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Abstract. To ensure privacy for route planning applications and other
location based services (LBS), the service provider must be prevented
from tracking a user’s path during navigation on the application level.
However, the navigation functionality must be preserved. We introduce
the algorithm PARTS to split route requests into route parts which will
be submitted to an LBS in an unlinkable way. Equipped with the usage
of dummy requests and time shifting, our approach can achieve better
privacy. We will show that our algorithm protects privacy in the presence
of a realistic adversary model while maintaining the service quality. 1
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1 Introduction

In most areas of life, people are using smart devices and thereby generating data
with personally identifiable information. Smart services collect personal data and
base their quality of service (QoS) on this information. For this reason, data min-
ing is on a broad research agenda, being able to extract precise user information
from massive databases. With this data, the user experience and convenience of
a service can be improved. For example, Apple’s operating system iOS 9 studies
a user’s behavior to suggest the probable next locations the user wants to drive
to [4]. However, this can be misused to control a user and massively violate his
privacy. This was demonstrated by Facebook by experimentally changing the
emotional perception of the user through news feed consumption [5].

Consequently, the user has the choice either not to use the smart service
and lose the QoS improvements or use the smart device and resign their privacy.
Since opting out of a service is less attractive for most users, the service provider
almost always can collect highly sensitive user data without any significant con-
sequences. On the first look, there is no possibility to resolve this dilemma. But
nowadays smart phones are powerful enough to apply intelligent techniques to
combine sensitive data in offline mode with additional online (real-time) infor-
mation. With this approach, it will be much harder for an adversary, like data
miners, to collect sensitive personal data.
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To demonstrate our approach, we chose the well-known and popular field of
route planning. Route planning services need location information from the user,
which can be linked and analysed so that micro- and macroscopic profiles can
be easily generated. It is shown that the start and target of a route are enough
to deanonymise an otherwise anonymous user with a high probability [3]. Thus,
the location information is very sensitive and protection algorithms have to be
carefully designed. In addition, traditional obfuscation techniques from other
scenarios dealing with location privacy cannot be applied because the route must
be calculated for the exact given locations to provide the best user experience.

It would be theoretically possible to exclusively use the smart phone in offline
mode by downloading all routing information from an area. But this means relin-
quishing any helpful third party information, i.e. any useful additional services.
Consequently, to soften the trade-off between privacy and utility in the case
of routing, we introduce privacy-aware routing with route parts using several
interim destinations on the path to the overall target location.

1.1 Contribution

To the best of our knowledge, this is the first paper to investigate straightforward
mechanisms to protect a user’s route. We implement a basic set of these mecha-
nisms (see section 4) in a routing algorithm which divides the route into several
parts to hide location information. However, we can still guarantee navigation to
an exact location from a specific start while also including real time data from
the untrusted cloud. We believe that these are real crucial arguments to create
a widely adopted application. In this paper, we follow the classical approach
of the triple bottom line of security “algorithm, adversary and evaluation” and
contribute with:

1. Our algorithm PARTS based on dynamical, unlinkable route parts using
straightforward protection mechanisms.

2. A realistic adversary model in which a honest-but-curious location based
service (LBS) provider wants to reconstruct full routes.

3. A detailed evaluation of our algorithm by means of a self generated data set
based on our theoretical user model, where we derive the best combination
of privacy protection methods.

Due to limited space, we plan to present a real smartphone application im-
plementing our algorithm in future work. Therefore, we do not analyze extended
performance figures such as battery impact and user experience.

1.2 Structure

The remainder of the paper is organised as follows: After a review of related work
in section 2, the general system model is introduced in section 3. In section 4 we
present techniques for privacy-aware routing, introducing our PARTS algorithm
based on route parts. Section 5 contains the description of the adversary model



who wants to reconstruct the navigated route. The results of our evaluation
are depicted in section 6 where we analyse PARTS’ overhead, its performance
and ability to protect a user’s privacy. We discuss and summarise the results in
sections 7 and 8 respectively.

2 Related Work

Anonymity of location information is a relevant topic in academic research. The
best discussed concept is the idea of k-Anonymity introduced by Sweeney [10].
A subject is anonymous within a set of k subjects reporting the same cloaked
geographical region instead of the real locations of the subjects. Implementations
of this concept tend to minimise the area of the cloaking region making it easy for
adversaries with background knowledge to infer sensitive data [9]. An extension
of this model called l-Diversity was introduced by Machanavajjhala et al. [6].
Here, the cloaking area should contain at least l different locations.

Wang and Liu [11] showed that anonymity and diversity of locations can be
achieved by realising k-Anonymity with a graph based scalable model. However,
this approach requires a certain number of active users. They state that different
road segments per user can be used to realise l-diversity for disclosed locations.

Palanisamy and Liu [8] introduce their approach of MobiMix in which mix
zones are placed on the road network to gain anonymity of locations. The users’
location anonymity is ensured by unlinkable pseudonyms when entering or exit-
ing a mix zone and within such a zone by non-traceability.

Michalevsky et al. [7] introduce PowerSpy, an application which is able to
infer a user’s location and his driving route by using the power consumption of his
smart phone, without any permissions to access GPS, WiFi, or other location
data on the phone. Their basic idea is to measure the power consumption of
different routes in advance and train a machine learning algorithm.

While using semantic information to obtain a contextual service (e.g. recom-
mendation of restaurants nearby) or to share information about a visited venue,
Agir et al. [1] present a solution where the semantic dimension of a location can
be protected by generalising the semantic tag and locations can be obfuscated.

To counteract location breaches by inference attacks or the reveal of semantic
behaviour by membership inclusion attacks, Bindschaedler and Shokri [2] intro-
duce synthesised plausible location traces which are separated into semantic and
geographic features. This separation is required, because people with similar
lifestyles share common semantic traces but differ in geographical patterns.

3 System Model

We assume that users utilise route planning devices that combine offline and on-
line data to find the best possible route for a trip. The real start and target loca-
tion should be hidden from a location based service (LBS). Therefore, a trusted
application on the user’s (mobile) device is used which employs anonymisation
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Fig. 1: Our PARTS framework works offline on the user’s device and sends
anonymised information to the LBS to protect the user’s real start and target
location (vS , vT ). The LBS processes the requests and returns traffic information
and route parts which are aggregated by our algorithm to the actual route.

techniques and/or dummy requests. This application uses static offline data and
sends the anonymised request to the LBS. Here, the route request is processed
and online real-time information like traffic jams are taken into account. For
the sake of simplicity, we assume that an LBS has access to this information,
even though it gets harder for an LBS to collect such data when PARTS is
widely applied. The app on the user’s device deanonymises the calculated route
and presents the user with the routing information from the actual start to
target location. The user sticks to the route recommended by the local device,
as depicted in Figure 1. Here, the trusted application on the user’s device is
our PARTS framework (c.f. section 4) which uses route parts as anonymisation
technique.

In this setting, we consider an honest-but-curious LBS that is interested in
deriving the start and target point of a user’s route.

3.1 Road Network

We model the road network in the well-known way of a directed graph G =
(V,E). The road transitions form the set of vertices v ∈ V and are connected
via road segments represented by the edges e ∈ E. Since G is directed, a route
segment from v1 to v2 has two corresponding edges v1v2 and v2v1, whereas
one-way streets are represented by a single edge. The degree of a vertex deg(v)
corresponds to the number of different roads one could reach from this point.
Thus, road intersections are vertices v with deg(v) ≥ 3, whereas vertices with
deg(v) = 1 are equivalent to the end of a dead-end street. In our setting, points
which connect road segments but are neither dead-ends nor intersections are of
little relevance. To simplify the algorithm, we use the minor G∗ of G in which
the degree 2 vertices have been deleted by contracting one of the adjacent edges.

3.2 Users

Simplifying the presentation, we focus on route planning from intersection to
intersection. Therefore, each location can be identified uniquely with a vertex v
in the graph G representing the road network.



The set of users in our model is described with U = (u1, u2, . . . , um). There
can be time intervals where no user moves and different users can travel to
the same location at any time. Users submit their route requests with their
current location vS and their target vT to the PARTS algorithm in a trusted
zone, as depicted in Figure 1. Our algorithm processes the user’s request and
submits several (anonymised) route requests to the LBS. Each request results in
an event ru(t) = (vSi

, vTi
) from user u at time t recorded by the LBS. Hence a

route (part) can be uniquely described with a pair of start and target (vSi , vTi).

3.3 LBS Provider

Additional information for a requested route can be provided by an LBS that
has knowledge about context like real time traffic information or road blocks due
to road constructions. Our algorithm PARTS uses this information to combine
it with a locally generated route solely based on geographical information. By
providing vSi

and vTi
as a result of a user request, an LBS collects personal data

such as the request time. Furthermore, it is worthwhile to mention that the LBS
has a similar amount of geographical information as our algorithm.

3.4 Adversary

The adversary in this paper is typically an LBS or an external observer who
has access to all requests of all users, i.e. all received requests of an LBS. The
adversary’s main goal is to link the requests again and hence learn a route’s
overall start vS and target vertex vT . The adversary runs his attack a posteriori.
Since he cannot be sure which requests are performed by a specific user, he
collects a whole event log A for a specific amount of time and carries out his
attack. It is reasonable for him to assume that A contains events from multiple
users. However, it is possible that some of these events differ in time but share
the same tuple of start and end vertices (vS , vT ).

For his attack, the adversary takes into account geographical and tempo-
ral information described in section 5. With limitation, the attack can also be
performed by third-party services such as an Internet service provider (ISP)
who has access to a user’s request log but lacks knowledge about, for example,
geographical information.

For our setup, we assume that the adversary knows all system parameters,
i.e. he knows which privacy protection methods (PPMs) are applied and what
specific parameters are used. This results in an even stronger adversary to stress
our algorithm. Together with the PPMs and the event log, he starts his attack
to deanonymise a route R, respectively a user u.

4 Strategies for Privacy-enhanced Routing

Users request routing instructions from an LBS providing their geographical
data vS and vT . To enforce their privacy goals, users apply PPMs, like our



following PARTS framework, to hide their start and target location. To achieve
this, PARTS can deploy different countermeasures which will be described in
the following section.

In this work we focus on the route planning algorithm which resides in the
application layer and tries to prevent information leakage from there. Hiding
traffic data (such as IP addresses) is not the focus of our algorithm. However,
this data can be used to link different route requests including dummy requests to
a specific user. In this case, our algorithm does not provide any anonymity at all.
We therefore assume that route requests will be submitted using an anonymous
channel like Tor in order to hide information from lower communication layers.

The PPMs mentioned in this section may be combined to provide a stronger
protection against an honest-but-curious LBS. We will evaluate different settings
and combinations of the following PPMs in section 6.

4.1 Route Parts

PARTS splits every route R into multiple route parts Ri with start nodes vSi

and target nodes vTi
. The iterative combination of all Ri shall be the complete

route R, thus vSi+1 = vTi holds. For each route part, a separate route request is
necessary to obtain semantic information like traffic information. This request
results in an event ru(t) = (vSi

, vTi
) at the LBS. The LBS gains information

that a user u wants to drive from vSi
to vTi

without knowing which of the start
nodes vS1

, vS2
, . . . is the overall start vS (resp. which vTi

is the overall target
vT ).

For each route part Ri, a subgraph G∗i of G∗ is constructed. The graph
G∗i shall contain all vertices having at most a specific distance to vSi . We call
this adjustable distance Hops within our framework. Therefore, distG∗(vSi

, v) ≤
Hops holds for all vertices v in G∗i . The vertices v with distG∗(vSi

, v) = Hops are
called boundary vertices ∂V (G∗i ) and are candidates for being the target node
vTi . The subgraph G∗i contains at least one vertex with degree 3 by construction
of G∗ and therefore at least one intersection resulting in at least two candidates
for vTi

. It is obvious that a higher Hops count results in more target node
candidates. To prohibit recursive routes, already used vertices are stored in a
blacklist VBL for the i-th iteration and will be ignored.

The node v∗ ∈ V cand
i = {v ∈ ∂V (G∗i ) | v /∈ VBL} with the shortest straight

line distance2 |v∗ − vT | to vT is selected and used as target node vTi
for the

i-th iteration. A route request for vSi to vTi is submitted to the LBS and the
calculated route forms the next route part Ri. For an example of a subgraph, see
Figure 2. For the next iteration, the algorithm sets vSi+1

= vTi
and calculates

a new subgraph G∗i+1. This process stops, until the overall target node vT is
contained in one of the subgraphs G∗i . In this case, the last route part Ri will
be the route from vSi

to vT .

2 The straight line distance is used since it is locally computable and does not require
any additional requests to a third party, thus not leaking any information.



Fig. 2: The subgraph G∗3 is depicted in black, whereas the subgraphs G∗1 and G∗2
are grey. The already calculated routes R1 and R2 are red. The vertex v∗ has
the lowest straight-line distance |v∗ − vT | to the overall target vT and will be
used as the next step vT3

.

4.2 Dummy Traffic

We extend the PARTS algorithm from the previous section to include dummy
requests to an LBS which may be needed in order to provide privacy. Using the
previous setup, a route R =

⋃n
i=0Ri consisting of n parts results in n events

ru(ti) at an LBS. It is trivial for an LBS to derive the complete route R by
chronologically combining Ri. To oppose this, we introduce dummy requests in
our system which should make it more challenging for an LBS to gain s and t.

Instead of submitting only one route request in the i-th iteration for the
node v∗ with the shortest straight-line distance to vT , our algorithm produces
one route request from vSi to v for some of the target vertex candidates v ∈
V cand
i . Still, v∗ is used as target vertex vTi

and only the associated route is
used as the route part Ri. In particular, the upper bound for dummy requests
is |V cand

i | − 1 since one request is always a legitimate request (vSi
, vTi

). The
PARTS algorithm extended with the maximum number of dummy requests is
depicted as Algorithm 1.

4.3 Time Shift Requests

As stated in the previous subsection, an event always contains time information
(e.g. request time of a route by a user) which is outside of a user’s sphere. There-
fore, it is easy for an LBS to use this information to reconstruct the complete
route using all part requests Ri just by chronologically sorting the request log.
The attack is even possible if dummy traffic is used if an adversary uses statis-
tical attacks. By time shifting the subsequent route requests, the attack can be
hindered. Different methods of time shifting are possible:

– All route requests are executed after a specific but static amount of time,
not allowing any insight into the length of a route part.

– All route requests occur at a random time resulting in no correlation between
the length of a route and the request time.



Algorithm 1: PARTS with dummy requests

Input: Start vertex vS , target vertex vT
Result: Route R from vS to vT

1 vS1 ← vS ;
2 VBL ← {vS};
3 while vTi 6= vT do
4 i← i + 1;
5 construct G∗i with V (G∗i ) = {v ∈ G∗ | distG∗(vSi , v) ≤ Hops};
6 V cand

i ← {v ∈ ∂V (G∗i ) | v /∈ VBL};
7 if vT ∈ V (G∗i ) then

8 V cand
i ← V cand

i ∪ {vT };
9 foreach v ∈ V cand

i do
10 submit route request (vSi , v) to LBS;

11 vTi ← argminv∈V cand
i
{|v − vT |};

12 VBL ← VBL ∪ {vTi};
13 Ri ← route from vSi to vTi calculated by LBS;

14 return R = (R1, R2, . . .)

– Route requests happen in batches, i.e. a specific number of requests are sent
to the LBS at the same time to maintain unlinkability between requests.

5 Adversary’s Inference Model

In this section, we will present our inference model for the adversary which he
uses to deanonymise specific users from the event log of route requests. We will
explain how an adversary can exploit the route requests to reconstruct the full
route from route parts. Based on this adversary model, we evaluate the privacy
provided by our route planning algorithm in section 6.

5.1 Background Knowledge

We assume that the adversary’s inference model is based on the knowledge that
users move along geographically valid routes using a valid behavior pattern. For
example, users respect traffic regulations such as speed limits.

In our scenario, an adversary has extensive knowledge about the geographical
structure of the road network represented. However, an adversary may utilise
his own geographical database which can partially differ from the database on
which our PARTS algorithm works (see section 6.1). In general, we assume that
such deviations are not harmful to perform the attack illustrated in section 5.2.
Thus, he is able to derive the same V cand

i as our algorithm because all system
parameters are known, as defined in section 3.4. As a consequence, the adversary
can, for example, compute the average travel time t(Ri) for route segments.



5.2 Empirically Improved Guessing

The adversary plans to reconstruct complete routes with the given route requests
submitted by different users. Since the adversary is an LBS, he has access to the
full event log A. He selects one of the requests for which he has a high interest
in recovering the corresponding route. Starting with this route request, the LBS
calculates a likelihood tree Γ including possible past and future route parts.

Let r0 = (vS0
, vT0

) ∈ A be the route request for which the adversary is
interested in reconstructing the full route. The adversary collects all route re-
quests A→r0 whose start vertex is the target vertex vT0 and which have been
submitted to the LBS after r0. For r1 = (vS1 , vT1) ∈ A→r0 , we can define the
function f(r1 | r0) which models the likelihood that r1 was the subsequent
route request. Here, both temporal correlation and behavioural plausibility will
be taken into account. With t(R) being the travel time of the ideal route R
from vS0

to vT0
= vS1

calculated by the LBS and t0 and t1 being the sub-
mission times of r0 and r1, respectively, the temporal correlation is denoted by

ft(r1 | r0) = exp
(
−c · |(t1−t0)−t(R)|

t(R)

)
, where c is a scaling factor with c ∈ [0, 1].

If the request r1 was submitted close to the travel time calculated by the LBS,
it is more likely that r1 will be the subsequent route request and ft(r1 | r0)
increases.

For the behavioural plausibility fb(r1), we count how many requests in the
event log A have the same points as r1 and divide this number by the total
number of requests. Additionally, we introduce a factor λ ∈ [0, 1] indicating the
weight of the temporal correlation ft in the likelihood f . Hence, we obtain

f(r1 | r0) = λ · ft(r1 | r0) + (1− λ) · fb(r1)

= λ · exp

(
−c · |(t1 − t0)− t(R)|

t(R)

)
+ (1− λ) · |{r ∈ A | r = (vS1

, vT1
)}|

|A|

Since both values ft(r1 | r0) and fb(r1) are in the range [0, 1], we also have
f(r1 | r0) ∈ [0, 1]. Here, a value close to 1 indicates a high likelihood that the
route r1 is the subsequent route part to r0.

The adversary forms sets A→r1 for all r1 ∈ A→r0 and evaluates the function
f(r2 | r1) for r2 ∈ A→r1 . He repeatedly continues with this approach and con-
structs a likelihood tree Γ with root r0 and r1 ∈ A→r0 being the first level nodes,
etc. An edge (r, r′) in this tree is weighted with the likelihood function f(r′ | r).
To construct the prior route parts w.r.t. r0, the adversary uses a similar approach
by forming sets A←rj containing route parts whose target vertex equals the start
vertex of rj . If the value of f falls below a predefined threshold value ε, the pro-
cess will not be continued within the related subtree of Γ . Finally, the adversary
chooses the path in Γ whose multiplied likelihood value along this path is the
highest and uses the corresponding route requests as the reconstructed route R′.

5.3 Privacy Measurement

To evaluate the privacy of our algorithm, we compare the real route R =
(R1, . . . , Rk) from vS to vT from a user with the guess R′ = (R′1, . . . , R

′
l) from vS′



to vT ′ calculated by the adversary. His guess R′ is the path in the tree Γ intro-
duced in section 5.2 with the highest likelihood. The following metrics will be
applied, each measuring a different privacy aspect.

Distance to start/target vertex One of the goals of our algorithm was the
protection of the start and target location of a route request. For this reason, we
measure the straight-line distance dist(R,R′) = |vS − vS′ |+ |vT − vT ′ | between
the start vertices and target vertices from R and R′.

Fit of reconstructed route To protect movement patterns, reconstructing a
route from route parts should not be easy for the adversary. Therefore, we mea-
sure fitrou(R,R′), the percentage of the fit between guessed route and original
one. Here, we count the number of correctly guessed route parts normalised over
the total number of route parts in the original route.

Fit of continuous segments In order to measure the attained linkability pro-
tection of our algorithm, we calculate the fit of continuous segments fitseg(R,R′).
We count the number of route segments successfully linked together by an ad-
versary without any error in-between and normalise this figure over the total
number of route segments. For instance, if R has k = 6 segments and an adver-
sary was able to link segments (R1, R2, R3) and (R5, R6) but missed to link R4,
we have fitseg(R,R′) = 0.5.

6 Evaluation

This section explains how we generated data according to our system model and
applied the adversary’s inference model to evaluate the quality of our algorithmic
approach based on route parts, presented in section 4.

6.1 Dataset and Simulator

PARTS is based on data from OpenStreetMap (OSM). In our setting we used
a small portion of the whole dataset, more specifically a subregion of Bavaria,
Germany. This region was converted to correspond to our graph setting.

Several users were created using a custom simulator. They move along the
region in a predefined (but somewhat random) way3. Since our simulation should
model users realistically, users follow different moving patterns resulting in route
requests. All users submit route requests for activities which happen multiple
times, like trips to a supermarket, whereas 80% of the users follow individual

3 Since our users are exclusively moving within a city, we use the simplified assumption
that travel speed is constant per road segment (homogeneous flow). Hereby, we use
values from 37.5 kph to 62.5 kph. The adversary only knows that people will respect
traffic regulations, therefore he uses a constant value of 50 kph for the whole route.



regular routines. Additionally, 30 % of the users make random trips. On average,
there are three moving patterns per user. We simulated a whole month which
led to 398 moving patterns (every person therefore travels between 25-50 times
a month) resulting in 36,167 (part) route requests. These are summed up values
for the different combinations of our PPMs in place including direct requests.

6.2 Experimental Setup

After generating the data as explained above, we applied the adversary’s infer-
ence model to reconstruct the complete route from route segments (c.f. section 5).
To prove the power of our inference model, we showed that the usage of temporal
correlation improves the chance of reconstructing a route correctly.

We successively applied more PPMs to get an insight into the adversary’s
ability to reconstruct the whole route of a user from the event log. We also tested
different values for the parameters in the inference model to obtain the strongest
adversary. More precise, we evaluated c ∈ {0.01, 0.1, 1} for the scaling factor in
the temporal correlation function ft and λ ∈ {0, 0.5, 1} for the weighting of ft in
the likelihood function f (see section 5.2). Since the combination of c = 0.01 and
λ = 0.5 results in the strongest adversary, we chose these values. Furthermore,
we set ε = 0.3 for the threshold under which further route segments will not be
considered in the likelihood tree Γ . If dummy traffic is used, we will send two
dummy route requests per real request. A timeslot occurs every nine minutes.

6.3 Overhead of Segmented Routes

In this paragraph, we will investigate how the parameter Hops, as described
in section 4.1, will influence the route quality of our routing algorithm, i.e. the
distance overhead of a route built with route parts compared to the ideal route.

Even though a user should have the possibility to select the ideal Hops size,
not every option makes sense regarding user experience and privacy – the main
factors for the QoS. It is obvious that a higher Hops size results in larger route
segments and thus may disclose more private information. However, it often
results in a better user experience because routes constructed of fewer segments
lead to routes more similar to thoroughly constructed and therefore ideal routes.

In order to find a good trade-off between privacy and user experience we
analysed routes with different numbers of intersections. Figure 3 shows the ratio
to the optimal route for routes with 10 to 25 intersections (100% is the optimum).
The different colors indicate the different values for the Hops parameter. MIXED
uses a random value of {1, 3, 6, 12} as the Hops parameter for each iteration.

Figure 3 illustrates that the smaller the Hops parameter gets the higher the
distance overhead of a route is. Furthermore, MIXED yields almost the same
results asHops = 6 does. In our simulation, on average all settings for the privacy
enhanced routing resulted in an overhead to the optimal route. Obviously, there
is no overhead if the complete route is shorter than the used Hops size since the
complete route equals the first and only route segment (resulting in no privacy).



Fig. 3: Distance overhead for different values for the parameter Hops with 250
iterations per number of intersections.

6.4 Privacy Related Results

We applied the privacy measures presented in section 5.3 to our simulated data,
namely the number of times in which an adversary was able to reconstruct
the route (fitrou and fitseg) and the distance between the reconstructed route’s
start/end point and the real ones (dist). We chose Hops to be 6, 12 and MIXED.

In the remainder of this section and in the subsequent figures, we use the fol-
lowing abbreviations for the applied PPMs of our PARTS algorithm: DIRECT
= route request without any PPMs applied, P = Route Parts, D = Dummy
requests, Tb = Timeshift in batch mode, Tr = Timeshift in random mode, and
Ts = Timeshift in timeslot mode.

fitrou and fitseg Figure 4a shows the box plot for the metric fitrou for differ-
ent combinations of PPMs and Hops ∈ {6, 12,MIXED} sizes, whereas Figure 4b
illustrates the results for fitseg.

First, fitrou and fitseg have a value of 100% for the combinations DIRECT ,
P +Tb and P +Tb+D, i.e. an adversary is able to reconstruct the full route in
these cases without having a single outlier. Thus, there is no protection applying
any combination which uses time shifting in batch mode. This seems reasonable
since batch mode apparently eliminates all benefits of using route parts.

Regarding the Hops parameter, it can be stated that MIXED performs
best, followed by Hops = 6 and Hops = 12, independently from the used PPMs.
This is especially pleasant, considering the little distance overhead added to a
route when Hops = MIXED is used (c.f. Figure 3). Furthermore, Hops = 6
creates more route parts compared to Hops = 12. Therefore, the adversary has
to do more work to relink all parts, providing more privacy.

We also analysed how combinations of PPMs affect the user’s privacy. It can
be stated, that P increases the privacy with every Hops parameter. Between
the timeshifting modes, timeslot (Ts) performs best, followed by random (Tr)
and trailed by the ineffective batch mode (Tb). Interestingly, the performance in
MIXED seems to lightly suffer from using dummy traffic (D) across the board.

Last, figrou and fitseg show the same tendencies, although the spread of
values for fitseg is generally larger. This seems reasonable, since reconstructing
a route in the correct order tends to be harder than finding used route segments.



(a) Results for fitrou for different PPM combinations grouped by Hops (lower is better)

(b) Results for fitseg for different PPM combinations grouped by Hops (lower is better)

(c) dist in km between the real and guessed start and target vertices (higher is better)

Fig. 4: The figures show the protection performance of our algorithm against the
described inference model w.r.t our metrics (M is short for MIXED).

dist Figure 4c shows the box plot for the distance metric for the different
combinations of PPMs and Hops size. Since an adversary is able to reconstruct
the full route for DIRECT , P+Tb and P+D+Tb, it is obvious that dist is zero
and that there is no difference between vS and vT and the guessed locations.

Overall, dist follows the same trend as figrou and fitseg: MIXED yielded
the highest distance across the board, i.e. an adversary guesses very distant
points when reconstructing start and target. On the other hand, dist is higher
for P +D than for P in contrast to figrou and fitseg values.

It can further be seen that every combination of Ts with Hops = MIXED
shows the best results, even though D decreases dist.



Mean Min Max

Time [ms] Roundtrip 185 162 500

Size [byte] Request 296 296 296
Response 2,765 997 5,263

Table 1: Overview of 100 route requests to the Google API.

6.5 Performance Analysis

We also analysed the performance of our algorithm w.r.t. runtime and data size
of a request. Because of its easy-to-use API and the overall quality of service,
Google Maps was chosen as the LBS for our performance measurement. All
traffic to Google Maps is end-to-end encrypted, hence we used a man-in-the-
middle proxy to gain access to the data. For the sake of reproducibility, we did
not simulate connection resets or data loss which can occur in mobile networks.

Runtime Table 1 shows the duration in milliseconds for a query to Google
Maps. The mean duration is 185 ms per query (min 162 ms, max 500 ms). The
bandwidth used is about 20 KB/s, a value easily achievable on mobile networks.

Executing requests in parallel does not seem to impact the duration. This
is important since it proves that sending dummy requests does not significantly
influence the performance and user experience. Furthermore, the time Google
Maps needs to find a route is not significantly affected by the length of a route
segment. In addition, we were unable to measure any difference regarding the
time between real requests and dummy requests. This is obvious because both
kinds of requests are using the same API calls. We thus assume that an LBS
cannot distinguish real and dummy requests on a time basis.

Data size In a next step, we analysed the data size of requests for the different
combinations of PPMs. It is obvious that DIRECT uses the least amount of
traffic. However, using route parts has almost the same data size. This seems
reasonable since a direct route has a similar amount of routing instructions like
the same route constructed from combining different route parts (i.e. number
of navigation instructions). There is a slight amount of overhead since every
Google Maps API call provides additional metadata. Table 1 shows that each
request has the same size since it only contains start and target vertices encoded
as coordinates. However, the resulting response differs in size due to a different
number of instructions.

It is interesting that the growth of data is linear, i.e. every additional re-
quest is roughly the same in size. Arguing that an average route request needs
about 3 KB, a route has 4 segments and 2 more dummy requests are sent, PARTS
requires acceptable 24 KB per privacy enhanced route request in addition.

We skipped the analysis of performance figures such as CPU and RAM usage
because our proof of concept implementation is running on a desktop client.



For future work, it is planned to create an Android application to measure
performance figures on a real mobile device as well.

7 Discussion

One can observe that by using route parts, the overall privacy increases. However,
the route part approach yields more privacy, as more requests of different users
overlap. The required level of simultaneous requests can also be achieved by
generating dummy traffic. One can see that the combination of route parts with
dummy traffic always performs better than solely using route parts.

Another finding regarding dummy traffic is that it is sometimes easy for an
adversary to filter. This fact may be connected to the number of requests at the
same time and should improve if more users use the system and have overlapping
route requests. Ideally, one dummy request from a user could be a real request
from another user. It may also help to choose dummy target locations and run
PARTS in parallel for both the real and dummy locations instead of creating
artificial requests per iteration.

In addition, a constant Hops parameter adds a static component to PARTS
detectable by an adversary. Thus, it performs worse than MIXED mode. This
setting uses different Hops parameters for each iteration and therefore weakens
the adversary’s ability to use behaviour knowledge by diluting his data pool.

A surprising result is that by sending route requests in batch mode, there
is no privacy at all, regardless if dummy traffic is included or not. Hence, it is
easy for an adversary to filter dummy requests and combine the different route
segments just by comparing start and target vertices of each request since this
indicates a chronological order. The attack is independent from the number of
users in the system because it is very unrealistic that two requests from different
users occur at the exact same time.

8 Conclusion

We presented the routing algorithm PARTS which protects a user’s movement
pattern by splitting each route request into several route segments without re-
vealing the real start and target locations vS and vT of the overall route. In
this way it is possible to combine local offline knowledge, such as a geographical
layout, with global online real-time data, like traffic information.

A simulation further emphasised the need for such an algorithm and revealed
that it is trivial for an adversary to derive a movement pattern for a user. Our
simulation has shown that route parts can provide additional privacy but need
to be combined with further PPMs to achieve their full potential. Therefore we
extended our algorithm to use dummy traffic and time shifting. It was shown
that the application of time shifting with timeslots was very powerful to protect
a user’s privacy in almost every case. The usage of MIXED mode for the Hops
parameter provides a good overall user experience, since it offers a very high
privacy level and produces a reasonable distance overhead compared to the ideal



route. In general, the PARTS algorithm has no significant influence to the user
experience in terms of performance and data consumption.

For future work, we plan to include semantic background information in our
scenario. On the one hand, we want to strengthen our adversary with these
capabilities. On the other hand, we want to improve the way dummy traffic
is constructed since our experiments have identified that randomly generated
dummy traffic is not that powerful. Furthermore, we plan to evaluate PARTS
against real-world datasets such as Microsoft Geolife [12] to prove its feasibility
on a daily usage. In addition, we want to implement the algorithm as a mobile
application to further elaborate its usability.
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