Li₂Ag₇Sb₃S₉ – a compound in the quasi-binary system Li₃SbS₃ – Ag₃SbS₃

Thomas Rothenaigner^[a], Arno Pfitzner^{*[a]}

 [a] Institut für Anorganische Chemie Universität Regensburg Universitätsstraße 31
93040 Regensburg, Germany

* Prof. Dr. A. Pfitzner E-Mail: arno.pfitzner@chemie.uni-regensburg.de

Keywords: Crystal Structure, Ionic Conductor, Lithium Silver Antimony Sulfide

In literature there are many compounds known with the composition M_3SbS_3 ($M=Ag^{[11]}$, $Cu^{[2,3]}$, $Li^{[4]}$, $Na^{[5]}$, $K^{[6]}$, $Rb^{[6]}$, $Cs^{[6]}$). We investigated the quasi-binary section $Li_3SbS_3 - Ag_3SbS_3$ for new quaternary materials. $Li_2Ag_7Sb_3S_9$ has been synthesized by high temperature reaction of Li_2S , Ag_2S and Sb_2S_3 . The crystal structure of $Li_2Ag_7Sb_3S_9$ was determined by single-crystal X-ray diffraction. The title compound crystallizes in the orthorhombic space group *Pnma* (No. 62) with a = 24.411(3) Å, b = 10.620(1) Å, c = 6.939(1) Å, V = 1798.9(5) Å³, and Z = 4. The anionic substructure of $Li_2Ag_7Sb_3S_9$ consists of trigonal-pyramidal SbS₃, tetrahedral LiS_4 and trigonal-planar AgS_3 units. (Figure 1).

Thermal analysis revealed a reversible phase transition at 235° C and a melting point of 480° C.

The compound was further characterized by Raman spectroscopy. The Sb-S vibrations at 320 cm⁻¹ and 287 cm⁻¹ are in good agreement with data in literature $^{[7]}$.

Impedance spectroscopy shows an ionic conductivity of 10^{-7} S/cm at room temperature and 10^{-3} S/cm at 300°C.

Figure 1. Section of the crystal structure of $Li_2Ag_7Sb_3S_9$. Lithium is located in the distorted tetrahedra.

F. Laufek, J. Sejkora, M. Dusek, J. Geosci., 2010, 23, 21-26.
E. Makovicky, T. Balic-Zunic, *Can. Mineral.*, 1995, 33, 655-663.

[3] A. Pfitzner, Z. Anorg. Allg. Chem., 1994, 620, 1992-1997.

[4] S. Huber, C. Preitschaft, R. Weihrich, A. Pfitzner, Z. Anorg. Allg. Chem., 2012, 638, 2542-2548.

[5] C. Pompe, A. Pfitzner, Z. Anorg. Allg. Chem., 2013, 639, 296-300.

[6] L. Schindler, M. Schwarz, C. Röhr, Z. Naturforsch. B., 2013, 68(12), 1295-1309.

[7] A. Pfitzner, Chem. Eur. J., 1997, 3, 2032-2038.