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Chapter 1

Introduction

If the title “king of the elements” [1] was awarded, Carbon would certainly edge out the
competition in many ways. No other element is known to combine such a variety of strik-
ing chemical and physical properties. Due to its abundance on earth and its unique ability
to form a vast variety of chemical compounds Carbon is regarded as one of few elements
to be essential for the existence of life. Ever since antiquity, where Carbon compounds
were already known1, this element is playing a seminal role for humankind. From the
definition of the Avogadro constant in the 18th century, Carbon as well as its compounds
and allotropes constantly gained importance also for various branches of scientific re-
search. However, it is the nature of scientific discourse to yield controversies at certain
stages. The same is true for Carbon related research.

The probably most recent and relevant one concerns the thermodynamic stability and
thus the existence of an isolated layer of graphite, known as graphene [2, 3]. Theoretical
investigations on the remarkable properties of this two-dimensional hexagonal arrange-
ment of Carbon atoms reach back into the year of 1947, where Wallace investigated the
band structure of graphite [4] within a tight-binding model. In this seminal work Wallace
already pointed out the linear energy dispersion of the band structure close to the corners
of the hexagonal Brillouin zone, which was revived a few years later by McClure within
the discussion of the nonlinear, strong diamagnetism of graphite [5]. In 1984 DiVincenzo
and Mele [6] as well as Semenoff [7] ultimately revealed the mapping of the charge car-
rier dynamics in the region of linear dispersion onto a two-dimensional Dirac equation
with zero rest mass and a constant group velocity vF ≈ c/300.
In this early stage however the consideration of a two-dimensional honeycomb lattice
mainly served as a mathematical device in order to gain insight into the physical proper-
ties of graphite and, later on, fullerenes [8] and carbon nanotubes [9]. Even though, few
layers of graphene [10] or even a monolayer of graphene attached to a metal surface [11]
have been observed experimentally already at this time, the existence of unsupported
graphene remained highly doubted for decades. As pointed out by Peierls [12] and Lan-
dau [13, 14] during the 1930s and ultimately summarized by the Mermin-Wagner theo-
rem [15–17], any two-dimensional crystal was regarded to be thermodynamically unsta-
ble.
However, this common believe, which was in accordance with several experimental ob-
servations [18], faltered with the experimental realization of free-standing graphene by
Novoselov, Geim and coworkers in 2004 [19, 20]. These pioneering experiments were

1in form of charcoal, in Latin: carbo
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followed by groundbreaking measurements of generic observables proving the pseudo-
relativistic dynamics of the charge carriers such as the fractional quantum Hall effect [21,
22], which persists even at room temperature. The experimental evidence of the existence
of graphene lead Novoselov and Geim to be awarded with the Nobel Price in 2010 and
subsequently opened an entire new subbranch of Carbon based research in the field of
condensed-matter physics.

The fascinating nature of graphene results not only from the curiosity of its existence
itself but also from the unique charge carrier dynamics close to the corners of the Bril-
louin zone. The pseudo-relativistic behavior of the fermionic quasiparticles is regarded
as the bridge between solid-state and high-energy physics. Moreover, as the valence
and conduction band of graphene touch precisely at the corners of the Brillouin zone
graphene links the physics of semiconductors and metals with its controllable charge
carrier density [19]. Thus investigations of the transport properties of massless Dirac
fermions in graphene has naturally become a large area of research [23–25]. Even further,
due to its large charge carrier mobility along with their controllable density graphene
has the potential to downsize common transistor technology by one order of magnitude
accompanied by a significant performance increase compared to ordinary silicon-based
devices [26, 27].

The possibilities to study novel or yet unfeasible quantum effects arising from the unique
properties of graphene are however not limited to the field of quantum transport. Espe-
cially investigations including external gauge potentials hold interesting possibilities for
the observation of groundbreaking quantum effects.
Concerning this subfield of graphene related research, the effects emerging from the ap-
plication of magnetic fields attracted huge interest [24]. The exposure to an uniform per-
pendicular magnetic field gives rise to a quantization of the energies into discrete degen-
erate Landau levels similar as it is observable in any other solid-state system. However,
the emerging Landau level spectrum in graphene reflects the unique pseudo-relativistic
properties in the regime of linear dispersion. This results in a measurable [28–30] energet-
ically non-equidistant spacing of the degenerate Landau levels. Furthermore, according
to the electron-hole symmetry of the Dirac cones, a zeroth Landau level is found pre-
cisely at the touching point of valence and conduction band. These features give rise to a
number of interesting effects reaching from the half-integer quantum Hall effect [21, 22],
a giant Faraday effect [31] to the magnetic quantum ratchet effect [32] and also the mea-
surement of the Hofstadter butterfly [33] has been reported. Due to the tunable non-
equidistant level spacing and, thus, along with the ability to optically induce frequency-
selective cyclotron transitions [28, 34–36] Landau-quantized graphene has also been uti-
lized as a wide-band, tunable THz and IR detector [37] and proposed for Landau-level
lasing in this frequency range [38, 39]. Concerning the latter the requirement of popula-
tion inversion [40, 41] has already been observed experimentally [42–45] in the absence of
magnetic fields and it is proposed to persist in Landau-quantized graphene [46] yielding
a possibility to realize a wide-range tunable THz Landau-level laser.

Moreover, due to the experimental improvements of the past decades in the field of cavity
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quantum electrodynamics, the ultrastrong light-matter coupling regime became experi-
mentally feasible as demonstrated for various condensed-matter systems [47–55]. This
coupling range is characterized by the emergence of non-linearities proposing novel ef-
fects such as multiphoton Rabi oscillations [56]. Similar investigations for graphene in
the absence [57] and presence of magnetic fields [58–60] propose additional signatures
arising from the unique pseudo-spin relativistic properties of the material.

Another special quantum effect proposed in the context of cavity quantum electrodynam-
ics in the ultrastrong coupling regime concerns the possible existence of a superradiant
phase [61, 62] which can be allocated to the process of collective spontaneous decay. The
latter was originally studied by Dicke [63] in 1954 considering the radiative decay of a
dense ensemble of distinguishable two-level atoms which is initially prepared in an ex-
cited state. Provided that the state of atomic system is symmetric under permutations
of individual atoms, which however is identical to their indistinguishability within the
setup, they collectively decay under the emission of a coherent radiation flash. The collec-
tive interaction of the atomic cloud with electromagnetic radiation enhances the intensity
of the emitted light compared to the situation of individually decaying atoms. This co-
operative decay is often referred to as Dicke superradiance, which has been observed
experimentally in a great variety of different systems ranging from atomic gases [64–70]
to circuit quantum electrodynamical setups [71] including investigations of decaying in-
tersubband plasmons [72] and cyclotron resonances [73] in semiconductors.
However, the underlying Dicke model generated a long-term controversy as it is pro-
posed to undergo a second order classical [61] and quantum [62] phase transition from
a normal to a superradiant phase in the thermodynamic limit as the ultrastrong criti-
cal coupling is exceeded. Thereby, the normal phase is characterized by the ground-
state properties of the cavity and the atomic subsystem. By contrast, the superradiant
phase where the system has the potential to superradiate [62] is defined by spontaneous
macroscopic excitation of both, the atoms and the cavity. Though in driven dissipative
systems superradiant critical behavior [74–79] has been observed experimentally in Bose-
Einstein condensates [80–83] and atomic gases [84], neither the superradiant classical nor
the quantum phase transition has been measured so far in equilibrium, meaning without
external driving. This can be explained by means of a no-go theorem [85–91] addressing
the originally neglected diamagnetic term which naturally arises from minimal coupling
of a parabolic Hamiltonian and prohibits the equilibrium phase transition.
Though the critical behavior proposed for the original Dicke model is regarded as an ar-
tifact of approximation, investigations on this peculiar phenomena are still controversial
discussed and a matter of current research [92] and especially interesting in the context
of graphene [93–95]. Due to the absence of naturally emerging diamagnetic terms in the
region of linear dispersion, Landau-quantized graphene offers ideal conditions for the
observation of the superradiant phase transition in actual equilibrium [93]. As the degen-
erate Landau levels are non-equidistant, the transition frequency of the last occupied and
first unoccupied level is tunable by the magnetic field and the Fermi level. Thus, the value
of the critical coupling is tunable such that a superradiant quantum phase transition is
predicted for a large enough Fermi level [93]. However, this proposal completely omits
all contributions from filled Landau levels of the valence band as they are regarded to be
far off-resonant with the cavity mode. This triggered a controversial discussion [94, 95]
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concerning dynamically generated diamagnetic terms which are meant to arise from the
occupied Landau states beneath the Fermi level and in turn prohibit superradiant crit-
ical behavior. In particular, Refs. [94, 95] perturbatively derive an effective generalized
Dicke Hamiltonian for the resonant Landau-level doublet which includes additional, dy-
namically generated quadratic contributions. The resulting expression however strongly
depends on the choice of regularization, which is required as the effective Dirac model
artificially assumes unbounded linear energy bands. In general, the proper regulariza-
tion of the effective Dirac model is still under debate [96, 97]. Nevertheless, neglecting
the valence band contribution as well as a second-order perturbative approach applied
for the calculation of the diamagnetic terms probably lacks justification when striving a
robust prediction for the ultrastrong and, thus, highly non-linear coupling regime.

The aim of this thesis is to constructively contribute to the clarification of the controver-
sial discussion on the existence of superradiant critical behavior in Landau-quantized
graphene. Both methods applied for this purpose are chosen with focus on reducing
the amount of approximation preferably capturing the entire non-linearity: The first ap-
proach concerns a path integral formalism for the calculation of the many-body parti-
tion sum on the basis of the effective Dirac model. Within this method it is possible to
exactly integrate the fermionic contribution of the entire many-body Hamiltonian and
derive an effective action for the cavity mode. However, as the effective Dirac model
assumes unbounded linear bands, the effective action requires regularization. This is
achieved by two different methods: a rigid ultraviolet cutoff as commonly applied on
Landau-quantized graphene [24, 98–102] and a rotating-wave-like approximation yield-
ing a cutoff-independent result similar as applied in Ref. [93]. The predictions obtained
within this method are then compared with a numerical tight-binding simulation of the
complete band structure of Landau-quantized graphene interacting with a cavity mode.
Thereby no further approximations are applied such that the result can be regarded as an
independent proof of the analytic prediction.
Additionally, the perturbative approach considered in Ref. [95] is extended to fourth or-
der and evaluated first by using an identical cutoff-independent regularization as applied
in the original work. The result for the critical coupling obtained from the effective Dicke
model is then compared with the cutoff independent result of the path integral approach.
Within the cutoff-independent regularization neither the path integral approach nor the
perturbation expansion in second and fourth order yield results that are commensurable
with the validity range of the approach. In other words, within this particular choice of
regularization, the perturbative approach is a priori not capturing the relevant coupling
ranges due to its validity range. However, by allowing for a cutoff-dependent regular-
ization convincing agreement with the path integral approach is obtained for prediction
of the phase boundary within the validity range even in second-order approximation.

Outline of this thesis

Part I introduces the theoretical concepts for the investigation on the superradiant critical
behavior in Landau-quantized graphene.
To this end, Chap. 2 briefly outlines the main aspects of the canonical quantization of the
electromagnetic field and cavity quantum electrodynamics.
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Chap. 3 provides a detailed discussion of the Dicke model starting with the discussion
of the Dicke Hamiltonian and the phenomena of Dicke superradiance. Subsequently
follows the discussion of the superradiant phase transition with focus on the quantum
critical behavior. Thereby a catalog of generic observables indicating and proving the
quantum critical behavior is provided. This catalog serves as the basis for the exami-
nation of superradiant critical behavior in Landau-quantized graphene as investigated
during Part II.
Chap. 4 gives insight into the no-go theorem and provides an outline of proposed excep-
tions to it according literature. In this chapter also the controversy regarding the super-
radiant critical behavior in Landau-quantized graphene is picked up.
Chap. 5 provides an introduction into the properties of graphene. Starting at the origi-
nal single-particle tight-binding Hamiltonian the derivation of the effective Dirac model
is outlined and followed by the discussion of Landau quantization and single-particle
light-matter interaction within this model. Subsequently follows the construction and
discussion of the many-body Hamiltonian of Landau-quantized graphene in the context
of cavity quantum electrodynamics.

Part II is regarded as the main part of this thesis where the superradiant quantum phase
transition in Landau-quantized graphene is examined.
Chap. 6 discusses the numerical setup of the tight-binding simulation and introduces the
parameters of the considered systems. Furthermore, a discussion of the Peierls substitu-
tion and an estimation of its range of validity is provided, also in view numerically im-
plementing an electromagnetic vector potential for the cavity mode. The results obtained
within the tight-binding simulation are discussed simultaneously with the prediction of
the analytic results in the subsequent chapter.
Chap. 7 provides the calculation of the grand-canonical partition sum of the full Landau-
quantized many-body Hamiltonian, derived in Chap. 5, within a path integral approach
in the thermodynamic limit. A selection of the catalog of typical observables indicat-
ing the superradiant quantum phase transition is picked up step by step for two distinct
regularization techniques. The mean-field results are then compared with the indepen-
dent tight-binding simulation proving also the plausibility of the respective regulariza-
tion method. Thereby the rigid cutoff regularization shows strong agreement with the
numerical simulation. On this basis Chap. 7 eventually defines the parameter ranges re-
quired for the actual experimental observation of the superradiant quantum phase tran-
sition. Furthermore, an analysis of the critical exponents associated with the closure of
the excitation gap in the vicinity of the critical point is provided on the basis of the path
integral approach.
In Chap. 8 the perturbative approach applied in Ref. [95] is extended to fourth order.
The focus of this investigation mainly lies upon the calculation of the critical point. The
effective Dicke-like Hamiltonian derived within this approach is examined using a rigid
momentum cutoff and cutoff-independent regularization similar as applied in Ref. [95].
The former predicts the phase boundary in convincing agreement with the path integral
approach of the full many-body Hamiltonian. A selection of typical features indicating
the superradiant quantum phase transition is then evaluated for the effective Dicke-like
Hamiltonian and compared with the path integral results obtained in Chap. 7.
Chap. 9 summarizes the results and provides perspectives for proceeding considerations
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on the superradiant phase transition in Landau-quantized graphene.

The Appendix complements the Parts I and II by providing technical details and addi-
tional information. Thus, in App. A a discussion of the Lagrangian and Hamiltonian for-
mulation of classical electrodynamics as the basis for the canonical quantization of elec-
tromagnetic radiation is found. App. B reviews some basic concepts of single-particle
quantum mechanics with special focus on the different dynamical representations and
the rotating-frame transformation commonly used in the field of quantum optics. The
main aspects of many-body quantum mechanics are summarized in App. C recapping
the properties of completely symmetrized and anti-symmetrized states which is nec-
essary to understand the concept of indistinguishability in the context of bosonic and
fermionic particles. Furthermore a short introduction into the formalism of second quan-
tization and coherent states of both particle species is provided which is necessary to
derive the path integral approach for the many-body partition sum examined in App. D
starting from the familiar single-particle Feynman propagator. App. E discusses some
useful mathematical tools such as Fourier transformation, Grassmann numbers, Matsub-
ara summation as well as some helpful commutation relations. Finally, App. F provides
some technical details for the calculation of the fourth-order contribution to the effective
Dicke Hamiltonian discussed in Chap. 8.
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Part I

Preliminary concepts
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Chapter 2

Quantum electrodynamics in
Coulomb gauge

In order to understand the physical principles underlying the quantum optical effect of
superradiance it is essential to introduce the concepts of electromagnetic radiation and
its interaction with charged matter on a basic level beforehand.

In the whole field of quantum optics, the concept of quantizing the electromagnetic field
plays a key role by providing the necessary mathematical framework to understand the
origin of vacuum fluctuations around the zero-point energy. These fluctuations have no
classical equivalent and thus in turn are not captured by the classical treatment of radia-
tion based on Maxwell equations.
Theoretical investigations on the interaction between a classical electromagnetic field and
a quantum state of matter require sufficient insights in the understanding of many op-
tical effects, such as stimulated absorption and emission of radiation [103]. However
these, often denoted as semiclassical, theories of light-matter interaction are inadequate in
the description of several quantum optical effects, such as the Lamb shift [104, 105], the
Casimir effect [106–108], the spectral line width of a laser [109, 110] or spontaneous emis-
sion [111] and related effects including Dicke superradiance [63]. The common feature
of these effects is their explicability based on the introduction of vacuum fluctuations.
For instance, the effect of spontaneous emission is accessible through the concept of vac-
uum fluctuations “stimulating” an excited atom to emit radiation. Furthermore, within a
quantized theory of electromagnetic radiation, the introduction of the term photon nam-
ing the emerging electromagnetic quanta is justified.

Beyond this physical motivation for the necessity of introducing a quantized theory of
radiation, in some cases the formalism itself provides technical advantages. According
to the different dynamical representations of quantum mechanics as briefly discussed
in App. B, the dynamics of the photonic quantities entering the theory are adjustable
between either the dependence on time being completely carried by the state vectors or
the operators. Therefore also mixed representations according to the interaction picture
are possible, see Sec. 3 in App. B. Nevertheless, the Schrödinger picture with constant
operators and time-dependent state vectors is exclusively applied throughout this thesis.
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2.1 Canonical quantization of the electromagnetic field

In this subsection the derivation of a quantized theory for the free electromagnetic field
is outlined. The main aspects of the discussion are leaned on the comprehensive consid-
erations of Ref. [103]. The starting point for the canonical quantization of the electromag-
netic field is provided by the postulation of the classical Lagrangian of electrodynamics
in accordance with the Maxwell equations.
Similar to classical mechanics the Lagrangian formulation of the respective classical field
theory is based on the identification of appropriate generalized coordinates and veloci-
ties [112] reflecting the characteristic dynamical properties of the system. The aim is then
to derive the momenta conjugate to the independent generalized coordinates of the clas-
sical field. Thereby, the field theory of classical electrodynamics can be transformed from
the Lagrangian into the Hamiltonian formulation [112] in a similar manner as known
from classical mechanics of point particles. Accordingly, the identified generalized co-
ordinates and conjugate momenta for fields satisfy the respective fundamental Poisson
brackets [103, 112] wherefore they are also referred to as canonical coordinates. The signif-
icance of the Poisson bracket (A.50) for theoretical physics is twofold: On the one hand,
the validity of the Poisson brackets for a certain set of generalized coordinates and con-
jugate momenta corresponds to the invariance of the phase-space volume by regarding
them as transformations from a different set of canonical coordinates. On the other hand,
the Poisson brackets are regarded as the classical equivalent to the canonical commutator
relations (C.40) of quantum mechanics [113]. They determine the dynamics of a classical
observable (A.51) in a formally similar way as the quantum mechanical commutator in
the Heisenberg equation of motion (B.9). This formal coincidence is reasonable in view
of Bohr’s correspondence principle [114], stating that the predictions of quantum mechan-
ics coincide with those of classical physics in the limit of large quantum numbers (or
“~→ 0”). Therefore the Poisson brackets in classical mechanics and classical field theory
can be regarded as the basis for canonical quantization of the respective theory. For more
details on the scheme of canonical quantization of the electromagnetic field any standard
textbook on quantum optics or quantum electrodynamics is sufficient. e.g. Ref. [103].

It is convenient to start at Maxwell equations (A.1 – A.4), since they offer the most fun-
damental insight into the properties of the magnetic field B and the electric field E as
well as their relation to each other. As outlined of Sec. 1 of App. A, the fields B and E
are partially determined from a common vector potentialA,

B(q, t) = ∇×A(q, t), (2.1)
E(q, t) = −∇ϕ(q, t)− ∂tA(q, t), (2.2)

where ϕ denotes the scalar potential of the electric field. Accordingly, the potentials ϕ
and A can be referred to as generalized coordinates for the fields B and E. Thereby the
fieldsB andE are real-valued and invariant under gauge transformations, as outlined of
Sec. 1 of App. A. The relations (2.1, 2.2) directly follow from the homogeneous Maxwell
equations (A.2, A.4).
For the following discussion it is convenient to represent the fields and the potentials in
momentum space. Therefore one applies the Fourier transform, as discussed in Sec. 1 of
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App. E, on Eqs. (2.1, 2.2), yielding

B̃(k, t) = ik × Ã(k, t), (2.3)

Ẽ(k, t) = −ikϕ̃(k, t)− ∂tÃ(k, t), (2.4)

where k will be associated with the propagation direction of the electromagnetic radiation
in Coulomb gauge.

2.1.1 Hamiltonian formulation of classical electromagnetism

The dynamics of N point charges qi interacting with classical radiation is fully deter-
mined by the classical Hamiltonian function

H[{qi}, {pi};A,Π] = Hmatter[{qi}, {pi};A] +Hem[A,Π], (2.5)

of the generalized coordinates and momenta of the particles, {qi} and {pi}, and the fields,
A and Π = ε0∂tA (cf. Sec. 3 of App. A). The contribution

Hmatter[{qi}, {pi};A] =

N∑
i=1

[pi − qiA(qi, t)]
2

2mi
+ VC (2.6)

describes the kinetic properties of the N point charges and the Coulomb interaction
among them, denoted by VC. Furthermore, {qi} and {pi} denotes the set of coordinates
and momenta of the N point particles. The remaining part of the Hamiltonian function
H describes the kinetics of the free, noninteracting electromagnetic field, reading

Hem[A,Π] =
ε0
2

∫
R3

d3k

(2π)3

[
1

ε20
|Π(k, t)|2 + c2k2|Ã(k, t)|2

]
. (2.7)

Within the derivation of H from the postulated classical Lagrangian, which is discussed
in App. A, one finds for the canonical momenta of the electromagnetic field Π = ε0∂tÃ,
see in particular Sec. 3 of App. A. Thus, Π is closely related to the electric field Ẽ in
Fourier space, Eq. (2.4). Moreover, as no time derivative of the scalar potential ϕ enters
the classical Lagrangian, the classical field theory can be transformed into aϕ-independent
form (cf. Sec. 2 of App. A). With this, the conjugate momenta satisfies Π = −ε0Ẽ.
As the classical Hamiltonian function H is independent on a specific choice of gauge,
one may choose a specific constraint for the vector potential Ã in order to diminish the
degrees of freedom entering the theory. Thus, when investigating electromagnetic radia-
tion, it is convenient to choose Coulomb gauge, i.e.

k · Ã(k, t) = 0 ⇔ ∇ ·A(q, t) = 0, (2.8)

where the contribution of Ã parallel to the propagation direction k of the electromagnetic
field is set zero. Hence, only the perpendicular or transverse parts of Ã contribute. As
Fig. 2.1 illustrates, this directly yields two perpendicular polarization directions, η1,k ⊥ k
and η2,k ⊥k. This is also discussed in more detail in Sec. 2 of App. A. Furthermore, Sec. 4
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ky

kz

kx

η1,k

η2,k

k

ek

FIGURE 2.1: Illustration of the two independent directions of polarization,
η1,k, η2,k, normal to the propagation direction ek ‖ k of the transverse field
according to Coulomb gauge, following Ref. [103]. The basis provided by

η1,k⊥η2,k is invariant under rotation with respect to ek axis.

of App. A demonstrates, that the gauge constraint (2.8) directly leads to

Ãn(k, t) = ηn,kÃk [αn(k, t) + α∗n(−k, t)] , (2.9)

where the normalization factor Ãk is defined by

Ãk =

√
~

2ε0ωk
, (2.10)

anticipating the quantum properties of the radiation field as presented subsequently.
Thereby ωk = ck denotes the radiation frequency and c refers to the speed of light. Fur-
thermore, the Fourier coefficients αn(k, t) and α∗n(−k, t), referred to as normal coordi-
nates [103], have the following explicit time dependence

αn(k, t) = αn(k)e−iωkt, (2.11)

α∗n(−k, t) = α∗n(−k)eiωkt, (2.12)

which already reflects the generic properties of electromagnetic radiation with respect
to time propagation. The position space representation of Ã, Eq. (2.10), according to
Eq. (A.36) further underpins the wave-like properties of the vector potential and thus in
turn the fieldsB and E.
The classical Hamiltonian of the free electromagnetic field,Hem, can also be expressed in
terms of normal coordinates, yielding

Hem[A,Π] =

∫
R3

d3k

(2π)3

~ωk
2

2∑
n=1

[αn(k, t)α∗n(k, t) + α∗n(k, t)αn(k, t)] , (2.13)
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which is already reminiscent of the Hamiltonian of a quantum mechanical oscillator.
Along with the Hamiltonian formulation of classical electrodynamics comes the formal-
ism of Poisson brackets determining the dynamics of the corresponding observables. As
discussed in Sec. 6 of App. A, the generalized coordinates and conjugate momenta of the
particles and the field obey the fundamental Poisson brackets (A.52 A.53, A.54) which
provide the basis for the formulation of a quantum mechanical theory of electromagnetic
radiation. The main aspects of the canonical quantization of the radiation field is subse-
quently discussed.

2.1.2 Canonical quantization of the transverse electromagnetic field

According to Dirac [113] quantization of a classical theory is achieved by replacing the
Poisson bracket with the commutator (C.40) according to

{f, g} 7→ 1

i~
[f̂ , ĝ], (2.14)

where the classical functions of phase-space coordinates, f and g, are replaced by their
operator equivalent, each marked with a caret, i.e.

f 7→ f̂ , g 7→ ĝ. (2.15)

The r.h.s. of (2.14) is sometimes also referred to as quantum-mechanical Poisson bracket
[115]. Applying Dirac’s rule onto the generalized coordinates and conjugate momenta,
Eqs. (A.29, A.30), along with the respective Poisson brackets (A.52 A.53, A.54) leads from
classical field theory to quantum field theory of electrodynamics:

qi 7→ q̂i, pi 7→ p̂i, (2.16)

Ãn(k, t) 7→ Ân(k, t), Π̃n(k, t) 7→ Π̂n(k, t), (2.17)

where the grapheme ∼ marking the Fourier transform of the canonical field coordinates
is omitted for convenience. The association of the normal coordinates with operators
results in

αn(k, t) 7→ ân,k(t) = ân,ke
−iωkt, (2.18)

α∗n(k, t) 7→ â†n,k(t) = â†n,ke
iωkt, (2.19)

where â†n,k(t) and ân,k(t) are denoted as creation and annihilation operators of light
quanta or photons associated with the polarization direction ηn,k. According to the dif-
ferent dynamical representations of quantum mechanics, as discussed in App. B, one can
refer to â†n(t) and ân(t) as represented in Heisenberg or interaction picture. The proper-
ties of the creation and annihilation operators in time-independent Schrödinger picture
are comprehensively discussed in Sec. 2 of the App. C. Furthermore, according to the op-
erator definitions (2.16, 2.17) the canonical commutation relations are obtained in view of
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Dirac’s rule:

[q̂iα , p̂jβ ] = i~ δi,jδα,β, (2.20)

[Ân(k, t), Π̂†n̄(k′, t)] = i~ δn,n̄δ(k − k′), (2.21)

[ân,k, â
†
n̄,k′ ] = δn,n̄δ(k − k′), (2.22)

where α, β = x, y, z in (2.20) denote the operator component of the ith and jth quantum
particle along the corresponding space direction. Similar to the Poisson brackets of the
corresponding classical observables all other commutators are zero. From the definition
of the photonic creation and annihilation operators â†n,k and ân,k the corresponding oper-
ator component of the electromagnetic vector potential along polarization direction ηn,k
follows directly from (A.37):

Ân(q̂, t) = ηn,k

∫
R3

d3k

(2π)2
Ãk
[
ân,k(t)eik·q̂ + â†n,k(t)e−ik·q̂

]
. (2.23)

Furthermore, one can define the quantum mechanical Hamiltonian of electrodynamics
from its classical counterpart Eqs. (2.5, 2.6, 2.7, A.49):

Ĥ = Ĥmatter + Ĥem, (2.24)

where each of the contributions reads

Ĥmatter =
N∑
i=1

2∑
n=1

[
p̂i − qiÂn(q̂i, t)

]2

2mi
+ V̂C, (2.25)

Ĥem =

2∑
n=1

∫
R3

d3k

(2π)3
~ωk

(
â†n,kân,k +

1

2

)
. (2.26)

The contribution ∝ 1/2 to the Hamiltonian of the quantum mechanical radiation field
in free space (2.26) is associated with the infinite vacuum energy [103]. Since it yields a
constant background, it is formally omitted in many quantum optical theories such as
the Dicke model discussed in Chap. 3. Note that the integration over wave numbers in
the definition of Ĥem can be regarded as summarizing over the continuum of radiation
modes. In most cases, the cumbersome derivation of the Hamiltonian Ĥ and its contri-
butions (2.25, 2.26) is shortened by the substitution of

p̂i 7→ p̂i − qiÂn(q̂i, t), (2.27)

referred to as the principle of minimal coupling.
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2.2 Cavity quantum electrodynamics in Coulomb gauge

The main part of this thesis investigates the interaction between Landau-quantized charge
carriers in graphene and an electromagnetic cavity mode. By confining the electromag-
netic field of free space to a finite volume the properties of the radiation field are influ-
enced by the geometry of the cavity and the boundary conditions of its walls. This holds
for classical but also quantum electrodynamics. In case of the latter, the distribution of
photons with energy ~ωk is a continuum in free space. By contrast, only photons with
a distinct energy ~ωki are able to occupy a cavity. The selection of wave numbers ki
strictly depends on the properties of the cavity walls, as they give rise to characteristic
boundary conditions. A prominent example of the altered properties of confined pho-
tons compared with those in free space is the Casimir effect [106–108]. Furthermore, the
changes in the rate of spontaneous emission of atoms brought into a cavity is another sig-
nature of the confinement. Thereby, the emission rate is diminished [116] if the photon
frequencies ωki are off-resonant with the transition frequency of the atoms. Vice versa,
spontaneous emission is enhanced in case of resonance [116]. Thus, also the rate of spon-
taneous emission of atoms reflects the properties of the cavity boundary conditions. As it
might be obvious from the discussion in Sec. 2, the results of the quantization procedure
in free space are not generally applicable to confined radiation fields. Generally, before
quantizing one has to consistently implement the boundary conditions starting at the
solutions to the Helmholtz equation, see Sec. 4 of App. A. The quantization procedure
then strongly depends on the geometry and properties of the cavity [117]. Nevertheless
the issue of cavity-dependent quantization can be circumvented in case of the validity of
dipole approximation. In this case, the relevant spacial dimensions of the atomic or elec-
tronic system are much smaller than the wavelength λ = 2π/k of the cavity mode and
the photonic field can be regarded as locally invariant. Accordingly, each component of
the vector potential can be approximated as

Ân(q̂, t) ≈ Ân = ηn,k

∫
R3

d3k

(2π)2
Ãk
[
ân,k(t) + â†n,k(t)

]
, (2.28)

as applied in the standard Dicke model [61–63]. As discussed Subsec. 5.2.3, Eq. (2.28)
holds also true when investigating the interaction of Landau-quantized Dirac fermions
with a cavity mode.
However, even in the case of Eq. (2.28) being a reasonable approximation there are still
signatures of the confinement regarding the wave number k and thus the energy of the
photons. For convenience, a rectangular cavity with side lengths Lx, Ly and Lz is chosen
during the following. Furthermore, it is assumed, that the spacial extension in x and y
direction are much larger than in z direction, i.e. Lx, Ly � Lz , which is in accordance
with other publications investigating the possibility of a superradiant quantum phase
transition in Landau-quantized graphene [93–95].

Due to the periodic nature of the electromagnetic field periodic boundary conditions in
x and y direction are sufficient. Thereby, the effect of the boundaries in these directions
is eliminated in accordance with the spacial dimension. By contrast, the confinement in
z direction is assumed to be perfectly conducting. Accordingly, the tangential compo-
nent of the electric field E and the normal component of the magnetic field B vanish at
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z = 0, Lz [117], i.e. Ex = Ey = Bz = 0.

Thereby, the wave vector k becomes discretized, k 7→ kl = (klx , kly , klz), where each
component i = x, y is given by [117]

kli =
2πli
Li

, (2.29)

with lx, ly ∈ Z. By contrast, the component in z direction reads [117]

klz =
πlz
Lz

, (2.30)

with lz ∈ N0, due to the different boundary conditions in this direction. It is also possible
to choose the boundary conditions for the walls in x and y direction similar to the one in z
direction. In this case klx and kly would be obtained from conditions similar to Eq. (2.30).
Each set of kl is referred to as a cavity mode with energy ~ωkl . According to the discretiza-
tion of wave vectors the integration entering the definition Hamiltonian Ĥem (2.26) of the
electromagnetic fields needs to be replaced by a sum, i.e.∫

R3

d3k

(2π)3
7→ 1

V

∑
kl

. (2.31)

Furthermore, the spacial dimension of the cavity is chosen in a way that the mode with
lowest, non-zero energy

ω0 = min({ω|kl| > 0, lx, ly ∈ Z, lz ∈ N0}) (2.32)

is resonant with some regarded transition. This restriction refers to a single cavity mode
description. The generalization to a multimode case is easily achieved by keeping the
summation as the substitute to the integration over the mode continuum according to
Eqs. (2.28, 2.31). The corresponding wave vector of a single mode is denoted by k0. For
reasons of simplicity and without loss of generality, the polarization of the electromag-
netic mode shall be fixed in x direction during this thesis in accordance with Ref. [94].
Then the vector potential is of the form

Âem = exA0[â†(t) + â(t)], (2.33)

where the operators â† and â are defined as

â†x,k0
(t) =

√
V â†(t), âx,k0(t) =

√
V â(t). (2.34)

Furthermore the normalization factor A0 of the cavity mode is obtained as

A0 =
Ã|k0|√
V

=

√
~

2ε0ω0V
, (2.35)

where Ã|k0| as defined in Eq. (A.33).
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To summarize, one finds the single-mode Hamiltonian of cavity quantum electrodynam-
ics in dipole approximation by adapting the Hamiltonian of the N -particle system inter-
acting with electromagnetic radiation in free space (2.24, 2.25 2.26) accordingly:

Ĥmatter =
N∑
i=1

[
p̂i − qiÂem

]2

2mi
+ V̂C, (2.36)

Ĥcav = ~ω0

(
â†â+

1

2

)
. (2.37)

For convenience, the quantum particles are assumed to be identical for the proceeding
discussion of the Hamiltonian Ĥ = Ĥmatter + Ĥcav. Hence, all particles share the same
mass and charge, i.e. mi = m and qi = q ∀i = 1, . . . , N . By expanding the square in
Eq. (2.36) Ĥmatter can be decomposed according to

Ĥmatter = Ĥ0 + Ĥint + Ĥdia, (2.38)

where

Ĥ0 =
N∑
i=1

p̂2
i

2m
+ V̂C[q̂1, . . . , q̂N ] (2.39)

denotes the many-body Hamiltonian of N quantum particles in the field-free case. Let
{|ni〉} denote the complete set of eigenstates of each single-particle contribution to Ĥ0,
then Eq. (2.39) can be alternatively written as

Ĥ0 =

N∑
i=1

(∑
ni

εni |ni〉 〈ni|
)
, (2.40)

where εni denotes the energy of quantum particle i corresponding to the eigenstate |ni〉.
Since all quantum particles are regarded to be identical, the particle index i on the ener-
gies εi can be omitted. The second contribution to the Hamiltonian (2.38), Ĥint, describes
the interaction between the particles and the cavity mode:

Ĥint = − q

m

N∑
i=1

p̂i · Âem. (2.41)

By deducing the identity
p̂i = i

m

~
[Ĥ0, q̂i] (2.42)

from the canonical commutation relations for the particle operators p̂i and q̂i (2.20), it is
possible to expand each single-particle contribution of Ĥint in the single-particle eigen-
basis {|ni〉} of Ĥ0. Thereby, one inserts resolutions of identity,∑

ni

|ni〉 〈ni| = 1, (2.43)
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on each side of the commutator [118] to obtain

p̂i = −im
~q
∑
ni,n̄i

(εn̄ − εn)d̂n̄i,ni |n̄i〉 〈ni| , (2.44)

where
d̂n̄i,ni = e 〈n̄i|q̂i|ni〉 (2.45)

denotes the matrix element of the dipole operator [119, 120]. Similar to the single-particle
energies, the dipole operator is the same for all quantum particles, since they are regarded
as being identical in their internal degrees of freedom. Therefore the indices on the matrix
elements can be omitted, i.e. d̂n̄i,ni = d̂n̄,n.
Along with this, the expansion of Ĥint into eigenstates of the interaction-free Hamiltonian
Ĥ0 is given by

Ĥint =

N∑
i=1

∑
n̄i,ni

gn̄i,ni√
N
|n̄i〉 〈ni| [â†(t) + â(t)], (2.46)

where
gn̄i,ni = i

√
NA0

εn̄i − εni
~

d̂n̄i,ni · ex (2.47)

describes the coupling strength between the electrons and the photonic cavity mode.
Note that the SI-units of gn̄i,ni are Joule. The prefactor

√
N , compensated by its inverse

in Eq. (2.46), together with the
√
V
−1

proportionality ofA0 ensures the coupling strength
to be constant in the thermodynamic limit defined as [62]

N →∞, V →∞, ρ =
N

V
= const. (2.48)

The coupling constant gn̄i,ni is a fixed quantity determined from the properties of the
quantum particles and the cavity mode. Keeping this in mind, most of the results for the
relevant observables are considered as a function of the coupling strength.
The remaining term in Ĥmatter is given by

Ĥdia =
q2

2m
NÂ

2
em = κ[â†(t) + â(t)]2, (2.49)

where the factor κ reads

κ =
q2~N

4mε0ω0V
, [κ]SI = J. (2.50)

This contribution to Ĥmatter is often referred to as diamagnetic term since it increases the
energy of the system. In various theories on light-matter interaction in cavity QED this
diamagnetic term is neglected due to the assumption of κ being small. This is also the
case in the Dicke model [63]. The necessity of including the diamagnetic term into the
theory [85], especially in the ultrastrong coupling regime, leads to severe changes re-
garding the existence of the superradiant phase transition as predicted by the Dicke
model [61, 62]. This issue is discussed in more detail in Chap. 3.
For the definition of the different coupling regimes according to the relevant energy scales
of the considered system see Tab. 3.1.
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To summarize this section, the most general Hamiltonian describing the interaction of N
quantum particles, each carrying the charge q, with a single cavity mode is given by

Ĥ = ~ω0

(
â†â+

1

2

)
+

N∑
i=1

∑
ni

[
εn |ni〉 〈ni|+

∑
n̄i

gn̄i,ni√
N
|n̄i〉 〈ni| [â†(t) + â(t)]

]
+ κ[â†(t) + â(t)]2 (2.51)

and provides the basis for a large variety of systems studied in the field of cavity quan-
tum electrodynamics.
The time-dependence of the interaction contributions to Ĥ can be transformed in a time-
independent representation according to the dynamical representations of quantum me-
chanics as discussed of App. B. In particular, one can refer to Ĥ as represented in the
interaction picture. By applying a unitary transformation (B.23) onto Ĥ one obtains the
time-independent Schrödinger representation of the Hamiltonian (2.51)

ĤS = ~ω0

(
â†â+

1

2

)
+

N∑
i=1

∑
ni

[
εn |ni〉 〈ni|+

∑
n̄i

gn̄i,ni√
N
|n̄i〉 〈ni| (â† + â)

]
+κ(â†+ â)2.

(2.52)

The transformation of Ĥ into ĤS is denoted as rotating frame transformation in the field
of quantum optics. All light-matter interaction Hamiltonians considered in this thesis
are regarded in the rotating frame, i.e. the Schrödinger picture. Therefore, the index S

denoting the Schrödinger representation is omitted from now on.
As the Hamiltonian Ĥ, Eq. (2.52), is a many-body Hamiltonian in general, it captures
also effects emerging from the collective interaction of the N quantum particles with the
cavity mode. The subsequent discussion investigates these collective radiation effects in
more detail, starting from the derivation of of the Dicke Hamiltonian with Ĥ, Eq. (2.52).
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Chapter 3

The Dicke model and the
phenomenon of superradiance

The variety of model systems describing the interaction of one cavity mode with N ≥ 1
approximate two-level atoms provides the well-studied basis for investigating generic
quantum optical effects. The microscopic derivation of the corresponding Hamiltonians
is generally provided within the scheme discussed in Chap. 2. In particular, the Hamilto-
nian (2.52) is the microscopic starting point from which the well studied class of two-level
models is derived.
The simplest model belonging to this class is the Jaynes-Cummings model [121], which
is regarded as a small-coupling approximation of the quantum Rabi model [122–124]. In
particular, the Jaynes-Cummings model is obtained from the Rabi Hamiltonian by omit-
ting the so-called counter-rotating terms within rotating-wave approximation. This ap-
proximation is justified in the small-coupling regime [125–127]. In both cases, the setup
contains a single cavity mode interacting with a single two-level atom. These single-
particle models allow detailed investigations of the basic properties of light-matter inter-
action on a quantum mechanical level and are briefly introduced in Sec. 4 of App. B.
The generalization of the Jaynes-Cummings and the Rabi model to systems with N > 1
two-level atoms embedded in a cavity leads to the Tavis-Cummings model [128, 129],
valid in the small coupling regime, and the Dicke model [61–63]. Within these many-
body models one is able to investigate effects of many-particle light-matter interaction
ranging from independent emission of radiation to the collective behavior of the atoms
in the radiation field. The latter case was first studied by Dicke [63]. In his seminal
work, Dicke demonstrated the enhancement of spontaneously emitted radiation of a
dense cloud of N � 1 excited two-level atoms due to their collective interaction with
quantum vacuum fluctuations. Further investigations on the Dicke model in the ther-
modynamic limit, N,V → ∞ but constant N/V , proposed that the system exhibits clas-
sical [61] and quantum [62] critical behavior tied to a spontaneously broken symmetry
inherent in the Hamiltonian of the system. In particular, the Dicke model undergoes a
second-order phase transition from a normal to a superradiant phase in the ultrastrong
coupling regime. Thereby the superradiant phase is characterized by the cavity being
spontaneously occupied by a large number ∝ N of photons accompanied by a sponta-
neous polarization of the atoms. Thus, in this new state of matter, the atomic ensem-
ble has the potential to superradiate [62]. At first glance, this collective phenomenon
seems peculiar. However, even before discovering the corresponding superradiant ther-
mal [61] and quantum [62] phase transition, Mallory demonstrated [130] that states with
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a large number of atoms occupying an excited state are energetically preferable in strong-
coupling regimes.
One needs to emphasize, that each of these four models omits the diamagnetic term stem-
ming from the substitution of the kinetic with the canonical momenta in Hamiltonians
with parabolic dispersion. Though this approximation is reasonable when investigating
small-coupling effects, it lacks justification in an ultrastrong coupling regime. However,
ultrastrong coupling is necessary to theoretically obtain the superradiant phase transi-
tion [85]. The extension of the Dicke model, including the diamagnetic term as mi-
croscopically derived from minimal coupling, Eq. (2.27), in case of a parabolic energy
dispersion, see Chap. 2, is referred to as the Hopfield model [131]. The corresponding
Hamiltonian provides the correct description of the atomic gas in the ultrastrong cou-
pling regime. Nevertheless, the inclusion of the diamagnetic contribution leads to a no-go
theorem [85, 132] for the superradiant phase transition preventing the occurrence of this
phenomenon in systems with parabolic energy-momentum dispersion on a fundamental
level. This no-go theorem does not necessarily apply onto systems with different energy-
momentum dispersion [93] or onto artificial systems where the diamagnetic contribution
is not linked to the coupling strength at a similar microscopic level as in an atomic gas.
For instance, the existence of a superradiant phase transition is proposed [132] for super-
conducting Cooper-pair boxes [133–136] coupled to a transmission line resonator [137]
even in the presence of a diamagnetic term (cf. Subsec. 4.2).
The afore-mentioned possible exception of the no-go theorem regarding a system with
non-quadratic energy-momentum dispersion is discussed in Part II on the example of
Landau-quantized graphene. Graphene is known to have a region of linear dispersion
close to the corners of the Brillouin zone. Hence, the dynamics of the charge carriers
follows a massless Dirac-Weyl equation. Thus, in this regime there are no diamagnetic
terms stemming from the band-structure when minimal coupling is applied onto the
model. However, there is also the proposal [94, 95] of a dynamical generation of diamag-
netic contributions arising from screening effects. Thus, before reviewing the controversy
of the potentially existing superradiant phase in graphene, the general properties of this
quantum effect are discussed with regard to the original Dicke model.

To this end, the original Dicke Hamiltonian is derived from the general single-mode
Hamiltonian, Eq. (2.52), by application of a few additional assumptions. Then, the orig-
inal discovery of Dicke [63] concerning the collective spontaneous decay of the atomic
cloud is outlined. However, the superradiant decay is unaffected by the no-go theorem
and has been experimentally verified. By contrast, the thermal and quantum phase tran-
sition in equilibrium, i.e. without application of further modulating laser fields, has not
been observed experimentally. The properties of the superradiant quantum phase transi-
tion are, however, of prior interest for this thesis. Therefore, the characteristic observables
indicating the quantum collective and critical behavior are presented and discussed fol-
lowing mainly Refs. [62, 118]. The provided catalog of typical features is then partially
picked up in Part II.
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3.1 Derivation of the Dicke Hamiltonian

In general, the Dicke model describes the collective interaction of N � 1 atoms with
a single cavity mode as schematically illustrated by Fig. 3.1. The starting point for the
derivation of the Dicke Hamiltonian is therefore provided by the result (2.52) of Chap. 2
under the following assumptions:

1. All atoms are identical, but distinguishable [62, 63].

2. There is no overlap of wave functions of different atoms, so that dipole-dipole in-
teractions among them can be neglected [63, 138].

3. The positions of the atoms are fixed, hence there are no interaction effects due to
collision and no Doppler effect [63, 138].

4. Dipole approximation is valid. Thus, the atoms occupy a volume smaller than the
wavelength λ of the photonic mode [63, 138].

5. There is only one interacting electron per atom [63].

6. Each atom is an approximate two-level system [63].

7. Diamagnetic contributions can be omitted [63].

Thus, the Dicke Hamiltonian is obtained as a specification of the general expression (2.52)
describing N quantum particles interacting with a single cavity mode ω0. Since the mi-
croscopically derived Hamiltonian, Eq. (2.52), already satisfies assumptions 1 – 5 only
the restriction of the eigenbasis {|ni〉} to two basis states {|0i〉 , |1i〉} per atom has to be
carried out explicitly. Then, by dropping the diamagnetic term, the Dicke Hamiltonian is
obtained.

The restricted basis, {|0i〉 , |1i〉}, corresponds to a representation of the special unitary
group, SU(2), which is generated from the identity and Pauli matrices:

σ̂i0 =

(
1 0
0 1

)
= |0i〉 〈0i|+ |1i〉 〈1i| , σ̂iy =

(
0 −i
i 0

)
= −i |1i〉 〈0i|+ i |1i〉 〈0i| ,

σ̂ix =

(
0 1
1 0

)
= |0i〉 〈1i|+ |0i〉 〈1i| , σ̂iz =

(
1 0
0 −1

)
= |0i〉 〈0i| − |1i〉 〈1i| .

(3.1)

It is useful for the following to define [119]

σ̂i+ =
σ̂ix + iσ̂iy

2
=

(
0 1
0 0

)
, σ̂i− =

σ̂ix − iσ̂iy
2

=

(
0 0
1 0

)
, (3.2)

which act onto the ith two-level basis as raising (+) and lowering (−) operators similar
to the creation and annihilation operators for Fock states, discussed in Sec. 2 of App. C.
Furthermore, the following commutation relations hold for the Pauli matrices σ̂iz and σ̂j±:

[σ̂iz, σ̂
j
±] = ±δi,j σ̂i±, [σ̂i+, σ̂

j
−] = 2δi,j σ̂

i
z, (3.3)
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where the Kronecker delta δi,j indicates that operators from different Hilbert subspaces
commute. Due to the isomorphism between SU(2) and the special orthogonal group
SO(3) one refers to the two-level atoms as spin-1/2-like system and introduces the corre-
sponding spin operators

ŝik =
σ̂ik
2
, k = x, y, z. (3.4)

The raising and lowering operators in the spin basis are identical to the matrix represen-
tation (3.2) yielding

ŝi± = ŝix ± iŝiy. (3.5)

For consistency, the basis is mapped to the spin notation, so that the excited state |1i〉 of
the ith atom is assigned to the spin-up state |↑i〉. The ground state |0i〉 is mapped like-
wise to the spin-down state |↓i〉 in this notation. During the following the terms spin and
two-level atoms are synonymously used.

Since the spin is an angular momentum [119] the notation of the basis {|↓i〉 , |↑i〉} can
be represented in a mathematical more general way using the common notation |si;mi〉
for quantum mechanical angular momenta. In this notation each state of the ith spin is
described by two quantum numbers, si and mi. Here, si refers to the eigenvalue of the
total angular momentum operator

(ŝi)2 = (ŝix)2 + (ŝiy)
2 + (ŝiz)

2, (ŝi)2 |si;mi〉 = si(si + 1) |si;mi〉 . (3.6)

In general, the quantum number si is given by either an integer or a half-integer. The
latter is the case here, i.e. si = 1/2. The quantum number mi refers to the eigenvalue of
the ŝiz operator

ŝiz |si;mi〉 = mi |si;mi〉 . (3.7)

In general, the quantum number mi takes the values [119]

mi = −si,−(si − 1), . . . , (si − 1), si. (3.8)

By regarding a spin-1/2-system mi assumes the values ±1/2, where + refers to the spin-
up state |↑i〉 and − refers to the spin-down state |↓i〉. Adjusting the Hamiltonian (2.52)
accordingly leads to the following expression

Ĥ = ~ω0

(
â†â+

1

2

)
+

N∑
i=1

[
E ŝi0 + ~Ω ŝiz +

g√
N

(ŝi+ + ŝi−)(â† + â)

]
+ κ(â† + â)2, (3.9)

which is already reminiscent of the Dicke Hamiltonian containing a diamagnetic term.
Thereby, E = ε1 + ε0 denotes the mean energy and ~Ω = ε1− ε0 is the transition frequency
of each atom. Furthermore, as the Hamiltonian is Hermitian, it is usual [62, 118] to chose
the coupling strength real-valued, reading

g =
√
NA0

Ω

~
d̂1,0 · ex, (3.10)
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L = λ/2

� L

|0i〉

|1i〉
g

e−

FIGURE 3.1: Inspired by Refs. [118, 139]. Schematic sketch of the
configuration in the Dicke model. The blue elements depict the
mirrors of the cavity and the yellow shaded region illustrates the
area potentially occupied by the photons. The side length of the
cavity, L, determines the wave-lengths λ of the optical modes.
Since the original Dicke model is a single-mode model, one may
assume the corresponding photons to occupy the first fundamen-
tal oscillation of the cavity, i.e. λ = 2L and ω0 = 2πc/λ. The
side length L is assumed to be much larger than the size occu-
pied by the atoms (small red dots in the middle of the cavity),
justifying dipole approximation. The inset shows the energetic
properties of the ith two-level atom. In the depicted example the
single-particle system i occupies its ground state |0i〉. The cou-
pling strength g is a measure for the probability of the transition
between ground state and excited state linked to photon creation

and annihilation as encoded in Dicke Hamiltonian (3.11).

This is permitted without loss of generality. Keeping a complex coupling value or assign-
ing the interaction part with an additional imaginary unit yields identical results com-
pared with the convention applied here [132]. Finally, the original Dicke Hamiltonian
is obtained by dropping the diamagnetic term ∝ κ. Additionally, the photonic vacuum
contribution and the mean-energy term are conveniently omitted since they induce only
a constant shift of the energies.
With this, the Dicke Hamiltonian

ĤD = ~ω0â
†â+

N∑
i=1

[
~Ωŝiz +

g√
N

(ŝi+ + ŝi−)(â† + â)

]
(3.11)

is obtained as the many-body generalization of the Rabi Hamiltonian [122–124] (cf. Sec. 4
of App. B).
By expressing the bosonic contribution in the interaction part ∝ g in ĤD in terms of the
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position operator [140], x̂ = 2(â† + â), one may alternatively write

ĤD,int =
N∑
i=1

g√
N

(ŝi+ + ŝi−)(â† + â)
(3.5)
=

N∑
i=1

g√
N
ŝixx̂. (3.12)

This expression is helpful to gain insights into the properties of the two quantum phases
exhibited by the Dicke model as discussed in Sec. 3.3.

Furthermore it is helpful to introduce common terms characterizing the system according
to the strength of the coupling parameter g in relation to other relevant energy scales of
the model. As enumerated by Tab. 3.1 one distinguishes [124, 141] between a weak,
strong, ultrastrong and deep strong coupling regime.

The Dicke Hamiltonian, Eq. (3.11), shows that the underlying model is invariant under
permutations of atoms. Therefore, the symmetry properties regarding particle permu-
tation of an initially prepared state are preserved in the dynamical evolution of the sys-
tem [138]. For example, assume the system to be initially prepared in an excited state
which is completely symmetric with respect to particle permutations. As time evolves
the system might decay into a state with lower energy after some time t. According to
the properties of the Hamiltonian, this final state is then also completely symmetric with
respect to permutations of atoms. This is also valid for cascades of decays, such as stud-
ied by Dicke [63] yielding the phenomena of Dicke superradiance as discussed during the
following.

3.2 Collective spontaneous emission

Similar as discussed in Sec. 1 of App. C, the Hilbert space of the particles in the Dicke
Hamiltonian and its generalization, Eq. (2.52), is constructed from the tensor products of
N single-particle Hilbert spaces. If Hs denotes the part of the Hilbert space spanned by
the ith single-particle two-level basis {|mi〉 ;m =↓, ↑} one will obtain the complete Hilbert
space relevant for the Dicke model by

HD = H+

(
N⊗
i=1

Hs

)
, (3.13)

where H+ denotes the Hilbert space of the photonic mode. Accordingly, the basis states
of the Dicke Hamiltonian are obtained as product states according to{

|n〉
(

N⊗
i=1

|1/2;mi〉
)

;m = ±1/2;n ∈ N0

}
, (3.14)

where |n〉 denotes the Fock state basis of the photonic mode (cf. Sec. 2 of App. C).
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Properties Coupling regime Comments

g � I0,Γ, ω0,Ω weak

• Rotating-wave approximation is valid.

• Jaynes-Cummings / Tavis-Cummings model is a
good approximation for the quantum Rabi / Dicke
model.

I0,Γ� g � ω0,Ω strong

• Rotating-wave approximation is still valid.

• Photon absorption and emission occurs much faster
than the cavity decay: coherent quantum Rabi oscil-
lations.

• Experimentally observed in various sys-
tems: atoms [142], semiconducting quantum
dots [143, 144], Cooper-pair boxes [137].

g . ω0,Ω ultrastrong

• Breakdown of the rotating-wave approxima-
tion [125–127].

• Jaynes-Cummings / Tavis-Cummings model be-
comes insufficient.

• Break-down of the standard master equation [145].

• Emergence of non-linearities: multiphoton quan-
tum Rabi oscillations in driven systems [56].

• Ultra-efficient light emission [146, 147].

• New quantum phenomena are proposed such as
superradiant phase transition [61, 62].

• Experimentally feasible: superconductor sys-
tems [48, 49], semiconductors [47, 51–53, 55],
molecules [50] and ferromagnets [54],

strongest coupling recorded so far [55]:
g = 0.87~ωc

g & ω0,Ω deep strong
• Has not been reached experimentally so far.

• Proposed [148] breakdown of the Purcell ef-
fect [149]: decoupling of light and matter.

TABLE 3.1: Different coupling regimes regarding the relevant energy
scales in the Dicke and the quantum Rabi model, according to Refs. [124,
141]. Thereby ω0 denotes the frequency of the cavity mode, Ω refers to the
transition frequency of the two-level atoms and g is the coupling param-
eter. Furthermore, I0 and Γ denote the decay rate of each two-level atom
and the cavity, respectively. The list of effects emerging for the different

coupling regimes is not exhaustive.
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3.2.1 Collective spin operators

The introduction of the collective atomic operators [62]

Jk =

N∑
i=1

sik, k = ±, x, y, z (3.15)

not only simplifies the notation of the Dicke Hamiltonian,

ĤD = ~ω0 â
†â+ ~Ω Ĵz +

g√
N

(Ĵ+ + Ĵ−)(â† + â), (3.16)

but also allows a change of basis similar to the standard textbook example concerning
the addition of two spins. In view of Eq. (3.5) one finds for the collective raising and
lowering operator

Ĵ± = Ĵx ± iĴy. (3.17)

With this, in similarity to Eq. (3.12), the alternative representation of interaction part of
ĤD in terms of the collective angular momentum operator in x-direction is then given by

ĤD,int =
g√
N
Ĵxx̂. (3.18)

From Eqs. (3.6, 3.7) follows, that the product basis (3.14) is an eigenbasis for each (ŝi)2

and ŝiz and thus also for any sum of these operators for different atoms. Nevertheless, the
basis is not an eigenbasis of the total collective angular momentum operator

Ĵ 2 = Ĵ 2
x + Ĵ 2

y + Ĵ 2
z , (3.19)

as it is easily seen from expansion of each operator square in view of Eq. (3.15). One finds
for instance:

Ĵ 2
x =

N∑
i,j=1

ŝixŝ
j
x 6=

∑
i

(ŝix)2. (3.20)

However, the simultaneous eigenbasis of the collective operators Ĵ 2 and Ĵz can be char-
acterized by the two quantum numbers J and M in a similar manner as in the case of a
single spin. Thereby, each basis state |J ;M〉 satisfies [119]

Ĵ 2 |J ;M〉 = J(J + 1) |J ;M〉 ,
Ĵz |J ;M〉 = M |J ;M〉 ,

(3.21)

where J and M assume the values

J =

{
0, 1, . . . , N2 for even N,
1
2 ,

3
2 , . . . ,

N
2 for odd N,

M = −J,−(J − 1), . . . , J − 1, J.

(3.22)
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Since both sets of states, {|J ;M〉} and {⊗Ni=1 |1/2;mi〉}, provide a complete orthonormal-
ized basis [119], there exists a unitary transformation

|J ;M〉 =
∑

m1+···+mN=M

C1/2,...,1/2;J

m1,...,mN ;M

(
⊗Ni=1 |1/2;mi〉

)
, (3.23)

promoting the change of basis. The coefficients C1/2,...,1/2;J

m1,...,mN ;M
are referred to as Clebsch-

Gordan coefficients [119]. The construction of the Clebsch-Gordan coefficients for an arbi-
trary but fixed number N > 2 of spins is, however, not trivial in general [150].
Furthermore, the basis {|J ;M〉} contains states with different symmetry properties re-
garding the permutation of spins. In a similar manner as discussed in Sec. 1 of App. C
for the construction of general many-body states, the relevant part of Hilbert space HD

spanned by the spin-eigenstates of the Dicke Hamiltonian can be decomposed into three
subspaces:

HD = H+ ⊗
[
H̃sym ⊕ H̃anti−sym ⊕ H̃mix

]
, (3.24)

where each H̃x is spanned by all basis states with the respective permutation symmetry.
Note that the symmetry properties of the subspace H̃sym and H̃anti−sym are similar to
H+ and H− discussed in Sec. 1 of App. C. The labels sym and anti− sym are, however,
introduced to avoid confusion. For a fixed value of J the set of symmetrized or anti-
symmetrized states with different M are referred to as multiplets. The construction of
those multiplets from the product basis (3.14) of an arbitrary number N of spins yields
entangled and non-separable states [151]. This can even be seen from the example of
N = 2:
The symmetrized states for J = 1 form the triplet [92, 119]

|J = 1;M = −1〉 = |↓1↓2〉 , (3.25)

|J = 1;M = 0〉 =
|↑1↓2〉+ |↓1↑2〉√

2
, (3.26)

|J = 1;M = +1〉 = |↑1↑2〉 . (3.27)

Accordingly, the anti-symmetrized state

|J = 0;M = 0〉 =
|↑1↓2〉 − |↓1↑2〉√

2
, (3.28)

is referred to as a singlet. In this example each state of the singlet and triplet with M = 0
is an entangled state.

3.2.2 Dicke states

The multiplet of completely symmetric states assigned to the maximal value of the quan-
tum number J , Jm = N/2, is referred to as the set of Dicke states. In particular, the triplet
states (3.25 – 3.27) are Dicke states in a N = 2 spin system where J assumes the maximal
value of Jm = 1 [92]. Dicke coined the name cooperation number for the quantum number
Jm [63].
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According to (3.22) there are N + 1 Dicke states which can be constructed from the prod-
uct basis of N single-spin states:

|Jm;M = −Jm〉 = |↓1↓2 . . . ↓N 〉 , (3.29)

|Jm;M = −Jm + 1〉 = P̂sym
2Jm,−Jm+1 |↑1↓2 . . . ↓N 〉 , (3.30)

|Jm;M = −Jm + 2〉 = P̂sym
2Jm,−Jm+2 |↑1↑2 . . . ↓N 〉 , (3.31)

...

|Jm;M = +Jm〉 = |↑1↑2 . . . ↑N 〉 . (3.32)

The symmetrization operator

P̂sym
2Jm,M

=
1√

(2Jm)!(Jm −M)!(Jm +M)!

∑
σJm+M

∈S2Jm

P̂σJm+M , (3.33)

is similarly defined as the corresponding operator for the construction of completely sym-
metrized bosonic states, Eq. (C.18). The permutation operator P̂σJm+M denotes a linear
map associated to each element σJm+M ∈ SJm+M of the permutation group SJm+M . The
action of P̂σJm+M is in particular given by Eq. (C.12). Each element σJm+M ∈ SJm+M of
the group SJm+M denotes a permutation of Jm + M spin-up states in a set of N = 2Jm

spins. Note that the sum over permutations, σ ∈ SN , in the definition of the completely
symmetrized bosonic many-body states, Eq. (C.18), includes all possible permutations of
a set of N indices. In the case of Eq. (3.33), the normalization factor entering the defini-
tion of the symmetrization operator corresponds to the two-particle simplification of the
normalization factor obtained for bosonic states according to Eq. (C.18).
The construction of the Dicke states for a given cooperation number Jm = max(J) from
symmetrized single-particle product states is in principle similar to the construction of
N -particle Fock states (cf. Sec. 2 of App. C). Moreover, the Dicke states span a Hilbert
subspace in which the system is characterized by the indistinguishability of the single-
particle subsystems. This is identical to the indistinguishability inherent in the Fock-state
description of bosonic or fermionic many-body systems.

3.2.3 Selection rules of the Dicke Hamiltonian

According to the angular momentum algebra, the operators Ĵ± apparent in ĤD, Eq. (3.16),
act as raising (+) and lowering (−) operators [119] similar to the creation and annihila-
tion operators for Fock states (cf. Sec. 2 of App. C). In particular, their action onto a Dicke
state |Jm,M〉 is given by [62]

Ĵ± |Jm;M〉 =
√
Jm(Jm + 1)−M(M ± 1)) |Jm;M ± 1〉 , (3.34)

yielding the dipole selection rules

∆J = 0, ∆M = 1. (3.35)

Thus, the cooperation number Jm is a good quantum number, as it can also be seen from
[ĤD, Ĵ 2] = 0. By contrast the eigenvalue of the Ĵz operator, M , is not conserved as
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Eq. (3.35) or [ĤD, Ĵz] 6= 0 implies.

3.2.4 Dicke superradiance

Suppose the cloud of N two-level atoms described by ĤD, Eq. (3.16), to be prepared in
the Dicke state |Jm;M〉. The cavity is assumed to be in its vacuum state, i.e. there are
no photons present. In the course of time, fluctuations of the quantum vacuum trigger
the atomic cloud to spontaneously decay from the initial state |Jm;M〉 to the final state
|Jm;M − 1〉 in accordance with the selection rules (3.35). As encoded in the interaction
term ∝ g of ĤD this decay is eventually accompanied by the emission of a photon.
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FIGURE 3.2: Rates of spontaneous emission of Dicke states I(Jm,M), as
defined in Eq. (3.36), for different cooperation numbers Jm. As the cooper-
ation number increases the maximum of I(Jm,M) approaches the vicinity

of M = 0.

The probability of this event to occur is given by [152]

I(Jm,M) = | 〈Jm;M − 1| J− |Jm;M〉 |2I0

= [Jm(Jm + 1)−M(M − 1)] I0,
(3.36)

where I0 = I(1/2, 1/2) denotes the rate of spontaneous emission of a single spin prepared
in its excited state |↑〉.
As time evolves, an initially strongly excited Dicke state, such as |Jm, Jm〉, eventually
cascades down the ladder of Dicke states [63]

|Jm, Jm〉 → |Jm, Jm − 1〉 7→ · · · 7→ |Jm,−Jm〉 , (3.37)

where the rates of the corresponding decays alter according to Eq. (3.36). Figure 3.2 illus-
trates this for various cooperation numbers.
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Furthermore, it can be seen from Fig. 3.2 and Eq. (3.36) that the emission rates for systems
with a large number N of spins assume a maximum in the vicinity of M = 0:

I(Jm,M ≈ 0) ≈ J2
mI0 =

N2

4
I0. (3.38)

The situationM ≈ 0 corresponds to approximate equality in the population of the single-
particle states |↑〉 and |↓〉. The scaling of the emission rates with the squared number of
two-level atoms for M ≈ 0 is a feature of the collective behavior of the atomic ensem-
ble [63]. For comparison, if the two-level atoms were spread over the volume of the cav-
ity, such that assumption 4 is not valid anymore, they would radiate incoherently with
rates ∝ N rather than N2. This coherent spontaneous emission of radiation was coined
by Dicke [63] with the term superradiance and Dicke states with |Jm;M ≈ 0〉 are referred
to as superradiant states.

The existence of superradiant decays have been observed experimentally in various se-
tups ranging from atomic gases [64–70] to circuit quantum electrodynamics [71] and
measurements of superradiant decays of intersubband plasmons [72] and cyclotron res-
onances [73] in semiconductors.

3.3 Superradiant quantum phase transition

The spontaneous collective decay of an ensemble of two-level atoms is in general observ-
able for any coupling parameter g > 0 and a large but finite number of atoms. How-
ever, in the thermodynamic limit, where the number of atoms approaches an infinite
value at constant density, the Dicke model additionally exhibits classical [61, 153] and
quantum [62] critical behavior. The transition point is thereby found in the ultrastrong
coupling regime, where the coupling strength between the atoms and the cavity mode
becomes comparable with their characteristic energy scales. The proposed phase tran-
sition of the Dicke model and related systems has given rise to a long-ranged and still
ongoing controversy regarding its actual existence in realistic systems. Before entering
the main aspects of this discussion around the no-go theorem, the characteristics of the
proposed phase transition of the Dicke model are introduced during this section. The
following considerations are based on Ref. [62, 118].

Superradiant classical phase transition
By investigating the thermodynamic properties of the exactly solvable Tavis-Cummings
model in the thermodynamic limit (N,V →∞whereN/V = const.), Hepp and Lieb [154]
discovered a second-order classical phase transition. The Tavis-Cummings model is sim-
ilar to the Dicke model where only the energy-conserving contributions ∝ Ĵ−â† + Ĵ+â
of the interaction term are kept in ĤD. This approximation is referred to as rotating-wave
approximation [120] and briefly discussed in Subsec. 4.2 of App. B.
In their work [154] Hepp and Lieb demonstrated that the system described by the corre-
sponding Hamiltonian changes at ultrastrong coupling from the normal phase to a super-
radiant phase for T < Tc. The normal phase is characterized by the groundstate proper-
ties of the noninteracting photonic and atomic subsystem. By contrast, the superradiant
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FIGURE 3.3: Phase diagram of the second-order superradiant transition
in the Dicke model. The blue line refers to the classical phase boundary
1/βc as a function of the coupling parameter g, according to Eq. (3.39).
For β−1 > β−1

c the system is in the normal phase, characterized by zero
photon occupation and the respective atomic ground states. If the coupling
strength g is greater than gc a decrease of temperature will yield the system
to cross the phase boundary resulting in the transition form the normal
to the superradiant phase. As T approaches zero, the phase boundary of
the thermal phase transition terminates at the quantum critical coupling gc
marked by the red dot. Note that the phase diagram of the second-order
quantum phase in this depiction refers only to the one-dimensional g axis

at T = 0.

phase is characterized by a macroscopic photonic population of the cavity along with ex-
citations of the two-level atoms. Both observables, the photonic cavity occupation and the
atomic polarization, are proportional to the number N of atoms in the cavity [154] As the
number of atoms is macroscopic (N →∞), also the photon occupation and the polariza-
tion assume macroscopic values. The results concerning the second-order superradiant
phase transition of the Tavis-Cummings mode were confirmed by Wang and Hioe [155].
Unfortunately the rotating-wave approximation applied to obtain the Tavis-Cummings
model from the Dicke model forfeits validity in the ultrastrong coupling limit, which is
required to obtain the superradiant phase transition [125–127].
Nevertheless, Hepp and Lieb proved the existence of the superradiant phase transition

in the actual Dicke model [61] as well. This result was confirmed by Ref. [153] using a
different approach. The critical temperature for the superradiant phase transition was
thereby obtained as [61]

1

kBTc
= βc =

2

~Ω
arctanh

(
~ω0~Ω

4g2

)
, (3.39)
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differing from the result for the Tavis-Cummings model by the factor of 1/4 in the ar-
gument of the inverse hyperbolic tangent. Within their investigations, Hepp and Lieb
observed that the thermal superradiant phase transition in the Dicke model occurs only
for couplings g larger than the critical coupling

gc =
~
2

√
ω0Ω. (3.40)

Besides the superradiant phase transition driven by thermal fluctuations, the Dicke model
exhibits also a quantum phase transition from a normal to a superradiant phase as investi-
gated by Emary and Brandes [62]. In contrast to thermal phase transitions occurring for
a set of critical parameters as the temperature approaches Tc, quantum phase transitions
take place at T = 0. They are driven by quantum fluctuations only and thus they have no
classical counterpart. As Part II of this thesis focuses mainly on the superradiant quan-
tum critical behavior of Landau-quantized graphene, the main aspects of the quantum
phase transition proposed for the Dicke model are discussed subsequently.

Superradiant quantum phase transistion
In equilibrium any system strives to archive a state with minimal energy, quantified by
the respective thermodynamic potentials such as the free energy

F (T, V,N) = E(T, V,N)− TS T→0−→ E(0, V,N). (3.41)

When investigating quantum phase transitions one has to consider the limit T → 0 where
the free energy F and the internal energy E are identical [156]. Thus, the minimum of the
free energy coincides with the quantum mechanical many-body ground-state energy E0

of the system. The Dicke Hamiltonian and as well as the Hamiltonian considered during
the Part II are both of the general form

Ĥ(g) = Ĥ0 + gĤint. (3.42)

Ĥ0 describes the dynamics of the quantum particles and the cavity mode without inter-
action. Hence, the interaction between the photons and the charge carriers of the system
is captured in the term Ĥint. Since the Hamiltonian Ĥ is a function of the coupling pa-
rameter g also the ground-state energy E0 varies with the coupling strength.
In a weak coupling regime (cf. Tab. 3.1), the energy spectrum of Ĥ and thus in turn the
properties of the ground-state energy E0 are dominated by the contribution Ĥ0. By con-
trast, if g exceeds all other relevant energy scales in the model, corresponding to the deep
strong coupling regime, the properties of the energy spectrum are governed by the inter-
action part Ĥint. Depending on the specific details of the contributions Ĥ0 and Ĥint this
potentially yield completely different properties of the ground state in either coupling
limit.

More precisely, when considering the Dicke Hamiltonian

ĤD = ~ω0 â
†â+ ~Ω Ĵz +

g√
N

(Ĵ+ + Ĵ−)(â† + â), (3.43)
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the properties of the energy spectrum in the weak coupling regime, g � ~ω0, ~Ω, are
dominated by the first two contributions on the r.h.s. Hence, the eigenstates are approx-
imately given by the product basis {|n〉 ⊗ |Jm;M〉} of Fock states |n〉 and Dicke states
|Jm;M〉 (cf. Sec. 2 of App. C and Subsec. 3.2.2 for details). The state of lowest energy
corresponds to the product state resulting from the unoccupied cavity and the collective
ground state of the ensemble of two-level atoms: |Gns〉 = |0〉 ⊗ |Jm;−Jm〉. The ground-
state expectation value of the photon occupation as well as the collective atomic operators
in this coupling limit are then given by

〈â†â〉Gns
= 0 (3.44)

〈Ĵz〉Gns
= −Jm, 〈Ĵx〉Gns

= 0. (3.45)

This situation precisely reflects the properties of the normal phase.
In the opposite coupling limit, i.e. g � ~ω0, ~Ω, the energetic properties of the hybrid
system are dominated by the interaction term∝ g(Ĵ++Ĵ−)(â†+â) of Eq. (3.43), or∝ gĴxx̂
according to Eq. (3.18), respectively. The eigenbasis in the deep strong coupling regime
is then given by the product basis of the eigenstates of the operators Ĵx and x̂ ∝ (â† + â).
As discussed in Subsec. 3.1 of App. C, bosonic coherent states |Φ〉+ are eigenstates of the
bosonic annihilation operator â, where the eigenvalue, denoted by

√
α for convenience,

is in general a complex number. Hence, the eigenvalue equation is given by â |Φ〉+ =√
α |Φ〉+. It is intuitive that the bosonic contribution to the ground-state wave function
|Gsp〉 in this coupling limit is given by some coherent state |Φ〉+. From this it follows
that the ground-state expectation values for the photonic occupation and the collective
angular momentum operators are of the general form

〈â†â〉Gsp
= α (3.46)

〈Ĵz〉Gsp
= 0, 〈Ĵx〉Gsp

= ±Jm, (3.47)

where the relations in Eq. (3.47) follow from general angular momentum algebra cal-
culus [119]. A comprehensive discussion on these relations particularly concerning the
Dicke model is also provided in Ref. [118]. The properties of the ground-state expectation
values (3.46, 3.47) precisely reflect the characteristics of the superradiant phase [61, 62]:
A spontaneous, macroscopic polarization of the atoms along with spontaneous photon
occupation in the cavity. As it is seen during the following, the photon occupation is also
scaling with the number N of atoms embedded in the cavity and therefore it is also re-
ferred to as a macroscopic observable.

This intuitive picture provided by both extreme coupling limits, g � ~ω0, ~Ω and g �
~ω0, ~Ω, already indicates the existence and main properties of both quantum phases.
The aim of the following is to explore these properties on a mathematically sound level
also for intermediate coupling strengths close to the critical point. The derived properties
yield the basis for investigating the possibility of critical behavior of Landau-quantized
graphene which is discussed in Part II. The subsequent discussion is based on consider-
ations of Refs. [62, 118].
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It is convenient [62, 157, 158] to introduce the Holstein-Primakoff representation [159–
161] of the collective angular momentum operators

Ĵz = (b̂†b̂− Jm) (3.48)

Ĵ+ = b̂†
√

2Jm − b̂†b̂, Ĵ− =

√
2Jm − b̂†b̂ b̂, (3.49)

where b̂† and b̂ are bosonic operators satisfying the commutation relation [b̂, b̂†] = 1 and
2Jm = N . This representation corresponds to an exact map. Furthermore, one introduces
a displacement [140] of each pair of bosonic operators, â†, â and b̂†, b̂, according to

â† = Â† +
√
Nα, b̂† = B̂† −

√
Nβ, (3.50)

where α, β ∈ R [62]. The sign in front of each square root can be altered [62]. Note that
in the original work of Emary and Brandes the displaced operators (3.50) are introduced
without scaling ∝

√
N . The applied notation (3.50) is adopted from Ref. [118] and might

provide a more transparent insight into the scaling behavior of the considered quantities.
In the end, both approaches yield identical results concerning the atomic polarization
and the photon occupation in the ground state. The bosonic operators Â† and B̂† and
their Hermitian conjugates, introduced in Eq. (3.50), are regarded as fluctuation opera-
tors [62, 118] with vanishing expectation values, i.e. 〈Â†〉 = 〈B̂†〉 = 0. Along with this,
the displacements

√
Nα and

√
Nβ are interpreted as macroscopic mean fields associated

with the photonic cavity occupation and the atomic inversion [62]. This interpretation
becomes more obvious during the following. Furthermore, the expectation values of the
displaced atomic operators, B̂† and B̂, satisfy [118]

〈b̂†〉 ≤
√
N, 〈b̂〉 ≤

√
N, (3.51)

for any element of the Hilbert space HD, Eq. (3.13). Thus, from Eq. (3.50) follows
√
β ≤ 1

for the atomic mean field [118].

By substitution of the Holstein-Primakoff representation for the collective angular mo-
mentum operators (3.48, 3.49) along with application of the displacement (3.50) in the
Dicke Hamiltonian (3.43), one obtains

ĤD = ~ω0

[
Â†Â+ 2

√
Nα(Â† + Â) +Nα

]
+ ~Ω

[
B̂†B̂ − 2

√
Nβ(B̂† + B̂) +Nβ − Jm

]
+

g√
N

[
(B̂† −

√
Nβ)X̂ + X̂ (B̂ −

√
Nβ)

] [
(Â† + Â) + 2

√
Nα
]
, (3.52)

where X̂ denotes the square root assigned to the raising and lowering operators in Holstein-
Primakoff representation (3.49). It is useful to rewrite X̂ in the following manner

X̂ =
√
Nγ

√
1− B̂†B̂ − (B̂† + B̂)

√
Nβ

Nγ
, (3.53)
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where γ = 1 − β. In the thermodynamic limit, only terms up to O(1/
√
N) contribute to

the Hamiltonian. By expanding X̂ into orders of N ,

X̂ =
√
Nγ

[
1 +

√
β
B̂† + B̂

2
√
Nγ

− B̂†B̂

2Nγ
− β (B̂† + B̂)2

8Nγ2
+O

(
1
√
N

3

)]
, (3.54)

one obtains for ĤD, in the notation of Ref. [118], the power series

ĤD = NĤD,0 +
√
NĤD,1 + ĤD,2 +O(1/

√
N). (3.55)

The contributions remaining in the limit N →∞ are then given by

ĤD,0 = ~ω0 α+ ~Ω

(
β − 1

2

)
− 4g

√
αβγ, (3.56)

ĤD,1 = (B̂† + B̂)

(
2g
√
αγ − 2g

√
α

γ
β − ~Ω

√
β

)
+ (Â† + Â)

(
~ω0

√
α− 2g

√
βγ
)
,

(3.57)

ĤD,2 = ~ω0 Â
†Â+

(
~Ω + 2g

√
αβ

γ

)
B̂†B̂

+ g

√
αβ

γ

(
1 +

1

2

β

γ

)
(B̂† + B̂)2 + g

(√
γ − β√

γ

)
(B̂† + B̂)(Â† + Â).

(3.58)

This intermediate result is in accordance with Ref. [118] and also Ref. [62] when account-
ing for the deviations in the definition of the displaced operators (3.50). The decompo-
sition of ĤD into powers of N also sorts the Hamiltonian with respect to its dependence
on powers of fluctuation operators. Thus, the contribution ĤD,0 depends only on real
numbers. Due to ĤD,0 entering the Dicke Hamiltonian with a prefactor of N , it provides
the dominant contribution in the thermodynamic limit. In consequence, the ground-state
properties are dominated by this term [62, 118]. By contrast, the contribution ĤD,1 is lin-
ear and ĤD,2 is bi-linear in the fluctuation operators. The latter describes the dynamics
of quantum fluctuations above the ground state. The interpretation of ĤD,1 lapses as this
contribution vanishes during the procedure of minimization of ĤD,0 [62] as subsequently
demonstrated.
By noting that the prefactors of ĤD,1, assigned to the photonic and the atomic degrees of
freedom, can be obtained from ĤD,0 by differentiation with respect to

√
α and

√
β [118]

one is able to rewrite ĤD,1 in the following manner:

ĤD,1 = (B̂† + B̂)
∂ĤD,0

∂
√
β

+ (Â† + Â)
∂ĤD,0

∂
√
α
. (3.59)

Without the restriction of
√
α and

√
β being real-valued as initially imposed for the sake

of simplicity, the prefactors of the contribution ĤD,2 can also be obtained from ĤD,0 in a
similar manner [118].

In order to investigate the properties of the superradiant quantum phase transition, one
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needs to find the ground-state energy of the Dicke Hamiltonian (3.41). Since the dom-
inant contribution in the thermodynamic limit is provided by ĤD,0, which solely is a
function of the real-valued displacements

√
α and

√
β, the ground-state is found by min-

imization of ĤD,0 with respect to the displacements [62, 118]. According to mathematical
analysis the extrema of ĤD,0 fulfill the condition

∂ĤD,0

∂
√
β

= 0,
∂ĤD,0

∂
√
α

= 0, (3.60)

which simultaneously imposes that ĤD,1 = 0 [62, 118].
The mean field configurations satisfying Eq. (3.60) are equivalent to an energetic mini-
mum, if the corresponding Hessian

HĤD,0
(
√
α,
√
β) =

 ∂2ĤD,0

∂
√
α∂
√
α

∂2ĤD,0

∂
√
α∂
√
β

∂2ĤD,0

∂
√
β∂
√
α

∂2ĤD,0

∂
√
β∂
√
β

 =

(
2~ω0 4g 2β−1√

1−β
4g 2β−1√

1−β 2~Ω + 4g
√
αβ 3−2β√

1−β3

)
(3.61)

is positive definite at these points. A necessary condition for a matrix to be positive defi-
nite is its determinant being positive.

By explicit consideration of the functional dependence of ĤD,0 on the mean fields,
√
α and√

β, one is able to rewrite the minimization conditions (3.60) in the following manner:√
β
(
1− 2β − ζ2

)
= 0,

√
α− 2g

~ω0

√
β(1− β) = 0,

(3.62)

where

ζ =
gc
g
, gc =

~
√
ω0Ω

2
. (3.63)

There are two sets of solutions satisfying the condition (3.62):

1. A trivial solution √
αnp = 0,

√
βnp = 0, (3.64)

where the determinant of the corresponding Hessian is given by

det
[
HĤD,0

(
√
αnp,

√
βnp)

]
= 16g2(ζ2 − 1) = 16(g2

c − g2). (3.65)

Hence, the mean-field configuration √αnp and
√
βnp corresponds to the state of

minimal energy in the coupling regime g < gc which is associated with the normal
phase of the system [62]. The corresponding Hamiltonian in this parameter range
consists only of the contribution arising from quantum fluctuations above the con-
stant ground-state energy

Enp
0 = −N ~Ω

2
, (3.66)
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as it can be seen from Eqs. (3.55 – 3.58). Hence, the Dicke Hamiltonian in this phase
reads

Ĥnp
D = ~ω0 Â

†Â+ ~Ω B̂†B̂ + g(B̂† + B̂)(Â† + Â) + Enp
0 . (3.67)

2. The minimization condition (3.62) posses also the non-trivial solution

√
αsp = ± g

~ω0

√
1− ζ4,

√
βsp = ±

√
1− ζ2

2
, (3.68)

where ζ = gc/g and the determinant of the Hessian

det
[
HĤD,0

(
√
αsp,

√
βsp)

]
= 32g2(1− ζ2) = 32(g2 − g2

c ) (3.69)

is positive for g > gc. Hence, the mean-field configuration (3.68), illustrated in
Fig. 3.6, yields the ground state in this coupling range. In accordance with Ref. [62],
one finds the Hamiltonian in this parameter range to read

Ĥsp
D = ~ω0 Â

†Â+ ~Ω

(
1 +

1

ζ2

)
B̂†B̂ + ~Ω

(1− ζ2)(3 + ζ2)

8ζ2(1 + ζ2)
(B̂† + B̂)2

+ g

√
2ζ4

1 + ζ2
(B̂† + B̂)(Â† + Â) + Esp

0 (g). (3.70)

The ground-state energy Esp
0 is a monotonically decreasing function for g > gc,

Esp
0 (g) = −N ~Ω

4

(
ζ2 +

1

ζ2

)
= −N ~Ω

4

[(
gc
g

)2

+

(
g

gc

)2
]
, (3.71)

as Figs. 3.4, 3.5 a) illustrate. Hence, the mean-field configuration (3.68) precisely
yields the ground state in the coupling regime, where the trivial solution for the
mean fields (3.64) does not satisfy the minimization condition (3.65) anymore. The
properties arising from minimizing the mean-field configuration (3.68) for g > gc
correspond to the superradiant phase [62] as subsequently demonstrated by inves-
tigating a variety of characteristic physical observables.

The solutions of the minimization condition (3.62) in both coupling ranges, g ≷ gc, pro-
vide the basis for the following discussion of a selection of characteristic observables
featuring the emergence of the quantum phase transition. Moreover, the general prop-
erties of these observables are not tied to the Dicke model only and thus they can rather
be regarded as the typical characteristics of a second-order superradiant quantum phase
transition. Thus, the selection of observables discussed in Subsecs. 3.1 – 3.4 of this section
serves as the foundation for the discussion of collective radiation effects in more complex
systems, such as Landau-quantized graphene.
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FIGURE 3.4: Ground-state energy E0(g) (thick red) of the Dicke Hamil-
tonian (3.43) as a function of the coupling g at resonance, ω0 = Ω, in the
thermodynamic limit [62]. The thin curves represent the corresponding
observable for the finite values of N = 3, 6, 9 obtained from numerical di-
agonalization [162, 163] of ĤD according to Eq. (3.43). As N increases the

finite-size result approaches E0(g) (3.72).

3.3.1 Ground-state energy and the order of the phase transition

Figure 3.4 shows the functional behavior of the ground-state energy,

E0(g) =

−N
~Ω
2 , for g < gc,

−N ~Ω
4

[(
gc
g

)2
+
(
g
gc

)2
]
, for g > gc,

(3.72)

of the Dicke model in the thermodynamic limit at resonance, ω0 = Ω. Even though also
the ground-state energy for finite-N Dicke systems is depicted in Fig. 3.4 one is referred
to Subsec. 3.3.2 for a brief discussion of the effect of finite N on the superradiant quan-
tum phase transition. Furthermore, Subsec. 3.3.2 addresses the issue of resonance and
off-resonance, respectively, in the context of the superradiant phase transition.

To continue with the discussion of the ground-state energy in the thermodynamic limit,
one distinguishes different orders of quantum and classical phase transitions according
to the mathematical properties of the free energy as a function of g. As the free energy
coincides with the ground-state energy E0(g) in the former case, a quantum phase tran-
sition will be referred to as being of nth order if only the first n − 1 partial derivatives
∂igE0(g), i = 0, 1, . . . , n − 1, are continuous functions of g. In different words, the nth

partial derivative, ∂ngE0(g), is the first one showing a discontinuity as the coupling pa-
rameter approaches a critical value gc of a quantum phase transition of order n. Note that
this classification of phase transition also applies for thermal phase transitions. Thereby
the order of the transition is determined by the discontinuity of the nth partial derivative
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of the respective thermodynamic potential, for instance the free energy (3.41).
In particular, the superradiant thermal and quantum phase transitions in the Dicke model
are both of second order [61, 62]. Concerning the latter, the ground-state energy is an
analytic function of the coupling strength, where its second partial derivative is discon-
tinuous at gc (3.40) [62]. From the theory of classical critical behavior stems the term
continuous phase transition denoting transitions of second order and higher. This due to
the latent heat, defined as the first derivative of the respective thermodynamic potential
with respect to T , being continuous in this case. These characteristics of second-order
phase transitions are depicted in Fig. 3.5 on the particular ground-state energy of the
Dicke model [62] in the thermodynamic limit as well as for finite numbers of N .
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FIGURE 3.5: Panel a) shows the first derivative of ground-state energy
E0(g), Eq. (3.72), of the Dicke Hamiltonian (3.43) as a function of the cou-
pling g at resonance, ω0 = Ω in the thermodynamic limit (thick, orange)
among results for finite N = 3, 6, 9 (thin). The result for N → ∞ is con-
tinuous though non-analytic at the critical point, g = gc. This is a char-
acteristic feature of second-order quantum phase transitions. The finite-N
results illustrate the meaning of the thermodynamic limit for the superra-
diant quantum phase transition, as the lack of the non-analyticity at the
critical point. This becomes even more obvious in view of Panel b), where
the second partial derivatives of the ground-state energies are depicted. In
the thermodynamic limit (thick blue), the system shows a discontinuity at
g = gc. By contrast, the finite-N results (thin) obtained from numerical
diagonalization [162, 163] of the Dicke Hamiltonian (3.43) lack this discon-

tinuity even though approaching it as N increases.

By contrast, first-order transitions are denoted as discontinuous since the latent heat is
discontinuous in a respective thermal phase transition of this order. Similarly, the first
partial derivative of E0(g) is discontinuous in case of a first-order quantum phase tran-
sition. If ∂gE0(g) referred to the ground-state energy E′0(g) of some hypothetic system
undergoing a first-order quantum phase transition, Panel a) and b) of Fig. 3.5 would
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depict the respective characteristic behavior of E′0(g) and ∂gE
′
0(g). An example for a

first-order phase transition is also found in the context of superradiance by investigating
a three-level-Λ generalization of Dicke Hamiltonian [164].

3.3.2 Mean-field solutions, the thermodynamic limit and resonance
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FIGURE 3.6: Illustration of the mean-field solutions, √αxp,
√
βxp, of

the minimization condition (3.62) in the thermodynamic limit at reso-
nance. For g < gc the ground-state properties of the Dicke model are
determined by the trivial solution of the mean-field configuration (3.64),√
αnp =

√
βnp = 0. This corresponds to the normal phase. In the super-

radiant phase, g > gc, the non-trivial solution (3.68), √αsp 6= 0,
√
βsp 6= 0,

yields the ground state of the Dicke Hamiltonian (3.55).

Figure 3.6 illustrates the minimizing mean-field solutions (3.64, 3.68) for the displaced
Dicke Hamiltonian (3.55) in both phases at resonance, ω0 = Ω.

Thermodynamic limit and finite systems

The mean-field approach (3.50) will be appropriate only if quantum fluctuations are
small [156]. This is certainly true in the thermodynamic limit since the ratios of the exci-
tation energies ε± of the quantum fluctuations (cf. Subsec. 3.3.4) and the ground-state en-
ergy E0 (cf. Subsec. 3.3.1) vanish as N →∞. Hence, the mean-field configurations (3.64,
3.68) and any observable related to them are precisely valid only in the thermodynamic
limit where the Dicke Hamiltonian is integrable.
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By contrast, for a finite number N of atoms the Dicke Hamiltonian is not integrable [62,
165–170]. In this case, the system shows signatures of quantum chaos [62, 165, 167–171]
indicated by typical features for instance emerging in the nearest-neighbor level spac-
ing [62, 165].

Furthermore, for finiteN the system exhibits what is called one or multiple smooth super-
radiant quantum phase crossovers [172–174] which converge to the superradiant quantum
phase transition indicated by non-analyticities in the respective observables at g = gc,
as the thermodynamic limit is restored. This convergence from a smooth phase bound-
ary, for N < ∞, to a sharp one in the thermodynamic limit is of rather general nature
but, however, it does not necessarily hold for all kinds of second-order quantum phase
crossovers and transitions [175, 176].
The properties of finite-N Dicke systems, depicted in Figs. 3.4, 3.5, 3.7 and 3.8, are ob-
tained from numerical diagonalization of ĤD according to Eq. (3.43) under usage of the
numerical Python package QuTiP [162, 163]. Thereby, the Fock space of the unbounded
bosonic operators of the radiation mode, reading in matrix representation

â† =
∞∑
n=0

√
n+ 1 |n+ 1〉 〈n| , â =

∞∑
n=0

√
n+ 1 |n〉 〈n+ 1| , (3.73)

need to be handled with care to achieve convergence of the considered observables. For
small N as it is the case in Figs. 3.4, 3.5, 3.7 and 3.8 this can be accomplished by trun-
cating the Fock basis in Eq. (3.73) at a sufficiently large Ntr. For N � 1 the assurance
of convergence within this method becomes numerically challenging. In this situation,
usage of coherent-state representation of the bosonic creation and annihilation operators
provides an elegant method to circumvent this issue in case of the Dicke Hamiltonian as
demonstrated in Ref. [177].
A comprehensive discussion of finite-N effects would go beyond the scope of this thesis.
Therefore one is referred to the literature for further details on, for instance, the finite-N
scaling properties [79, 178, 179] of the observables discussed during the following or the
emergence of entanglement between the field and the atoms [166, 180, 181] as a signature
of N <∞.

Resonance, off-resonance and the classical oscillator limit

In general, resonance is not mandatory for the emergence of neither the superradiant
quantum nor the superradiant classical phase transition [182–186]. The same holds for
superradiant quantum phase crossovers emerging for finite-N Dicke systems in a de-
tuned cavity [173, 174, 187–189]. Though resonance is subsequently chosen for conve-
nience when illustrating the functional behavior of the physical observables in accor-
dance with Ref. [62], even far off-resonant atoms interact collectively in the ultrastrong
coupling regime [182–184, 186]. Thus, by assuming the transition frequency Ω to be fixed,
the value of the critical coupling (3.40) varies with the frequency ω0 of the cavity mode
and might be tunable in this sense in accordance with the validity of the dipole approxi-
mation.
Note that these arguments apply also for the spontaneous collective decay [63] discussed
in Sec. 3.2 even though in this case resonance between atoms and the field enhances the
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probability of the spontaneous decay.

Returning to the discussion of superradiant quantum phase crossovers in finiteN -systems,
one can mime a situation similar to the thermodynamic limit by consideration of

Ω

ω0
→∞, g

~ω0
→∞, 1

gc
=

2

~
√
ω0Ω

= const., (3.74)

which refers to an extreme example of cavity-atom detuning. One can interpret this “al-
ternative thermodynamic limit”, also referred to as the classical oscillator limit [174, 190],
as follows:

Either the atomic transition frequency Ω is kept constant while the cavity frequency ω0

tends to zero or, vice versa, ω0 is kept constant while Ω becomes arbitrary large. The
former case is probably experimentally more interesting when dealing with a certain
species of atoms where the transition frequencies are rather determined by elementary
properties. Even in the case of tunable transition frequencies, as it is the case in Landau-
quantized graphene, the limit Ω→∞would correspond to infinitely large and therefore
experimentally infeasible magnetic fields. Thus, the assumption ω0 → 0 corresponds
to an infinitely large wave-length λ = c/ω0 perfectly serving the condition of valid
dipole approximation. Even though neither the thermodynamic limit (2.48) nor the con-
dition (3.74) reflect a realistic situation concerning an experimental setup, the classical
oscillator limit might yield some advantages in this context. This condition resembles
the superradiant quantum phase transition for N < ∞ [174, 190] even in the case of
N = 1 [188, 189, 191] where the Dicke Hamiltonian coincides with the Rabi Hamilto-
nian. Without going into the details, the derivation scheme can be adopted from the one
applied for the thermodynamic limit, discussed in the beginning of the section, yielding
again mean-field solutions which minimize the ground-state energy in each phase.

Thus, to summarize, taking off-resonance between the field and the atoms into account
yields an alternative approach for the discovery of a superradiant quantum phase transi-
tion even in the case of finite N .
Even though one can strictly speak of a superradiant quantum phase transition only in
the thermodynamic or classical oscillator limit, the terms transition and crossover for
N < ∞ are not distinguished by most authors. This convention will be adopted during
the following.

Furthermore, the interaction of a cavity mode with an additional far-detuned two-level
atom is proposed [192] to provide a possibility for an adiabatic measurement of the su-
perradiant phase.

With this, the classical oscillator limit is set aside and the discussion of the selection of
characteristic observables indicating the superradiant quantum phase transition in the
thermodynamic limit, N,V →∞, N/V = const., is continued during the following.
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3.3.3 Spontaneous photon occupation, atomic inversion and polarization

The most insistent signature of the superradiant phase transition concerns the sponta-
neous macroscopic photonic occupation of the cavity along with the spontaneous po-
larization of the atomic cloud [61, 62]. The main properties of these observables were
already indicated by Eqs. (3.44 – 3.47) in the discussion of both extreme coupling limits,
the weak and the deep strong coupling regime. Nevertheless, from the definition of the
displaced operators â† and b̂†, Eq. (3.50), follows for the expectation value of the photon
number operator

〈â†â〉 = Nα. (3.75)

Likewise, one finds for the expectation value of the atomic inversion in view of Eqs. (3.48,
3.50) the expression

〈Ĵz〉 = 〈b̂†b̂〉 − Jm = N

(
β − 1

2

)
≤ N

2
. (3.76)

Furthermore, the expectation value of Ĵx also reflects the collective polarization of the
atomic cloud and is obtained from Eqs. (3.49, 3.50):

〈Ĵx〉 =
〈Ĵ+ + Ĵ−〉

2
= −N

√
β
√

1− β. (3.77)

Since quantum phase transition are phenomena regarding the ground-state properties of
the system, the physical observables (3.75 – 3.77) need to be evaluated with respect to
the ground state in order to show their characteristic behavior in both quantum phases.
From minimizing the mean-field contribution ĤD,0 to the Dicke Hamiltonian the ground-
state values for

√
α and

√
β are already obtained in Eqs. (3.64, 3.68). Therefore, it follows

straightforward for the photonic occupation in the ground state

〈â†â〉0
N

=

0, for g < gc,

g2
c

~ω0

[(
g
gc

)2
−
(
gc
g

)2
]
, for g > gc,

(3.78)

in accordance with Refs. [62, 118]. Panel a) of Fig. 3.7 illustrates this characteristic behav-
ior as a function of the coupling parameter g where the spontaneous photon occupation
is seen for couplings g > gc. The atomic observables in the ground state are obtained as

〈Ĵz〉0
N

=

−
1
2 , for g < gc,

−1
2

(
gc
g

)2
, for g > gc,

(3.79)

〈Ĵx〉0
N

=

0, for g < gc,

∓1
2

√
1−

(
gc
g

)4
, for g > gc,

(3.80)

in accordance with Refs. [62, 118]. For couplings g < gc the atomic cloud is in the col-
lective ground-state arising from each atom occupying its single-particle ground state in
the normal phase as indicated by the expectation value of Ĵz . Likewise, 〈Ĵx〉0 is zero in
this coupling regime. For couplings g > gc the ground-state properties are dominated by
the interaction part of the Dicke Hamiltonian as the non-zero value of 〈Ĵx〉0 indicates. As
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the coupling g increases, the system approaches an equal occupation of single-particle
ground states and excited states. Thus, the ground-state expectation value of Ĵz ap-
proaches zero in the deep strong coupling regime, where 〈Ĵx〉0 → ∓N/2, as Panel b) of
Fig. 3.7 illustrates.
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〈Ĵz〉0 〈Ĵx〉0

FIGURE 3.7: Ground-state expectation values of a) the cavity occupation
(thick) and b) the atomic inversion Ĵz (thick, solid, orange) and the atomic
polarization Ĵx (thick, dashed, blue) for the Dicke model in the thermody-
namic limit. For convenience, only the negative value of 〈Ĵx〉0 is depicted.
All values refer to the resonant case at T = 0, hence depicting the quan-
tum critical behavior. At the critical coupling gc, each of the observables
changes its properties in a continuous but non-analytic way. This charac-
teristic feature of second-order quantum phase transitions [156] lacks in
the corresponding results for finite N = 3, 6, 9 (thin), where the change

between both phases occurs rather smooth.

To summarize, all three observables change their properties as g → gc in a characteristic
way. As typical for quantum phase transitions of second order [156], this change yields a
non-analyticity at the critical value gc. This can also be seen from both panels of Fig. 3.7.

3.3.4 Vanishing excitation gap

By investigating the ground-state energy and the expectation values of the photonic cav-
ity occupation and the atomic observables Ĵx, Ĵz (cf. Subsecs. 3.3.1, 3.3.3) only the scalar
part of the Dicke Hamiltonian, ĤD,0, is considered. Nevertheless, keeping in mind that
ĤD,1 vanishes within the procedure of minimization, also the fluctuation operator ĤD,2

is affected by the quantum critical behavior in a characteristic way. Thus, to derive the
excitation spectrum [62, 156] the operator ĤD,2 is diagonalized in both phases. To this
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end, one first applies a canonical transformation onto each pair of bosonic operators [62],

x̂ =

√
~

2ω0
(Â† + Â), p̂x = i

√
~ω0

2
(Â† − Â),

ŷ =

√
~

2Ω
(B̂† + B̂), p̂y = i

√
~Ω

2
(B̂† − B̂),

(3.81)

similar as for investigating two ordinary quantum harmonic oscillators of particles with
mass m = 1. After substitution of (3.81) into ĤD,2 its diagonalization is performed sepa-
rately in both phases, each by means of a Bogoliubov transformation [193, 194]. Thereby
one applies a rotation of the coordinate system according to

x̂xp = q̂xp
1 cos γxp+q̂xp

2 sin γxp,

ŷxp = −q̂xp
1 sin γxp+ q̂xp

2 cos γxp,
(3.82)

where the angle γxp can be chosen in a way that both harmonic oscillators are precisely
decoupled. Following Ref. [62] the choice

γxp =


1
2arctan

[(
2
~
)2 2ggc

Ω2−ω2
0

]
, for x = n⇔ g < gc,

1
2arctan

[(
2
~
)2 2g2

c

Ω2
(
g
gc

)4
−ω2

0

]
, for x = s⇔ g > gc

(3.83)

satisfies this aim. By applying another canonical transformation,

q̂xp
1 =

~√
2εxp
−

(Ĉ†xp + Ĉxp), p̂xp
1 = i

√
εxp
−
2

(Ĉ†xp − Ĉxp),

q̂xp
2 =

~√
2εxp

+

(D̂†xp + D̂xp), p̂xp
2 = i

√
εxp
+

2
(D̂†xp − D̂xp),

(3.84)

one is then able to obtain the eigenbasis representation of the fluctuation operator ĤD,2,

Ĥxp
D,2 = εxp

− (g) Ĉ†xpĈxp + εxp
+ (g) D̂†xpD̂xp,+

εxp
− (g) + εxp

+ (g)

2
(3.85)

in terms of the bosonic fluctuation operators Ĉ†xp, Ĉxp and D̂†xp, D̂xp in the normal, x = n,
and the superradiant phase, x = s. Thereby each pair of the bosonic fluctuation operators,
Ĉ†xp, Ĉxp and D̂†xp, D̂xp, addresses a different Hilbert subspace. Hence, Ĉ†xp, Ĉxp and D̂†xp,
D̂xp satisfy the commutation relations:

[Ĉxp, Ĉ
†
xp] = 1, [D̂xp, D̂

†
xp] = 1, (3.86)

where all other commutators are zero. At zero coupling, the collective mode associated
with Ĉ†xp, Ĉxp arise from the photonic degrees of freedom [62]. Hence, ε− is referred
to as the photonic branch. Likewise, ε+ denotes the atomic branch since D̂†xp, D̂xp are
associated with the collective atomic degrees of freedom at zero coupling. The energies
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of these fundamental excitations are given by [62]

√
2

~
ε±(g) =


[
ω2

0 + Ω2 ±
√

[ω2
0 − Ω2]2 + 16g2ω0Ω

] 1
2
, for g < gc,[

ω2
0 + Ω2

(
g
gc

)2
±
√

[ω2
0 − Ω2

(
g
gc

)2
]2 + 4ω0Ω

] 1
2

, for g > gc,

(3.87)

and are thus independent on the number N of atoms. This is in accordance with the
nature of the mean-field approach (3.50) which is only valid if quantum fluctuations are
small compared to the mean-field ground-state energy. Since E0 ∝ N this condition is
satisfied in the thermodynamic limit.
In both phases, the excitation energies ε± are real-valued only in the coupling range de-
clared on the r.h.s. of Eq. (3.87). Figure 3.8 illustrates the functional behavior of the col-
lective eigenmodes ε± as the coupling strength g varies. According to Ref. [62] the atomic
branch ε+ continuously increases for increasing g and approaches 4g2/(~ω0) in the limit
g → ∞. By contrast, as g → gc, the energy gap between the ground-state energy and the
photonic branch ε− closes from either direction according the power law [62]

ε−(g ≈ gc) ≈
√

32g3
c (~ω0)2

16g4
c + (~ω0)2

|gc − g|zν̄ . (3.88)

The closure of the excitation gap related to the photonic branch is characteristic feature
for second-order quantum phase transitions [62, 156]. The critical exponent of the power
law is given by [62]

zν̄ = 1/2. (3.89)

According to Ref. [62] z = 2 denotes the dynamical critical exponent and ν̄ = 1/4 is

related to the power law of the characteristic length scale of the system, lxp
− ∝ 1/

√
εxp
− ,

in the vicinity of the critical point gc. Thus, as g approaches this point, l− diverges as
|g − gc|−ν̄ from either direction revealing the scale invariance of fluctuations at the tran-
sition point [156].
The scale invariance can also be seen from investigating the wave functions of the fluctu-
ation operator in the qxp

1 -qxp
2 plane. For instance, the ground-state wave function of Ĥxp

D,2

is given by the product of two normalized Gaussian functions [62],

Ψxp
0 (q1, q2) = Gxp

− (q1)Gxp
+ (q2), Gxp

± (q) =

(
εxp
±
π~2

) 1
4

exp

[
− ε

xp
±

2~2
q2

]
, (3.90)

where the superscript xp on the coordinates q1 and q2, marking the respective phase, is
omitted for brevity. The variance of each Gaussian wave packet, (σxp

± )2 = ~2/εxp
± , is a

measure for its spacial extent. Hence, in agreement with the previous considerations,
the variance is determined by the characteristic length in each phase: (σxp

± )2 ∝ (lxp
± )2.

At zero coupling, the wave function is rotationally symmetric and centered around the
origin. As g approaches the critical coupling, Ψnp

0 squeezes in the direction of q2 and
stretches along the q1-axis, as Fig. 3.9 illustrates. Thereby Ψnp

0 is depicted in the x-y plane
for convenience [62]. The transformation from the coordinate system qnp

1 -qnp
2 to the x-y

representation is promoted by the inverse of the Bogoljubov transformation (3.82).



3.3. Superradiant quantum phase transition 49

0 1 2 3

g [gc]

0

1

2

3

ε

ε−(g) ε+(g) |g − gc|
1
2

FIGURE 3.8: Fundamental excitations ε± of quantum fluctuations of the
Dicke Hamiltonian above the ground state as a function of g. The system
is assumed to be in the thermodynamic limit and at resonance, ω0 = Ω. As
g approaches the critical value gc, the energy gap of the photonic branch ε−
(thick, solid, red) narrows and closes precisely at gc according to the power
law ∝ |gc − g|

1
2 (thin, dashed, black). The energy gap of atomic branch ε+

(thick, dotted, blue) continuously increases with increasing g. The clos-
ing of the energy gap at the critical value gc is a characteristic signature
for second-order quantum phase transitions in most cases [62, 156]. The
photonic branch in case of a finite number of atoms (thin, solid), where
N = 3, 6, 9, approaches the mean-field values for g < gc as N increases.
Above the critical coupling, the finite-N excitation energies approach zero
featuring the symmetry properties of the corresponding finite-N Dicke

Hamiltonian.

Furthermore, Fig. 3.9 illustrates the symmetry properties of the system in the normal
phase, which are indicated by the invariance of Ψnp

0 with respect to rotations of π around
the origin [62]. As subsequently discussed, this parity symmetry breaks down as the
system crosses the phase boundary at gc.

3.3.5 Breakdown of the parity symmetry

Another characteristic signature of second-order quantum phase transitions concerns the
breakdown of parity symmetry [62] as the system undergoes the second-order superra-
diant quantum phase transition.
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FIGURE 3.9: Illustration of the ground-state wave function of the fluctu-
ation operator in the normal phase of the finite-N Dicke model following
Ref. [62]. The system is at resonance and N = 50 in each panel. Fur-
thermore, the black lines mark isolines spaced by the value 0.1. For all
coupling values < gc the wave function is also an eigenfunction of the par-
ity operator Π̂np indicated by its invariance under rotation of π around the
origin. As the coupling increases, the wave function gets stretched in the
direction of q1 = x cos γnp − y sin γnp and squeezed along the orthogonal
axis q2 = x sin γnp + y cos γnp. In each of the directions the spacial extent
is associated with a characteristic length, l− and l+, respectively. The latter

diverges with |g − gc|1/2 in the vicinity of the transition point.

Normal phase

In the normal phase, the parity operator [62, 118],

Π̂ = eiπ(â
†â+Ĵz+Jm) = eiπ(â

†â+b̂†b̂), (3.91)

commutes with the fluctuation operator Ĥnp
D,2 and thus in turn with the corresponding

Dicke Hamiltonian Ĥnp
D (3.67). Due to the vanishing mean-field solutions (3.64), √αnp

and
√
βnp, in the respective coupling range, g < gc, the displaced operators (3.50), â† and

b̂†, coincide with the fluctuation operators, Â† and B̂†. Hence, the parity operator in the
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normal phase can be specified according to

Π̂np = eiπ(Â
†Â+B̂†B̂), (3.92)

where the commutation of Ĥnp
D,2 and Π̂np is then easily deduced from the discussion in

Sec. 4 of App. E. Note that the parity operator (3.91, 3.92) is formally similar to the parity
operator of a two-dimensional harmonic oscillator [195].

The commutation of Ĥnp
D,2 with Π̂ indicates that both operators share a common eigen-

basis [62, 119]. For instance, Fig. 3.9 shows the ground-state wave function Ψnp
0 of the

fluctuation operator for various coupling strengths in the normal phase. Incidentally fo-
cusing on the symmetry properties of Ψnp

0 only, one is referred to Subsec. 3.3.4 for the
discussion of the deformation of Ψnp

0 as g increases. It is obvious from each panel of
Fig. 3.9 that the corresponding ground-state wave function is invariant under rotations
of π around the origin. This precisely corresponds to action of the parity operator onto
the wave function and thus to the parity symmetry of the corresponding fluctuation op-
erator in the normal phase. The parity symmetry of excited states can also be proven [62].

The argument of the exponential in the parity operator (3.91, 3.92) counts the total num-
ber of excitation quanta in the system [62]. Likewise, the operator â†â+Ĵz+Jm or â†â+b̂†b̂
is referred to as the excitation number operator [62]. Its eigenvalues are easily found in
terms of the product basis of Dicke states |Jm;M〉, see Subsec. 3.2.2, and Fock states |n〉,
{|n〉 ⊗ |Jm;M〉}, reading(

â†â+ Ĵz + Jm

)
|n〉 ⊗ |Jm;M〉 = (n+M + Jm) |n〉 ⊗ |Jm;M〉 . (3.93)

As discussed in Subsec. 3.2.1 the quantum number M is bounded by Jm. By contrast, the
quantum number n associated with the number of photons in the cavity is unbounded.
Hence, the eigenvalues of the excitation number operator (3.93) are either even or odd
resulting in eigenvalues +1 or −1 of the parity operator Π̂ (3.91). The states associated
with the positive eigenvalue of Π̂ are referred to as having positive parity and vice versa.
Therefore, each state |n〉 ⊗ |Jm;M〉 of the basis can be associated with a distinct parity.
For instance, the ground-state |0〉 ⊗ |Jm;−Jm〉 in the normal phase has positive parity as
it follows from Eq. (3.93).

Superradiant phase

By contrast, the parity is not a good quantum number in the superradiant phase [62, 118],
where g > gc and the Dicke Hamiltonian is given by Eq. (3.70). This can also be seen from
the considerations in Sec. 4 of App. E, keeping in mind that the displaced operators (3.50),
â† and b̂†, do not coincide with the fluctuation operators, Â† and B̂†. This follows form
the finite values of the mean fields (3.68) within this coupling regime so that Π̂ for g > gc
is given by

Π̂sp ∝ eiπ[Â†Â+2
√
Nαsp(Â†+Â)+B̂†B̂−2

√
Nβsp(B̂†+B̂)]. (3.94)

Figure 3.10 shows the behavior of the ground-state wave function Ψsp
0 of the fluctuation

operator in the superradiant phase for a finite system of N = 50 atoms. Even though
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FIGURE 3.10: Illustration of the ground-state wave function of the fluctu-
ation operator in the superradiant phase of the finite-N Dicke model ac-
cording to Ref. [62]. The system is at resonance and N = 50 in each panel.
Furthermore, the black lines mark isolines, spaced by the value 0.1. As the
coupling increases the wave function separates into two lobes with a dis-
placement proportional to ∝ √gN . For finite N , there remains a non-zero
overlap of both lobes in the superradiant phase for finite g & gc. The sys-
tem retains its parity symmetries also in the superradiant case. This can be
seen from the invariance of the respective wave functions under rotation
of π around the origin as each of the four panels shows. By contrast, in the
thermodynamic limit, both lobes are spread infinitely far away from each
other for any value g > gc. Thereby, each lobe corresponding to one real-
ization of the mean-field configuration (3.68). Thus, in the thermodynamic
limit, the system loses its invariance under π-rotation around the origin as
the phase boundary is crossed. This corresponds to a breakdown of the
parity symmetry. Nevertheless, each lobe retains locally invariant under
rotation of π around the local maximum. The bottom right panel can be re-
garded to indicate these local symmetry properties even though it depicts

the case of finite N .

in finite-N systems the parity retains a good quantum number also in the superradiant
phase, the depicted example helps to understand the breakdown of the parity symmetry
in the thermodynamic limit. Hence, as the system crosses the phase boundary at g = gc
the wave function spreads into two lobes with a separation proportional to ∝ √gN [62].
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If N < ∞, as it is the case in Fig. 3.10, there remains a non-zero overlap of both lobes
close to the critical point. By contrast, in the thermodynamic limit, the lobs are instan-
taneously separated infinitely far away from each other as the system crosses the critical
point. This results from the displacement initially applied to the photonic and atomic
operators (3.50) and the procedure of diagonalization of ĤD,2 discussed in Subsec. 3.3.4.
In the thermodynamic limit, each of the two lobes corresponds to one realization of the
two mean-field configurations (3.68) denoted by either the + or the − sign. Thereby the
wave function obviously loses its invariance under π-rotation around the origin which
corresponds to the breakdown of the parity symmetry. For an explicit discussion of the
derivation of Ψsp

0 one is referred to Refs. [62, 165]. There, one also finds a detailed consid-
eration of the properties of Ψsp

0 for N < ∞ considering aspects of quantum chaos in the
superradiant phase.

To summarize this subsection, the superradiant quantum phase transition of the Dicke
model in the thermodynamic limit is accompanied with a breakdown of the discrete par-
ity symmetry of the states promoted by the operator Π̂. In general, the breakdown of a
characteristic symmetry inherent in the system is also a typical feature of a second-order
quantum phase transition [156].

3.3.6 Summary and remarks

Subsections 3.3.1 – 3.3.5 catalog a selection of generic features of the superradiant quan-
tum phase transition of the Dicke model in the thermodynamic limit. The derivation of
the characteristic observables is based on a mean-field ansatz yielding distinct ground-
state properties in both quantum phases. In the normal phase, g < gc, the ground-state
of the hybrid system is determined by the ground-state properties of both subsystems.
Hence, in average, the photon occupation vanishes along with each atom occupying its
single-particle ground-state. As the phase boundary is crossed, the ground-state proper-
ties of the system drastically change. Thus, in the superradiant phase for g > gc, the state
of minimal energy is accompanied by a spontaneous photonic occupation of the cavity
and the collective excitation of the atoms. Both observables scale with the number of
atoms and hence they are macroscopic quantities in the thermodynamic limit. By inves-
tigating the low-energy excitations above the collective ground state, one finds the exci-
tation gap of the photonic branch closing at the transition point following a power law
with universal exponents. Similarly, the corresponding characteristic length diverges as
the system approaches the critical point. This scale invariance of quantum fluctuations in
the vicinity of gc can also be seen from the wave function. Furthermore, the wave function
gives insight into the breakdown of the parity symmetry of the Dicke Hamiltonian in the
superradiant phase. Among others, these quantities and properties are generic features
of quantum phase transitions and provide the basis for the discussion of the collective
behavior of Landau-quantized graphene embedded in an optical cavity (cf. Part II).

Furthermore, all considerations made in this thesis refer to the superradiant quantum
phase transition in the so-called equilibrium, meaning no further driving fields are ap-
plied to the system. The opposite situation is referred to as an nonequilibrium setup.
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Theoretical investigations on nonequilibrium superradiant quantum phase transitions
can be found in the literature [74–79]. Some of the proposals suggest multi-level atoms
driven by an external laser field such that the effective Hamiltonian is given by a Dicke
Hamiltonian [74, 75]. Based on this approach, superradiant phase transitions in driven
systems have been experimentally observed for atoms [84] and Bose-Einstein conden-
sates [80–83].

An experimental observation of the equilibrium superradiant phase transition has not
been reported so far even though the required ultrastrong coupling regime has been
reached experimentally for cyclotron transitions of two-dimensional electron gases [52,
55]. The highest coupling strength ever recorded [55] lies with g = 0.87~ωc at T = 10 K
clearly above the critical value offered by the Dicke model, presupposing the validity of
gc in this situation. Additional interaction effects [196] or the issue that dipole approx-
imation is not strictly valid in the setup of Refs. [52, 55] could potentially explain the
critical point to be shifted to higher values.
Nevertheless, it is more reasonable to explain the absence of the equilibrium superra-
diant phase transition in the corresponding experiments by means of a no-go theorem
applicable to systems with parabolic energy-momentum dispersion in Coulomb gauge.
The no-go theorem addresses the diamagnetic term emerging from minimal coupling ap-
plied to a parabolic dispersion which is omitted in the Dicke model. As recognized by
K. Rzażewski et al. [85] the diamagnetic contributions to the Dicke Hamiltonian cannot
be neglected in the ultrastrong coupling regime. Moreover, as the diamagnetic term in
the Dicke model is microscopically linked to the interaction term (cf. Chap. 2) it cannot
be tuned arbitrarily. The explicit consideration of this contribution to ĤD yields a no-
go theorem that prohibits the superradiant quantum and classical phase transition [85].
The formulation of the no-go theorem has given rise to a still ongoing controversial
discussion [88, 89, 185, 197, 198] concerning its validity. Especially the approaches of
Refs. [88, 89, 198] are interesting as they address this issue on a more fundamental level
than the derivation of the effective one-mode Dicke Hamiltonian and the no-go theorem
itself. The foundation of these considerations is outlined in Subsec. 4.2. However, the
prohibition of the superradiant phase transition in the original Dicke model due to the
diamagnetic contribution and thus the validity of the no-go theorem is widely regarded
as being proven [85–91]. Even further, the presence of the diamagnetic term manifests
as a blue-shift in the quasiparticle energies and has also been observed experimentally in
ultrastrongly coupled cyclotron transitions of two-dimensional electron gases [55].
In order to provide some insights into this issue, the derivation of the no-go theorem is
outlined and proposed exceptions of it are discussed in the next chapter.
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Chapter 4

No-go theorem for the superradiant
phase transition of the Dicke model

The derivation of the no-go theorem for the superradiant phase transition of the Dicke
model requires two steps. The first one concerns the ground-state properties of the gen-
eralized Dicke model consisting of the original Dicke Hamiltonian (3.43) and the diamag-
netic contribution (2.49),

ĤgD = ĤD + κ(â† + â)2. (4.1)

In particular, one aims for the derivation of a condition which connects the prefactor κ
and the coupling strength g and ensures the determinant of the Hessian (3.61) to vanish.
The second step concerns the proof of the validity of this condition based on the micro-
scopic properties of κ and g (cf. Chap. 2) under application of the Thomas-Reiche-Kuhn
(TRK) sum rule [199–202].

4.1 Estimation of a critical condition in the presence of diamag-
netic terms

Application of the Holstein-Primakoff transformation (3.48, 3.49) onto the atomic collec-
tive spin-operators in ĤD and definition of the displaced operators, similar to Eq. (3.50),
yields ĤD to be given by the expression (3.52) and the diamagnetic term to read

Ĥdia = κ
[
(Â† + Â) + 2

√
Nα
]2

= κ
[
(Â† + Â)2 + 4

√
Nα(Â† + Â) + 4Nα

]
. (4.2)

With this one can decompose ĤgD into a power series of different orders of N similar to
Eq. (3.55). Likewise, the contribution to this power series relevant for the ground-state
properties is the one ∝ N reading

ĤgD,0 = ĤD,0 + 4κα
(3.56)

= (~ω0 + 4κ) α+ ~Ω

(
β − 1

2

)
− 4g

√
αβ(1− β). (4.3)
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Again the ground state of this contribution is obtained by evaluating the equivalent to
Eqs. (3.60, 3.62) yielding

√
β

[
1− 2β − (4κ+ ~ω0)

~Ω

4g2

]
= 0,

√
α− 2g

4κ+ ~ω0

√
β(1− β) = 0.

(4.4)

By sending κ → 0, the minimization criterion coincides with the one obtained for the
original Dicke model (3.62). Evaluation of the determinant of the corresponding Hessian
provides the information whether the trivial mean-field configuration

√
αnp = 0,

√
βnp = 0, (4.5)

corresponds to a minimum of ĤgD,0, i.e.

det
[
HĤgD,0

(
√
αnp,

√
βnp)

]
= 16

[(
g2
c + κ~Ω

)
− g2

] !
> 0. (4.6)

Obviously this will be satisfied if
(
g2
c + ~Ωκ

)
> g2. As long as this condition is fulfilled

the system is in the normal phase. The criterion for a quantum phase transition to occur
is the determinant of the Hessian evaluated at√αnp,

√
βnp to change its sign as g crosses

a critical value g̃c. This ultimately requires κ to satisfy

κ <
g2

~Ω
, (4.7)

in accordance with the literature [85–91]. Whether the condition (4.7) is eventually ful-
filled strictly depends on the microscopic properties of κ and g. For any Hamiltonian
with parabolic momentum dependence κ and g are linked to each other by the principle
of minimal coupling (2.27) and thus both quantities cannot be tuned independently. This
can be seen from the TRK sum rule as discussed during the following.

4.2 TRK sum rule and the no-go theorem

From the derivation of the general Hamiltonian for quantum electrodynamics in Chap. 2,
one finds the following microscopic properties for the prefactor κ, Eq. (2.50):

κ = N
e2~2

2m

1

2~ε0ω0V
. (4.8)

Note that this result already contains the constraint of identical particles indicated by the
factor of N . Likewise, the coupling strength for the Dicke model is defined in Eq. (3.10)
and reads

g2 = NA2
0

Ω2

~2
|d1,0 · ex|2 ≤ NA2

0

Ω2

~2
|d1,0|2 , A0 =

√
~

2ε0ω0V
. (4.9)
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Thereby d1,0 = 〈1i|d̂|0i〉 denotes the matrix element of the dipole operator d̂ = −eq̂i
for the transition between the two states |0i〉 ↔ |1i〉 of the ith two-level approximated
atom. The inequality in Eq. (4.9) results from the Cauchy-Schwartz inequality [203] where
|ex|2 = 1 was used.

As neatly presented in Ref. [118] the condition∑
n

(εn − εm) 〈m|F̂ |n〉 〈n|F̂ |m〉 =
1

2
〈m|[F̂ , [Ĥ, F̂ ]]|m〉 (4.10)

refers to a generalized formulation of the TRK sum rule [199–202] and holds for any oper-
ator F̂ and the eigenspectrum {εn, |n〉} of an arbitrary Hamiltonian Ĥ . For convenience,
the quantities in Eq. (4.10) are assumed to denote single-particle operators, states and en-
ergies.

Now, by supposing the Hamiltonian to be quadratic in the momentum of the ith particle
with charge qi, i.e. Ĥ = p̂2

i /(2m), one easily obtains the following relations:

− i~
mi
p̂i = [Ĥ, q̂i],

~2

mi
= [q̂i, [Ĥ, q̂i]] ⇒ q2

i ~2

mi
= [d̂i, [Ĥ, d̂i]]. (4.11)

Hence, by associating F̂ = d̂i, Eq. (4.10) specifies to

∑
ni

(εni − εmi) 〈mi|d̂i|ni〉 〈ni|d̂i|mi〉 =
∑
ni

(εni − εmi)
∣∣∣〈ni|d̂i|mi〉

∣∣∣2 =
q2
i ~2

2mi
. (4.12)

By summation over all quantum particles, i = 1, . . . , N , one finds the TRK sum rule in its
original form [199–202]:

N∑
i=1

[∑
ni

(εni − εmi)
∣∣∣〈ni|d̂i|mi〉

∣∣∣2] =
N∑
i=1

q2
i ~2

2mi
. (4.13)

The application to the generalized Dicke Hamiltonian (4.2) is then achieved by claiming
that all quantum particles are identical atoms, i.e. mi = m, qi = −e ∀i = 1, . . . , N , and
restricting each single-particle basis {|ni〉} to the two-level approximation. Thus, the TRK
sum rule for ĤgD is given by

N~Ω
∣∣∣d̂1,0

∣∣∣2 = N
e2~2

2m

(4.8)
= κ 2~ε0ω0V. (4.14)

The l.h.s. can be associated with the squared coupling strength (4.9) yielding

g2

~Ω
2~ε0ω0V ≤ N~Ω

∣∣∣d̂1,0

∣∣∣2 . (4.15)

Finally, by combines Eqs. (4.14, 4.15) one obtains

g2

~Ω
≤ κ, (4.16)
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which clearly contradicts relation (4.7). However, relation (4.7) needs to be satisfied for
the persistence of the superradiant phase transition in the presence of the diamagnetic
term. As the TRK sum rule applied onto the generalized Dicke model, Eq. (4.16), origi-
nates from generic quantum mechanical and mathematical considerations it is regarded
as being irrevocably valid under the applied assumptions. Consequently, it prohibits the
occurrence of superradiant critical behavior of the generalized Dicke model in equilib-
rium. This statement is referred to as the no-go theorem [85–91].
According to Ref. [190] the no-go theorem also prohibits the superradiant quantum phase
transition of the finite-N Dicke model in the classical oscillator limit (cf. Subsec. 3.3.2).

In atomic or solid state physics, the TRK sum rule is often also referred to as f -sum rule.
As in the discussed example of the no-go theorem, f -sum rules provide a powerful basis
when estimating the validity of certain approximations or effective models [99, 204, 205].

4.3 Remarks on the no-go theorem

Even though Dicke superradiance (cf. Sec. 3.2) is not the focus of this thesis, one has to
emphasize that the no-go theorem is not restricting the spontaneous superradiant decay.
The same holds for critical behavior of driven systems depending on the specific details
of the respective setup. Hence, the nonequilibrium superradiant phase transitions [74–
79] have been observed experimentally in Bose-Einstein condensates [80–83] and atomic
gases [84].

In the following three proposed exceptions of the no-go theorem are introduced. Each of
these proposals has risen a controversial discussion addressing mostly quite fundamental
aspects of the respective theory. In order to provide some insights into the complexity en-
tailed in the corresponding investigations on superradiance, the corresponding scientific
discourses are also briefly touched during the following.

4.3.1 Removal of diamagnetic terms by gauge transformations

There are proposals [88, 89, 198] addressing the validity of the diamagnetic term and
hence the no-go theorem on a profound level based on gauge arguments. The main aspect
of Refs. [88, 89] concerns an unitary transformation of the classical [88, 89] Hamiltonian
of electrodynamics (2.5, 2.6, 2.7) from Coulomb to dipole gauge. The transformation is
analogous to the Power-Zienau-Woolley transformation [206] in free space [88, 89] and
crucially needs to be applied before the two-level approximation and the restriction to
one preferred cavity mode [88, 89]. The striking features of the transformed Hamiltonian
can be summarized as follows:

1. After careful examination, the Hamiltonian appears in advantageous manner, as
the canonical momenta of the particles is replaced by their kinetic ones yielding
gauge invariance to persist the two-level approximation.

2. The diamagnetic contribution to the Hamiltonian is fully compensated by atomic
polarization terms appearing in the procedure of transformation.
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3. The Coulomb term, appearing in the transformed Hamiltonian, contains also con-
tributions originating from the interaction of the particles with the boundary of the
cavity.

If starting from the classical Hamiltonian function [88, 89], the canonical quantization is
then similarly achieved as discussed in Subsec. 2.1.2. Finally, the restriction of the quan-
tized Hamiltonian to a two-level description ultimately yields the precise Dicke Hamil-
tonian ĤD which naturally omits a diamagnetic term and thus dissolves the no-go theo-
rem [88, 89]. Hence, within dipole gauge [88, 89] the existence of the superradiant phase
transition seems to be naturally possible.

However, the discussion concerning the no-go theorem preventing the superradiant phase
transition in the Dicke model is still ongoing as Ref. [207] doubts the validity of this no-
ticeable result regarding the cancellation of the diamagnetic contributions and atomic
polarization.

4.3.2 Circuit quantum electrodynamics in Coulomb gauge

Regarding the equilibrium situation without any external driving, there is the proposal
of the no-go theorem to be not strictly valid in certain cases of circuit quantum electro-
dynamics. In particular, Nataf and Ciuti suggest a setup where N Cooper-pair boxes
are capacitively coupled to a transmission line resonator [132]. Their considerations are
based on an effective model [137] commonly used in the description of systems in the
field of circuit quantum electrodynamics. Due to the capacitative coupling, the Cooper-
pair occupation of each box can be controlled by a back-gate voltage corresponding to the
chemical potential in condensed matter physics. By assuming each box to be occupied
by n Cooper-pairs, the authors of Ref. [132] restrict their considerations on the transition
between the last occupied and first unoccupied state of each box. Hence, by dropping
the information about all other occupied states, the problem is reduced to an effective
two-level description of each box. However, as a potential superradiant quantum phase
transition does not require resonance and is meant to occur in the ultrastrong coupling
regime it is not obvious that a two-level restriction, achieved by dropping all other states
of the system, provides a sufficient description of the situation. Though within this ap-
proach, a quantum critical point is found in dependence of the Cooper-pair box occupa-
tion number n in the thermodynamic limit even in the presence of a diamagnetic contri-
bution [132]. Hence, the equivalent to the condition (4.7) is satisfied. The invalidity of
the no-go theorem is drawn back onto the specific properties of the wave functions [132]
such that a condition similar to Eq. (4.16) does not hold for the considered system.
This promising result of Nataf and Ciuti [132] has risen a controversial discussion [208–
211] regarding the validity of the standard effective model [137] in the required ther-
modynamic limit. Moreover, the authors of Ref. [208] derive a no-go theorem for the
regarded system from first principles similar to the considerations valid for the original
Dicke model. Nevertheless, the approach discussed in Ref. [208] ignores the finite occu-
pation of each Cooper-pair box [209] which plays a crucial role in the results of Ref. [132].
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4.3.3 Systems with linear dispersion in Coulomb gauge

There is another potential exception to the no-go theorem of the equilibrium superradiant
phase transition regarding systems with linear energy-momentum dispersion. From first
inspection, these systems naturally go without a diamagnetic term and thus without a no-
go theorem even within the principle of minimal coupling. For instance, graphene has
a region of pseudo-relativistic dispersion close to the corners of its hexagonal Brillouin
zone. By applying an additional magnetic field perpendicular to the graphene flake the
energies become discretized into degenerate, non-equidistant Landau levels allowing in-
vestigations of optically induced cyclotron transitions [93].

Starting from the full tight-binding Hamiltonian of the system, Hagenmüller and Ciuti
demonstrate [93] the existence of quantum critical behavior of Landau-quantized graphene
in dependence of the chemical potential. To this end, they expand the full tight-binding
Hamiltonian in the region of linear dispersion up to third order. Hence, their approach
also includes diamagnetic terms originating from the distortion of the band structure as
moving away from the corners of the Brillouin zone.

However, the validity of this promising result was criticized by Ref. [94] where the au-
thors focus on the effective Dirac model for graphene under aspects of linear response
theory applied to the limit of vanishing photon energy. Thus, within second-order per-
turbation theory the authors of Ref. [94] calculate the energy shift induced by interaction
between photons and Landau-quantized charge carriers in graphene supposing a finite
Fermi level. According to the order of approximation the energy correction is paramag-
netic and quadratic in the vector potential hence formally similar to a diamagnetic term
but opposite in sign. As the effective Dirac model assumes unbounded linear energy
bands, the contribution from the conduction band yields divergence and thus needs to
regularized by an ultraviolet cutoff. The paramagnetic energy shift is then dependent on
the cutoff. However, a rigid ultraviolet cutoff is known to break gauge invariance in min-
imal coupling models such that the authors of Ref. [94] “restore” the gauge invariance
of their theory by adding the cutoff-dependent energy shift of an undoped valence band
to the Hamiltonian by hand. According to the electron-hole symmetry of both bands the
energy shift is precisely compensated which the authors of Ref. [94] interpret as a proof
for the absence of a superradiant quantum phase transition.
The approach of Ref. [94] is considered in Ref. [95] in a mathematically more rigorous
manner based on perturbative Schrieffer-Wolff transformations [204, 212–214] up to sec-
ond order. Thereby an effective generalized Dicke-Hamiltonian is derived which in-
cludes dynamically generated diamagnetic contributions. Within the order and the range
of validity of this approximation, these terms are found to prohibit a superradiant quan-
tum phase transition [95]. This ansatz is discussed in more detail in Chap. 8 where also an
extension of the perturbative Schrieffer-Wolff expansion up to fourth order is provided.
However, as discussed in Part II in more detail, the cutoff-independent value for the
critical point obtained within the path integral approach lies beyond the validity of the
perturbative ansatz of Ref. [95] even in fourth-order approximation. By contrast, the path
integral and the perturbative approach show convincing agreement when regularized
with a rigid ultraviolet cutoff.
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As already briefly addressed in Subsec. 4.3.1, the restriction of the basis by means of a
ultraviolet momentum cutoff violates gauge invariance in Coulomb gauge. In the con-
text of the Dicke model, this issue generates rarely as much confusion as in the con-
text of graphene. However, the technique of cutoff regularization is commonly used
when investigating the response of graphene to electromagnetic vector potentials within
the effective Dirac model [24, 100–102] even in the derivation of proper f -sum rules for
graphene [98, 99]. Moreover, it is also often considered as justified even in the presence of
electromagnetic potentials since the band edges of graphene are naturally bounded and
hence also the region of linear dispersion is finite. Though it is convenient to apply a rigid
ultraviolet cutoff up to order of the band width [24, 98–102], the proper regularization of
the Dirac description under these aspects is still a subject of debate [96, 97] and also an
issue discussed in this thesis.

In order to contribute to this controversy one needs to be familiar with the graphene
specific properties arising from the hexagonal lattice within a tight-binding approach. To
this end, the main aspects of the electronic properties of graphene are introduced in the
following chapter.
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Chapter 5

Graphene

This chapter briefly outlines the most important properties of graphene which are neces-
sary to understand the exceptional properties of this two-dimensional Carbon material.
As Carbon is the sixth element of the periodic table, each atom consists of six electrons,
where the 1s2 shell is completely filled with two electrons. The second shell is partially
filled and characterized by the electronic configuration 2s22p2 in atomic Carbon. These
electrons are available to form covalent bonds to neighboring atoms.
The lattice structure of the two known natural allotropes of Carbon, diamond and graphite
or graphene, respectively, can be explained within the concept of hybridization [215]
where linear combinations of the atomic orbitals form new hybrid orbitals. These hy-
brid orbitals differ from the atomic ones in energy, binding angles and binding distances.
For instance, by combining the wave functions of three of the four electrons in the sec-
ond shell one obtains three planar 2sp2 hybrid orbitals where the axes along maximal
probability are separated by 120◦ from each other. When these hybrid orbitals covalently
bind to neighboring 2sp2-hybridized Carbon atoms, a hexagonal lattice structure natu-
rally arises. Each remaining electron per atom occupies the 2pz orbital perpendicular to
the plane spanned by the 2sp2 orbitals and characterizes the electronic properties of the
system.
The band structure arising from the 2sp2 is obtained within a single-particle tight-binding
description based on the properties of the hexagonal lattice as discussed subsequently.
The linear dispersion close to the corners of the Brillouin zone follows directly from the
band structure and results in the effective single-particle Dirac model for graphene. The
discussion of these characteristic properties is provided during this chapter and based on
Refs. [23, 216].
Subsequent to the derivation of the effective Dirac model follows the investigation of
Landau quantization in the region of linear dispersion based on Ref. [24]. The discussion
of the single-particle properties is completed by the consideration of an additional vec-
tor potential determining an electromagnetic cavity mode. As dipole approximation is
required over the whole range of this thesis a discussion of its validity range is provided.
In the end, the complete single-particle Hamiltonian of Landau-quantized graphene in-
teracting with one cavity mode is transformed into a many-body Hamiltonian within
second quantization. The resulting Hamiltonian provides then the basis for the discus-
sion of superradiant critical behavior in Part II.
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5.1 Lattice properties

Graphene consists of 2sp2-hybridized Carbon atoms arranged in a triangular Bravais lat-
tice with a two-atomic basis. As Fig. 5.1 a) illustrates, the Bravais lattice is generated from
iterative shifts of the primitive unit cell spanned by the primitive unit vectors

a1 =

(
a
0

)
, a2 =

(
a
2√
3a
2

)
, (5.1)

where a =
√

3aCC denotes the lattice constant of the triangular Bravais lattice and aCC ≈
1.42 Å is the Carbon-Carbon binding distance in 2sp2 hybridization. The position of each
unit cell is then uniquely defined by a Bravais lattice vector,

Ri = n1a1 + n2a2, n1, n2 ∈ Z. (5.2)

Even though both atoms in each unit cell are identical Carbon atoms, one may label them
with A and B. The ensemble of all A atoms in the lattice compound form the triangular
sublattice A. Similarly, all B atoms form the triangular sublattice B. The position of the
A and B Carbon atom with respect to their corresponding unit cell, positioned at Ri, is
given by [216]

dA =

(
0
0

)
, dB =

(
0
a√
3

)
. (5.3)

Thus the position of each atom in the hexagonal lattice is uniquely defined by the vector
Ri+dα, where α = A,B. According to the lattice properties of graphene shown in Fig. 5.1
a), each Carbon atom has three nearest neighbors within the Carbon-Carbon binding
distance. For instance, the three nearest neighbors of an atom in sublattice A are found
at the positions [216]

δ1 =

(
0
a√
3

)
, δ2 =

(
a
2

− a
2
√

3

)
, δ3 =

(
−a

2
− a

2
√

3
,

)
(5.4)

and belong to sublattice B. Likewise, the three nearest neighbors of one atom in the sub-
lattice B belong to sublattice A and can be found at −δi, i = 1, 2, 3.

The reciprocal lattice of the triangular Bravais lattice is again triangular and spanned by
the reciprocal lattice vectors [216]

b1 =

(
2π
a

2π√
3a

)
, b2 =

(
0
4π√
3a

)
. (5.5)

By constructing the Wigner-Seitz cell of the reciprocal lattice one finds the first Brillouin
zone of graphene which is illustrated in Fig. 5.1 b). The hexagonal shape of the first
Brillouin zone solely originates from the lattice structure of the underlying Bravais lattice
and is independent of the number of atoms per unit cell [216]. Furthermore, any vector
in reciprocal space is defined as a sum of multiples of b1 and b2. Hence, four of the six
corners of the first Brillouin can be mapped onto only two inequivalent corners which
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FIGURE 5.1: Inspired by Refs. [23, 216]. Panel a) sketches a small flake
of graphene in the x-y plane. The hexagonal lattice structure is composed
from a triangular unit cell (orange shaded region) spanned by the lattice
vectors a1 and a2 and the two-atomic basis A and B. Each carbon atom
has three nearest neighbors found in the direction of each δi with respect
to the sublattice A. The lattice constant a =

√
3aCC, where aCC ≈ 1.42 Å is

carbon-carbon binding length in 2sp2 hybridization. The presence of elec-
tromagnetic vector potentials modifies the hopping parameter by means of
the Peierls substitution. Panel b) illustrates the reciprocal lattice spanned
by the lattice vectors b1 and b2 along with the first hexagonal Brillouin

zone where equipotential lines of the band structure are marked.

are often denoted as the K- and K ′-point. By introducing the valley index τ = ±1, the
location of these points can be chosen, for instance, at [216]

Kτ =

(
τ 4π

3a
0

)
, (5.6)

as shown in Fig. 5.2 b). For convenience, the K-point shall be associated with τ = +1
whereas the τ = −1 denotes theK ′ point. Furthermore, the term valley index stems from
the valley-like shape of the band structure in the vicinity of the K- and K ′-point as it can
be seen from Fig. 5.2.

5.2 Single-particle tight-binding Hamiltonian and the effective
Dirac model

According to the electronic configuration of Carbon in 2sp2 hybridization there are three
of the four electrons of the second atomic shell participating in the covalent bonds with
neighboring atoms. The remaining electron occupies the 2pz and dominates the electronic
properties of the material. The tight-binding model for graphene is therefore a theory of
the dynamics of the 2pz electrons and thus derived as a mean-field description [217] of
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the most general single-particle Hamiltonian

Ĥ =
p̂2

2m
+ Veff(x̂) + Vext(x̂). (5.7)

The effective potential Veff stems from the underlying lattice including the atomic cores
and bounded electrons as well as interactions among them [216]. All external potentials
applied to the system are summarized in Vext.

The main aspect of the development of a single-particle tight-binding model is due to the
assumption of the electrons being rather tightly bound to the atomic core. Therefore, the
orbital of the electrons roughly coincide with the atomic orbitals where a finite overlap
of corresponding neighboring sites is taken into account. Thus, the expansion of Ĥ into
a local basis of each 2pz electron according to the properties of the underlying lattice is a
suitable ansatz in this case. The wave functions of neighboring 2pz electrons are assumed
to overlap and the amount of energy needed to change from one site to another one is
quantified by the corresponding matrix element which is referred to as a hopping param-
eter.

According to the lattice properties of graphene, each electron in a 2pz orbital is charac-
terized by the two position labels, i and α, and the spin quantum number s. This is
summarized by the state vector |i, α, s〉. As spin interactions are not particularly consid-
ered during this thesis, one may abbreviate the state vector with |i, α〉 and account for the
spin degree by means of a two-fold degeneracy of each state. Thus, the expansion of the
single-particle Hamiltonian into the states |i, α〉 yields [216]

ĤTB =
∑
i,α;j,β

ti,α;j,β |i, α〉 〈j, β| , (5.8)

where the matrix element ti,α;j,β = 〈j, β|ĤTB|i, α〉 is defined as [4, 216]

ti,α;j,β =


Vi +Mi, if i = j, α = β = A,

Vi −Mi, if i = j, α = β = B,

−t, if i, α and j, β are nearest neighbors.

(5.9)

in nearest-neighbor approximation. Note that this result corresponds to the spin-less case
in accordance with Ref. [216]. The on-site potentials Vi and Mi in Eq. (5.9) arise from the
external potential Vext. Thereby Vi denotes a potential which is constant or slowly vary-
ing on the inter-atomic scale. By contrast, Mi is referred to as a staggered potential and
takes rapidly varying contributions of Vext into account. A staggered potential is typically
expected when the graphene flake is placed onto a substrate which breaks the symmetry
between both sublattices [218]. Furthermore, in the absence of external potentials Vi and
Mi are zero.
The matrix element of nearest-neighbor states is referred to as the hopping parameter
and assumes the value t = 2.7 eV [219, 220].

The aim of the following is to calculate the band structure arising from the tight-binding



5.2. Single-particle tight-binding Hamiltonian and the effective Dirac model 67

Hamiltonian ĤTB. This is most conveniently achieved by introducing the set of orthonor-
mal tight-binding sums [4, 221]

|Φα(k)〉 =
1√
NC

∑
Ri

eik·(Ri+dα) |i, α〉 , 〈Φα(k)|Φβ(k′)〉 = δα,βδk,k′ , (5.10)

where α = A,B and NC denotes the number of unit cells assembling the graphene flake.
As |Φα(k)〉 is a periodic function of the lattice points it satisfies the Bloch theorem [216].
Hence, k is associated with the Bloch vector. Along with this and the ansatz

|ϕ(k)〉 = ϕA(k) |ΦA(k)〉+ ϕB(k) |ΦB(k)〉 , (5.11)

the diagonalization of ĤTB is reduced to an eigenproblem of the coefficient or envelope
functions ϕα(k), α = A,B. The eigenvalue equation for envelope function can then be
written as [216]

H(k)

(
ϕA(k)
ϕB(k)

)
=

(
HAA(k) HAB(k)
HBA(k) HBB(k)

)(
ϕA(k)
ϕB(k)

)
= E(k)

(
ϕA(k)
ϕB(k)

)
, (5.12)

where the matrix elements Hαβ(k) = 〈Φα(k)|ĤTB|Φβ(k)〉 are obtained from Eq. (5.9).
The 2× 2-matrix representation of the effective eigenvalue problem, Eq. (5.12), naturally
arises from the two-atomic basis A and B of the triangular Bravais lattice. The evalua-

FIGURE 5.2: Inspired by Ref. [23, 216]: Band structure of the 2pz-orbital en-
velope functions ϕα of bulk graphene in the first Brillouin zone in nearest-
neighbor hopping approximation according to Eq. (5.15). No external po-
tentials were considered, i.e. M = V0 = 0. Without external potentials
or doping the valence band is completely filled whereas the conduction
band is empty. At the corners of the hexagonal Brillouin zone valence
and conduction band touch each other. The band structure is linear in
the vicinity of these points as the inset on the r.h.s. shows. In this region
of the band structure the dynamics of charge carriers is determined by an
effective Dirac Hamiltonian. The black lines mark non-equidistant Landau

levels matched to the Dirac cone.

tion of H(k) is proceeded under the assumption of uniform external potentials, Vi = V0
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and Mi = M ∀i = 1, · · · , NC. Then one finds for the matrix elements Hαβ(k) in particu-
lar [216]

〈ΦA(k)|ĤTB|ΦA(k)〉 = V0 +M, 〈ΦA(k)|ĤTB|ΦB(k)〉 = −t
3∑
i=1

eik·δi ,

〈ΦB(k)|ĤTB|ΦA(k)〉 = −t
3∑
i=1

e−ik·δi , 〈ΦB(k)|ĤTB|ΦB(k)〉 = V0 −M,

(5.13)

so that the 2× 2 Hermitian matrix H(k) in Eq. (5.12) takes the following form [216]

H(k) = V0 σ0 +M σz − t
[(

3∑
i=1

cos(k · δi)
)
σx −

(
3∑
i=1

sin(k · δi)
)
σy

]
. (5.14)

Thereby σi, i = x, y, z denote Pauli matrices as defined in Eq. (3.1). As the Pauli matrices
are often associated with the description of a spin-1/2 system, σi, i = x, y, z in H(k) is re-
ferred to as the pseudo-spin degree of freedom which emerges from the two-atomic basis
A and B. In the terminology of pseudos-spins (ϕA, ϕB)T is referred to as a two-component
pseudo-spinor.

By solving the eigenproblem (5.12), the energy dispersionE(k) is straightforwardly found
from diagonalization of Eq. (5.14):

E±(k) = V0 ±

√√√√M2 + t2

[
3 + 2 cos(kxa) + 4 cos

(
kxa

2

)
cos

(√
3kya

2

)]
. (5.15)

The negative and positive sign refers to the valence and conduction band, respectively.
The band structure determined by Eq. (5.15) is illustrated in Fig. 5.2 for Vext = 0. This
result is in convincing agreement with experimental measurements [222].

As staggered potentials are not relevant for the scope of this thesis, M is set zero dur-
ing the following. By contrast, V0 is associated with back-gate voltage tuning the Fermi
level and thus it is kept non-zero. For V0 = 0, as shown in Fig. 5.2, the valence band
is completely filled whereas the conduction band is empty. If a non-zero potential V0 is
considered, the band structure will be accordingly shifted in energy.

5.2.1 Effective Dirac model for low-energy excitations

Close to the corners of the Brillouin zone, both bands form valleys from either direction
and touch precisely at the K- and K ′-point. This can also be seen from Fig 5.2. The
dispersion is approximately linear in the vicinity of the touching points Thus, from the
expansion of E±(k) aroundK± one finds [4]:

E±(Kτ + q) ≈ V0 ± ~vF |q|, (5.16)
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which is valid up to |E±| . 0.7 t [223]. For larger energies the shape of the valleys
trigonally warp such that higher orders of the expansion around Kτ should be consid-
ered [23, 24]. The trigonal warping of the valleys can also be seen in the density plots in
Figs. 5.1 b), 5.2 and the tight-binding simulation discussed in Part II.

As E±(Kτ + q) is reminiscent of the dispersion of a relativistic particle with zero rest
mass and constant velocity vF =

√
3at/(2~) ≈ 106 m/s, one refers to low-energy exci-

tations around the K- and K ′-point as massless pseudo-relativistically Dirac fermions.
Therefore, the valleys close to the K- and K ′-point are also often called Dirac cones. The
dynamics of the low-energy excitations is determined from a massless Dirac equation in
either valley which is obtained from the expansion of Eq. (5.14) aroundK± [216]:

Hτ (q) = H(Kτ + q) ≈ V0σ0 + ~vF (τσxqx + σyqy) . (5.17)

This mapping was first recognized by DiVincenzo and Mele [6] as well as Semenoff [7]
in 1984. In the notation applied to Eq. (5.17) the valley degree of freedom, τ , additionally
spans a two-dimensional subspace and thus can be associated with a set of Pauli matrices
τi, i = x, y, z, and the unit matrix τ0. Accordingly, the 2× 2 Dirac equation (5.17) in either
valley can be gathered into a 4× 4 Dirac equation which simultaneously accounts for the
contributions from both valleys:

Ĥ ′ = vF (τz ⊗ σxp̂x + τ0 ⊗ σyp̂y) , (5.18)

where p̂i = ~q̂i, for i = x, y. Accordingly, the wave function can be written in terms of a
four-component pseudo-spinor

Φ′ =
(
ϕA ϕB ϕ′A ϕ′B

)T
, (5.19)

where ϕα and ϕ′α, α = A,B, refers to the K- and K ′-point, respectively. This valley-
anisotropic form of the effective Dirac description can be transformed into a valley-
isotropic representation [224],

Ĥ = ÛĤ ′Û † = vF τ0 ⊗ σ · p̂, (5.20)

under application of the unitary transformation

Û =
τ0 + τz

2
⊗ σ0 − i

τ0 − τz
2

⊗ σy. (5.21)

Thereby, the vector notation σ = (σx, σy)
T and p̂ = (p̂x, p̂y)

T was used. The valley-
isotropic equivalent of wave function Φ′ is given by

Φ = ÛΦ′ =
(
ϕA ϕB −ϕ′B ϕ′A

)T
. (5.22)

The valley-isotropic representation will be the preferred one during this thesis.
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5.2.2 Landau-level quantization in the effective Dirac model

In this section the effect of an uniform magnetic field which is applied perpendicular to
the graphene plane is investigated within the effective Dirac model. For convenience,
the graphene flake is assumed to lie in the x-y-plane. Throughout this thesis, the vector
potential determining the magnetic field is chosen in Landau gauge,

A0(r) = −Byex ⇔ B = ∇×A0(r) = Bez, (5.23)

where ei denotes the unit vector in i-direction.

In the effective Dirac model the coupling between the uniform perpendicular magnetic
field (5.23) and the electronic degree of freedom is accomplished by means of minimal
coupling, Eq (2.27). Thereby the kinetic momentum p̂ is substituted by the canonical
momentum [119]:

p̂ 7→ Π̂0 = p̂+ eÂ0. (5.24)

The Hamiltonian (5.20) transforms then according to

Ĥ 7→ Ĥ0 = vF τ0 ⊗ σ · Π̂0. (5.25)

The diagonalization of Ĥ0 yields the characteristic Landau levels of graphene [24, 225]:

ελ,n = λ ~ωc
√
n ∝
√
B
√
n, (5.26)

where n ∈ N0 denotes the Landau level index. The cyclotron frequency is defined as

ωc =
√

2
vF

lB
, lB =

√
~
eB

, (5.27)

where lB denotes the magnetic length. The
√
B-proportionality of ωc as well as the

√
n-

scaling behavior of the eigenenergies reflect the pseudo-relativistic character of the quasi-
particle dynamics close to the K- and K ′-point and is depicted in Fig. 6.1.

For convenience, the collective index N = (λ, n) is introduced along with the following
convention:

N = (+1, n) denotes a conduction band state and
−N = (−1, n) refers to a valence band state.

(5.28)

Within this notation, one obtains the eigenstate of Ĥ0, Eq. (5.25), in form of a four-
component spinor,

ΦN,k(r) =

(
Ψ+1
N,k(r)

Ψ−1
N,k(r)

)
, Ψτ

N,k(r) = 〈r|N, k〉τ , (5.29)
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where the two-component spinor in either valley is given by [24, 225]

|N, k〉τ =
1√
2

(
w−,n |n− 1, k〉
λw+,n |n, k〉

)
. (5.30)

Note that each component of |N, k〉τ denotes a wave function in the respective sublattice
A and B according to the generic definition (5.22) in valley-isotropic representation. The
position-space representation of each sublattice contribution |m, k〉, where m = n − 1, n,
is identical to an eigenfunction of the quantum harmonic oscillator [119] in y-direction
and a free wave in x-direction:

〈r|m, k〉 =
eikx√
L

e−ζ
2/2

√
2mm!

Hm(ζ), ζ = y − l2Bk. (5.31)

Thereby, Hm(ζ) denotes the mth Hermite polynomial [203] and L refers to the spacial
extension of the graphene flake in x- and y-direction. Accordingly, the two-component
spinors form a complete set of orthonormalized eigenstates, {|N, k〉τ |λ = ±1, n ∈ N0, k =

1, ...,N , τ = ±1}, in the corresponding valley subspace τ of Ĥ0, Eq. (5.25). Furthermore,
the prefactors entering each sublattice contribution in Eq. (5.30),

w±,n =
√

1± δn,0, (5.32)

ensure the correct normalization of the zeroth Landau level wave function [24, 225].

Different from the eigenenergies εN (5.26) the two- and four-component spinors, Eqs. (5.29,
5.30), depend on the quantum number k. According to the chosen gauge, the quantum
number k = 1, . . . ,N , describes the eigenvalues of the magnetic translation operator T̂x
in x-direction and is a conserved quantity [226]. From the k-independence of the energy
spectrum (5.26) follows the N -fold degeneracy of each Landau level. The degeneracy
N is thereby proportional to the flux trough the system and thus tunable. In particular,
from generic phase space arguments [227, 228] and Bohr-Sommerfeld quantization [229]
follows:

N = gsgv
S

(2πl2B)
= gsgv

S

a2
ϕ2

0, (5.33)

where S = L2 represents the area of the flake and

ϕ0 =
a√

2πlB
⇔ ϕ =

S

a2
ϕ0 (5.34)

denotes the flux through one unit cell. Similarly, ϕ as defined on the r.h.s. of Eq. (5.34)
denotes the total flux through the system.
Besides the each two-fold spin- and valley-degeneracy, gs = gv = 2, the degeneracy of
each Landau level is similar in the case of an ordinary two-dimensional electron gas.
Note that the valley degeneracy, gv, only needs to be explicitly taken into account in the
absence of inter-valley scattering processes.

In the following, the effect of an additional electromagnetic vector potential is investi-
gated within the effective Dirac model.
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5.2.3 Single-particle light-matter interaction Hamiltonian

In this subsection, the coupling of Landau-quantized charge carriers with a single cavity
mode is discussed. To this end, the vector potential Âem of the electromagnetic mode
is introduced. Similar to the quantizing vector potential in Landau gauge, Â0, the in-
teraction enters the effective Dirac Hamiltonian by means of minimal coupling [119].
Therefore, the canonical momentum Π̂0, Eq. (5.24), is modified in the following way:

Π̂0 7→ Π̂′ = Π̂0 + eÂem(r̂). (5.35)

Likewise, the effective Dirac Hamiltonian Ĥ , defined in Eq. (5.20), decomposes according
to

Ĥ 7→ Ĥ0 + Ĥi, Ĥi = vFe τ0 ⊗ σ · Âem(r̂), (5.36)

where Ĥ0 is given by Eq. (5.25) The contribution Ĥi encodes then the interaction of a sin-
gle Dirac fermion with the radiation field and is discussed during the following.

Similar as for the Dicke model and in accordance with Refs. [93–95], the electromagnetic
vector potential is considered within dipole approximation. Hence any spacial variance
of the cavity mode is neglected, i.e.

Âcav(r̂) ≈ Âem =

√
~

2ω0εV
eem(â+ â†), (5.37)

where ε = ε0εr. Thereby ε0 denotes the vacuum permittivity and εr is the dimensionless
relative permittivity of a dielectric medium inside the cavity. If not stated different, εr = 1
will be assumed during this thesis.

The application of dipole approximation is in accordance with the literature [93–95] and
also fairly justified as it is seen from the following:
Suppose the frequency of the cavity mode to be given by ω0 = sωc, where s > 0 is a
dimensionless scaling factor and ωc denotes the cyclotron frequency of graphene (5.27).
Without a dielectric medium the wavelength of the lowest cavity excitation is then given
by λ = 2π c/ω0, where c refers to the speed of light. Furthermore, the typical length
scales of the charge carriers in Landau-quantized graphene are determined by the lattice
constant a and the magnetic length lB , Eq. (5.27). Hence, the condition

1�
√
πc

svF
≈ 600

s
(5.38)

accounts for the validity of the dipole approximation. As s ≤ 1 for any inter-band tran-
sition frequency, the inequality (5.38) is certainly fulfilled in this case. In accordance
with Refs. [94, 95], the polarization direction of the electromagnetic mode shall be chosen
along x-direction, eem = ex, and the spacial extension of the cavity in x- and y-direction
are assumed to coincide with those of the graphene sample. The volume of the cavity is
then given by V = S · Lz , where it is assumed that Lz � L.
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Furthermore, the time-independent appearance of Âem in Eq. (5.37) refers to the Schrö-
dinger picture which is exclusively preferred during this thesis. Nevertheless, one can
easily transform this time-independent representation into a time-dependent one by means
of an unitary transformation as discussed in App. B.
The bosonic ladder operators â and â† annihilate and create photonic quanta with fre-
quency ω0 = πc/(

√
εrLz) in the cavity. Further details on the canonical quantization

of the electromagnetic field can be found in Chap. 2. Furthermore, one finds a discus-
sion about the properties of the bosonic creation and annihilation operators, â† and â, in
App. C.

Adopting the previously discussed steps, the interaction Hamiltonian Ĥi particularizes
accordingly,

Ĥi = 2
g√
N

(â+ â†) τ0 ⊗ σx, (5.39)

with the coupling parameter g defined as

g =

√
N
2
vFeA0 = ~ωc

√
α

2π
√
εr
≈ 0.0341 ε

− 1
4

r ~ωc (5.40)

and in accordance with the literature [93–95].. Thereby, α = e2/(4πε0~c) ≈ 1/137 denotes
the fine-structure constant. Note that the Landau-level degeneracy N now takes the role
of the number of two-level atoms,N , in the original Dicke model (cf. Chap. 3). Within this
particular definition of g, Eq. (5.40), the factor of 2 in Eq. (5.39) is precisely compensated
by the normalization factor in the definition of the two-component Landau-quantized
spinor when Ĥi is transformed into its many-body equivalent. This corresponds to g
quantifying the coupling strength of the interaction of precisely one Dirac fermion with
the cavity mode. Similar as for an ordinary system with parabolic dispersion (cf. Chap. 2)
the coupling strength is determined by the properties of the electronic and photonic sub-
system and thus it is not tunable arbitrarily. Nevertheless, the coupling strength will be
varied for the analysis of the critical behavior during this thesis. To this end, gr shall
denote the actual coupling strength as obtained from Eq. (5.40) and g refers to a tunable
parameter. Hence, any critical coupling strength gc extracted for the variable g from the
considerations in Part II will be compared to the actual coupling strength gr in order to
estimate the actual feasibility of the critical behavior in equilibrium.

Summarizing, the total Hamiltonian describing a Landau-quantized particle interacting
with a single cavity mode is given by

Ĥ = Ĥcav + Ĥ0 + Ĥi, Ĥcav = ~ω â†â, (5.41)

where Ĥ0 and Ĥi are defined in Eq. (5.25) and Eq. (5.39), respectively. The operator Ĥcav
describes the energetic properties of the radiation field similar to a quantum harmonic
oscillator (cf. Chap. 2). For g 6= 0, the eigenbasis of the total Hamiltonian Ĥ is given by
dressed states [230] which differs from the common eigenbasis of Ĥcav and Ĥ0. The latter
is given by the product basis {|a〉 ⊗ |N, k〉τ} in either valley.
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Both single-particle Dirac operators, Ĥ0 and Ĥi, are isotropic in the valley degree of free-
dom and no further valley-scattering processes are considered during this thesis. There-
fore, the tensor products between valley and pseudo-spin space in Eqs. (5.25, 5.39) are
dropped such that Ĥ0 and Ĥi reduce from an each 4 × 4 to an each 2 × 2 Dirac operator.
Likewise, the eigenbasis of the reduced operator Ĥ0 is given by the set of two-component
spinors {|N, k〉} according to Eq. (5.30). The Landau level degeneracy N accounts then
for the valley degree of freedom as already anticipated in Eq. (5.33).

5.3 Many-body Hamiltonian for the effective Dirac model

In order to study collective effects due to the correlated interaction of Landau-quantized
fermionic charge carriers with a radiation mode, it is convenient to translate the first-
quantized Hamiltonian Ĥ into a many-body operator Ĥ. Preferably, the formalism of
second quantization accomplishes this scope in the most comprehensive way. Thereby the
resulting Hamiltonian naturally accounts for the indistinguishability and symmetry of
the considered fermionic and bosonic particles species according to anti-commutation
and commutation relations of the respective particle creating and annihilating operators.

As discussed in Subsec. 2.5 of App. C, the fermionic many-body equivalent of the single-
particle Hamiltonian Ĥ , Eq. (5.41), is obtained from the following expression

Ĥ =
∑
N,k

∑
N ′,k′

ĉ†N,k 〈N, k|Ĥ|N ′, k′〉 ĉ
†
N ′,k′ , (5.42)

where the matrix elements 〈N, k|Ĥ|N ′, k′〉 are defined in the basis of the two-compo-
nent spinors, Eq. (5.30). The summation over the valley-degeneracy is encoded in k, k′

which assume the values k, k′ = 1, . . . ,N , with N denoting the Landau-level degener-
acy according to Eq. (5.33). The summation over collective indices N,N ′, as defined in
Eq. (5.28), is carried out over infinitely extended linear bands. This artifact of the effective
Dirac model yields divergence of contributions which arise from the valence band. Thus,
a proper regularization is required when investigating the partition sum as discussed in
Part II in more detail.
The fermionic creation and annihilation operators introduced in Eq. (5.42), ĉ†N,k and ĉ†N ′,k′ ,
obey the anti-commutation relations{

ĉ†N,k, ĉ
†
N ′,k′

}
= δλ,λ′δn,n′δk,k′ ,

{
ĉ†N,k, ĉ

†
N ′,k′

}
=
{
ĉ†′N,k, ĉ

†
N ′,k′

}
= 0, (5.43)

as discussed in App. C in more detail. With this it is straightforward to obtain the many-
body equivalent of the total single-particle Hamiltonian, Eq. (5.41):

Ĥ = Ĥcav + Ĥ0 + Ĥi, (5.44)

where Ĥcav is identical to Ĥcav, i.e.

Ĥcav = ~ω â†â. (5.45)

The second term in Eq. (5.44) describes the kinetic part of the Landau-quantized many-
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FIGURE 5.3: Illustration of optical transitions captured by the interaction
Hamiltonian Ĥi according to Eqs. (5.47, 5.48). Each arrow represents a
dipole allowed optical transition between two Landau levels, i.e. ∆n = ±1
independent on the band indices λ and λ′ of initial and final state. One
distinguishes between intra-band (solid, blue) and inter-band (dotted, red)
transitions. In case of intra-band or cyclotron excitations initial and final
state are both found within either the valence band (λ = −1) or the con-
duction band (λ = +1). An inter-band transition optically couples a state
within the valence band with one lying in the conduction band. Each en-

ergy level below the Fermi level εF is occupied by N electrons.

body system:

Ĥ0 =
∑
N,k

εN ĉ
†
N,kĉ

†
N,k. (5.46)

Finally, the third part in Eq. (5.44) defines the many-body interaction of charge carriers
with the cavity mode and is of the following form:

Ĥi =
g√
N

(â+ â†)
∑
N,N ′,k

ĉ†N,kMN,N ′ ĉ
†
N ′,k. (5.47)

Thereby, the matrix elementsMN,N ′ are associated with a symmetric matrixM and en-
code the graphene specific dipole-selection rules,

MN,N ′ = λw+,nw−,n′ δn+1,n′ + λ′w+,n′w−,n δn,n′+1, (5.48)

where the weighting functions w±,n are defined in Eq. (5.32). The expressions obtained
for each of the three contributions to the many-body Hamiltonian Ĥ are in accordance
with Ref. [95].



76 Chapter 5. Graphene

For the discussion in Chap. 8 it is useful to introduce the decomposition of each matrix
element intoMN,N ′ = mN,N ′ +mN ′,N where the component mN,N ′ is defined as

mN,N ′ = λw+,nw−,n′ δn+1,n′ = m†N,N ′ . (5.49)

Along with this, the interaction Hamiltonian can be decomposed accordingly into Ĥi =

ĥi + ĥ†i , where

ĥi =
g√
N

(â+ â†)
∑
N,N ′,k

ĉ†N,km
†
N,N ′ ĉ

†
N ′,k 6= ĥ†i . (5.50)

It follows from Eq. (5.48) that the interaction Hamiltonian does not account for transitions
between different values of k according to the dipole approximation. Consequently, only
Landau levels with subsequent Landau index, ∆n = ±1, are optically coupled. This
selection rule is independent on the band indices of initial and final state, λ and λ′. Fig-
ure 5.3 illustrates the characteristic dipole selection rules.

At some stages during the following the k-dependence of the fermionic operators will be
absorbed into the collective index for the sake of brevity:

ĉ†N,k ↔ ĉ†N , ĉ†N,k ↔ ĉ†N . (5.51)

The anti-commutation relations (5.43) remain of course unaffected by this short-hand
notation. Furthermore, the term intra-band transition is introduced for transitions inside
one band, i.e. λ = λ′. Note that inter-band transitions are also often referred to as cyclotron
transitions. Consequently, the term inter-band transition refers to the optical coupling of
two Landau states each in one of the two band, i.e. λ 6= λ′.
In the noninteracting case, g = 0, each Landau-levels with εN < εF is occupied by N
electrons, whereas all Landau-levels with εN > εF are completely empty at T = 0. This
precisely refers to the scenario considered during Part II of this thesis. In accordance
with the literature [93–95] it is assumed that the Fermi level lies between the two Landau
levels M and M + 1 in the valence band. In particular, εF satisfies

εF =
εM+1 + εM

2
. (5.52)

The transition frequency of the corresponding cyclotron transition is then given by

~ΩM = εM+1 − εM =
(~ωc)2

2εF
. (5.53)

The relation between the transition frequency and the Fermi level follows from the defi-
nition of the Landau levels, Eq. (5.26), and basic calculus.
During the following discussion of the superradiant critical behavior, resonance of the
transition frequency ΩM and the cavity mode ω0 may be assumed for convenience at
certain stages. However, as discussed in Subsec. 3.3.2 this is no requirement for the emer-
gence of a superradiant phase transition. Furthermore, in similarity to the Dicke model
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the critical point is found in the ultrastrong coupling regime (cf. Chap. 7), which is char-
acterized by the emergence of non-linearities and hence a breakdown of the validity of
ordinary perturbation theory.
Thus, in the ultrastrong coupling regime, also excitations from energetically lower or al-
ready partially populated Landau levels above the Fermi level might occur in accordance
with the dipole selection rules and Pauli blocking. However, in order to account for these
processes, a brute restriction of the former to a two-level description including only the
resonant level doublet will certainly be not beneficial. The path integral approach for the
partition sum, which is discussed in Chap. 7, provides a considerably better approach as
one is able to exactly integrate over the fermionic contribution and thus account for all
conceivable transitions encoded in Ĥ. Thereby Pauli blocking is automatically consid-
ered within the accompanied formalism of Matsubara summation.

Within a different approach an effective two-level Hamiltonian for the resonant Landau-
level doublet M and M + 1 can be derived as discussed in Chap. 8. The ansatz is based
on Ref. [95] and is provided by a perturbative Schrieffer-Wolff transformation. However,
the investigations of Ref. [95] are extended from second to fourth order and discussed
within two different regularization approaches similar as for the path integral method.
The resulting Hamiltonian simplifies then to a generalized Dicke Hamiltonian with ad-
ditional contributions ∝ (â† + â)2 stemming from the screening of the occupied Landau
levels beneath the Fermi level. Different from Ref. [95], also a rigid ultraviolet cutoff is
applied for regularization.
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Chapter 6

Numerical tight-binding simulation

The analytic results obtained in Chap. 7 are supported by a numerical tight-binding sim-
ulation of the entire energy spectrum of rectangular graphene flakes embedded in an
optical cavity. The numerical approach includes also an uniform perpendicular magnetic
field similar to the analytic approach. Thus, the tight-binding Hamiltonian ĤTB, Eq. (5.8),
needs to be extended in order to investigate the effect of both vector potentials. This is
discussed during the following. Furthermore, the calculation of the relevant observables,
the photon occupation and the ground-state energy, based on the tight-binding spectrum
is outlined subsequently. The chapter is completed with a brief discussion of the details
of the numerical implementation.

6.1 Tight-binding model in the presence of vector potentials

The implementation of a vector potentialA into a tight-biding model is commonly achieved
by means of the Peierl’s phase [231]

ti,α;j,β 7→ ti,α;j,β exp

[
i
e

~

∫ Ri+dα

Rj+dβ

ds ·A(x)

]
, (6.1)

where the integration contour has to be taken along the straight line [221, 232] connect-
ing the lattice points Rj + dβ and Ri + dα. This might be justified in a nearest-neighbor
model, but raises the question of the proper implementation when considering tight-
binding models with higher-order neighbor hoppings or three-dimensional lattices [232].
However, as the Peierl’s phase lacks a rigorous derivation from first principles its validity
in any case is not guaranteed [233, 234]. Moreover, according to W. Kohn, the substitu-
tion (6.1) provides a rather “uncontrolled approximation” [235] leaving doubts on the
validity of the results obtained therefrom in general.
Nevertheless, as the Peierl’s phase is a widely used technique when accounting for the ef-
fects of magnetic fields in tight-binding models there are investigations [236] for a deriva-
tion based on the properties of the tight-binding sums (5.10) and a minimal coupling
Hamiltonian obtained from Eq. (5.7). It is found [236] that within a nearest-neighbor
tight-binding model the Peierl’s phase (6.1) will provide a suitable ansatz for the imple-
mentation of a magnetic field

1. if the corresponding vector potential is slowly varying with respect to the lattice
constant a and
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2. if the magnetic flux through one unit cell is small:

ϕ0 =
e

h
Ba2 =

(
a√

2πlB

)2

� 1. (6.2)

Roughly spoken, ϕ0 � 1 will be fairly satisfied for any magnetic field up to B ≈ 1000 T.

In the course of these constraints, the Peierl’s substitution is commonly used in tight-
binding simulations of graphene under the influence of a magnetic field and yields con-
sistency with the effective Landau-quantized Dirac model in the region of linear dis-
persion [237]. Furthermore, the Dirac model is in accordance with experimental re-
sults [21, 22, 28, 28–33, 37] also in the presence of magnetic fields and thus the Peierl’s
phase is regarded as a suitable approach for the implementation of magnetic fields into
a tight-binding simulation of graphene. The agreement between analytic model and nu-
merical simulation in the presence of a uniform perpendicular magnetic field can also be
seen from Fig. 6.1. Thereby, the energy spectra of quadratic graphene flakes of various
sizes are shown as a function of the flux (5.34) through the system. The quantizing vector
potential A0 was chosen in Landau gauge, as defined in Eq. (5.23), and was numerically
implemented by means of a Peierl’s phase. The vertical lines in Fig. 6.1 mark the flux
values, ϕ = 12.5 and ϕ = 18, for which the calculation of the partition sum is performed
later on. It is easily seen that the condition ϕ0 � 1 is satisfied in any case.

The energy spectra in Fig. 6.1 clearly depict the condensation or clustering of single-
particle energy levels in the vicinity of analytically predicted Landau levels. However, as
the simulated systems are of rather small spacial extension one may account for trigonal
warping as an extension to the effective Dirac model in the region E & 0.7 t. Thereby the
next order in the expansion of H(k), Eq. (5.14), around the Dirac cones into powers of
|q|a is taken into account yielding [24]

ε̃N = εN (1− κ|N |) , κ =
w2

8

(
a

lB

)2

(6.3)

where εN denotes a Landau level within Dirac approximation, Eq. (5.26), and w = 0.1025
is a fitting parameter. Figure 6.1 shows, that this correction however loses importance
as the system size increases. This is easily understood by noting that κ scales with 1/L2

when regarded as function of the flux ϕ.
As E . t roughly coincides with the validity range of the continuum model obtained for
first- and second-order expansion of H(k), one can understand this energy threshold as
an ultraviolet cutoff of the effective Dirac model [223] or its equivalent when accounting
for trigonal warping. Thus, one finds a magnetic-field dependent Landau-level cutoff ν
satisfying E . t,

εν = ~
√

2vF

lB

√
ν ≈ t ⇔ ν ≈ 104

B [T]
(6.4)

in accordance with the literature [24, 223]. In general, when evaluating the analytical ap-
proaches in Chap. 7 and 8 within cutoff regularization one refers to this as Landau-level
cutoff.
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The validity range of the effective model, E ≈ t, is also revealed by the tight-binding
spectra shown in Fig. 6.1: The Landau clustering breaks down above a certain energy
where the spectra are then superimposed by higher order contributions to the tight-
binding model and finite-size effects. As the graphene flakes considered during this
thesis are rather small, the cutoff energy E . t applies only for roughly ϕ & 15. This
is due to finite-size effects competing with the Landau-level clustering for fluxes ϕ . 15.
In turn this yields a smaller number of Landau levels to be actually resolved in the region
of linear dispersion as predicted by the continuum model, Eq. (6.4). Thus, when directly
comparing a numerical result obtained for ϕ < 15 one needs to adjust the value of ν en-
tering the analytic approach accordingly. The particular values for ν extracted from the
tight-binding spectra are listed in Tab. 6.1.

Except for a true spin degeneracy the numerically obtained Landau-level clusters actu-
ally are not degenerate. However, one can introduce an approximate degeneracy NTB

counting the number of levels which cluster in the vicinity of an analytic Landau level.
During this thesis, any level which deviates by less than 0.2% from the position of an an-
alytic Landau level is regarded as contributing toNTB. Table 6.1 provides an overview of
NTB obtained for the systems depicted in Fig. 6.1. As a consequence of finite-size effects
and as apparent from the levels between subsequent Landau clusters in the tight-binding
spectra, Fig. 6.1, the approximate degeneracy NTB is smaller than the analytically pre-
dicted one. However, since sizes of the graphene flakes are rather small, the number of
Landau level clusters resolved in the region of approximate linear dispersion is small but
increases with increasing system size. From a computational point of view larger systems
including magnetic fields are feasible within an acceptable amount of calculation time.
However, as discussed in Sub. 6.3 in more detail, this becomes challenging when consid-
ering the effect of a cavity mode determined by the vector potential Aem, as defined in
Eq. (5.37). As the system is not in the thermodynamic limit, a mean-field approach for the
bosonic degree of freedom is not applicable. Thus, the photonic degree of freedom enters
the simulation microscopically by implementing a truncated matrix representation of the
creation and annihilation operators as already briefly touched in Subsub. 3.3.2:

â†Ntr
=

Ntr∑
n=0

√
n+ 1 |n+ 1〉 〈n| , âNtr =

Ntr∑
n=0

√
n+ 1 |n〉 〈n+ 1| . (6.5)

The dimension of the corresponding Fock space, dim(H+) = Ntr + 1, has to be chosen
large enough in order to provide convergence of the eigensprectrum. For the calculations
presented during this thesis Ntr = 3 provided remarkably good convergence for the
relevant parameter ranges. Thus, in analogy to the criterion (6.2), one can estimate the
validity range of the Peierl’s phase when implementing the truncated electromagnetic

vector potential, Â
Ntr

em = A0eem(â†Ntr
+ âNtr), in dipole approximation:

e

~
aA0||â†Ntr

+ âNtr ||2
(5.40)

=
2a

~vF

√
Ntr(1 +Ntr)

g√NTB
� 1. (6.6)
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Thereby it was used, that the norm of the truncated bosonic operator sum is given by

||â†Ntr
+ âNtr ||2 =

 Ntr∑
i,j=1

a2
i,j

 1
2

=
√
Ntr(1 +Ntr). (6.7)

By defining the modified coupling strength,

gTB =
g

e
√
NTB

, [gTB] = eV, (6.8)

which will be varied within the numerical simulation, the estimation of the validity
range (6.6) can be further specified for the relevant case, Ntr = 3:

gTB �
~vF

2ea

1√
Ntr(1 +Ntr)

≈ 1

3
eV. (6.9)

As long as gTB satisfies this relation, the Peierl’s phase is regarded to yield solid results.
In Chap. 7 the critical behavior indicated by the numerical simulation is compared with
the analytic prediction obtained for varying g within the path integral approach. In par-
ticular, when obtaining some critical value gTB,c one explicitly has to account for the
Landau-level degeneracy NTB obtained from the tight-binding spectra when comparing
with an analytically gc. This can be regarded as a consistency check of both approaches.

Despite this, one should ensure that the actual coupling strength gr, as given by the
r.h.s. of Eq. (5.40), is compatible with the criterion (6.9). This is crucial, as it determines
the quality of the predictions obtained within the numerical approach. Thus, by setting
g = gr in the definition of gTB one finds from Eq. (6.9):

ϕ0 � 9
√
εrNTB, (6.10)

which is certainly satisfied for the relevant parameters and in agreement with the crite-
rion ϕ0 � 1. If this relation was not fulfilled, investigations on the equilibrium superradi-
ant phase transition within the tight-binding approach would forfeit their significance as
the essential criterion for the theoretical chance to numerically reach the relevant param-
eter range, gTB,c < gr/(e

√NTB), would be invalid in the first place. This criterion could
not been satisfied within the simulations carried out during this thesis which is due to the
small size of the considered systems. However, the signatures of superradiance obtained
from the tight-binding approach gTB,c > gr/(e

√NTB) are in convincing agreement with
analytic predictions as discussed in Chap. 7. When extrapolating this agreement to the
simulation of larger systems one will probably find the criterion gTB,c < gr/(e

√NTB) to
be satisfied.

6.2 Thermodynamic properties

As the validity ranges for the implementation of both vector potentials, A0 and Âem,
by means of Peierl’s phases are pinned, one can proceed with the discussion of the gen-
eralized tight-binding Hamiltonian on the basis of Eq. (5.8). The bosonic creation and
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annihilation operators are implemented as truncated matrices of dimension Ntr + 1, ac-
cording to Eq. (6.5), such that the hopping elements of the original tight-binding model
are generalized to matrices with identical dimension. Thus, the generalized tight-binding
Hamiltonian studied throughout this thesis is of the following form

ĤTB =
∑
i,α;j,β

ti,α;j,β(B) |i, α〉 〈j, β| ⊗ T̂i,α;j,β, (6.11)

where the hopping element

ti,α;j,β =

{
−µ, if i = j, α = β,

−t exp
[
i e~
∫Ri+dα
Rj+dβ

ds ·A0(x)
]
, if i, α and j, β are nearest neighbors,

(6.12)

accounts for the quantizing vector potentialA0 in Landau gauge as defined in Eq. (5.23).
The tight-binding Hamiltonian is complemented with the hopping matrix T̂i,α;j,β of di-
mension Ntr + 1 which accounts for truncated bosonic Fock space in the model. The
equivalent to the on-site hopping element, i = j, α = β, is then given by

T̂i,α;i,α = ~ω0â
†
Ntr
âNtr , (6.13)

where â†Ntr
and âNtr are defined in Eq. (6.5). Similar to the quantizing vector potential,

A0, also the electromagnetic vector potential, Â
Ntr

em , is included by means of the Peierl’s
phase, Eq. (6.1), which additionally modulates the hopping parameter according to

T̂i,α;j,β = exp

[
i gTB

(
2ae

~vF
(â†Ntr

+ âNtr)

∫ Ri+dα

Rj+dβ

ds · eem

)]
. (6.14)

The variable coupling strength is chosen as gTB = g/(e
√NTB) such that the approxi-

mate Landau-level degeneracy NTB, Tab. 6.1, has to be explicitly taken into account for
comparison with an analytic prediction. Likewise, the numerically obtained observables
stemming from the partition sum have to be explicitly normalized by the approximate
degeneracy. This provides an additional check of the consistency of the tight-binding
simulation and the analytic prediction, discussed in Chap. 7.

The numerical implementation of the rectangular graphene flakes of various sizes, Tab. 6.1,
is carried out using the Python package Kwant [238]. After setting up the system, one
calculates the many-body partition sum from the single-particle energies similar as dis-
cussed in Sec. 3 in App. D. As the Hamiltonian consists of a fermionic and a bosonic
contribution, one has to account for the different quantum statistics when tracing. This is
most easily achieved by partial tracing over either the bosonic or fermionic part and then
eventually take the trace over the remaining subsystem. Therefore, consider the partition
sum of the Hamiltonian (6.11) in the following form

ZTB = Tr
[
e−βĤTB

]
=

Ntr∑
n=0

∑
k,γ

〈n| 〈k, γ| e−βĤTB |k, γ〉 |n〉 =

Ntr∑
n=0

〈n| e−βĤeff |n〉 , (6.15)
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where {|n〉 ;n = 0, . . . , Ntr} and {|k, γ〉 ; k = 1, . . . , NC, γ = A,B} shall denote the eigen-
basis in the bosonic and fermionic space. Thereby, NC denotes the number of unit cells
composing the graphene flake. If {|n〉} and {|k, γ〉} denote a basis different from the
eigenbasis, the former will easily be transformed into the latter by an appropriate unitary
transformation.
For the evaluation of the tight-binding simulation during this thesis, the fermionic degree
of freedom is chosen to be traced out first, as the r.h.s. of Eq. (6.15) indicates.

To ensure that the evaluated observables are well-defined, it is necessary to normalize
the partition sum ZTB with the one of the noninteracting system, Z0,TB, obtained for
g = 0 [239, 240]. Thus, one defines Z̄TB = ZTB/Z0,TB. From the partition sum Z̄TB one
then finds the photonic occupation of the cavity and the mean-energy as the thermal or
ensemble average

〈â†Ntr
âNtr〉 = − 1

β
∂~ω0 log(Z̄TB), ETB = 〈Ĥeff〉 = −∂β log(Z̄TB). (6.16)

In the limit β → ∞, these thermal averages coincide with the ground-state values of the
corresponding observables. As this is numerically not feasible, one chooses β as large
as possible whereas convergence may be assured. For the evaluation presented during
Chap. 7, β = 1000/(~ωc) was chosen. This value corresponds to a temperature T . 10 K
where the particular value depends on the size of the system. Thus, the obtained results
may be referred to as the ground-state properties of the tight-binding system.

6.3 Remarks on the tight-binding simulation

During this thesis, the analytic results obtained within the effective Dirac model are un-
derpinned by numerical tight-binding simulations of a rectangular graphene flake with
various side lengths, as itemized in Tab. 6.1. To this end, the Python package Kwant [238]
is used to setup the hexagonal lattice structure based on the Hamiltonian ĤTB defined
in Eq. (6.11). According to the choice of the spacial extension, the graphene flake is as-
sembled from NC = 2689, 1368 or 625 atoms which equals the number of single-particle
states in the system. Thus the dimension of the Hilbert space corresponding to ĤTB is
given by dim(HTB) = NC where the valley degree of freedom is automatically taken into
account. By contrast, one explicitly has to account for the two-fold spin degeneracy of
the tight-binding states when comparing the numerical results with analytic predictions.

By implementation of a cavity vector potential, according to Eq. (6.14), the total Hilbert
space of the system is extended by the dimension of the bosonic Fock space, dim(H+) =
Ntr + 1, yielding dim(H+ ⊗HTB) = (Ntr + 1)NC in total.

For the computation of the effective energy spectrum of the bosonic mode, the total
Hamiltonian is implemented as a dense matrix requiring the allocation of 16[(Ntr+1)NC]2

B of memory when working with double precision complex floats. Thereby, for instance,
the calculation of the effective Hamiltonian Ĥeff for one g value and L = 8.5 nm, Ntr = 3
consumes approximately 21 h of computation time on a 3.5 GHz core and requires 2 GB
of memory. By working with sparse matrices the amount of required memory would
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System N
ϕ = 12.5 ϕ = 18

NTB ν NTB ν

8.5 nm

0 40

3
42

41 12 14

2 4 4

6 nm

0 32

3
32

31 12 12

2 4 2

4 nm
0 20

2
22

2
1 12 10

TABLE 6.1: Approximate degeneracy NTB of different Landau levels N
obtained from the tight-binding simulation for various system sizes and
fluxes. For each Landau level index N any single-particle energy that de-
viates by < 0.2% from the analytical prediction (accounting for trigonal
warping, red lines in Fig. 6.1) is counted as a Landau level. Furthermore,
the spin degeneracy was taken explicitly into account by an additional fac-
tor of 2. The deviations from the analytically obtained degeneracyN = 4ϕ,
according to Eq. (5.33), result from finite-size effects. However, the numer-
ical values for NTB for each Landau level N > 0 and flux value deviate
only slightly among the differently scaled systems. The given values for
ν are extracted from the tight-binding spectra, Fig. 6.1, as well and cor-
respond to the actual number of resolved Landau-level clusters for either

flux value.

clearly be decreased and hence larger flake sizes would be feasible. However, the aim of
the tight-binding simulation is to provide an independent approach which is able to cap-
ture signatures of the light-matter interaction also arising from the band structure beyond
the Dirac model and thus including also higher order terms of the electromagnetic vec-
tor potential. Especially concerning the proposed dynamically generated quadratic terms
prohibiting the superradiant quantum phase transition [94, 95], a tight-binding computa-
tion of the complete band structure yields the probably most reliable and robust reference
in this context. Unfortunately, the performance of diagonalization routines rapidly drops
when computing the entire eigenspectrum of a matrix within a sparse matrix approach.
In particular, the calculation time has been found to double compared with the diagonal-
ization of an identical dense matrix. In view of the available resources, the choice of a
dense matrix approach to the disadvantage of the flake size appeared to be more efficient
in the course of this thesis.

During the next chapter a path integral approach for the many-body Hamiltonian in
Dirac approximation is considered and and partially compared with the tight-binding
simulation.
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FIGURE 6.1: Energy spectra of quadratic graphene flakes with various
side lengths as a function of the normalized flux ϕ through each system.
For ϕ & 5 the condensation of single-particle energies into Landau levels is
clearly visible. According to the rather small spacial extension of the flakes,
only a small number of Landau levels is formed within the region of ap-
proximate linear dispersionE . t. As the size of the flake increases also the
number of Landau levels formed within this region increases. For energies
& 0.7 t the warping of the valleys can be seen from the deviation of the
bare Landau levels, Eq. (5.26), in Dirac approximation (thick red dashed
lines in the valence band) and the numerical simulation. Accounting for
this effect in an extended effective description [24] (thick yellow solid lines
in the valence band) yields convincing agreement of the analytic theory
and the numerical simulation. The vertical green line marks the flux value
applied for the numerical simulations of radiation effects throughout this

thesis.
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Chapter 7

Path integral approach for the
many-body partition sum

In this chapter the thermodynamic properties of the many-body Hamiltonian for Landau-
quantized graphene interacting with a single cavity mode are derived. The focus lies
thereby on the effective Dirac model and is based on the many-body Hamiltonian consid-
ered in Sec. 5.3. The results obtained within this chapter are compared with the results of
the numerical tight-binding simulation introduced Chap. 6. The analytic considerations
are based on a path integral approach in the thermodynamic limit which allows an exact
integration of the fermionic degree of freedom.

As a first step, the partition sum of the many-body system is evaluated in the normal
phase which is determined from the individual ground-state properties of the cavity and
the solid-state subsystem. By integration over the fermionic degree of freedom one ob-
tains an effective action for the bosonic subsystem.
However, as already pointed out during Subsec. 4.3.3, the analytic approach requires
regularization as the Dirac model for graphene artificially assumes unbounded bands.
The issue of reasonable regularization though is still a subject of research [24, 96–102],
especially in context of gauge fields where a rigid ultraviolet momentum cutoff breaks
gauge invariance. Despite this crucial argument however the validity range of the effec-
tive Dirac model for graphene is limited to a region close to the corners of the Brillouin
zone. This validity range is also revealed by the tight-binding simulation, discussed in
Chap. 6, as the Landau-level clustering of the tight-binding eigenenergies breaks down
rather suddenly for energies above a certain value. This value can be associated with
the validity range of the effective Dirac description or its extension accounting for trig-
onal warping of the Dirac cones. Thus, one of two regularization approaches discussed
during the following corresponds to a rigid ultraviolet momentum cutoff in accordance
with the literature [24, 98–102]. Thereby, the sums over the Landau-level indices in the
many-body Hamiltonian, Eq. (5.42), are truncated at a Landau-level cutoff ν which is
in general obtained from Eq. (6.4) in accordance with the literature [24, 223]. However,
for the comparison with the particular tight-binding setups, discussed in Chap. 6, the
cutoff ν is chosen from the actual number of resolved Landau-level clusters in the tight-
binding spectra, Fig. 6.1. The corresponding values are summarized in Tab. 6.1. The
results obtained from the cutoff-regularized analytic approach are then compared with
the tight-binding simulation.
Furthermore, a regularization approach based on the suggestion of Ref. [93] is applied for
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comparison. Thereby, far off-resonant contributions to the interaction Hamiltonian are
omitted. In particular, one neglects all dipole-allowed transitions stemming from the va-
lence band into the conduction band when imposing the Fermi level to lie in the conduc-
tion band between the Landau-level doublet M and M + 1. Within this approach cutoff-
independent results for the corresponding observables are obtained and then again com-
pared with the tight-binding simulation.

Having defined both regularization methods, one proceeds with the evaluation of the ef-
fective action in the normal phase. From the second derivative of the effective action one
finds that the normal phase will correspond to the actual ground-state only if the cou-
pling is smaller than a critical value. This critical point however depends on the choice
of regularization. This is the first important intermediate result of this chapter as the de-
rived criterion indicates quantum criticality in a similar manner as the Hessian discussed
for the Dicke model in Chap. 3.
Before the evaluation of the path integral is performed for couplings larger than the crit-
ical one, a comparison with the critical points extracted from the numerical simulation
is performed. Finally, the parameter ranges actually required to reach the critical points
are determined for either regularization method . This is crucial as this thesis solely in-
vestigates the critical behavior of Landau-quantized graphene in equilibrium and thus
without external driving. In equilibrium, however, the actual coupling strength of the
Dirac fermions with the cavity mode are certainly determined from microscopic proper-
ties of both subsystems and thus it is rather not tunable (cf. Sec. 5.2.3). Hence, the system
will only be able to cross the critical point in equilibrium if the actual coupling strength
exceeds the predicted phase boundary. As the critical points for either regularization de-
pend on at least the Fermi level one is finally able to determine the parameter ranges
required for the actual coupling strength to naturally cross the phase boundary.

Subsequent to this follows the discussion of the path integral approach beyond the critical
point where the trivial solution no longer corresponds to the ground state of the hybrid
system. In addition to the thermodynamic limit also the properties of quantum fluctua-
tions are discussed during the following. The analytic results are then again compared
with the numerical simulation.

7.1 Derivation of the critical point

The evaluation of the many-body partition sum,

Z = Tr
[
e−β(Ĥ−µN̂)

]
, (7.1)

is achieved by means of a path integral approach similar to the one discussed in Refs. [239,
241, 242] in the context of the original Dicke model. The derivation of the path integral
representation for a many-body partition sum is discussed in Sec. 3 of App. D and based
on the evaluation of the trace within the basis of bosonic and fermionic coherent states
(cf. Subsec. 3.1 of App. C). In this basis the bosonic operators of the cavity mode, â† and
â, are replaced by complex-valued fields, α∗(τ) and α(τ), where τ denotes the Euclidean
time. These fields correspond to the eigenvalues of the bosonic annihilation operator in
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the basis of bosonic coherent states. Likewise, one finds the eigenvalues of the fermionic
annihilation operator in the basis of fermionic coherent states to be given by Grassmann
numbers (cf. Sec. 2 in App. E). It is convenient to introduce a short-hand vector notation
for the fermionic degree of freedeom according to

ρ†k(τ) =
(
c†−ν,k(τ) c†−(ν−1),k(τ) . . . c†0,k(τ) . . . c†ν−1,k(τ) c†ν,k(τ)

)
,

ρk(τ) =
(
c−ν,k(τ) c−(ν−1),k(τ) . . . c0,k(τ) . . . cν−1,k(τ) cν,k(τ)

)T
,

(7.2)

where each component of ρ†k and ρk is a Grassmann field associated with the correspond-
ing set of quantum numbers. Note that the applied notation, (λνν, k) = (λν , ν, k), refers
to the collective index notation introduced in Eq. (5.28). From Eq. (D.71) one finds then
the path integral representation of the partition sum (7.1) to be given by

Z̄ =
Z
Z0

=

∮
D[α]

∮
D[{ρk}]e−SE[α∗,α;{ρk†,ρk}]∮

D[α]
∮
D[{ρk}]e−S

0
E[α∗,α;{ρk†,ρk}]

. (7.3)

The definition of the integration measure is found in Eq. (D.65). The normalization with
Z0 of the noninteracting system, g = 0, ensures Z̄ to be well-defined [239, 240]. The
Euclidean action SE in the exponential of Z is defined by

S[α∗, α; {ρk†,ρk}] =

∫ β

0
dτ

[
α∗(τ)∂τα(τ) +

N∑
k=1

ρ†k(τ)∂τρk(τ)

2∑
1

+H[α∗(τ), α(τ); {ρk†(τ),ρk(τ)}]− µÑ [{ρk†(τ),ρk(τ)}]
]

= S+[α∗, α] + Smix[α∗, α; {ρk†,ρk}],

(7.4)

where the index E denoting the underlying Euclidean metric is omitted from now on.
Likewise, one obtains S0

E by setting g = 0 in Eq. (7.4). According to the symmetry proper-
ties of bosonic and fermionic particles, the complex and Grassmann fields satisfy periodic
and anti-periodic boundary conditions, respectively:

α∗(0) = α∗(β), α∗(0) = α∗(β),

ρ†k(0) = −ρ†k(β), ρk(0) = −ρk(β).
(7.5)

To proceed the evaluation of the effective action for the bosonic mode it is beneficial to
Fourier transform the Euclidean-time representation into a Matsubara-sum representa-
tion. To this end, one applies the following identities

α∗(τ) =
1√
β

∑
ω+
n

α̃∗Ne
iω+
n τ , α(τ) =

1√
β

∑
ω+
n

α̃Ne
−iω+

n τ ,

ρ†(τ) =
1√
β

∑
ω−n

ρ̃†ne
iω−n τ , ρ(τ) =

1√
β

∑
ω−n

ρ̃ne
−iω−n τ ,

(7.6)
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which leave the measures of the field integral unchanged. Thereby, ω+
n = 2nπ/β and

ω−n = (2n + 1)π/β, n ∈ Z, denote bosonic and fermionic Matsubara frequencies, respec-
tively. The formalism associated with Matsubara frequencies provides an elegant method
to ensure the correct implementation of the symmetric and anti-symmetric boundary con-
ditions (7.5).
The pure bosonic part of the action is then found as

S+[α̃∗, α̃] =
∑
ω+
N

α̃∗N
(
−iω+

N + ~ω0

)
α̃N . (7.7)

The remaining contribution, Smix, in Eq. (7.4) composites from fermionic and bosonic
contributions due to the interaction part of the many-body Hamiltonian. It is convenient
to write the mixed contribution in the following form

Smix[α̃∗, α̃; {ρ̃†k, ρ̃k}] =
∑
k

∑
ω−p ,ω

−
q

ρ̃†n,k
[
−G−1

0 δp,q + M [α̃∗, α̃]
]
ρ̃q,k, (7.8)

where G−1
0 denotes the inverse of the free Green’s function of the fermionic subsystem.

Consequently, M accounts for the light-matter interaction. Both quantities are each de-
fined by matrices of dim = 2ν + 1 in the basis of Grassmann-field vectors defined in
Eq. (7.2). In this basis, the matrix elements of G−1

0 and M read

−
(
G−1

0

)
K,L

=
[
−iω−p + (εK − µ)

]
δK,L (7.9)

(M[α̃∗, α̃])K,L =
g√
N
[
α̃∗K−L + α̃L−K

]
MK,L, (7.10)

whereMK,L encodes the dipole-selection rules according to Eq. (5.48). Both matrices are
independent on the quantum number k which accounts for the Landau-level degeneracy.

As a first step, the field integral over the fermionic degrees of freedom is carried out
yielding an effective action for the bosonic mode (cf. Sec. 3 of App. D):

Z̄ = (Z+
0 )−1

∮
D[α̃]e−S+[α̃∗,α̃]

∏
ω−n

det [1−G0M[α̃∗, α̃]]

N

= (Z+
0 )−1

∮
D[α̃]e−S+[α̃∗,α̃]+N log[det[1−G0M[α̃∗,α̃]]].

(7.11)

Thereby, Z+
0 denotes the partition sum of the free cavity mode [240]:

Z+
0 =

1

2sinh
(
β
2~ω0

) . (7.12)

The power of N results from the degeneracy of each Landau level. Furthermore, the
product over fermionic Matsubara frequencies was absorbed into the determinant in the
second line of Eq. (7.11).
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This intermediate result refers to an exact integration over the fermionic degree of free-
dom. However, due to the complexity of the underlying model, the examination of the
sum or product, respectively, over the fermionic Matsubara frequencies is analytically
challenging for arbitrary large ν in a general case. Thus, a numerical approach is advan-
tageous in most cases. However, the exact value of the critical point can be analytically
derived from Eq. (7.11) as it is shown during the following.

To proceed the evaluation of the effective action for the bosonic mode, one substitutes
α̃∗ 7→

√
N α̃∗, α̃ 7→

√
N α̃ such that the partition sum can be written as

Z̄Z+
0 = N

∮
D[α̃]e−NΦ[α̃∗,α̃], Φ[α̃∗, α̃] = S+[α̃∗, α̃]− log [det [1−G0M[α̃∗, α̃]]] . (7.13)

In the thermodynamic limit, where N → ∞ is assumed, the dominant contribution to
the partition sum arises from field configurations which correspond to a minimum of the
phase functional Φ[α̃∗, α̃]. Thus, analogous to Hamilton’s princple minimizing the phase
of the single-particle quantum propagator, one finds the minima of Φ[α̃∗, α̃] by evaluation
of

δ

δα̃N
Φ[α̃∗, α̃]

∣∣∣∣
α∗0,α0

= 0,
δ

δα̃∗N
Φ[α̃∗, α̃]

∣∣∣∣
α∗0,α0

= 0. (7.14)

One can show [239] that the corresponding field configuration α∗0, α0 is static, i.e. inde-
pendent on Matsubara frequencies. Furthermore, this field configuration is real-valued,
i.e. α∗0 = α0. This is due to log [det [1−G0M]] being symmetric in α̃∗ and α̃. Thus, the
functional derivative of this expression with respect to α̃∗ is identical with the one carried
out with respect to α̃ when evaluated at a static configuration. This becomes more clear
during the following, where it is also proven that the trivial solution α0 always satisfies
Eq. (7.14).

Thus, before proceeding the evaluation of the path integral in the thermodynamic limit,
consider the functional derivative of log [det [1−G0M]]:

F [α∗N , α−N ] =
δ

δα̃N
log [det [1−G0M]] =

δ

δα̃∗−N
log [det [1−G0M]]

= Tr

[
(1−G0M)−1 δ(−G0M)

δα̃N

]
,

(7.15)

where the trace is carried out in the basis [241]

Tr [O] =
1

β

∑
ω−n

∫ β

0
dτeiω

−
n τ

[∑
I

OI,I

]
e−iω

−
n τ . (7.16)

Thereby, the innermost sum refers to the trace in the basis of the Grassmann vectors,
Eq. (7.2). or a fixed value of k.
By defining the abbreviation A[−iω−n ; α̃∗, α̃] = 1 − G0M[α̃∗, α̃] and using δα̃M/(δα̃N ) =
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δM,N one obtains for Eq. (7.15) in particular

F [α̃∗N , α̃−N ] =
1

β

∑
ω−n

∑
I

(
A−1[−iω−n − µ, α̃∗N , α̃−N ](−G0M[0, 1])

)
I,I

=
1

β

∑
ω−n

∂AGν [−iω−n − µ,A]

Gν [−iω−n − µ,A]

∣∣∣∣∣∣
A=α̃∗N+α̃−N

.

(7.17)

where Gν is understood as an ordinary polynomial function of even powers of A, i.e.
Gν [p,A] =

∑ν
i=0 c2i(p)A

2i. Due to the specific properties of the interaction term, captured
in the matrix M, one is able to iterate Gν for a given cutoff ν ≥ 2 from

GL[p,A] =


p+ εL, for L = 0,

BL[p,A]GL−1[p,A], for L = 1,

BL[p,A]GL−1[p,A] + CL−1[p,A]GL−2[p,A], for L ≥ 2,

(7.18)

where εL denotes the Landau level energy assigned with the collective index L = (λl, l)
and

BL[p,A] = p2 − (ε2L + 2w2
+,L−1A

2), (7.19)

CL[p,A] = −2w2
+,Lε

2
LA

2. (7.20)

The normalization w+,L is defined in Eq. (5.32). Furthermore, Gν(p) can also be under-
stood as a polynomial in p of order 2ν + 1 as it is seen from Eqs. (7.18, 7.19, 7.20).
By carrying out the partial derivative of Gν [p,A] with respect to the parameter A, one
finds for F [α̃∗N , α̃−N ]

F [α̃∗N , α̃−N ] = A× 1

β

∑
ω−n

∑ν−1
i=0 (2i+ 1)c2i+2(−iω−n − µ)A2i∑ν

i=0 c2i(−iω−n − µ)A2i

∣∣∣∣∣∣
A=α̃∗N+α̃−N

, (7.21)

which is an odd function of A. The poles of the denominator as a function of −iω−n corre-
spond to the eigenvalues of the Hamiltonian associated with the mixed action Smix. Thus,
an analytic evaluation of the sum over Matsubara frequencies requires these eigenvalues
to be also known analytically. However, as there exists no generic procedure for finding
the roots of a polynomial of order n > 4, this task is preferably performed numerically
when choosing a reasonable cutoff ν ≥ 2 and A 6= 0.
Thus, proceeding the discussion of Eq. (7.14) at the static configuration α∗0, α0 one obtains

δ

δα̃N
Φ[α̃∗, α̃]

∣∣∣∣
α∗0,α0

= ~ω0 α
∗
0 − F (α∗0, α0) = 0, (7.22)

δ

δα̃∗N
Φ[α̃∗, α̃]

∣∣∣∣
α∗0,α0

= ~ω0 α0 − F (α∗0, α0) = 0, (7.23)

which are simultaneously satisfied only if α∗0 = α0. Furthermore, from Eq. (7.21) directly
follows that the trivial solution, α0 = 0, always satisfies Eqs. (7.22, 7.23). Similar as in the
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discussion of the original Dicke model this solution is associated with the normal phase
of the system if it is minimizing the phase function. However, whether α0 = 0 actually
corresponds to a minimum of the phase function Φ(α0, α0) for any choice of parameters
depends on the properties of F (α∗0, α0) and requires

∂2

∂α2
Φ(α, α)

∣∣∣∣
α0

> 0. (7.24)

This condition is identical with the claim of a positive definite Hessian discussed during
the introduction of the Dicke model (cf. Chap. 3). If the condition (7.24) is violated for
a certain parameter g at α0 = 0, the trivial solution will not correspond to the minimum
of the phase function anymore. In this case, a different, non-trivial solution of Eqs. (7.22,
7.23) will alternatively satisfy Eq. (7.24) and hence determine a different ground state of
the system.
The evaluation of Eq. (7.24) for the trivial solution yields the value of the critical coupling
in case that a second-order phase transition exists. During the following, this condition
is examined within two different techniques of regularization. The first one is provided
by a rotating-wave like approximation yielding a cutoff-independent result for the criti-
cal point. Within this approach inter-band transitions are omitted in analogy to Ref. [93].
However, during this thesis a slight variation of the regularization approach suggested in
Ref. [93] will be applied: The transition between the valence-band Landau level N = −1
and the zeroth Landau level will be included as the corresponding transition frequency is
identical with the transition between the zeroth Landau level and N = +1 in the conduc-
tion band. Thus, excitations from N = −1 into the zeroth and also into the first Landau
level in the conduction band are likely in an ultrastrong coupling regime especially when
the system is filled up to M = 0.
Despite this exception, the rotating-wave like approximation is achieved by claiming
λ = λ′ in the matrix elementsMN,N ′ , Eq. (5.48). This differs from the ordinary rotating-
wave approximation discussed in Subsec. 4.2 of App. B which omits all counter-rotating
terms. The Hamiltonian within the rotating-wave like approximation however still con-
tains counter-rotating terms stemming from inter-band transitions. Without providing
a rigorous justification of this approach one may point out that especially for a Fermi
level above M � 1 inter-band transitions are far-off resonant. Thus, excitations from
a valence-band Landau-level into an empty one in the conduction band requires multi-
photon processes involving a large number of photons. In particular, for a cavity which
lowest eigenmode is resonant with the transition εM+1 − εM , a dipole allowed transition
from the valence band state −M into M + 1 requires the absorption of ≈ 4M photons of
frequency ΩM to compensate the energy difference. However, as multphotonic events are
likely to occur in ultrastrong coupling regimes a rigorous justification should be provided
especially when convincing agreement of the results with other methods is obtained.
The second regularization method applied during the following is given by the ultravio-
let Landau-level cutoff ν being kept when evaluating Eq. (7.24) for α0 = 0.

By introducing a new parameter γ controlling the intra-band transitions in the interaction
Hamiltonian, one is able to evaluate Eq. (7.24) for both approaches at once. Thus, define

M̃γ
N,N ′ = λ(w+,nw−,n′ δn+1,n′ + w+,n′w−,n δn,n′+1)− λγw+,n′w−,n δn,n′+1, (7.25)
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which coincides with MN,N ′ if γ = 1 and omits inter-band transitions for γ = 0. The
definition of M, given in Eq. (7.10), is then adapted likewise through the following. Note
that for γ = 0 this definition of M̃γ

N,N ′ yields an identical regularization as suggested
in Ref. [93] where all inter-band transitions are omitted. During this thesis, the transi-
tion between the Landau level N = −1 and the zeroth Landau level is however explicitly
considered. As the corresponding definition of M̃γ

N,N ′ is easily adapted but yields a cum-
bersome expression, one stays with Eq. (7.25) for the sake of brevity and keeps in mind
the exception for N = −1. Any result discussed during the following precisely refers to
this modification.
From the derivation of the function F (α, α) one obtains the second derivative of the
fermionic contribution to the action with respect to the static, real-valued field α as

∂αF
γ(α, α)|α0=0 = − Tr

[
(1−G0Mγ)−1 ∂(−G0Mγ)

∂α
(1−G0Mγ)−1 ∂(−G0Mγ)

∂α

]∣∣∣∣
α0=0

= −Tr

[
(−G0)

∂Mγ

∂α
(−G0)

∂Mγ

∂α

]

=
1

β

∑
ω−n

∂2
AGν [−iω−n − µ,A]

Gν [−iω−n − µ,A]

∣∣∣∣∣∣
A=0

,

(7.26)

where it was used that ∂2
AGν |0 = 0. Unfortunately, for γ 6= 1 the polynomialGν(p) cannot

be casted in a convenient form similar to Eq. (7.18). However, the product of matrices in
second line of Eq. (7.26) is easily evaluated for α0 = 0 yielding

∂αF
γ(α, α)|α0=0 = −8g2

β

∑
ω−n

ν−1∑
L=0

UγL(−iω−n − µ), (7.27)

where the summands UγL(p) are given by

UγL(p) =


4p

(p+ε0)[p2−ε21]
, for L = 0,

p2+(1−γ2)εLεL+1

[p2−ε2L][p2−ε2L+1]
, else.

(7.28)

In a next step one evaluates the sum over fermionic Matsubara frequencies. This is most
easily achieved by means of residue calculus as discussed in Sec. 3 in App. E. Thus, one
obtains for Eq (7.27)

∂αF
γ(α, α)|α0=0 = −8g2

ν∑
L=1

ŪγLf(εL, µ) (7.29)
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where ŪγL is defined as

ŪγL =


2

∆L,L−1
+
−∆L+1,−L+γ2∆L+1,L

∆L+1,L∆L+1,−L
, for L = 1,

∆L,−(L−1)+γ
2∆L,L−1

∆L,L−1∆L,−(L−1)
+
−∆L+1,−L+γ2∆L+1,L

∆L+1,L∆L+1,−L
, for 1 < L < ν,

∆L,−(L−1)+γ
2∆L,L−1

∆L,L−1∆L,−(L−1)
, for L = ν,

(7.30)

using ∆K,L = εK − εL. Thereby, the index notation refers to the collective index notation
introduced in Eq. (5.28). The function

f(εL, µ) = −1

2

[
tanh

(
β

2
(εL − µ)

)
+ tanh

(
β

2
(εL + µ)

)]
β→∞

= −Θ(εL − µ) (7.31)

results from the Fermi-Dirac distribution entering the evaluation of the Matsubara sum.
Thus, by setting T = 0 and 2µ = εM+1 + εM , Eq. (7.29) can be simplified according to

∂αF
γ(α, α)|α0=0 = 8g2

ν∑
L=M+1

ŪγL. (7.32)

Despite the claim of electron-hole symmetric single-particle energies εL no further in-
formation about the particular definition of εL entered the intermediate result for ŪγL and
thus in turn Eq. (7.32). During the following, the single-particle energies εL are associated
with the Landau levels of graphene within Dirac approximation as given in Eq. (5.26).
The results derived from the corresponding expression of ∂αF γ(α, α)|0 then reveal the
properties of the Landau-quantized Dirac fermions interacting with a cavity mode. How-
ever, when comparing the results obtained from this analytic approach with those of the
numerical tight-binding simulation it is beneficial to account for trigonal warping in the
evaluation of Eqs. (7.30, 7.32). This is reasonable, as the spacial extension of the simulated
graphene flakes is rather small and in turn the number of resolved Landau levels in the
region of linear dispersion is limited to at most four Landau levels in each band for the
considered fluxes (cf. Fig. 6.1 and Tab. 6.1). Thus, to provide the comparability of both
approaches also for larger fillings one needs to take trigonal warping of the Dirac cones
into account. This is achieved by evaluation of Eq. (7.30) for the modified energy levels
ε̃L as defined in Eq. (6.3).

Proceeding the discussion for εL denoting a Landau level in Dirac approximation, the
sum over ŪγL is easily evaluated. Thereby, one finds for ∆L+1,L∆L+1,−L = ~ωc in the
denominator of the summands ŪγL which are then further simplified according to

~ωc ŪγL =

{(
2δL,1 +

√
L− 1−

√
L+ 1

)
(1− γ2), for 1 ≤ L < ν,√

ν(1 + γ2) +
√
ν − 1(1− γ2), for L = ν,

(7.33)

Thus, the result for rigid cutoff regularization is straight forwardly obtained by putting
γ = 1:

∂αF
1(α, α)

∣∣
α0=0

= 16g2

√
ν

~ωc
. (7.34)
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The cutoff-independent result for ∂αF (α, α)|0 is, however, also easily obtained from re-
ordering the sum over ŪγL with γ = 0, yielding

∂αF
0(α, α)

∣∣
α0=0

= 8g2

[
2δM,0

~ωc
+

1

~ΩM

]
. (7.35)

By inserting these results into the second derivative of the phase function with respect to
α, one finds

∂2
αΦγ(α, α)

∣∣
α0=0

= 2~ω0 − ∂αF
γ(α, α)|α0=0

=


16
√
ν

~ωc

[(
~√ω0ωc

2
√

2ν

)2
− g2

]
, for γ = 1,

8
(

2δM,0
~ωc + 1

~ΩM

)(~
√
ω0(ωc/(2δM,0)+ΩM)

2

)2

− g2

 , for γ = 0.

(7.36)

These equations precisely define the critical points for either regularization. In particu-
lar, the trivial solution will correspond to a minimum of the phase function only if the
coupling g is smaller than either

gc,ν =
~√ω0ωc

2
√

2ν
, (7.37)

in case of a rigid ultraviolet cutoff, or

gc,M =
~
√
ω0 (ωc/(2δM,0) + ΩM )

2
. (7.38)

when inter-band excitations are dropped. The latter is similar to the result derived in
Ref. [93] where all inter-band transitions are omitted. In reality though at most one of
these approaches matches the actual situation in the system. Thus, either gc,ν or gc,M de-
termines the phase boundary of the true system. From the Dirac model itself however
one will not be able to conclude which of these proposed critical points corresponds to
the actual phase boundary of Landau-quantized graphene. This issue is related to the
discussion of proper regularization of the unbounded valence band when applying the
low-energy approximation onto the tight-binding description of graphene [94–97]. Es-
pecially in the presence of gauge fields a rigid ultraviolet momentum cutoff is known to
violate gauge invariance which is a serious aspect from a theoretical perspective. How-
ever, in reality, the band structure of graphene is naturally bounded and thus also the
region where the effective Dirac model provides a reasonable approximation is finite.
This is, for instance, illustrated in Fig. 6.1, where the energy spectra of differently sized
graphene flakes in the presence of a magnetic field are numerically calculated within
a tight-binding approach. The Landau-level clustering appearing in these spectra oc-
curs only in a region |E| . t which roughly matches the validity range of the effective
Dirac model. As leaving this energy range, the Landau-level clustering suddenly breaks
down in the numerical spectra. Though this breakdown rather results from warping of
the Dirac cones when moving away from the K- and K ′-point than from a rigid cutoff
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the latter seems to provide a reasonable regularization for an analytic approach in this
context. Thus, regarding |E| . t as a reasonable choice in accordance with the litera-
ture [24, 223] one finds the Landau-level cutoff ν as defined in Eq. (6.4). Note that this
definition yields a magnetic field-dependent cutoff ν.
However, as gauge violation is a crucial issue, one strives for a cutoff-independent formu-
lation of the respective theory also in the context of superradiance in graphene [93–95].
Thus, picking up the discussion about the importance of far off-resonant contributions
stemming from inter-band transitions, one arrives at the proposed phase boundary gc,M .
At first glance, the underlying regularization method might seem justified as the proba-
bility for multiphotonic events involving a large number of photons can be estimated to
be rather small. However, these arguments are likely based on a perturbative ansatz of
which it is known that its validity fades for ultrastrong couplings (cf. Tab. 3.1) as required
to reach gc,M , Eq. (7.38).
To clarify which of both regularization techniques rather resembles the actual proper-
ties of graphene the results obtained for either approach are compared with a numerical
tight-binding simulation of graphene (cf. Chap. 6 for details on the numerical setup).
Within the numerical calculation the full band structure of graphene is considered and
thus the results naturally account also for higher order terms as those captured by the
effective Dirac model. Thus, also quadratic contributions stemming from the warping
of the bands are certainly included. Furthermore, the numerical simulation accounts for
any light-matter interaction contribution which naturally arises from the Hamiltonian in
dipole approximation. Consequently, the numerical tight-binding results include intra-
as well as inter-band processes corresponding to their actual weighting. Finally, the com-
parison of the numerical results with the analytic predictions identifies one of the two
regularization methods to yield convincing agreement. However, to provide the suitable
analytical bases for this comparison one has to account for trigonal warping as apparent
from the tight-binding spectra, Fig. 6.1. Substitution of εL with ε̃L = εL(1 − κ|L|) rises
the value of ŪγL, Eq. (7.30), and thus in turn the critical points, gc,M and gc,ν , are shifted to
lower values. Thereby, κ > 0 corresponds to a small correction parameter and is given in
Eq. (6.3). By identical evaluation of the previous steps, one finds the cutoff-independent
value of the critical coupling to be precisely given by

g̃c,M =

~
√
ω0

(
ωc/(2δM,0) + Ω̃M

)
2

< gc,M , (7.39)

where ~Ω̃M = ε̃M+1− ε̃M . Thus, the result retains the cutoff independence when trigonal
warping is considered.
The evaluation of the equivalent of Eq. (7.36) for γ = 1 yields

g̃c,ν =
~√ω0ωc

2
√

2v(κ)
< gc,ν , (7.40)

where v(κ) corresponds to rather cumbersome expression when exactly carrying out the
sum over Ū1

L according to Eq. (7.32). By a Taylor series expansion of Ū1
L around κ = 0 one
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finds in first-order approximation:

v(κ) ≈ √ν + κ
[√

ν(3ν − 2) + 4ζ− 1
2
(ν − 1)− 4δM,0 − 4ζ− 1

2
(M + 1)

]
, (7.41)

where ζx(z) denotes the Hurwitz zeta function [203]. For the comparison with the simu-
lation however the exact value of v(κ) will be applied.

Table 7.1 enumerates the values of the critical points extracted from the tight-binding
simulations and provides a comparison of these values with the analytic prediction for
either regularization. The numerical results are obtained from the evaluation of the pho-
ton occupation (cf. Subsec. 7.2.2) as a function of the coupling gTB as defined in Eq. (6.8).
According to the definition of gTB, the approximate Landau-level degeneracy NTB of
the Landau-level clusters in the tight-binding spectra, Fig. 6.1, has to be explicitly taken
into account for the comparison with the analytic result. In particular, Tab. 7.1 compares
g̃c,TB = e

√NTB gc,TB with the analytically predicted phase boundary. The values of NTB

are thereby found in Tab. 6.1. Furthermore, the Landau-level cutoff ν entering the ana-
lytic expressions gc,ν , Eq. (7.37), and g̃c,ν , Eq. (7.40), were chosen in accordance with the
actual number of resolved Landau-level clusters in the tight-binding spectra. The cor-
responding values are also enumerated in Tab. 6.1. The tight-binding systems cover a
variety of different values for ν, ranging from ν = 2 to ν = 4, such that Tab. 7.1 provides
a comprehensive comparison of the critical points. This is complemented by the evalua-
tion of the simulation and the analytic approach for different Fermi levels. Despite slight
deviations the numerical results for the critical point coincide remarkably well with g̃c,ν
where trigonal warping is considered. For the larger systems, L ≈ 8.5 nm and L ≈ 6 nm,
also the comparison with the cutoff-dependent critical point obtained within Dirac ap-
proximation, gc,ν , yields satisfying agreement with the numerical values. This does not
hold for the cutoff-independently regularized equivalents where almost all sets of pa-
rameters show significant deviations from the numerical result.

Before proceeding with the further evaluation of the path integral and the comparison of
the analytic predictions obtained therefrom with the numerical simulation, it is important
to emphasize that the comparison of the critical points extracted from the tight-binding
simulation with the results g̃c,x, x = M,ν, represents an extension to the Dirac model.
This extension is solely required as the simulated systems are small. If considering sys-
tems with side lengths in a few hundred nano- or even micrometer range, the necessity
for a trigonal-warping extension will fade as the number of Landau levels in the linear
energy regime increases for constant flux values. Simultaneously, the significance of the
correction diminishes for a fixed flux through the system since κ ∝ ϕ/L2. This can also be
seen from Tab. 7.1, as the deviations of the tight-binding result for the critical point and
gc,ν narrow when the system size increases. Likewise, the deviations of the tight-binding
result g̃c,TB from g̃c,ν and gc,ν for the smallest system, L ≈ 4 nm, are largest compared with
the results of L ≈ 6 nm and 8.5 nm. This indicates signatures of finite-size effects which
are however not further investigated during this thesis. Summarizing, the convincing
agreement of g̃c,TB and g̃c,ν is interpreted as cutoff regularization provides a well-suited
approach for the prediction of the critical point. By contrast, the cutoff-independent reg-
ularization method suggested by Ref. [93] fails in the attempt of proper description of the
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System M
ϕ = 12.5

g̃c,TB [~ωc] g̃c,TB/g̃c,ν g̃c,TB/gc,ν g̃c,TB/g̃c,M g̃c,TB/gc,M

8.5 nm

0 0.195 1.002 0.990 0.785 0.779

1 0.150 1.021 0.985 0.752 0.723

2 0.139 1.046 0.983 0.931 0.872

6 nm

0 0.2 1.000 0.978 0.813 0.799

1 0.153 1.021 0.949 0.799 0.738

2 0.126 1.018 0.894 0.911 0.793

4 nm
0 0.205 1.003 0.958 0.853 0.820

1 0.151 1.036 0.871 0.878 0.727

System M
ϕ = 18

g̃c,TB [~ωc] g̃c,TB/g̃c,ν g̃c,TB/gc,ν g̃c,TB/g̃c,M g̃c,TB/gc,M

8.5 nm

0 0.208 1.075 1.057 0.842 0.831

1 0.158 1.097 1.041 0.809 0.765

2 0.122 1.003 0.917 0.847 0.769

6 nm

0 0.200 1.010 0.978 0.819 0.799

1 0.147 1.020 0.916 0.800 0.712

2 0.105 0.904 0.745 0.811 0.661

4 nm
0 0.205 1.022 0.957 0.867 0.819

1 0.134 1.005 0.773 0.858 0.645

TABLE 7.1: Critical couplings g̃c,TB, third column, extracted from the
analysis of the photon occupation within the tight-binding simulation.
Thereby, M refers to the filling of the system. For the evaluation of the
numerical simulation and the analytic approach resonance was imposed.
The values of the approximate Landau-level degeneracy, NTB, where ex-
plicitly taken into account according to Tab. 6.1. Thus, gTB as defined in
Eq. (6.8) entered the simulation such that g̃c,TB = e

√NTB gc,TB is the quan-
tity which is compared with the analytically obtained values for the critical
point. Hence, g̃c,TB is compared with the analytical result obtained within
cutoff regularization for trigonal-warping correction (fourth column) and
for the Dirac model (fifth column). Likewise, the sixth and seventh col-
umn compare g̃c,TB with the cutoff-independent equivalents. The cutoffs
for the analytic evaluation of g̃c,ν , Eq. (7.37), and gc,ν , Eq. (7.40), respec-
tively, were chosen from the numerical tight-binding spectra, depicted in
Fig. 6.1 and enumerated in Tab. 6.1. The deviation of the tight-binding re-
sult g̃c,TB are smallest when compared with the trigonal-warping corrected
cutoff-dependent analytic prediction. Further details on the tight-binding

simulations are found in Chap. 6.

critical points obtained from the simulation.
In Subsec. 7.2.1 and 7.2.2 the comparison of the numerical simulation and the path in-
tegral approach within both regularization methods is continued and extended to the
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discussion of the ground-state energy and the photon occupation. With this the discus-
sion of the analytic approach is continued and focused on the Dirac approximation.

Having derived the phase boundary for either regularization, one is able to estimate the
parameters of the system required to actually reach these critical points. In equilibrium,
the coupling strength of the charge carriers with the cavity mode is determined by the mi-
croscopic properties of both subsystems (cf. Subsec. 5.2.3) and thus rather rarely tunable.
In particular, the coupling is given by gr = ~ωc/

√
2π137

√
εr, Eq. (5.40), where εr = 1 shall

be assumed from now on. Thus, a possible phase transition will only occur if gr > gc,x,
x = M,ν. From this inequality one is eventually able to define the required filling and,
in case of gc,ν , the magnetic field for which the system is expected to leave the normal
phase.
In the case of cutoff-independent regularization, this inequality is easily evaluated at res-
onance,

gr > gc,M ⇔ M > 53, (7.42)

in accordance with Ref. [93]. As M denotes the last occupied Landau level, the system is
expected to naturally exhibit an equilibrium phase transition for a sufficient large Fermi
level.
By contrast, the critical point gc,ν is determined by the Fermi level and the value of the
cutoff or the magnetic field, respectively, as well. Thus, one expects the system to leave
the normal phase when

gr > gc,ν ⇔ B [T] <
32× 104

18769π2
(1 + 2M + 2

√
M(M + 1))

≈ 1.72746× (1 + 2M + 2
√
M(M + 1)).

(7.43)

For different values of M this results in a phase diagram as depicted in Fig. 7.1. From
Fig. 7.1 it becomes clear that one is able to cross the phase boundary by either tuning the
Fermi level or the magnetic field or both at once. Within this approach, the superradiant
quantum phase transition is predicted to occur at rather small fillings and magnetic fields.
This contrasts the result obtained for cutoff-independent regularization, where the phase
boundary is found at large fillings. If cutoff-regularization resembles the true properties
of the system as indicated by the comparison of the critical points obtained from the
independent tight-binding simulation, this result will be remarkable as the critical point
is predicted for an experimentally feasible parameter range concerning both variables,
M and B. For instance, the spectroscopic experiments reported in Refs. [28–30] show
convincing resolution of Landau levels up to M = 5 for a magnetic field range of a few
Tesla. Furthermore, recent experiments [55] have shown that the required ultrastrong
coupling regime is also feasible.

7.2 The partition sum in the thermodynamic limit

The previous discussion demonstrated the existence of a critical point gc,x, x = M,ν,
for Landau-quantized graphene in Dirac approximation. The critical point is thereby
determined from ∂2

αΦγ(α, α)
∣∣
0

= 0 which means that the trivial solution, α0 = 0, of
∂αΦγ(α, α) = 0 no longer corresponds to the minimum of the phase function when the
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gr > gc,ν
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gr < gc,ν

normal phase

FIGURE 7.1: Phase diagram of the superradiant critical behavior within
cutoff regularization. The cutoff is thereby determined by Eq. (6.4). The
dashed curve corresponds to the phase boundary of the system. For any
choice of the parameter set (M,B) referring to point below the phase
boundary the system is expected to be in the superradiant phase. By con-
trast, a point above the phase boundary refers to the normal phase of the

system.

coupling g exceeds the critical point. Thus, in the regime g > gc,x, x = M,ν, a yet un-
known non-trivial α0 6= 0 solution of ∂2

αΦγ(α, α) minimizes the phase function Φγ(α, α).
Note that the non-trivial solutions α0 also carry a label γ denoting the chosen regular-
ization approach according to the definition of the modified matrix elements Mγ

N,N ′ ,
Eq. (7.25). However, for the sake of brevity, this subscript is omitted.

As the square of the minimizing solution α0 is associated with the cavity occupation, the
trivial solution corresponds to the normal phase of the system where the ground-state
properties of the system are governed by the ground states of the photonic and electronic
subsystem. Then for β → ∞, the non-trivial solution α0 6= 0 for g > gc,x, x = M,ν,
describes the ground-state properties of the system in the superradiant phase which are
precisely characterized by a spontaneous photonic occupation of the cavity. This is iden-
tical with the discussion of the mean-field solution for the ordinary Dicke model (cf.
Chap. 3).

However, as already pointed out, the task of finding the non-trivial solutions of Eq. (7.14)
is analytically challenging but in the thermodynamic limit easily accomplished within a
numerical approach.
Thus, consider again the phase functional in the thermodynamic limit evaluated at a
real-valued static field α,

Φγ(α, α) = S+(α, α)− log [det [1−G0Mγ(α, α)]] . (7.44)
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The expression in the argument of the functional determinant represents a matrix in the
basis of the Grassmann vectors ρ̃† and ρ̃ similar as defined in Eq. (7.2). From the discus-
sion in Sec. 3 in App. D one finds for the fermionic contribution to Φ(α, α):

log [det [1−G0Mγ(α, α)]]
(E.41)

=
∑
j

log
[
1∓ e−β[ε̄γj (α)−µ]

]
= −βΩγ

−(α, α), (7.45)

where, ε̄γj (α) denotes the energy of the single-particle state j obtained from diagonaliza-
tion of 1 − G0Mγ(α, α) at ω−n = 0. The fermionic grand-canonical potential is denoted
by Ωγ

−(α, α). Thus, the evaluation of the Matsubara sum encoded in this expression cor-
responds to a weighted summation over eigenvalues ε̄γj (α). These eigenvalues are then
obtained numerically. Finally, by minimization of

Φγ(α, α) = β
[
~ω0α

2 + Ωγ
−(α, α)

]
(7.46)

one finds the real-valued static solutions α0 according to Eqs. (7.22, 7.23).

One approximates then the field integral defining the partition sum by a static Gaussian
expansion around the minimizing field configuration:

Φγ(α, α) ≈ Φγ(α0, α0) +
1

2
∂2
αΦγ(α, α)

∣∣
α0

(α− α0)2, (7.47)

where α(τ) = α refers to a static configuration in the vicinity of α0 and ∂2
αΦγ(α, α)

∣∣
α0
> 0.

This method is known as the method of steepest descent or stationary phase approxima-
tion in case of a complex exponential (cf. Sec. 1 in App. D). Note that this order of ap-
proximation completely suppresses quantum fluctuations and the resulting expression
for the phase function captures only the dominant mean-field contribution identical to
the term ĤD,0 in the discussion of the Dicke model (cf. Chap. 3). A discussion of quan-
tum fluctuations is however found in Sec. 7.3.

By carrying out the integration over Im[α] and Re[α] one eventually finds for the normal-
ized partition sum

Z̄SPA = (Z+
0 )−1

√
2

~ω0β| ∂2
αΦγ(α, α)|α0

|e
−NΦγ(α0,α0), (7.48)

where the notation of Ref. [95] was adopted. During the following, the ground-state
energy and the photon occupation are evaluated in the thermodynamic limit. These ob-
servables are then also compared with the tight-binding equivalent during the following.

7.2.1 Ground-state energy

One obtains the ground-state energy of the system in the thermodynamic limit from

E0

N = − lim
β→∞

∂β log Z̄SPA. (7.49)
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Thereby, the meaning of this observable is identical to the one of the corresponding mean-
field quantity arising from ĤD,0 in the discussion of the Dicke model (cf. Chap. 3). Sim-
ilarly, the derivatives of the ground-state energy with respect to the coupling parameter
provide insight into the order of the underlying phase transition. Figure 7.2 a) shows
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−2

0

0.0 0.5 1.0 1.5 2.0

g [gc]

−6

−4

−2

0

a)

b)

E0/N [~ω0] ∂gE0/N × 10 ∂2
gE0/N × 103 [(~ω0)−1]

FIGURE 7.2: Ground-state energy and its derivatives with respect to the
coupling g for a) cutoff-independent regularization and b) cutoff regular-
ization at resonance. The Fermi level was chosen between M = 1 and
M + 1 and the cutoff was set at ν = 4 in panel b). Panel a) shows typi-
cal signatures of a first-order quantum phase transition as the first-order
derivative is discontinuous. By contrast, panel b) depicts the features of a

second-order quantum phase transition (cf. Subsec. 3.3.1).

the ground-state energy and its first derivative as a function of the coupling parameter
g for the cutoff-independently regularized partition sum. Likewise, Fig. 7.2 b) illustrates
the ground-state energy as well as its first and second derivative when a rigid ultravi-
olet cutoff is applied at ν = 4. The cavity mode is assumed to be resonant with the
transition frequency of the last occupied and first unoccupied Landau level, M = 1 and
M + 1, respectively. The cutoff-independent result seen in panel a) shows signatures of
a first-order quantum phase transition for this particular choice of the Fermi level. As
this investigation goes beyond the discussion found in Ref. [93] no comparison of this
result with the literature can be carried out. Panel b) of Fig. 7.2 shows typical features
of a second-order quantum phase transition similar to the one exhibited by the original
Dicke model (cf. Sec. 3.3).
A comparison with the tight-binding results for the ground-state energy, Fig. 7.3, shows
qualitative agreement withE0 depicted in Fig. 7.2 b) where cutoff-regularization has been
applied. In particular, the behavior of the first- and second-order derivative of the tight-
binding result for E0 also show signatures of a second-order quantum phase transition
even though finite-size effects are apparent. This general behavior is also revealed by the
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FIGURE 7.3: Ground-state energy and its derivatives with respect to the
coupling g obtained from the tight-binding simulations for identical pa-
rameters as shown in Fig. 7.2. The slight increase of the ground-state en-
ergy (solid) for g < g̃c,TB is probably due to finite-size effects. The first-
order derivative is continuous at any depicted point. This does not hold
for the second-order derivative which discontinuously changes its value as
the critical point is crossed. This behavior is a generic feature of a second-

order quantum phase transition.

photon occupation as it discussed during the following.

7.2.2 Photon occupation

The photon occupation of the cavity is derived from the partition sum in the thermo-
dynamic limit. The ground-state properties of this observable are in particular obtained
from

〈â†â〉0
N =

α2
0

N = − lim
β→∞

1

β
∂~ω0 log Z̄SPA, (7.50)

which is easily verified in view of Eq. (7.48). Thus, in the thermodynamic limit the
ground-state occupation of the cavity is identical with the squared value of the mini-
mizing field configuration α0. Again, α0 corresponds to the equivalent of the mean field
α introduced in the discussion of the Dicke Hamiltonian in Sec. 3.3.
In the superradiant phase, α0 is obtained numerically from minimizing the phase func-
tion Φ(α, α). Fig. 7.4 exemplarily illustrates the behavior of the cutoff-regularized phase
Φ1(α, α) as a function of the real-valued static field configuration α for various values of
the coupling. It can be seen that the trivial solution, α0 = 0, corresponds to a minimum
of the phase for g < gc,ν . As the coupling approaches the critical point, the phase func-
tion flattens and exhibits a new global minimum at α0 6= 0 when the phase boundary is
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crossed. Then, the trivial solution no longer corresponds to the global minimum of the
system and the second derivative of the phase function evaluated at this point changes
its sign. This particular behavior is regarded a generic feature of a second-order quan-
tum phase transition. This is contrasted by Fig. 7.5 which shows the equivalent situation
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FIGURE 7.4: Phase function of the cutoff-regularized system at resonance.
The cutoff was chosen at ν = 4 and the system is filled up to the Landau
level M = 1. The numbers associated with each line refer to the value of
the coupling normalized by the critical coupling according to Eq. (7.37).
The minimum of the phase function, α0, is marked with the red dot for
each coupling value. In the normal phase, g < gc,ν , the trivial solution cor-
responds to the minimum of the phase function. As the system approaches
the critical point, the phase function flattens and a new minimum appears
for α0 6= 0. This is accompanied by a sign change of the second derivative

of the phase function at α0 = 0.

when the rotating wave-like approximation is applied for regularization. The behavior
seen in Fig. 7.5 is typical for a first-order quantum phase transition: The trivial solution
corresponds to a global minimum for small couplings g < gc,M . As the coupling rises,
the trivial solution corresponds to a local minimum as another local minimum appears at
α0 6= 0. In this intermediate coupling regime both local minima compete for minimizing
the phase function. For large enough couplings however the non-trivial solution, α0 6= 0,
corresponds again to a global minimum. The critical point obtained in Sec. 7.1 however
refers to a second-order quantum phase transition and is unsuitable for the prediction
of a the critical point in case of a first-order quantum phase transition. This can be seen
from Fig. 7.5. The extraction of α0 from the phase function then yields a discontinuity
in the value of the photon occupation as a certain coupling is exceeded. This particular
behavior can also be seen from expansion of the phase function around α0 = 0. Thus,
consider

Φγ(α, α) ≈ Aγ

2
α2 +

Bγ

4
α4, (7.51)
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FIGURE 7.5: Phase function of the rotating-wave like regularized system
at resonance. The system is filled up to the Landau level M = 1. Each line
refers to a different coupling strength and the red dots mark the position
of the minima of the phase function. The depicted behavior is typical for a
first-order quantum phase transition: As the coupling increases, the initial
global minimum of the phase function in the normal phase, α0 = 0, trans-
forms into a local minimum along with the appearance of another local
minimum at α0 6= 0. For large enough couplings, however, the non-trivial
solution α0 corresponds to a global minimum. The critical coupling pre-
dicted from the considerations in Sec. 7.1 refers to a second-order quantum
phase transition and thus is not compatible with the transition point of this

actual first-order phase transition.

where

Aγ = ∂2
αΦγ(α, α)

∣∣
α0=0

(7.36)∝ g2
c,γ − g2, (7.52)

Bγ = ∂4
αΦγ(α, α)

∣∣
α0=0

= Tr

[
G0

∂Mγ

∂α
G0

∂Mγ

∂α
G0

∂Mγ

∂α
G0

∂Mγ

∂α

]
α=0

, (7.53)

in analogy to the Landau theory of phase transitions [14]. Note that any odd product of
G0∂αMγ yields a vanishing trace according to the properties of the matrices. A second-
order quantum phase transition requires Bγ > 0 [14]. The photon occupation is then
approximately given by α2 ≈ −Aγ/Bγ [14]. If Bγ < 0, the phase transition will certainly
be of a different order. The fourth-order derivative of the phase function is obtained
within an analogous procedure as discussed in Sec. 7.1 for the second-order derivative.
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Within the rotating wave-like approximation this yields

∂4
αΦ0(α, α)

∣∣
α0=0

=


128 g4

(~ωc)3
1

M+1

(
1√
M+1

− 1√
M+2

)
> 0, for M = 0,

32 g4

(~ωc)3 (
√
M + 1 +

√
M)2

(√
M −

√
M + 2

)
< 0, for M = 1,

32 g4

(~ωc)3

[
(
√
M −

√
M − 1)− (

√
M + 2−

√
M + 1)

]
> 0, for M > 1.

(7.54)

Thus, it can be seen that the coefficient B0 for M = 1 is negative whereas it is positive for
all other values of the filling.
For the sake of completion one finds one finds for the cutoff-dependent regularized coef-
ficient B1:

∂4
αΦ1(α, α)

∣∣
α0=0

= 128
g4

(~ωc)3

√
ν
[
2
√
ν(
√
ν −
√
ν − 1)− 1)

]
> 0 ⇔ ν > 1, (7.55)

which is positive for all values of ν > 1 and thus corresponds to a second-order transition.

However, no signatures of a first-order transition could be found from the evaluation of
tight-binding results as Fig. 7.6 b) shows for an identical filling of M = 1. The depicted
data clearly indicates a second-order transition as the behavior of the photon occupation
is continuous close to the critical point. A similar behavior can be seen for the photon
occupation obtained from the cutoff-regularized phase function, Fig. 7.6 a).
Thus, before proceeding the discussion of the details of Fig. 7.6 the intermediate result
for the cutoff-independent approach is summarized:
The deviations of the critical coupling predicted for the path integral approach and the
tight-binding simulation, Tab. 7.1, are largest when regularized by means of the rotating-
wave like approximation which is similarly applied in Ref. [93]. The variant of this ap-
proach applied during this thesis predicts a first-order quantum phase transition for a
filling up to M = 1 which seems not to be replicated by the tight-binding simulation.
Thus, due to these significant deviations from the simulation one concludes that this par-
ticular choice of regularization provides an insufficient ansatz for the description of the
processes occurring in the system. For this reason, the focus of the remaining chapter
solely lies upon the cutoff-regularized approach. With this, the discussion of Fig. 7.6 is
proceeded.
Both panels of Fig. 7.6 show an increasing photon occupation for increasing ν. The tight-

binding results correspond thereby to the systems and parameters as found in the right
column of Tab. 6.1, i.e. ϕ = 18. The approximate Landau-level degeneracy has been ex-
plicitly taken into account for normalization of the photon occupation and the extraction
of the critical points found in Tab. 7.1. Besides the convincing agreement in the qualita-
tive scaling behavior of the photon occupation for different values of the Landau-level
cutoff ν, deviations in the behavior appear close to the critical point. The path integral
approach predicts a rather steep increase for any depicted set of parameters whereas the
tight-binding result shows an approximate linear dependence. Furthermore, the path
integral result overestimates the photon occupation obtained from the tight-binding sim-
ulation by a factor of ≈ 4. These deviations might result from finite-effects even though
the path integral result showed identical behavior close to g̃c,ν when trigonal warping of
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FIGURE 7.6: Photon occupation obtained from a) the path integral ap-
proach within cutoff regularization and b) the tight-binding simulation at
resonance for various cutoffs: ν = 4, 3, 2 (solid, dotted, dashed). The ar-
rows indicate the direction of raising values of nu. The tight-binding re-
sults are obtained for the systems and parameters according to the right
column of Tab. 6.1, i.e. ϕ = 18. The depicted systems are filled up to Lan-
dau level M = 1 and show typical behavior of a second-order quantum
phase transition. From comparison of both panels follows that the quali-
tative behavior of the photon occupation for rising Landau-level cutoffs is
identical. However, the path integral approach predicts a steep increase of
the photon occupation close to gc,ν whereas the tight-binding simulations

shows a linear behavior in this region.

the Landau levels was considered. However, this extension of the model accounts only
for the correction of the energy levels but omits higher order contributions of the electro-
magnetic vector potential to the interaction Hamiltonian of the analytic approach.
Even though deviations are apparent, the qualitative agreement of both approaches is
convincing when keeping in mind that the tight-binding simulation refers to a purely
microscopic approach solely based on lattice properties of graphene. As the simulated
systems are finite and compared to a continuum model in the thermodynamic limit it
is even more remarkable that the results of the former show a sharp phase boundary.
When considering the original Dicke model, the phase boundary is smoothened for fi-
nite N such that one refers to the corresponding transition rather as a phase crossover
than a phase transition (cf. Subsec. 3.3.2). However, the sharp phase boundary emerg-
ing for the finite-N tight-binding simulation even retains for very small N as Fig. 7.7 b)
shows. Thereby, the photon occupation of the system L ≈ 8.5 nm is shown for various
fillings and accordingly varying NTB as it can be seen from Tab. 6.1. The smallest ap-
proximate Landau-level degeneracy shown in Fig. 7.7 b) corresponds to NTB = 4 for the
system being filled up toM = 2. Besides the sharp phase boundary retaining also for this
small value of NTB and the previously mentioned deviations at g & gc, the tight-binding
simulation qualitatively agrees again with the cutoff-regularized path integral equivalent
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shown in Fig. 7.7 a). Thereby, identical parameters were chosen. Thus, for a rising Fermi
level also the values of the photon occupation rise. This holds even for the photon occu-
pation obtained from the simulation at M = 2 as shown in Fig. 7.7 b) even though the
results only slightly exceeds the equivalent obtained for M = 1.
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FIGURE 7.7: Photon occupation obtained from the path integral approach
within cutoff regularization, a), and the tight-binding simulation, b), at
resonance for various fillings: M = 0, 1, 2 (solid, dotted, dashed). The
cutoff was chosen at ν = 4 in both cases. Again, the qualitative behavior of
both approaches differs close to critical point. However, both approaches
show an increase of the photon occupation for increasing filling. This holds
also for the tight-binding result even though the photon occupation for
M = 2 only slightly exceeds the equivalent obtained for M = 1. All data

sets depicted in panel b) are obtained for the system with L ≈ 8.5 nm.

With this, the discussion of quantum fluctuations and the derivation of the excitation
spectrum is provided during the following. Thereby, cutoff regularization will be solely
applied.

7.3 Quantum fluctuations above the ground-state

When aiming for the description of quantum fluctuations above the ground state one
expands the phase functional Φ[α̃∗, α̃], Eq. (7.13), in second-order approximation around
the real-valued static field configuration α0 [239, 241, 242].
Let β̃∗N and β̃N denote the fluctuation fields in the vicinity of the static solution α0. By
defining [241, 242]

α̃∗N =
1√
N
(
β̃∗N − α0

)
, α̃N =

1√
N
(
β̃N − α0

)
, (7.56)
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similar to the displacements (3.50) applied onto the Dicke model, one finds for the Gaus-
sian expansion of the phase functional

Φγ [α̃∗, α̃] ≈ Φγ(α0, α0) +
1

2N
∑

ω+
M ,ω

+
N

(
α̃∗M α̃M

)
δ2Φγ

M,N

(
α̃∗N
α̃N

)
, (7.57)

where the variation δ2Φγ
N,M is given by [241, 242]:

δ2Φγ
M,N =

(
δ2Φγ,1,1

M,N δ2Φγ,1,2
M,N

δ2Φγ,2,1
M,N δ2Φγ,2,2

M,N

)
. (7.58)

The last term on the r.h.s. of Eq. (7.57) is analogous to the contribution ĤD,2 capturing
the quantum fluctuations in the Dicke model. As shown in Ref. [118], one is also able
to obtain the coefficients defining ĤD,2 from the second-order derivate of the mean-field
configuration ĤD,0 with respect to the mean fields. The matrix elements δ2Φγ,i,j

N,M are
particularly defined by

δ2Φγ,1,1
M,N =

δ2Φγ [α̃∗, α̃]

δα̃∗Mδα̃
∗
N

∣∣∣∣
α̃∗=α̃=α0

= δM,−NR
γ(iω+

M ),

δ2Φγ,1,2
M,N =

δ2Φγ [α̃∗, α̃]

δα̃∗Mδα̃N

∣∣∣∣
α̃∗=α̃=α0

= δM,N Sγ(iω+
M ),

δ2Φγ,2,1
M,N =

δ2Φγ [α̃∗, α̃]

δα̃Mδα̃∗N

∣∣∣∣
α̃∗=α̃=α0

= δM,N Sγ(iω+
M ),

δ2Φγ,2,2
M,N =

δ2Φγ [α̃∗, α̃]

δα̃Mδα̃N

∣∣∣∣
α̃∗=α̃=α0

= δM,−NR
γ(iω+

M ),

(7.59)

where the notation introduced in Ref. [242] was adopted. From Eqs. (7.15, 7.17) one finds
further

δ2Φγ,1,1
M,N = − δ

δα̃∗M
F [α∗−N , αN ]

∣∣∣∣
α0

=
1

β

∑
ω−n ,ω

−
m

n−m=M

∑
I

(
A−1[−iω−n − µ, α0, α0](−G0(iω−n )M[1, 0])

× A−1[−iω−n − µ, α0, α0](−G0(iω−m)M[1, 0])
)
I,I
δM,−N ,

δ2Φγ,2,1
M,N =

δ

δα̃M

(
(−iω+

N + ~ω0)α̃N − F [α∗−N , αN ]
]∣∣∣∣
α0

=
[
~ω0 +

1

β

∑
ω−n ,ω

−
m

n−m=M

∑
I

(
A−1[−iω−n − µ, α0, α0](−G0(iω−n )M[1, 0])

× A−1[−iω−n − µ, α0, α0](−G0(iω−m)M[0, 1])
)
I,I

]
δM,N .

(7.60)
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Based on the numerically obtained α0 these expressions are then also numerically evalu-
ated. The fermionic Matsubara sums are thereby transformed into a sum over residue (cf.
Sec. 3 in App. E) which is then evaluated by numerical integration in the complex plane
under usage of the residue theorem. The resulting expressions for R(iω+

M ) and S(iω+
M )

then yield the excitation spectrum of the quantum fluctuations which is seen from the
following [239, 242]:
Supposing to know R(iω+

M ) and S(iω+
M ) for a given bosonic Matsubara frequency ω+

M ,
one finds for the partition sum [239, 242]:

Z̄ ≈ Z̄SPA

∮
D[α̃]e−SG[{α̃∗,α̃}] (7.61)

where the action of the quantum fluctuations in Gaussian approximation is given by

SG[{α̃∗, α̃}] =
∑
ω+
M≥0

α̃†M S(iω+
M ) α̃M , S(ω+

N ) =

(
Sγ(iω+

M ) Rγ(iω+
M )

Rγ(iω+
M ) Sγ(−iω+

M ).

)
(7.62)

Thereby, the vector notation α̃†M = (α̃∗M α̃∗−M ), α̃N = (α̃M α̃−M )T for the fluctuation
fields was introduced. The path integral over the fluctuation fields is then easily evalu-
ated yielding Z̄ ≈ Z̄SPA[detS(iω+

M )]−1. By application of a suitable unitary transforma-
tion U†S(ip)U = S̃(ip), where S̃(ip) is supposed to be diagonal, one finds for the functional
determinant [

detS(iω+
M )
]−1 (D.75)

=
∏
ω+
M>0

[(
ω+
M

2
+ εγ+

2
)(

ω+
M

2
+ εγ−

2
)]−1

, (7.63)

which is reminiscent of the partition sum of two uncoupled harmonic oscillators, Eq. (7.12),
when carrying out the Matsubara product. The eigenenergies of S(0), εγ±, are then associ-
ated with the eigenmodes of the quantum fluctuations above the ground state analogous
as discussed in Subsec. 3.3.4 on the example of the original Dicke model. Thus, εγ+ is as-
sociated with the atomic or fermionic branch. Likewise, εγ− denotes the photonic branch
which is of particular interest. This is due to εγ− vanishes as the system approaches the
critical point. The closure of the excitation gap between the ground-state energy E0 and
the photonic branch is a feature of second-order quantum phase transitions and typically
tied to a diverging characteristic length at the phase boundary (cf. Subsec. 3.3.4). This
means that fluctuations which drive the quantum phase transition occur at any scale of
the characteristic length. The divergence of the characteristic length and thus in turn the
closure of the excitation gap is often governed by a power law with universal critical
exponents (cf. Subsec. 3.3.4). With this the results obtained within the path integral ap-
proach for cutoff regularization are evaluated during the following.

Figure 7.8 shows the excitation spectrum of the path integral approach. Different from the
symmetric power law valid for the original Dicke model, the photonic branch shown in
Fig. 7.8 is governed by an asymmetry concerning the critical exponents when approach-
ing gc either from the normal or the superradiant phase. For the particular case shown in
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FIGURE 7.8: Excitation spectrum of the photonic branch obtained within
the path integral approach for γ = 1 (cutoff regularization). The red solid
line refers to a Fermi level between M = 0 and M + 1 and ν = 5 at res-
onance. The power law is governed by different critical exponents when

approaching gc from either the normal or the superradiant phase.

Fig. 7.8, M = 0 and ν = 5, the power law is given by

ε1− ∝
{

[gc,ν − g]z
npν̄ , for g < gc, z

np ≈ 3.75,

[g − gc,ν ]z
spν̄ , for g > gc, z

sp ≈ 5.00,
(7.64)

where zxp, x = n, s, denotes the dynamical critical exponent in the normal and the su-
perradiant phase, respectively. Furthermore, ν̄ = 1/4 is related to the power law of the
characteristic length scale of the system (cf. Subsec. 3.3.4). Figure 7.9 a) shows the excita-
tion spectrum for various Fermi levels and Fig. 7.9 b) for different Landau-level cutoffs.
Despite slight deviations seen in Fig. 7.9 a) in the superradiante phase, the critical expo-
nents are approximately identical for the depicted parameters.

With this, the main results of this chapter are summarized during the following.

7.4 Summary

The investigation of key features indicating a superradiant phase transition within the
path integral approach showed distinct signatures of this collective radiation effect. This
holds also for the numerical tight-binding simulation which is solely based on micro-
scopic information about the underlying lattice and the photons. The comparison of the
simulation and the analytic approach shows convincing agreement with the path integral
predictions obtained for cutoff regularization. This holds for the prediction of the criti-
cal points extracted from the simulation for various sets of parameters especially when
a trigonal-warping correction of the analytic Landau levels is taken into account. This
is necessary, as the simulated systems are rather small. Furthermore, the ground-state
energy shows typical signatures of a second-order transition in both cases. This is also
seen from the evaluation of the photon occupation. Thereby, qualitative agreement in the
scaling behavior of this observable for different Landau-level cutoffs and Fermi levels
has been found. However, the path integral result predicts a rather steep increase of the
photon occupation close to the critical point. This differs from the approximate linear
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FIGURE 7.9: Excitation spectrum of the photonic branch obtained within
the path integral approach for γ = 1 (cutoff regularization). Panel a) de-
picts the photonic branch for ν = 4 and different values of the filling:
M = 0 (solid), M = 1 (dotted) and M = 2 (dashed). The power law in
the normal phase is identical for all parameters. In the superradiant phase
slight deviations appear. Panel b) shows the photonic branch for constant
fillings, M = 0, but different cutoffs, ν = 5 (solid) and ν = 4. Both param-

eters yield convincing agreement close to the critical point.

behavior of the equivalent obtained from the simulation.

The cutoff-independent regularization approach, based on a rotating-wave like approx-
imation as suggested by Ref. [93], failed in the proper description of the tight-binding
results. In particular, the critical point is overestimated in both orders of approximation.
However, the deviations obtained for the ground-state energy and the photon occupation
are even more crucial as the cutoff-independently regularized path integral approach pre-
dicts a first-order quantum phase transition for a system filled up to Landau levelM = 1.
This behavior could not be observed from the tight-binding simulation. As this regu-
larization approach omits inter-band transitions one concludes that these contributions
play a crucial role in the properties of the superradiant phase. The failure of this approach
might probably be due to similar arguments as applied onto the original rotating-wave
approximation in the ultrastrong coupling regime [125–127].

Thus, when regarding the cutoff-regularized results as providing a suitable ansatz for the
description of the actual processes in the system one finds the phase transition occurring
for rather low magnetic fields and fillings. This parameter range is already experimen-
tally feasible [28–30].

However, as the path integral approach provides rather rare insight into the details of
the processes, one aims for a more transparent approach. As suggested by Ref. [95] this
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can be achieved by means of a perturbative Schrieffer-Wolff transformation which yields
an effective Dicke-like Hamiltonian with a two-level description of the last occupied and
first unoccupied Landau level. This approach will be discussed and extended to the next
order of approximation during the next chapter.
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Chapter 8

Derivation of a generalized Dicke
Hamiltonian

In this section the derivation of an effective two-level Hamiltonian for Landau-quantized
graphene interacting with a cavity mode is presented. The approach is based on the
technique of Ref. [95]. Similar to the investigations discussed in Chap. 7, the Fermi level
is assumed to lie between the Landau levels M and M + 1. The aim of the following
discussion is to decouple this pair from the full system, meaning from all other dipole
allowed transitions involving either Landau level M or M + 1. The resulting effective
two-level Hamiltonian might then offer a more transparent view on the collective behav-
ior of graphene in the superradiant phase than the path integral approach provides.

The task of decoupling is accomplished by the Schrieffer-Wolff (SW) method [204, 212–
214]. Thereby a unitary transformation is applied onto the many-body Hamiltonian
which yields the operator to decompose into two distinct components each acting onto
disjoint parts of the full Hilbert space.
The SW method is in general applicable to any Hamiltonian of the family Ĥ = Ĥ0 + g V̂
as long as Ĥ0 provides a spectral gap ∆� 2||V̂|| separating the two respective subspaces.
In most cases [204, 212–214] this operation yields a perturbative power series expansion
for the generator of the unitary transformation into powers of the expansion parame-
ter ∝ g. The effective Hamiltonian is then also obtained as a perturbative power series
up to a certain order of the expansion parameter. Whereas absolute convergence is en-
sured in a single-particle case when g < ∆/(2||V̂||), it is not mandatory for a comparable
many-body Hamiltonian [214]. This results from ||V̂|| being proportional to the number
of electrons inside the system which yields the SW transformation to be inconclusively
well-defined [214]. Consequently the power series expansion for the SW generator and
thus in turn for the effective Hamiltonian might be valid only up to a certain order and
the reliability of the results must be handled with great care.

When aiming for the derivation of the effective two-level Hamiltonian, one follows Ref. [95]
in a first step by evaluating the lowest order of approximation within identical regular-
ization. In this order of approximation the expansion of the transformed Hamiltonian
decomposes into two parts:
The first one, a Dicke-type Hamiltonian with a two-level structure, describes the reso-
nant Landau level pair M and M + 1 with additional terms quadratic in the bosonic
operators â† + â and the coupling parameter. These terms are related to the diamagnetic
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current-current response of the system and they cancel with the paramagnetic current-
current response, originating from linear light-matter coupling contributions, in the static
limit [95]. This preserves gauge invariance.
The second contribution to the transformed Hamiltonian contains the information about
all remaining Landau levels including the complete valence band and the conduction
band, except of the Landau-level doublet M and M + 1. However, the remaining terms
corresponding to the second part of the transformed Hamiltonian are still coupled among
themselves by dipole allowed transitions encoded in the remaining interaction Hamilto-
nian. The diagonalization of the second part is then achieved by means of another SW
transformation. The fermionic degrees of freedom are then treated as a mean field for
the photons at T = 0 where the resulting expression is related to the density-density re-
sponse of the system [95]. This gives rise to a global contribution which is quadratic in
the coupling parameter and the bosonic mode. In accordance with the preserved gauge
invariance, this global quadratic contribution vanishes in the static limit.
The contributions obtained within this second SW transformations require reasonable
regularization as they stem from the entire unbounded valence band. According to
Ref. [95] one regularizes in two steps. First, one applies an ultraviolet cutoff and ex-
tracts the cutoff-dependent terms of the corresponding results. Second, one subtracts
these cutoff-dependent, gauge violating terms obtaining a cutoff-independet result.
Beside small deviations in the details of these terms, one obtains the same overall conclu-
sion as drawn by the authors of Ref. [95] concerning the potential existence of a superra-
diant phase:
The value of the critical coupling gc, extracted from the effective Hamiltonian, lies at least
one order of magnitude beyond the validity of the SW approach when regularized sim-
ilar as in Ref. [95]. Therefore no prediction about the existence of a superradiant phase
can be made within this order of approximation.

In a second step one extends the effective Hamiltonian up to fourth order which is the
next non-vanishing order with respect to the quadratic contributions. The effective Hamil-
tonian then contains not only terms ∝ (â† + â)2 with quadratic but also quartic coupling.
The resulting terms are then also treated as a mean field and regularized similarly as the
second-order approximation in Ref. [95].

In summary one arrives at the fourth-order equivalent of the generalized Dicke Hamiltonian
obtained in Ref. [95]. However, within identical regularization as provided in Ref. [95],
there is no signature of a superradiant phase in graphene in fourth-order approximation.

This result is contrasted by similar considerations where the rigid ultraviolet cutoff is
kept. Though not gauge invariant, this regularization is also identically applied onto
the effective action within the path integral approach (cf. Chap. 7) and yields convinc-
ing agreement between the latter and the numerical tight-binding simulation. Moreover,
the SW approach within cutoff regularization yields good agreement with the aforemen-
tioned approaches and indicates also a superradiant quantum phase transition.
However, the value of the critical coupling predicted by the path integral approach and
the criterion g < ∆/(2||V̂||), limiting the validity of the perturbative SW method, are
incommensurate when strictly applied such that agreement of both approaches is not
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mandatory. The authors of Ref. [95] refer to a softened criterion solely based on the spec-
tral gap between the Landau-level doublet M and M + 1 and neighboring levels when
estimating the validity range of the SW approach. The cutoff-dependent result obtained
within the path integral approach is compatible with this softened criterion for a proper
choice of ν which however does not hold for the cutoff-independent regularization.

8.1 Decomposition of the Hilbert space

According to Ref. [95] the Fermi level is assumed to lie in the conduction band, λ = +1,
between Landau level M and M + 1. During this Chapter the collective index notation
introduced in Eq. (5.28) will be applied. The frequency of the corresponding cyclotron
transition is given by

~ΩM = εM+1 − εM . (8.1)

Following Ref. [95], the cavity mode ω0 is assumed to be resonant with ΩM when evalu-
ating the results.

In order to decouple the resonant Landau level pair, M and M + 1, from the complete
Hamiltonian, Eq. (5.44), detailed considerations on the corresponding Hilbert space ap-
pear to be crucial.

Even though the single-particle Hamiltonian Ĥ , Eq. (5.41), cannot be diagonalized by
means of the eigenbasis of Ĥcav and Ĥ0, {|a〉⊗ |N, k〉}, one is able to represent the Hilbert
space spanned by the eigenstates of Ĥ as the tensor product

H = H+ ⊗H− (8.2)

of the Hilbert spaces H+ and H− as discussed in App. C. Here, H+ refers to the Hilbert
space spanned by the bosonic states {|a〉}, which refer to the radiation mode inside the
cavity. The complete fermionic Hilbert space H− is spanned by all Landau levels and
therefore a tensor product itself, reading

H− =
⊗
n,λ

Lnλ, Lnλ = {(λ, n, k)| ∀ k = 1, ...,N}. (8.3)

Here, Lnλ represents the subspace of theN -fold degenerate nth Landau level in the energy
band λ. For the sake of clearness, the collective index notation, as introduced in Eq. (5.28)
is skipped in the notation of the Landau-level Hilbert subspaces. Note that Lnλ is also a
tensor product, namely of N different k states. Furthermore, one constructs the 2N -fold
subspace H−M ⊆ H− spanned by the resonant level pair, M and M + 1, and defines the
complement H−N ⊆ H− as

H−M = Lm+ ⊗ Lm+1
+ , H−N = H− /H−M. (8.4)
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This decomposition is naturally applicable to the complete Hilbert space H as defined in
Eq. (8.2),

HM = H+ ⊗H−M, HN = H+ ⊗H−N. (8.5)

Since the kinetic Hamiltonian Ĥ0, Eq. (5.46), contains only particle conserving fermionic
number operators, the decomposition of the fermionic Hilbert space H+ is also applicable
to Ĥ0. Thus, the operator decomposes into

Ĥ0,M + Ĥ0,N = Ĥ0 : F−(H−) 7→ F−(H−). (8.6)

whereas each term on the l.h.s. is an automorphism and therefore particle conserving on
the level of the corresponding Fock subspace:

Ĥ0,X : F−(H−X ) 7→ F−(H−X ), X = M,N. (8.7)

Regarding the definition of Ĥ0 (5.46) one particularizes

Ĥ0,M =
∑
k

[
εM ĉ

†
M,kĉ

†
M,k + εM+1ĉ

†
M+1,k ĉ

†
M+1,k

]
, (8.8)

Ĥ0,N =
∑
N∈H−N

εN ĉ
†
N,kĉ

†
N,k, (8.9)

where Ĥ0,M is already reminiscent of a two-level Hamiltonian for the Landau-level dou-
blet M and M + 1. This is discussed in more detail in Subsec. 8.2.4.
However, a similar direct decomposition of the interaction Hamiltonian Ĥi (5.47) into
two linear operators, each describing an automorphism on one of the Fock subspaces
F(HM) and F(HN), is not possible. This can be seen immediately from Fig. 8.1: Each
Landau state with n > 1 is coupled to four other Landau states by dipole allowed optical
transitions, whereas the first / zeroth Landau level is involved in three / two transitions.
This complex ladder-like coupling of Landau states arises from the dipole selection rules,
Eq. (5.48). Even though the interaction Hamiltonian Ĥi (5.47) conserves the total number
of particles, there are contributions changing the subspace occupation by one particle, i.e.

ĉ†NM ,k ĉ
†
M,k :Ŝ−(H⊗nNM ⊗H⊗nM ) 7→ Ŝ−(H⊗nNM+1 ⊗H⊗nM−1), (8.10)

ĉ†M,k ĉ
†
NM ,k

:Ŝ−(H⊗nNM ⊗H⊗nM ) 7→ Ŝ−(H⊗nNM−1 ⊗H⊗nM+1). (8.11)

As denoted by red arrows in Fig. 8.1, one identifies the single-particle Hilbert subspace
H−NM

⊆ H−N spanned by six Landau levels,

H−NM
= Lm+2

+ ⊗ Lm−1
+ ⊗ Lm−1

− ⊗ Lm− ⊗ Lm+1
− ⊗ Lm+2

− , (8.12)

which are optically coupled to the resonant level pair spanning H−M. The action of the
corresponding fermionic ladder operators yields then a coupling between the Fock sub-
spaces according to Eqs. (8.10, 8.11). The associated terms of the interaction Hamiltonian
therefore prohibit the direct decomposition of Ĥi into parts similar to Eq. (8.6).



8.1. Decomposition of the Hilbert space 121

FIGURE 8.1: Each arrow represents a dipole allowed, optical transi-
tion between two Landau levels. Thereby one can distinguish intra-band
(solid) and inter-band (dotted) excitations. The decomposition of the com-
plete Hilbert space H− into two-component subspaces Snλ,λ′ = Lnλ ⊗ Ln+1

λ′

spanned by two Landau levels which are connected via optical transitions
λn ↔ λ′ (n + 1) is obvious. The energy levels below the Fermi level εF
are each occupied by N electrons symbolized by bold lines. The resonant
two-level subsystem (orange arrow, orange shaded) is coupled to six other
allowed transitions (red arrows) each spanning up a two-component sub-
space (f.l.t.r.: Sm+1

+,+ , Sm−1
+,+ , Sm−1

−,+ , Sm−,+, Sm+,−, Sm+1
+,− ). All remaining transi-

tions are depicted by gray arrows.

8.1.1 Block-diagonal and block-off-diagonal operators

However, as discussed in Sec. 8.2, the interaction Hamiltonian can be decoupled into two
linear operators, each acting solely onto one of the subspaces F(HM), F(HN) by means of
the SW method [204, 212–214]. Within this complex procedure it is necessary to handle
the decomposition of the Hilbert space as well as the corresponding parts of the interac-
tion Hamiltonian with care.
For this purpose and in order to construct the unitary operator accomplishing the decou-
pling of Ĥi, it is reasonable to introduce a few definitions according to Ref. [214].

Let P̂X denote the single-particle projector onto the subspace HX, i.e.

P̂X =
∑
X∈H−X

1+ ⊗ p̂X . (8.13)

Thereby 1+ corresponds to the identity operating in the bosonic Hilbert subspace and



122 Chapter 8. Derivation of a generalized Dicke Hamiltonian

p̂X =
∑

k |X, k〉 〈X, k| denotes the projector onto the single Landau subspace Lxλ. Then,
P̂M and P̂N represent the projectors onto the subspace HM and HN, respectively. Accord-
ing to the definition of both subspaces, Eqs. (8.4, 8.5), one finds that P̂N is the orthogonal
complement to P̂M and vice versa. Therefore, P̂N P̂M = 0 and the sum of both projectors
reflects the completeness of basis states by definition such that P̂M + P̂N = 1+⊗ 1− holds
true.
Further, one refers to the space of linear operators acting onto the Hilbert space H as S(H)
and denotes any linear map S : S(H) 7→ S(H) acting on S(H) with the term superoperator.
In accordance with Ref. [214] the term block-off-diagonal is introduced if a linear operator
X̂ obeys

O(X̂ ) = X̂ =

(
0 X̂M,N

X̂N,M 0

)
, (8.14)

where the simplest definition of the superoperator O(X̂ ) reads

O(X̂ ) = P̂M X̂ P̂N + P̂N X̂ P̂M. (8.15)

Thus, block-off-diagonal operators impart the coupling between the Fock subspaces cor-
responding to H−M and H−NM

⊆ H−N by means of particle exchange as described in Eqs. (8.10,
8.11). The term block-diagonal accounts then for a linear operator X̂ which conserves the
occupation number of the decomposed Fock subspaces corresponding to HM and HN.
Accordingly, a block-diagonal operator X̂ obeys

D(X̂ ) = X̂ =

(
X̂M,M 0

0 X̂N,N

)
, (8.16)

where the action of the superoperator D(X̂ ) on a many-body operator X̂ is described by

D(X̂ ) = P̂M X̂ P̂M + P̂N X̂ P̂N. (8.17)

By contrast to the block-off-diagonal operators, block-diagonal operators are automor-
phisms with respect to the respective subspaces. With these definitions one is able to de-
compose the full many-body Hamiltonian of Landau-quantized graphene, as discussed
in Sec. 5.3, into its block-diagonal and block-off diagonal contributions with respect to
the Landau-level doublet M and M + 1.

8.1.2 Decomposition of the many-body Hamiltonian

For the following it is useful to introduce the notation Ĥi,X,Y for the projection

Ĥi,X,Y = P̂X Ĥi P̂Y =
g√
N

(â† + â)
∑
X∈H−X
Y ∈H−Y

δk,k′ ĉ
†
X,kMX,Y ĉ

†
Y,k′ , (8.18)

where the summation is carried out over all three quantum numbers according to the
definition of the corresponding Hilbert subspaces H−X and H−Y , where X,Y = M,N. Note
that the projection yields an Hermitian operator only if X = Y. In this case the index
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notation Ĥi,X,X = Ĥi,X is abbreviated for convenience. When X 6= Y, the Hermitian con-
jugate of Ĥi,X,Y needs to be explicitly taken into account. Along with the definition of
block-diagonal and block-off-diagonal operators the interaction Ĥi = g(V̂d + V̂o), where

gV̂d = D(Ĥi) = Ĥi,M + Ĥi,N, (8.19)

denotes the block-diagonal part of the interaction Hamiltonian. For the following discus-
sion it is beneficial to introduce the decomposition V̂d = v̂⊗ V̂d, where the bosonic part is
defined as

v̂ =
â† + â√
N

. (8.20)

Thus, the fermionic part of the block-diagonal perturbation is defined by the Hermitian
operator

V̂d =
∑

M,M ′∈H−M

δk,k′ ĉ
†
M,kMX,Y ĉ

†
M ′,k′ +

∑
N,N ′∈H−N

δk,k′ ĉ
†
N,kMX,Y ĉ

†
N ′,k′ . (8.21)

Thereby, the contribution operating on the resonant subspace HM is explicitly given by

Ĥi,M =
g√
N

(â† + â)
∑
k

w+,M

[
ĉ†M+1,k ĉ

†
M,k + ĉ†M,kĉ

†
M+1,k

]
(8.22)

and is already reminiscent of an two-level Hamiltonian. This becomes even more ap-
parent after application of the Schwinger-Wigner map between fermionic operators and
Pauli matrices as discussed in Subsec. 8.2.4.

The block-off-diagonal part of the interaction Hamiltonian is given by

gV̂o = O(Ĥi) = Ĥi,M,NM + Ĥi,NM,M. (8.23)

where the dipole selection rules (5.48) were applied. Therefore, not the complete Hilbert
subspace HN is relevant for the block-off-diagonal operator V̂o, but only states coupled
directly via dipole allowed transitions to the resonant Landau level pair, as depicted in
Fig. 8.1. These states span the subspace HNM ⊆ HN as defined in Eq. (8.12).
Note that the kinetic part of the Hamiltonian, Ĥ0, is block-diagonal by definition and can
thus be decomposed into both blocks according to Eqs. (8.6, 8.7). Similar to the decom-
position of V̂d into bosonic and fermionic part, one can write V̂o = v̂ ⊗ (V̂o + V̂ †o), where
the bosonic component is given by Eq. (8.20) and the fermionic degrees of freedom are
stored in

V̂o =
∑

M∈H−M
N∈H−NM

ĉ†M,kMM,N ĉ
†
N,k 6= V̂o

†. (8.24)

The SW method discussed in Subsec. 8.2 targets these block-off-diagonal contributions
of the total Hamiltonian with the aim of conveying them into block-diagonal terms by
means of a suitable unitary transformation.
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This notation, i.e. small letters denoting a bosonic contribution and capital ones referring
to a fermionic part, deviates from the notation introduced in App. C and preferably used
throughout this thesis. However, this notation yields cumbersome expressions when
evaluating nested commutators during the following, such that it is replaced by the pre-
viously introduced one during this chapter.

Thus summarizing, the total many-body Hamiltonian (5.44) can be rewritten in the fol-
lowing way,

Ĥ = Ĥcav + Ĥ0 + gV̂d + gV̂o, (8.25)

where the first three terms on the r.h.s. are indeed block-diagonal operators and only the
last term appears to be block-off-diagonal. Note that the photonic part Ĥcav is regarded as
a block-diagonal operator similar as Ĥ0 since it is particle conserving in the same sense.

8.2 Decoupling of the two-level subsystem

In this section the SW method [204, 212–214] is applied onto the total many-body Hamil-
tonian Ĥ, Eq. (8.25), with the aim of decoupling the resonant Landau level pair, spanning
H−M, from all other dipole allowed transitions up to fourth-order approximation.
Therefore, the main characteristics of the SW method are briefly introduced and the
scheme of constructing the transformation operator Û = eŜ is sketched according to
Ref. [214]. Thereby, Ŝ = O(Ŝ) denotes the anti-Hermitian, block-off-diagonal genera-
tor of the transformation. The main aspect of this technique is to treat the interaction
part ∝ g in the total Hamiltonian, as defined in Eq. (8.25), as a perturbation of the unper-
turbed Hamiltonian Ĥcav + Ĥ0. The generator Ŝ is then constructed for the unperturbed
Hamiltonian which is supposed to be diagonalizable exactly, whereas the eigenbasis of
the total Hamiltonian, Eq. (8.25), is unknown. For that reason, the construction of the
transformation operator Ŝ and therefore the derivation of a block-diagonal transformed
Hamiltonian Ĥeff is accomplished by means of a perturbative power series expansion of
Ŝ

Ŝ =

∞∑
n=1

Ŝngn, Ŝ†n = −Ŝn (8.26)

The series expansion of Ŝ yields in turn a perturbative power series for the approximately
block-diagonal Hamiltonian

Ĥeff = eŜ Ĥ e−Ŝ ≈ D(Ĥeff) =

(
Ĥeff

M 0

0 Ĥeff
N

)
, (8.27)

where a spectral gap ∆ between both subspaces, M ∈ H−M and N ∈ H−NM
, is required.

For Landau-quantized graphene with a Fermi level between the levels M and M + 1 the
spectral gap is particularly given by [95, 214]

∆ = min(|~ω0 − |εM − εN ||)M∈HM,N∈HMN
= |~ω0 − ~ΩM+1|, (8.28)
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where ~ΩM+1 is analogously defined as in Eq. (8.1). The perturbative series expansion is
convergent for couplings

g < ρ0 =
∆

||V̂d + V̂o||
1

16(1 + 4~
π∆)

(8.29)

as the rigorous derivation in Ref. [214] proofs. For single particle concerns, this require-
ment ensures even absolute convergence of the perturbative series [214]. However, con-
vergence of this approach is highly questionable in many-body systems as addressed in
Ref. [214] for a general case. This is due to the norm of the perturbation scaling with the
number of particles in the system which is, in the case of Landau-quantized graphene,
||V̂d + V̂o|| ≤ (2ν + 1)N . Thereby, ν denotes the ultraviolet Landau-level cutoff and N is
the level degeneracy. Contrarily, the spectral gap is constant regardless of the number of
particles described by the many-body model. Thus, the disc of convergence, Eq. (8.29),
narrows with increasing particle number. The thermodynamic limit, N → ∞, or the
claim ν →∞, as proposed in Ref. [95], ultimately destroys the validity of this approach.
Furthermore, according to Ref. [214], convergence will be partially restored if truncating
the perturbative power series expansion for the generator Ŝ at some order. This is also
adopted here, truncating after third order which yields an approximately block-diagonal
Hamiltonian in fourth order of g. This is in contrast to Ref. [95], where only the first order
of Ŝ is considered. Furthermore, in Ref. [95] condition (8.29) is softened such that

g < ρ̃0 = ∆. (8.30)

is regarded as proving convergence. This completely omits the ν-dependent norm of the
perturbation V̂d + V̂o.

Condition (8.29) is not compatible at all with the critical couplings gc,ν and gc,M obtained
from the path integral approach within both regularizations given in Eqs. (7.37, 7.38). By
contrast, the softened condition (8.30) is compatible with the value of the critical point ob-
tained within the cutoff-regularized path integral approach, gc,ν , Eq. (7.37), for sufficient
values of ν:

ν >
(ω0ωc)

2

64(ω0 − ΩM+1)4

ω0=ΩM≈ M3(M + 1)2. (8.31)

Thus, during the following, relation (8.30) will provide the reference for the estimation of
the validity range.

8.2.1 Construction of the unitary Schrieffer-Wolff transformation

In order to proceed the subspace decoupling, one needs to find the SW generator Ŝ
accomplishing the transformation (8.27) from the block-off diagonal Hamiltonian Ĥ to
the approximate block-diagonal Hamiltonian Ĥeff. By application of the Baker-Campbell-
Hausdorff formula [243–245], Eq. (B.26), the transformation (8.27) takes the form

Ĥeff =
∞∑
n=0

[Ŝ, Ĥ]n
n!

, (8.32)
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where the nested commutators are given by [Ŝ, Ĥ]n = [Ŝ, [Ŝ, Ĥ]]n−1 and [Ŝ, Ĥ]0 = Ĥ. By
inserting the perturbative series for the SW generator Ŝ, Eq. (8.26), and the definition of
Ĥ, Eq. (8.25), one is able to expand each nested commutator into powers of g. This yields
for instance

[Ŝ, Ĥ]1 ≈ g[Ŝ1, Ĥcav + Ĥ0] + g2([Ŝ2, Ĥcav + Ĥ0] + [Ŝ1, V̂d + V̂o])
+ g3([Ŝ3, Ĥcav + Ĥ0] + [Ŝ2, V̂d + V̂o]) + g4([Ŝ4, Ĥcav + Ĥ0] + [Ŝ3, V̂d + V̂o]).

(8.33)

Nested commutators for larger n are obtained likewise and can be found in Ref. [214].
One choses then Ŝn such that the block-off diagonal contributions for the nth power of g
in the expansion (8.32) are compensated by the commutator [Ŝn, Ĥcav + Ĥ0]. This yields
the following relations for the lowest order of g:

[Ŝ1, Ĥcav + Ĥ0] = −V̂o, (8.34)

from which it can be concluded that Ŝ1 is a block-off diagonal, anti-Hermitian opera-
tor [214]. This holds also for the higher orders of g [214],

[Ŝ2, Ĥcav + Ĥ0] = −[Ŝ1, V̂d], (8.35)

[Ŝ3, Ĥcav + Ĥ0] = −[Ŝ2, V̂d]−
1

3
[Ŝ1, [Ŝ1, V̂o]], (8.36)

[Ŝ4, Ĥcav + Ĥ0] = −[Ŝ3, V̂d]−
1

3
[Ŝ2, [Ŝ1, V̂o]]−

1

3
[Ŝ1, [Ŝ2, V̂o]]. (8.37)

Moreover, these equations precisely define the contributions Ŝn of the power series ex-
pansion of the generator Ŝ.
Following Ref. [214], each Ŝn is then systematically obtained from

Ŝ1 = L(V̂o), (8.38)

Ŝ2 = L([Ŝ1, V̂d]), (8.39)

Ŝ3 = L([Ŝ2, V̂d]) +
1

3
L([Ŝ1, [Ŝ1, V̂o]]), (8.40)

Ŝ4 = L([Ŝ3, V̂d]) +
1

3
L([Ŝ2, [Ŝ1, V̂o]]) +

1

3
L([Ŝ1, [Ŝ2, V̂o]]), (8.41)

where L defines the superoperator transforming a Hermitian block-off-diagonal operator
X̂ into its anti-Hermitian counterpart [214]:

L(X̂ ) =

∫ ∞
0

dt e−t (Ĥcav+Ĥ0)P̂M X̂ P̂N −
∫ ∞

0
dt P̂N X̂ P̂Me

−t (Ĥcav+Ĥ0) ≤ ||X̂ ||
∆

, (8.42)

The inductive rule for constructing the series coefficients Ŝn for an arbitrary order n can
be found in Ref. [214] where each contribution Ŝn can be expressed in terms of the lowest
order term, Ŝ1. This recipe allows to systematically derive the generator Ŝ of the SW
transformation term by term.
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8.2.2 Derivation of the effective block-diagonal Hamiltonian

From the remaining terms of the series expansion (8.32) one constructs the effective Hamil-
tonian, which is in fourth-order approximation of the form:

Ĥeff ≈ Ĥcav + Ĥ0 + gV̂d +
4∑

n=2

gnĤ(n) ≈
(
Ĥeff

M 0

0 Ĥeff
N

)
. (8.43)

Thereby, the second to fourth-order contributions are given by [214]

Ĥ(2) =
1

2
[Ŝ1, V̂o], (8.44)

Ĥ(3) =
1

2
[Ŝ2, V̂o], (8.45)

Ĥ(4) =
1

2
[Ŝ3, V̂o]−

1

24
[Ŝ1, [Ŝ1, [Ŝ1, V̂o]]], (8.46)

where the generalization to higher orders of the expansion is discussed in Ref. [214] in
great detail.
As the construction of the SW generators Ŝn is inductive and all terms of the series ex-
pansion can be expressed by the lowest order generator, Ŝ1, it is convenient to write the
third and fourth-order contribution to Ĥeff in terms of Ŝ1:

Ĥ(3) =
1

2
[V̂o,L([V̂d, Ŝ1])], (8.47)

Ĥ(4) = −1

2
[V̂o,L([V̂d,L([V̂d, Ŝ1])])]− 1

6
[V̂o,L([Ŝ1, [Ŝ1, V̂o]])]−

1

24
[Ŝ1, [Ŝ1, [Ŝ1, V̂o]]]. (8.48)

After calculation of each contribution Ĥ(n), one obtains an expression which is approxi-
mately block-diagonal. The terms operating on the Hilbert subspace of the Landau-level
doublet M and M + 1, HM, is transformed into a Dicke-like Hamiltonian by associat-
ing the fermionic creation and annihilation operators with Pauli matrices. Following
Ref. [95], the remaining part, which operates onto the Hilbert subspace HN, is then ap-
proximately diagonalized by means of another SW transformation. These terms are then
treated as a mean field for the Landau level doublet M and M + 1 and thus are evaluated
within the ground-state expectation value. However, as the aim of this chapter focuses
onto the derivation of a value for the critical coupling within this approach, only contri-
butions of Ĥ(n) that are ∝ (â† + â)2 will be important. This is crucial to the derivation of
the third and fourth-order contribution as the calculation dramatically simplifies under
this restriction (cf. Subsecs. 8.2.6 and 8.2.7). With this, the derivation of the second to
fourth-order contribution is discussed during the following.

8.2.3 Second-order correction to the effective Hamiltonian

Before evaluating the second-order contribution of the effective Hamiltonian, Ĥeff, one
needs to construct the SW generator Ŝ1. This is achieved by combination of Eqs. (8.42,
8.38) with Eq. (8.23) such that one finds in analogy to Ref. [95] the block-off-diagonal,
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anti-Hermitian generator

Ŝ1 =
∑

M∈H−M
N∈H−NM

(
ŝM,N ⊗ ŜM,N − ŝ†M,N ⊗ Ŝ

†
M,N

)
, (8.49)

where the fermionic part is defined as

ŜM,N = ĉ†MMM,N ĉ
†
N (8.50)

The bosonic operator ŝM,N is then given by

ŝM,N =
âA−1

M,N + â†A+1
M,N√

N
, (8.51)

where the scalar function

A±xM,N =
1

∆M,N ± x~ω
= −A∓N,M , and ∆M,N = εM − εN (8.52)

results from the integration over t in the definition of the superoperator L, Eq. (8.42). In
Eq. (8.52), x defines any integer number. For convenience, the explicit notation of ±x in
the case of x = 1 will be abbreviated by ±. Since ∆M,N = −∆N,M and thus in turn
ŝN,M = −ŝ†M,N , the generator Ŝ1 is anti-Hermitian since the bosonic operator ŝN,M is
anti-Hermitian.
Only states of the subspaces HM and HNM ⊆ HN are contributing to Ŝ1, Eq. (8.49), which
results from the dipole selection rules encoded in MM,N , Eq. (5.48), and is in accor-
dance with the definition of the block-off-diagonal parts of the interaction Hamiltonian,
V̂o (8.23).
For the sake of simplification one introduces the short-hand notation

Ŝ1 = ŝ⊗ Ŝ − ŝ† ⊗ Ŝ† (8.53)

for the SW generator keeping the summation over the quantum numbers according to
Eq. (8.49).

With this, one is ready to consider the second-order contribution to the effective Hamil-
tonian from Eq. (8.44). Thus, it is beneficial to expand the commutator according to

2Ĥ(2) = [ŝ, v̂]⊗ (V̂o + V̂ †o )Ŝ − [ŝ†, v̂]⊗ (V̂o + V̂ †o )Ŝ† + ŝv̂ ⊗ [Ŝ, V̂ †o ]− ŝ†v̂ ⊗ [Ŝ†, V̂o], (8.54)

which follows from basic commutator algebra. Furthermore, it was used that the com-
mutators

[Ŝ, V̂o] = [Ŝ†, V̂ †o ] = 0, (8.55)

which follows from the dipole selection rules and the definitions of the Hilbert subspaces.
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However, Eq. (8.54) can be simplified in view of the definition of each entering compo-
nent. Thus, one finds for the commutators

[ŝ, v̂]M,N = − [â, â†]

N CM,N , (8.56)

[ŝ†, v̂]M,N =
[â, â†]

N CM,N , (8.57)

[Ŝ, V̂ †o ]M,N,M̄,N̄ = MM,NMM̄,N̄ (ĉ†M ĉ
†
M̄
δN,N̄ − ĉ†N̄ ĉ

†
NδM,M̄ ), (8.58)

[Ŝ†, V̂o]M,N,M̄,N̄ = −MM,NMM̄,N̄ (ĉ†
M̄
ĉ†MδN,N̄ − ĉ

†
N ĉ
†
N̄
δM,M̄ ), (8.59)

where the indices labeling the commutators indicate the, for instance, M th and N th sum-
mand in the definition of Ŝ1, Eq. (8.49). In Eqs. (8.56, 8.57) the following definition was
used:

CM,N = A+
M,N −A−M,N = − 2 ~ω0

∆2
M,N − (~ω0)2

. (8.60)

As the commutator of the bosonic creation and annihilation operators in Eqs. (8.56, 8.57)
yields the identity, the terms in Eq. (8.54) associated with these commutators are constant
with respect to the bosonic contribution and thus they are irrelevant for the calculation
of the critical coupling. Furthermore, these terms are of an order ≤ O(1) and thus yield
no dominant contribution in the thermodynamic limit, N → ∞. Thus, keeping only
the last two already block-diagonal contributions in Eq. (8.54), one finds for the second-
order correction to the effective Hamiltonian in view of the dipole selection rules and the
definition of the relevant subspaces H−M, H−NM

:

Ĥ(2) =
(â† + â)2

2N
∑

M∈H−M
N∈H−NM

DM,NM2
M,N (ĉ†M ĉ

†
M − ĉ

†
N ĉ
†
N ) = Ĥ(2)

M + Ĥ(2)
NM
. (8.61)

This expression is indeed block-diagonal as well as diagonal. Thereby the following re-
lation was used:

(â†+ â)DM,N = ŝM,N + ŝ†M,N , where DM,N = A+
M,N +A−M,N =

2 ~ω0

∆2
M,N − (~ω0)2

. (8.62)

The application of the dipole selection rulesMM,N , Eq. (5.49), explicitly yields for Ĥ(2)
M :

Ĥ(2)
M =

(â† + â)2

2N
[[
w2

+,M−1

(
DM,M−1 +DM,−(M−1)

)
+ w2

+,MDM,−(M+1)

]
ĉ†M ĉ

†
M

+
[
w2

+,M+1

(
DM+1,M+2 +DM+1,−(M+2)

)
+ w2

+,MDM+1,−M
]
ĉ†M+1ĉ

†
M+1

]
.

(8.63)
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The details of this contributions are discussed in Subsec. 8.2.4. The remaining contribu-
tion Ĥ(2)

NM
is given by

Ĥ(2)
NM

= −(â† + â)2

2N
[
w2

+,M+1DM+1,−(M+2)ĉ
†
−(M+2)ĉ

†
−(M+2)

+ w2
+,MDM,−(M+1)ĉ

†
−(M+1)ĉ

†
−(M+1)

+w2
+,M+1DM+1,−M ĉ

†
−M ĉ

†
−M + w2

+,M−1DM,−(M−1)ĉ
†
−(M−1)ĉ

†
−(M−1)

+w2
+,M−1DM,M−1ĉ

†
M−1ĉ

†
M−1 + w2

+,M+1DM+1,M+2ĉ
†
M+2ĉ

†
M+2

]
.

(8.64)

The discussion of this contribution is postponed until Sec. 8.3.

So far, the effective Hamiltonian is of the form

Ĥeff = Ĥcav +
(
Ĥ0,M + gV̂d,M + g2Ĥ(2)

M

)
+
(
Ĥ0,N + gV̂d,N + g2Ĥ(2)

NM

)
+

4∑
n=3

gnĤ(n), (8.65)

where Ĥ(3) and Ĥ(4) are still unknown. Despite the block-diagonal perturbations, V̂d,M
and V̂d,N, the expressions in the brackets are diagonal operators. For the construction of
the Dicke-like Hamiltonian, all operators assigned to the Hilbert subspace HM will be as-
sociated with an effective two-level system. All remaining terms in the Hilbert subspace
HN are then treated as a mean field for the effective two-level system. Thus, one needs
to diagonalize the perturbation V̂d,N which is approximately achieved by means of an-
other SW transformation. However, unlike the operator contribution Ĥeff

M projected onto
the resonant Fock subspace F(HM), the complement Ĥeff

N operates on a Fock subspace
corresponding to the single-particle Hilbert space HN, Eqs. (8.4, 8.5), which contains in-
finitely many Landau levels. This is an artifact of the effective Dirac model on which the
considerations are based. Especially terms contained in the corresponding part of the in-
teraction Hamiltonian, Ĥi,N, will yield a divergence in the limit ν →∞ if not regularized
properly. This issue is addressed in Sec. 8.3, where the diagonalization of V̂d,N is demon-
strated along with the discussion of Ĥ(2)

NM
. Before proceeding with the derivation of the

third- and fourth-order contribution to Ĥeff, the Dicke-like two-level Hamiltonian of the
Landau-level doublet M and M + 1 is discussed.

8.2.4 Effective Dicke-type Hamiltonian of the resonant subsystem

This subsection investigates the Hamiltonian of the Landau-level doublet M and M + 1.
The contributions arising from

Ĥeff
M = Ĥ0,M + Ĥi,M + g2Ĥ(2)

M (8.66)

give rise to an effective two-level description reminiscent of a generalized Dicke Hamil-
tonian. Thereby Ĥ0,M is defined in Eq. (8.8) and Ĥi,M corresponds to Eq. (8.22). Likewise,
Ĥ(2)

M is found in Eq. (8.63) and gives rise to terms ∝ (â† + â)2 on a microscopic level [95].
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For the further discussion it is convenient to write Ĥ(2)
M as

Ĥ(2)
M =

(â† + â)2

N
∑
k

[
Gω0
M ĉ
†
M ĉ
†
M +Gω0

M+1ĉ
†
M+1ĉ

†
M+1

]
, (8.67)

where the functions Gω0
M and Gω0

M+1 are given by

2Gω0
M = w2

+,M−1[DM,M−1 +DM,−(M−1)] + w2
+,MDM,−(M+1), (8.68)

2Gω0
M+1 = w2

+,M+1[DM+1,M+2 +DM+1,−(M+2)] + w2
+,MDM+1,−M . (8.69)

The definition of DN,N ′ is found in Eq. (8.62). The details of Eqs. (8.68, 8.69) are revealed
by applying the definition of DN,N ′ ∝ ∆N,N ′ , Eq. (8.62), and ∆N,N ′ = εN − εN ′ according
to Eq. (8.51). By exploiting the sign convention of the collective index notation, Eq. (5.28),
one finds −N to refer to a state in the valence band. Thus, ε−N = −εN and DM,−(M+1) =
DM+1,−M . Consequently, the last terms on the r.h.s. of Eqs. (8.68, 8.69) are identical.
Furthermore, each of the square brackets of Eqs. (8.68, 8.69) is of the general form

DN,N ′ +DN,−N ′ =
(∆N,N ′ + ∆N,−N ′)[∆N,N ′∆N,−N ′ − (~ω)2]

[∆2
N,N ′ − (~ω)2][∆2

N,−N ′ − (~ω)2]

=
2εN [(ε2N − ε2N ′)− (~ω)2]

(ε2N − ε2N ′)2 − 2(~ω)2(ε2N + ε2N ′) + (~ω)4
,

(8.70)

where N,N ′ = M,M − 1 in case of Eq. (8.68) and N,N ′ = M + 1,M + 2 if regarding
Eq. (8.69). In view of the definition of the Landau level spectrum (5.26) the expression
can then be rewritten as

DN,N ′ +DN,−N ′ =
ωc
~

2
√
n[(n− n′)ω2

c − ω2
0]

(n− n′)2ω4
c − 2(n+ n′)ω2

cω
2
0 + ω4

0

, (8.71)

yielding in particular

2Gω0
M =

ωc
~

[w2
+,M−1 · [2

√
M(ω2

c − ω2
0)]

ω4
0 − 2(2M − 1)ω2

cω
2
0 + ω4

c

+
w2

+,M · (
√
M + 1 +

√
M)

(
√
M + 1 +

√
M)2ω2

c − ω2
0

]
, (8.72)

2Gω0
M+1 =

ωc
~

[
−
w2

+,M+1 · [2
√
M + 1(ω2

c + ω2
0)]

ω4
0 − 2(2M + 3)ω2

cω
2
0 + ω4

c

+
w2

+,M · (
√
M + 1 +

√
M)

(
√
M + 1 +

√
M)2ω2

c − ω2
0

]
. (8.73)

At resonance, ω0 = ΩM , both expressions simply further and read

GΩM
M =

εF

(~ωc)2

[
w2

+,M−1M +
w2

+,M

4
√
M + 1

√
M

]
, (8.74)

GΩM
M+1 =

εF

(~ωc)2

[ w2
+,M

4
√
M + 1

√
M

+ w2
+,M+1 (M + 1)

]
, (8.75)
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where the Fermi energy

εF =
εM+1 + εM

2
=

~ω2
c

2ΩM
(8.76)

is related to the mean energy of the resonant-two level subsystem and to the inverse of the
transition frequency ΩM , Eq. (8.1). From Eqs. (8.74, 8.75) one finds thatGΩM

M+1 > GΩM
M > 0.

By substituting the Schwinger-Wigner representation of the fermionic operators acting onto
the subspace of the Landau-level doublet M and M + 1,

τ+
k = ĉ†M+1,k ĉ

†
M,k, τ zk = ĉ†M+1,k ĉ

†
M+1,k − ĉ

†
M,k ĉ

†
M,k,

τ−k = ĉ†M,kĉ
†
M+1,k, τ0

k = ĉ†M+1,k ĉ
†
M+1,k + ĉ†M,kĉ

†
M,k,

(8.77)

in Eq. (8.66), one finds Ĥeff
M revealing a two-level structure reminiscent of the Dicke Hamil-

tonian, Eq. (3.11), including additional terms ∝ (â† + â)2 on a microscopic level. The
operators τ ik, i = +,−, z represent two-dimensional Pauli matrices of the kth particle and
τ0
k corresponds to the two-dimensional unit matrix. Within this mapping of fermionic

operators to Pauli matrices and vice versa, Eq. (8.77), all commutation as well as anti-
commutation relations retain. Thus, the fermionic character of the operators remains
valid in the Schwinger-Wigner representation such that Ĥeff

M can be rewritten as

Ĥeff
M =

N∑
k=1

[
εFτ

0
k +

~ΩM

2
τ zk + g

(â† + â)√
N

w+,M (τ−k + τ+
k )

+g2 (â† + â)2

N κzMτ
z
k + g2 (â† + â)2

N κMτ
0
k

]
.

(8.78)

Thereby εF and ΩM are defined in Eq. (8.76) and Eq. (8.1), respectively, and

κzM =
1

2

(
Gω0
M+1 −Gω0

M

)
, κM =

1

2

(
Gω0
M+1 +Gω0

M

)
, (8.79)

where Gω0
M and Gω0

M+1 are defined in Eq. (8.68) and Eq. (8.69), respectively.

8.2.5 Comparison to the literature

The exterior appearance of the effective two-level Hamiltonian Ĥeff
M (8.78) matches with

Eq. (34) of Ref. [95]. However, in this thesis two deviating formal conventions were ap-
plied:
First, different from the convention defined in Ref. [214], the coupling parameter g ap-
pears as a prefactor in the derivations related to the second-order correction of the effec-
tive Hamiltonian. Thus, κzM and κM appear to be independent on g in this thesis. By
contrast, the authors of Ref. [95] absorb the prefactor g2 into their definition of κz and κ,
Eqs. (35-38) in Ref. [95].
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Second, in this thesis a different sign convention of the term ∝ κzM is used. The con-
vention applied within this thesis arises naturally from the application of the Schwinger-
Wigner representation of the fermionic operators. However, the authors of Ref. [95] in-
troduce an extra minus sign in their definition of ∝ κzM yielding also an negative sign in
their analogue of Ĥeff

M .
Keeping the two deviations in mind and adjusting the results of Ref. [95] according to the
conventions used during this thesis, one refers to κz and κ, Eqs. (35-38) in Ref. [95], as κ̄zM
and κ̄M during the following. By application of these formal deviations one would fairly
expect both results for the effective two-level Hamiltonian to coincide, i.e. κ̄zM = κzM and
κ̄M = κM .

Even though the previously discussed conventions were carefully adapted, the results for
κzM and κM obtained within this thesis differ from those stated in Eqs. (35-38) of Ref. [95].
This becomes most obvious under the consideration of resonance, i.e. ω0 = ΩM , and
assumption of M ≥ 2 where all prefactors w+,n = 1. In this case, one obtains for κM and
κzM from Eq. (8.79):

κzM |ω0=ΩM
=

εF

(~ωc)2
<

1

~ΩM
, (8.80)

κM |ω0=ΩM
=

εF

(~ωc)2

[
(2M + 1) +

1

2
√
M + 1

√
M

]
<
M + 1

~ΩM
, (8.81)

whereas the authors of Ref. [95] state in Eqs. (54, 55) of their work

κ̄zM |ω0=ΩM
=

√
M

2~ωc
, (8.82)

κ̄M |ω0=ΩM
=

1

~ωc

[
2(M + 1)

εF

~ωc
− 3

2

√
M +

1√
M
√
M + 1

(
~ωc
εF

)3
]
. (8.83)

Figure 8.2 a) depicts the differences between the κzM and κM at resonance, Eqs. (8.80,
8.81), from the results stated in Ref. [95] according to Eqs. (8.82, 8.83). The deviation in
each case is given by

√
M + 1/(2~ωc) indicating the difference to origin from the calcula-

tion of Gω0
M+1 as Fig. 8.2 b) supports. Thereby Ḡω0

M as well as Ḡω0
M+1 are extracted from κ̄zM

and κ̄M , respectively, according to Eq. (8.79). With this, one finds GΩM
M to coincide with

ḠΩM
M , whereas the result obtained within this thesis for GΩM

M+1 differs from ḠΩM
M+1 by the√

M + 1/(~ωc).

8.2.6 Third-order correction to the effective Hamiltonian

As the focus of this chapter lies mainly on the derivation of the critical coupling within the
effective Dicke-type Hamiltonian, only contributions up to second order of the bosonic
operators are relevant. This follows from calculation of the second derivative of the action
with respect to the bosonic mean field at α = 0 in the thermodynamic analogous as
discussed in Chap. 7. Thus, one easily finds that the third-order correction yields no
contribution to the critical coupling. To this end, recall the definition of the third-order
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FIGURE 8.2: Comparison of results obtained within this thesis with those
stated in Ref. [95], marked by an overline in each case, at resonance. In
each panel the corresponding observables are shown as a function of the
lower Landau level index M of the resonant two-level subsystem. Panel
a) shows the difference of the results for κM (8.81) with κ̄M (8.83) (red
squares) and the deviation of κ̄zM (8.81) from κzM (8.82) (green circles), both
at resonance. Both of the results obtained within this thesis deviate with
an amount of

√
M + 1/(2~ωc) (orange triangles) from the results shown in

Ref. [95], such that all three coincide perfectly. Panel b) depicts the differ-
ences GΩM

M − ḠΩM

M (red squares) and GΩM

M+1 − ḠΩM

M+1 (green circles), where
the former yields zero. Therefore GΩM

M and ḠΩM

M , extracted from κ̄zM and
κ̄M according to Eq. (8.79), coincide. Contrarily, ḠΩM

M+1 deviates from the
result GΩM

M+1 obtained within this thesis by the amount of
√
M + 1/(~ωc)

(orange triangles), as the coincidence of both curves demonstrates.

correction, Eq. (8.47):
Ĥ(3) ∝ [V̂o,L([V̂d, Ŝ1])]. (8.84)

Despite of the action of the superoperator L, which adds, loosely spoken, scalar weight-
ing functions to the bosonic operator contributions, Ĥ(3) is of the general form

[d̂⊗ D̂, [ĉ⊗ Ĉ, b̂,⊗B̂]]. (8.85)

Applying the decomposition of each operator contribution into bosonic and fermionic
part and expanding the commutators, one finds two classes of contributions. The first
one is given by the nested commutator of fermionic operators, similar to

d̂ĉâ⊗ [D̂, [Ĉ, B̂]] ∝ (â† + â)3

√
N 3 . (8.86)

As the power of the bosonic operators is larger than 2 these contributions will not con-
tribute to the value of the critical coupling. The second class of commutator contributions
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is of the form

b̂[d̂, ĉ]⊗ [Ĉ, B̂]D̂ ∝ â† + â
√
N 3 . (8.87)

However, also this class yields no contribution to the critical coupling as the second
derivative in the thermodynamic limit simply vanishes when evaluated in the ensemble
average. Thus, as there is no contribution to gc stemming from the third-order correction
of the effective Hamiltonian, one can proceed with the discussion of the fourth-order
contribution.

8.2.7 Fourth-order correction to the effective Hamiltonian

To begin the examination of the contribution to gc originating from the fourth-order cor-
rection it is helpful to review Ĥ(4) according to Eq. (8.48):

Ĥ(4) = −1

2
[V̂o,L([V̂d,L([V̂d, Ŝ1])])]− 1

6
[V̂o,L([Ŝ1, [Ŝ1, V̂o]])]−

1

24
[Ŝ1, [Ŝ1, [Ŝ1, V̂o]]]. (8.88)

The following discussion is based on similar arguments as the one applied onto the third-
order correction. However, as it subsequently becomes clear, the fourth order yields a
dominant contribution to the value of critical coupling in the thermodynamic limit. The
term dominant refers to contributions of the order ≥ O(N ). Thereby, especially terms in
the order of ≥ O[(â† + â)2] are taken into account since they will contribute as ≥ O(N )
if the system exhibits a superradiant phase in the thermodynamic limit. Then, a mean-
field description similar to Eq. (3.50) will be applicable to the bosonic operators such that
â†, â ∝

√
Nα (cf. Subsec. 3.3.2.)

The definition of Ĥ(4) results in a rather elongated expression and the evaluation of each
single contribution yields quite complex equations of which the most yield no contri-
bution to gc according to similar arguments as applied onto the third-order correction.
Thus, it is essential to extract the main characteristics of the contributing parts before-
hand. Again, one can sketch each part of Ĥ(4) in the following way

[ê⊗ Ê, [d̂⊗ D̂, [ĉ⊗ Ĉ, b̂,⊗B̂]]], (8.89)

where small and capital letters refer to bosonic and fermionic contributions, respectively.
Again, only terms ∝ (â† + â)2 hold the potential to be relevant for the calculation of gc.
The corresponding class of commutators obtained from the generic expression (8.89) can
be characterized by

êb̂[d̂, ĉ]⊗ [Ê, [Ĉ, B̂]D̂] = êb̂[d̂, ĉ]⊗ [Ê, [Ĉ, B̂]]D̂+ êb̂[d̂, ĉ]⊗ [Ĉ, B̂][Ê, D̂] ∝ (â† + â)2

N 2
, (8.90)

resulting in expressions each involving four fermionic operators. These four-operator
terms will be evaluated by means of the Wick theorem [204] during the following. Thereby
non-physical terms are automatically excluded from the theory [204] and the operator
is decomposable into one and two-body interaction terms. Thus, any product of four
fermionic operators can be expanded into a sum of normal ordered terms relative to the
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ground state of the system [204]:

ĉ†W ĉ
†
V ĉ
†
Y ĉ
†
Z = n−W δW,Z n

−
V δV,Y − n−W δW,Y n

−
V δV,Z

+ n−W δW,Z : ĉ†V ĉ
†
Y : + n−V δV,Y : ĉ†W ĉ

†
Z :

− n−W δW,Y : ĉ†V ĉ
†
Z : − n−V δV,Z : ĉ†W ĉ

†
Y :

+ : ĉ†W ĉ
†
V ĉ
†
Y ĉ
†
Z :,

(8.91)

where n−W denotes the occupation of the Landau levelW . For non-zero temperatures, n−W
is given by the Fermi-Dirac distribution. Each Kronecker delta in Eq. (8.91) is explicitly
given by, for instance, δW,Z = δλw,λzδw,zδkw,kz . Furthermore, the operator components
: ĉ†V ĉ

†
Y : are regarded as fluctuations above the ground-state occupation with zero many-

body ground-state expectation value [204], denoted by 〈. . .〉0. Thus, the ground-state
average of the four-electron interaction is given by expression (8.91):

〈ĉ†W ĉ
†
V ĉ
†
Y ĉ
†
Z〉0 = n−W δW,Z n

−
V δV,Y − n−W δW,Y n−V δV,Z . (8.92)

According to Ref. [204], the second and third line in Eq. (8.91) describes the interaction of
a fermion with other fermions and hence, is regarded as a contribution to the self-energy
or self-interaction of fermionic particles. The remaining term in the last line of Eq. (8.91)
describes the actual two-body interaction free of self-energy contributions [204].
Likewise, one can express any product of one fermionic creation and annihilation opera-
tor in terms of its average ground-state value and quantum fluctuations [204],

ĉ†V ĉ
†
Y = n−V δV,Y + : ĉ†V ĉ

†
Y :, ⇔ 〈ĉ†V ĉ

†
Y 〉0 = n−V δV,Y . (8.93)

The relations (8.91, 8.93) are exact expressions. As the focus of this consideration mainly
addresses the ground-state properties the results obtained from the four-operator contri-
butions will be evaluated with respect to the ground-state expectation value (8.92). Thus,
for the sake of abbreviation, the following discussion will only include the first line of
Eq. (8.91) even when the ground-state expectation value has not been explicitly applied
yet.
In the thermodynamic limit, a non-vanishing, dominant contribution arises from Eq. (8.89)
only if the fermionic contributions ∝ N 2. This is due to similar arguments as applied
onto the second-order correction. Thus, relevant terms require two distinct summations
over the quantum number k which accounts for the Landau-level degeneracy, N . As the
fermionic operators are linked to each other by the commutators and the matrix elements
encoding the dipole allowed transitions, Eq. (5.48), only the second part in the middle of
Eq. (8.89) is relevant as it can be seen from the following considerations:
Starting with the discussion of the nested commutator in the middle of Eq. (8.89). The
fermionic contributions of this expression are generally given by the relation

[Ê, [Ĉ, B̂]]D̂ ∝
(
MW,XMX,UMU,Y ĉ

†
W,kĉ

†
Y,k

)(
MV,Z ĉ

†
V,k′ ĉ

†
Z,k′

)
, (8.94)

where short-hand notation for the fermionic operators, introduced in Eq. (5.51), was sub-
stituted by the explicit one accounting for the quantum numbers k and k′. So far, this
contribution seems to involve summations over two distinct quantum numbers counting
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the level degeneracy, k and k′. However, this is due to Eq. (8.94) containing unphysical
contributions which vanish when brought into normal ordered form:

[Ê, [Ĉ, B̂]]D̂ ∝ −MW,XMX,UMU,YMV,Z

(
ĉ†W,kĉ

†
V,k′ ĉ

†
Y,k ĉ

†
Z,k′ − ĉ

†
W,kĉ

†
Z,k′δV,Y δk′,k

)
.

(8.95)
Thereby, the fermionic anti-commutation relations (C.43, C.44) were used (cf. App. C).
The one-body contribution already connects both distinct sums over k and k′ and thus
this term is at most ∝ N or, together with the factor of 1/N 2 in the original expres-
sion (8.90), of ≤ O[(â† + â)2/N ] ≤ O(1) in total. Regarding the remaining two-body
term in Eq. (8.95), the only contribution from Eq. (8.91) which survives the ground-state
average and yields no connection between k and k′ is

− n−W,kδW,Y n−V,k′δV,Z . (8.96)

However, by substitution into Eq. (8.95) one finds that contributions arising therefrom
are forbidden by the dipole selection rules, Eq. (5.48). Thus, the contribution arising from
the nested fermionic commutator is of ≤ O[(â† + â)2/N ] ≤ O(1) in total and thus not
relevant for the following.

With this, the remaining contribution of this class of commutators, Eq. (8.89), is consid-
ered. The fermionic part of the second term the middle of Eq. (8.89) is generally repre-
sented by

[Ĉ, B̂][Ê, D̂] ∝
(
M2

W,Y ĉ
†
W,kĉ

†
W,k

)(
M2

V,Z ĉ
†
V,k′ ĉ

†
V,k′

)
(8.97)

and involves also two sums over the level degeneracy. In particular, each commutator
in Eq. (8.97) is similar to the commutators obtained for the second-order contribution,
Eqs. (8.58, 8.59). However, from Eq. (8.97) one still cannot tell whether these two distinct
sums remain when canceling non-physical terms. Thus, the operator components are
brought into normal ordering yielding

[Ĉ, B̂][Ê, D̂] ∝ −M2
W,YM2

V,Z

(
ĉ†W,kĉ

†
V,k′ ĉ

†
W,kĉ

†
V,k′ − ĉ

†
W,kĉ

†
V,k′δV,W δk′,k

)
, (8.98)

where, again, the fermionic one-body contribution yields at most ∝ N . The relevant
terms for the two-body part arising from the equivalent to Eq. (8.91) reduce to

− n−W,k n−V,k′ (8.99)

in similarity to Eq. (8.96) where W = Y and V = Z. Note that the indices Y and Z in
the dipole matrix element remain unchanged as Eq. (8.91) addresses only the indices of
the operators. Hence, in Eq. (8.98) the sum over the Landau-level degeneracy remains
for each fermionic commutator. Thus, each fermionic commutator contributes a factor
of N which gives a factor of N 2 in total. Along with the factor of 1/N 2 in the original
expression (8.90) the contributions arising from these commutators are of O[(â† + â)2].
Consequently, the terms stemming from this part hold the potential for a relevant contri-
bution to gc in the thermodynamic limit.

However, the details of these contributions strongly depend on the definition of Ĥ(4)



138 Chapter 8. Derivation of a generalized Dicke Hamiltonian

and have to evaluated carefully by means of the previously discussed arguments. The
derivation of these terms is found in App. F, such that only the results are stated here.
The ensemble average of the fourth-order contribution to the decoupled Hamiltonian
Ĥeff can be written as

〈Ĥ(4)〉0 = (â† + â)2 χ
(4)
M,ν(~ω0), (8.100)

where the function χ(4)
M,ν can be decomposed into its ν-independent and -dependent parts,

χ
(4)
M,ν = χ

(4)
M + χ

(4)
ν , where

χ
(4)
M (~ω0) =

1

4

[
WM+1,−M (M) +WM+1,−(M+2)(M) + Y(M)

]
, (8.101)

χ(4)
ν (~ω0) = −1

4

[
W ′M+1,−M (ν) +W ′M+1,−(M+2)(ν)

]
. (8.102)

By defining

CDM,N = CM,NDM,N = − 4∆M,N~ω0

[∆2
M,N − (~ω0)2]2

ω0→0−→ 0, (8.103)

EM,N
K,L = − 2∆K,L

∆2
M,N −∆2

K,L

. (8.104)

one finds for the components of the ν-independent contribution, χ(4)
M :

WK,L(M) = CDK,L ×
[
JM+3(∆K,L) + 2DK,L − EK,LM+1,M − E

K,L
M+3,M+2 − E

K,L
M+3,−(M+2)

]
= CDK,L ×

[
JM+3(∆K,L) +

4∆K,L

∆2
K,L − (~ω0)2

+
2~ΩM

∆2
K,L − (~ΩM )2

+
4 ~ωc

[
∆2
K,L − (~ωc)2

]√
M + 3

∆4
K,L + (~ωc)4 − 2∆2

K,L(~ωc)2 [1 + 2(M + 2)]
,


(8.105)

with DK,L defined in Eq. (8.62), and

Y(M) = CDM+1,−MDM+1,−(M+2) + CDM+1,−(M+2)DM+1,−M

=
8 ~ω0∆M+1,−M∆M+1,−(M+2)

[
2(~ω0)2 −∆2

M+1,−M −∆2
M+1,−(M+2)

]
[
(~ω0)2 −∆2

M+1,−M

]2 [
(~ω0)2 −∆2

M+1,−(M+2)

]2 .
(8.106)

Likewise, the functionW ′K,L(ν) entering χ(4)
M is given by

W ′K,L(ν) = CDK,L ×
[
Jν−2(∆K,L)− EK,Lν,ν−1 + EK,Lν,−(ν−1)

]
= CDK,L ×

Jν−2(∆K,L)−
4~ωc

[
(~ωc)2 + ∆2

K,L

]√
ν − 1

∆4
K,L + (~ωc)4 − 2∆2

K,L(~ωc)2 [1 + 2(ν − 1)]

 .
(8.107)



8.2. Decoupling of the two-level subsystem 139

In Eqs. (8.105, 8.107) JM+3 and Jν−2 correspond to the evaluation of the integral approx-
imation of the sum over 2EK,LN+1,−N (cf. Eq. (F.35)) at the lower and upper integration
boundary, respectively. In particular, one finds

Jν−2
M+3(∆M,N ) = Jν−2(∆M,N )− JM+3(∆M,N )

=

[
4
√
o

~ωc
+

∆M,N

(~ωc)2
log

(
2 ~ωc

√
o−∆M,N

2 ~ωc
√
o+ ∆M,N

)]o=ν−2

o=M+3

,
(8.108)

which yields the dominant contribution to WK,L(M) and W ′M,N (ν). The functional be-

havior of both components, χ(4)
M (~ω0) and χ(4)

ν (~ω0), is illustrated in Fig. 8.3 with respect
to M at resonance, where both parts give a positive contribution for M ≥ 4.
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FIGURE 8.3: Functional dependence of the fourth-order contribution to
the decoupled Hamiltonian Ĥeff at resonance. Panel a) shows the ν-
independent part of χ(4)

M,ν according to Eq. (8.101). This term yields a posi-
tive contribution forM ≥ 4. Panel b) depicts the ν-dependent contribution
to χ(4)

M,ν , as given in Eq. (8.102). The value of ν is chosen from Eq (6.4) at
B = 5 T. This contribution is positive for all M ≥ 0. Panel c) shows the

sum of both contributions.

The effective block-diagonal Hamiltonian in fourth-order approximation is now of the
form

ˆ̃Heff = Ĥcav + Ĥeff
M +

(
Ĥ0,N + gV̂d,N + g2Ĥ(2)

NM

)
+ g4 〈Ĥ(4)〉0 , (8.109)
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where Ĥeff
M , Eq. (8.78), is of the form of a generalized Dicke Hamiltonian with quadratic

contributions on a microscopic level. The fourth-order correction Ĥ(4) is evaluated within
the ensemble average at T = 0 and defined in Eq. (8.100). The following section discusses
the approximate diagonalization of the perturbation V̂d,N up to fourth order of g.

8.3 Diagonalization of the remaining operator contributions

In this section the perturbative diagonalization [95] of the remaining contribution of
Eq. (8.65),

Ĥeff
N = Ĥcav + Ĥ0,N + Ĥi,N, (8.110)

is discussed. Thereby, the interaction Hamiltonian Ĥi,N is treated as a block-off diagonal
contribution. The definition of block-off and block-diagonal operators differs in its details
from the previously discussed case. Any operator, that is diagonal, i.e. consists of terms
∝ ĉ†N ĉ

†
N , is referred to as block-diagonal. Likewise, the terms ∝ ĉ†N ĉ

†
N ′ , where N 6= N ′,

are denoted as block-off diagonal. The approximate diagonalization of block-off diagonal
contributions is accomplished by means of another fourth-order SW transformation as
applied in Sec. 8.2 where it is aimed for the decoupling of the block-off-diagonal operator
contribution V̂o. Within the scope of diagonalizing Ĥeff

N , one needs to adjust the definition
of block-diagonal and block-off-diagonal operators and construct an appropriate unitary
transformation T̂ = eR̂ such that the transformed Hamiltonian provides

ĤD = eR̂ Ĥeff
N e−R̂ = Ĥcav + Ĥ0,N +

4∑
n=2

gnĤ(n)
N =

∑
N∈HN

ŴN ĉ
†
N ĉ
†
N . (8.111)

Thereby ŴN represents a bosonic operator related to the eigenenergies of the trans-
formed Hamiltonian. In the end of this Section, the effective Hamiltonian, Eq. (8.109),
will be of the form

ˆ̃Heff = Ĥcav + Ĥeff
M + Ĥ0,N + g2(〈Ĥ(2)

NM
〉
0

+ 〈Ĥ(2)
N 〉0) + g4(〈Ĥ(4)〉0 + 〈Ĥ(4)

N 〉0), (8.112)

where Ĥ(2)
N and Ĥ(4)

N correspond to the second- and fourth-order contribution of the ap-
proximate diagonalization according to Eq. (8.111).

The construction of the generator R̂ is achieved by the technique provided in Subsec. 8.2.1
for the example of Ŝ. Since the construction scheme is only depending on the definition
of block-diagonal and block-off-diagonal operator contributions, it is adjustable to the
scope of diagonalizing Ĥeff

N . According to Eqs. (8.14, 8.15), one redefines the term block-
diagonal-off, if a linear operator X̂ obeys D′(X̂ ) = X̂ , where

D′(X̂ ) = P̂N X̂ P̂N ′ + P̂N ′ X̂ P̂N (8.113)

exploiting the projector definition according to the r.h.s. of Eq. (8.13). The definition of
block-diagonal operators according to Eqs. (8.16, 8.17) remains valid. Therefore, the oper-
ators Ĥ0,N, Eq. (8.9), and Ĥ(2)

NM
, Eq. (8.64), are already block-diagonal such that one refers
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to Ĥi,N as a block-off-diagonal operator:

gV̂ ′o = D′(Ĥi,N) = v̂ ⊗ (V̂o
′ + V̂ ′†o), (8.114)

where the bosonic contribution is defined in Eq. (8.20). However, the fermionic contribu-
tion is given by

V̂o
′ =

∑
N,N ′

mN,N ′ ĉ
†
N ĉ
†
N ′ , (8.115)

where mN,N ′ is defined in Eq. (5.49). The explicit decomposition of the Hermitian oper-
ator Ĥi,N into its non-Hermitian components, as Eq. (8.114) shows, is beneficial, as the
results obtained in Sec. 8.2 can mainly be adopted.

Thus, the derivation of the generator R̂ is similarly accomplished as demonstrated in
Subsec. 8.2.1 for Ŝ. As the perturbation is purely block-off diagonal, the equivalents of
Eqs. (8.34 – 8.36) are given by

[R̂1, Ĥcav + Ĥ0,N] = −V̂ ′o, (8.116)

[R̂2, Ĥcav + Ĥ0,N] = 0, (8.117)

[R̂3, Ĥcav + Ĥ0,N] = −1

3
[R̂1, [R̂1, V̂ ′o]]. (8.118)

Thus, in analogy to the superoperator L, Eq. (8.42) one defines

L′(X̂ ) =

∫ ∞
0

dt e−t (Ĥcav+Ĥ0,N)P̂N X̂ P̂N′ −
∫ ∞

0
dt P̂N′ X̂ P̂Ne

−t (Ĥcav+Ĥ0,N) ≤ ||X̂ ||
∆

(8.119)

to obtain

R̂1 = L′(V̂o), (8.120)

R̂2 = 0, (8.121)

R̂3 =
1

3
L′([R̂1, [R̂1, V̂ ′o]]). (8.122)

Note that in this case the second-order generator is already zero. Thereby, the second to
fourth-order contributions of the approximate diagonal Hamiltonian, ĤD are then given
by [214]

Ĥ(2)
N =

1

2
[R̂1, V̂ ′o], (8.123)

Ĥ(3)
N = 0, (8.124)

Ĥ(4)
N = −1

6
[V̂ ′o,L′([R̂1, [R̂1, V̂ ′o]])]−

1

24
[R̂1, [R̂1, [R̂1, V̂ ′o]]], (8.125)
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where Ĥ(3)
N is also zero right away. Again, each Ĥ(n)

N can be obtained from the lowest SW
generator R̂1, which is given by

R̂1 =
∑

N,N ′∈H−NM

(
r̂N,N ′ ⊗ R̂N,N ′ − r̂†N,N ′ ⊗ R̂

†
N,N ′

)
, (8.126)

where the fermionic part reads

R̂N,N ′ = ĉ†N mN,N ′ ĉ
†
N ′ . (8.127)

The bosonic contribution is defined as

r̂N,N ′ =
âA−1

N,N ′ + â†A+1
N,N ′√

N
, (8.128)

where A±xN,N ′ is identical to Eq. (8.52).

8.3.1 Second-order contribution

With this the second-order contribution to ĤD is found by evaluation of

2Ĥ(2)
N = [r̂, v̂]⊗ (V̂o

′ + V̂o
′†)R̂− [r̂†, v̂]⊗ (V̂o

′ + V̂o
′†)R̂†

+ r̂v̂ ⊗ [R̂, V̂o
′]− r̂†v̂ ⊗ [R̂†, V̂o

′†]− r̂†v̂ ⊗ [R̂†, V̂o
′] + r̂v̂ ⊗ [R̂, V̂o

′†], (8.129)

in analogy to Eq. (8.54). Note that in Eq. (8.129) the short-hand notation

R̂1 = r̂ ⊗ R̂− r̂† ⊗ R̂† (8.130)

was used. Thereby, one has to keep in mind the summation over the quantum numbers
as precisely defined by Eq. (8.126).
During this evaluation, the relevant contribution arise from the last two commutators
in the second line of Eq. (8.129), in analogy to the discussion in Sec. 8.2. However, this
results from the dipole selection rules and the microscopic definition of R̂ and V̂ ′o and can
be seen as follows: Similar to Eqs. (8.56 – 8.57), the first two commutators of Eq. (8.129),

[r̂, v̂]N,N ′ = − [â, â†]

N CN,N ′ , (8.131)

[r̂†, v̂]N,N ′ =
[â, â†]

N CN,N ′ , (8.132)

where CN,N ′ is defined in Eq. (8.60), give only a constant contribution with respect to the
bosonic part. Thus these terms are omitted. The first two commutators in the second line
of Eq. (8.129),

[R̂, V̂o
′]N,N ′,N̄ ,N ′′ = mN,N ′mN̄,N ′′(ĉ

†
N ĉ
†
N ′′δN ′,N̄ − ĉ

†
N̄
ĉ†N ′δN,N ′′), (8.133)

[R̂†, V̂o
′†]N,N ′,N̄ ,N ′′ = −mN,N ′mN̄,N ′′(ĉ

†
N ′′ ĉ

†
N̄
δN ′,N̄ − ĉ†N ′ ĉ

†
N̄
δN,N ′′), (8.134)
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yield terms which vanish in the ground-state average. Thus, the only relevant contribu-
tion arises from the last two commutators in the second line of Eq. (8.129):

[R̂, V̂o
′†]N,N ′,N̄ ,N ′′ = mN,N ′mN̄,N ′′(ĉ

†
N ĉ
†
N̄
δN ′,N ′′ − ĉ†N ′′ ĉ

†
N ′δN,N̄ ), (8.135)

[R̂†, V̂o
′]N,N ′,N̄ ,N ′′ = −mN,N ′mN̄,N ′′(ĉ

†
N̄
ĉ†NδN ′,N ′′ − ĉ

†
N ′ ĉ
†
N ′′δN,N̄ ). (8.136)

From the definition of the matrix elements mN,N ′ , Eq. (5.49), it follows that the operator
contributions in Eqs. (8.135, 8.136) are already diagonal. Thus, one finds for Ĥ(2)

N after
relabeling the indices

Ĥ(2)
N =

(â† + â)2

2N
∑
N,N ′

m2
N,N ′DN,N ′(ĉ†N ĉ

†
N − ĉ

†
N ′ ĉ
†
N ′)

=
(â† + â)2

2N
∑
N,N ′

(
m2
N,N ′DN,N ′ −m2

N ′,NDN ′,N
)
ĉ†N ĉ

†
N ,

(8.137)

where the definition ofDN,N ′ is found in Eq. (8.62). At this point it is beneficial to include
Ĥ(2)

NM
into the evaluation. By expansion of M̂2

M,N = m2
M,N + m2

N,M one finds under
application of the symmetry properties of D̂M,N for Eq. (8.64)

Ĥ(2)
NM

= −(â† + â)2

2N
∑

M∈HM
N∈HN

(m2
M,NDM,N +m2

N,MDM,N )ĉ†N ĉ
†
N

= −(â† + â)2

2N
∑

M∈HM
N∈HN

(m2
M,NDM,N −m2

N,MDN,M )ĉ†N ĉ
†
N ,

(8.138)

which yields in combination with Eq. (8.137) the quantum number N ′ to be defined
within the complete fermionic Hilbert space. Thus for the proceeding, one defines ˆ̄H(2) =

Ĥ(2)
N + Ĥ(2)

NM
. By evaluation of the summation over k, which is encoded in the short-hand

notation, and subsequent evaluation of the sum over N ′ one finds for ˆ̄H(2):

ˆ̄H(2) =
(â† + â)2

2

∑
N

[
w2

+,N

(
DN,N+1 +DN,−(N+1)

)
− w2

+,N−1

(
DN−1,N +D−(N−1),N

)]
ĉ†N ĉ

†
N

=
(â† + â)2

2

∑
N

[
w2

+,N (−DN+1,N +DN+1,−N ) + w2
+,N−1

(
DN,N−1 +DN,−(N−1)

)]
ĉ†N ĉ

†
N

(8.139)

where the symmetry properties of DN,N ′ were applied in the second line. By taking the
ground-state expectation value of ˆ̄H(2) the fermionic operators can be substituted by the
Fermi-Dirac distribution

〈ĉ†N ĉ
†
N 〉0 = n−T (εN ) =

1

exp [β(εN − εF)] + 1
. (8.140)
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Thus, one finds for T = 0, where the Fermi-Dirac distribution is a Heaviside step func-

tion, n−T (εN )
T→∞−→ n−(εN ) = Θ(εF − εN ):

〈 ˆ̄H(2)〉0 =
(â† + â)2

2

M−1∑
|N |=0

[
w2

+,N (−DN+1,N +DN+1,−N )

+w2
+,N−1

(
DN,N−1 +DN,−(N−1)

)]
+

M−1∑
|N |=0

[
w2

+,N

(
−D−(N+1),−N +D−(N+1),N

)
+w2

+,N−1

(
D−N,−(N−1) +D−N,N−1

)]
+

ν−1∑
|N |=M

[
w2

+,N

(
−D−(N+1),−N +D−(N+1),N

)
M−1∑
|N |=0

+w2
+,N−1

(
D−N,−(N−1) +D−N,N−1

)] ,

(8.141)

where it was explicitly accounted for both bands encoded in the short-hand notation
N = (λ, n) = (λ, |N |). The terms in the first two lines correspond to the contribution from
the conduction band levels beneath the last occupied Landau level M according to the
definition of the Hilbert subspace HN. The remaining two sums refer to the contribution
arising from the filled levels in the valence band. As the effective Dirac model artificially
assumes unbounded bands, one has to introduce an ultraviolet cutoff ν similar as in the
evaluation of the effective action of the bosonic field discussed in Chap. 7. Rigid cutoff
regularization avoids the divergence arising from the boundless valence band. From a
theoretical point of view however this is always an issue in the presence of electromag-
netic potentials in Coulomb gauge as gauge symmetry is broken. Despite this crucial
argument, cutoff regularization seems, however, to be justified when remembering that
the Dirac description is an effective model approximating the band-structure only for
small energy excitations. Thus, the numerical tight-binding simulation, which serves
as an independent reference, shows cutoff-like bounds for the Landau-clustered region
(cf. Fig. 6.1) and the comparison of the cutoff-regularized path integral results with the
numerical simulation are in striking agreement. Therefore, the results obtained in this
Chapter are also evaluated for a rigid cutoff and compared with the corresponding pre-
dictions of the path integral approach and the numerical simulation. Furthermore, the
regularization approach of Ref. [95] yields a cutoff-independent result and is adopted in
addition. Likewise, this approach is then compared with the cutoff-independent regu-
larization of the path integral approach. The discussion of this regularization method is
found after the further discussion of 〈 ˆ̄H(2)〉0 in the next paragraph.

The contributions in the first and second line of Eq. (8.141) precisely cancel according to
the symmetry properties of DN,N ′ . Thus, the remaining terms can then be written as

〈 ˆ̄H(2)〉0 = (â† + â)2 χ
(2)
M,ν(~ω0), (8.142)
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where

χ
(2)
M,ν(~ω0) = −1

2

[
J ν−2
M (~ω0) + w2

+,M−1

(
DM,M−1 +DM,−(M−1)

)
∑
N

+ w2
+,ν−1

(
−Dν,ν−1 +Dν,−(ν−1)

)]
, (8.143)

with J ν−2
M (~ω0) defined in Eq. (F.35). Following Ref. [95], the contribution 〈 ˆ̄H(2)〉0 has to

vanish in the limit ~ω0 → 0 as static, homogeneous vector potentials have no effect on the
dynamics of charges and can always be removed by a gauge transformation. However,
χ

(2)
M,ν(~ω0) assumes the value

χ
(2)
M,ν(0) = −1

2

2
ν−2∑
|N |=M

w2
+,N

1

∆N+1,−N
+ w2

+,M−1

(
1

∆M,M−1
+

1

∆M,−(M−1)

)
∑
N

+ w2
+,ν−1

(
− 1

∆ν,u−1
+

1

∆ν,−(ν−1)

)
(8.144)

at ~ω0 = 0 and is certainly not zero. According to Ref. [95], this contribution has to be
subtracted from χ

(2)
M,ν(~ω0) in order to restore gauge symmetry in the static limit. Note

that this context of gauge symmetry is essentially different from the discussion of broken
gauge symmetry in cutoff-regularized systems. Thus, by defining

D̃M,N = DM,N − DM,N |~ω0=0 =
2 (~ω0)2

∆M,N

[
∆2
M,N − (~ω0)2

] , (8.145)

Iν−2
M (~ω0) = J ν−2

M (~ω0)− J ν−2
M (0) = 2

ν−2∑
|N |=M

w+,N D̃N+1,−N , (8.146)

one finds the function

χ̃
(2)
M,ν(~ω0) = χ

(2)
M,ν(~ω0)− χ(2)

M,ν(0)

= −1

2

[
Iν−2
M (~ω0) + w2

+,M−1

(
D̃M,M−1 + D̃M,−(M−1)

)
+ w2

+,ν−1

(
−D̃ν,ν−1 + D̃ν,−(ν−1)

) ]
,

(8.147)

which vanishes properly in the static limit and therefore will be referred to in the evalua-
tion of 〈 ˆ̄H(2)〉0. Similar to J ν−2

M being bound by the integrals Jν−2
M+1 and Jν−2

M , Eq. (8.108),
one finds the lower and upper bound for Iν−2

M as

Iν−2
M+1(~ω0) ≤ Iν−2

M (~ω0) ≤ Iν−2
M (~ω0), (8.148)
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where

Iν−2
M (~ω0) = Iν−2(~ω0)− IM (~ω0) =

[
~ω0

(~ωc)2
log

(
2ωc
√
O − ω0

2ωc
√
O + ω0

)]ν−2

M

. (8.149)

The short-hand notation introduced in the middle of this expression reads as follows:
I carrying a super- or subscript corresponds to the evaluation of the expression on the
r.h.s. of Eq. (8.149) with respect to the upper or lower boundary. The integral approxima-
tion for the sum Iν−2

M converges in the limit ν →∞ according to

I∞M (~ω0) = lim
ν→∞

Iν−2
M (~ω0) = −IM (~ω0). (8.150)

Thus, also the sum I∞M = limν→∞ Iν−2
M converges as it is bounded by I∞M+1 and I∞M .

Further, the remaining terms in Eq. (8.147) are given by

D̃M,M−1 + D̃M,−(M−1) =
4
√
M
(
ω0
ωc

)2 [
4M − 3− (ω0

ωc
)2
]

~ωc
[
1 + (2− 4M)

(
ω0
ωc

)2
+
(
ω0
ωc

)4
] , (8.151)

−D̃ν,ν−1 + D̃ν,−(ν−1) = −
4
√
ν − 1

(
ω0
ωc

)2 [
4ν − 1− (ω0

ωc
)2
]

~ωc
[
1 + (2− 4ν)

(
ω0
ωc

)2
+
(
ω0
ωc

)4
] . (8.152)

It is beneficial for the following discussion to introduce the decomposition χ̃
(2)
M,ν into its

ν-independent and -dependent parts according to

χ̃
(2)
M,ν(~ω0) = χ̃

(2)
M (~ω0) + χ̃(2)

ν (~ω0), (8.153)

where

χ̃
(2)
M (~ω0) = −1

2

[
−IM (~ω0) + w2

+,M−1

(
D̃M,M−1 + D̃M,−(M−1)

)]
, (8.154)

χ̃(2)
ν (~ω0) = −1

2

[
Iν−2(~ω0) + w2

+,ν−1

(
−D̃ν,ν−1 + D̃ν,−(ν−1)

)]
. (8.155)

Both components are negative at resonance, as illustrated by Fig. (8.4) as a function of M .
When investigating the effective Hamiltonian within rigorous ultraviolet cutoff regular-
ization, one refers to the contribution

〈 ˆ̄H(2)〉
M,ν

0 = (â† + â)2 χ̃
(2)
M,ν(~ω0). (8.156)
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For the discussion in Sec. 8.4 it is beneficial to rewrite the cutoff-independent contribution
in the following way

χ̃
(2)
M (~ω0) =

1

2
IM (~ω0) +

w2
+,M

2
DM+1,−M + w2

+,M−1

2
√
M

~ωc
− (κ− κz)

=
1

2
IM (~ω0) +

(~ω0)2

2εF[(2εF)2 − (~ω0)2]
+

2w2
+,M−1 − 1

~ΩM
− (κ− κz)

(8.157)

This intermediate result coincides so far with the results of Ref. [95].
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FIGURE 8.4: Dependence of the second-order contribution to the approx-
imately diagonalized Hamiltonian ĤD as a function of the Landau-level
index M . The functions χ̃(2)

M , panel a), and χ̃
(2)
ν , panel b), are both evalu-

ated at resonance and yield a negative contribution. The ultraviolet cutoff
is chosen from Eq. (6.4) for B = 5 T. Panel c) illustrates the sum of both

contributions.

However, the authors of Ref. [95] subtract all cutoff-depended terms of χ̃(2)
M,ν in a second

step to achieve a ν-independent result. Then, the limit ν →∞, as artificially required by
the effective Dirac model, is trivially taken as a last step. Thus, one defines the regularized
function

〈 ˆ̄H(2)〉
M,reg

0 = (â† + â) χ̃
(2)
M (~ω0), (8.158)
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where only the ν-independent part of χ̃(2)
M,ν , defined in Eq. (8.154), enters. This term is

identical with the final result of Ref. [95] in the second-order approximation.

8.3.2 Fourth-order contribution

As the third order vanishes straight from the beginning, the discussion of the fourth or-
der, Eq. (8.125), is continued. For the identification of the relevant contributions, identical
arguments as discussed in Subsec. 8.2.7 are applied. Thus, the only relevant contribu-
tions for the value of gc are quadratic in the bosonic operators and arise from the nested
commutators which decompose into two distinct commutators of each two fermionic op-
erators, Eq. (8.97). By careful examination, as shown in Sec. 2 of App. F, one finds

〈Ĥ(4)
N 〉0 = (â† + â)2 χ

(4)
N,M,ν(~ω0), (8.159)

where χ(4)
N,M,ν = χ

(4)
N,M + χ

(4)
N,ν decomposes into a ν-independent and -dependent part,

χ
(4)
N,M and χ(4)

N,ν , respectively. The latter is given by

χ
(4)
N,M (~ω0) =

1

2

[
−KM+3(~ω0) + w2

+,M+2

(
CDM+3,M+2 + CDM+3,−(M+2)

)]
×
[
−JM+3(~ω0) + w2

+,M+2

(
DM+3,M+2 +DM+3,−(M+2)

)]
,

(8.160)

where CDM,N is defined in Eq. (8.103) and

Kν−2
M+3(~ω0) = Kν−2(~ω0)−KM+3(~ω0)

=

[
2× 2 ~ωc

√
o ~ω0

~ωc [(2 ~ωc
√
o)2 − (~ω0)2]

− 1

(~ωc)2
log

(
2ωc
√
o− ω0

2ωc
√
o+ ω0

)]o=ν−2

o=M+3

(8.161)

corresponds to the integral approximation of the sum over 2CDN+1,−N according to
Eq. (F.67). Likewise, Jν−2

M+3 denotes an integral representation of the sum over 2DN+1,−N ,

which is identical to Eq. (8.108). The details of χ(4)
N,M are found in Eq. (F.71). This function

is positive for all values of M at resonance, as Fig. 8.5 a) shows. Further, the cutoff-
dependent contribution reads

χ
(4)
N,ν(~ω0) =

1

2

[
Kν−2(~ω0) + w2

+,ν−1

(
−CDν,ν−1 + CDν,−(ν−1)

)]
×
[
Jν−2(~ω0) + w2

+,ν−1

(
−Dν,ν−1 +Dν,−(ν−1)

)]
+

1

2

[
Kν−2(~ω0) + w2

+,ν−1

(
−CDν,ν−1 + CDν,−(ν−1)

)]
×
[
−JM+3(~ω0) + w2

+,M+2

(
DM+3,M+2 +DM+3,−(M+2)

)]
+

1

2

[
−KM+3(~ω0) + w2

+,M+2

(
CDM+3,M+2 + CDM+3,−(M+2)

)]
×
[
Jν−2(~ω0) + w2

+,ν−1

(
−Dν,ν−1 +Dν,−(ν−1)

)]
(8.162)

and its explicit form is given in Eq. (F.72). At resonance, χ(4)
N,ν yields a negative contribu-

tion for all values of M and ν which are compatible with the validity of this perturbative
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approach in the sense of Eq. (8.31). Figure 8.5 b) illustrates χ(4)
N,ν as a function of M .

As CD → 0 in the static limit, also χ
(4)
N,M and χ

(4)
N,M vanish. Thus, there is no require-

ment for a similar regularization as applied onto the second-order contribution (cf. Sub-
sec. 8.3.1). However, also this contribution is examined within the cutoff-independent
regularization approach used in Ref. [95]. To this end, one subtracts all ν-dependent
terms, i.e. χ(4)

N,ν , from χ
(4)
N,M,ν when referring to this regularization method.

The comparison of χ(4)
M,ν , illustrated in Fig. 8.3, with χ(4)

N,M,ν , illustrated in Fig. 8.5, shows
that the latter provides the dominant contribution to the fourth-order correction. Further-
more, the cutoff-independent parts of the functions χ(4)

M,ν and χ(4)
N,M,ν yield both a positive

contribution whereas the cutoff-independent second-order term χ̃
(2)
M , shown in Fig. 8.4,

is negative at resonance.
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FIGURE 8.5: Dependence of the functions χ(4)
N,M , panel a), and−χ(4)

N,ν , panel
b), on the Landau-level index M at resonance. In panel b) the ultraviolet
cutoff is chosen from Eq. (6.4) atB = 5 T. The ν-independent contribution,
χ

(4)
N,M , is positive for all values of M . By contrast, χ(4)

N,ν is negative on the
depicted interval of M . The comparison with Figs. 8.3, 8.4 for identical
parameters shows that χ(4)

N,M and χ(4)
N,ν yields the dominant contribution to

the fourth-order correction of the diagonalized Hamiltonian ĤD. Panel c)
shows the negative of the sum of both contributions, i.e. −χ(4)

N,M,ν .
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8.3.3 The generalized Dicke Hamiltonian

Before the derivation of the critical coupling is performed the final result for the effective
Hamiltonian, Eq. (8.112), is summarized.
According to the previous discussion, one finds for Eq. (8.112) the expression

ˆ̃Heff = Ĥcav + Ĥeff
M + Ĥ0,N + g2(â† + â)2χ̃

(2)
M,ν + g4(â† + â)2

[
χ

(4)
M,ν + χ

(4)
N,M,ν

]
, (8.163)

which provides an extension of the ansatz discussed in Ref. [95] from second to fourth or-
der. The dynamically generated quadratic contributions in second-order approximation,
χ̃

(2)
M,ν(~ω0), as well as the fourth-order contributions, χ(4)

M,ν(~ω0) and χ
(4)
N,M,ν(~ω0), vanish

in the static limit, ω0 → 0. Moreover, the cutoff-independent parts of the second- and
fourth-order corrections are opposite in sign when resonance is imposed. By contrast,
the dominant cutoff-dependent parts, χ̃(2)

ν and χ
(4)
N,ν , are negative in both orders of ap-

proximation. This is illustrated by Fig. 8.6.

For the subsequent discussion of the critical behavior it is convenient to drop all terms
which yield only a constant shift of the energies with respect to the bosonic mode. Thus,
the term ∝ εF in Ĥeff

M , Eq. (8.78), can be omitted during the following. Hence, in analogy
to Ref. [95], one defines

ĤM =
N∑
k=1

[
~ΩM

2
τ zk + g

(â† + â)√
N

w+,M (τ−k + τ+
k ) + g2 (â† + â)2

N
(
κzMτ

z
k + κMτ

0
k

)]
. (8.164)

Furthermore, the constant contribution Ĥ0,N can be omitted. Thus, one defines the gen-
eralized Dicke Hamiltonian for Landau-quantized graphene within rigid cutoff regular-
ization as

ĤGDH = Ĥcav + ĤM + g2(â† + â)2χ̃
(2)
M,ν + g4(â† + â)2χ̃

(4)
M,ν , (8.165)

where χ̃(4)
M,ν = χ

(4)
M,ν + χ

(4)
N,M,ν .

The cutoff-independent equivalent of the generalized Dicke Hamiltonian is then obtained
in analogy to the second-order approximation of Ref. [95] by subtracting all ν-dependent
terms from ĤGDH. Thus, one finds

Ĥreg
GDH = Ĥcav + ĤM + g2(â† + â)2χ̃

(2)
M + g4(â† + â)2χ̃

(4)
M . (8.166)

Note that the symmetry properties of both Hamiltonians, ĤGDH and Ĥreg
GDH, are analo-

gous to those of the original Dicke model (cf. Sec. 3.3.5). Though not explicitly proven
during the following, one will expect the parity symmetry assigned with the commuta-
tion of the Hamiltonian with the parity operator, Eq. (3.91), to be broken if a superradiant
phase transition is exhibited by the model.This can be deduced from the considerations
in Sec. 4 of App. E.

During the following, the critical behavior of ĤGDH and Ĥreg
GDH is analyzed and compared

with the results from the path integral approach.
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FIGURE 8.6: Dependence of the second- and fourth-order contribution to
the generalized Dicke Hamiltonian as a function of the normalized cut-
off ν/[M3(M + 1)2]. All data points shown for ν/[M3(M + 1)2] > 1
are in accordance with the validity range of this perturbative approach,
Eq.(8.31). Panel a) shows the negative of the second-order contribution
χ̃

(2)
M,ν , Eq. (8.153) for M = 2, 4, 6, 8. The arrows point along increasing M .

Panel b) shows the negative of the fourth-order contribution χ̃
(4)
M,ν com-

posited from χ
(4)
M,ν , Eqs. (8.101, 8.102) and χ

(4)
N,M,ν , Eqs. (8.162, 8.162), for

identical values of M .

8.4 Critical behavior of the generalized Dicke Hamiltonian

The analysis of the generalized Dicke Hamiltonian is performed within a path integral
approach similar to the investigations of Wang and Hioe [155] on the original Dicke
model. This approach was also used in Ref. [95] for the analysis of the correspond-
ing cutoff-independent generalized Dicke Hamiltonian in second-order approximation.
However, also the approach based on the Holstein-Primakoff transformation (cf. Sec. 3.3)
of the collective spin operators would be suitable. Both approaches are expected to yield
identical results.

Thus, one starts with the partition sum in the grand-canonical ensemble,

Z = Tr

[
e−β( ˆ̃Heff−µN̂ )

]
, (8.167)

where N̂ =
∑

N,k ĉ
†
N,kĉ

†
N,k denotes the many-body number operator. By further inspec-

tion of the exponent, one finds for µ = εF

ˆ̃Heff − µN̂ = ĤGDH + (Ĥ0,N − µN̂ ′), (8.168)
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where N̂ ′ = N̂ −∑k(n
−
M,k+n−M+1,k). As the last term on the r.h.s. only shifts the energy of

the system by a constant amount it can be omitted during the following. For the sake of
brevity, the following discussion is formally referred to the cutoff-regularized generalized
Dicke model. Thus, by omitting all cutoff-dependent terms in the respective equations
and definition one easily obtains their cutoff-independent equivalent, Eq. (8.166), as con-
sidered in Ref. [95].

The partition sum is then evaluated either by the approach discussed in Ref. [155], keep-
ing the spin-representation, or by a more generalized approach based on the fermionic
representation of the Pauli matrices, Eq. (8.77), as shown in Refs. [95, 239, 242]. To keep
the discussion as general as possible, the latter is chosen during the following.

Thus consider the normalized many-body partition sum of the grand-canonical ensemble
according to Eq. (8.167) in path integral representation

Z̃ =
Z
Z0

=

∮
D[α]

∮
D[{ρk}]e−SE[α∗,α;{ρk†,ρk}]∮

D[α]
∮
D[{ρk}]e−S

0
E[α∗,α;{ρk†,ρk}]

, (8.169)

where SE and S0
E denote the Euclidean action of the interacting and noninteracting sys-

tem, respectively. Furthermore, α∗, α ∈ C denotes the complex field of the bosonic mode.
Likewise, ρk† and ρk describes the vector representation of the fermionic subsystem in
terms of Grassmann numbers or fields (cf. Sec. 2 in App. E). As any contribution yielding
only a constant energy shift is omitted, ρk† and ρk refer only to the Landau-level doublet
M and M + 1 and thus is given by

ρk
† =

(
c†M+1,k c†M,k

)
, ρk =

(
cM+1,k

† cM,k

)T
, (8.170)

where each component is a Grassmann number. This is analogous to the definition (7.2).
The integration measures in Eq. (8.169) are given by Eq. (D.65) in Sec. 3 of App. D, where
also further details on the evaluation of many-body partitions sums are found. The Eu-
clidean action in Eq. (8.169) can be decomposed according to

S[α∗, α; {ρk†,ρk}] =

∫ β

0
dτ

[
α∗(τ)∂τα(τ) +

N∑
k=1

ρ†k(τ)∂τρk(τ)

2∑
1

+HGDH[α∗(τ), α(τ); {ρk†(τ),ρk(τ)}]
]

= S+[α∗, α] + Smix[α∗, α; {ρk†,ρk}],

(8.171)

where the index E is omitted for brevity. The first contribution, S+ only contains bosonic
degrees of freedom and is given by

S+[α∗, α] =

∫ β

0
dτ
[
α∗(τ) (∂τ + ~ω0)α(τ) + [α∗(τ) + α∗(τ)]2X (g)

]
, (8.172)

where X (g) = g2χ̃
(2)
M,ν + g4χ̃

(2)
M,ν when evaluating the fourth order of approximation. For
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the evaluation of the second order, one puts X (g) = g2χ̃
(2)
M,ν . The mixed contribution to

the Euclidean action contains fermionic and bosonic contributions due to the light-matter
interaction term and reads

Smix[α∗, α; {ρk†,ρk}] =
∑
k

∫ β

0
dτ ρ†k(τ) [1−G0M [α∗, α]] ρk(τ), (8.173)

where −G−1
0 = ∂τσ

0 + Ω0
2 σ

z denotes the inverse of the Green’s function of the noninter-
acting two-level subsystem. The k-independent matrix is then given by

M [α∗, α] =

[
g√
N
w+,M [α∗(τ) + α(τ)]σx +

g2

N [α∗(τ) + α(τ)]2
(
κMσ

0 + κzMσ
z
)]
.

(8.174)

By rescaling the complex fields α∗(τ) 7→
√
Nα∗(τ), α(τ) 7→

√
Nα(τ) and integrating over

the fermionic degree of freedom one finds for the partition sum

Z̃ = (Z+
0 )−1N

∮
D[α]e−NΦ[α∗,α], Φ[α∗, α] = S+[α∗, α]− log [det [1−G0M [α∗, α]]] ,

(8.175)
where the phase Φ can be regarded as an effective action for the bosonic mode. The par-
tition sum Z+

0 of the free cavity mode is introduced in Chap. 7 and explicitly defined
in Eq. (7.12). Similar as discussed in Chap. 7, one evaluates the remaining integral in
Eq. (8.175) in the thermodynamic limit by means of the method of steepest descent. This
is justified as the dominant contribution to the partition sum in this limit arise from the
extrema of the phase functional. One can prove [239] that the corresponding field config-
urations α∗0(τ) = α0, α∗0(τ) = α0 are static, i.e. independent on the Euclidean time, and
defined by

δ

δα(τ ′)
Φ[α∗(τ), α(τ)]

∣∣∣∣
α∗0,α0

= 0,
δ

δα∗(τ ′)
Φ[α∗(τ), α(τ)]

∣∣∣∣
α∗0,α0

= 0. (8.176)

From inspection of the phase Φ further follows α∗0 = α0 such that the integration over the
imaginary part in Eq. (8.175) can also been carried out exactly in stationary phase approx-
imation. Thus one finds in analogy to the discussion in Chap. 7 and the considerations in
Ref. [95]

Z̄SPA = (Z+
0 )−1

√
2

β~ω0|∂2
αΦ(α, α)|α0 |

e−NΦ(α0,α0), (8.177)

where ∂2
αΦ(α, α)|α0 > 0. When accounting only for the relevant real-valued static fields

α = α∗ the phase function is easily evaluated:
To this end, evaluate the fermionic grand-canonical potential encoded in log det(1−G0M)
as discussed in Sec. 3 of App. D. Thus, by diagonalizing the matrix given in the argument
of the determinant for ω−n = 0 one finds,

ε±(α) = 4g2α2κM ±
√

4g2α2 + (~ΩM/4 + 2g2α2κzM ) (8.178)
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which then yields for log det(1−G0M) according to Eqs. (D.73, D.76)

− βΩ−(α) = log [det [1−G0M [α∗, α]]] =
∑
i=±

log
[
1 + e−βεi(α)

]
. (8.179)

Under usage of the relation

log
[
1 + eaeb

]
+ log

[
1 + eae−b

]
= a+ log 2 + log [cosh a+ cosh b] (8.180)

the fermionic grand-canonical potential is further simplified yielding

−βΩ−(α) = −β4g2α2κM + log 2 + log
[
cosh

(
β4g2α2

)
cosh

(√
α2
)

+ cosh

(
β
√

4g2α2 + (~ΩM/4 + 2g2α2κzM )

)] (8.181)

in agreement with Ref. [95]. Dropping the constant term one finally finds for the phase
function

Φ(α, α) = β
[
~ω0 + 4X (g) + 4g2κM

]
α2 − log

[
cosh

(
β4g2α2

)
cosh

(√
α2
)

+ cosh

(
β
√

4g2α2 + (~ΩM/4 + 2g2α2κzM )

)] (8.182)

in accordance with Ref. [95]. When evaluating ∂αΦ(α, α)|α0 = 0 one finds always the
trivial-solution α0 = 0 similar as discussed for the original Dicke model (cf. Sec. 3.3). This
solution corresponds to the normal phase of the system. The ground-state properties are
then determined by α0 = 0 which corresponds to the ground-state of the noninteracting
cavity as α2

0 is associated with the photonic cavity occupation. However, if there exists an
additional solution α0 6= 0 which yields a global minimum of the effective action Φ the
superradiant phase will be indicated and α2

0 corresponds then to the photonic occupation
of the cavity. In addition, the trivial solution does not correspond to a minimum of the
effective action anymore which yields a change of the sign in second derivative of the
phase function at α0 = 0 (cf. Fig. (8.11). Thus, by consideration of

∂2

∂2α
Φ(α, α)

∣∣∣∣
α0=0

= 0 ⇔ g = gc (8.183)

one eventually finds a critical point gc. In second-order approximation, i.e. X (g) =

g2χ̃
(2)
M,ν one obtains

g
(2)
c,M,ν =

~ΩM

2

√
− 1

ρM,ν
. (8.184)
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in analogy to Ref. [95]. The function ρM,ν also appears in fourth-order approximation,
i.e. X (g) = g2χ̃

(2)
M,ν + g4χ̃

(4)
M,ν ,

g
(4)
c,M,ν =

√√√√√−ρM,ν +
√
−χ̃(4)

M,ν · (~ΩM )3 + ρ2
M,ν

2χ̃
(4)
M,ν~ΩM

. (8.185)

and is given by
ρM,ν = −1 +

(
χ̃

(2)
M,ν + κM − κzM

)
~ΩM . (8.186)

In order to actually describe an actual critical point, g(n)
c,M,ν needs to be real-valued. Relat-

ing this requirement of gc ∈ R to the Holstein-Primakoff approach discussed in Sec. 3.3 on
the example of the original Dicke model precisely corresponds to a Hessian ∝ (g2

c − g2).
A complex-valued critical coupling would transform Eq. (3.65) into an expression ∝
(g2
c + g2) which could never be satisfied. Thus, g(n)

c,M,ν ∈ R is the first necessary condition
for the model to describe criticality. Whether real-valued critical point in either order of
approximation can be obtained for suitable values of M and ν ultimately depends on the
details of the entering contributions.
Thus, assuming g(n)

c,M,ν ∈ R for the moment, the second necessary condition for the model
holding an appropriate and robust prediction of the critical behavior is the satisfaction of
the validity range of the SW approach according to Eq. (8.30). These two requirements
address rather theoretical aspects providing an estimation of the critical behavior of the
respective model approximated by the SW approach up to nth order. However, when
asking weather the described system is indeed able to approach criticality in equilibrium
and under realistic conditions one also has to account for the actual coupling gr deter-
mined by the microscopic properties of the hybrid system. In particular, one expects a
superradiant phase transition to occur, when the intrinsic coupling exceeds the predicted
value of the critical coupling for certain parameters. As this is in turn only provided
when also gr lies within the validity range of the SW ansatz, one can summarize

g
(n)
c,M,ν < gr < ∆

(8.30)
= |~ω0 − ~ΩM+1|, (8.187)

which has to be satisfied in order to describe realistic critical behavior within the SW
method.
Thus, the following investigates the validity of these conditions for cutoff-independent
and -dependent regularization. During the proceeding resonance and M > 0 are im-
posed. Furthermore, one assumes εr = 1, such that

gr
(8.28)

= = ~ωc
√

α

2π
≈ 0.0341 ~ωc. (8.188)

The generalization to εr 6= 1 is found in Ref. [95] and, anyways, easily obtained εr 6= 1
shifts only the value of the actual coupling gr but leaves the results of the SW approach
unaffected.
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8.4.1 Cutoff-independent regularization

Even though the reference for the critical coupling obtained within cutoff-independent
regularization of the path integral approach exceeds the validity range of the perturbative
Schrieffer-Wolff transformation one may, nevertheless, evaluate the latter. As the second-
order of the cutoff-independent regularized generalized Dicke model is examined in
Ref. [95] in great detail, the discussion shall be abbreviated and restricted to a graphical
analysis. Thus, Fig. 8.7 shows the equivalent of the in Ref. [95] considered second-order
approximation of the generalized Dicke model for Landau-quantized graphene. In this
order of approximation, the requirement of g(2)

c,M,ν ∈ R is satisfied. However, the critical
point predicted by Eq. (8.184) lies at least one order of magnitude beyond the validity
range of the underlying approximation. Thus, no robust prediction can be drawn from
this result which is in agreement with the conclusion of Ref. [95].
Similarly, also the cutoff-independent result gc,M obtained from the path integral ap-
proach, Eq. (7.38), exceeds the validity range of the SW approach as Fig. 8.7 demon-
strates. Furthermore, gr/∆ is also shown in Fig. 8.7 for εr = 1. Any value of the relative
permittivity different from 1 would only shift this reference but leaves the result of the
SW approach unaffected.
It is important to emphasize that from g

(2)
c,M/∆ > 1 one can only conclude that the pre-

dicted critical point lies beyond the validity of the perturbative approach on which the
evaluation is based on. In this case, the results cannot be regarded as robust. Therefore,
from this result one is not able to estimate the critical behavior of the original model as a
possible critical point might actually be found in a parameter range beyond the validity
of the SW ansatz.

To proceed the discussion, the fourth order of approximation is evaluated.
However, it is easy to see that not even the first necessary condition of a real-valued g(4)

c,M

is satisfied. This is seen from inspection of the argument of the innermost square root
in the definition (8.185). As χ̃(4)

M > 0 and at least three orders of magnitude larger than
ρ2
M > 0 (cf. Figs. 8.3 a), 8.4 a) and 8.5 a)), the argument of the innermost square root

in (8.185) yields a negative value as illustrated by Fig. 8.8. Thus, no real-valued g
(4)
c,M is

found within a valid parameter range. Again, this result disallows the conclusion of the
absence of criticality in the underlying model. The SW method is a perturbative approach
which, even when the validity range is handled with great care, is not necessarily yielding
a convergent result in many-body considerations.
Anyways, as the cutoff-dependent regularization showed convincing agreement of the
path integral result with the tight-binding simulation, one evaluates the SW approach
within cutoff regularization during the following.

8.4.2 Rigid cutoff regularization

Now the results for the critical coupling in second- and fourth-order approximation are
evaluated on the basis of the cutoff-regularized functions χ̃(n)

M,ν . As these functions are
dominated by the negative contribution arising from the cutoff a real-valued second-
order result g(2)

c,M,ν (cf. Fig. 8.4 c)) is ensured. This holds also for the fourth order and it is
roughly seen from the following:
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FIGURE 8.7: Comparison of the cutoff-independent results for the critical
coupling with the actual coupling gr and the validity range of the SW, ap-
proach according to Eq. (8.30), at resonance. The shown data points are
normalized by the spectral gap ∆, Eq. (8.28), which estimates the validity
of the SW ansatz according to Ref. [95]. The actual coupling gr, (grey dia-
monds), obtained from the microscopic properties of the system is compat-
ible with the validity range of the SW ansatz for M ≤ 2. Note that εr 6= 1
would only shift the data points to lower values. However, both cutoff-
independent values for the critical coupling exceed the validity range of
the SW approach and gr. Thereby, the second-order approximation g

(2)
c,M ,

(blue squares), is at least one order of magnitude larger than gr and far
beyond the validity range. The path integral result gc,M/∆ > 1, (red trian-

gles), is also not compatible with the latter.
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FIGURE 8.8: Argument of the innermost square root of the fourth-order
result for the critical coupling, Eq. (8.185), in cutoff-independent regular-

ization. The data points are shown for the resonant case.

Inspection of the functions χ̃(4)
M,ν shows, that the dominant contribution arises from the

cutoff-dependent terms (cf. Figs. 8.3 c), 8.5 c)). As the result for χ̃(4)
M,ν is negative, the

argument of the innermost square root in g(4)
c,M,ν , Eq. (8.185), is positive and thus in turn

the innermost square root is real-valued and ≥ |ρM,ν |. This yields a positive numerator
in Eq. (8.185) such that the argument of the outermost square root is positive and thus
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a real-valued prediction of the critical coupling is expected also in fourth-order approxi-
mation.

The precise value of the second- and fourth-order results however depend on the choice
of parameters. As χ̃(n)

M,ν , n = 2, 4, are rather complicated functions of M and ν a graphical
analysis of the results for the critcal coupling at resonance should be sufficient for a first
insight.
Thus, Fig. 8.9 b) shows the second- and fourth-order result for the critical coupling ob-
tained within the SW approach as a function of M . The cutoff is obtained from Eq. (6.4)
for B = 5 T. For both orders of approximation the depicted data points are compatible
with the validity range of the SW approach when M ≤ 3 for this particular choice of
the magnetic field. The comparison with the path integral result gc,ν , Eq. (7.37), demon-
strates good agreement with g(2)

c,M,ν even though the latter is slightly underestimating the
former. This is shown in Fig. 8.9 a). In fourth order the deviations of the SW result with
the path integral reference gc,ν increase. In particular, the critical point is clearly underes-
timated in this order of approximation as Fig. 8.9 b) shows. This picks up the discussion
about the convergence of the SW perturbation series outlined in Sec. 8.2. However, as the
second-order yields convincing agreement, truncation of the perturbative series expan-
sion of the effective Hamiltonian after second order should be sufficient for the following.

Figure 8.10 complements the evaluation of the second- and fourth-order results by show-
ing the dependence of the corresponding critical couplings on the cutoff as a function of
the magnetic field. The Fermi level is therefore chosen above M = 1. One finds again
good agreement of the second-order SW result and the path integral approach. Similarly,
the fourth order underestimates the critical coupling obtained within the path integral
approach. For this specific choice of M critical behavior is predicted within both ana-
lytic approaches when B . 7 T in accordance with the phase diagram obtained for the
path integral result, Fig. 7.1. The choice of εF close to the Dirac point is reasonable, as
gr > g

(2)

c,M̄,ν
will be satisfied for M̄ > M at fixed ν if gr > g

(2)
c,M,ν . This follows from

g
(2)
c,M,ν being, similar as gc,ν , Eq. (7.37), a monotonous decreasing function of M at fixed ν.

However, for M̄ + 1 & ν1/5 one leaves the validity range of the SW ansatz.
Thus, restricting the following discussion onto the second-order of approximation, one
finds the solutions to Eq. (8.176) in the thermodynamic limit as

α2
0

N =

0 for g < g
(2)
c,M,ν ,

−1+~ΩMκ
z
M

8g2(κzM )2 + δ̃M,ν
4g2(χ̃

(2)
M,ν+κM )+~ω0

8g2(κzM )2

√
1 + 2κzM~ΩM , for g > g

(2)
c,M,ν ,

(8.189)

where

δ̃M,ν =
[
16g4

[
(χ̃

(2)
M,ν + κ)2 − (κzM )2

]
+ 8g2(χ̃

(2)
M,ν + κ)~ω0 + (~ω0)2

]− 1
2
. (8.190)

These results precisely coincide with the location of the minima of Φ(α, α) as Fig. 8.11
shows for M = 1 and ν chosen according to Eq. (6.4) at B = 5 T. The cavity occupation
as function of the coupling is depicted in Fig. 8.12 at resonance. Thereby, panel a) shows
the cavity occupation for M = 1 and various cutoffs according to Eq. (6.4) and B = 1 , 2
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FIGURE 8.9: Comparison of the cutoff-dependent results for the critical
coupling with gr and the validity range of the SW approach, Eq. (8.30), at
resonance and as a function M . The cutoff ν was chosen from Eq. (6.4) at
B = 5 T. Panel a) shows that the second-order result g(2)

c,M,ν slightly under-
estimates the path integral prediction gc,ν . Panel b) depicts the nth-order
result g(n)

c,M,ν , (n = 2: blue squares, n = 4: yellow dots), in comparison
with gc,ν , (red triangles), and the actual coupling gr, (grey diamonds), nor-
malized by the spectral gap ∆, Eq. (8.28). The fourth-order result, g(4)

c,M,ν ,
clearly underestimates the path integral prediction gc,ν . The actual cou-
pling of the system, gr, exceeds both predictions for critical couplings in
the depicted range of M . Further, g(2)

c,M,ν and gc,ν are compatible with the
validity range of the former for M ≤ 3.

and 3 T. The qualitative scaling behavior with varying ν is thereby identical to one ob-
tained for the cutoff-regularized path integral result (cf. 7.6). However, the comparison
shows deviations close to the critical point and in the dependence on g. According to
Eq. (8.189), the photon occupation scales with the squared coupling as it is also seen from
Fig. 8.12 a). However, the path integral approach shows a rather linear scaling after a
steep increase close to the critical point.

The deviations in the scaling of the photon occupation with rising Fermi level are how-
ever crucial. As Fig. 8.12 b) illustrates, the value of the photon occupation obtained from
the generalized Dicke Hamiltonian decreases for a rising Fermi level. This contradicts the
behavior found from the identically regularized path integral approach, shown in Fig. 7.7.

Regardless of these deviations one may though consider quantum fluctuations. As a final
proof of the critical behavior one considers the excitation gap of quantum fluctuations
above the ground state (cf. Subsec. 3.3.4). To hold the discussion simple, the quantum



160 Chapter 8. Derivation of a generalized Dicke Hamiltonian

1

2

3

4

5

g c
,ν
−
g

(2
)

c,
M
,ν

[~
ω
c]

0 2 4 6 8 10

B [T]

0.15

0.20

0.25

0.30

0.35

0.40

0.45

×10−4

a)

b)

g
(2)
c,M,ν/∆ g

(4)
c,M,ν/∆ gc,ν/∆ gr/∆

FIGURE 8.10: Comparison of the cutoff-dependent results for the critical
coupling with gr and the validity range of the SW approach, Eq. (8.30), at
resonance. The data points are shown as a function ν or B according to
Eq. (6.4), respectively. The Fermi level lies between M = 1 and M + 1 = 2.
Panel a) again shows the deviation of the second-order result from the path
integral reference gc,ν as a function of the field. In particular, g(2)

c,M,ν slightly

underestimates gc,ν . Panel b) depicts the nth-order result g(n)
c,M,ν , (n = 2:

blue squares, n = 4: yellow dots), in comparison with gc,ν , (red triangles),
and the actual coupling gr, (grey diamonds), normalized by the spectral
gap ∆, Eq. (8.28). For the chosen Fermi level, both approaches yield a
critical coupling < gr for fields up to ≈ 5 T. The fourth-order result, g(4)

c,M,ν

which clearly underestimates gc,ν similar as seen in Fig. 8.9 b).

fluctuations are considered in the normal phase, α0 = 0, only. Thus, one expands the
phase functional Φ[α∗, α] in second order around the real-valued static extreme point
α0 = 0 in accordance with Refs. [95, 242]. It is convenient to apply the following identity

log [det [1−G0M[α∗, α]]] = log
[
det
[
−G−1

0

]]
+ Tr [log [1−G0M[α∗, α]]]

= log
[
det
[
−G−1

0

]]
−
∞∑
n=1

Tr [(G0M[α∗, α])n ]

n
,

(8.191)

where only terms which are quadratic in the bosonic fields contribute to the Gaussian
expansion of the phase functional around its extreme point α0 = 0. Thus, one finds the
quadratic approximation of the Euclidean action, Eq. (8.171), as

SG[α∗, α; {ρk†,ρk}] = S+[α∗, α]− log
[
det
[
−G−1

0

]]
+ Tr [G0B] +

1

2
Tr [G0AG0A], (8.192)

in analogy to Ref. [95]. The fields, α∗(τ) and α(τ), are now associated with small bosonic
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FIGURE 8.11: Illustration of the phase function in second-order approx-
imation within cutoff regularization for various coupling strength in the
thermodynamic limit for B = 5 T and M = 1. The red dots mark the po-
sition of the minima in accordance with Eq. (8.189). The behavior of the

phase function is typical for second-order phase transitions.

fluctuations above the stationary minimum of the phase function in the normal phase.
The bosonic action S+ is found in Eq. (8.172) and

A[α∗, α] =
g√
N
w+,M [α∗(τ) + α(τ)]σx, (8.193)

B[α∗, α] =
g2

N [α∗(τ) + α(τ)]2 (κMσ
0 + κzMσ

z), (8.194)

in agreement with Ref. [95]. The trace appearing in the Gaussian approximation of the
action, SG, is carried out in the basis [241]

Tr [O(τ)] =
1

β

∑
ω−n

∫ β

0
dτeiω

−
n τ

[∑
i

Oi,i(τ)

]
e−iω

−
n τ , (8.195)

where the innermost sum refers to the trace over the products of Pauli matrices as result-
ing from the corresponding expressions. The outermost sum over fermionic Matsubara
frequencies, ω−n = (2n+1)π/β for n ∈ Z, is evaluated in a last step using residue calculus
as discussed in Sec. 3 of App. E.
By defining the Fourier transformation of the bosonic fluctuations

α∗(τ) =
1√
β

∑
ω+
n

α̃∗ne
iω+
n τ , α(τ) =

1√
β

∑
ω+
n

α̃ne
−iω+

n τ , (8.196)
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M = 4 (dashed). The arrows mark the direction of rising cutoff, a), and
filling, b), respectively. Any choice of parameters is in accordance with the

validity range of the approach.

where ω+
n = 2nπ/β, n ∈ Z, denotes bosonic Matsubara frequencies, one finds for the first

trace in Eq. (8.192)

Tr [G0B] =
g2

β

∑
ω+
N ,ω

−
n

[
α̃∗N α̃

∗
−N + α̃N α̃−N + 2α̃∗N α̃N

] −(−iω−n )κM + ~ΩM
2 κzM

(−iω−n )2 − (~ΩM
2 )2

(E.38)
= g2

∑
ω+
N

[
α̃∗N α̃

∗
−N + α̃N α̃−N + 2α̃∗N α̃N

] [
κM − κzM tanh

(
β
~ΩM

4

)]
,

(8.197)

Likewise, the second trace in Eq. (8.192) is obtained as

Tr [G0AG0A] =
2g2

β

∑
ω−n ω

−
m

n−m=N

(α̃∗n−m + α̃m−n)(α̃∗m−n + α̃n−m)

[
−ω−n ω+

m −
(
~ΩM

2

)2
]

[
(−iω−n )2 −

(
~ΩM

2

)2
] [

(−iω−m)2 −
(
~ΩM

2

)2
]

(E.38)
= 2g2

∑
ω+
N

[
α̃∗N α̃

∗
−N + α̃N α̃−N + 2α̃∗N α̃N

] ~ΩM tanh
(
β ~ΩM

4

)
(−iω+

N )2 − (~ΩM )2
.

(8.198)
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To proceed, it is convenient to transform use the Fourier representation of S+ accordingly,

S+[α̃∗, α̃] =
∑
ω+
N

[
α̃∗N
(
−iω+

N + ~ω0

)
α̃N + X (g)

(
α̃∗N α̃

∗
−N + α̃N α̃−N + 2α̃∗N α̃N

)]
, (8.199)

such that the Gaussian action of the fluctuation fields can be written as [242]

SG[{α̃∗, α̃}] =
∑
ω+
N≥0

α̃†N S(iω+
N ) α̃N , S(ω+

N ) =

(
S(iω+

N ) R(iω+
N )

R(iω+
N ) S(−iω+

N ),

)
(8.200)

where α̃†N = (α̃∗N α̃∗−N ), α̃N = (α̃N α̃−N )T and

S(iω+
N ) = −iω+

N + ~ω0 + 2X (g) + 2g2

[
κM −

(
κzM +

~ΩM

(ω+
N )2 + (~ΩM )2

)
tanh

(
β
~ΩM

4

)]
,

R(iω+
N ) = 2X (g) + 2g2

[
κM −

(
κzM +

~ΩM

(ω+
N )2 + (~ΩM )2

)
tanh

(
β
~ΩM

4

)]
. (8.201)

The corresponding path integral over the fluctuating fields can now be evaluated exactly
and the eigenvalues of the fluctuating fields correspond to the poles of (det S)−1 (cf. Sec. 3
of App. D). The determinant of S is easily obtained and given by

detS(iω+
N ) =

∏
N≥0

[
(ω+
N )2 + (~ω0)2 + 4g2~ω0

[
χ̃

(2)
M,ν + κM

−
(
κzM +

~ΩM

(ω+
N )2 + (~ΩM )2

)
tanh

(
β
~ΩM

4

)]]
,

(8.202)

where the explicit definition of X in second-order approximation was used. This result
is in accordance with Ref. [95]. From analytic continuation ω+

N 7→ −iE [239, 241, 242] one
finds then the eigenenergies of the fluctuations above the ground-state at T = 0

2ε2± = (~ω0)2 + (~ΩM )2 + 4g2(ρM,ν + 1)±
[[

(~ΩM )2 − (~ω0)2
]2

+ 16g2~ω0~ΩM

+8g2(ρM,ν + 1)
(
2g2(ρM,ν + 1)

)
+ (~ω0)2 − (~ΩM )2

] 1
2 ,

(8.203)

which coincide in the absence of the dynamically generated terms, i.e. ρM,ν = −1, with
the fluctuation energies in the original Dicke model (cf. Subsec. 3.3.4). Figure 8.13 shows
the photonic branch in the normal phase as a function of g at M = 1 and B = 5 T.
The excitation gap narrows as g approaches the critical point and vanishes precisely at
g = g

(2)
c,M,ν . The closure of the excitation gap is associated with the divergence of the

characteristic length scales of the system and thus a typical feature for continuous quan-
tum phase transitions [156]. The power law determining the behavior close to the critical
point is thereby similar to the one valid in the original Dicke model, Eq. (3.88), but devi-
ates from the path integral approach of the full-many body Hamiltonian. This is shown
in Fig. 8.13.
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FIGURE 8.13: Excitation spectra of the photonic branch for B = 5 T and
M = 1 as a function of the coupling for the generalized Dicke Hamilto-
nian (solid, blue), the path integral reference (red, dotted) and the original
Dicke model (dashed, yellow). The closure of the gap between the pho-
tonic branch ε− and the ground-state energy at the critical point is clearly
seen in all three cases. The photonic branches of the generalized Dicke
Hamiltonian and the original Dicke model follow an identical power law,
Eq. (3.88), close to the critical point. The path integral approach of the full

many-body Hamiltonian differs from this behavior.

8.5 Summary

Despite some deviations in the details of the second-order contributions to the effective
Dicke Hamiltonian, the main result of Ref. [95] remains valid when choosing an iden-
tical, cutoff-independent regularization approach. However, the interpretation of these
results might be altered. The authors of Ref. [95] conclude from the critical point being
predicted for a parameter regime that exceeds the validity range of the underlying per-
turbative SW approach that superradiance is prohibited in Landau-quantized graphene.
However, the only statement which can safely be concluded is that within the validity
range of the approach under usage of the proposed cutoff-independent regularization no
superradiant phase transition is predicted. The broad statement of a phase transition to
be generally prohibited is certainly ambitious when applying an approach with a narrow
validity range in the first place. Anyway, the limitation of the allowed parameter ranges
within this particular regularization can be regarded as the bottleneck of the consider-
ations of Ref. [95], as even the actual coupling of the system is rarely compatible with
it.
However, when allowing for rigid ultraviolet cutoff regularization the predicted critical
point is found within the validity range of the SW approach. Especially the second-order
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approximation predicts the critical point almost identical to the result obtained within
the path integral approach of the full-many body Hamiltonian. However, the deviations
of the results for the investigated selection of key features indicating superradiance, the
photon occupation and the excitation spectrum, intimate that the effective Dicke model
is not providing a sufficient substitute of the full many-body Hamiltonian. The most cru-
cial deviation concerns the scaling behavior of the photon occupation for rising Fermi
level. In particular, the result obtained from the generalized Dicke Hamiltonian contra-
dicts the behavior obtained for the path integral approach as well as the tight-binding
simulation. Furthermore, the limited validity range of this approach is an issue which is
circumvented when applying the path integral approach of the full many-body Hamilto-
nian.
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Chapter 9

Conclusion and outlook

During this thesis the equilibrium superradiant phase transition of Landau-quantized
graphene has been considered. The focus of the investigation has mainly addressed the
quantum critical behavior of the system within Dirac approximation. The aim of this
thesis was to provide a constructive contribution to the controversial discussion [93–
95] about the existence of this collective radiation phenomenon in Landau-quantized
graphene. The theoretical investigations have been partially supported with an inde-
pendent tight-binding simulation of graphene which was solely based on microscopic
information. A similar numerical approach has not been applied in previous publica-
tions on this particular subject [93–95].

9.1 Summary of the thesis and conclusion

For the purpose of this thesis, the main aspects of the underlying theoretical concepts
were introduced in Part I.
As the phenomenon of superradiance is a purely quantum effect and requires the concept
of quantum vacuum fluctuations, the foundations of the canonical quantization of the
electromagnetic field and its interaction with charged matter were introduced in Chap. 2.
This was complemented by a brief introduction into the quantum optical subfield of cav-
ity quantum electrodynamics.
Based on these concepts, the original Dicke model was derived in Chap. 3. Then, the
phenomenon of Dicke superradiance, denoting the collective spontaneous decay of a
dense cloud of two-level atoms prepared in an excited state, was introduced. This dis-
cussion was complemented by investigating the second-order superradiant phase tran-
sition exhibited by the underlying model in the thermodynamic limit. Thereby, a catalog
of generic features indicating the corresponding quantum phase transition was derived
and discussed step by step. It was seen that the typical ground-state observables, cavity
occupation, atomic polarization and the ground-state energy, are extensive quantities in
the superradiant phase and thus scale with the number of atoms. Furthermore, the ex-
citation spectrum of quantum fluctuations was discussed with the focus on the photonic
branch. The gap between the photonic branch and the ground-state energy closes as the
system approaches the critical point from either direction according to a power law with
universal exponents. In contrast to Dicke superradiance, the superradiant phase transi-
tion is an artifact of inappropriate approximation applied onto the derivation of the Dicke
Hamiltonian. The correction of this insufficiency gives rise to a no-go theorem prohibit-
ing superradiant phase transitions in systems with parabolic dispersion.
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The derivation of the no-go theorem was provided by Chap. 4 and supplemented by the
discussion of three recently proposed exceptions to it. One of these proposals [93] pre-
cisely concerns the emergence of a superradiant quantum phase transition in Landau-
quantized graphene as the original no-go theorem does not apply onto systems with lin-
ear dispersion. After a brief summary of the controversial discussion [94, 95] which was
triggered by this proposal, the main properties of graphene were introduced in Chap. 5
on the basis of the lattice properties of the material.
Thus, the effective Dirac model was derived as a low-energy approximation in the vicin-
ity of the K- and K ′-point and discussed in the presence of a quantizing uniform mag-
netic field which gives rise to Landau quantization. Then, after the discussion of the
single-particle light-matter interaction Hamiltonian in Dirac approximation, the many-
body Hamiltonian of the Landau-quantized graphene embedded in an optical cavity was
derived in second quantization. The resulting expression provided the basis for the in-
vestigations on the superradiant quantum critical behavior discussed in Part II.

Some of the analytic results obtained in Part II have been underpinned by a numerical
tight-binding simulation based on a microscopic implementation of both, the hexago-
nal lattice and the cavity mode. Therefore, the properties of the numerical setup were
discussed in Chap. 6, starting with the evaluation of the validity range of the Peierl’s
substitution which provides the generic basis for the implementation of vector potentials
into tight-binding simulations. The electromagnetic vector potential was thereby im-
plemented within matrix representation of the bosonic operators in a truncated Hilbert
space. Thereby convergence with respect to the dimension of the truncated Hilbert space
was ensured and obtained for remarkably low dimensions compared with similar inves-
tigations concerning the original Dicke mode. Complementing, the formation of Landau-
level clusters in the simulated finite-size systems of various spacial extension was dis-
cussed and compared with the effective Dirac description and its extension accounting
for trigonal warping of the Dirac cones. It has been found that the tight-binding spectra
approximately reveal the validity range of the analytic Dirac model. This is indicated
by a rather sudden breakdown of the formation of Landau-level clusters above a certain
energy threshold due to further warping of the bands when moving away from the Dirac
points. Furthermore, a criterion for the evaluation of the approximate degeneracy of the
Landau-level clusters has been formulated. The values of the approximate degeneracy
have then been extracted from the considered tight-binding spectra. This is crucial, as
the approximate degeneracy of the Landau-level clusters takes the role of the number of
atoms in the Dicke model and explicitly entered the simulation to provide an additional
proof of the consistency for the comparison with the analytic results. Remarkably, it has
been found that the tight-binding simulation shows distinct signatures of superradiance
as the photonic occupation of the cavity rises from zero to a non-zero value when a criti-
cal coupling is exceeded. Thereby, the complete tight-binding spectrum was considered.
The evaluation of the simulation results however was performed in Chap. 7 by simulta-
neous comparison with analytic predictions.
For the analytical examination of the superradiant critical behavior of Landau-quantized
graphene within Dirac approximation two approaches have been chosen. The first method
was investigated in Chap. 7 and is provided by a path integral approach for the grand-
canonical partition sum of the many-body Hamiltonian. This approach allows an exact
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integration of the fermionic degree of freedom. The second approach, found in Chap. 8,
is identical with the technique applied in Ref. [95] where a generalized Dicke Hamilto-
nian for the last occupied and first unoccupied Landau level is perturbatively derived
by means of a many-body Schrieffer-Wolff transformation. This approach has been ex-
tended from second- to fourth-order approximation during this thesis.
As both approaches are based on the effective Dirac model, proper regularization of con-
tributions stemming from the valence band was required. For each analytic approach
two regularization techniques have been considered: The first one is similar for both
approaches and provided by the introduction of a rigid ultraviolet momentum cutoff.
Though violating gauge invariance in the presence of gauge potentials this technique is
commonly applied when investigating light-matter interaction effects in graphene [24,
98–102]. The second regularization method differs for both analytic approaches but
yields a cutoff-independent result in both cases. In case of the path integral approach this
regularization method is provided by a rotating-wave like approximation which omits
inter-band transitions as proposed in Ref. [93]. Thereby, a slight modification of the par-
ticular approach suggested in Ref. [93] has been considered. The cutoff-independent
regularization of the SW ansatz was adopted from Ref. [95] and results from subtraction
of all cutoff-dependent contributions from the considered terms in the effective Hamilto-
nian.

The particular investigations discussed in Chap. 7 are further summarized as follows:
After exactly integrating over the fermionic degree of freedom, the effective action result-
ing for the bosonic mode has first been studied analytically in the normal phase within
both regularization methods. In the thermodynamic limit, an analytic expression for
the critical point has been found for either regularization. This point is associated with
the normal phase no longer determining the ground-state properties of the system and
thus indicating critical behavior in analogy to similar considerations on the Dicke model.
The critical points in Dirac approximation were then compared with the actual coupling
strength of the system which is determined by the microscopic properties of the Dirac
fermions and the cavity mode. Thereby, the parameter ranges required to actually reach
the critical point in equilibrium have been pinned for either regularization. It has been
found that the cutoff-independent result predicts a phase boundary at large fillings in ac-
cordance with Ref. [93] where similar regularization is applied. This has been contrasted
by the cutoff-regularized phase boundary which is predicted for rather low and exper-
imentally feasible [28–30] fillings and magnetic fields. The analytical calculation of the
critical coupling has been extended by a small trigonal-warping correction of the Landau
levels for comparison with the independent tight-binding simulation. It has been found
that the corresponding cutoff-regularized result convincingly predicts the critical point
emerging from the simulation whereas the cutoff-independent one overestimates the nu-
merical result. This indicates that cutoff regularization provides a proper description of
the actual properties of graphene in this context.
The comparison of the ground-state energy and the cavity occupation has confirmed this
further: Thereby, the evaluation of the partition sum beyond the critical point was per-
formed numerically. The photonic occupation and the ground-state energy then have
been compared with the tight-binding simulation. It has been found that the path integral
approach as well as the independent tight-binding approach show distinct signatures of
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superradiance as the photon occupation above the critical coupling assumes a non-zero
value. Thereby, the tight-binding result indicates a second-order quantum phase transi-
tion similar as obtained from the path integral approach for cutoff regularization. This
has been contrasted by investigating the cutoff-independent equivalent which exhibits a
first-order quantum phase transition when the Fermi level lies between the Landau levels
M = 1 and M + 1. From this crucial deviation along with the insufficiencies regarding
the proper prediction of the critical point when comparing with the numerical simulation
the following conclusion has been drawn:
This particular choice of regularization provides an inadequate description of the actual
processes in the system. In consequence, inter-band transitions seem to play a crucial role
in the emergence of superradiance in Landau-quantized graphene.

Thus, the cutoff-regularized result for the photon occupation and the tight-binding sim-
ulation show convincing qualitative agreement concerning the scaling of this observable
with respect to the cutoff and the filling. In both cases, the value of photon occupation
increases as the respective parameter rises. Even though the approximate degeneracy of
the Landau-level clusters appearing in the tight-binding spectra are finite and far from
resembling a thermodynamic limit, a rather sharp phase boundary has been found in the
evaluation of the photon occupation.
However, also differences in the cutoff-regularized result for the photon occupation and
the tight-binding simulation have been seen. The former predicts a rather steep increase
of the photon occupation close to the critical coupling. This deviates from the rather
linear behavior obtained from the simulation. Furthermore, the path integral approach
has been found to overestimate the value of the photon occupation compared with the
tight-binding simulation. Whether this results from finite-size effects affecting the latter
requires further investigations.
Nevertheless, the cutoff-regularized path integral approach resembles a number of key
features which emerge from the tight-binding simulation. This includes in particular the
proper prediction of the critical point, the order of the phase transition and the qualita-
tive scaling behavior of the photon occupation for different values of the cutoff and the
Fermi level. Thus, this approach can be regarded as a suitable ansatz for the investigation
of collective radiation effects in Landau-quantized graphene. However, the argument of
gauge violence tied to this approach still requires further discussion on a fundamental
level.
Further investigations on the spectrum of quantum fluctuations above the ground-state
of the path integral approach within cutoff regularization have shown an asymmetric clo-
sure of the excitation gap. Thereby, the critical exponents depend on the direction from
which the phase boundary is approached. This contrasts the behavior of the correspond-
ing quantity in the original Dicke model where the critical exponents of the power law
are identical for either direction.

Chapter 8 provided an extension of the considerations discussed in Ref. [95]. Thereby, an
effective Dicke-like Hamiltonian for the last occupied and first unoccupied Landau level
has been derived by means of a Schrieffer-Wolff transformation. This perturbative ap-
proach has been extended from second order, as considered in Ref. [95], to fourth order.
Within this approach additional terms which are quadratic in the bosonic mode appear as
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dynamically generated corrections of the Dicke-like Hamiltonian. In addition to the reg-
ularization approach applied in Ref. [95] also cutoff regularization has been investigated.
By identical evaluation as found in Ref. [95], small deviations in the details of the effec-
tive contributions to the Hamiltonian arising from the transformation have been found in
comparison with Ref. [95]. However, from the evaluation of the cutoff-independent effec-
tive Hamiltonian in second-order approximation no prediction of critical behavior could
be made. This is due to the critical point obtained within this approach lying beyond
the validity range of the Schrieffer-Wolff approach. This validity range is thereby deter-
mined by the transition frequency of the last occupied and the first unoccupied Landau
level and narrows as the filling increases. The conclusion drawn in this thesis differs from
the one provided in Ref. [95], where the authors interpret an identical result as a modified
no-go theorem for the emergence of superradiance in graphene. From the fourth-order
result derived within this thesis no critical point could be found at all. As convergence
of the perturbation series obtained from Schrieffer-Wolff approach is not mandatory in
a many-body case, this result provides no robust justification for similar conclusion as
drawn by Ref. [95].
By allowing for cutoff-dependent regularization, the predicted phase boundary is com-
patible with the validity range of the approach when the cutoff is much larger than the
Landau level index of the last occupied level. In this parameter range also convincing
agreement with the phase boundary obtained within the path integral approach for an
identical regularization has been found especially for the second-order approximation.
However, the perturbative result slightly underestimates the path integral prediction.
This underestimation is enhanced in fourth-order approximation of the effective Dicke-
like Hamiltonian. The photon occupation in second-order approximation shows also
typical characteristics of a second-order quantum phase transition with a quadratic de-
pendence on the coupling parameter. The scaling with varying cutoff is thereby similar
to the one obtained for the photon occupation of the path integral approach and the sim-
ulation. However, a parabolic dependence on the coupling parameter could not be found
in the evaluation of the approaches, discussed in Chap. 6 and 7. Note that a direct com-
parison of the simulation with the perturbation approach has not been possible during
this thesis. This is due to the latter requiring values for the cutoff which were not feasible
within the simulation. Even more crucial is however the deviation of the scaling behavior
of the photon occupation for varying Fermi level. The effective Dicke-like Hamiltonian
predicts a decrease of the photon occupation as the Landau level increases. This contra-
dicts the results obtained from the path integral approach and the tight-binding simula-
tion. The excitation spectrum obtained for the normal phase of the second-order effective
Dicke-like Hamiltonian within cutoff regularization also shows deviations from the path
integral equivalent. The power law associated with the vanishing photonic branch close
to the critical point rather reveals the critical exponents obtained for the original Dicke
model than the one found for the path integral equivalent for identical parameters.

With this, the main conclusion of the investigations discussed in this thesis can be drawn:
The comparison of the critical points and the photon occupation resulting from the tight-
binding simulation has indicated that each of the considered approaches fails in the
proper description when the regularization is chosen cutoff-independent. In contrast,
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any of the three considered approaches shows distinct signatures of a second-order su-
perradiant quantum phase transition in Landau-quantized graphene when a rigid ultra-
violet cutoff is applied. Thereby, convincing agreement of all approaches has been found
for the phase boundary. According to the path integral approach and the simulation this
phase boundary is predicted for an experimentally already feasible parameter range [28–
30, 55] The applied analytic methods qualitatively resemble the scaling behavior of the
photon occupation obtained for the simulation for different values of the cutoff. How-
ever, the scaling behavior predicted from the perturbative approach for different Fermi
levels contradicts the results obtained from the path integral approach and the simula-
tion.

Despite all remaining open questions, the results obtained within this thesis might though
provide a constructive contribution to the controversial discussion about the existence of
a superradiant phase transition. Especially the tight-binding simulation brought in new
aspects concerning the issue of regularization tied to the effective Dirac description of
the system in this context. The application of an ultraviolet cutoff is commonly used in
related subfields of graphene research [24, 98–102] but has not been investigated in the
context of superradiance [93–95]. However, this regularization approach is still under
recent debate [96, 97]. Thus, also the understanding of superradiant critical behavior in
Landau-quantized graphene requires further research in this context. Thereby, new paths
for scientific research related to the phenomena of collective radiation might be opened
under theoretical but also experimental perspectives.

9.2 Proposals for future investigations

The analysis of the differences emerging from the considered approaches certainly re-
quires further investigation. Thereby, also effects stemming from a finite Landau-level
degeneracy could be included as a correction to the thermodynamic limit. This can be
achieved for both analytic methods within a perturbative expansion into orders of the
degeneracy similar as considered in Refs. [79, 178, 179, 239] for the original Dicke model.
Additionally, one should aim for the completion of catalog of generic features presented
on the example of the original Dicke model. This concerns in particular the polarization
of the solid state system and the identification of the symmetry which broken in the su-
perradiant phase.

Furthermore, it would be interesting to investigate a slightly modified Schrieffer-Wolff
transformation within cutoff-regularization. In particular, Ref. [95] proposes a transfor-
mation where the complete valence band is “integrated”, i.e. compensated by an appro-
priate transformation. The effective Hamiltonian will not be reminiscent of an extended
Dicke model but might offer further insights into the underlying processes from an al-
tered perspective. The evaluation of the resulting Hamiltonian can then be achieved by
meas of a path integral approach. The advantage of this modification is due to an ex-
tended validity range of the perturbation series as the energy gap of the corresponding
block-diagonal subspaces is determined by the transition energy of the zeroth and first
Landau level.
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An interesting path for further considerations in this subfield of graphene research would
be provided by additionally investigating Coulomb interaction. This has already been
briefly touched in Ref. [93] finding the critical point to persist within similar cutoff-
independent regularization as applied in Chap. 7 of this thesis. However, it would be
interesting how this result is altered when differently regularized and compared with a
numerical simulation.

Another novel path concerns the effect of the superradiant phase on the transport prop-
erties of graphene. This is interesting as transport has been rarely considered in the entire
field of research on collective radiation phenomena. However, studies on a single-particle
system in a state analogous to Dicke superradiance propose [246] distinct changes in the
transport properties such as a maximization of the electronic transmission at the tran-
sition point. Thus, investigating the effect of the superradiant phase in the context of
Landau-quantized graphene holds the potential to gain further insight into the underly-
ing processes. Thereby one might also obtain further signatures of the superradiant state
of the system. This in turn might open new possibilities for experimental measurements
of superradiance in Landau-quantized graphene.
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Appendix A

Classical electrodynamics in
Coulomb gauge

This chapter provides the derivation of the classical Hamiltonian function describing the
interaction ofN point charges with electromagnetic radiation. To this end, one starts with
the postulation of the classical Lagrangian for electrodynamics based on the Maxwell
equations and the Lorentz force law. From the Lagrangian formulation based on gener-
alized coordinates and velocities one is then able to identify the canonical momenta and
thus transfer the classical field theory into the Hamiltonian formulation. One key quan-
tity of the Hamiltonian formalism is given by the fundamental Poisson brackets which
determine the dynamics of the considered system. Moreover, the fundamental Poisson
brackets provide the formal basis for the formulation of a quantized theory. In partic-
ular, the quantum theory of electrodynamics is derived from the fundamental Poisson
brackets of corresponding classical field theory (cf. Chap. 2). The following discussion is
mostly leaned on Ref. [103].

A.1 Maxwell equations

Since Maxwell equations provide the connection between the electric and the magnetic
field E and the magnetic field B on the most fundamental level of electrodynamics it
is convenient to recapitulate them when investigating on classical electromagnetic radia-
tion. The Maxwell equations in general, differential representation read

∇×B(q, t)− µ0ε0∂tE(q, t)) = µ0j(q, t), (A.1)
∇×E(q, t) + ∂tB(q, t) = 0, (A.2)

∇ ·E(q, t) =
ρ

ε0
, (A.3)

∇ ·B(q, t) = 0, (A.4)

where ε0 and µ0 denote the vacuum permittivity and permeability, respectively. In free
space, meaning vanishing charge and current densities, ρ = 0 and j = 0, the Maxwell
equations (A.1 – A.3) are also known as Ampere law, Faraday law and Gauss law, respec-
tively.
Further details concerning Maxwell equations in the presence of a dielectric medium with
finite permittivity εr and permeability µr can be found in any textbook on classical quan-
tum electrodynamics, such as Ref. [247]. As a first important insight one can conclude
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from Eq. (A.4) that there exist no magnetic monopoles. Consequently, the magnetic field
B can be represented as the rotation of a vector potential A, i.e. B = ∇×A. This holds
true for any choice ofB since the divergence of the curl of any vector field yields the zero
and vice versa. Similar to this also the curl of the gradient of any arbitrary scalar field Λ
results in the zero vector, as easily proven. Consequently, the vector potential A is not
unique but only fixed up to the gradient of a gauge field Λ without affecting the magnetic
field, i.e.

B(q, t) = ∇× [A(q, t) +∇Λ(q, t)] . (A.5)

Inserting this identity for the magnetic field into Eq. (A.2) one finds for the electric field
in a similar manner

E(q, t) = −∇Φ(q, t)− ∂t [A(q, t) +∇Λ(q, t)] . (A.6)

The presence of a time-dependent magnetic field B induces an electric vortex field in
addition to the electric field resulting from the scalar potential Φ(q, t). According to
Eq. (A.2) the gauge invariance of the magnetic field (A.5) extends to the electric field
according to Eq. (A.6).

For the derivation of the Hamiltonian function of classical electromagnetism, it is conve-
nient, to use the Fourier transform (cf. Sec. E.1) of the magnetic and electric field, yielding

B̃(k, t) = ik × Ã(k, t), (A.7)

Ẽ(k, t) = −ikϕ̃(k, t)− ∂tÃ(k, t), (A.8)

without the gauge field Λ. During the following, kwill be associated with the propagation
direction of the electromagnetic field.

A.2 Lagrangian of classical electromagnetism

According to the basic ideas underlying the Lagrangian formulation of classical mechan-
ics one constructs the Lagrangian of classical electromagnetism Lem precisely in the way that
the inhomogeneous Maxwell equations (A.1, A.3) are obtained from the Euler-Lagrange
equations corresponding to Lem with respect to the generalized coordinates ϕ̃, Ã and the
generalized velocities ˙̃ϕ, ∂tÃ [103]. The homogeneous Maxwell equations enter the La-
grangian by means of the relations (A.7, A.8) for the fields B̃, Ẽ and the potentials ϕ̃, Ã.
Regarding these constrains, the Lagrangian of classical electromagnetism in momentum
space is postulated to read [103]

Lem[ϕ̃, Ã; ∂tϕ̃, ∂tÃ] =

∫
R3

d3k

(2π)3
L′em[ϕ̃, Ã; ∂tϕ̃, ∂tÃ], (A.9)

where L′em denotes the Lagrangian density, defined as

L′em[ϕ̃, Ã; ∂tϕ̃, ∂tÃ] =
ε0
2

[∣∣∣Ẽ(k, t)
∣∣∣2 − c2

∣∣∣B̃(k, t)
∣∣∣2]− ρ̃(k, t)ϕ̃(−k, t) + j̃(k, t) · Ã(−k, t).

(A.10)
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The moduli squared of the fields B̃, Ẽ enter due to the constraint of a real-valued La-
grangian and fields in position space [103]. More generally, any Fourier transform enter-
ing the Lagrangian has to fulfill the relation

f̃(−k) = f̃∗(k) (A.11)

in order to provide a real-valued Lagrangian and thus in turn real-valued fields B, E.
The implementation of this constraint into the definition of Lem is formally achieved by
the restriction [103] of the integration from the complete reciprocal space R3 to the recip-
rocal half space H3 = {(kx, ky, kz)|kx ≥ 0} in Eq. (A.9). This is reasonable since by knowing
the value of an observable f̃ in the half space H3 one also knows its value in the com-
plementary half space by complex conjugation according to the constraint (A.11). The
corresponding Lagrangian is therefore obtained from

Lem[ϕ̃, Ã; ∂tϕ̃, ∂tÃ] =

∫
H3

d3k

(2π)3
Lem[ϕ̃, Ã; ∂tϕ̃, ∂tÃ], (A.12)

with Lem defined as

Lem[ϕ̃, Ã; ∂tϕ̃, ∂tÃ] = ε0

[∣∣∣Ẽ(k, t)
∣∣∣2 − c2

∣∣∣B̃(k, t)
∣∣∣2]

− ρ̃∗(k, t)ϕ̃(k, t)− ρ̃(k, t)ϕ̃∗(k, t) + j̃
∗
(k, t) · Ã(k, t) + j̃(k, t) · Ã∗(k, t). (A.13)

Thereby the first and third contribution in the second line of Eq. (A.13) result from the
Fourier transform of the products ρϕ and j · A, respectively, known as Plancherel iden-
tity (E.3) in view of (A.11). Contrarily, the second and fourth contribution in the second
line of Eq. (A.13) arise from the restriction of k ∈ H3 in view of Eq. (A.11).
In Eq. (A.13) ε0 and c denote the universal constants vacuum permittivity and and speed
of light. Furthermore,

ρ̃(k, t) =
N∑
j=1

qje
−ik·qj ⇔ ρ(q, t) =

∑
j

qjδ(q − qj) (A.14)

denotes the charge density of N point charges qj , each localized at the position qj in
reciprocal (left) and real space (right). For the sake of clearness, normal letters refer to
scalar observables in the chosen notation convention. Hence, qj denotes the charge of
the jth particle. By contrast, bold letters denote vector quantities, such as the position of
the jth particle, qj . The charge current associated with the motion of these particles is
defined as

j̃(k, t) =
N∑
j=1

qj q̇je
−ik·qj ⇔ j(q, t) =

∑
j

qj q̇jδ(q − qj). (A.15)

Therefore the last four contributions to the r.h.s. of Eq. (A.13) describe the interaction of
the particles with the electromagnetic field. As a consequence of the gauge invariance
of the fields B̃, Ẽ also the Lagrangian density (A.13) and thus the Lagrangian (A.12) is
invariant under gauge transformations [103].
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Choosing a specific gauge function Λ (A.5, A.6) diminishes the degrees of freedom enter-
ing the theory. Therefore, the choice of a specific gauge function Λ or gauge fixing often
yields a formal simplification. Throughout this thesis, the gauge degree of freedom shall
be fixed to Coulomb gauge,

k · Ã(k, t) = 0 ⇔ ∇ ·A(q, t) = 0, (A.16)

which is the most appropriate choice regarding investigations on electromagnetic radia-
tion [103]. Thereby the part of Ãwhich is parallel to k, also referred to as longitudinal part,
is set to zero. The vector potential is then fully described by the transverse part Ã⊥. For
that reason Coulomb gauge is sometimes also referred to as transverse gauge or radiation
gauge, according to the purely transverse properties of electromagnetic radiation.
The longitudinal and transverse part of Ã are formally obtained from

Ã‖(k, t) = ek Ã‖(k, t),

Ã⊥(k, t) = Ã(k, t)− Ã‖(k, t),
(A.17)

where Ã‖(k, t) = ek · Ã(k, t) is a complex number and ek = k/k, with k = |k|, denotes
the unit vector parallel to k as Fig. 2.1 depicts. According to the gauge condition (A.16)
Ã⊥ is in general described by two independent components

Ã⊥(k, t) = Ã⊥,1(k, t) + Ã⊥,2(k, t), Ã⊥,1(k, t) ⊥ Ã⊥,2(k, t). (A.18)

These components can be expressed in terms of the basis vectors η1,k⊥η2,k, spanning the
plane perpendicular to the propagation direction ek as Fig. 2.1 illustrates. Therefore, each
of the independent Ã⊥,n components reads

Ã⊥,n(k, t) = ηn,k Ã⊥,n(k, t), n = 1, 2, (A.19)

where Ã⊥,n(k, t) = ηn,k ·Ã(k, t) is a complex number in general. The charge current j̃ can
be decomposed into its longitudinal and transverse part similar to Eq. (A.17). Thereby,
the scalar product of j̃‖ with Ã⊥ is zero.
Summarizing, the Lagrangian density Lem in Coulomb gauge reads

Lem[ϕ̃, Ã⊥; ∂tϕ̃, ∂tÃ⊥] = ε0

[∣∣∣ikϕ̃− ∂tÃ⊥∣∣∣2 − c2
∣∣∣ik × Ã⊥∣∣∣2]

− ρ̃∗ϕ̃− ρ̃ϕ̃∗ + j̃
∗
⊥ · Ã⊥ + j̃⊥ · Ã

∗
⊥, (A.20)

where the definitions of the fields B̃, Ẽ according to Eqs. (A.7, A.8) entered. As the
charge current j̃, Eq. (A.15), is explicitly dependent on the generalized velocities q̇i of
the point charges also the Lagrangian density Lem carries an explicit dependence on q̇i,
i = 1, . . . , N .
For the sake of brevity and simplicity the arguments of the functions entering the La-
grangian density Lem are mostly omitted during the following.
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The result is further simplified by expanding the first modulus squared on the r.h.s. under
application of the gauge constraint (A.16):

Lem[ϕ̃, Ã⊥; ∂tϕ̃, ∂tÃ⊥] = ε0

[
|ikϕ̃|2 +

∣∣∣∂tÃ⊥∣∣∣2 − c2
∣∣∣ik × Ã⊥∣∣∣2]

− ρ̃∗ϕ̃− ρ̃ϕ̃∗ + j̃
∗
⊥ · Ã⊥ + j̃⊥ · Ã

∗
⊥. (A.21)

Note that the Lagrangian densityLem is independent of the generalized velocity ˙̃ϕ. There-
fore the scalar potential is regarded to be a static variable which can be eliminated from
the Lagrange density Lem by solving the corresponding Euler-Lagrange equation for ϕ̃∗

0 =
∂Lem

∂ϕ̃∗
= ε0k

2ϕ̃(k, t)− ρ̃(k, t) ⇔ ϕ̃(k, t) =
ρ̃(k, t)

ε0k2
. (A.22)

Different from the discrete case of point particles, the Euler-Lagrange equations for the
classical fields can also be obtained from the Lagrangian density [103]. By defining func-
tional derivatives it is also possible to equivalently derive the Euler-Lagrange equations
from the Lagrangian itself [103].
However, substituting the result (A.22) for ϕ̃ intoLem (A.21) results, after some rearrange-
ments of the terms related to ϕ̃, in

Lem[Ã⊥; ∂tÃ⊥] = L̃em[Ã⊥; ∂tÃ⊥]− 2

ε0

|ρ̃(k, t)|2
k2

, (A.23)

where L̃em is defined by

L̃em[Ã⊥; ∂tÃ⊥] = ε0

[∣∣∣∂tÃ⊥∣∣∣2 − c2
∣∣∣ik × Ã⊥∣∣∣2]+ j̃

∗
⊥ · Ã⊥ + j̃⊥ · Ã

∗
⊥. (A.24)

The static scalar potential ϕ̃ is successfully eliminated from the Lagrangian density and
thus from the Lagrangian Lem, Eq. (A.12), so that both dependent only on the general-
ized coordinate Ã and corresponding velocity ∂tÃ. The last term in the second line of
Eq. (A.23) can be identified with the Coulomb potential [103] after insertion of Lem (A.23)
into the Lagrangian Lem (A.12):

VC =
2

ε0

∫
H3

d3k

(2π)3

|ρ̃(k, t)|2
k2

= ΣC +
∑
i>j

qiqj
4πε0|qi − qj |

, (A.25)

where ΣC denotes the divergent self energy. The second term in Eq. (A.25) describes the
electrostatic interaction of all point charges.
The Lagrangian Lem (A.12) is therefore of the following form

Lem[Ã⊥; ∂tÃ⊥] = L̃em[Ã⊥; ∂tÃ⊥]− VC, (A.26)
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where L̃em arises from L̃em, reading

L̃em[Ã⊥; ∂tÃ⊥] =

∫
H3

d3k

(2π)3

{
ε0

[∣∣∣∂tÃ⊥∣∣∣2 − c2
∣∣∣ik × Ã⊥∣∣∣2]+ j̃

∗
⊥ · Ã⊥ + j̃⊥ · Ã

∗
⊥

}
.

(A.27)
By aiming at a comprehensive description of the dynamics of a system of N charged
particles interacting with the electromagnetic field one also has to take into account the
kinetic energy of the particles. The Lagrangian of this combined system is then given
by [103]

L[{qi}, Ã⊥; {q̇i}, ∂tÃ⊥] =
N∑
i=1

mi

2
q̇2
i − VC + L̃em[Ã⊥; {q̇i}, ∂tÃ⊥], (A.28)

assuming that there are no further external potentials acting on the particles. Further-
more, the argument of the Lagrangian L̃em accounts now explicitly for the dependence
of the generalized velocities {q̇i} of the point charges due to the definition of the charge
current j̃ according to Eq. (A.15). The mass of the i-th particle is denoted by mi and {qi}
represents a short-hand notation for the generalized coordinates q1, . . . , qN of the par-
ticles. Thereby, the generalized coordinate of each of the particles denotes an object in
R3 in general. Similarly, {q̇i} denote the corresponding generalized velocities q̇1, . . . , q̇N .
Note that the Euler-Lagrange equations of L based on the generalized coordinates and
velocities of the particles yield the Lorentz force law [103].

Since the entire subsequent discussion is exclusively concerned with the transverse part
Ã⊥ of Ã, the index ⊥ is omitted in order to simplify the notation from now on.

A.3 Conjugate momenta of particle and field coordinates

In order to find the classical Hamilton function corresponding to the Legendre transform
of the Lagrangian L (A.28) the momenta conjugate to the dynamical coordinates of the
particles, qi, and fields, Ã, need to be identified. According to classical mechanics there
are as many conjugate momenta as dynamical coordinates entering the Lagrangian. In
view of Eq. (A.28) the conjugate momentum of the ith charged particle is given by

pi =
∂L
∂q̇i

= miq̇i + qiA(qi, t), (A.29)

where the second term on the r.h.s. results from the q̇i-dependence of the charge cur-
rent (A.15) entering the contribution L̃em and thus the full Lagrangian L according to
Eqs. (A.27, A.28).

Similarly, the conjugate momenta for the fieldsB,E are obtained by differentiation of the
Lagrangian density L̃em, Eq. (A.24), with respect to each component of the generalized
velocity ∂tÃ

∗
n [103]:

Π̃n(k, t) =
∂L̃em

∂(∂tÃ
∗
n)

= ε0∂tÃn(k, t), (A.30)
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where n = 1, 2 refers to the two directions of polarization, η1,k and η2,k, according to the
decomposition of the vector potential (A.18, A.19).

A.4 Helmholtz equation and normal coordinates

Before moving to the classical Hamiltonian of electrodynamics as the basis for the canon-
ical quantization of the electromagnetic field, the calculation of the Euler-Lagrange equa-
tions for the classical field coordinates, Ã and ∂tÃ, shall clarify the main characteristics
of classical radiation. The Euler-Lagrange equation can be obtained from the Lagrangian
density in reciprocal space (A.24) by differentiation with respect to the generalized coor-
dinates Ã

∗
n and velocities ∂tÃ

∗
n:

0 =
d

dt

∂Lem

∂(∂tÃ
∗
n)
− ∂Lem

∂Ã
∗
n

= ε0
[
∂2
t + c2k2

]
Ãn(k, t)− j̃n(k, t). (A.31)

Where the identity k× (k× Ã) = k (k · Ã)− (k · k)Ãwas applied. Using the gauge con-
dition (A.16) and k · k = |k|2 yields the corresponding expression proportional to c2 in
Eq. (A.31). The application of the gauge condition in the derivation of Eq. (A.31) empha-
sizes the transverse character of the electromagnetic vector potential and thus according
to Eqs. (A.7, A.8), of the fields B̃, Ẽ.
This inhomogeneous differential equation can also be obtained from Maxwell equations
(A.1 – A.4), proving consistency of the Lagrangian formulation. The homogeneous part
of (A.31), i.e. j̃n = 0, refers to the classical wave equation of electrodynamics in free space,
referred to as the Helmholtz equation. The solutions for each polarization direction are of
the form [103]

Ãn(k, t) = ηn,kÃk [αn(k, t) + α∗n(−k, t)] , (A.32)

where the normalization factor Ãk is defined by

Ãk =

√
~

2ε0ωk
, (A.33)

anticipating the quantum properties of the radiation field, which are discussed in Chap. 2.
In Eq. (A.33) ωk = ck denotes the radiation frequency. In classical electrodynamics the
normalization factor Ãk is mostly absorbed into the normal coordinates [103]

αn(k, t) = αn(k)e−iωkt, (A.34)

α∗n(−k, t) = α∗n(−k)eiωkt, (A.35)

which are regarded as independent Fourier coefficients for each polarization direction n.
The constraint (A.11), which connects an observable in the opposite half space H̃3 =
{(kx, ky, kz)|kx < 0} with its conjugate in H3, is not applicable to αn(k, t) and α∗n(−k, t)
each by its own, i.e. αn(−k, t) 6= α∗n(k, t). This is important to realize since αn(k, t) and
α∗n(−k, t) are associated with the annihilation and creation operator during the procedure
of canonical quantization. To obtain the solution to the Helmholtz equation in position
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space, one can consider the Fourier transform of each component Ãn(k, t) according to

An(q, t) =
1

2

∫
H3

d3k

(2π)2

[
Ãn(k, t)eik·q + Ãn(−k, t)e−ik·q

]
=

1

2
ηn,k

∫
H3

d3k

(2π)2
Ãk
{

[αn(k, t) + α∗n(−k, t)] eik·q + [k→ −k] e−ik·q
}
.

(A.36)

By evaluating the integral over the complete reciprocal space, An takes the simplified
form

An(q, t) = ηn,k

∫
R3

d3k

(2π)2
Ãk
[
αn(k, t)eik·q + α∗n(k, t)e−ik·q

]
. (A.37)

In the source-free case (ρ = 0, j = 0), the magnetic field (A.7) reads

B̃n(k, t) = ik × Ãn(k, t) = ek × ηn,k B̃k [αn(k, t) + α∗n(−k, t)] , (A.38)

with B̃k = ik Ãk. For the electric field (A.8) one finds

Ẽn(k, t) = −∂tÃn(k, t) = ηn,k Ẽk [αn(k, t)− α∗n(−k, t)] , (A.39)

where Ẽk = iωk Ãk. Due to the outer product between the unit vector ek in propagation
direction and the polarization vector ηn,k the magnetic field at a given time t is perpen-
dicular to the corresponding electric field Ẽ and the vector potential Ã. Even though
both fields B̃, Ẽ lie at any time t in the plane normal to the direction of propagation ek
as expected for transverse waves (see Fig. 2.1 for illustration).
According to Eq. (A.32) the generalized velocities and conjugate momenta Π̃n (A.30) can
be expressed in terms of the normal coordinates:

Π̃n(k, t) = ε0∂tÃn(k, t) = −ε0ηn,kẼk [αn(k, t)− α∗n(−k, t)] . (A.40)

From there it directly follows

αn(k, t) =
Ãn(k, t) + i

ε0ωk
Π̃n(k, t)

2Ãk
, (A.41)

α∗n(−k, t) =
Ãn(k, t)− i

ε0ωk
Π̃n(k, t)

2Ãk
, (A.42)

where Ãn = ηn,k · Ãn and Π̃n = ηn,k ·Πn, as defined in Eq. (A.19). This relation between
the normal coordinates and the field coordinates and conjugate momenta emphasizes the
independence of the former.
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A.5 The classical Hamilton function of electrodynamics

Knowing the conjugate momenta pi and Π of the point charges and the fieldsB, Ẽ yields
the classical Hamiltonian of electrodynamics as the Legendre transform of L (A.28):

H =
N∑
i=1

pi · q̇i +

∫
H3

d3k

(2π)3

[
Π̃ · ∂tÃ

∗
+ Π̃

∗ · ∂tÃ
]
− L[{qi}, Ã, {q̇i}, ∂tÃ]. (A.43)

In view of Eq. (A.28) the classical Hamilton function can be decomposed into one part
Hmatter containing all particle degrees of freedom and their interaction with the field, i.e.

H[{qi}, {pi};A,Π] = Hmatter[{qi}, {pi};A] +Hem[A,Π], (A.44)

Hence, the second part,Hem, describes the dynamics of the fields in the source-free space.

Hmatter[{qi}, {pi};A] =
N∑
i=1

[
pi · q̇i −

mi

2
q̇2
i −

∫
H3

d3k

(2π)3

{
j̃
∗ · Ã+ j̃ · Ã∗

}]
+ VC

=
N∑
i=1

[
pi · q̇i −

mi

2
q̇2
i −

∫
R3

d3q qiδ(q − qi)q̇i ·A(q, t)

]
+ VC

=

N∑
i=1

[
pi · q̇i −

mi

2
q̇2
i − qiq̇i ·A(qi, t)

]
+ VC

(A.45)

where the Plancherel identity (E.3) is used in (A.45) to transform the integral from re-
ciprocal to position space. By substituting the generalized velocities of the particles q̇i
according to (A.29) the Hamilton function of the particles is of the familiar form

Hmatter[{qi}, {pi};A] =

N∑
i=1

[pi − qiA(qi, t)]
2

2mi
+ VC. (A.46)

The remaining part describes the dynamics of the fields. Similar to the corresponding
Lagrangian the Hamilton function

Hem[A,Π] =

∫
R3

d3k

(2π)3
Hem[A,Π] (A.47)

can be expressed in terms of the Hamiltonian density Hem. By using (k × Ã) · (k × Ã∗) =

(k ·Ã∗)(k ·Ã)− (k ·k)(Ã ·Ã∗) in view of the gauge condition (A.16) in order to transform
the second modulus squared in (A.27), the Hamiltonian density Hem reads:

Hem[A,Π] =
ε0
2

[
1

ε20
|Π(k, t)|2 + c2k2|Ã(k, t)|2

]
. (A.48)

Note that Hem is evaluated over the complete reciprocal space R3 for convenience. It
is also possible to define the Hamiltonian density H ′em on the half space H3, where the
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simple relationH ′em = 2Hem is valid. By using the representation of field coordinates and
conjugate momenta in terms of normal coordinates (A.32, A.40), the Hamiltonian density
takes the form

Hem =
~ωk

2

2∑
n=1

[αn(k, t)α∗n(k, t) + α∗n(k, t)αn(k, t)] , (A.49)

where −k 7→ k is applied on the last term of the r.h.s. in accordance with Hem being
defined on the complete reciprocal space.

A.6 Poisson brackets of the field coordinates

The Hamiltonian formulation of the respective classical theory described by a set of 3N
independent generalized coordinates qi and conjugate momenta pi comes along with the
definition of the Poisson bracket:

{f, g}q,p =
3N∑
i=1

(
∂f

∂qi

∂g

∂pi
− ∂f

∂pi

∂g

∂qi

)
, (A.50)

where f , g denote functions of the classical phase-space coordinates. One can prove that
the dynamics of a classical observable F is then determined by

dF

dt
= {F,H}+

∂F

∂t
, (A.51)

similar to the description of the dynamics of a quantum mechanical operator within the
Heisenberg equation of motion (B.9). Furthermore by knowing the independent general-
ized coordinates and conjugate momenta of the N particles one can evaluate the Poisson
brackets therefore,

{qiα ,pjβ}q,p = δi,jδα,β,

{qiα , qjβ}q,p = {piα ,pjβ}q,p = 0,
(A.52)

where α, β = x, y, z denotes the spacial degree of freedom of particle i and j, respectively.
Any set of independent generalized coordinates and conjugate momenta satisfying sim-
ilar relations is referred to as a set of canonical coordinates. Some authors [248] denote
these relations (A.52) as fundamental Poisson brackets. In analogy the fundamental Pois-
son brackets for the independent components Ãn, Π̃∗n̄ and normal coordinates αn(k, t),
α∗n(k, t) of the fields [249] are given by

{Ãn(k, t), Π̃∗n̄(k′, t)}q,p = δn,n̄δ(k − k′), (A.53)

{αn(k, t), α∗n̄(k′, t)}q,p =
1

i~
δn,n̄δ(k − k′), (A.54)

where k,k′ ∈ H3. All other Poisson brackets constructed from Ãn and Π∗n̄ are zero.
Note that due to Coulomb gauge fixing (A.16) the representation of the Poisson bracket
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in position space yields a slight modification concerning the δ distribution as comprehen-
sively discussed in Ref. [103].





187

Appendix B

Dynamical representations of
quantum mechanics

This section summarizes and defines the main characteristics of the three most commonly
used dynamical pictures of quantum mechanics: the Schrödinger picture, the Heisenberg
picture and the interaction picture1. Within the mathematical framework quantum me-
chanics is based on, all three representations are equivalent and interchangeable ways to
describe the evolution of quantum systems in time. The transformation from one of these
pictures into another one resembles a change of basis with respect to the time dependen-
cies of the physical quantities. It is accomplished by means of a unitary transformation,
called the time-evolution operator Û(t′, t).
Before discussing the formal differences between the three dynamical representations a
few technical terms should be defined. Further details on this topic can be found in any
textbook on quantum mechanics, e.g. Ref. [119].
According to the postulates of quantum mechanics [119] the state i of a quantum system is
completely characterized by its ket |ϕi〉. This abstract quantity is an element of a linear
vector space, known as the Hilbert space H. In position-space representation the ket |ϕi〉
is associated with the quadratically integrable wave function ϕi(q) = 〈q|ϕ〉i of the quan-
tum system. The measurable probability of finding the considered quantum particle at
position q is given by the modulus squared of the wave function. Furthermore it is also
postulated that every measurable physical observable ai ∈ R is an eigenvalue of a linear
self-adjoint or Hermitian operator Â acting on the vector space of states H, so that

Â |ϕi〉 = ai |ϕi〉 , (B.1)

where {|ϕi〉 ; i = 1, 2, . . . , n} represents the basis of the Hermitian operator Â. Equa-
tion (B.1) holds true for any most general quantum mechanical system, such as in the
description of a spin-1/2 particle or a quantum harmonic oscillator. However there is
one exception where the equivalence to Eq. (B.1) plays a superordinate role in physics:
In analogy to classical mechanics, the operator associated to the energy εi of a quantum
system is referred to as the Hamiltonian Ĥ . Thus, the corresponding eigenvalue equation
reads

Ĥ |ψi〉 = εi |ψi〉 . (B.2)

The basis states {|φi〉 ; i = 1, 2, . . . , n} are called stationary states. This terminology refers

1The interaction picture is sometimes referred to as Dirac picture.
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to the time independence of all related, measurable physical quantities such as the prob-
ability 〈q|ψi〉 = |ψi(q)| of finding the quantum particle with energy εi at position q. By
contrast, measurable observables that result from a superposition of single stationary
states |ψi〉 of a certain Hamiltonian, i.e.

|ϕ〉 =
∑
i

ci |ψi〉 , (B.3)

have a distinct dependence on time. Thereby the Hamiltonian acts as the generator of the
time-evolution of state vectors or operators mediated by the operator [119]

Û(t′, t) = e−
i
~ Ĥ(t′−t). (B.4)

The time-dependent representation of the state vectors |ϕi〉 or operators F̂ depend on the
choice of dynamic representation which is discussed in the following.
Though not mandatory it is convenient [119] to start at the Schrödinger picture, which is
also the representation used throughout this thesis.

B.1 Schrödinger picture

The main characteristics of the Schrödinger picture are [119]

1. the time dependence is completely carried by the state vectors |ψ(t)〉S,

2. all operators are time independent F̂S = const., when not explicitly time-dependent.

The evolution of the state i from an initial time t to a final time t′ > t is provided by the
time-evolution operator Û(t′, t) in the following manner

|ψ(t′)〉i,S = Û(t′, t) |ψi(t)〉S . (B.5)

By combining Eqs. (B.2, B.4, B.5) the dynamics of a stationary state |ψ(t)〉i,S is determined
by the time-dependent version of the Schrödinger equation

ĤS |ψi(t)〉S = i~∂t |ψi(t)〉S . (B.6)

Since {|ψi(t)〉S ; i = 1, 2, . . . , n} denotes a complete set of basis states of the Hamiltonian
Ĥ any arbitrary, time-dependent state |ϕ(t)〉 can be constructed according to Eq. (B.3).

B.2 Heisenberg picture

The main characteristics of the Heisenberg picture can be considered as inverse to the
Schrödinger picture with respect to the formal time dependence of the physical quanti-
ties [119]:

1. all state vectors are time independent |ψ〉H = const.,

2. the time dependence is completely carried by the operators F̂H(t).
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Therefore stationary states are truly independent of the time. The evolution of an oper-
ator F̂H(t) from an initial time ti = 0 to a final time tf can be derived from Eq. (B.5) by
calculating the expectation value of an operator F̂S in the Schrödinger picture

S 〈ψ(t)| F̂S |ψ(t)〉S = S 〈ψ(0)| Û †(t, 0)F̂SÛ(t, 0) |ψ(0)〉S , (B.7)

stating that
F̂H(t) = Û †(t, 0)F̂S Û(t, 0). (B.8)

Equivalent to the dynamical description of state vectors by the time-dependent Schrödinger
equation (B.6) in the Schrödinger picture the dynamics of the time-dependent operator
F̂H(t) in the Heisenberg representation is determined by

d

dt
F̂H(t) =

i

~

[
ĤS, F̂H(t)

]
+ ∂tF̂H(t), (B.9)

which is known as the Heisenberg equation of motion. The canonical commutator [., .] =
[., .]− is defined in Eq. (C.40). Heisenberg’s equation of motion is formally similar to
formulation of the equation of motion for a classical observable (A.51).

B.3 Interaction picture

The interaction picture can be regarded as the interface between Schrödinger and Heisen-
berg picture in a way that both, the operators and the states, formally carry time depen-
dence [119]. Usually it is applied for quantum systems with a decomposable Hamiltonian

ĤS(t) = ĤS,0 + V̂S(t), (B.10)

where ideally ĤS,0 is exactly solvable. Furthermore, ĤS,0 shall not explicitly depend on
time. In the most general case V̂S(t) can be understood as a perturbation or interaction
term which might explicitly depend on time and which does not necessarily commute
with ĤS,0, i.e. [ĤS,0, V̂S(t)] 6= 0. The aim is to find a solution to the corresponding time-
dependent Schrödinger equation,

ĤS |ψi(t)〉S =
(
ĤS,0 + V̂S(t)

)
|ψi(t)〉S = i~∂t |ψi(t)〉S . (B.11)

By defining a new time-evolution operator generated only from ĤS,0,

û(t) = e
i
~ ĤS,0t, (B.12)

one can define a state vector in the interaction picture as

|ψi(t)〉I = û(t) |ψi(t)〉S . (B.13)

Likewise, the interaction picture representation of a potentially explicit time-dependent
operator Ô(t) is defined by

ÔI(t) = û†(t)Ôû(t). (B.14)
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Within the interaction picture one as able to describe the time-evolution of a state vector
|ψi(t)〉I only by regarding the perturbation term V̂I(t), i.e.

i~
d

dt
|ψi(t)〉I = V̂I(t) |ψi(t)〉I . (B.15)

This directly follows from the total derivative of |ψi(t)〉I with respect to t as easily proven
in view of Eq. (B.13) and by application of the Schrödinger equation, Eq. (B.11).
Furthermore one is able to derive a differential equation equivalent to Eq. (B.15) for the in-
teraction picture representation of time-evolution operator Û(t′, t) as defined by Eq. (B.4)
in consideration of the corresponding Hamiltonian Ĥ(t), Eq. (B.10). This directly follows
from inserting

|ψi(t′)〉I = û(t′)Û(t′, t) |ψi(t)〉S = ÛI(t
′, t) |ψi(t)〉I (B.16)

into Eq. (B.17):

i~
d

dt′
ÛI(t

′, t) = V̂I(t
′)ÛI(t

′, t). (B.17)

B.4 Rotating frame in quantum optics

Especially in the field of quantum optics the explicitly time-independent Schrödinger
picture representation of a Hamiltonian or parts of it are referred to as the rotating frame.
The relation between the interaction picture and the Schrödinger picture representation
might sometimes cause confusion especially in this field. This results from the naturally
time-dependent appearance of the photonic operators (2.18) after canonically quantiz-
ing the classical radiation field, as discussed in Sec. 2. Furthermore in many quantum
optics textbooks the distinction between Schrödinger and interaction picture is rarely
found. During this thesis the following convention is applied: If one defines this time-
dependent occurrence of the related Hamiltonian as its interaction picture representation
one finds the, ideally time independent, Schrödinger picture representation by the in-
verse of the transformation (B.14). The following, rather explicitly discussed, example
shall avoid confusion concerning the time dependence of the considered light-matter in-
teraction Hamiltonian during this thesis.

B.4.1 Quantum Rabi Hamiltonian

Suppose a two-level atom interacting with a cavity mode, known as the Rabi Hamilto-
nian [122–124] as found in various textbooks [120]

Ĥ(t) = Ĥcav + Ĥatom + Ĥint(t), (B.18)

where each of the three contributions is defined as

Ĥcav = ~ω0â
†â, (B.19)

Ĥatom = ~Ω ŝz, (B.20)

Ĥint(t) = g(ŝ+ + ŝ−)[â†(t) + â(t)]. (B.21)
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Thereby ω0 denotes the frequency of the radiation mode. Likewise, Ω denotes the transi-
tion frequency of the two-level system, which couples with a strength g to the radiation
mode. As introduced in Sec. 3.1, ŝi, i = zm± denote spin matrices. The time-dependence
of creation and annihilation operator, resulting naturally from canonical quantization,
reads

â†(t) = â†e−iω0t, â(t) = âeiω0t, (B.22)

where â†, â are time-independent operators, i.e. ∂tâ† = ∂tâ = 0. According to the pre-
vious discussion â†, â correspond to the Schrödinger picture as proven during the fol-
lowing. Details on the properties of bosonic creation and annihilation operator â†, â are
discussed in Sec. C.2. According to the previous consideration Ĥ is represented in the
interaction picture. This is demonstrated by applying the inverse of the transformation
defined in Eq. (B.14) on Ĥ . Since all time dependence in the Hamiltonian is assigned to
the photonic degree of freedom, it is sufficient to define

û(t) = e
i
~ Ĥcavt. (B.23)

According to [Ĥcav, Ĥcav] = [Ĥcav, Ĥ0] = 0, the operators Ĥcav and Ĥatom remain invari-
ant under transformation with respect to û(t). Along with this, the Rabi Hamiltonian in
Schrödinger picture is obtained from the transformation of the interaction part only, i.e.

ĤS = û(t)Ĥ(t)û†(t) = Ĥcav + Ĥatom + ĤS,int, (B.24)

whereas the interaction part explicitly reads

ĤS,int = û(t)Ĥint(t)û
†(t) = g(ŝ+ + ŝ−) û(t)[â†(t) + â(t)]û†(t) (B.25)

Allowing for the Baker-Campbell-Hausdorff formula [243–245]

eÂB̂e−Â =

∞∑
i=0

[Â, B̂]i
i!

, where [Â, B̂]i = [Â, [Â, B̂]i−1], and [Â, B̂]0 = B̂, (B.26)

one finds in view of the commutation-relation of â†, â (C.41) for the creation and annihi-
lation operators in Eq. (B.25) in the Schrödinger picture

â†S = eiω0â†ât â†(t)e−iω0â†ât =
∞∑
k=0

(iω0t)
k

k!
â†(t) = eiω0t â†(t), (B.27)

âS = eiω0â†ât â(t) e−iω0â†ât =
∞∑
k=0

(−iω0t)
k

k!
â(t) = e−iω0t â(t). (B.28)

Application of Eq. (B.22) results in time-independent operators â†, â. Consequently, the
time-independent Rabi Hamiltonian in Schrödinger picture explicitly reads

ĤS = ~ω0â
†â+ ~Ω ŝz + g(ŝ+ + ŝ−)(â†S + âS). (B.29)

The example can be extended to any Hamiltonian with similar appearance of the pho-
tonic operators, so that the transformation from interaction to Schrödinger picture is also
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valid in the case of the light-matter interaction term (5.47) considered during this the-
sis. Furthermore, one can easily prove that also powers of [â†(t) + â(t)], as they enter
the diamagnetic term (2.49), can be analogously transformed into the time-independent
Schrödinger representation. Since the Schrödinger picture is the preferred one in this
thesis, the indices S are dropped.

B.4.2 Rotating-wave approximation and the Jaynes-Cummings model

The Heisenberg picture of the time-independent Rabi Hamiltonian (B.29) gives some fur-
ther insights into dynamics of the interaction term. By application of the unitary trans-
formation (B.8) generated by the full Rabi Hamiltonian one obtains

ĤH = Ĥcav + Ĥatom + ĤH,int(t), (B.30)

where Ĥcav and Ĥatom remain unaffected by the transformation. Hence they are given by
Eqs. (B.19, B.20). The interaction part in Heisenberg representation is obtained by means
of similar considerations than made in Eqs. (B.27, B.28), whereas now also the atomic
operators have to be transformed, resulting in

ĤH,int(t) ∝ [ŝ+(t) + ŝ−(t)][â†(t) + â(t)] = [ŝ+e
−i~Ωt + ŝ−e

i~Ωt][â†e−i~ω0t + âei~ω0t]. (B.31)

By expanding the brackets on the r.h.s. it becomes most obvious in the case of resonance,
i.e. Ω = ω0, that the so-called counter-rotating terms

ŝ+â
†e−i~(Ω+ω0)t Ω=ω0= ŝ+â

†e−2i~ω0t, ŝ−âe
i~(Ω+ω0)t Ω=ω0= ŝ−âe

2i~ω0t (B.32)

oscillate significantly faster than the so-called energy-conserving terms

ŝ+âe
−i~(Ω−ω0)t Ω=ω0= ŝ+â, ŝ−â

†ei~(Ω−ω0)t Ω=ω0= ŝ−â
†. (B.33)

As a consequence, under time average and in the small-coupling regime [125–127], the
dominant contribution to the dynamics of the system originates from the latter. Neglect-
ing the counter-rotating terms is called rotating-wave approximation [120] and leads from
the quantum Rabi model to the Jaynes-Cummings model [121]:

ĤJC = ~ω0â
†â+ ~Ω ŝz + g(ŝ+â+ ŝ−â

†). (B.34)
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Appendix C

Many-body quantum systems

Investigations on quantum effects emerging from the interaction of a variety of indistin-
guishableparticles, such as the collective phenomena of the superradiant phase transi-
tion, require an extension of the standard formulation of quantum mechanics as a single-
particle theory. Thereby the concept of indistinguishability of identical particles defines
one of the essential differences between classical and quantum mechanics (cf. App C).
Different from classical mechanics quantum mechanics assumes impossibility of identi-
fying one specific particle in a group of N identical quantum particles without influenc-
ing its state [119]. This assumption stays in alignment with experimental observations
up to this day.

C.1 From indistinguishability to bosons and fermions

The mathematical framework for a theory of N > 1 indistinguishable particles is pro-
vided by a Hilbert space HN constructed as the tensor product of single-particle Hilbert
spaces H

HN =

N⊗
α=1

H. (C.1)

Thereby the basis of the product space HN is given by the tensor product of orthonormal
basis states {|ψi〉} assigned to each single-particle Hilbert space H, reading{

|ΨA〉 = |ψi1 , ψi2 , . . . , ψiN 〉 =

N⊗
α=1

|ψiα〉
}
. (C.2)

The numbering superscript indices in Eq. (C.2) are applied for book-keeping reasons
rather than ordering at this stage. The dimension of the many-body basis set {|ΨA〉} (C.2)
is determined by the dimension dim({|ψi〉}) of each single-particle basis set and the num-
ber of particles N , i.e. dim({|ΨA〉}) = N · dim({|ψi〉}), where dim({|ψi〉}). At some pas-
sages during the following the index i labeling the i-th component of the single-particle
basis {|ψi〉} might be dropped for reasons of simplicity. Therefore the short-hand nota-
tion

|ψi1 , ψi2 , . . . , ψiN 〉 = |ψ1, ψ2, . . . , ψN 〉 (C.3)

is used by keeping in mind that each ψ on the r.h.s. represents a complete set of single-
particle basis states.
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Furthermore, the construction of a product space HN is not limited to a finite number of
particles N .
For reasons of simplicity during the following it is assumed that each single-particle basis
{|ψi〉} describes a complete set of orthonormalized eigenvectors of a given single-particle
Hamiltonian Ĥ , i.e.

Ĥ |ψi〉 = εi |ψi〉 , (C.4)
〈ψi|ψj〉 = δi,j , (C.5)∑

i

|ψi〉 〈ψi| = 1. (C.6)

Consequently, the product basis {|ΨA〉} (C.2) represents a complete set of orthonormal-
ized eigenvectors to the corresponding many-body Hamiltonian of N indistinguishable
particles

Ĥ =

N∑
α=1

Ĥα, (C.7)

so that the many-body equivalent to Eqs. (C.4–C.6) read

Ĥ |ΨA〉 = EAΨA, (C.8)
〈ΨA|ΨB〉 = δA,B, (C.9)∑

A

|ΨA〉 〈ΨA| = 1. (C.10)

It might be useful for the understanding of the following discussion to explicit execute
the summation concerning the completeness of the basis {|ΨA〉} yielding Eq. (C.10) to
read

1 =
∑
A

|ΨA〉 〈ΨA| =
∑

i1,i2,...,iN

|ψi1 , ψi2 , . . . , ψiN 〉 〈ψi1 , ψi2 , . . . , ψiN |

=
∑

i1,i2,...,iN

N⊗
α=1

|ψiα〉
N⊗
α=1

〈ψiα | ,
(C.11)

where each sum over iβ , β = 1, 2, . . . , N , denotes the summation over the corresponding
complete set of single-particle basis states {|ψiβ 〉}.

C.1.1 The symmetric group SN on HN

According to abstract algebra, one can define the symmetric group SN on the set of, yet
disordered, indices {1, 2, . . . , N} [250]. Thereby each element σ ∈ SN of the symmetric
group is a unique permutation operation performed on the set of indices. Accordingly,
there is a linear unitary map P̂σ : HN → HN assigned to each σ ∈ SN which is uniquely
defined by its action an a state vector

P̂σ |ψ1, ψ2, . . . , ψN 〉 = |ψσ(1), ψσ(2), . . . , ψσ(N)〉 . (C.12)
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Thereby, each permutation operation σ ∈ SN can be obtained from the composition of
transpositions [250], defined as the exchange of two elements of the set {1, 2, . . . , N}.
Depending on the number M(σ) of transpositions one can define two classes of permu-
tations σ ∈ SN according to their parity. Permutations that result from an even number
M(σ) of transpositions are referred to as even permutations. By contrast, permutations
composited from an odd number of transpositions are called odd permutations. Likewise
one can define the sign of a permutation by its parity according to

sgn(σ) = (−1)M(σ) =

{
+1, for even σ,
−1, for odd σ.

(C.13)

C.1.2 Exchange symmetry

As a consequence of the concept of indistinguishability of N identical quantum particles
the physical state of the system needs to remain unaffected by the permutation of indices
attached to the particles according to Eq. (C.2).
This is known as exchange symmetry and it is exactly provided by the completely sym-
metric and anti-symmetric state vectors as it becomes obvious during the following dis-
cussion. Furthermore, any Hermitian single-particle operator Â and thus in turn any
many-body operator composited therefrom similar to Eq. (C.7), is regarded to be invari-
ant under the action of a permutation operator P̂σ, i.e.

Â = P̂†σÂP̂σ. (C.14)

C.1.3 Totally symmetric and anti-symmetric states: bosons and fermions

There exist two distinct irreducible representations of the symmetric group on {1, 2, . . . , N},
corresponding to a completely symmetric and a completely antisymmetric arrangement
of the set of indices [115, 250]. Therefore, a basis vector |ΨA〉+ ∈ HN that remains invari-
ant under an arbitrary permutation σ ∈ SN ,

P̂σ |ΨA〉+ = |ΨA〉+ , (C.15)

is referred to as completely symmetric. All completely symmetric basis vectors span the
symmetric Hilbert subspace H+

N ⊂ HN . By contrast a basis vector |ΨA〉− ∈ HN fulfilling

P̂σ |ΨA〉− = sgn(σ) |ΨA〉− (C.16)

is called completely anti-symmetric. Analogous the anti-symmetric Hilbert subspace H−N ⊂
HN is spanned by all completely anti-symmetric state vectors. The remaining part of the
N -particle Hilbert space is spanned by states with mixed permutation symmetry and is
denoted with Hmix

N ⊂ HN . The direct sum of all three subspaces reassembles the complete
N -particle Hilbert space HN , i.e.

HN = H+
N ⊕H−N ⊕Hmix

N . (C.17)

As discussed during the following, the symmetric and anti-symmetric Hilbert subspace
are of superordinate interest in physics due to their association with elementary particles.
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Defining the symmetrization and anti-symmetrization operator [115, 119], respectively

P̂+
N =

1√
N !
∏
i(ni!)

∑
σ∈SN

P̂σ, (C.18)

P̂−N =
1

N !

∑
σ∈SN

sgn(σ)P̂σ, (C.19)

each acting as projectors on H+
N and H−N , respectively. The normalization factor of the

symmetrization operator differs from the normalization of the anti-symmetrized equiva-
lent. This accounts precisely for the properties of symmetrization. The claim for a sym-
metric wave function with respect to permutation of particle indices is in accordance
with one or more particles carrying the same index and thus in turn occupying the same
quantum state i. ni denotes the occupation of the respective single-particle state. Conse-
quently one has to normalize the completely symmetrized wave function in this case as
denoted in (C.18). Thereby, the sum over all single-particle occupation numbers ni has
to satisfy

∑
i ni = N . Similar considerations on the anti-symmetrized projector precisely

yield the normalization given in Eq. (C.19). This is due to the single-particle occupation
being restricted to ni ≤ 1 within the claim for anti-symmetric properties of the wave
function, known as Pauli-exlusion principle which is outlined in Subsec. C.1.4.
Both projectors (C.18, C.19) reflect the orthogonality of the Hilbert-space decomposi-
tion (C.17) by their orthogonality with respect to each other, i.e. P̂+

N P̂−N = 0 [115, 119].
The application of the symmetrization or anti-symmetrization operator on a basis vector
|ΨA〉 ∈ HN yields a completely symmetrized or anti-symmetrized basis vector 1 of H+

and H−, respectively,

|ΨA〉± = P̂±N |ΨA〉 , (C.20)

whereas the formulation of an equivalent to Eqs. (C.8–C.11) for {|ΨA〉±} is obvious.
Particles described by a completely symmetrized state vector are called bosons, whereas
one refers to particles with a anti-symmetric state vector as fermions.2

C.1.4 Pauli-exclusion principle

As a logical consequence of the completely anti-symmetric properties of the state vec-
tor associated with system of N indistinguishable fermions, it follows that two or more
fermions cannot occupy the same single-particle state k at once. This becomes obvious
by considering a completely the anti-symmetrized state vector

|ψ1, ψ2, . . . , ψkα , . . . , ψlβ , . . . , ψ
N 〉− = − |ψ1, ψ2, . . . , ψlβ , . . . , ψkα , . . . , ψ

N 〉− . (C.21)

1The anti-symmetrized basis vector can also be represented in terms of a determinant, called the Slater
determinant [251].

2There is a species of quasiparticles, called anyons [252, 253], which are neither described by a sym-
metrized nor an anti-symmetrized state vector. Therefore states characterizing an anyon are an element of
the subspace of mixed states Hmix

N (C.17). Referring to literature, a discussion of these kinds of quasiparticles
would go far beyond the scope of this thesis.
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Assuming equality of the single-particle states kα and lβ , i.e. |ψkα〉 = |ψlβ 〉 Eq. (C.21) is
only fulfilled if

|ψ1, ψ2, . . . , ψkα , . . . , ψlβ , . . . , ψ
N 〉−

∣∣∣
kα=lβ

= 0. (C.22)

Therefore each fermion in the system has to differ from another one in at least one quan-
tum number.

C.1.5 Spin-statistics theorem

Anticipating the different quantum statistics inherent to bosons and fermions, the spin-
statistics theorem provides a theoretical formulation [254] of the following empirical ob-
servation [255]:

1. Particles with an integer spin follow a quantum statistics associated with the prop-
erties of a symmetric state vector, referred to as Bose-Einstein statistics.

2. Particles with a half-integer spin follow a quantum statistics associated with the
properties of an anti-symmetric state vector, referred to as Fermi-Dirac statistics.

In different word, it states that bosons always have an integer spin, whereas fermions are
particles with half-integer spin.

C.2 Second quantization

The more reasonable an approach based on state vectors is in single-particle quantum
mechanics the more cumbersome it becomes in a many-body formulation of quantum
theory, especially in situations where the number of indistinguishable particles is large.
The formalism of second quantization provides a more elegant, transparent and efficient
way to account for the indistinguishability and symmetry of the bosonic and fermionic
many-body systems.

C.2.1 Fock states and Fock space

The basic quantity in this formalism is the occupation number ni of a single-particle state
i. Thereby one can set up an occupation-number representation of basis vectors, referred
to as Fock states, which fully characterize symmetrized or anti-symmetrized basis vector
|ΨA〉± according to their occupation ni of a single-particle state i, i.e.

|ΨA〉±N = |n1, n2, . . .〉±N , (C.23)

whereN denotes the number of indistinguishable particles. From the orthonormalization
of the single-particles basis {|ψi〉} directly follows the orthonormalization of the Fock
basis states, i.e.

±
N 〈n1, n2, . . . |n̄1, n̄2, . . .〉±N̄ = δN,N̄

∏
i

δni,n̄i . (C.24)
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FIGURE C.1: Occupation scheme of a a) bosonic and b) fermionic
many-body system. The number ni of indistinguishable bosonic
paticles (blue dots) occupying a single-particle state i with en-
ergy εi is not restricted due to their symmetrized state vector.
However, the fermionic occupation ni (green dots) of a single-

particle state i is restricted to one at most.

Accordingly, the resolution of identity in this basis reads∑
n1,n2,...∑
i ni=N

|n1, n2, . . .〉±N ±N 〈n1, n2, . . .| = 1. (C.25)

As a consequence of their permutation symmetry and depicted by Fig. C.1, the occu-
pation of single-particle states in case of bosons with identical quantum numbers differ
quite fundamentally from those of fermions with identical quantum numbers. Whereas
the occupation of a single-particle state i is not restricted in the former case, fermions are
allowed to occupy a single particle state i only once accounting for the Fermi-exclusion
principle, i.e.

ni =

{
0, 1, 2, . . . for bosons,
0, 1 for fermions.

(C.26)

The state vector characterizing the bosonic many-body state depicted in Fig. C.1 a) there-
fore reads

|ΨA〉+15 = |7, 4, 1, 3, 0, 0〉+15 . (C.27)

Accordingly, the state vector describing the fermionic many-body state illustrated by
Fig. C.1 b) is is determined by the Fock state

|ΨA〉−4 = |1, 1, 1, 0, 1, 0〉−4 . (C.28)

Thereby the Hilbert space spanned by Fock states (C.23) containing N =
∑

i ni indistin-
guishable particles is given by H±N , according to Eq. (C.1) Any N -particle state vector in
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â†

F±N+1 F±N F±N−1 F±0 0
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F±N−1

â

â†
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â†

FIGURE C.2: Illustration of the action of creation and annihila-
tion operator â† and â as generators of finite-particle Fock sub-
spaces. Thereby the action of each creation operator â† is de-
fined by adding a particle to the system yielding an enlargement
of the N -particle Hilbert space â† : H±N → H±N+1. Likewise,
the annihilation operator â destroys a particle in a N -particle
system resulting in the diminishment of the Hilbert space from
â : H±N → H±N−1. Accordingly a system of N indistinguishable
particles can iteratively be created by repeated action of creation

operators on the vacuum state.

this space can be represented as a linear superposition of Fock basis states in the follwo-
ing way

|Φ〉±N =
∑

n1,n2,...∑
i ni=N

cn1,n2,... |n1, n2, . . .〉±N , (C.29)

where cn1,n2,... ∈ C denotes the expansion coefficient. This coefficient is a measure for the
overlap of the state |Φ〉± with the corresponding Fock state |n1, n2, . . .〉±N and therefore a
measure for the probability of the system to be in the specific occupation configuration
represented by the Fock state. The Hilbert space without any restriction on the number of
identical particles is referred to as the Fock space, which constructed from the direct sum
of all N -particle Hilbert spaces H±N according to

F± =
∞⊕
N=0

H±N , (C.30)

whereas H±0 refers to vacuum space spanned by a single basis state |0〉 called the vacuum
state. In view of Eq. (C.29) any general state |Ψ〉± ∈ F±, unrestricted with respect to the
total number of particles N , can be written as

|Φ〉± =

∞∑
N=0

|Φ〉±N = |n1, n2, . . .〉± , (C.31)

where the r.h.s. denots a common short-hand notation.

C.2.2 Creation and annihilation operators

Within the occupation-number representation one can define linear operators b̂†i , b̂i :
F± → F± connecting many-body Hilbert spaces with different particle numbers as Fig. C.2
demonstrates. Thereby, the operator b̂†i adds a particle in the single-particle state i to a
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system of N indistinguishable particles,

b̂†i : H±N → H±N+1, |n1, . . . , ni, . . .〉±N 7→ (±1)si
√
ni + 1 |n1, . . . , ni + 1, . . .〉±N+1 , (C.32)

and is therefore referred to as creation operator. Its adjoint counterpart, the annihilation
operator b̂ = (b̂†)† diminishes the number of particles occupying the single-particle state i
by one. Therefore b̂i is defined by the map

b̂i : H±N → H±N−1, |n1, . . . , ni, . . .〉±N 7→ (±1)si
√
ni |n1, . . . , ni − 1, . . .〉±N−1 . (C.33)

The factors (±)si , where si =
∑i−1

j=1 ni, on the r.h.s. of Eqs. (C.32, C.33) account for the
appropriate sign of the anti-symmetrized state.
In case of a bosonic N -particle state the factors are equal to one.
Also for fermionic particles the general definition of the b̂† and b̂ according to Eqs. (C.32,
C.33) can be further simplified. Since the creation of another fermionic particle in an al-
ready occupied single-particle state i is not possible due to the Fermi-exclusion principle
the action of the creation operator C.32 can be further specified to

b̂†i |n1, n2, . . . , ni, . . .〉−N = (−1)siδni,0 |n1, n2, . . . , ni + 1, . . .〉−N+1 . (C.34)

Accordingly, a fermionic particle can only be annihilated in a single-particle state i if this
state is occupied, so that Eq. (C.33) reads

b̂i |n1, n2, . . . , ni, . . .〉−N = (−1)siδni,1 |n1, n2, . . . , ni − 1, . . .〉±N−1 . (C.35)

Within the definition of the creation operator (C.32, C.34) any N -particle Fock state can
be constructed by repeated application of b̂†i on the vacuum state [140, 256, 257]:

|n1, n2, . . .〉±N =
∏
i∑

i ni=N

(b̂†i )
ni

√
ni!
|0〉 . (C.36)

To keep the subsequent discussion as general as possible, b̂†i , b̂i functions as space holder
for either a bosonic or a fermionic pair of creation and annihilation operators. At some
stages it will be necessary to specify the consideration to either bosons or fermions. In
this case, the following notation is used: Bosonic creation and annihilation operators for
a single-particle state i are denoted by

â†i , âi : F+ → F+ ⇔ â†i : H+
N → H+

N+1, âi : H+
N → H+

N−1. (C.37)

Likewise,
ĉ†i , ĉ

†
i : F− → F− ⇔ ĉ†i : H−N → H−N+1, ĉ†i : H−N → H−N−1 (C.38)

refers to the fermionic equivalent.
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C.2.3 Number operators

From Eqs. (C.32, C.33) follows that the Fock state (C.23) is an eigenstate of the operator

b̂†i b̂i = n̂i, (C.39)

referred to as the number operator of the single-particle state i. The eigenvalues of ni are
the corresponding occupation numbers ni of the state.

C.2.4 Canonical commutation and anti-commutation relations

According to the formal similarity to the Poisson bracket of the canonical phase-space co-
ordinates (qi, pj) in classical mechanics the operation

[Â, B̂]−x = ÂB̂ − xB̂Â, (C.40)

for some arbitrary operators Â and B̂, is referred to as canonical commutator if x = +1 and
anti-commutator if x = −1. The term “canonical” refers to the formal coincidence with
the Poisson brackets of classical mechanics, as briefly addressed in Sub. A.6. The anti-
commutator is often also denoted by curled brackets, i.e. [., .]+1 = {., .}. Likewise, plane
brackets [., .] refer to the commutator [., .]−1. During this thesis, this notation is precisely
applied.

From action of the bosonic and fermionic creation and annihilation operators on a Fock
state, as defined by Eqs. (C.32, C.33), one can deduce the respective canonical commuta-
tion and anti-commutation relations reflecting the symmetrization and anti-symmetrization
of the corresponding N -particle Hilbert subspace H±N .

Bosonic operators â†j , âi : F+ → F+ fulfill the canonical commutation relation

[âi, â
†
j ]− = δi,j , (C.41)

[âi, âj ]− = [â†i , â
†
j ]− = 0, ∀i, j. (C.42)

Similar, fermionic ĉ†j , ĉ
†
i : F− → F− fulfill the canonical anti-commutation relation

[ĉ†i , ĉ
†
j ]+ = δi,j , (C.43)

[ĉ†i , ĉ
†
j ]+ = [ĉ†i , ĉ

†
j ]+ = 0, ∀i, j. (C.44)

From Eqs. (C.41, C.43) relations one can derive more relations between creation and an-
nihilation operators. For this thesis the following ones are especially important:

[â†i âj , âk]− = −âjδi,k, [â†i âj , â
†
k]− = â†iδj,k. (C.45)

Even though fermions follow the anti-commutation relation (C.43), there is a useful ex-
pression concerning their behavior within a commutator operation:

[ĉ†i ĉ
†
j , ĉ
†
k ĉ
†
l ]− = ĉ†i ĉ

†
l δj,k − ĉ

†
k ĉ
†
jδi,l. (C.46)
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C.2.5 Transformation of many-particle operators into Fock-state notation

The formalism of second quantization based on the Fock-state representation of com-
pletely symmetrized and anti-symmetrized state vectors unfolds its actual significance
by investigating on the transformation of many-particle operators within this formalism.
Supposing a general many-body operator Â =

∑N
γ=1 Âγ composited from single-particle

operators Âγ . By inserting a resolution of identity in terms of the symmetrized or anti-
symmetrized (C.20) version of Eq. (C.11) each on the left and right hand side of the many-
body operator Â one obtains

Â± =
∑
γ,A,B

|ΨA〉± ±〈ΨA|Âγ |ΨB〉± ±〈ΨB|. (C.47)

For the moment, one might focus on the matrix element ±〈ΨA|Âγ |ΨB〉±. According to
the definition of each set of symmetrized and anti-symmetrized many-body basis vec-
tors (C.20) as the tensor product of single-particle basis vectors (C.2) the matrix element
reads

±〈ΨA|Âγ |ΨB〉± =

N⊗
α=1

〈ψiα | P̂±N ÂγP̂±N
N⊗
β=1

|ψjβ 〉 . (C.48)

According to the permutation invariance (C.14, C.18, C.19) of each single-particle op-
erator one can replace P̂±N ÂγP̂±N with Âγ in Eq. (C.48). Any matrix element between
single-particle basis states of different Hilbert subspaces, i.e. α = β, give zero due to their
orthogonality (C.5). Furthermore, only single-particle basis vectors of the Hilbert sub-
space γ are affected by the single-particle operator Âγ . All remaining contributions with
α 6= γ result in a scalar product. Accordingly, Eq. (C.48) simplifies to

±〈ΨA|Âγ |ΨB〉± = 〈ψiγ | Âγ |ψjγ 〉
N⊗
α=1
α 6=γ

〈ψiα |ψjα〉 δα,β

= 〈ψiγ | Âγ |ψjγ 〉
N∏
α=1
α 6=γ

δiα,jαδα,β,

(C.49)

whereas the orthonormality of the single-particle basis vectors (C.5) entered the second
step. The matrix element in Eq. (C.49) is just a complex number independent on the label
assigned to a Hilbert subspace, so that

Ai,j = 〈ψiγ | Âγ |ψjγ 〉 . (C.50)

The result for the matrix element (C.49) is inserted into Eq. (C.47). Similar to Eq. (C.48)
one applies the definition of the symmetrized and anti-symmetrized basis vectors (C.2,
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C.20) for the remaining bra and ket in (C.47), so that

Â± =

 1

N

N∑
γ=1

∑
i,j

P̂±1 |ψi〉Ai,j 〈ψi| P̂±1

⊗
 ∑
i1,...,iN−1

P̂±N−1

N−1⊗
α=1

|ψiα〉
N−1⊗
α=1

〈ψiα | P̂±N−1

 .

(C.51)

The factor N−1 in the first bracket is compensated by the summation over γ. By apply-
ing the Fock state representation (C.30) of the bra and ket in view of Eq. (C.36) in both
brackets of (C.51) yields

Â± = b̂†iAi,j b̂j ·

 ∑
n1,n2,...∑
i ni=N−1

∏
i∑

i ni=N−1

(b̂†i )
ni

√
ni!
|0〉 〈0| (b̂i)

ni
√
ni!

 . (C.52)

The bracket in Eq. (C.52) equals the resolution of identity of a system with N − 1 indis-
tinguishable particles according to Eqs. (C.25, C.36).

With this, Eq. (C.52) simplifies by adopting the operator notation of the commutation
and anti-commutation relations assigned to bosonic (C.41) and fermionic particles (C.43)
to one of the main results of this section, reading

Â+ =
∑
i,j

â†iAi,j âj , Â− =
∑
i,j

ĉ†iAi,j ĉ
†
j . (C.53)

The main characteristics of the formalism of second quantization, as encoded in Eq. (C.53),
can be summarized as follows:

1. The entire information about the permutation symmetry of the considered species
of particles is encoded in the creation and annihilation operators according to their
corresponding commutation (C.41) or anti-commutation relation (C.43).

2. The construction of a bosonic (+) or fermionic (−) many-body operator Â± from
a known single-particle operator Â boils down to the calculation of its matrix el-
ements Ai,j multiplied by the corresponding creation and annihilation operators,
â†i , âj and ĉ†i , ĉ

†
j respectively, in a chosen single-particle basis {|ψi〉}.

Furthermore, supposing {|ψi〉} to denote the eigenbasis of the single-particle operator Â,
the diagonalized many-body Hamiltonian takes the following form

Â± =
∑
i

ain̂i, (C.54)

where ai denotes the eigenvalue of Â to the eigenstate |ψi〉. Thus from Eq. (C.54) that the
eigenvalues of a many-body operators are given by the sum over single-particle eigen-
values weighted by the occupation of the corresponding single-particle state.
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Within a similar scheme one can derive the second-quantized formulation of many-body
operators describing interactions between particles [256].

C.3 Functional field integral – many-body path integrals

The aim of this subsection is the derivation of formalism for the calculation of the many-
body partition sum based on a functional field integral. Thereby the basic idea and the
construction scheme is very similar as outlined in Chap. D for the construction of a path-
integral representation of the single-particle propagator and the partition sum (D.36):

1. Decompose the exponential of the many-body Hamiltonian into N infinitesimal
(complex) time slices.

2. Choose a proper basis representation for the insertion of resolution of identity be-
tween each pair of time-sliced exponentials.

3. Take the limit of N →∞ from a discrete set of time-slices to a continuous time.

In the almost trivial case of knowing the eigenbasis of the many-body Hamiltonian this
scheme is easily adopted to the many-body case. Nevertheless, in most cases analytic
diagonalization is hard to archive especially when considering a more complicated form
of the Hamiltonian than in the example of (C.54). This is already the case, when creation
and annihilation operator appear in a Hamiltonian not in form of a product of equal ratio,
but, for example, as a sum of both (â†+ â). As demonstrated in Eqs. (C.32, C.33), the Fock
basis is the eigenbasis of neither â† nor â, so that accomplishing task 2. of the construc-
tion scheme by means of Fock states yields a cumbersome procedure. The introduction
of coherent states as actual eigenstates of the annihilation operator circumvents this issue
as discussed during the following.

According to Eqs. (C.31, C.36) an arbitrary symmetrized or anti-symmetrized many-body
state vector is of the form [140, 256, 257]

|Φ〉± =
∑

n1,...,ni,...

cn1,...,ni,...

∏
j

(b̂†j)
nj√
nj !
|0〉± . (C.55)

The absence of the total number of particles N marking the state where restrictions on
the total number of particles N are not necessary in general.
The aim of the following is to solve the eigenvalue equation

b̂i |Φ〉± = bi |Φ〉± (C.56)

for a the annihilation operator of a single-particle state i. According to the different sym-
metry of both species of particles, bosons and fermions, the following derivations are
separately carried out for each focusing on the most important aspects regarding this
thesis. For further details one is referenced to the literature [257, 258]
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C.3.1 Coherent states for Bosons and Gaussian integrals

The ni-times repeated action of the bosonic annihilation operator âi (C.33) on |Φ〉+ as
defined in Eq. (C.29) yields

ânii |Φ〉+ =
∑

n1,...,ni,...

cn1,...,ni,...

√
ni! |n1, . . . , 0i, . . .〉+ = anii |Φ〉+ . (C.57)

Note that the summation encoded in |Φ〉+ according to Eq. (C.29) includes the complete
Fock space. Therefore each ket |n1, . . . , 0i, . . .〉+ appearing in the middle of Eq. (C.57)
has an equivalent in |Φ〉+ (C.29) assigned with the expansion coefficient cn1,...,0i,.... Con-
sequently, by matching the prefactor of each summand in the middle of Eq. (C.57) with
the expansion coefficient cn1,...,0i,... associated with the corresponding ket in |Φ〉+ on the
r.h.s. of Eq. (C.57) yields to

cn1,...,ni,... =
anii√
ni!
cn1,...,0i,.... (C.58)

Due to the commutation of any pair of bosonic annihilation operators (C.42) one obtains

cn1,...,ni,... =
∏
j

a
nj
j√
nj !

c01,...,0i,..., (C.59)

where c01,...,0i,... = 1 for convenience [257], by repetition of Eq. (C.57) for â1, â2, . . . . In-
sertion of this relation (C.59) into the definition of |Φ〉+ (C.55) results in a coherent state,
defined by

|Φ〉+ = C
∑

n1,...,ni,...

∏
j

(aj â
†
j)
nj

nj !
|0〉+ = C

∏
j

eaj â
†
j |0〉+ , (C.60)

whereC ∈ C denotes the normalization constant. Note that within similar considerations
one finds that there exists no eigenbasis for the creation operator.
Since [âi, [âj , â

†
k]] = [â†i , [â

†
j , âk]] = 0 ∀i, j, k, one can apply the simplified version of the

Baker-Campbell-Hausdorff formula [243–245],

ea
′
iâieaj â

†
j = eaj â

†
jea
′
iâiea

′
iaj [âi,â

†
j ], (C.61)

to obtain the scalar product of two coherent states from Eq. (C.60)

+〈Φ′|Φ〉+ =
∏
i,j

+〈0|ea′iâieaj â
†
j |0〉+ =

∏
i

ea
′
iai . (C.62)

From Eq. (C.62) follows for +〈a′| 6= +〈Φ|which is known as over-completeness of the coher-
ent states, meaning that the basis provided by a set of coherent states is linear-dependent.
As a consequence of that, any coherent state can be represented as the linear combination
of other coherent states. In view of the definition of the bosonic coherent state (C.60) the
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explicit execution [140, 257] of the integral∫
dα†dα e−α

†α |Φ〉+ +〈Φ| = 1, dα†dα =
∏
i

da∗i dai
π

(C.63)

proofs its equivalence to the completeness relation of Fock states (C.25) and thus in turn
proving that coherent states provide a (over-)complete basis for the Fock space as well.
Thereby, α = (a1, a2, . . . )

T and α† = (a∗1, a
∗
2, . . . ) are vector-representations of the com-

plex eigenvalues of the corresponding bosonic annihilation operators. Complex conjuga-
tion of the eigenvalue equation (C.56) yields to +〈Φ|â†i = +〈Φ|a∗i , so that the expectation
value of the occupation number operator n̂i = â†i âi reads

+〈Φ|n̂i |Φ〉+ = |ai|2. (C.64)

Therefore, the absolute value of the eigenvalue ai of a creation operator âi is associated
with the occupation of the corresponding single-particle state i.
Though there exists no eigenbasis of the creation operator â†i one may evaluate its action
on a coherent state, i.e.

â†i |Φ〉+ =
∏
j 6=i

eaj â
†
j

∞∑
k=0

aki (â
†
i )
k+1

k!
|0〉+

=
∏
j 6=i

eaj â
†
j

∞∑
k=1

(∂aia
k
i )(â

†
i )
k

k!
|0〉+

= ∂ai |Φ〉+ .

(C.65)

Thus, the creation operator â†i is in coherent-state representation (C.60) equivalent to the
derivative with respect to the complex eigenvalue ai of the corresponding annihilation
operator âi. In fact, this is not surprising, since â†i , âi fulfill the canonical commutation
relation (C.41) similar to momentum and position operator p̂i, x̂i in single-particle quan-
tum mechanics. Thereby the position-space representation of the momentum operator is
also given by the derivative with respect to the eigenvalue xi of the position operator x̂i.
The validity of the canonical commutation relations (C.41, C.42) remains in coherent-state
representation as easily confirmed, i.e.

[âi, â
†
j ] |Φ〉+ = (ai∂aj − ∂ajai) |Φ〉+ = δi,j |Φ〉+ , (C.66)

[âi, âj ] |Φ〉+ = (aiaj − ajai) |Φ〉+ = 0, (C.67)

[â†i , â
†
j ] |Φ〉+ = (∂ai∂aj − ∂aj∂ai) |Φ〉+ = 0. (C.68)

One of the most important integrals in quantum field theory is the Gaussian integral of
the following form

I+ =

∫
dα†dα e−

1
2
α†Aα = det(A)−1, (C.69)
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Coherent state |Φ〉+ =
∏
i

eaiâ
†
i |0〉+

∫ ∏
i

Representation of âi âi |Φ〉+ = ai |Φ〉+
∫ ∏

i

Representation of â†i â†i |Φ〉+ = ∂ai |Φ〉+
∫ ∏

i

Number operator +〈Φ|n̂i|Φ〉+ = |ai|2
∫ ∏

i

Scalar product +〈Φ′|Φ〉+ =
∏
i

ea
′
i
∗ai

∫ ∏
i

Resolution of identity
∫

dα†dα e−α
†α +|Φ〉 〈Φ|+ = 1

∫ ∏
i

Gaussian integral
∫

dα†dα e−α
†Aα = det(A)−1

∫ ∏
i

TABLE C.1: Summary [257] of the basic properties of bosonic coherent
states |Φ〉+ as eigenstates of the bosonic annihilation operator âi to the
eigenvalue ai ∈ C. α = (a1, a2, . . . )

T and α† = (a∗1, a
∗
2, . . . ) denote the

vector-representation of the eigenvalues, whereas the coefficient matrix A
is assumed to be diagonalizable. The integration measure dα†dα is de-

fined in Eq. (C.69).
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where the integration measure is defined in Eq. (C.63). Consequently, A denotes a coeffi-
cient matrix. Since the evaluation of this integral and proving its equality to the inverse
of the determinant of A is a standard procedure discussed in various textbooks on the
topic [257] it is not outlined here. Table C.1 provides a final summary of the main prop-
erties of bosonic coherent states and related quantities. However, the evaluation of the
fermionic equivalent to (C.69) is subsequently discussed since it shows some peculiarities
due to the anti-commutativity of those particles.

C.3.2 Coherent states for Fermions and Gaussian integrals

Similar to the considerations for the bosonic case the fermionic creation operator cannot
posses an eigenstates. The scheme for the derivation of the coherent state for fermions [257,
258],

|Φ〉− = e−
∑
i ciĉ

†
i |0〉− (C.70)

follows similar steps as outlined for the bosonic case. The main differences arise from
the anti-commutativity inherent to fermions in contrast to the commutativity of bosons
which yields not only to a negative sign in the exponential of the fermionic coherent
state (C.70). Even more, the consequences of the anti-commutativity become most obvi-
ous by investigating on the anti-commutation relation concerning two fermionic creation
operators ĉ†i , ĉ

†
j (C.44) in coherent-state representation,

{ĉ†i , ĉ
†
j} |Φ〉− = (cicj + cjci) |Φ〉− = 0, (C.71)

which fairly alters from its bosonic equivalent (C.67). It is quite obvious, that this condi-
tion for ci, cj cannot be fulfilled by complex numbers and rather needs the introduction
of a new mathematical framework. This accomplished by introducing the associative
Grassmann algebra [259, 260] G over the field of complex numbers. A few important prop-
erties of the Grassmann number concerning the arithmetic calculus, differentiation and
integration are outlined in Sec.

Gaussian integral with Grassmann numbers [257]
Similar to the bosonic case, Gaussian integrals on Grassmann numbers

I− =

∫
dρ†dρ e−ρ

†Mρ, dρ†dρ =
∏
i

dc∗i dci, (C.72)

are commonly found within the field of quantum field theory. Regarding the special
properties of Grassmann numbers the Gaussian integral appears in an essentially simpler
way as the bosonic equivalent. Since all powers of a Grassmann number higher than 1
are zero the Gaussian integral I (C.72) transforms into a simple Berezin integral:

I− =

∫
dρ†dρ

(
1− ρ†Mρ

)
= −

∫
dρ†dρρ†Mρ. (C.73)

Suppose the complex matrix M to be diagonalizable, i.e. there exists a unitary transfor-
mation S, so that S†MS = M̃, where M̃ = diag(λ1, . . . , λN ), with the eigenvalues λi ∈ C
∀i = 1, 2, . . . , N . If M is hermitian the eigenvalues λi ∈ q ∀i = 1, 2, . . . , N . Anyway, the
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function f (E.22) can be expressed in a diagonalized form, reading

f̃(ρ̃†, ρ̃) = ρ̃†M̃ρ̃ =
∑
i

c̃∗iλic̃i = f(ρ†,ρ), (C.74)

where ρ̃ = S†ρ and ρ̃† = ρS denote the vectors of Grassmann numbers in the diagonal
basis of M. Therefore, each entry c̃

(∗)
i of ρ̃(†) is a linear combination of the Grassmann

numbers c(∗)
1 , c

(∗)
2 , . . . , c

(∗)
N .

As easily proven, the Jacobian of this transformation equals 1, so that the transformed
integral measure reads dρ̃†dρ̃ = dρ†dρ.
Along with this, the Gaussian integral (C.73) reads

I− = −
∫

dρ̃†dρ̃ρ̃†M̃ρ̃ = −
∫ ∏

i

dc̃†idc̃i
∑
j

c̃†jλj c̃j . (C.75)

Due to the linearity of the berenzin integral the product and the sum are interchangeable.
Anti-commuting the integration variables cj , c∗j and first evaluating the integral over cj
yields to

I− =
∑
j

∫ ∏
i

dc̃†idc̃i c̃jλj c̃
†
j =

∑
j

∫ ∏
i

dc̃†iδi,jλj c̃
†
j =

∏
i

λi

= det(M),

(C.76)

where it is used that det(M̃) = det(M) in accordance with linear algebra. To conclude
the considerations on fermionic coherent states |Φ〉− table (C.2) summarizes their most
important properties.
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Coherent state |Φ〉− = e−
∑
i ciĉ

†
i |0〉−

∏
i

∫
Representation of ĉ†i ĉ†i |Φ〉− = ci |Φ〉−

∫ ∏
i

Representation of ĉ†i ĉ†i |Φ〉− = ∂ci |Φ〉−
∫ ∏

i

Number operator −〈Φ|n̂i|Φ〉− = |ci|2
∫ ∏

i

Scalar product −〈Φ′|Φ〉− = e
∑
i c
′
i
∗ci

∫ ∏
i

Resolution of identity
∫

dρ†dρ e−ρ
†ρ −|Φ〉 〈Φ|− = 1

∫ ∏
i

Gaussian integral
∫

dρ†dρ e−ρ
†Mρ = det(M)

∫ ∏
i

TABLE C.2: Summary of the basic properties of fermionic coherent states
|Φ〉− based on Ref. [257]. Similar to the coherent sates |Φ〉+ being eigen-
states of the bosonic annihilation operators âi, |Φ〉− are eigenstates to the
fermionic annihilation operators ĉ†i . The respective eigenvalues as are anti-
commuting Grassmann numbers ci. ρ = (c1, c2, . . . )

T and ρ† = (c∗1, c
∗
2, . . . )

denote the vector-representation of the eigenvalues, whereas the coeffi-
cient matrix M is assumed to be diagonalizable. The integration measure
dα†dα is defined in Eq. (C.72). All relations given in the table are easily

derived in view of the properties of Grassmann numbers, see Sec. E.2.



211

Appendix D

Path integral representation of
partition sums

The key quantity of statistical physics in thermal equilibrium is the partition function,
since it contains the entire information about the statistical properties of a system accord-
ing to the considered statistical ensemble. The partition sum is defined as

Z(β,X) = Tr
[
e−βĤ

]
=
∑
q

〈q| e−βĤ |q〉 , (D.1)

where β = 1/(kBT ) and Ĥ denote thermal energy and Hamiltonian, respectively. Ac-
cording to basic linear algebra the trace over a matrix is independent on the choice of
basis, so that {|q〉}marks a, yet unspecified, basis. For convenience, {|q〉} is chosen to be
discrete. In case of a continuous basis the sum over states q is replaced by an integral. The
argument X of the partition sum (D.1) represents all further state functions and param-
eters that characterize the considered system. In case of Eq. (D.1) the chosen ensemble
exemplarily is the canonical ensemble. Thereby the system is allowed to exchange energy
with its environment whereas the number of particles remains constant.

Quantum statistical mechanics
By knowing the complete set of eigenstates {|n〉} of the Hamiltonian Ĥ ,

Ĥ |n〉 = εn |n〉 , (D.2)

the partition function simplifies according to

Z(β,X) =
∑
n

〈n| e−βĤ |n〉 =
∑
n

e−βεn . (D.3)

With this representation the striking significance of the partition function becomes more
obvious. Thus, the partition function or the negative of its logarithm, which is defined as
the free energy in the case of the canonical ensemble,

F (β,X) = − 1

β
ln [Z(β,X)] , (D.4)

contains not only information about the thermal properties but it is also determined by
the properties of the micro states n, such as the masses or spins of the considered particles.
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It also allows for quantifying the probability Pn of the system occupying a specific micro
state n, which is given by

Pn(β,X) =
e−βεn

Z(β,X)
,
∑
n

Pn(β,X) = 1. (D.5)

However in most cases, the computation of the micro states is difficult or even analyt-
ically impossible. The representation of the partition function by means of a path inte-
gral provides a powerful and elegant method to gain further insights in such situations.
Therefore, the derivation of a path integral representation of Z in the case of bosonic and
fermionic particles is outlined in the following. As briefly discussed in Sec. D.2, the ana-
lytic continuation from the real Minkowski to a complex or Euclidean time axis provides
an analogy between statistical and quantum mechanics. Therefore it is convenient to
demonstrate the main aspects of the derivation of a path integral representation on the,
probably more familiar, example of the quantum propagator according to Feynman [261]
in Minkowski space. The subsequent adaption of the scheme of derivation is then easily
performed within the transformation from Minkowski to Euclidean space-time.

D.1 Prelude: Feynman’s path integral representation of the quan-
tum propagator

The first path integral approach was invented by Feynman [261] considering the propa-
gation of a quantum particle from the initial position |qi〉 at time ti to a final state localized
at |qf〉 at time tf > ti. The time evolution of an initial state |qi〉 at time ti to a final state
|qf〉 at time tf is facilitated by the time-evolution operator (B.4) according to Eq. (B.5). The
probability of the transition |qi〉 → |qf〉 is given by the respective matrix element known
as the propagator,

K(qf , tf ; qi, ti) = 〈qf | Û(tf , ti) |qi〉 = 〈qf | e−
i
~ Ĥ(q̂,p̂)(tf−ti) |qi〉 . (D.6)

The Hamiltonian is assumed to be not explicitly time dependent. The generalization of
the subsequently discussed scheme of derivation is easily performed.
According to the properties of the time-evolution operator [119] one can decompose
Û(tf , ti) into N products of N + 1 equally time-sliced operators [261, 262]

Û(tf , ti) = Û(tf , tN ) ·
[

2∏
i=N

Û(ti, ti−1)

]
· Û(t1, ti)

= e−
i
~ Ĥ(q̂,p̂)ε ·

[
2∏

i=N

e−
i
~ Ĥ(q̂,p̂)ε

]
· e− i

~ Ĥ(q̂,p̂)ε,

(D.7)

with ε = ti−ti−1 = (tf−ti)/(N+1) > 0 denotes the time interval. By inserting resolutions
of identity in terms of

1 =

∫
dqi |qi〉 〈qi| , i = 1, 2, . . . , N, (D.8)
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where each {|qi〉} denotes a complete set of position eigenstates, between each pair of
time-evolution operators one can rewrite the expression for the propagator (D.6) in the
following way

K(qf , tf ; qi, ti) =
N∏
i=1

[∫
dqi

]N+1∏
i=1

K(qi, ti; qi−1, ti−1)

=
N∏
i=1

[∫
dqi

]N+1∏
i=1

〈qi| e−
i
~ Ĥ(q̂,p̂)ε |qi−1〉 ,

(D.9)

where qf = qN+1 at tf = tN+1 and qi = q0 at ti = t0, respectively. Assuming the Hamilto-
nian to consist of kinetic and potential part, Ĥ(q̂, p̂) = T̂ (p̂) + V̂ (q̂), each contribution in
Eq. (D.9) can be factorized in the following manner according to Baker-Campbell-Hausdorff
formula [119, 243–245, 249]

K(qi, ti; qi−1, ti−1) = 〈qi| e−
i
~ T̂ (p̂)εe−

i
~ V̂ (q̂)εe−

i
~O(ε2) |qi−1〉

≈ 〈qi| e−
i
~ T̂ (p̂)εe−

i
~ V̂ (q̂)ε |qi−1〉 .

(D.10)

If [T̂ , V̂ ] = 0, the left and right hand side of Eq. (D.10) will exactly be equal. Otherwise,
the error within the factorization (D.10) tends to zero in the limitN →∞ and thus in turn
ε→ 0, again retrieving equality between the left and right hand side of expression (D.10).
Mapping this back onto Eq. (D.7) yields the Trotter product formula [263]

e−
i
~ Ĥ(q̂,p̂)(tf−ti) = lim

N→∞

(
e−

i
~ T̂ (p̂)εe−

i
~ V̂ (q̂)ε

)N+1
. (D.11)

For convenienceN is maintained final during the following steps so that the limitN →∞
is taken only at the end.
Now, by first inserting the resolution of identity according to Eq. (D.8) between the prod-
uct of the exponentials of kinetic and potential operator

K(qi, ti; qi−1, ti−1) ≈
∫

dq 〈qi| e−
i
~ T̂ (p̂)ε |q〉 〈q| e− i

~ V̂ (q̂)ε |qi−1〉 , (D.12)

one can insert identity resolved in terms of the momentum space eigenstates {|pi〉},

1 =

∫
dpi
2π~
|pi〉 〈pi| , (D.13)

between the exponential of the kinetic operator and the ket |q〉. Equation (D.12) then
reads

K(qi, ti; qi−1, ti−1) ≈
∫

dpi
2π~

∫
dqe−

i
~T (pi)εe−

i
~V (x)ε 〈qi|pi〉 〈pi|x〉 〈x|qi−1〉 , (D.14)

where it was used that the momentum / position representation is the eigenbasis of the
momentum / position operator, respectively. Thus, also the kinetic and potential op-
erator are represented in their respective eigenbasis. Therefore the operators entering
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Eq. (D.14) are replaced by their complex eigenvalues. Under usage of

〈qi|pj〉 = e
i
~ qipj = (〈pj |qi〉)† ,

〈qi|qj〉 = δ(qi − qj),
(D.15)

and after executing the integration over position space the propagator (D.14) transforms
into

K(qi, ti; qi−1, ti−1) ≈
∫

dpi
2π~

e
i
~ ε
[
pi
qi−qi−1

ε
−H(qi,pi)

]
, (D.16)

where the Hamiltonian enters in its eigenbasis representation. Inserting the intermediate
result (D.16) into the full propagator (D.6) yields

K(qf , tf ; qi, ti) =

N∏
i=1

[∫
dqi

]N+1∏
i=1

[∫
dpi
2π~

]
e
i
~ ε
∑N+1
i=1

[
pi
qi−qi−1

ε
−H(qi,pi)

]
, (D.17)

In the limit of N → ∞ the time slice ε → 0, so that the discrete set of time steps ti = iε,
for i = 1, 2, . . . , N , is dense on the interval [ti, tf ].
Accordingly, the set of phase space points {(qi, pi); i = 1, 2, . . . , N} can be regarded as
continuous functions of time (x(t), p(t)) on the interval l [ti, tf ] and

lim
N→∞

qi − qi−1

ε
= ∂tq(t),

lim
N→∞

ε
N+1∑
i=1

=

∫ tf

ti

dt.
(D.18)

The convergence of the discretized Hamiltonian (D.17) into a continuous function of time
H(q(t), p(t)) is strictly valid only for smooth potentials V (q(t), t) without singularities.
Summarizing, in the limit N → ∞ the propagator (D.17) can be written in the following
path integral representation

K(qf , tf ; qi, ti) =

∫ q(tf)=qf

q(ti)=qi

D′xe
i
~
∫ tf
ti

dt[p(t)∂tq(t)−H(q(t),p(t))]
, (D.19)

where ∫ q(tf)=qf

q(ti)=qi

D′x = lim
N→∞

N∏
i=1

[∫
dqi

]N+1∏
i=1

[∫
dpi
2π~

]
(D.20)

defines the integration measure. The integral in the exponential of the path integral rep-
resentation (D.19) is known as the classical canonical action

S[q, p] =

∫ tf

ti

dtL [q(t), q̇(t)] , (D.21)
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t

q

ε

qi

qf

q0 q1 q2 q4 q3 q5 q6

tft5t4t3t2t1ti

FIGURE D.1: Illustration of classical and quantum trajectories connect-
ing the initial coordinate qi at time ti with the final coordinate qf at time
tf . The thick red curve illustrates a classical path according to Hamilton’s
principle. Whereas trajectories in the vicinity of this classical path lead
still contribute in first order, the thin blue lines depict classically forbidden
paths. When the time-steps ε become infinitesimal small, these paths in-
terfere destructively so that their contribution to the quantum propagator

vanishes.

of all trajectories t 7→ q(t) that connect initial and final coordinate, qi = q(ti) and qf = q(tf),
respectively, according to the classical Lagrangian

L [q(t), q̇(t)] = p(t)q̇(t)−H(q(t), p(t)), (D.22)

the Legendre transform of the classical Hamiltonian H . Thereby ∂tq(t) = q̇(t) defines the
time derivative of the generalized coordinate q(t), the generalized velocity. Furthermore,
Hamilton’s principle

δS[q, p]

δq(t)
= 0 (D.23)

states, that only paths, that satisfy the classical equations of motions in accordance with
the Euler-Lagrange-equations

∂L [q(t), q̇(t)]

∂q(t)
− d

dt

∂L [q(t), q̇(t)]

∂q̇(t)
= 0 (D.24)

are stationary points of the action S and therefore providing the dominant contribution
to the propagator (D.19). This situation is depicted by Fig. D.1 for the example of six



216 Appendix D. Path integral representation of partition sums

time-steps.

Assuming the particle to return to its initial point after a time t, i.e. claiming periodic
boundary conditions q = qi = q(0) = qf = q(t) for the paths, yields a special case of the
propagator

K(q, t) = 〈q| e− i
~ Ĥt |q〉 =

∮
D′[x]e

i
~S[q,p], (D.25)

where ∮
D′[x] =

∫ q(t)=q

q(0)=q
D′[x]. (D.26)

This is starting point for the discussion of the path integral representation of the partition
sum.

D.2 Partition sum of the canonical ensemble and Wick rotation

The formal connection between quantum and statistical mechanics is provided by the
concept of imaginary time τ = it. This becomes obvious by comparison of the quantum
propagator for periodic paths with the definition of the partition sum according. Each
summand contributing to the partition function (D.1) matches a quantum propagator for
periodic boundary conditions (D.25) evaluated at the imaginary time t 7→ −i~β, i.e.

Z(β,X) =
∑
q

K(q, t)|t7→−i~β . (D.27)

Starting from the ordinary Minkowski space with its defined metric

ds2 = −dt2 + dq2, (D.28)

where dt ∈ R and dq ∈ R3. Within the concept of imaginary time, the real time axis t
in Minkowski space is extended to the complex plane, as illustrated in Fig. D.2 a). The
analytic continuation of a integration contour γ from the real time axis t to a complex time
t 7→ e−iϕt is called Wick rotation [249]. The space coordinates remain unchanged by the
rotation of the time-frame. In the depicted example, Fig. D.2 a), and in accordance with
the sign convention for position space introduced in Ref. [249]) the rotation is performed
clockwise, i.e. ϕ > 0. By claiming ϕ = π/2 a path is analytically continued from t to a
purely imaginary time −it, i.e.γ(t) 7→ γ(−it) Thereby the direction of integration alters
from positive on the real axis to negative on the imaginary time axis as the sign in the
argument of the analytically continued path γ indicates. Accordingly, a Wick rotation in
momentum space, where the time coordinate corresponds to the energy ε, is performed
counterclockwise [249], so that the direction of integration remains unchanged1. Within
this sign convention [249] the product of time and energy is invariant under Wick rotation
as easily proven. After the rotation of an integration path in position space, one may
put it = τ , where τ is postulated to be the real time coordinate in a four-dimensional
Euclidean space and therefore also sometimes referred to as Euclidean time. Thereby the

1Some authors use a different sign convention, which is possible as long as consistently applied.
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−(t0 + i0+)

(t0 + i0+)

γE(τ)

a) it

t

b) iτ

τ

(iτ0 − 0+)

−(iτ0 − 0+)

γ(t)

γ(−it)

FIGURE D.2: a) Illustration of the Wick rotation of a integration path γ in
Minkowski space from real time coordinate t (solid red line) to imaginary
time −it (dotted blue line) [249]. The black arrows denote the direction of
rotation, t 7→ e−iϕt, where ϕ = π/2. Thereby the direction of integration in
position space is changed from positive, on the real time axis t, to negative,
on the imaginary time axis it. The integration along −it corresponds to a
integration in positive direction along the real axis τ in Euclidean space as
depicted by the solid blue line in panel b). The dotted red line corresponds
to the inverted Wick rotation leading from Euclidean to the original curve
(red solid line in panel a)) in Minkowski space. The orange dots repre-
sent potential singularities of a quantum propagator similar to Eq. (D.19).
In the depicted example, the positions of the singularities correspond to
the anti-time-ordered Greens function according to the Feynman path in-
tegral. Any different, but consistent choice depending on the demand of
the theory is valid as well. The direction of circulation of the path around

the enclosed pole t0 + i0+ remains unchanged by the Wick rotation.

Wick rotation corresponds to a mapping from the Minkowski space-time to Euclidean
space-time [249], with its assigned Euclidean metric

ds2
E = dτ2 + dq2, (D.29)

where dτ ∈ R and dq ∈ R3. With this, one can introduce the short-hand notation t 7→ −iτ
for the Wick rotation from the real time axis t in Minkowski space to the real time axis τ
in Euclidean space. According to the introduced sign convention [249], the direction of
integration of the transformed path in Euclidean space, γE(τ) = γ(−it), is again positive,
as Fig. D.2 b) illustrates. Similar to the definition of the integration path γE in Euclidean
space, one can define

q(t) 7→ q(−it) = q(τ) = qE(τ) (D.30)

for the transformation of generalized coordinates. Having regard to

∂t 7→ i∂τ , dt 7→ −idτ (D.31)
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the transformation of time-dependent quantities under Wick rotation is straightforward.
For example one finds for the generalized velocities in Euclidean space This coincidence
holds not for the generalized velocities:

q̇(t) = ∂tq(t) 7→ q̇(−it) = i∂τqE(τ) = iq̇E(τ). (D.32)

Similarly the Euclidean Lagrangian is obtained from the Minkowski Lagrangian (D.22)
by

L [q(t), q̇(t)] 7→ L [q(t), q̇(−it)] = LE [q(τ), q̇E(τ)] . (D.33)

This directly leads to the Euclidean action

S [q, p] 7→ i~
∫ β

0
dτ LE [q(τ), q̇E(τ)] = i~SE [q, p] , (D.34)

so that one concludes for the quantum propagator with periodic boundary conditions (D.25)
in Euclidean space

K(q, t) =

∮
D′[x] e

i
~S[q,p] 7→ KE(q, β) =

∮
D′[x] e−SE[q,p]. (D.35)

Concluding in view of Eq. (D.25), the result for propagator for a periodic path q in Eu-
clidean space-time corresponds to a summand of the partition sum in path-integral rep-
resentation, so that the final result of this section reads

Z(β,X) =

∫ ∞
−∞

dq KE(q, β) =

∮
D[x] e−SE[q,p]. (D.36)

The integration measure is explicitly given by∮
D[x] =

∫ ∞
−∞

dq

∮
D′[x], (D.37)

whereas
∮
D′[x] is defined in Eqs. (D.20, D.26).

D.3 Grand-canonical partition sum for many-body systems

Within the framework of bosonic or fermionic coherent states (cf. Sec. C.3) the derivation
of a path-integral approach for the many-body partition function

Z = Tr
[
e−β(Ĥ−µN̂ )

]
=
∑
n

±〈n|e−β(Ĥ−µN̂ ) |n〉± (D.38)

can be achieved in the same way as the derivation in the single-particle case considered
in Sec. D.2. The subsequently discussed scheme of derivation mainly follows Ref. [257].
Without loss of generality the partition sum as written in Eq. (D.38) refers to the grand
canonical ensemble, where the system is allowed to exchange energy and particles with its
environment. Thereby, the chemical potential µ is a measure of the energy required to
add a particle to the system. The many-body Hamiltonian Ĥ in Eq. (D.38) is assumed to
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be of the general form

Ĥ =
∑
i,j

b̂†i hi,j b̂j , (D.39)

where b̂†i , b̂j denote either bosonic or fermionic creation annihilation operators for the
single-particle states i, j. The matrix element hi,j = 〈ψi| Ĥ |ψj〉 ∈ C is obtained from
associated single-particle state vectors |ψi〉 and |ψj〉 and the corresponding single-particle
Hamiltonian Ĥ , as discussed in Subsec. C.2.5. Furthermore, the number operator N̂ reads

N̂ =
∑
i

n̂i =
∑
i,j

b̂†i δi,j b̂j , (D.40)

with n̂i as defined in Eq. (C.39). The basis states {|n〉±} shall denote the a complete set
of Fock states for either the symmetrized (+) or anti-symmetrized (−) Fock space (C.30).
By insertion of the identity resolution in terms of coherent states, Eq. (C.63) and Tab. C.2,
between the Fock-state bra and the operator exponential, Eq. (D.38) takes the following
form

Z =

∫
dβ†dβ e−β

†β
∑
n

±〈n|Φ〉± ±〈Φ|e−β(Ĥ−µN̂ ) |n〉± . (D.41)

The integration measure explicitly reads∫
dβ†dβ =

∫ ∏
i

db∗i dbi√
π

1±1 , (D.42)

where b∗, b denote either bosons or fermions. Similarly, β(†) denotes the vector repre-
sentation of complex or Grassmann numbers. In Eq. (D.41) the normalizing exponential
contains no operators so that it is pulled from the right side of the Fock-state bra to its left
side. By permuting ±〈n|Φ〉± with ±〈Φ|e−β(Ĥ−µN̂ ) |n〉± one is able to represent the trace
only by means of the coherent states according to the completeness of Fock states (C.25).
In the fermionic case, the sign in the exponential assigned with the creation operators in
−〈Φ| (C.70) changes [257] according to the anti-commutation of fermionic operators (C.43)
and Grassmann numbers (C.71). This can be seen from the following:
The operator exponential in Eq. (D.41) yields no change in the sign since the considered
Hamiltonian (C.7) as well as the number operator (D.40) consist of an even number of
fermionic operators. Note that also the fermionic part of the Hamiltonian (5.44 – 5.47),
regarded in the main part of this thesis, contains an even number of fermionic opera-
tors. Therefore, one can regard the permutation of ±〈n|Φ〉± with ±〈Φ|n〉± only when
concerned with the origin of the sign change. From the generation of Fock states from
the vacuum by action of the creation operators b̂†i according to Eq. (C.36) and the defini-
tion of the coherent states as eigenstates of the annihilation operator one finds

−〈n|Φ〉− −〈Φ|n〉− = −〈0|
∑
i

(ci)
ni

√
ni!
|Φ〉− −〈Φ|

∑
i

(c∗i )
ni

√
ni!
|0〉− , (D.43)
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where c∗i , ci denote Grassmann numbers. With regard to the definition of anti-commuting
multiplication of Grassmann numbers (C.71) it is obvious that

−〈n|Φ〉− −〈Φ|n〉− = −〈Φ|
∑
i

(−c∗i )ni√
ni!

|0〉− −〈0|
∑
i

(ci)
ni

√
ni!
|Φ〉− = −〈−Φ|n〉− −〈n|Φ〉−,

(D.44)
where

−〈−Φ| = −〈0|e+
∑
i ĉic

∗
i . (D.45)

Along with this, it follows from Eq. (D.41) for the partition sum

Z =

∫
dβ†dβ e−β

†β ±〈±Φ|e−β(Ĥ−µN̂ ) |Φ〉± , (D.46)

where the trace is given in terms of the coherent states. According to the anti-commutativity
of Grassmann numbers, the corresponding representation of the fermionic trance is re-
ferred to as anti-diagonal. This condition results in anti-periodic boundary conditions for
the respective fermionic fields as it becomes clear during the following.
As a next step, the exponential of the Hamiltonian is expanded into N +1 equally spaced
pieces (δ = β/N ) whereas a resolution of identity expressed in terms of coherent states,
Eq. (C.63) and Tab. C.2, is inserted between each pair of exponentials:

Z =
N+1∏
n=1

[∫
dβ†ndβn

] N+1∏
n=1

e−β
†
nβn ±〈Φn|e−β(Ĥ−µN̂ ) |Φn−1〉± . (D.47)

The product over matrix elements is thereby to read in descending order, i.e.

±〈ΦN+1| |ΦN−1〉± ±〈ΦN−1| |ΦN−1〉± . . .±〈Φ1| |Φ0〉± . (D.48)

According to the definition of the trace in terms of coherent states (D.46) the conditions

±〈ΦN+1| = ±〈±Φ|, |Φ0〉± = |Φ〉± (D.49)

have to be satisfied. Note that the expansion of the Hamiltonian into time-sliced prod-
ucts (D.47) is exact. Furthermore, each coherent state |Φn〉± is a function of a complete set
of eigenvalues βn = (b1n , b2n , . . . )

T of the corresponding annihilation operators. Thereby
each of the indices i = 1, 2, . . . denotes a single-particle state, so that in refers to the
single-particle state i at Euclidean time nδ. Accordingly, the integration measure in (D.47)
is explicitly given by

N+1∏
n=1

[∫
dβ†ndβn

]
=

N+1∏
n=1

[∫ ∏
in

db∗indbin√
π

1±1

]
. (D.50)

Each exponential entering each matrix element in Eq. (D.47) is then expanded into a Tailor
series of normal-ordered contributions [257]:

±〈Φn|e−δ(Ĥ−µN̂ ) |Φn−1〉± = ±〈Φn|1 + δ
∑
i,j

b̂†i ci,j b̂j +O(δ2) |Φn−1〉± , (D.51)
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where the expansion coefficients ci,j ∈ C and b̂†i , b̂j correspond to the creation and an-
nihilation operator of the respective single-particle states. In general, this is valid for
any Hamiltonian containing an even number of particle operators. In case of the par-
ticular example for Hamiltonian given by Eq. (D.39), the complex coefficients satisfy
ci,j = hi,j − µδi,j . Remembering the coherent states being eigenstates of the annihila-
tion operator further simplifies the Tailor expansion in first order approximation:

±〈Φn|e−δ(Ĥ−µN̂ ) |Φn−1〉± ≈ ±〈Φn|Φn−1〉±(1 + δ
∑
i,j

b∗i ci,j bj)

≈ ±〈Φn|Φn−1〉±e−δ
[
H(β†n,βn−1)−µN (β†n,βn−1)

]
,

(D.52)

where b∗i and bj are either complex or Grassmann numbers and β†, β denote the corre-
sponding vector representation. Accordingly,H andN in Eq. (D.52) refer to the coherent-
state representation of each corresponding operator Ĥ, N̂ , i.e.

H(β†n,βn−1) =

±〈Φn|Ĥ|Φn−1〉±
±〈Φn|Φn−1〉±

=
∑
i,j

b∗in hi,j , bjn−1 , (D.53)

The same holds for the number operator.
The scalar product entering expression (D.52),

±〈Φn|Φn−1〉± = eβ
†
nβn−1 , (D.54)

satisfies in accordance with Eq. (D.49) the following boundary conditions for n = N + 1

±〈ΦN+1|ΦN 〉± = e±β
†
N+1βN . (D.55)

Thus, each contribution to the partition sum (D.47) is given by

e−β
†
nβn ±〈Φn|e−δ(Ĥ−µN̂ ) |Φn−1〉± ≈ e−δ

[
β†n

βn−βn−1
δ

+H(β†n,βn−1)−µN (β†n,βn−1)
]
, (D.56)

so that Z can be written as

Z ≈
N+1∏
n=1

[∫
dβ†ndβn

]
e
−δ
∑N+1
n=1

[
β†n

βn−βn−1
δ

+H(β†n,βn−1)−µN (β†n,βn−1)
]
. (D.57)

According to expression (D.55), the boundary conditions in the bosonic case, β(†) = α(†),
are periodic:

α0 = αN+1. (D.58)

By contrast, the anti-diagonal condition (D.55) for fermions, β(†) = ρ(†), results in anti-
periodic boundary conditions:

ρ0 = −ρN+1. (D.59)

Similar to the single-particle case, discussed in Sec. D.1, the partition sum (D.57) becomes
exact in the continuum limit, N → ∞, according to the Trotter product formula (D.11).
Within similar considerations, the set of discrete eigenvalue vectors {βn,β†n} becomes
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continuous on the Euclidean time interval [τi = 0, τf = β], so that

lim
N→∞

{βn,β†n} = {β(τ),β†(τ)} (D.60)

are referred to as fields of complex or Grassmann variables, depending on the considered
species of particles. Correspondingly, the final result for the many-body partition sum
refers to a quantum field integral rather than a quantum path integral as in the single-
particle case, Eq (D.36).
In the continuum limit the mismatch of eigenvalue vectors evaluated at different time
slices δ · n and δ · (n − 1) entering the Hamiltonian and the number operator becomes
arbitrary small, resulting in

lim
N→∞

[
H(β†n,βn−1)− µN (β†n,βn−1)

]
= H[β†(τ),β(τ)]− µN [β†(τ),β(τ)]. (D.61)

By obtaining for the difference of the sets βn and βn−1 in Eq. (D.57) the corresponding
derivative with respect to the Euclidean time τ and replacing the sum by an integral,

lim
N→∞

βn − βn−1

δ
= ∂τβ(τ),

lim
N→∞

δ
N+1∑
n=1

=

∫ β

0
dτ,

(D.62)

the many-body path-integral formulation of the partition sum is given by

Z =

∮
D[β] e−SE[β†,β], (D.63)

with the Euclidean action of the quantum fields

SE[β†,β] =

∫ β

0
dτ
[
β†(τ)∂τβ(τ) +H[β†(τ),β(τ)]− µN [β†(τ),β(τ)]

]
. (D.64)

The integration measure of the quantum field integral (D.63) explicitly reads∮
D[β] =

∫ β(†)(β)=±β(†)(0)

β(†)(0)
D[β] =

∫ β(†)(β)=±β(†)(0)

β(†)(0)

∞∏
n=1

dβ†ndβn√
π

1±1 , (D.65)

where the boundary conditions of the closed field integral are either periodic (+) in the
bosonic case or anti-periodic (−) in the fermionic case. A discussion of the concept of
Euclidean time and the connection between quantum and statistical mechanics is found
in Sec. D.2. According to the thermal energy β entering the quantum field integral as
the Euclidean time parameter, the class of integrals (D.63) is also referred to as thermal
quantum field integrals in literature [264].
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For the evaluation ofZ it is convenient to introduce the Fourier transform of the quantum
fields {β†(τ),β(τ)}with respect to the Euclidean time τ [240, 257, 264]:

β†(τ) =
1√
β

∑
ω±n

β̃
†
ne
iω±n τ , β̃

†
n =

1√
β

∫ β

0
dτ β†(τ)e−iω

±
n τ ,

β(τ) =
1√
β

∑
ω±n

β̃ne
−iω±n τ , β̃n =

1√
β

∫ β

0
dτ β(τ)eiωnτ ,

(D.66)

where β̃n denotes the short-hand notation for the vector representation of the complex
or Grassmann numbers in frequency space, i.e. β̃n = β̃(ω±n ) = (b̃1(ω±n ), b̃2(ω±n ), . . . )T .
The particular periodic or anti-periodic boundary conditions (D.65) are precisely satis-
fied [240, 257, 264] by choice of the following so-called Matsubara frequencies [265]

ω±n =

{
2π n
β , (+) for bosons,

(2n+1)π
β , (−) for fermions,

n ∈ Z. (D.67)

Under usage of the identity
∫ β

0 dτ e−iω
±
n τ = δn,0 the Euclidean action (D.64) is easily trans-

formed into

SE[β̃
†
, β̃] =

∑
n

[
β̃
†
n(−iω±n )β̃n +H

[
β̃
†
n, β̃n

]
− µN

[
β̃
†
n, β̃n

]]
. (D.68)

In particular, for Ĥ and N̂ being of the general form (D.39, D.39), the Euclidean action
can be written as

SE[β̃
†
, β̃] =

∑
n

∑
i,j

[
b̃∗i (ω

±
n )
[
(−iω±n − µ)δi,j + hi,j

]
b̃j(ω

±
n )
]

=
∑
n

β̃
†
n S(iω±n )β̃n. (D.69)

By adapting the integration measure D[β] to the Fourier representation,

D[β̃] =
∏
ω±n

dβ̃
†
ndβ̃n√
π

1±1 , (D.70)

one obtains the equivalent of the partition sum in frequency representation:

Z =

∮
D[β̃] e−SE[β̃

†
,β̃]. (D.71)

Regarding the particular example of SE given by Eq. (D.69) the thermal field integral is
easily evaluated by means of Gaussian integration as discussed in Sec. C.3 for bosons and
fermions, respectively. Therefore, the partition sum in this case is given by

Z =
∏
ω±n

det
[
S(iω±n )

]∓1
, (D.72)

where the matrix S is defined in Eq. (D.69). The product over Matsubara frequencies can
be transformed into a sum by considering the logarithm of the partition sum, referred to
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as the grand-canonical potential:

Ω = − 1

β
logZ = ± 1

β

∑
ω±n

log
[
det
[
S(iω±n )

]]
. (D.73)

The evaluation of this infinite sum over Matsubara frequencies can be accomplished by
means of the Residue theorem, as demonstrated in Sec. E.3.

If the matrix S(iω±n ) assumes diagonal form,

Sdiag
j,j (iω±n ) = −iω±n − µ+ εj ⇔ det

[
Sdiag(iω±n )

]
=
∏
j

Sdiag
j,j (iω±n ), (D.74)

where εj = hj,j denotes the single-particle eigenenergy of state j and hi,j = 0 ∀i 6= j, the
evaluation of the partition sum Z will be seemingly easy and yields

Z =
∏
ω±n

∏
j

(
−iω±n − µ+ εj

)∓1

. (D.75)

By evaluation of the Matsubara sum (cf. Sec. E.3) one finds the grand-canonical potential
of the many-body system in the familiar form

Ω = ± 1

β

∑
ω±n

∑
j

log
(
−iω±n − µ+ εj

) (E.41)
= ± 1

β

∑
j

log
[
1∓ e−β(εj−µ)

]
, (D.76)

where the upper sign refers to bosons and the lower one to fermions. Note that the in-
formation entering Ω and thus in turn the many-body partition sum is only based on
single-particle information and the chemical potential determining the number of occu-
pied levels at a given temperature 1/β. Hence, for β → ∞ one obtains the many-body
ground state of the grand-canonical ensemble.
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Appendix E

Mathematical concepts

E.1 Fourier transformation

The Fourier transform of a scalar field or a component of a vector field f : R3 → R,
q 7→ f(q) from real space to reciprocal space is defined by

f̃(k) =

∫
R3

d3q f(q)e−ik·q, (E.1)

where f̃ : R3 → R, k 7→ f̃(k) is a map in reciprocal or momentum space. Likewise, the
inverse transformation is defined by

f(q) =

∫
R3

d3k

(2π)3
f̃(k)eik·q. (E.2)

From these definitions follows a variety of relations, such as the Plancherel identity [266]∫
R3

d3q f(q)g(q) =

∫
R3

d3k

(2π)3
f̃(k)g̃(−k) (E.3)

concerned with the Fourier transform of the product of two fields f(q) and g(q). The
identity can be derived from the definitions (E.1, E.2) and the δ distribution in reciprocal
space,

δ(q − q′) =

∫
R3

d3k

(2π)3
eik·(q−q

′) ⇔ e−ik·q
′

=

∫
R3

d3q δ(q − q′) e−ik·q (E.4)

(2π)3δ(k − k′) =

∫
R3

d3q e−i(k−k
′)·q ⇔ eik

′·q =

∫
R3

d3k δ(k − k′)eik·q (E.5)

as follows ∫
R3

d3q f(q)g(q) =

∫
R3

d3q

∫
R3

d3k

(2π)3

∫
R3

d3k′

(2π)3
f̃(k)g̃(k′) e−i(k+k′)q

=

∫
R3

d3k

(2π)3

∫
R3

d3k′ f̃(k)g̃(k′)δ(k + k′)

=

∫
R3

d3k

(2π)3
f̃(k)g̃(−k)

(E.6)
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E.2 Grassmann numbers: eigenvalues of the fermionic annihi-
lation operator

The Grassmann algebra is generated from an identity element 1 and anti-commuting
Grassmann numbers ci, whereas the multiplication is precisely defined by Eq. (C.71). A
profound derivation of the properties of the Grassmann algebra can be found, for ex-
ample, in Ref. [258]. Therefore the following outlines a few important aspects of the
properties of Grassmann numbers needed to investigate on a fermionic path integral.

From the definition of the multiplication of two Grassmann numbers (C.71) one can de-
duce the following properties among others:

1. The addition of Grassmann numbers is commutative:

ci + cj = cj + ci, (ci + cj) + ck = ci + (cj + ck) (E.7)

2. The addition and multiplication of a Grassmann number and a complex number a
is commutative:

ci + a = a+ ci, cia = aci. (E.8)

3. As anticipated in Eq. (C.70) it is possible to define the complex conjugate c∗i of a
Grassmann number ci = cR

i + icI
i, where cq

i , cI
i are Grassmann numbers and i is the

imaginary unit. Therefore

(c∗i )
∗ = (cR

i − icI
i)
∗ = cR

i + icI
i (E.9)

and the square of the absolute value is imaginary

|ci|2 = c∗i ci = (cR
i − icI

i)(c
R
i + icI

i) = 2icR
i c

I
i. (E.10)

4. The multiplication is associative by definition

(cicj)ck = ci(cjck). (E.11)

5. The multiplication of two Grassmann numbers cj , ck yields a complex number. This
follows from

ci(cjck) = −cjcick = (cjck)ci (E.12)

in view of Eqs. (C.71, E.11) and the commutativity of the multiplication of ci with a
complex number (E.8).

6. Any power of a Grassmann number higher than 1 is zero:

c0
i = 1, c1

i = ci, (E.13)

c2
i = c3

i = . . . = 0. (E.14)
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Consequently there exists no inverse to a Grassmann number with respect to the
multiplication (C.71).

7. From 6 directly follows, that any function of a set of Grassmann numbers can max-
imally be of first order in each Grassmann number. For example any function of N
Grassmann numbers is of the following form

f(c1, c2, . . . , cN ) = m0 +
N∑
i=1

m1(i)ci +m+
N∑
i=1

N∑
j=i+1

m2(i, j)cicj + . . .

+mN (1, 2, . . . , N)c1c2 . . . cN ,

(E.15)

where mi(. . . ) ∈ C ∀i = 0, 1, 2, . . . , N .

According to the properties of the complex differentiation one can define the derivative
of the elements of the Grassmann algebra by

∂cj1 = 0, (E.16)
∂cjci = δi,j . (E.17)

Thus, for N = 2, the derivative of the exemplary function f (E.15) with respect to a
Grassmann number ck in reads

∂ckf(c1, c2) = [m1(1) +m2(1, 2)c2] δ1,k + [m1(2)−m2(1, 2)c1] δ2,k. (E.18)

The integration over a Grassmann number ci is defined as the linear Berezin integral [267]
with the follwing properties ∫

dcj 1 = 0, (E.19)∫
dcj ci = −

∫
ci dcj = δi,j . (E.20)

The differential dcj is anti-commutative under multiplication (C.71) similar to an ordi-
nary Grassmann number. Summarizing, mathematical analysis of functions of Grass-
mann numbers is seemingly easy by virtue of their properties resulting from the anti-
commutative multiplication (C.71) and the equality (up to a sign) of derivative (E.16,
E.17) and integration (E.19, E.20), i.e.

∂ckf(c1, c2, . . . , cN ) =

∫
dck f(c1, c2, . . . , cN ) = −

∫
f(c1, c2, . . . , cN ) dck. (E.21)

Within the framework of this thesis a slightly generalized version of functions (E.15),
which are quadratic in Grassmann numbers, i.e. mi(. . . ) = 0 ∀i = 0, 1, 3, . . . , are of spe-
cial interest: By introducing the vector-representation of theN pairs of conjugated Grass-
mann numbers, ρ = (c1, c2, . . . , cN )T and ρ† = (c∗1, c

∗
2, . . . , c

∗
N ), functions of this type are

from the following form

f(ρ†,ρ) = ρ†Mρ =
∑
i,j

c∗imi,jcj , (E.22)
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where M denotes a N ×N -matrix-representation of complex coefficients mi,j = m2(i, j),
i, j = 1, 2, . . . , N .

E.3 Evaluation of Matsubara sums

The aim of the following subsection is to outline a general scheme [268, 269] for the eval-
uation of a Matsubara frequency sum [265] of the following form

σ± =
1

β

∑
ω±n

f(iω±n ), (E.23)

where f(z), z ∈ C, is an arbitrary function of complex numbers regarded to be regular at
each Matsubara frequency iω±n , where ω±n is defined in Eq. (D.67). Thereby the summa-
tion in Eq. (E.23) extends over all Matsubara frequencies indexed by n, i.e. n ∈ Z.

As a first step one expresses the prefactor by the complex residue of the auxiliary func-
tions

η±(z) = ± 1

exp(zβ)∓ 1
, (E.24)

matching the Bose-Einstein (+) and Fermi-Dirac (−) statistics up to the negative sign for
the latter. It is straightforward to see, that z = iω±n is a pole of η±(z) and the residue of
this pole precisely coincides with the prefactor in Eq. (E.23), i.e.

Resiω±n

[
η±(z)

]
=

1

β
. (E.25)

Since f(z) is regarded to be regular at each Matsubara frequency one can express σ (E.23)
in the following way

σ± =
∑
ω±n

Resiω±n

[
η±(z)f(z)

]
. (E.26)

From the residue theorem [270] follows that the residue of a function g(z) at its pole a can
be determined by the integration along a closed contour ∂U(a) around the pole,

Resa [g(z)] =
ind(a)

2πi

∮
∂U(a)

dz g(z), (E.27)

where the winding number ind(a) counts the number and the direction of circulation
around a pole a performed by a certain path of integration. In the case discussed here the
paths are chosen to circumvent each pole once, whereas

ind(a) =

{
−1 for clockwise,
+1 for counter-clockwise

(E.28)

circulation around a.
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Re[z]

b) Im[z]

Re[z]

∂U(iω−−3)

∂U(iω−3 )

a) Im[z]

γ1

γ2

FIGURE E.1: Poles of the auxiliary function η−(z) according to fermionic
Matsubara frequencies (D.67) are marked by green dots. The orange dots
illustrate potential poles of the function f(z) (E.23). Without loss of gen-
erality these poles are chosen to be real in the depicted example. Panel a)
illustrates the counter-clockwisely enclosed integration contours ∂U(iω−n )
(gray rectangles) in the vicinity of each imaginary Matsubara frequency.
For pedagogical reasons those contours are depicted as rectangular paths,
so that the cancellation of the horizontal contribution (dotted segments) of
two subsequent paths becomes obvious. Therefore, the integration can be
reduced to the vertical contributions (solid segments) of each integration
contour ∂U(iω−n ) resulting in the paths γ1, γ2 as shown in gray by panel b).

For convenience a counter-clockwise direction of integration is chosen, so that

σ± =
1

2πi

∑
ω±n

∮
∂U(iω±n )

dz η±(z)f(z). (E.29)

As depicted by Fig. E.1 a) for fermionic Matsubara frequencies the horizontal contribu-
tions of two subsequent integration contours, ∂U(iω±n ) and ∂U(iω±n+1), cancel with each
other since the direction of integration is opposite. Therefore, the integration contour re-
duces to the vertical contributions resulting in the path γ1 on the right half plane and γ2

on the left half plane as clarified by Fig. E.1 b). Consequently σ± simplifies to the sum of
both contributions according to the integration along the effective paths γ1 and γ2,

σ± = σ±1 + σ±2 , σ±i =
1

2πi

∫
γi

dz η±(z)f(z). (E.30)

The evaluation of these integrals can be achieved by means of the residue theorem [270].
Therefore the integration along both effective paths, γ1 and γ2, has to be transformed
into an integration along closed contours.Note that the choice of the closed integration
contour depends upon the properties of the integrand η±f . The particular example sub-
sequently outlined refers to f being well-behaved and injective. However, also the eval-
uation of the Matsubara sum (E.23) for f(z) = log(z− ε), which has a branch cut for z ≤ ε
along the real axis, is relevant for this thesis (cf. Sec. D.3). In this case the subsequently
outlined scheme applies as well for a proper choice of the closed integration contour,
such as depicted in Fig. E.2 b). For further details on the evaluation of the Matsubara
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b) Im[z]

Re[z]

a)

γ̃R1

γ̃R2

Im[z]

Re[z]

γR1

γR2 γR3

γR4

FIGURE E.2: Panel a): Following Fig. E.1. Closure of the effective inte-
gration contours γR1 and γR2 by the blue solid semicircular contours, γR3
and γR4 , respectively. Note that this holds only for injective complex in-
tegrands. Panel b): Following Ref. [257]. Suitable integration contour for
f(z) = log(z − ε), where ε is marked by the orange dot. The red labeled
region on the real axis for z ≤ ε illustrates the branch cut of the complex
logarithm. The integration contour is composited from γ̃R1 and γ̃R2 which

result from the distorted contours γ1 and γ2 as depicted in Fig. E.1.

sum in case of f(z) = log(z − ε) one is also referred to Ref. [257].
With this, the discussion of the evaluation of the Matsubara sum for f being injective and
regular is proceeded. Thus, by extending the integration path γ1 with a semicircular path
γR3 with radius R, as depicted by Fig. E.2 a), a closed integration contour γRr = γR1 + γR3
results on the right half plane. Similar, one can close the integration on the left half
plane by adding to σ±2 the integration along γR4 , i.e. γRl = γR2 + γR4 . According to the
residue theorem, the value of the integration of η±(z)f(z) along either closed contours,
γRr/l, equals the sum over the residues of f(z) at its enclosed poles, zr/l

i . Thus, one finds,
for instance, in the right half plane

1

2πi
lim
R→∞

∮
γR1 +γR3 =γRr

dz η±(z)f(f) = −
∑
zr
i

Reszr
i

[
η±(z)f(z)

]
(E.31)

Note that the poles of the auxiliary function η±(z) lie on the outside of the enclosed
region by definition. With zr/l

i denoting the i-th pole of f(z) in the right / left half plane
one finds for each contribution σ±i , i = 1, 2, to σ±, Eq. (E.30):

σ±1/2 = −
∑
z

r/l
i

Res
z

r/l
i

[
η±(z)f(z)

]
− 1

2πi
lim
R→∞

∫
γR

3/4

dz η±(z)f(z). (E.32)

The negative sign in front of the sum over residues results from the integration around
the poles in clockwise direction as Fig. E.2 a) depicts. Up to the integration along the
semicircles, γR3 and γR4 , the resulting expression for σ±1/2 and thus in turn σ± have es-
sentially simplified. In many cases and also applicable to the one of interest during this
thesis, the remaining integration on the r.h.s. of Eq. (E.32) can be evaluated taking account
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for Jordan’s lemma [270]: ∫
γR3

dz g(z)e−αz
R→∞−−−−→ 0, (E.33)∫

γR4

dz g(z)eαz
R→∞−−−−→ 0, (E.34)

if a complex function g(z) that fulfills

g(z)
|z|→∞−−−−→ 0, if α > 0, (E.35)

zg(z)
|z|→∞−−−−→ 0, if α ≥ 0. (E.36)

This is at least the case, if g(z) = P (z)/Q(z), where P (z) and Q(z) are polynomials with

degree(Q) ≥
{

1 + degree(P ), if α > 0

2 + degree(P ), if α ≥ 0.
(E.37)

Applying these conditions to the present discussion, one substitutes g(z) = η±(z)f(z). In
the case of interest during this thesis the function f(z) is a polynomial fulfilling Eq. (E.37).
Due to the factor η±(z) convergence of η±(z)f(z) → 0 or zη±(z)f(z) → 0, when |z| → 0,
is self-sufficiently guaranteed as long as η±(z) tends faster to zero than f(z). With this
the final result of this Sec. can be summarized as follows:

σ± =
1

β

∑
ω±n

f(iω±n ) = −
∑
zi

Reszi [η
±(z)f(z)], (E.38)

where the summation over the poles zi of the function f(z) include the poles on the right
and left half plane as well.

Remarks on the Matsubara sum over the complex logarithm
Figure E.2 b) depicts a proper choice of the integration contour in the case of f(z) =
log(z − ε) [257]. By application of Jordan’s lemma, one can show that the contributions
from both semicircles in the upper and lower half plane vanish in the limit R→∞. Thus
from accounting for the suitable choice of integration, one finds for Eq. (E.29) [257]

σ± =
1

2πi

∫ ∞
−∞

dz η±(z)
[
log(z + i0+ − ε)− log(z − i0+ − ε)

]
, (E.39)

where the displacement of z in each argument of the logarithm is necessary to avoid the
integration along the branch cut on the real axis. The integration (E.39) accounts for both
directions along the branch cut. As the contributions to (E.39) compensate for z > ε the
integration interval was extended from ]−∞, ε] to ]−∞,∞[ in accordance with Ref. [257].
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Finally, integrating by parts in view of the definition of η±, Eq. (E.39), yields [203, 257]

σ± = − 1

β

1

2πi

∫ ∞
−∞

dz log
(

1∓ e−βz
)( 1

z + i0+ − ε −
1

z − i0+ − ε

)
= − 1

β
log
(

1∓ e−βε
)
,

(E.40)

where η±(z) = ∂z log(1 ∓ e−βz) [257] was used. Thus, summarizing, one finds for the
Matsubara sum over the complex logarithm

σ± =
1

β

∑
ω±n

log(iω±n − ε) =
1

β
log
(

1∓ e−βε
)
, (E.41)

where the upper sign refers to bosons and the lower one to fermions.

E.4 Useful commutation relations

Assuming two quantum operators Â and B̂, which do not commute in the most gen-
eral case. The following considerations are basically captured by the Baker-Campbell-
Hausdorff formula [243–245] as given by Eq. (B.26). Likewise, the subsequently derived
expressions can be regarded precisely as the basis for the derivation of that particular for-
mula. Nevertheless, one might gain further insight in the commutation relation between
the operator Â and the kth power of B̂ by detailed investigation according to

[Â, B̂k] = B̂k−1[Â, B̂] + [Â, B̂k−1]B̂

= B̂k−1[Â, B̂] + B̂k−2[Â, B̂] + [Â, B̂k−2]B̂

...

=
k∑
l=1

B̂k−l[Â, B̂]B̂l−1

(E.42)

With this, it follows

ÂB̂k = B̂kÂ+
k∑
l=1

B̂k−l[Â, B̂]B̂l−1 (E.43)

By defining
X̂i = [X̂i−1, B̂], where X̂0 = Â (E.44)
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one finds for the general situation, where [Â, B̂] 6= 0:

[Â, B̂k]
(E.39)

=

k∑
l=1

B̂k−lX̂1B̂
l−1

(E.43)
=

k∑
l=1

B̂k−1X̂1 +

k∑
l=1

l−1∑
m=1

B̂k−m−1X̂2B̂
m−1

(E.43)
=

k∑
l=1

B̂k−1X̂1 +

k∑
l=1

l−1∑
m=1

B̂k−2X̂2 +

k∑
l=1

l−1∑
m=1

m−1∑
n=1

B̂k−n−2X̂3B̂
n−1

(E.39)

...

(E.39)
=

k∑
l=1

∏l−1
i=0(k − i)

l!
B̂k−lX̂l.

(E.45)

It follows for the commutator of Â with the exponential of B̂,

[Â, eB̂] =

∞∑
k=0

[Â, B̂k]

k!
=

∞∑
k=0

k∑
l=1

1

k!

[∏l−1
i=0(k − i)

l!
B̂k−lX̂l

]
. (E.46)

With this, one is able to discover the most general condition for [Â, eβB̂] = 0, where β ∈ C.
Let the commutator X̂l (E.44) be given by

X̂l = αlf(Â, B̂), (E.47)

where α ∈ C and f(Â, B̂) denotes some function of both operator contributions which is
independent on l. Then it follows for the commutator of Â and eβB̂

[Â, eβB̂] = eβB̂(eαβ − 1)f(Â, B̂). (E.48)

This expression will precisely yield zero, if

1. f(Â, B̂) = 0, which is identical to [Â, B̂] = 0, or if

2. αβ = 2πin, for n ∈ Z.

For proving the parity operator to commute with the Dicke Hamiltonian, as discussed
in Subsec. 3.3.5, it is helpful to consider the case of Â and B̂ each being composed two
different operator contributions. Therefore, assuming Â = Â1Â2 and B̂ = B̂1 + B̂2,
where the equally labeled contributions, Â1, B̂1 and Â2, B̂2, operate in different Hilbert
subspaces, i.e.

[Â1, Â2] = [Â1, B̂2] = [B̂1, Â2] = [B̂1, B̂2] = 0. (E.49)

For the most general consideration, it is assumed

[Â1, B̂1] 6= 0, [Â2, B̂2] 6= 0. (E.50)
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The equivalent to Eq. (E.46) is then of the form

[Â1Â2, e
β2B̂1eβ2B̂2 ]

(E.43)
= Â2[Â1, e

β1B̂1 ]eβ2B̂2 + eβ1B̂1 [Â2, e
β2B̂2 ]Â1

(E.46)
= Â2e

β1B̂1(eα1β1 − 1)f1(Â1, B̂1)eβ2B̂2

+ eβ1B̂1eβ2B̂2(eα2β2 − 1)f2(Â2, B̂2)Â1,

(E.51)

where α1, α2 ∈ C and β1, β2 ∈ C. In order to investigate on the properties of β, α1 and
α2 which need to be satisfied in order provide the operator products (E.51) to commute,
it is necessary to order change the order of Â2 and eβ2B̂2 in the first expression in the last
line of Eq. (E.51). This is achieved by means of relation (E.46), yielding for Eq. (E.51) the
following expression

[Â1Â2, e
β1B̂1eβ2B̂2 ] = eβ1B̂1eβ2B̂2

[
(eα1β1 − 1)f1(Â1, B̂1)Â2

+ (eα1β1 − 1)(eα2β2 − 1)f1(Â1, B̂1)f2(Â2, B̂2) +(eα2β2 − 1))Â1f2(Â2, B̂2)
]
. (E.52)

If the functions f1 and f2 are not specified further, this is the final result. In this case,
similar conditions as for the single-particle operator apply to ensure commutation.

By contrast, if it is assumed that f1 = Â1 and f2 = Â2 expression (E.52) will simplify to

[Â1Â2, e
β1B̂1eβ2B̂2 ] = eβ1B̂1eβ2B̂2(eα1β1+α2β2 − 1)Â1Â2. (E.53)

Thus, in this case

[Â1Â2, e
β1B̂1eβ2B̂2 ] = 0 ⇔ α1β1 + α2β2 = 2πin, for n ∈ Z. (E.54)
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Appendix F

Fourth-order contributions to the
effective Dicke-like Hamiltonian

F.1 Contributions from the Landau-level doublet M and M + 1

For the derivation of the relevant contributions arising from the fourth-order correction to
the effective Hamiltonian, Eq. (8.43), discussed in Chap. 8, it is convenient to decompose
Ĥ(4), Eq. (8.48), into three components:

Ĥ(4) = Ĥ(4)
1 + Ĥ(4)

2 + Ĥ(4)
3 , (F.1)

where the single parts,

Ĥ(4)
1 = −1

2
[V̂o,L([V̂d,L([V̂d, Ŝ1])])], (F.2)

Ĥ(4)
2 = −1

6
[V̂o,L([Ŝ1, [Ŝ1, V̂o]])], (F.3)

Ĥ(4)
3 = − 1

24
[Ŝ1, [Ŝ1, [Ŝ1, V̂o]]], (F.4)

are sequentially discussed. It is beneficial, to recap the general structure of the three
operators entering the expressions:

V̂d = v̂ ⊗ V̂d, (F.5)

V̂o = v̂ ⊗ (V̂o + V̂ †o), (F.6)

Ŝ1 = ŝ⊗ Ŝ − ŝ† ⊗ Ŝ†, (F.7)

where the capital letters refer to the fermionic part and the small letters denote the bosonic
contribution. This notation helps to evaluate the nested commutators in a more transpar-
ent way. For convenience, the explicit notation of the tensor product, ⊗, will be omitted
during the following. The microscopic details of each contribution can be found in Sub-
sec. 8.1.2 and Subsec. 8.2.3.
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Derivation of Ĥ(4)
1

The innermost commutator is easily evaluated in view of Eqs. (F.5, F.7). Thereby one
decomposes the bosonic and fermionic parts similar as in Eq. (8.54) where the second-
order contribution is considered:

L([V̂d, Ŝ1]) = L(v̂ŝ[V̂d, Ŝ])− L(v̂ŝ†[V̂d, Ŝ
†]) + L([v̂, ŝ]ŜV̂d)− L([v̂, ŝ†]Ŝ†V̂d). (F.8)

According to the arguments discussed in Subsec. 8.2.7, only the following parts of the
first nested commutator yield expressions similar to Eq. (8.54)

L([ ˆ̄Vd,L([V̂d, Ŝ1]]))R = L([v̂,L(v̂ŝ[V̂d, Ŝ])] ˆ̄Vd)− L([v̂,L(v̂ŝ†[V̂d, Ŝ
†])] ˆ̄Vd)

+ L(v̂, [ ˆ̄Vd,L([v̂, ŝ]ŜV̂d)])− L(v̂, [ ˆ̄Vd,L([v̂, ŝ†]Ŝ†V̂d)]), (F.9)

whereR indicates, that only the terms expected to dominantly contribute are considered.
Furthermore, the operators marked with the bar are identical to the plane ones. However,
as expression (F.9) is regarded as a short-hand notation where the summation over each
set of quantum numbers has to be taken into account, this notation helps to keep track.
Note Eq. (F.9) can be further reduced as the first two nested commutators yield no con-
tribution in the ground-state average. This can be seen from the innermost commutators,
[V̂d, Ŝ] and [V̂d, Ŝ

†], which already “consuming” the first commutator of relation (8.97).
However, each of them yields a block-off diagonal contribution which clearly is not diag-
onal and hence the ground-state expectation value assumes zero. Thus, proceeding with
the remaining last two terms in Eq. (F.9) and taking the last commutator with V̂o yields

[V̂o,L([V̂d,L([V̂d, Ŝ1])])]R = v̂[V̂o + V̂ †o,L(v̂[ ˆ̄Vd,L([v̂, ŝ]ŜV̂d)])]

− v̂[V̂o + V̂ †o,L(v̂[ ˆ̄Vd,L([v̂, ŝ†]Ŝ†V̂d)])]. (F.10)

However, this expression still contains terms which vanish when taking the ground-state
average 〈. . .〉0. These terms can only be identified when taking into account the micro-
scopic definitions of the single contributions along with the action of the superoperator
L. To this end, consider the innermost commutators of Eq. (F.10):

[v̂, ŝ]ŜV̂d = − [â, â†]

N
∑

M∈HM
N∈H

m†n−M

∑
S,S′∈HM
S,S′∈HN

MM,NMS,S′CM,N ĉ
†
M ĉ
†
N ĉ
†
S ĉ
†
S′ , (F.11)

[v̂, ŝ†]Ŝ†V̂d =
[â, â†]

N
∑

M∈HM
N∈H

m†n−M

∑
S,S′∈HM
S,S′∈HN

MM,NMS,S′CM,N ĉ
†
N ĉ
†
M ĉ†S ĉ

†
S′ , (F.12)

where CM,N is defined in Eq. (8.60). In order to ensure a Hermitian result it is necessary to
symmetrize these expressions with respect to the ordering of the fermionic perturbation
and the SW generator contribution, i.e. [v̂, ŝ]ŜV̂d = 1/2 [v̂, ŝ](ŜV̂d + V̂dŜ) and similar fo
the second contribution. This is furthermore well justified, as the anti-commutator of
this relation yields a one-body contribution which is not relevant. Thus, the action of the
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superoperator onto the symmetrized equivalent of expression (F.11) is given by

L(
1

2
[v̂, ŝ](ŜV̂d + ŜV̂d))R = − [â, â†]

2N

 ∑
M∈HM

N,N̄,N ′∈HN

MM,NMN̄,N ′CM,NE
M,N
N̄,N ′

ĉ†M ĉ
†
N ĉ
†
N̄
ĉ†N ′

+
∑

M,M̄,M ′∈HM
N∈HN

MM,NMM̄,M ′CM,NE
M,N
M ′,M̄

ĉ†M ′ ĉ
†
M̄
ĉ†M ĉ

†
N

 , (F.13)

where
EM,N
K,L =

1

∆M,N + ∆K,L
(F.14)

for ∆M,N as defined in Eq. (8.52). The corresponding expression for the remaining inner-
most commutator in Eq. (F.10), 1/2 [v̂, ŝ†](Ŝ†V̂d + V̂dŜ

†), is obtained likewise.

As a next step, the commutator with V̂d is evaluated. However, not all contributions
appearing from the fermionic commutators are relevant with respect to the ground-state
average. Consider, for instance, the commutator

[ĉ†O ĉ
†
O′ , ĉ

†
M ĉ
†
N ĉ
†
N̄
ĉ†N ′ ] = ĉ†M ĉ

†
N [ĉ†O ĉ

†
O′ , ĉ

†
N̄
ĉ†N ′ ] + [ĉ†O ĉ

†
O′ , ĉ

†
M ĉ
†
N ]ĉ†

N̄
ĉ†N ′ , (F.15)

where O and O′ label states within either the Hilbert subspace HM or HN. The last con-
tribution on the r.h.s. yields a block-off diagonal term which gives zero when taking the
ground-state expectation value. Thus, only the commutator between both block-diagonal
operators will contribute in the end. However, there are still terms appearing in the com-
mutators of block-diagonal contributions in the Hilbert subspace HN which do not con-
tribute to the ground-state average. These terms appear from the dipole selection rules
as it is seen from the following: From the relevant commutator in Eq. (F.15) one obtains∑

O,O′

N̄,N ′
∈HN

MO,O′MN̄,N ′fN̄,N ′ [ĉ
†
O ĉ
†
O′ , ĉ

†
N̄
ĉ†N ′ ]

=
∑

N,N̄,N ′

MN,N̄MN̄,N ′(fN̄,N ′ ĉ
†
N ĉ
†
N ′ − fN ′,N̄ ĉ

†
N ′ ĉ
†
N ), (F.16)

where fN̄,N ′ denotes some function which, for instance, could be given by Eq. (F.14). The
product of the matrix elements is explicitly given by

MN,N̄MN̄,N ′
(5.48)

= λnλn̄w+,nw+,n+1 δn+1,n̄δn+2,n′

+λnλn′ w+,nw+,n′ δn+1,n̄δn,n′

+λn̄λn̄w
2
+,n̄ δn,n̄+1δn,n′

+λn̄λn′ w+,n̄w+,n′ δn,n̄+1δn,n′+2,

(F.17)
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where it its obvious that the first and last term promote non-diagonal operator contri-
butions in Eq. (F.16). As these non-diagonal contributions vanish in the ground-state
average, they are omitted straight away such that the relevant contribution from (F.16) is
given by ∑

N,N̄

M2
N,N̄ (fN̄,N − fN,N̄ ) ĉ†N ĉ

†
N , (F.18)

where the squared matrix elements are then explicitly reading

M2
N,N̄ = w2

+,n δn+1,n̄ + w2
+,n−1 δn−1,n̄. (F.19)

With this, one finds for the relevant terms of the commutator of V̂d with Eq. (F.13)

v̂[ ˆ̄Vd,L(
1

2
[v̂, ŝ](ŜV̂d + ŜV̂d))]R

= −(â† + â)

2
√
N 3

 ∑
M∈HM

N,N̄,N ′∈HN

MM,NM2
N̄,N ′CM,NEM,N

N̄,N ′
ĉ†M ĉ

†
N ĉ
†
N̄
ĉ†
N̄

+
∑

M,M̄,M ′∈HM
N∈HN

MM,NM2
M̄,M ′CM,NEM,N

M ′,M̄
ĉ†
M̄
ĉ†
M̄
ĉ†M ĉ

†
N

 , (F.20)

where
EM,N
K,L = EM,N

K,L − E
M,N
L,K = − 2∆K,L

∆2
M,N −∆2

K,L

. (F.21)

This function requires that ∆M,N 6= ∆K,L in order to avoid divergence. This yields one
particular contribution arising from the evaluation of the commutators to be necessarily
regularized or excluded from the discussion. Postponing further considerations on this
issue to the subsequent discussion, the evaluation of the nested commutator is proceeded.

Thus, the equivalent to Eq. (F.20) is found for the remaining commutator in Eq. (F.10) by
identical derivation:

v̂[ ˆ̄Vd,L(
1

2
[v̂, ŝ](Ŝ†V̂d + Ŝ†V̂d))]R

=
(â† + â)

2
√
N 3


∑

M∈HM,N∈Hm†n−M
N̄,N ′∈HN

MM,NM2
N̄,N ′CM,NEN,MN̄,N ′

ĉ†
N̄
ĉ†
N̄
ĉ†N ĉ

†
M

+
∑

M,M̄,M ′∈HM
N∈H

m†n−M

MM,NM2
M̄,M ′CM,NEN,MM ′,M̄

ĉ†N ĉ
†
M ĉ†

M̄
ĉ†
M̄

 . (F.22)
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By interchanging the position of the block-diagonal and block-off diagonal fermionic op-
erator pairs, which is justified when considering only dominant contributions, the com-
bination of Eq. (F.20) and (F.22) simplifies to

v̂[ ˆ̄Vd,L(
1

2
[v̂, ŝ](ŜV̂d + ŜV̂d))]R − v̂[ ˆ̄Vd,L(

1

2
[v̂, ŝ](Ŝ†V̂d + Ŝ†V̂d))]R

=
(â† + â)

2
√
N 3


∑

M∈HM,N∈Hm†n−M
O,O′∈HM∪̇HN

MM,NM2
O,O′CM,NEM,N

O,O′ ĉ
†
O ĉ
†
O (ĉ†M ĉ

†
N + ĉ†N ĉ

†
M )

 , (F.23)

where the quantum numbersO andO′ are defined within the disjoint union of the Hilbert
subspaces HM and HN. The action of the superoperator L onto Eq. (F.23) is then obtained
as

L(v̂[ ˆ̄Vd,L(
1

2
[v̂, ŝ](ŜV̂d + ŜV̂d))]− v̂[ ˆ̄Vd,L(

1

2
[v̂, ŝ](Ŝ†V̂d + Ŝ†V̂d))])R

=
(â† + â)

2
√
N 3


∑

M∈HM,N∈Hm†n−M
O,O′∈HM∪̇HN

MM,NM2
O,O′CM,NEM,N

O,O′ ĉ
†
O ĉ
†
O (ŝM,N ĉ

†
M ĉ
†
N − ŝ

†
M,N ĉ

†
N ĉ
†
M )


(F.24)

where ŝM,N is defined in Eq. (8.51). Finally, one finds for the last commutator with the
block-off diagonal contribution V̂o the expression

[V̂o,L([V̂d,L([V̂d, Ŝ1])])]R

= −(â† + â)2

2N 2


∑

M∈HM,N∈Hm†n−M
O,O′∈HM∪̇HN

M2
M,NM2

O,O′CM,NDM,NEM,N
O,O′ ĉ

†
O ĉ
†
O (ĉ†M ĉ

†
M − ĉ

†
N ĉ
†
N )


(F.25)

where, again, only the terms are kept which survive the ground-state average. This con-
tribution is also diamagnetic as expected. The ground-state expectation value of the con-
tribution Ĥ(4)

1 is given by

〈Ĥ(4)
1 〉0 = −(â† + â)2

4N 2


∑

M∈HM,N∈Hm†n−M
O,O′∈HM∪̇HN

M2
M,NM2

O,O′CM,NDM,NEM,N
O,O′ n

−
O (n−M − n−N )

 ,
(F.26)

where n−K is given by the Fermi-Dirac distribution, Eq. (8.140). Note that the negative
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sign in the definition of Ĥ(4)
1 , Eq. (F.2), is compensated by the negative sign of the rele-

vant term in the ground-state average, Eq. (8.99).

Now, the detailed evaluation of each sum over quantum numbers is demonstrated, start-
ing with the summation over M and N . Therefore, it is beneficial to define

FM,N
O,O′ = CM,NDM,NEM,N

O,O′ =
8 ~ω0 ∆M,N∆O,O′

[∆2
M,N − (~ω0)]2(∆2

M,N −∆2
O,O′)

(F.27)

such that one finds for the summation over M and N in Eq. (F.26)∑
M∈HM

N∈H
m†n−M

M2
M,NFM,N

O,O′ (n−M − n−N ) (F.28)

=N
[
w2

+,M−1

[
FM,−(M−1)
O,O′ (n−M − n−−(M−1)) + FM,(M−1)

O,O′ (n−M − n−(M−1))
]

+w2
+,M

[
FM,−(M+1)
O,O′ (n−M − n−−(M+1)) + FM+1,−M

O,O′ (n−M+1 − n−−M )
]

+w2
+,M+1

[
FM+1,−(M+2)
O,O′ (n−M+1 − n−−(M+2)) + FM+1,M+2

O,O′ (n−M+1 − n−M+2)
]]
.

The sum over k, encoded in the short-hand notation, yields the factor of N . In the zero-
temperature limit, all states beneath the Fermi level are occupied and hence n−K = 1 for
K ≤ M . All other levels are completely empty. Thus, the terms remaining in Eq. (F.28)
are ∑

M∈HM
N∈H

m†n−M

M2
M,NFM,N

O,O′ (n−M − n−N ) = −N (w2
+,MFM+1,−M

O,O′ + w2
+,M+1FM+1,−(M+2)

O,O′ )

= −N TO,O′ ,

(F.29)

where TO,O′ is now a function of O and O′ and M and N have been fixed. Before evaluat-
ing the sum over these remaining quantum numbers, the intermediate result for 〈Ĥ(4)

1 〉0,
Eq. (F.26), is summarized:

〈Ĥ(4)
1 〉0 =

(â† + â)2

4N

 ∑
O,O′∈HN

M2
O,O′TO,O′ n−O

 , (F.30)

After carrying out the sum over the remaining k encoded in the short-hand notation and
then summing over O′ one obtains:∑

O,O′

M2
O,O′TO,O′n−O = N

∑
O

[
w2

+,O

(
TO,O+1 + TO,−(O+1)

)
+ w2

+,O−1

(
TO,O−1 + TO,−(O−1)

)]
n−O.

(F.31)

Thereby it was explicitly accounted for both energy bands as it is also required for the
final summation over O. Thus, carrying out the sum over the band indices encoded in
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the short-hand notation O = (λ, o) = (λ, |O|) one finds∑
O,O′

M2
O,O′TO,O′n−O = N

∑
|O|

[
w2

+,O

(
TO,O+1 + TO,−(O+1)

)
+ w2

+,O−1

(
TO,O−1 + TO,−(O−1)

)] (
n−O − n−−O

)
,

(F.32)

where the symmetry properties of TO,O′ as a function of O and O′ were used. At T = 0
this expression is given by

1

N
∑
O,O′

M2
O,O′TO,O′n−O = −

2
ν−2∑

|O|=M+3

w2
+,OTO+1,−O + w2

+,MTM+1,M

∑
|O|

+ w2
+,M+2

(
TM+3,M+2 + TM+3,−(M+2)

)
+ w2

+,ν−1

(
−Tν,ν−1 + Tν,−(ν−1)

) . (F.33)

By defining

CDM,N = CM,NDM,N = − 4∆M,N~ω0

[∆2
M,N − (~ω0)2]2

ω0→0−→ 0, (F.34)

J ν−2
M+3(∆M,N ) = 2

ν−2∑
|O|=M+3

EM,N
O+1,−O, (F.35)

one can express the sum over TO,O′ in terms of

2

ν−2∑
|O|=M+3

w2
+,OTO+1,−O =w2

+,MCDM+1,−MJ ν−2
M+3(∆M+1,−M )

w2
+,M+1CDM+1,−(M+2)J ν−2

M+3(∆M+1,−(M+2)).

(F.36)

Thereby, each sum J ν−2
M+3 is bounded by

Jν−2
M+4(∆M,N ) ≤ J ν−2

M+3(∆M,N ) ≤ Jν−2
M+3(∆M,N ), (F.37)

where

Jν−2
M+3(∆M,N ) = −2

∫ ν−2

M+3
do

2× 2 ~ωc
√
o

∆2
M,N − (2 ~ωc

√
o)2

=

[
4
√
o

~ωc
+

∆M,N

(~ωc)2
log

(
2 ~ωc

√
o−∆M,N

2 ~ωc
√
o+ ∆M,N

)]o=ν−2

o=M+3

= Jν−2(∆M,N )− JM+3(∆M,N ),

(F.38)

denotes the integral approximation of J ν−2
M+3. The short-hand notation introduced in the

last line of Eq. (F.38) reads as follows: The superscript denotes the evaluation of the ex-
pression in the second line at the upper boundary of the integral. Likewise, the expres-
sion in the second line is evaluated at the lower boundary of the integral when the J
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carries a subscript. Without regularization, Jν−2
M+4 and thus J ν−2

M+3 diverges as
√
ν in the

limit ν →∞.
Any photon frequency in the order of a cyclotron transition, ω0 ≤ ωc, yields Eq. (F.33) to
be positive. Thus, the ground-state average of the first forth-order contribution,

〈Ĥ(4)
1 〉0 =

(â† + â)2

4

 ∑
O,O′∈HN

M2
O,O′TO,O′ n−O

 , (F.39)

is also positive for any ω0 ≤ ωc.

Derivation of Ĥ(4)
2 and Ĥ(4)

3

With this, the second contribution, Ĥ(4)
2 = −1

6 [V̂o,L([Ŝ1, [Ŝ1, V̂o]])], to Ĥ(4) is discussed.
Therefore, one first evaluates the contribution of the nested commutator in the argument
of the superoperator and keeps only the relevant terms precisely consisting of one com-
mutator of fermionic operators. By means of basic commutator algebra one finds for the
relevant terms

[ ˆ̄S, [Ŝ, V̂o]]R =ˆ̄s[ŝ, v̂][ ˆ̄S, V̂ †o ]Ŝ + ˆ̄s†[ŝ, v̂]V̂o[Ŝ,
ˆ̄S†] + ˆ̄s†[ŝ, v̂][V̂o,

ˆ̄S†]Ŝ

− ˆ̄s[ŝ†, v̂]V̂ †o [ ˆ̄S, Ŝ†]− ˆ̄s[ŝ†, v̂][ ˆ̄S, V̂ †o ]Ŝ† − ˆ̄s†[ŝ†, v̂][V̂o,
ˆ̄S†]Ŝ†

+ ([ˆ̄s, ŝ]v̂ + ŝ[ˆ̄s, v̂])[Ŝ, V̂ †o ] ˆ̄S − (ŝ[ˆ̄s†, v̂] + [ˆ̄s†, ŝ]v̂)[Ŝ, V̂ †o ] ˆ̄S†

+ (ŝ†[ˆ̄s, v̂] + [ˆ̄s, ŝ†]v̂)[V̂o, Ŝ
†] ˆ̄S − (ŝ†[ˆ̄s†, v̂] + [ˆ̄s†, ŝ†]v̂)[V̂oŜ

†] ˆ̄S†.

(F.40)

As the final result obtained from this relation will also be evaluated within the ground-
state average, one keeps only diagonal operator contributions. Thus, all non-diagonal
contributions arising from the commutators are dropped right away. After careful exam-
ination, one thereby finds the nested commutator to simplify to

[ ˆ̄S, [Ŝ, V̂o]]R = − â
† + â
√
N 3

[
3C ˆ̄SDŜ( ˆ̄S + ˆ̄S†)[Ŝ, V̂o

†]

+ CDŜ(V̂o + V̂o
†)[Ŝ, ˆ̄S†]

]
,

(F.41)

where, for instance, CŜ is a short-hand notation implicating that the function CM,N has to
be evaluated with respect to the quantum numbers assigned with the operator Ŝ, which
are here M and N . The function CD is defined in Eq. (F.34). The superoperator L trans-
forms this expression into

L([ ˆ̄S, [Ŝ, V̂o]])R = − 1
√
N 3

[
3C ˆ̄SDŜ(ˆ̄s ˆ̄S − ˆ̄s† ˆ̄S†)[Ŝ, V̂o

†]

+ CDŜ(ŝV̂o V̂o − ŝ
†
V̂o
V̂o
†)[Ŝ, ˆ̄S†]

]
,

(F.42)

where ŝV̂o is defined just like ŝ or ˆ̄s, Eq. (8.51) where the indices have been adapted to the
summation defined within V̂o. Thus, the remaining commutator with V̂o can be evaluated
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keeping again, only terms which contribute to the ground-state average:

[V̂o,L([Ŝ1, [Ŝ1, V̂o]])]R =
(â† + â)2

N 2

(
3CD ˆ̄SDŜ [ ˆ̄Vo,

ˆ̄S†][Ŝ, V̂o
†] + CDŜDV̂o [

ˆ̄Vo, V̂o
†][Ŝ, ˆ̄S†]

)
= 4

(â† + â)2

N 2
CD ˆ̄SDŜ [ ˆ̄Vo,

ˆ̄S†][Ŝ, V̂o
†], (F.43)

where the reordering in the second line is permitted in view of the definitions of each
fermionic operator contribution. From Eq. (F.41) it is easy to check that the nested com-
mutator of the last contribution to the effect, Ĥ(4)

3 , is identical to the negative of expres-
sion (F.43). Thus, the ground-state expectation values of Ĥ(4)

2 and Ĥ(4)
3 can be evaluated

together, yielding

〈Ĥ(4)
2 〉0 + 〈Ĥ(4)

3 〉0 =
(â† + â)2

2N 2

∑
M,N

M2
M,NCDM,N (n−M − n−N )

 (F.44)

×

∑
M,N

M2
M,NDM,N (n−M − n−N )


=

(â† + â)2

2

(
w2

+,MCDM+1,−M + w2
+,M+1CDM+1,−(M+2)

)
(F.45)

×
(
w2

+,MDM+1,−M + w2
+,M+1DM+1,−(M+2)

)
,

where the factor of 1/2 results from the prefactors assigned to Ĥ(4)
2 and Ĥ(4)

3 according
to Eqs. (F.3, F.4) along with the factor of 4 in Eq. (F.43). Relation (F.45) follows from
expression (F.44) in analogy to Eq. (F.28). Thereby it was used that each sum in both
brackets of Eq. (F.44) contributes a factor ofN which stems from the summation over the
quantum number k encoded in the short-hand notation.
By expanding the brackets in the second line, one finds for this contribution explicitly

〈Ĥ(4)
2 〉0 + 〈Ĥ(4)

3 〉0 = −(â† + â)2

2

 8w4
+,M ~ω0 ∆2

M+1,−M[
∆2
M+1,−M − (~ω0)2

]3 +
8w4

+,M+1 ~ω0 ∆2
M+1,−(M+2)[

∆2
M+1,−(M+2) − (~ω0)2

]3

+
8w2

+,M~ω0 ∆M+1,−M∆M+1,−(M+2)[
∆2
M+1,−M − (~ω0)2

]2 [
∆2
M+1,−(M+2) − (~ω2

0)
]

+
8w2

+,M+1~ω0 ∆M+1,−M∆M+1,−(M+2)[
∆2
M+1,−(M+2) − (~ω0)2

]2 [
∆2
M+1,−M − (~ω2

0)
]
 .

(F.46)

For any photonic energy comparable with a cyclotron transition, ~ω0 ≤ ~ωc, the con-
tribution from 〈Ĥ(4)

2 〉0 + 〈Ĥ(4)
3 〉0 is negative. Furthermore, one can estimate the upper

and lower bounds of this contribution by approximating ∆M+1,−M ≈ 2 ~ωc
√
M and
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∆M+1,−(M+2) ≈ 2 ~ωc
√
M + 1:

H
(4)
M < 〈Ĥ(4)

2 〉0 + 〈Ĥ(4)
3 〉0 < H

(4)
M+1, (F.47)

where

H
(4)
M = −(â† + â)2

2

128 ~ω0 (~ωc)2M

[4(~ωc)2M − (~ω0)2]3
. (F.48)

Summary of the forth-order contribution to the block-diagonal Hamiltonian

With this, the results for the fourth-order contribution, Ĥ(4), of the decoupled Hamilto-
nian Ĥeff can be summarized. Thus, from Eqs. (F.39, F.44) one finds for the ensemble
average of Ĥ(4) at T = 0:

〈Ĥ(4)〉M,ν

0 = (â† + â)2 χ
(4)
M,ν(~ω0), (F.49)

where the function

χ
(4)
M,ν(~ω0) =

1

4

 ∑
O,O′∈HN

M2
O,O′TO,O′ n−O

+
1

2

∑
M,N

M2
M,NCDM,N (n−M − n−N )


×

∑
M,N

M2
M,NDM,N (n−M − n−N )

 . (F.50)

vanishes in the static limit. In order to discuss the two different techniques of regular-
ization it is beneficial to decompose χ(4)

M,ν into its ν-independent and ν-dependent parts,

denoted by χ(4)
M and χ(4)

ν , respectively:

χ
(4)
M,ν(~ω0) = χ

(4)
M (~ω0) + χ(4)

ν (~ω0). (F.51)

From Eqs. (F.33, F.45) one finds for both contributions and M ≥ 1

χ
(4)
M (~ω0) =

1

4

[
WM+1,−M (M) +WM+1,−(M+2)(M) + Y(M)

]
, (F.52)

χ(4)
ν (~ω0) = −1

4

[
W ′M+1,−M (ν) +W ′M+1,−(M+2)(ν)

]
, (F.53)

where the following definitions were introduced

WK,L(M) = CDK,L
[
JM+3(∆K,L) + 2DK,L − EK,LM+1,M − E

K,L
M+3,M+2 − E

K,L
M+3,−(M+2)

]
,

(F.54)

Y(M) = CDM+1,−MDM+1,−(M+2) + CDM+1,−(M+2)DM+1,−M , (F.55)

W ′K,L(ν) = CDK,L
[
Jν−2(∆K,L)− EK,Lν,ν−1 + EK,Lν,−(ν−1)

]
. (F.56)

Further discussion on these contributions are found in Subsec. 8.2.7.
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F.2 Contributions from the approximate diagonalization

The derivation of the fourth-order contributions stemming from the approximate diago-
nalization of the term Ĥi,N according to Eq. (8.125) is performed in analogy to the investi-
gations on Ĥ(4)

2 and Ĥ(4)
3 discussed in Sec. F.1. Again, it is helpful to review the definition

of Ĥ(4) which is given by

Ĥ(4)
N = −1

6
[V̂ ′o,L([R̂1, [R̂1, V̂ ′o]])]−

1

24
[R̂1, [R̂1, [R̂1, V̂ ′o]]], (F.57)

where the block-off diagonal contribution V̂ ′o = v̂ ⊗ (V̂o
′ + V̂o

′†) is defined in Eq. (8.114).
The lowest-order SW generator, R̂1, is given in Eq. (8.126), where the convenient short-
hand notation R̂1 = r̂ ⊗ R̂ − r̂† ⊗ R̂† will be applied during the following. For the
sake of brevity, the tensor product will not be marked explicitly anymore from now on.
Furthermore, one defines

Ĥ(4)
2,N = −1

6
[V̂ ′o,L([R̂1, [R̂1, V̂ ′o]])], (F.58)

Ĥ(4)
3,N = − 1

24
[R̂1, [R̂1, [R̂1, V̂ ′o]]] (F.59)

in analogy to the discussion in Sec. F.1. According to the formal similarity between the
definitions of Ŝ1, V̂o and R̂1, V̂o′, one can adapt the results obtained for the former one
onto the latter one, finding the relevant commutator contributions of Ĥ(4)

2,N:

[V̂ ′o,L([R̂1, [R̂1, V̂ ′o]])]R =
(â† + â)2

N 2

(
3CD ˆ̄RDR̂[ ˆ̄Vo

′, ˆ̄R†][R̂, V̂o
′†] + CDR̂DV̂ ′o [

ˆ̄Vo
′, V̂o

′†][R̂, ˆ̄R†]
)

= 4
(â† + â)2

N 2
CD ˆ̄RDR̂[ ˆ̄Vo

′, ˆ̄R†][R̂, V̂o
′†], (F.60)

= −[R̂1, [R̂1, [R̂1, V̂ ′o]]]R

where CD is defined in Eq. (F.34) and D is given by Eq. (8.62). Thus, one finds for the
relevant contributions to the ground-state expectation value of Ĥ(4)

2,N and Ĥ(4)
3,N:

〈Ĥ(4)
2,N〉0 + 〈Ĥ(4)

3,N〉0 =
(â† + â)2

2N 2

∑
N,N ′

m2
N,N ′CDN,N ′(n−N − n−N ′)


×

∑
N,N ′

m2
N,N ′DN,N ′(n−N − n−N ′)

 ,
(F.61)

where n−N denotes the Fermi-Dirac distribution according to Eq. (8.140). The definition
of the matrix elements mN,N ′ is found in Eq. (5.48). The summation over each set of
quantum numbers in either of the two brackets is then performed as follows: Setting
XN,N ′ as a space holder for either CDN,N ′ or DN,N ′ , one finds for the evaluation of the
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sum over N ′:∑
N,N ′

m2
N,N ′XN,N ′(n−N − n−N ′) = N

∑
N

w2
+,N

[
XN,N+1(n−N − n−N+1)

+XN,−(N+1)(n
−
N − n−−(N+1))

]
= N

∑
N

[[
w2

+,N

(
XN,N+1 + XN,−(N+1)

)
−w2

+,N−1XN−1,N

]
n−N − w2

+,N−1XN−1,−N n
−
−N
]
,

(F.62)

where the factor ofN is due to the sum over k encoded in the short-hand notation. Now,
the sum over N = (λ, n) = (λ, |N |) is carried out yielding∑

N,N ′

m2
N,N ′XN,N ′(n−N − n−N ′) = N

∑
|N |

[
w2

+,N (−XN+1,N + XN+1,−N )

+w2
+,N−1

(
XN,N−1 + XN,−(N−1)

)] [
n−N − n−−N

]
,

(F.63)

where the symmetry properties of X̂N,N ′ where used. The sum over |N | explicitly in-
cludes the quantum numbers [0, . . . ,M − 2,M + 3, . . . , ν − 1]. At T = 0, the Fermi-Dirac
distribution is given by a Heaviside step function and the contributions of the sum over
[0, . . . ,M − 2] precisely vanish, such that

∑
N,N ′

m2
N,N ′XN,N ′(n−N − n−N ′) = −N

ν−1∑
|N |=M+3

[
w2

+,N (−XN+1,N + XN+1,−N )

+w2
+,N−1

(
XN,N−1 + XN,−(N−1)

)]
.

(F.64)

By shifting the indices of the last bracket, N → N + 1, one eventually finds

∑
N,N ′

m2
N,N ′XN,N ′(n−N − n−N ′) = −N

2

ν−2∑
|N |=M+3

w2
+,NXN+1,−N

ν∑
N

+ w2
+,ν−1

(
−Xν,ν−1 + Xν,−(ν−1)

)
ν∑
N

+ w2
+,M+2

(
XM+3,M+2 + XM+3,−(M+2)

)]
.

(F.65)

Thus, by defining

χ
(4)
N,M,ν(~ω0) =

1

2

[
Kν−2
M+3(~ω0) + w2

+,ν−1

(
−CDν,ν−1 + CDν,−(ν−1)

)
+w2

+,M+2

(
CDM+3,M+2 + CDM+3,−(M+2)

)] [
J ν−2
M+3 + w2

+,ν−1

(
−Dν,ν−1 +Dν,−(ν−1)

)
+w2

+,M+2

(
DM+3,M+2 +DM+3,−(M+2)

)]
, (F.66)
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where the definition of J ν−2
M+3(~ω0) is found in Eq. (F.35) and

Kν−2
M+3(~ω0) = 2

ν−2∑
|N |=M+3

w2
+,NCDN+1,−N , (F.67)

the fourth-order contribution to the approximate diagonalized Hamiltonian ĤD reads

〈Ĥ(4)
N 〉0 = (â† + â)2 χ

(4)
N,M,ν(~ω0). (F.68)

Similar to J ν−2
M+3 being bound by the integrals Jν−2

M+4 and Jν−2
M+3, Eq. (F.38), one finds the

bounds of Kν−2
M+3,

Kν−2
M+4(~ω0) ≤ Kν−2

M+3(~ω0) ≤ Kν−2
M+3(~ω0), (F.69)

where

Kν−2
M+3(~ω0) =

[
2× 2 ~ωc

√
o ~ω0

~ωc [(2 ~ωc
√
o)2 − (~ω0)2]

− 1

(~ωc)2
log

(
2ωc
√
o− ω0

2ωc
√
o+ ω0

)]o=ν−2

o=M+3

. (F.70)

As Kν−2
M+3(0) = 0, the function χ(4)

N,M,ν(0) = 0 such that there is no unphysical static con-

tribution arising from 〈Ĥ(4)
N 〉0. Similar to the decomposition of χ(4)

m†n−M
into a ν-dependent

and -independent part, one finds for χ(4)
N,M,ν = χ

(4)
N,M + χ

(4)
N,ν , where

χ
(4)
N,M (~ω0) =

1

2

[
−KM+3(~ω0) + w2

+,M+2

(
CDM+3,M+2 + CDM+3,−(M+2)

)]
×
[
−JM+3(~ω0) + w2

+,M+2

(
DM+3,M+2 +DM+3,−(M+2)

)]
=

1

2

−KM+3(~ω0)−
8ω0ωc

[[
ω2
c − ω2

0

]2
+ 4ω4

c (M + 2)
]√

M + 3

~2
[
ω4

0 + ω4
c − 2(ω0ωc)2 [1 + 2(M + 2)]

]2
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×
[
−JM+3(~ω0) +

4ωc
[
ω2
c − ω2

0

]√
M + 3

~
[
ω4

0 + ω4
c + 2(ω0ωc)2 [1 + 2(M + 2)]

]] .
(F.71)
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This contribution is positive for ΩM ≤ ω0 ≤ ωc. The ν-dependent term is given by

χ
(4)
N,ν(~ω0) =

1

2

[
Kν−2(~ω0) + w2

+,ν−1

(
−CDν,ν−1 + CDν,−(ν−1)

)]
×
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)]
+

1

2

[
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)]
×
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(
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+

1

2
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+,M+2
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)]
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(F.72)

and yields a negative contribution for ν according to Eq. (8.31) and ΩM ≤ ω0 ≤ ωc.
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