions. 

429 While NPHR outperformed NPLR with regard to yield, total GHG emitted for the production 

430 of each tonne of rice in NPHR exceeded that with NPLR. The CTLR and NPHR had 

431 statistically similar on–farm emissions of GHGs (p > 0.05; Figure 3). The pre–farm emission 

432 in NPHR, CTHR and CTLR was similar (p > 0.05) but NPHR had significantly lower 

433 emissions than CTLR (17 %) (p < 0.05) (Figure 6). 

434 On the whole, the emissions during pre–farm stages represented only 14-22 % of the on-farm 

435 emissions. 

436
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437
438 Figure 3. On-farm life cycle greenhouse gas (GHG) emissions produced per season for one 

439 tonne of rice production as influenced by crop establishment techniques and residue retention 

440 (p<0.05). Bars with the same letter above them are not significantly different at p<0.05. 

441 Comparisons are made among emissions converted to CO2eq according to global warming 

442 potentials of CO2, CH4 and N2O over 100-year time horizons. [Legend: CT–Conventional 

443 puddled transplanting of rice; NP–Non-puddled transplanting of rice; LR–Low residue 

444 retention level; HR–Increased residue retention level]. 

445

446 3.3 GHG emissions from pre–farm and on–farm stages

447 Pre–farm stage: The NPHR had 17 %, 11 %, 9 % lower pre-farm emissions than CTLR, 

448 CTHR and NPHR, respectively, due to increased yield compared to the input requirement (p 

449 < 0.05; Figure 6). The production of inputs contributed 13 %, 11 %, 15 % and 12 % to the net 

450 GHG emissions during the pre-farm stage for CTLR, CTHR, NPLR, and NPHR, respectively 

451 (Figure 6). Of all these chemical inputs, pesticides and fertilizer inputs were the main 

452 contributors (i.e. > 90 %) of pre-farm GHG emissions. Among different activities, the 

453 manufacture and transport of inputs (chemicals) to the field claimed the maximum share, 

454 respectively. And among the different inputs, fertilizer provision up to field made up the 

455 highest portion of the emissions at the pre-farm stage.  

456

457 On–farm stage: The GHGs emitted from monsoon rice cultivation at the on-farm stage under 

458 different practices contributed the major part of total GHG emissions. The NPLR had the 

459 lowest proportion of on-farm emissions, followed by CTLR and NPHR, respectively. Due to 

460 increased methane emissions, the CTHR had the highest emissions from soils under monsoon 

461 rice cultivation. The on-farm stage accounted for 81 and 78 %, for CT and NP with LR, while 

462 the contributions by CTHR and NPHR amounted to 86 and 84 % of the total GHG emitted 
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463 during monsoon rice production, respectively (Figure 4). The GHGs emitted by CTLR 

464 practice at on-farm stage were not significantly different from NPHR (p > 0.05), in spite of 

465 keeping decreased residue in the field (Figure 3). The NPLR had greatest saving for total 

466 GHG emissions compared to other tillage and crop residue retention combinations. 

467

468

469 Figure 4. Greenhouse gas emissions produced by sectors per season for one tonne of rice 

470 production as influenced by crop establishment techniques and residue retention (p<0.05). 

471 Comparisons are made among emissions converted to CO2eq according to global warming 

472 potentials of CO2, CH4 and N2O over 100-year time horizons. [Legend: CT–Conventional 

473 puddled transplanting of rice; NP–Non-puddled transplanting of rice; LR–Low residue 

474 retention level; HR–Increased residue retention level]. Columns with the same letter are not 

475 different from each other at P < 0.05 level of significance.

476

477 3.4 Hotspots of the LCA of monsoon rice 

478 Methane emission from wetland rice fields was the most prevalent GHG measured in the 

479 study and accounted for the foremost portion of the total GHG emission (Figures 3–6). The 

480 share of CH4 was 62 – 63 % for LR, and 66 – 67 % for HR practices. Carbon dioxide 

481 emissions from paddy fields (17-18 %) followed on-farm CH4 emission, and were followed 
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482 by production of inputs (10-15 %). Of the total on-farm emissions, CO2 emissions comprised 

483 about 17–21 %. The N2O emissions made up only 2–3 % of the total GHGs (Figures 3–6). 

484 The farm machinery used for land preparation and harvesting accounted for the lowest part 

485 (0.5–1 %) of the GHGs (Figure 4). Among the total pre-farm emissions, manufacturing inputs 

486 and their delivery to rice fields made up about 80 and 20 %, respectively. 

487

488

489



ACCEPTED MANUSCRIPT

27

490
491
492 Figure 5. Total (A-top) and net GHG (B-middle & C-below) emissions produced per season 

493 for one tonne of rice production as influenced by crop establishment techniques and residue 

494 retention (p<0.05). Net GHGs were calculated by subtracting the CO2eq for soil organic 

495 carbon sequestered at 0-30 cm of soil during the monsoon rice crop, and by subtracting C 

496 sequestration (see Materials and methods for the methods of calculation). Bars with the same 

497 lower case or capital letter above them are not significantly different at p<0.05. Comparisons 

498 are made among emissions converted to CO2eq according to global warming potentials of 

499 CO2, CH4 and N2O over 100-year time horizons. Legend: See Figure 4.

500

501 3.5 Overall GHG emissions

502 Total GHGs emitted per t of monsoon rice production differed among NPLR, NPHR, CTLR 

503 and CTHR practices (Figures 5–6). The total GHG emissions for the system boundary (from 

504 both the stages) were 1.48, 1.82, 1.23 and 1.49 tonne CO2eq t-1 monsoon ice production under 

505 CTLR, CTHR, NPLR and NPHR, respectively. When increased C storage in soil was 

506 included in the accounting, the net GHGs t-1 of monsoon rice production were reduced to 

507 1.36, 1.58, 1.04 and 1.18 tonne, respectively. Similarly, when C sequestration was estimated 
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508 by subtracting all C losses from NPP, the net GHGs t-1 of monsoon rice production were 

509 1.69, 1.75, 1.22 and 1.24 tonne CO2eq.

510
511
512 Figure 6. Pre-farm life cycle greenhouse gas (GHG) emissions produced per season for one 

513 tonne of rice production as influenced by crop establishment techniques and residue retention 

514 (p<0.05). Bars with the same letter above them are not significantly different at p<0.05. 

515 Comparisons are made among emissions converted to CO2eq according to global warming 

516 potentials of CO2, CH4 and N2O over 100-year time horizons. [Legend: CT–Conventional 

517 puddled transplanting of rice; NP–Non-puddled transplanting of rice; LR–Low residue 

518 retention level; HR–Increased residue retention level]. 

519

520 4 Discussion

521 The present study examined the performance of the novel non-puddled rice transplanting practice, 

522 developed to fit CA in rice-based triple cropping systems in the EGP, in terms of reducing GHG 

523 emissions from rainfed wetland rice field while accounting for effect of increased C storage in 

524 soil on reducing GHGs. In addition, the hotspots (stages or steps) identified from the rainfed 

525 rice LCA were compared with the results from similar studies. A key finding was that 

526 inclusion of soil C sequestered by the CA practice was essential to make an accurate estimate 

527 of the net GHG emissions. 
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528

529 4.1 GHG emissions from monsoon rice production 

530 Non–puddled soil for monsoon rice establishment with LR and HR had the lowest GHGs 

531 over the 100-year time horizon (both total and net) per tonne of monsoon rice produced 

532 (Figures 4 and 5). The decrease relative to current practice (CTLR) can be ascribed to 

533 minimal disturbance of soil, relatively higher soil redox potential (Eh), lower standing water 

534 depth (Appendix 1), less CO2 and CH4 produced (Figure 2 and Shao et al., 2017) and greater 

535 accumulation of SOC (Alam et al., 2018). The total GHG in NPHR exceeded that with 

536 NPLR, probably because the effects of extra CH4 emissions in NPHR exceeded the effects of 

537 yield benefits of the practice with the increased residue retention. The NP in the present study 

538 deployed minimum soil disturbance, maintained higher Eh values and accordingly, restricted 

539 CH4 synthesis and emissions as also found with irrigated rice (Alam et al., 2016). Crop 

540 establishment practices and residue return had varied Eh values which ranged from –200 mV 

541 in CTLR to –300 mV in CTHR and –150 mV in NPLR to –250 mV in NPHR (data not 

542 presented here). The higher Eh values in non-puddled soils may oxidise CH4 at an increased 

543 rate and reduce its emission by promoting the activities of methane-oxidising bacteria (le Mer 

544 and Roger, 2001). The higher total and net GHGs under CTHR and CTLR practices can be 

545 attributed to heavy disturbance of soils by tillage followed by puddling of soil which 

546 exacerbates the anaerobic conditions and resulted in a lower redox potential of soil (Alam et 

547 al., 2016). The anaerobic, saturated rice soil conditions that develop within a few hours after 

548 flooding (Bodelier, 2003) favour the increase of methanogenic bacteria numbers and 

549 activities and production of by–product CH4 through the microbial anaerobic respiration. The 

550 increased residue incorporation under conventional puddling of soils facilitates the supply of 

551 C substrate to methanogens and also stimulates the organisms to grow luxuriantly. Yao et al. 

552 (1999) also found that the application of C-rich straw helps methanogens to survive and 
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553 lowers redox potential in soils. These are the ideal conditions for the organisms to increase 

554 CH4 emission. 

555

556 Strip planting and non-puddling of soils together with increased crop residue retention over 5 

557 years sequestered more C in soil (Alam et al., 2018). The increase in SOC can be attributed 

558 to: surface retention of crop residues of three crops per year as cover and the increase in C 

559 addition due to increased biomass production; decreased disturbance of SOM and plant root 

560 residue; lower CO2 emissions and; crop sequences with diverse species producing different 

561 residue qualities (Wang et al., 2012). Hence, the lower methane emissions coupled with 

562 increased C sequestered in soils are the principle causes for lower GHGs (both total and net) 

563 for 1 tonne of rice production under NPLR and NPHR practices (Figures 4 & 5).

564  

565 The emissions of monsoon rice during the pre-farm stage were significantly lower than many 

566 other studies conducted in rice growing regions of the world. The reasons behind the low 

567 emissions in our study were the absence of irrigation due to regular rain throughout the 

568 season (Zou et al., 2012), the requirement for lower inputs of chemical inputs (fertilisers, 

569 fungicides, insecticides), use of natural gas as the raw material for urea fertiliser production 

570 and electricity generation within Bangladesh and light vehicle use for transportation of the 

571 inputs to the paddock (Alam et al., 2016). The lowest pre-farm emission per tonne of grain 

572 found in NPHR can be attributed to higher grain yield of NPHR. Though CTHR outperforms 

573 NPLR in case of rice crop production, the pre-farm emission under the latter practice was 

574 lower than the former (Figure 6). This can be attributed to lower fuel input requirements for 

575 NPLR and NPHR practices (Hossen et al., 2018) resulting in lower pre-farm stage emissions 

576 of GHG. The emissions of GHG at pre-farm stages of the current study were comparable to 

577 those reported by Xu et al. (2013) and Blengini and Busto (2009), but higher than those 
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578 obtained by Alam et al. (2016) and Thanawong et al. (2014) and Wang et al. (2010). In the 

579 case of irrigated boro rice (Alam et al., 2016), higher yield of irrigated rice (6.2 to 6.7 t ha-1 

580 versus  4.6 to 5.3 t ha-1 in the present study)  decreased pre-farm emission per tonne of rice. 

581 The yield of rice during the monsoon season in South Asia is low despite the use of carbon-

582 intensive inputs due to low solar radiation. The pre-farm emissions in the present study in the 

583 monsoon season were 40-70 % higher than the similar study conducted in irrigated season 

584 (Alam et al., 2016). Brodt et al. (2014) reported higher rice grain yield (9.3 Mt ha-1) was 

585 associated with lower pre-farm emission than the case reported by Wang et al. (2010) which 

586 despite a yield of 8.8 Mt ha−1 used more than double the inputs. Fusi et al. (2014) in a LCA 

587 study found that production of pre-farm inputs mainly fertilisers, deliveries of the inputs to 

588 the field and input use per tonne of harvest accounted for 30–40 % of the total GHGs. The 

589 result of the current study also contrasted with the GHG results of Blengini and Busto (2009) 

590 where the pre-farm stage was energy intensive due to the use of heavy duty vehicles for 

591 transporting inputs, the use of high levels of fertilisers and pesticides and electricity 

592 generation from diesel fuel as the feed–stock which consequently contributed to high 

593 emissions. 

594

595 As the present study was conducted in the monsoon season, the fuel consumption during on-

596 farm activities was limited to land preparation and harvesting. The factors influencing the on-

597 farm GHGs from field crop production include crop establishment practices (Alam et al., 

598 2016), SOC (Duby and Lal, 2009) and N nutrient status (Gupta et al., 2009) and irrigation 

599 provision (Tarlera et al., 2016). Kasmaprapruet et al. (2009) found cultivation to be 

600 responsible for most of the GWP (almost 95 %), while harvesting and seed processing 

601 contributed 2 % each of a GHG of rice. In the irrigated boro rice study by Alam et al. (2016), 

602 the GHG emissions from fuel use for irrigating the field and preparing land and harvesting 
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603 the crop comprised 14–19 % of the emissions from the on–farm life cycle stage. That 

604 irrigation provision for rice production consumes most energy was also found by Islam et al. 

605 (2013). On the contrary, the present study did not require any irrigation application and saved 

606 those GHGs. But the present study contrasted with the study by Thanawong et al. (2014) who 

607 found almost double the amount of CH4 emissions with irrigated rice relative to rain-fed rice 

608 and hence irrigated rice produced higher emissions at on-farm stage compared to rainfed rice. 

609 While the present rice crop was grown in the monsoon (rainy) season and reliant on rainfall 

610 only, the on-farm GHG could be substantially increased if periods of low in-season rainfall 

611 necessitated the running of an irrigation pump. 

612

613 4.2 Identification of hotspots

614 In the present monsoon paddy rice LCA, the key hot-spots in order of priority were on–farm 

615 methane emissions (62.5 to 66.6 %), CO2 emissions from soils due to heterotopic respiration 

616 (16.9 to 18 %), production and transportation of inputs and N2O emissions from the field 

617 (Figure 4). Alam et al. (2016) and Blengini and Busto (2009) in their LCAs of rice in the 

618 EGP-Bangladesh and Italy, respectively, recognised that CH4 emissions from soil and CO2eq 

619 emissions by farm machinery operations and fertilizer applications during on-farm stage of 

620 LCA boundary were the leading hotspots, in that order of priority. 

621

622 The hotspots which the present study found are similar to the LCA studies conducted for 

623 irrigated rice in the EGP (Alam et al., 2016) and for monsoon rice in Indo-Gangetic Plain 

624 (Pathak and Wassmann, 2005) where CH4 contributed around 60 % of GHG emission. There 

625 is also a body of LCA studies conducted on the cultivation of wetland rice in temperate 

626 climates in Japan (Hatcho et al., 2012), in France (Drocourt et al., 2012) and Italy (Bacenetti 

627 et al., 2016) that identified CH4 emission during the on-farm stage as the major GWP 
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628 contributor. Even though the studies mentioned above identified CH4 as the main source of 

629 GHG, the current assessment had higher total CH4 emissions relative to other assessments 

630 (63–67 % of total GHG or 0.93–1.2 tonne CO2eq per tonne rice production in CTLR and 

631 CTHR, respectively; 63 % of total GHG or 0.78 tonne CO2eq in NPLR and 66 % of total 

632 GHG or 0.99 tonne CO2eq in NPHR for each tonne rice production). The present study 

633 verifies that CH4 synthesised through the process of organic matter decomposition under 

634 anaerobic soil condition occurs in the profile of non-puddled submerged fields as well as in 

635 puddled soils, and regardless of retained residue levels. Alternative mitigation options for 

636 CH4 emissions include DSR under conventional tillage (CT-DSR) or zero tillage-DSR under 

637 dryland soil condition which have the potential of reducing CH4 emissions, while favouring 

638 CH4 oxidation, though such soil conditions also increase the emission of N2O (Liu et al., 

639 2014). In addition, Adviento-Borbe and Linquist (2016) suggested localised fertiliser-N 

640 application to reduce both CH4 and N2O losses. Therefore, the high net GWP for 

641 conventional wetland rice cultivation could be potentially lower with alternative rice 

642 establishment practices (Adviento-Borbe and Linquist, 2016) including the non-puddled soil 

643 treatment of the present study and Alam et al. (2016). Pesticides and fertilizers comprised the 

644 major share of the chemicals because rice crop required these inputs at high rates while 

645 chemicals such as urea, TSP, MoP and glyphosate were imported, thus increasing the 

646 emissions from transportation (Alam et al., 2016).

647

648 4.3 Overall GHG emissions

649 The net GHGs t-1 of monsoon rice varied from 1.36 to 1.69 in CTLR, from 1.58 to 1.75 in 

650 CTHR, from 1.04 to 1.22 in NPLR and from 1.18 to 1.24 in NPHR after accounting for 

651 sequestered C in soil with either the LCA or C balance approaches, respectively. The total 

652 GHGs t-1 rice production without taking C sequestration data into account were 1.48, 1.82, 



ACCEPTED MANUSCRIPT

34

653 1.23 and 1.49 tonne CO2eq for the CTLR, CTHR, NPLR and NPHR, respectively (Figures 5–

654 6). The total GHG in the present life cycle study for rice production in the EGP were higher 

655 than the study conducted by Alam et al. (2016) who found 1.11 to 1.19 tonne CO2eq in NPLR 

656 and NPHR and 1.3 to 1.6 tonne CO2eq in CTLR and CTHR, respectively, for the production 

657 of each tonne irrigated rice, even though they did not account for soil sequestered C. The 

658 higher emissions in the present study can be attributed to lower relative yield and continuous 

659 submergence of paddy rice soil during monsoon season which caused lower soil redox 

660 potential (Takai and Kamura, 1966) and  stimulated higher CH4 emissions (Yu and Chen, 

661 2004). The LCA study of Hokazono et al. (2009) conducted in Japan estimated GHG for 1 

662 tonne of rice production under conventional soil puddling was 1.5 tonne CO2eq. Farag et al. 

663 (2013) found even higher GHGs (1.9 tonne CO2eq tonne–1 rice) with the system boundary up 

664 to the farm gate (due to higher CH4 emission, increased input use especially N and rice straw 

665 burning after harvest). Additionally, in the analysis of Ryu et al. (2013), the C footprint t-1 

666 rice production under CT practice (puddling) was 2.2 tonne CO2eq up to the farm gate 

667 boundary (due to increased CH4 emission for continuous flooded condition, increased use of 

668 inputs especially N, use of diesel fuel as feedstock). In the current study, the total GHGs 

669 (1.48–1.82 tonne CO2eq tonne-1 rice) for the production of rice under puddled transplanting 

670 practice were in close proximity to values estimated for rice production under similar practice 

671 in other locations and in different climates. As for example, Hokazano and Hayashi (2012) 

672 estimated the life cycle GHG up to farmgate to be 1.46, 1.58 and 2.0 tonnes of CO2eq 

673 emission for conventional, environment-friendly and organic rice farming, respectively, while 

674 Wang et al. (2010) within the same boundary showed the estimate of GHG of traditional 

675 monsoon rice establishment in the rice-wheat system was 1.50 tonnes of CO2eq t-1 of rice. 

676 The GHG including milling of paddy rice in the study of Blengini and Busto (2009) in Italy 

677 for traditional rice crop establishment was 2.52 to 2.66 t of CO2eq t-1 of rice. Up to farmgate 



ACCEPTED MANUSCRIPT

35

678 boundary, the GHG as estimated by Thanawong et al. (2014) in the North East Thailand 

679 ranged from 2.97 to 5.55 for tonnes of CO2eq t-1 of rice produced by dry seeding, wet seeding 

680 or transplanting (nursery). The comparatively higher emission was attributed to lower yield in 

681 spite of using increased amounts of inputs. On the contrary, the studies conducted by 

682 Ecoinvent Centre (2008), Brodt et al. (2014) in USA (California) and Bautista and Saito 

683 (2015) in Philippines up to farmgate boundary found a lower range of GHGs (from 0.47 to 

684 1.09 tonnes CO2eq t-1 rice) than the GHGs recorded in our present study despite using 

685 traditional wetland rice production methods.  

686

687 4.4 Importance of accounting for soil sequestered C under long-term cropping systems

688 The majority of LCAs of agricultural products have not accounted for possible changes in 

689 soil C sequestration which may occur when new soil and crop management practices are 

690 implemented. While agricultural ecosystems can emit C as CO2 and CH4 they can also 

691 simultaneously sequester C (Zhang et al., 2017). Accounting for SOC sequestration in the 

692 present study adds important insights to the LCA for monsoon rice. The amount of SOC 

693 sequestration varied with rice cropping system. While monsoon rice is a high CH4 emitter 

694 this can be offset in part by high C sequestration. The net GHG emissions of the current 

695 practice of rice crop establishment was similar to that of total GHG of the CA practice, non-

696 puddled transplanting of rice with increased crop residue retention (NPHR) (p<0.05; Figure 

697 5). However, after accounting for SOC sequestration, the GHG of NPHR was significantly 

698 lower than the net GHG of CTLR. The NPHR had 15.5 % lower net GHG, while NPLR had 

699 32 % lower emissions due to the reduced contribution of CH4 emission and the C 

700 sequestration in soil (p<0.05; Figure 5). Alam et al. (2016) studied the LCA of irrigated rice 

701 production in the EGP under novel non-puddled transplanting of rice relative to traditional 

702 rice cultivation without taking soil C sequestration into account. Similarly, Cheng et al. 
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703 (2011, 2014) used input data from national inventory of agriculture to assess the C footprint 

704 of grain crop production but did not include data of SOC sequestration. On the other hand, 

705 Goglio et al. (2015) and Petersen et al. (2013) found that accounting for soil sequestered C in 

706 a long-term cropping system study is critically important for finding net GHGs for any crop 

707 production practices. The present findings support Marble et al. (2011) who proposed that all 

708 sectors of agriculture need to examine alternative management practices that can reduce GHG 

709 emissions and sequester C without decreasing productivity or profits. 

710

711 4.5 Further research and practical implications

712 While there is no evidence that the present results are unreliable, further refinement and 

713 enhancement of the LCA could be achieved by follow-up studies. The present study used 

714 manual chambers to estimate seasonal fluxes of GHGs. The gas sampling was considered 

715 frequent enough to assess GHG emissions in the wetland rice (Harada et al., 2007). However, 

716 the use of automated chambers with continuous measurement of GHG emissions is 

717 recognised for its accuracy for characterizing temporal variation in GHG fluxes for the LCA 

718 study (Butterbach-Bahl et al., 2013). In addition to measurement of GHGs for estimating the 

719 LCA of monsoon rice, future refinements of the estimates may include measurements of N 

720 losses (via ammonia volatilization and nitrate leaching) (Kasmaprapruet et al., 2009). 

721 While the present study only estimated GHG emissions up to the farmgate boundary, a LCA 

722 considering cradle to grave boundary can also be estimated so that the contribution of 

723 processing the rice and rice foods can be assessed. The LCA up to grave boundary estimates 

724 environmental burdens associated with all rice production stages from raw material extraction 

725 for inputs and delivering them to paddock, on-farm emissions and activities, post-harvest rice 

726 processing through boiling and milling, by-products handling, distribution, cooking and 

727 disposal or recycling (ISO 14044, 2006). The emissions associated with fuel use for transport 
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728 of paddy rice to processing ground, milled rice to market and boiling and milling might be 

729 important besides emissions from on-farm stages from soil and fuel use (Roy et al., 2007). 

730 In rice-based systems of the EGP, a range of upland crops are grown in the cool-dry season 

731 (from mid-October to middle March). The emissions reported here and by Alam et al. (2016) 

732 need to be combined with those for the upland crops to complete LCAs of the cropping 

733 systems with diversified crops that are typical of the EGP (Alam et al., 2019).

734

735 Conservation agricultural practices have been reported to increase C in soil in some studies 

736 (West and Post, 2002; Salahin, 2017; Alam et al. 2018), but not in others (Powlson et al., 

737 2016). Where soil and crop management practices increase sequestered soil C inclusion of the 

738 gains in the LCA inventory will improve the LCA tool for determining the net GHG values 

739 per functional unit of rainfed rice production. This would enable policy makers to more 

740 accurately predict the benefits of CA practices for GWP mitigation. The present study which 

741 estimated C footprints of monsoon rice in a rice-based cropping system can inform policy 

742 development by Governments in the EGP since wetland rice is the dominant crop in the 

743 country and a major contributor to national carbon accounts. The methodology followed for 

744 estimating C footprints of rainfed rice production could be used for countries growing rainfed 

745 (monsoon) rice and irrigated rice following CA principles. The present results for example 

746 suggest that GHG emissions per tonne of rice grain are lower in the boro season crop than the 

747 monsoon season. By contrast, the irrigation of the boro rice crop is depleting groundwater 

748 resources in Northwest Bangladesh. Hence, in addition to the simple LCA of rice in the rice-

749 dominant cropping system, there remains scope for conducting other LCAs, namely: 

750 attributional LCA which describes the pollution and resource flows within a chosen system 

751 attributed to the delivery of a specified amount of the functional unit and; consequential LCA 
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752 which estimates how pollution and resource flows within a system change in response to a 

753 change in output of the functional unit (Thomassen et al., 2008).

754

755 5 Conclusions

756 The C footprint of rainfed wetland rice has been estimated from carbon balances and GHG 

757 emissions under non-puddled and puddled establishment practices in a rice-based cropping 

758 system in the EGP. Two alternative cropping production systems were identified as cleaner 

759 production strategies than the conventional rice production system. The modified production 

760 techniques of CA cropping offer environmental benefits by saving fuels, improving 

761 productivity and reducing GHG emissions. Non-puddling for rice establishment with low or 

762 high crop residue inputs offers significant GHG savings on both pre-farm and on-farm stages 

763 of monsoon rice production (NPLR saved 47 and 20 % on-farm GHG emission, respectively, 

764 over CTHR and CTLR while NPHR had 17 % lower pre-farm emission than CTLR), relative 

765 to conventional methods of rice crop establishment in the EGP. The shrinking of the carbon 

766 footprint under CA practices for rainfed rice production compared to conventional tillage can 

767 be attributed to increased soil C sequestration and reduced CH4 emissions due to straw 

768 retention at soil surface and minimum soil disturbance. The non-puddled transplanting of rice 

769 with low residue return was the best option for the mitigation of total GHGs and for net 

770 GHGs. The CTLR and CTHR accounted for 1.3 and 1.7 tonne net GHGs. The savings of net 

771 GHGs with the best mitigation practices, NPLR and NPHR, were 0.54 and 0.39 t emissions t-

772 1 of rice production relative to CTHR and CTLR, respectively.

773 The on–farm stage had high emission of agricultural GHGs from soil and from use of on-

774 farm machineries and accordingly, contributed 78 % (NPLR) to 86 % (CTHR) of the total 

775 GHG emissions. Irrespective of tillage and crop residue return practices, CH4 emission was 

776 the most prevalent GHG from the on-farm stage for 1 tonne of monsoon rice production 
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777 under anaerobic soil conditions in the EGP. Relative to the previous studies estimating CH4 

778 to contribute 40%-60 % to the GHG of rice production up to farmgate boundary, the values in 

779 the current analysis are higher (62.5 to 66.6 %). Emission of CO2 from soil was the second 

780 highest contributor to GHGs of monsoon rice production. 

781 The exclusion of soil C sequestration overestimated the GHG emissions by  16 % for non-

782 puddling with increased residue retention and by 32 % with non-puddling with low residue 

783 retention relative to their total GHG emphasising the necessity of accounting for soil organic 

784 C sequestration in LCA analysis. 

785
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1090 Appendix 1.

1091 Rainfall and standing water level in field

1092 The rainfall was evenly distributed over the monsoon growing season. From the day of 

1093 sowing to 31 July, the amount of rainwater was 155.5 cm, in the next month (August) it was 

1094 252.8 cm, in September, the rainfall was 317.4 cm. For the first ten days of October, the 

1095 rainfall was 157 cm. From 11 September to 23 September was the longest period without rain 

1096 fall (Appendix 1). The depths of standing water in the field under all treatments reflected the 

1097 rainfall patterns and distribution, though the water depths were consistently higher with 

1098 CTLR and CTHR. For example, in July, the water depth with CT was 9.5 cm and 8.5 cm with 

1099 NP. In August, the CT soils had 9.8 cm and NP had 6.1 cm of standing water (Appendix 1). 

1100 With the increase in intensity of rainfall, the water table depth increased at the end of the 

1101 study in October (Appendix 1).
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1102

1103

1104 Appendix 1. Rainfall distribution over the season of monsoon rice at Alipur (top); the depth 

1105 of standing water in field during the monsoon rice growing season (bottom). 

1106 [CT=Conventional puddling, NP=Non-puddling of rice following strip planting; LR=farmers’ 

1107 practice and HR=Increased residue retention]
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Highlights

o Life cycle greenhouse gas emissions (LCA GHG) of monsoon rice calculated with 

sequestered C under CA

o Non-puddling (NP) with minimal residue retention was the most effective option of 

mitigation

o NP with residue retention offered yield benefit and greater GHG savings with extra C 

sequestration

o On-farm CH4 and soil CO2 emissions were the major GHG emission sources.

o The exclusion of C sequestration overestimates the LCA GHG emissions by  16 % to  31 %.
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