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Abstract

Noninvasive neuroimaging techniques like functional Magnetic Resonance Imaging (fMRI)
and/or Electroencephalography (EEG) allow researchers to investigate and analyze brain
activities during visual processing. EEG offers a high temporal resolution at a level of
submilliseconds which can be combined favorably with fMRI which has a good spatial
resolution on small spatial scales in the millimeter range. These neuroimaging techniques
were, and still are instrumental in the diagnoses and treatments of neurological disorders in
the clinical applications. In this PhD thesis we concentrate on electrophysiological signa-
tures within EEG recordings of a combined EEG-fMRI data set which where taken while
performing a contour integration task. The estimation of location and distribution of the
electrical sources in the brain from surface recordings which are responsible for interesting
EEG waves has drawn the attention of many EEG/MEG researchers. However, this process
which is called brain source localization is still one of the major problems in EEG. It con-
sists of solving two modeling problems: forward and inverse. In the forward problem, one is
interested in predicting the expected potential distribution on the scalp from given electrical
sources that represent active neurons in the head. These evaluations are necessary to solve
the inverse problem which can be defined as the problem of estimating the brain sources that
generated the measured electrical potentials. This thesis presents a data-driven analysis of
EEG data recorded during a combined EEG/fMRI study of visual processing during a con-
tour integration task. The analysis is based on an ensemble empirical mode decomposition
(EEMD) and discusses characteristic features of event related modes (ERMs) resulting from
the decomposition. We identify clear differences in certain ERMs in response to contour vs
non-contour Gabor stimuli mainly for response amplitudes peaking around 100 [ms] (called
P100) and 200 [ms] (called N200) after stimulus onset, respectively. We observe early P100
and N200 responses at electrodes located in the occipital area of the brain, while late P100
and N200 responses appear at electrodes located in frontal brain areas. Signals at electrodes
in central brain areas show bimodal early/late response signatures in certain ERMs. Head
topographies clearly localize statistically significant response differences to both stimulus
conditions. Our findings provide an independent proof of recent models which suggest that
contour integration depends on distributed network activity within the brain.
Next and based on the previous analysis, a new approach for source localization of EEG data
based on combining ERMs, extracted with EEMD, with inverse models has been presented.
As the first step, 64 channel EEG recordings are pooled according to six brain areas and
decomposed, by applying an EEMD, into their underlying ERMs. Then, based upon the
problem at hand, the most closely related ERM, in terms of frequency and amplitude, is
combined with inverse modeling techniques for source localization. More specifically, the
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standardized low resolution brain electromagnetic tomography (sLORETA) procedure is
employed in this work. Accuracy and robustness of the results indicate that this approach
deems highly promising in source localization techniques for EEG data.
Given the results of analyses above, it can be said that EMD is able to extract intrinsic
signal modes, ERMs, which contain decisive information about responses to contour and
non-contour stimuli. Hence, we introduce a new toolbox, called EMDLAB, which serves
the growing interest of the signal processing community in applying EMD as a decomposi-
tion technique. EMDLAB can be used to perform, easily and effectively, four common types
of EMD: plain EMD, ensemble EMD (EEMD), weighted sliding EMD (wSEMD) and mul-
tivariate EMD (MEMD) on the EEG data. The main goal of EMDLAB toolbox is to extract
characteristics of either the EEG signal by intrinsic mode functions (IMFs) or ERMs. Since
IMFs reflect characteristics of the original EEG signal, ERMs reflect characteristics of ERPs
of the original signal. The new toolbox is provided as a plug-in to the well-known EEGLAB
which enables it to exploit the advantageous visualization capabilities of EEGLAB as well
as statistical data analysis techniques provided there for extracted IMFs and ERMs of the
signal.





Abstrakt

Nichtinvasive bildgebende Verfahren der Hirnforschung wie etwa funktionelle Magnetresonanz-
Tomographie (fMRT) oder Elektroenzephalographie (EEG) ermöglichen Forschern die Unter-
suchung und Analyse von Gehirnaktivitäten während der Verarbeitung visueller Information.
EEG bietet eine hohe zeitliche Auflösung im sub-Millisekunden Bereich und kann vorteil-
haft mit der Funktionellen MRT kombiniert werden, die eine gute räumliche Auflösung im
Millimeterbereich bietet. Diese bildgebenden Verfahren waren und sind noch wesentlich
für die Diagnose und Therapie neurologischer Erkrankungen in klinischen Behandlungen.
In dieser Dissertation liegt das Augenmerk auf elektrophysiologischen Signaturen in EEG
Aufzeichnungen eines fMRT-EEG Datensatzes während einer Kontourintegrationsaufgabe.
Die Schätzung der räumlichen Verteilung elektrischer Signalquellen im Gehirn hat seit
langem das Interesse vieler EEG/MEG – Forscher geweckt. Trotzdem ist diese Quellen-
lokalisation ein weitgehend ungelöstes Problem der EEG – Forschung. Es umfasst die Lö-
sung zweier Teilprobleme: Der Schätzung der Verteilung elektrischer Aktivitätsherde auf
der Schädeloberfläche (Forward problem) und die Lokalisation der ihnen zugrunde liegen-
den Signalquellen (inverse problem). Im Vorwärtsproblem wird also aus einer angenomme-
nen räumlichen Verteilung von elektrischen Signalquellen (Dipolquellen) die flächenhafte
Verteilung der zugehörigen elektrischen Potentiale auf der Schädeloberfläche geschätzt. Das
inverse Problem versucht dagegen aus beobachteten Potentialverteilungen die räumliche
Verteilung der zugehörigen Signalquellen zu schätzen. Die Dissertation präsentiert eine
Daten-getriebene Analyse von EEG Signalen, die während einer Kontour – Integrationsauf-
gabe aufgezeichnet wurden. Die Analyse basiert auf einer empirischen Modenzerlegung
und diskutiert charakteristische Merkmale Ereignis-bezogener Moden (ERMs), aus denen
sich die Signale zusammensetzen. Die Analyse kann, bezüglich der beiden Stimulus Paradig-
men (Kontour – nicht-Kontour), deutliche Unterschiede in bestimmten ERMs nachweisen.
Dies gilt insbesondere für ERMs mit positiven Maxima (P100) etwa 100 ms nach Stimu-
lus Präsentation bzw. negativen Extrema (N200) ca. 200 ms nach visueller Stimulation.
Die Reizantworten P100 und N200 erscheinen in den frontalen Gehirnregionen ca. 70 ms
verzögert gegenüber den entsprechenden Reizantworten, die im visuellen Kortex beobacht-
bar sind. Reizantworten, die an Elektroden in zentralen Gehirnregionen aufgenommen wur-
den, zeigen ein bi-modales Verhalten mit einer Signalaufspaltung in eine frühe und eine
späte Reizantwort. Die Ergebnisse von Hypothesentests bzgl. der statistischen Signifikanz
der Reizantworten können als topographische Karten visualisiert werden. Sie zeigen klar
eingegrenzte Gebiete erhöhter neuronaler Aktivität im okzipitalen bzw. frontalen Kortex
mit klaren Unterschieden bzgl der Stärke der Reizantwort. Diese Befunde liefern einen
unabhängigen Beweis für die These, dass an der Kontourintegration neuronale Netzwerke
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beteiligt sind, die über Gebiete im visuellen und frontalen Kortex umfassen. Mit Hilfe der
empirischen Modenzerlegung konnte auch eine neue Methode der inversen Modellierung
entwickelt werden, die eine Lokalisation der den beobachteten Potentialverteilungen zu-
grunde liegenden Signalquellen mit großer Präzision ermöglicht. Für die inverse Model-
lierung wurde eine als sLORETA bekannte und bewährte Methode der Quellenlokalisation
eingesetzt. Schlieslich wurde noch eine neue Toolbox, EMDLAB genannt, entwickelt, die
dem wachsenden Interesse der EEG Forscher an der empirischen Modenzerlegung Rech-
nung trägt und geeignete Werkzeuge zur EEG Analyse zur Verfügung stellt. EMDLAB
umfasst viele wichtige EMD Dialekte wie etwa ensemble EMD, weighted sliding EMD und
multi-variate EMD. Mit Hilfe der Toolbox können auch wichtige Charakteristika Ereignis-
bezogener Potentiale oder Ereignis-bezogener intrinsicher Moden gewonnen werden. Die
Toolbox ist in Verbindung mit der weit verbreiteten Toolbox EEGLAB verwendbar und
verwendet deren ausgezeichnete Visualisierungsmöglichkeiten und statistischen Analysew-
erkzeuge.
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Chapter 1

Introduction

The mammalian visual system is able to recognize a multitude of objects within a visual
scene. Object recognition presupposes the ability for contour integration and figure-ground
separation. Visual integration is defined as the process of combining the output of neu-
rons, which carry small attributes of a scene, into a complex structure more suitable for
the guidance of behavior. Contour integration is one of the most elementary tasks during
visual feature integration. Still it is debated whether contour integration is confined to the
visual cortex or whether higher brain areas are involved as well. The traditional theory of
visual processing suggests a hierarchy of serial processing steps through a bottom-up cas-
cade of discrete visual areas [51]. But this strict bottom - up processing is challenged by
more recent theories proposing a parallel bottom-up and top-down information flow [111].
The ability to integrate oriented contrast edges (Gabor elements) into a contour depends on
the spacing and orientation of the Gabor elements relative to the path orientation [54][119].
Similar principles apply in the multi-stable organization of regular arrays of elements in
rows and columns [34][35]. Other, more general, stimulus properties also seem to influence
the binding of contour elements: Closed contours are more easily detected than open ones
[109][165]. Likewise, symmetric contours are also easier to detect than asymmetric ones
[128]. Indeed, contour integration improves when Gabor elements are oriented perpendicu-
lar to the contour within a closed area, and deteriorates, when these elements are oriented
parallel to the contour [38].

Event - related potentials and contour integration

Analyzing brain activities during visual processing is largely based on non-invasive tech-
niques like functional Magnetic Resonance Imaging (fMRI) and/or Electroencephalography
(EEG). The former offers good spatial resolution [106], while the latter excels in temporal
resolution hence finds applications also in brain - computer interfacing [230][212]. Tradi-
tionally, EEGs are studied at the level of event related potentials (ERPs) which represent
averages over a sufficiently large number of single trial recordings. Characteristic ERP
components and their related latencies are then compared for different stimulus conditions.
Several studies investigate differences between contour and non-contour stimulus conditions
for various components of event related potentials (ERPs) [26][127][216][141]. Such differ-
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ences arise mostly for mean peak amplitudes of the ERP components P1 and N1 denoting
the first positive and first negative components appearing after stimulus onset, respectively.
Early studies already demonstrated that modulations during contour integration do not only
vary with context but also with task demand [26]. This study already shows that contour
integration involves a neural network including anterior and posterior brain areas in addi-
tion to the visual cortex. Recently, electrophysiological studies [127] provided further clear
evidence that context modulates the electrophysiological signature of contour integration at
early stages of visual processing. Modulating effects were mainly seen for the ERP compo-
nents N1 and P2, corresponding to the first negative and the second positive ERP compo-
nents appearing after stimulus onset. However, no effect was seen for the first positive ERP
component P1. In summary, context primarily exerts a modulatory effect on the N1 compo-
nent. These studies thus highlight the dynamic interplay between perceptual grouping and
the context in which it operates. A more recent contour integration study using EEG analysis
[216] advocated the hypothesis that perceptual grouping involves top-down selection rather
than a mere pooling of afferent information streams encoding local elements in the visual
field. Differential brain activity, i. e. statistically significant differences in stimulus response
amplitudes for the ERP component N1, occurring roughly at a latency of 170− 180 [ms],
could be detected only during a contour integration task within parietal, lateral occipital and
primary visual areas. If the contour stimuli were presented with a concurrent task (i.e., if the
contours were not the detection target), then no differences in brain activity were found be-
tween contour and non-contour stimuli. The study concludes that contour integration seems
to be based on selecting information from primary visual areas, and appears to be controlled
by the lateral occipital cortex. This conclusion corroborates results of another recent EEG
study on contour integration [217]. A contour and a non-contour stimulus were presented
within the same trial in fast succession, with the task to indicate whether the contour was
shown within the first or within the second presentation interval. As a result, differences in
brain activity between contour and non-contour stimuli occurred for stimuli shown in the
first interval, but were completely absent for stimuli shown in the second interval. Thus, top-
down information obtained from the serial presentation shaped the brain activity in response
to contour stimuli.
The above mentioned debate about competing theories concerning the mechanisms of con-
tour integration has been the focus of yet another electrophysiological study. Tackling the
question whether serial facilitative interactions between collinear cells in the primary visual
cortex (V1) or pooling of inputs in higher-order visual areas determine contour integra-
tion, the authors applied high-density electrophysiological recordings to assess the spatio-
temporal dynamics of brain activity in response to Gabor contour stimuli embedded in Ga-
bor noise versus control stimuli. The study concluded that the earliest effects could be
observed in the ERP component N1 rather than in the component C1 of the visual evoked
potential. Inverse modeling identified sources in the lateral occipital complex (LOC) within
the ventral visual stream as the generators of N1 modifications. Also modulatory contextual
effects appeared only at this later processing period. The authors claim that these results
are consistent with a pooling of information from primary visual areas in higher cortical
areas only at a latency characteristic for the occurrence of the N1 stimulus response com-



3

ponent [198]. Concurrent to traditional ERP research, there is also increasing interest in
oscillatory brain responses during contour integration. Oscillatory brain activity is thought
to reflect rhythmic changes between relatively high and relatively low excitability within a
neural population. By synchronizing neural activity, groups of neurons can be transiently
linked into neural assemblies to jointly process a given task [61]. With respect to contour
integration, several studies revealed local power increases in beta frequencies (15− 30Hz)
during contour compared to non-contour processing. The beta power difference occurred
relatively early (< 160 ms) and mostly at parietal and occipital electrodes across studies
[217][206]. Furthermore, increased neural long-range synchronization has been observed
during contour compared to non-contour processing within theta (4-7 Hz) [73], alpha (8-12
Hz) [217] and beta frequencies [216]. Differences in high-frequency (gamma) oscillations,
sometimes assumed to be a correlate of conscious visual perception [97], have not yet been
found during contour integration. The results together show that brain activity differences
during contour and non-contour processing are not only reflected in the ERP amplitude, but
also in neural oscillations within low-to-mid frequencies.
Technically, EEG and fMRI data sets can be recorded in separate sessions or simultaneously.
Integration of both, EEG and fMRI, recordings into one dataset for combined data analysis
can be performed either in a symmetrical or an asymmetrical way. The latter methods in-
clude fMRI - directed EEG analysis and EEG-directed fMRI analysis [151]. Symmetrical
data fusion methods mainly resort to different variants of Independent Component Analysis
(ICA). Simultaneously recording EEG and fMRI signals is a demanding technique in terms
of data recording and signal processing. However, their combination can reveal both the
location of active brain areas and the temporal order of their activation. A very recent exam-
ple is provided by a study of the dynamics of contour integration in the human brain, where
EEG and fMRI data were acquired simultaneously during passively viewing Gabor stimuli
under contour and non-contour conditions. By applying JointICA to the EEG and fMRI
responses of the subjects, the authors gained temporally and spatially highly resolved brain
responses during contour integration which could not be derived from unimodal recordings.
Within EEG recordings, they found differences for stimuli with and without contours around
240 [ms] after stimulus onset, in early visual (V1/V2) as well lateral occipital areas. Further-
more, they found an additional later activity, occurring roughly at a delay of 300 [ms], in
early visual areas for less salient contours, possibly reflecting re-entrant processing of such
stimuli. Another combined EEG and fMRI study revealed that contour detection depends
on the information transfer between lateral occipital and parietal brain areas [73], where a
good detection performance required a high functional connectivity between these sites. To-
gether these studies indicate that contour detection is accomplished within cortical networks,
involving feedback loops between higher and lower visual processing areas.

Signal decomposition techniques

Several signal decomposition techniques are available for a more detailed data analysis.
Especially artifact removal, i. e. the extraction of signal components unrelated to cognitive
brain activities, using blind signal separation techniques like principal and independent com-
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ponent analysis (PCA, ICA) are standard techniques available in toolboxes like EEGLAB
[40]. Such exploratory data analysis is hampered by the intrinsically non-stationary nature,
and the non-linear couplings involved in signal generation. To help alleviate such issues,
recently, an empirical nonlinear analysis tool for complex, non-stationary temporal signal
variations has been pioneered by N. E. Huang et al. [80]. Such technique is commonly re-
ferred to as Empirical Mode Decomposition (EMD), and, if combined with Hilbert spectral
analysis, it is called Hilbert - Huang Transform (HHT). EMD utilizes empirical knowledge
of oscillations intrinsic to a time series in order to represent them as a superposition of com-
ponents with well defined instantaneous frequencies. They adaptively and locally decom-
pose any non-stationary signal in a sum of Intrinsic Mode Functions (IMF) which represent
zero-mean, amplitude- and (spatial-) frequency-modulated components. EMD represents
a fully data-driven, unsupervised signal decomposition which does not need any a priori

defined basis system. EMD also satisfies the perfect reconstruction property, i.e. superim-
posing all extracted IMFs together with the residual slowly varying trend reconstructs the
original signal without information loss or distortion. Thus EMD lacks the scaling and per-
mutation indeterminacy familiar from blind source separation (BSS) techniques. Because
EMD operates on sequences of local extremes, and the decomposition is carried out by
direct extraction of the local energy associated with the intrinsic time scales of the signal
itself, the method is thus similar to traditional Fourier or Wavelet decompositions. It differs
from the wavelet-based multi-scale analysis, however, which characterizes the scale of a sig-
nal event using pre-specified basis functions. Owing to this feature, EMD, and even more
so its noise-assisted variant called Ensemble Empirical Mode Decomposition (EEMD), is
a highly promising signal processing technique in dealing with problems of a multi-scale
nature. Note that with EMD a data representation as an expansion into intrinsic modes is
generated from the signal itself and no predefined basis system, as for example in Wavelet
decompositions, is used for the signal representation. Thus an EMD decomposition reflects
in a natural way the characteristics of non-stationary signals in either time or spatial do-
mains. Note further that Fourier transforms have constant frequencies and weights, while
Hilbert transforms allow the frequency as well as the amplitudes to vary over time.
Given the background discussed above, we suppose that EEMD is able to extract intrinsic
signal modes, so-called event related modes (ERMs), which contain decisive information
about responses to contour and non-contour stimuli. Such ERMs should appear at various
electrode locations indicating the presence of extended neuronal networks which process
such stimuli. We further hypothesize that such response signatures are better visible, with a
high statistical significance, in these modes rather than in the original recordings. Also any
latencies related to such signal components could be quantified more precisely.

Signal processing toolboxes

Brain states analysis using non-invasive monitoring techniques such as electroencephalo-
gram (EEG) have been receiving much attention because of increasing interest and popu-
larity of research related to brain computer/machine interfacing (BCI/BMI) methods, due
to the very interesting possibility of computer-aided communication with the outside world
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[183]. Therefore, this technology is expected to be at the core of future intelligent com-
puting. Recently, several new signal processing methods have been used in EEG signal
processing [129]. Most of these new methods need new tools to adapt routines of EEG data
processing. Additionally, this sort of interactive tools makes the possibility of analysing
the multimodal EEG data collected using more complex experimental designs much easier,
for example a Neuroelectromagnetic Forward Head Modeling Toolbox(NFT) [1], a Source
Information Flow Toolbox(SIFT) [146][41], Measure Projection Toolbox (MPT) [197] and
Brain-Computer Interface LAP toolbox (BCILAB) [105][104]. These toolboxes are inte-
grated with the well-established EEGLAB software environment [40], an interactive menu-
based and scripting software for processing electrophysiological (EEG) data under the MAT-
LAB interpreted programming script environment.
In this thesis, a new toolbox called EMDLAB which is an open software environment for
electrophysiological data analysis is introduced. EMDLAB can be used to perform, eas-
ily and effectively, four common types of EMD: plain EMD, ensemble EMD (EEMD),
weighted sliding EMD (wSEMD) and multivariate EMD (MEMD) on EEG data. The main
purpose of EMDLAB toolbox is to extract characteristics of either the EEG signal by IMFs
or ERMs. In EMDLAB, data structure and visualization of the extracted modes is adopted
from the EEGLAB MATLAB toolbox [40], therefore it is proposed to use EMDLAB as
a plug-in for EEGLAB. Similarly, the toolbox is mainly designed for EEG data, although
both EEGLAB and EMDLAB can process MEG data as well. Contrary to other toolboxes
dedicated to the analysis of ERPs, EMDLAB is used to analyze the characteristic of ERPs
based on the extracted modes.

Brain source imaging

During the last decades, functional imaging techniques like fMRI and Positron emission
tomography (PET) dominated in neuroscientific research. Concomitantly, the importance
of the technically much simpler, but less straightforward to analyze, EEG declined to some
degree. Still, EEG plays an important role thanks to its high temporal resolution in the mil-
lisecond range and its direct access to neuronal activation rather than measuring it indirectly
via the Blood Oxygenation Level Dependent (BOLD) effect as in fMRI. Brain source imag-
ing and reconstruction from continuous and single-trial EEG/MEG data thus have received
increased attention to improve our understanding of rapidly changing brain dynamics, and
using this information for improved real-time brain monitoring, brain computer interfacing
(BCI), and neurofeedback [25]. Recently, several new beamformers have been introduced
for reconstruction and localization of neural sources from EEG and MEG. Beamformers
provide a versatile form of spatial filtering suitable for processing data from an array of
sensors [195].
Thus EEG provides dynamic information on submillisecond time scales which can be com-
bined favorably with fMRI measurements which provide complementary high resolution
information on small spatial scales in the millimeter range [7][10][213][8][4]. EEG reflects
voltages generated mostly by excitatory postsynaptic potentials (EPSPs) from apical den-
drites of massively synchronized neocortical pyramidal cells. Ionic current inflow at den-
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dritic synapses and ionic outflow at the soma induce current dipoles at the pyramidal cells
which finally cause the event-related membrane potentials (ERPs) seen in EEG recordings.
Unfortunately, these source imaging techniques [225][74] face the problem of ambiguity
of the underlying static electromagnetic inverse problem. That is to say, the signals mea-
sured on the scalp surface do not directly indicate the location of the active neurons in the
brain. Many different source configurations can generate the same distribution of potentials
and magnetic fields on the scalp [52][53]. Thus, the analysis of such EEG data is quite
involved, encompassing machine learning and signal processing techniques like feature ex-
traction [10][9] and inverse modeling [67]. For timely accounts of recent advancements and
actual challenges in dynamic functional neuroimaging techniques, including electrophysio-
logical source imaging, multimodal neuroimaging integrating fMRI with EEG/MEG, and
functional connectivity imaging, see the reviews of Bin He [76] and Jatoi et al. [89]. Ad-
ditionally, a systems level approach to understanding information processing in the human
brain is offered by Edelman et al. [45] who advocate substantial efforts to shape the future
of systems neuroengineering. Furthermore, for a recent open source toolbox, named Brain-

storm, which offers tools to analyze MEG/EEG data, combine it with anatomical MRI data
and locate underlying neuronal sources of activation, see Tadel et al. [204].
Source localization affords solving an inverse problem in EEG source analysis which is
highly ill-posed due to a large p, small n problem setting [101]. Unique solutions can,
however, be achieved by imposing additional constraints to the resulting optimization prob-
lem. Such constraints are often of a purely mathematical nature, but biophysically realistic
constraints have been formulated as well (see for example LAURA [168])[15][32]. Source
localization methods use measured scalp potentials in the microvolt range, and apply sig-
nal processing techniques to estimate current sources inside the brain which best explain
the observations. The analysis first predicts scalp potentials resulting from a hypothetical
current distribution inside the head - this is called the forward problem [77][72][132][218].
In a second step, these simulations are used in conjunction with the electrode potentials
measured at a finite number of locations on the scalp to estimate the current dipole sources
that fit these measurements - this is called the inverse problem [67][225]. Over the years,
researchers have developed non-parametric (also referred to as distributed source models
or source imaging) as well as parametric (also called equivalent current dipole methods
or spatio-temporal dipole fit models) approaches to tackle the source localization problem
[44][67]. Source localization accuracy depends on several factors like head-modeling er-
rors [202][221], source-modeling errors and measurement noise contributions [185]. Also
it has been pointed out that the scalp potential needs to be sampled with electrodes evenly
and densely distributed along the scalp surface [201]. Localization accuracy increases in a
non-linear fashion with the number of electrodes, and estimates indicate that probably no
less than 500 electrodes would be needed for an accurate sampling of the surface potential
distribution [184][126]. But it has also been pointed out recently that the absolute improve-
ment in accuracy decreases with the number of electrodes [200]. Bayesian approaches, have
been reviewed recently [21], allow to compare several models and indicate that spatial lo-
calization precision in the millimeter range can be achieved reliably. Localization accuracy
increases in a non-linear fashion with the number of electrodes, and the latter need to spread
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over all the scalp surface homogeneously. If electrodes are concentrated in certain scalp
segments, source localization can turn awfully wrong [140]. For practical purposes, Baillet
et al. [16][17] suggested a spatial accuracy of 5 [mm] and a temporal accuracy of 5 [ms], re-
spectively. Among the many source localization methods available, low resolution electrical
tomography (LORETA) [155] and its extensions standardized LORETA (sLORETA) [156]
and exact LORETA (eLORETA) [157][159] are the most commonly employed techniques.
Especially sLORETA seems to outperform other techniques in most practical situations.
Hence it is considered the method of choice in this thesis.
In Chapter 5, a new method which combine an EEMD analysis with a source localization
scheme, more specifically an sLORETA source estimation will be introduced in Chapter 6.
The introduced approach offer the possibility to use the extracted modes as inputs into an
sLORETA analysis and explore whether their underlying characteristic can help in source
localization.

Thesis outline

In this thesis we concentrate on electrophysiological signatures within EEG recordings of
the fMRI/EEG contour integration task. EEMD method is used to investigate neural corre-
lates of contour integration via intrinsic modes extracted from the EEG signals, recorded
while applying two visual Gabor stimulus conditions i. e. contour true (CT) and non-

contour true (NCT), and studying the related electrophysiological response signals.

The organization of this thesis can be summarized as follows:

• Chapter 2: the theoretical backgrounds for the main concepts are presented in detail in
this chapter. First the physiology of the human brain and their recorded electrical activity
EEG will be described. Then some main concepts related to the EEG called ERPs and
BCIs are detailed. The final part of this chapter will give a background about the main
uses of the EEG, called source localization.

• Chapter 3: the main decomposition technique EMD used in this work for the features
extraction is explained in this chapter. The latter introduces a detailed background about
the EMD algorithm, its characteristic features, issues, limitation and evaluation. A the end,
some common EMD extensions that are developed to overcome limitations are presented.

• Chapter 4: this chapter is devoted to a description of the dataset available and the way,
data has been acquired and preprocessing. It provides also a concise summary of the
perceptual learning and contour integration.

• Chapter 5: in this chapter, EEMD is applied to EEG brain data that are acquired during a
contour integration task in the Institute of Experimental Psychology of the University of
Regensburg, to solve the forward problem. It presents a detailed description of the EEMD
analysis applied and quantifies the results obtained. Component time courses and related
head topographies further illustrate these results.
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• Chapter 6: here, EEMD is used for inverse modeling of the EEG data. An EEMD analysis
combining with a source localization scheme, sLORETA will be used to estimate sources.
Obtained results and related brain images are presented in detail.

• Chapter 7: a new toolbox called EMDLAB which is an open software environment for
electrophysiological data analysis will be introduced in this chapter. The presented new
toolbox provides a GUI, which helps the user to handle his data and perform signal pro-
cessing tasks fitted to EMD analysis. Moreover, instructions for the use and results when
applying to real data are provided.

• Chapter 8: in this final chapter, the thesis will be ended with thorough conclusions of the
present work.





Chapter 2

Biomedical Background

2.1 Human Brain

The human brain is the main organ that is responsible for monitoring and controlling a large
number of functions of the human body. It is the part of central nervous system which is
located in the skull. This highly complex organ, together with the spinal cord and network of
nerves, controls the information flow throughout the body, voluntary actions such as reading,
talking, and involuntary reactions such as breathing and digestion [70]. The human brain
consists of four main parts: Cerebrum (divided into two large paired cerebral hemispheres),
Diencephalon (Thalamus and HypoThalamus), Cerebellum and Brain stem. The cerebrum
part is the largest one which is located in the uppermost portion of the brain. It consists of
four lobes: the frontal lobe, the parietal lobe, the temporal lobe, and the occipital lobe. The
frontal lobe is located at the front of the brain and associated with reasoning, planning, parts
of speech, movement, emotions, and problem solving. The parietal lobe is positioned above
the occipital lobe and behind the frontal lobe. It is responsible for movement, orientation,
recognition, perception of stimuli. The temporal lobe is the bottom middle part and located
behind the temples. It is responsible for processing auditory information. The occipital lobe
is the visual processing center of the brain that is located at the back of cerebrum. The
various important parts of the brain can be easily located from the anatomical images shown
in Figure 2.1.
The brain is made up of many cells, including neurons and glial cells. These neurons are
cells that serve as the building blocks of the nervous system, transmitting electro-chemical
signals to and from the brain and nervous system. There are about 100 billion neurons
in the brain [99]. When these neurons are activated, local current flows are produced. This
electrical activity of the brain can be recorded using electroencephalography (EEG) method.

2.2 Electroencephalography(EEG)

The first human EEG recording was obtained by the German physiologist and psychiatrist
Hans Berger in 1924 in Jena. He named this recording electroencephalogram (EEG). Since
then, this recording technique has been one of the most used methods to study brain ac-



2.2 Electroencephalography(EEG) 10

Figure 2.1 The parts of human brain (adapted from [199]).

tivities. Compared to other recording techniques such as functional magnetic resonance
imaging (fMRI) and Positron emission tomography (PET), EEG has been largely used for
multiple advantages e.g, simplicity and low cost. Electroencephalography (EEG) is the
recording of the electrical activity of the brain through multiple electrodes placed on the
scalp that is the top of the head where hairs grow. Recording this activity is usually taken
over a small period of time, for the duration of a round half an hour only. EEG is used
to diagnose different disease e.g epilepsy, comma and other disorders of brain because of
injury or illness.

2.2.1 EEG Signal Recording

EEG is recorded by placing different sensors (electrodes) on the scalp of the head in special
positions. The scalp area is prepared by light abrasion to reduce impedance caused by dead
skin cells. These electrodes are either attached to an individual wire or in some systems
embedded into caps or nets. The locations of the electrode and names are specified by the
international 10− 20 system which is an internationally standard method to describe and
apply the location of scalp electrodes in the context of an EEG experiment [88]. It is based
on dividing the head into proportional distances from prominent skull landmarks (reference
points): first, the Nasion which is the point between the forehead and the nose; second, the
Inion which is the most prominent projection of the occipital bone at the posterioinferior
(lower rear) part of the human skull [189]. This division provides adequate coverage of all
regions of the brain. In this system, 21 electrodes are placed on the surface of the scalp as
demonstrated in Figure 2.2.
Electrode placements are named by letters according the anatomical area where the elec-
trode corresponds: prefrontal or frontopolar (Fp), frontal (F), central (C), temporal (T), pos-
terior (P), occipital (O) and auricular (A). The letters are accompanied by either a number
,indicating lateral placement, or the letter z indicating zero or midline placement. Electrodes
with odd numbers are specified at the left side of the head while even numbers correspond
to the right side. The 10 and 20 refer to the actual distances between electrodes when mea-
sured from Nasion to Inion [57]. The standard set-up of 10− 20 system included only 19
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Figure 2.2 The international 10-20 electrodes placement system [131].

electrodes. Later on, additional electrodes can be added to increase the spatial resolution for
a particular area of the brain.
The EEG signals recorded from the scalp electrodes are amplified by connecting each elec-
trode to one input of an amplifier. These amplifiers amplify the difference between the ac-
tive electrode and the reference which reduce the outside interference and artifacts because
they amplify just the potential difference between two electrodes distorted by the same arti-
fact. During EEG recording, unwanted signals which have created artifacts could happened
due to noise. These artifacts are not related to brain activity rather affecting the signal
measurement making it difficult for analysis. There are different types of artifacts such as
environmental artifacts which are generated from outside the body, e.g the impedance of an
electrode. Another type of artifacts which are useful- biological artifacts such as electroocu-
lography (EOG) and electrocardiography (ECG) can help to predict different mental states
and provide information. EOG is used to measure eye movements while ECG is used to
record the electrical activity of the heart [22].
The placement of the electrodes and the connection between them is referred to as a montage.
EEG signals can be recorded using either a bipolar montage or a referential one. In bipolar
montage, each channel (waveform) represents the voltage difference between two adjacent
electrodes, while in referential, each channel represents the difference between a certain
electrode and a specified reference electrode [3].

2.2.2 EEG Usage

The EEG measurements are commonly used in two main areas:

• Medical area: one of the most important EEG applications is to evaluate several types of
brain disorders. A clinical EEG recording typically lasts about 20−30 minutes and used
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to diagnose or monitor various health circumstances, including: seizures and epilepsy,
brain diseases, sleep disorders, infections, confusion, head injuries, etc. [152].

• Research area: EEG is used widely in human research areas for various purposes. It
is used commonly in psychophysiological and neuroscience studies, cognitive science,
cognitive psychology and neurolinguistics [229].

2.2.3 EEG Brain Waves

Electrical potential recorded at the surface of the human scalp changes due to the different
activities of the brain. These activities contain several periodic or rhythmic wave patterns
which have been categorized into five main groups according to their frequency range (see
Figure 2.3)

• Delta waves (δ ) have a frequency range up to 3 Hz. They are the slowest wave of all the
rhythms and the highest one in amplitude. These waves are visible in deep sleep in adults,
infants and children.

• Theta waves (θ ) have the frequency range from 4 Hz to 7 Hz. They are seen normally in
young children. They also can be seen in adults and older children during drowsiness and
sleep. These waves occur most often in sleep but also have been associated with reports
of meditative and creative states. They are seen in central, temporal and parietal parts of
head.

• Alpha waves (α) have the frequency range from 8 Hz to 15 Hz. They are also called
Berger’s waves in memory of the founder of EEG. They are most commonly seen in
adults. Alpha waves are dominant during flowing thoughts and in some meditative states.
They can be clearly observed in posterior and occipital regions of the head.

• Beta waves (β ) have the frequency range from 16 Hz to 30 Hz. They are known as high
frequency and low amplitude brain waves which are generally seen while normal waking
consciousness. They are involved in thinking and active concentration. Beta waves with
higher frequencies are related to high levels of arousal. They are seen in various parts
of brain including primary motor, somatosensory and posterior parietal cortices in the
neocortex [95]

• Gamma waves (γ) have the frequency range from 31 Hz to 100 Hz. They are the highest
frequency of brain waves. Gamma waves were not studied and considered as spare brain

noise until researchers discovered. They are involved in higher mental activity, including
binding senses, cognition, information processing, learning and perception. These waves
appear in each part of brain.
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Figure 2.3 Most common EEG waveforms (adapted from [149]).

2.3 Event-Related Potentials (ERPs)

EEG is a useful measurement of the electrical activity within the brain. This technique is
based on placing electrodes on the scalp, amplifying the signal, and plotting the voltage
variations of the brains activity during the session. Although EEG represents the electrical
activity within the whole brain, cognitive neuroscientists are concerned with specific neu-
ral processes. These neural responses can be extracted using averaging methods. They are
known as Event-Related Potentials (ERPs) and show the summation of postsynaptic poten-
tials between neurons [232].

2.3.1 What is ERP?

Event-related potentials (ERPs) are the measured brain responses to specific events or stim-
uli. ERPs can be generated by measuring the voltage changes caused in the brain during cog-
nitive processing. They are an average of many EEG trials recordings that are time locked to
specific events or stimuli [24]. ERPs consist of series of positive and negative voltage peaks
that are called components [96]. These components are recognized by either the letter N

or P which represents the polarity (negative/positive), followed by a number indicating the
latency in milliseconds or the component’s ordinal position in the waveform. For instance,
the mean peak amplitudes of the ERP components P100 and N100 denoting the positive
and negative components appearing 100 ms after the stimulus onset, respectively. ERPs
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can be classified either according to the nature of the stimulus: visual, somato-sensory, and
auditory or according to their latency: short latency (< 100ms) and long latency (> 100ms)
potentials. The shorter latency components are named exogenous components and gener-
ated during the sensory stimulus processing stages while the longer latency components are
called endogenous components and represent the cortical processing stages[137].
Figure 2.4 presents an example of ERP of time-locked EEG signals which are related to a
visual stimulus. Figure 2.4-Left shows 3 EEG trials signals while Figure 2.4-Right depicts
their averaged ERP waveform.

Figure 2.4 An example of averaged ERP waveform. Left: 3 different EEG time-locked
waveforms elicited during a visual task. Right: the averaged ERP waveform across the
signals in the left panel.

2.3.2 ERP Wave Properties

The ERP waveforms are described according to three parameters [93](see Figure 2.5):

• Amplitude: the maximum value of the wave from the trough (negative or positive). It
represents information about the neural activity as the response to the stimulus.

• Latency: is the time delay between the stimulus presentation and its response. It represents
the timing of the neural activity in milliseconds.

• Scalp Distribution: the voltage distribution over the scalp of the brain at any time point. It
gives information about the activated areas of brain.

Figure 2.5 illustrates an averaged ERP waveform following a visual stimulus. It shows
several ERP components: P100, N200 and P300 with their amplitudes and latencies. The
amplitude is measured from the prestimulus baseline to the peak, and the latency is mea-
sured from stimulus onset to the peak. The related scalp topographic maps of P100, N200
and P300 components are illustrated at the bottom.
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Figure 2.5 ERP waveform with its related components: P100, N200 and P300 in re-

sponse to a visual stimulus. The amplitudes and latencies for each component are illus-
trated using magenta and green double arrows, respectively. The red line identifies the
stimulus onset. The associated scalp current distributions of the P100, N200 and P300
components are depicted at the bottom.

2.3.3 ERP Advantages and Disadvantages

There are many benefits for ERP method compared to other brain response measurement.
But on the other hand, there are some limitations:

• The ERP is a non-invasive method which leads to excellent temporal resolution compared
to neuroimaging methods, such as fMRI and Positron Emission Tomography (PET) [121].
ERP resolves data down to milliseconds and exposes more temporal information under-
lying cognitive functions, where early components represent sensory processing and later
components represent higher-level cognitive processes. However, the spatial resolution of
the ERP is poor, where the location of ERP sources is an inverse problem that cannot be
exactly solved, only estimated [232][233].

• ERPs provide a measure between stimulus and response, that allows understanding of the
effects of specific experimental manipulations much better than behavioural responses. In
addition, ERP can provide a measure of processing of stimuli even if there is no behavioral
change [125].

• ERP experiments are more flexible compared to those in neuroimaging techniques where
there are constraints on testing conditions [193].

• The ERP method is cheaper to do than other imaging techniques [39].

• As compared to neuroimaging measures, the ERP method is less sensitive to movement
artifacts which makes it useful when studying infants [207].
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ERPs are used widely in many research fields: neuroscience, cognitive psychology, cogni-
tive science, and psycho-physiological.

2.4 Brain-Computer Interfaces (BCIs)

Many people have speculated that brain activity measure like EEG might one day lead to a
new non-muscular path for the brain to communicate with the external world, which is es-
sentially a brain-computer interface (BCI). Over the past few years however, the history of
brain computer interface begins with Hans Berger’s discovery of the electrical activity of the
human brain and the development of EEG. In 1924, when Berger was able to identify oscil-
latory activity, he used some devices with silver wires, Lippmann capillary electrometer and
others. The term BCI was first introduced by Dr. Jacques Vidal in his first peer-reviewed
publications on this topic [90][91]. He is known as the inventor of BCIs in the BCI com-
munity as mentioned in several articles (e.g.,[231][11]). And later, many BCI studies from
many fields, including neurology, engineering, psychology, computer sciences, etc. were
done. These studies aim to a better understanding of the human brain functions via detect-
ing and translating features of brain signals into device commands that achieve the user’s
target.

2.4.1 What is a BCI

BCI, also sometimes known as a brain-machine interface (BMI), is a computer-based system
that allows communication and interaction between the human brain and output devices.
This interface enables users to read the signals produced from different locations of the
brain, analyze and convert them into required outputs that are passed to an output device, as
shown in Figure 2.6. A BCI lets users to act on the world [230].

2.4.2 Principle of BCI

A BCI is mainly consists of 4 sequential steps as described by [230]:

• Signal acquisition: this is the main step for any BCI. It is the process of reading the
brain signals using a specific type of sensor. These signals are amplified, digitized and
transferred in preparation for later processing.

• Feature extraction: in this step, the digitized signals are analyzed to extract the pertinent
signal characteristics. These characteristics have to be more relevant to the users’s target.
They can be extracted in the time-domain or the frequency-domain [49][43][98], or both
[190]. In current BCI systems, features such as amplitude, latency and frequency power
spectra are commonly used. To ensure the accuracy in selecting signal features, artifacts
need to be removed such as electromyographic signals.
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• Feature translation: in this stage, the extracted features from previous step are converted
into device commands. These commands, in turn, will produce outputs that achieve the
user’s goal.

• Device output: here, the generated commands in the former step are used to operate the
external device.

Figure 2.6 Brain-Computer Interface scheme for Contour Task.

2.4.3 BCI Applications

BCI is an interesting field that can help researchers to solve many problems that seem to
be complicated. The main goal of BCI applications is to convert the users intent or ideas
to an action in external device. Actually, the area of possible BCI applications is very
wide. It can be used to complex problems as well as simple ones. Since BCI research
has begun in the 1970s, It has concentrated firstly on neuroprosthetics applications that
designed for substituting damaged hearing, sight and movement. Any applications of BCI
focused on patients that have disorders of consciousness (DOC).These patients can not make
communication with others around world [30]. One of the most common BCI application
is neurofeedback (NFB) training. It is a type of biofeedback that uses brain signals mostly
EEG, to improve the brain functions such as, working, attention and memorization. BCIs
also are used in many applications, including spelling [117], semantic categorization [222],
silent speech communication [29] and computer games, etc.
Concisely, we can say that BCIs have participated in different areas of research. They
are contributor in medical, educational, neuroergonomics and smart, neuromarketing and
advertisement, self-regulation, games and entertainment, and security and authentication
environments.
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2.5 EEG Source Localization

Neuroelectromagnetic source imaging (NSI) is the scientific field allocated to modeling and
evaluating the spatiotemporal dynamics of neuronal currents throughout the brain that gen-
erate the electric potentials and magnetic fields measured with electromagnetic (EM) record-
ing technologies [173]. Thus, over the past few decades, localizing electrical sources in the
brain from surface recordings has attracted the attention of many EEG/MEG researchers.
Source localization is one of the complex real world problems because of the complicated
nature of the brain. It is the process of estimating the locations of activity sources inside
the brain depending on the electrical recordings over the surface of the scalp. This elec-
trical recordings reflect the activities of neurons in the brain. Activities of daily living,
including motor, cognitive and sensory activities may lead to such neuronal activities. The
problem lies in that a multiple of sources may lead to the same potential distribution over
the surface of the head. The only way to address this problem is to construct models for the
head and the underlying sources. When these suppositions are done, then the source local-
ization is separated into a forward problem and an inverse problem. Figure 2.7 illustrates
the source localization procedure which is based on the distribution of scalp amplitudes in
single time point. This procedure starts with recording EEG time series signals, and then
preparing these measured signals for solving the inverse problem through applying some
signal processing techniques. The inverse problem tries to locate the underlying sources
from recorded measurements, whereas the forward problem supposes a source definition in
order to predict an electrical potential distribution map.

Figure 2.7 The key parts of EEG source localization. They start with time series recorded
at the scalp sensors, passing through a preprocessing step and ending with localizing the
sources (adapted from [169]).

2.5.1 Forward Problem

The EEG forward problem is the process of defining the potential distributions arising from
neural sources in the head model [72]. The mathematical formulation of the forward prob-
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lem is derived from Poisson’s equation [130][92][71]. In the past, several studies of EEG
forward mapping has mainly concentrated on multilayer spherical models, for example
[23][42][243]. These studies were simple and easy to compute, so they were applied to
approximate the human head. Forward solutions can be applied to compare either scalp
potentials for different approaches or calculated and measured potentials [60][55] and for
source imaging [64][75]. Additionally they are also required for EEG inverse solutions
[144]. With forward modeling[62] [94], one is interested in predicting the expected potential
distribution on the scalp, specifying position and activations of dipole current sources, and
electrical conductivity of the different regions of the head. Poisson’s equation can be used to
relate the scalp potentials to the current density distribution inside the brain. It is developed
by using the divergence operator. For further details about Poisson’s equation derivation via
Maxwell’s equations, one can see textbooks on electromagnetism [71][131][210].

By applying the divergence operator to the vector field of the current density K(x,y,z), then
the divergence of K is represented as

∇.K = lim
G→0

1

G

∮

∂G
KdS (2.1)

where ∇.K is the current source density and symbolized with Im in [130]

∇.K = Im (2.2)

The relation between the current density K and the electric field E is stated by Ohm’s law

K = σE (2.3)

where σ is the position dependent conductivity value.

Now, the scalar potential field φ is presented due to Faraday’s law being zero under quasi-
static conditions (∇ ∗E = 0) [181]. A link between the potential field φ and the electric
field E can be introduced using the gradient operator

E =−∇φ (2.4)

The vector −∇φ at any point represents the direction where the scalar field φ most rapidly
increases, and the minus sign indicates that the orientation of the electric field is from the
high potential region to a low potential region.

When all the equations above are combined together, Poisson’s differential equation is ob-
tained as follows

∇.(σ∇(φ)) =−Im (2.5)

This Poisson’s equation can mathematically describe the EEG forward problem for electri-
cal conduction in the head [167]. Accordingly, solving the EEG forward problem requires
solving this equation. This in turn requires finding the scalp potentials φ . This parameter is
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defined by 3 factors, the electrode position r, the dipole position rdip and the dipole moment
d = ded with magnitude d and orientation ed.

For one dipole and one electrode, the electrode potential can be defined as

φ(r) = g(r,rdip,d) (2.6)

This equation measures the potential at an electrode located at a point on the scalp with
position vector l. This vector is defined by a single dipole with dipole moment ed placed in
ldip inside the brain.

In case of multiple dipole sources, the electrode potential will be

φ(r) = ∑
i

g(r,rdipi
,di) = ∑

i

g(r,rdipi
,diedi) (2.7)

Assuming the superposition principle, Equation 2.7 can be rewritten as

φ(r) = ∑
i

g(r,rdipi
,edi)di (2.8)

For N electrodes and p dipoles, the forward problem can be reformulated as
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φ = G(rk,rdipi
,edi

)D (2.9)

where k = 1, ...,n and i = 1, ..., p. φ is data measurements matrix, G is the gain matrix and
D is the matrix of dipole magnitudes.

More generally, a noise perturbation matrix ε is added

Φ = GD+ ε (2.10)

2.5.2 Inverse Problem

The inverse problem is about estimating the underlying current sources inside the brain that
generated the measured electrode potentials. It is not possible to solve the inverse problem
directly. Instead, iterative forward solutions for different source configurations are required.
Starting from the EEG forward solution, data measured at specified positions of electrodes
on the scalp, one can work back and estimate the sources that fit these measurements- the
inverse problem.
Equation 2.10 presents the general model for the inverse problem. The aim of the inverse
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problem then is to estimate D̂ of the dipole magnitude matrix by giving the electrode posi-
tions and scalp readings φ and using the gain matrix G calculated in the forward problem.

Whereas the general forward solution is well-defined, the inverse solution is ill-posed [78]
due to the non-uniqueness of the solution as p ≫ n in most of the imaging applications.
Besides that, the accuracy of estimating the sources is affected by some factors, such as
EEG noise and modeling error [228]. Consequently, EEG inverse solutions are unstable.
There are two main groups of methods which were introduced to solve the EEG inverse
problem: non-parametric and parametric methods. Non-parametric methods, also referred
to as distributed inverse solution (DIS), rely on a distributed source model in which the
number of dipoles is unknown, but the positions and orientations are fixed. Most common
examples of non-parametric methods are: Low Resolution Electromagnetic Tomography
(LORETA) [160] and its derivations sLORETA(standard) and LORETA-FOCUSS (Focal
underdetermined system solution) [67].
On the other hand, parametric methods, also called Concentrated Source Models (CSM)
rely on a model that has a fixed number of dipoles. The most commonly used approaches
of parametric methods are the non-linear least squares solver [56][211], Multiple Signal
Classification [145][192], and parametric adaptations of beam forming techniques [17].
One of the most robust methods for source localization is referred to as standardized low
resolution brain electromagnetic tomography (sLORETA) which was introduced by [156].
For single point sources and noiseless data, sLORETA has been shown to provide an exact
source localization even for blurred images. However it was shown also that the precision
with which sources can be localized strongly depends on the number, and even more so on
an even distribution over the scalp surface, of electrodes from which electrical potentials are
collected [219].

2.5.2.1 Standardized Low Resolution Brain Electromagnetic Tomography (sLORETA)

There are multiple methods which were introduced to solve the EEG inverse problem. These
methods can be categorized into parametric and non parametric methods. The major differ-
ence between the two is whether the dipoles number is fixed in advance or not. One of the
most common used non parametric methods is standardized low resolution brain electromag-
netic tomography (sLORETA). It has been proposed by [156]. Based on scalp distribution
of electric potentials, sLORETA was used to estimate the cortical electrical activity that
could be responsible for that surface potential. It is an open source software environment
that is publicly available at htt p : //www.uzh.ch/keyinst/loreta.htm. It is an improvement
over previously developed tomography LORETA [160]. The sLORETA method is a stan-
dardized discrete, three-dimensional (3D) distributed and linear, minimum norm inverse
solution. For single point sources and noiseless data, sLORETA has been shown to provide
an exact source localization even for blurred images. For further details about the descrip-
tion of the method, one can see [156]. The mathematical proof of its exact, zero-error
localization property is explained in [157] and [158]. It is also important to mention that
sLORETA has no localization bias even if there is measurement or biological noise [157].
However, there are studies [196][68] which showed that the method is not biased in the ab-
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sence of measurement noise and biased in the presence of measurement noise. On the other
hand, several studies have recently shown the validity of sLORETA in EEG/fMRI studies
[153][142] and EEG localization for epilepsy [182].
The sLORETA computation was made in a realistic head model [62] that is based upon
MNI152 template [136] with the three-dimensional solution space. In practical simulations,
the solution was restricted to cortical gray matter, as specified by the corresponding digi-
tized Probability Atlas [112]. The standard electrode positions of the MNI152 scalp were
determined as in [94] and [154]. A total of 6239 voxels at 5 mm spatial resolution were cre-
ated for the intracerebral volume. Thus, sLORETA images represent the electric activity at
each voxel in neuroanatomic space as the exact magnitude of the estimated current density.
Anatomical labels as Brodmann areas are also reported using MNI space, with correction to
Talairach space [27].
The forward problem amounts to solving Poisson’s equation

∇2φ(rk, t) =−ε−1ρq(r, t) (2.11)

for the electrical potential Φ(rk, t), registered at scalp location rk at sampling time t, as
function of the charge density ρq(r, t) inside the brain. Biophysically, scalp potentials can
be described as stemming from ionic currents in apical dendritic trees of pyramidal neurons
resembling dipolar charge distributions at locations ri and having dipole polarization di.
According to the superposition approximation, the total potential at any scalp electrode
location rk amounts to

φ(rk, t) = ∑
i

ϕ (rk,di(ri, t)) ⋍ ∑
i

g(rk,ri) ·di(t) (2.12)

where g(...) is called the gain or lead field which depends on dynamic electric susceptabil-
ities inside the brain. Given Ne electrodes, Nv dipoles and T discrete time samples, the
measured scalp potentials at all Ne electrode locations at times t1, . . . , tT can be collected
into an Ne ×T - dimensional data matrix Φ(t) which is estimated via

OcΦ(t) = OcG(r j,ri)D(ri, t)+En(t) (2.13)

Note that all EEG signal-related quantities, i. e. Φ,G, are conveniently re-referenced to
an average EEG signal by applying the Ne ×Ne - dimensional centering operator Oc =
I − 11T (1T 1)−1 which obeys the relation Oc1 = 0. Note that source localization does
not depend on the choice of the reference electrode, as long as the reference is correctly
integrated into the model [140]. Further, G represents the Ne × Nv - dimensional gain
or lead field matrix, D(ri, t) the Nv × T - dimensional matrix of current dipole moments
di(tn)≡ d(ri, tn) = (dx,i(tn),dy,i(tn),dz,i(tn))

T at a finite set I = {i|1, . . . ,Nv} of grid points
ri and a finite set of discrete time points t = t1, . . . , tT , and En denotes additive noise. The
Nv grid points are located in cortical gray matter and the hyppocampus. While the gain
matrix G is estimated via solving the forward problem [188][62][72], the inverse problem
tries to deduce the dipole matrix D from electrical potentials Φ measured at electrode lo-
cations rk at any discrete time tn. Non-parametric optimization methods solve the inverse
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problem by estimating the dipole matrix D∗ which maximizes the posterior probability dis-
tribution p(D|Φ) of current dipole sources di(tn) given the observations Φ(rk, tn). Assuming
a Gaussian posterior density, the corresponding log-posterior density is related to an energy
functional Fα(d) = R(d)−αL(d), which consists of the data log-likelihood representing
a reconstruction error R =‖ Φ−GD ‖2 and a log-prior which constitutes a regularization
term [205]. In case of sLORETA, the latter is, in the spirit of Tikhonov regularization, taken
as L(D) =‖ D ‖2 yielding a minimum norm least squares estimate

DMNE = G
(

GGT +αOc

)†
Φ. (2.14)

The latter becomes standardized by the square root of its Nv×Nv - dimensional co-variance

matrix ΣD =GT
(

GGT +αOc

)†
G. Thus, at any given time point t, the (3×1) - dimensional

vector of the estimated standardized dipole moment d̃ at voxel location ri is obtained as
[159][220]

dMNE,i(t)≡ dMNE(ri, t) = [ΣD]
−1/2
ii d(ri, t) (2.15)

Finally the sLORETA brain maps result from computing estimates of the equivalent stan-
dardized current dipole energy at all grid points ri.i = 1, . . . ,Nv

Edip(ri)⋍ dT
MNE,i ([ΣD]ii)

−1
dMNE,i (2.16)

where dMNE,i is the minimum norm current dipole moment estimate at the i-th voxel and
[ΣD]ii is the (3×3) - dimenional i-th diagonal block of the co-variance matrix ΣD [156][67]
[159].
Note that because pyramidal neurons span all cortical layers, the model is often simplified
by assuming that, at each grid point, the direction of the ionic currents inside the apical den-
dritic trees, and thus the equivalent dipole moment orientation, is orthogonal to the surface.
Then only its amplitude needs to be estimated. In that case, the matrix D has dimension
Nv × 1 and each i - th element corresponds to the amplitude of the i - th voxel, and the
dimension of the gain matrix, as well as ΣD̂, also changes to Ne ×Nv.





Chapter 3

Empirical Mode Decomposition (EMD)

3.1 Motivation

Data analysis plays a big role in pure different researches and applications. Basically, it is
a process of transforming data using analytical and logical techniques for purposes of ob-
taining constructive information. In the real world, there are many types of signals which
contain a lot of information that people are interested in. The structures of these types
extend from simple to complex ones. The first natural classifying of all signals is into
either stationary or non-stationary categories. Analyzing stationary signals is an easy pro-
cess compared to non-stationary ones. But most of real world signals are non-linear and
non-stationary. This leads us to the need of breaking the process down into individual com-
ponents and analyzing each one separately, this breaking process is called decomposition.
There are a number of time frequency (TF) representation methods of time domain signals
such as Fourier Transform (FT), Wavelet transform, etc. The Fourier transform is based
on decomposing the process into harmonic functions with fixed frequencies and amplitudes.
Although the Fourier transform is widely used, but there are some critical restrictions: the
system must be linear and the data must be strictly periodic or stationary. Otherwise the
resulting spectrum could not reflect the interesting characteristic of the system behavior.
On the other hand, Wavelet transform is used to avoid constraints associated with non-
stationarity system. Contrary to FT, it decomposes the process into a fixed basis of time
and frequency functions. However, it characterizes the scale of a signal event using pre-
specified basis functions. In practical applications, it would be good to have an adaptive
decomposition that could overcome the limitations of above described methods. Recently,
an empirical nonlinear analysis tool for complex, non-stationary temporal signal variations
has been pioneered by N. E. Huang et al. [80]. Such technique is commonly referred to
as Empirical Mode Decomposition (EMD), and, if combined with Hilbert spectral analysis,
it is called Hilbert-Huang Transform (HHT). EMD utilizes empirical knowledge of oscilla-
tions intrinsic to a time series in order to represent them as a superposition of components
with well defined instantaneous frequencies. They adaptively and locally decompose any
non-stationary signal into many modes with different frequency characteristics, called In-
trinsic Mode Functions (IMF). These IMFs represent zero-mean, amplitude- and (spatial-)
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frequency-modulated components. EMD is a fully data-driven, unsupervised method. It
is based on an adaptive basis system. EMD also satisfies the completeness property, i.e.
original signal can be reconstructed by superimposing all extracted IMFs together with the
residual without information loss or distortion.
This chapter explains the theory behind Empirical Mode Decomposition (EMD). It covers
a detailed explanation on how the EMD has been implemented. EMD extensions, instanta-
neous frequency estimation, other properties and issues are also discussed.

3.2 EMD Algorithm

Empirical mode decomposition (EMD) is a purely data-driven analysis tool for complex
non-linear and non-stationary time series. It adaptively and locally decomposes any non-
linear and non-stationary time series into oscillations on various frequency scales. These
resulting oscillatory modes are called intrinsic mode functions (IMFs) that represent zero-
mean amplitude and frequency modulated components. EMD is intuitive, direct, a posteriori
and adaptive, with the basis of the decomposition based on, and derived from, the data.
The essence of the decomposition is based on identifying the intrinsic oscillatory modes
empirically by their characteristic time scales in the data. Extracting the IMFs is an iterative
process that relies on subtracting the highest oscillation components from the original data
with step by step process, which is called the sifting process.

3.2.1 Intrinsic Mode Function (IMF)

The principle of EMD method is to decompose any signal x(t) into a set of a mono-component
functions called Intrinsic Mode Functions (IMFs) which are zero-mean, amplitude- and
(spatial-) frequency-modulated components. The monocomponent function refers to an os-
cillation similar to common harmonic functions. Therefore, the IMFs represent the signal
as amplitude and frequency modulated (AM-FM) signals which are arranged in order of
highest frequency to lowest frequency components. The AM carries the envelope and the
FM is the constant amplitude variation in frequency and computed using a sifting process.
To achieve this, an IMF must satisfy two conditions:

• In the whole dataset the number of maxima and minima can at most differ by one.

• At any point the local mean m(t) of the upper envelope and lower envelope should be
close to zero.

Note that achieving the second condition leads to consider the IMF as wide sense stationary
signal which simplifies its analysis. Nevertheless, an IMF could have modulated amplitude
and frequency as presented in Figure 3.1.
The first condition results to a narrow-band signal, and it is necessary to ensure achieving the
conditions needed to calculate the instantaneous frequency [80][84]. The second condition
is a local requirement caused by the global one which requires symmetric upper and lower
envelopes of an IMF that makes the signal ready for modulation [80][79][83]. It is not easy
to find the envelopes because of the nonlinear and non-stationary nature of the data.
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Figure 3.1 An example of Intrinsic Mode Function (IMF).

3.2.2 Sifting Process

Although the mathematical proof of EMD has not been developed yet, there are methods
for extracting the IMFs which has been introduced by [80]. Finding the IMFs is an iterative
process that relies on subtracting the highest oscillation components from the original data
in a step by step process, which is called the sifting process. It is the core of the EMD al-
gorithm that is applied to iteratively filter the different oscillatory components of the signal,
starting with the fastest and ending with the slowest component. Hence, the sifting algo-
rithm decomposes a data set x(t) into j = 1, ...,J individual IMFs symbolized by c j(t) and
r(t), the residuum which is the remaining non-oscillating trend of the data.

The sifting process can be summarized in the following steps:

1. Identify the extrema (both maxima and minima) of the registered signal x(t).

2. Construct the upper and lower envelopes envmax(t) and envmin(t) using a cubic spline
interpolation scheme.

3. Calculate the mean of the two envelopes as m(t) = [envmax(t)+envmin(t)]
2

4. Subtract the mean value from the signal h(t) = x(t)−m(t)

5. Determine whether h(t) is an IMF or not by checking the two conditions as described
above.

6. If h(t) is IMF, set c j(t) = h(t) and find the j+ 1 - st IMF after updating r(t) = x(t)−
∑

j<( j+1)
c j(t). Otherwise, update x(t) = h(t) and repeat steps 1 to 5.

where r(t) is an intermediate signal, initially created with a copy of the original time series
r(t) = x(t). The sifting process is straightforwardly illustrated in Figure 3.2.
IMF represents the oscillation mode of signal and because of that it was called intrinsic
mode function. Accordingly, the IMF involves only one mode of oscillation, no complex
waves are allowed. At the end of the decomposition, the original signal can be represented
by an expansion into its underlying modes plus a non-oscillating residuum

x(t) =
J

∑
j=1

c j(t)+ r(t) (3.1)
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Figure 3.2 Flowchart diagram of EMD algorithm.

The sifting procedure will be repeated until all IMFs have been extracted. Figure 3.3 illus-
trates the complete process of EMD for an example of toy data signal sig which consists of
two sinusoid components
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• x1(tn) = 3sin(20π .tn)

• x2(tn) = 6sin(60π .tn)

with tn = 0, ....,1, a step of ∆tn = 0.0001 between the samples and a total of N = 10001
data points. These two signals are summed up to generate the signal sig(tn) = x1(tn)+x2(tn)
(Figure 3.3-Top). Figure 3.3 clearly describes how EMD could extract the two IMFs (second
and third rows) of the original signal sig (first row). The last row shows the trend of the
signal.
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Figure 3.3 EMD decomposition of a toy data signal. Top raw: toy data signal which
consists of two different frequencies sinusoid signals, x1(tn) = 3sin(20πtn) (second row)
and x2(tn) = 6sin(60πtn) (third row). The last row illustrates the monotonic trend of the
signal.

3.3 Hilbert-Huang Transform

In the periodic signals, the frequency is defined as the number of occurrences of a repeating
event per unit time. It is constant for signals that are completely sinusoidal. But, most
signals in the real world are not completely sinusoids. For example a linear chirp signal
is a non stationary signal where its frequency increases linearly over time. This has led to
the concept of the Instantaneous Frequency (IF) where the changes in the frequency can be
represented instantaneously over time. Hence, IF was introduced to describe the frequency
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of non-stationary signals at each time point [84].
The Instantaneous Frequency can be easily calculated through the Hilbert Transform. For
any time series c( j)(tn), the IF ω(tn) is defined as the derivation of the phase θ(tn) of the
analytic signal z(tn)

ω(tn) =
dθ(tn)

dt
(3.2)

The analytic signal z(tn) can be defined as

z(tn) = c( j)(tn)+ iy(tn) = a(tn)exp(iθ(tn))

with instantaneous amplitude a(tn) given by

a(tn) =

√

(c( j))2(tn)+ y2(tn) (3.3)

and y(tn) is the Hilbert Transform of the signal c( j)(tn), and can be calculated as

y(tn) =
1

π
P

{

∫ ∞

−∞

x(τ)

tn − τ
dτ

}

(3.4)

where P indicates the Cauchy principle value of the integral.
However, in some situations calculating IF using this way will give a negative value that
has no meaning in the real word. In other words, IF define the variation of the frequencies
over the time. That means, it may be represented as the frequency of Sine wave that lo-
cally suits the signal under analysis. Therefore, the Instantaneous Frequency is meaningful
only for mono-component signals, where there is only one frequency or a narrow band of
frequencies varying over time [80][194]. In principle, it is difficult to represent the IF of
multicomponent signals, thus a separation into components is required. So, to apply the
concept of IF to any signal, EMD can be used as a separation method that decomposes a sig-
nal into series of mono-components IMFs. Then the derivation of IF for each IMF can give
meaningful physical information. Using the EMD method to decompose signals to IMFs
followed by applying Hilbert spectral analysis to each IMF to obtain IF is called Hilbert-
Huang transform ( HHT).
After performing the Hilbert-Huang transform, each IMF can be represented as

c( j)(tn) = Re

{

a j(tn)exp

(

i

∫ tn

−∞
ω j(tn)dt

)}

(3.5)

and the original signal x(tn) can be written as

x(tn) = Re

{

∑
j

a j(tn)exp

(

i

∫ tn

−∞
ω j(tn)dt

)

}

+ r(tn) (3.6)

Figure 3.4 displays a linear chirp signal that increases in frequency over time (upper plot).
This signal is generated using a frequency range from 1− 10Hz, a duration of 5ms. The
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lower plot shows the related Hilbert spectra for the signal which presents the instantaneous
frequencies.
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Figure 3.4 Hilbert spectra of a linear chirp waveform. Top: a linear chirp cosine wave
that increases in frequency linearly over time. Bottom: the related Hilbert spectra for the
signal at the top.

3.4 Some Issues with Applying EMD

A main feature of the EMD algorithm is its simplicity of application and robustness across
a wide range of data processing methods. However, a number of issues come up which
need further consideration for successful application of EMD. The decomposition is based
on these critical issues which have to be managed by the user. This makes the uniqueness
of decomposition not guaranteed. Among these issues are stopping criteria, envelope con-
struction and boundary adjustment. In the following section, an overview of these issues is
introduced.

3.4.1 Envelopes Estimation

The method of estimating the envelopes is crucial to the success of the EMD algorithm. It
is based on first identifying all extrema (maxima and minima). Once these extrema are iden-
tified, all the maxima are connected by a cubic spline line as the upper envelope envmax(tn).
The procedure is repeated for the local minima to generate the lower envelope envmin(tn).
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All the sample points should now be covered by the upper and lower envelopes. The mean
of the two envelopes m(tn) is computed as follows

m(tn) =

(

envmax(tn)+(envmin(tn)
)

2
(3.7)

which should represent the pointwise local extreme mean of the signal as accurate as possi-
ble. The envelopes are required to estimate the local mean at each sample point. In addition
to that, it is necessary to precisely localize all extrema (maxima and minima). There are
several interpolation methods used to create the envelopes. Most widely used is the spline
interpolation. Splines are piecewise polynomial functions of degree l. The pieces connected
in the so called knots with certain continuity conditions for the function itself and its first
l − 1 derivatives. Cubic splines are most commonly used to interpolate local maxima and
local minima. The basic idea of the cubic spline is that the function is represented by a dif-
ferent cubic polynomial on each interval between data points. This piecewise cubic function
has continuous first and second derivatives at the knots. Cubic spline is a fast, efficient and
stable method used for interpolation. Furthermore, it gives good results compared to other
types of interpolation but on the other side, its computational cost is high.
Figure 3.5 shows an example of an IMF, where the blue curve represents the actual IMF, the
green line its upper envelope, the red line its lower envelope, red and cyan stars illustrate
the local maxima and minima, respectively, and the black line represents the mean of the en-
velopes. In this case, the IMF has 26 zero crossing and 29 local extrema, and the symmetry
of the two envelopes leads to mean value that is close to zero.

Figure 3.5 An example of IMF with corresponding envelopes. The blue curve represents
the input signal, green and red lines are the upper envmax(tn) and lower envmin(tn) envelopes,
respectively, represented by cubic spline interpolation. Red and cyan stars represent the
local maxima and minima, respectively, and the black line is the mean envelope m(tn).

In the standard EMD algorithm [80], a cubic spline interpolation method is used to estimate
the envelopes. Several alternative interpolation methods have been introduced to improve
the performance of the EMD algorithm. For example, tau [80] and rational [164] splines
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have been used as interpolation technique which is based on an extra parameter and offers
transmitting between a linear and a cubic spline smoothly. Although these studies show
lower covariance terms (more orthogonal) of the resultant IMFs and residual relative to
the cubic spline, they increased the number of IMFs and the number of sifting iterations
required to generate the IMFs. Rilling et.al [178] tried to use linear or polynomial splines,
but they result to a large number of sifting iterations and to over-decomposition of signals.
Also, B-splines were tried and gave similar results as cubic splines, but they increase the
number of IMFs. Furthermore, optimizing the quadratic cost functions was used to esti-
mate the envelopes in [224], but it shows low improvement in relation to the large cost.
Accordingly, cubic splines were to be preferred to linear or polynomial interpolation. Fur-
ther methodology is proposed in [102][103] based on optimizing the interpolation points IP

(maxima and minima) to the ones with the highest frequency and interpolating them using
Hermit interpolation. Recently, new approaches were proposed to generate the local mean
of the signal directly without the need to use envelopes [113][139]. The obtained results
were similar to the ones obtained by the standard algorithm, but the method requires further
research and development. In this thesis, the cubic spline interpolation is used for the EMD
algorithm applied to all decompositions.

3.4.2 Stopping Criteria

In EMD, the stopping criteria determine the required number of sifting steps to produce an
IMF. In other words, they decide when the sifting process should stop. Stopping criteria
have a direct influence on the result, since they play an important role for the successful im-
plementation of the EMD. As described in EMD methodology, the sifting process has to be
repeated as long as there exist local segments with means not yet close to zero. Accordingly,
the more times the sifting is iterated, the closer the mean will be to zero. Although that is
good to eliminate the riding waves and force a local zero, but it leads to over-sifting and
tends to split physical meaningful IMFs into meaningless fragments. Based on the above,
the stopping criteria must be chosen carefully to avoid over iterating.
The most common stopping criteria are:

Cauchy-like Convergence Criterion

This criterion was used when an EMD algorithm has been introduced in [80]. The sifting
process is performed until the sifted result is smaller than a predetermined limit θ . If two
components from consecutive iterations are close enough to each other, it is assumed that
the last extracted component is an IMF. It is based on calculating the standard deviation of
two successive sifting results

σi, j =

√

√

√

√

N

∑
n=0

(

hi, j−1(tn)−hi, j(tn)
)2

h2
i, j−1(tn)

(3.8)

where σi, j is the difference between two successive results hi( j−1) and hi, j The first IMF
is extracted whenever σi, j is smaller than the appropriate predefined value θ . Usually the
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typical value of σ is between 0.2 and 0.3. Using a predetermined threshold is to compel
the envelope mean signal being closer to zero which will ensure the symmetry of the two
envelopes between the number of zero crossings and number of extremes. This threshold
should be small in order to allow separating all the oscillations. But on the other hand,
it should be also large enough to avoid losing the meaningful components. However, a
smaller threshold could lead to over-sifting and mixing of IMF modes, and a larger threshold
could lead to an early termination of the sifting process [80]. This Cauchy-like convergence
criterion, however, is often not a trustworthy stopping criterion because it does not test or
check the two IMF conditions, and can be satisfied without achieving the latter.

Evaluation Function Criterion

In 2003, Rilling et al. [178] proposed an alternative stopping criterion which uses two
thresholds δ1 and δ2. The first threshold δ1 is defined to guarantee globally fluctuations in
the mean of the cubic splines, while the second δ2 allowing small regions of locally large
excursions. Besides the original mean m(tn) = (envmax(tn)+ envmin(tn))/2, it is based on
introducing the mode amplitude a(tn) and the evaluation function σ(tn)

a(tn) =

(

envmax(tn)− envmin(tn)

2

)

(3.9)

σ(tn) =

∣

∣

∣

∣

∣

(

m(tn)

a(tn)

)
∣

∣

∣

∣

∣

(3.10)

where envmax(tn) and envmin(t)(tn) are the upper and lower envelopes respectively. The
sifting process is stopped when σ < δ1 for a setting fraction (1−α) of the total duration,
and σ < δ2 for the remaining fraction. Typical values of those thresholds are α ≈ 0.05,
δ1 ≈ 0.05 and δ2 ≈ 10δ1 [178]. However, Rilling’s method introduces three new parameters
that have to be fixed which might have an affect on the resulting IMFs.

Fixing the Number of Sifting Iteration

This criterion that was proposed by [81][85] is based on predetermining the number of
sifting iteration I. The sifting process is stopped when the number of zero crossings and the
extrema is the same number for I sequential sifting steps. Wu and Huang in [235] found
that about 5 iterations are enough to achieve the stopping criterion proposed by Huang et al.

in [80].
In this thesis, the latter stopping criterion of EMD algorithm is used.

3.4.3 Boundary Adjustment

In the EMD algorithm, interpolating extremes is achieved using splines to construct the
upper and lower envelopes. However, using the spline interpolation induces overshoots
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and undershoots. Accordingly, the resulting IMF does not accurately ensure symmetric en-
velopes [80]. These problems occur when the end points are not extrema which causes the
spline to oscillate widely. Furthermore, and because of the sifting iterations, these effects
could propagate inwards and progressively corrupt the low frequency IMFs. The first proce-
dure to deal with the problem proposed by [80] and modified by [37] is to pad the signal in
the beginning and at the end with typical waves. These waves are based on the two closest
maxima and minima [80], while in [37], it is based on the closest maximum and minimum.
A simple technique introduced by [178] is to mirror the extreme closest to the data edge,
rather than padding with extra data. Another alternative is using the average of the two
closest maxima and minima for the maximum and minimum splines respectively [31]. In
addition, Peel et.al [163] have presented an alternate methodology called SZero for handling
the spline end artifacts which is based on the assumption that the slope of the cubic spline is
equal to zero at the end points. For long data series, the simplest way to control the results
corruption is to remove some data at each end of the signal. However, this becomes compli-
cated when there are not enough data to remove. The standard EMD algorithm applied in
this thesis handles the boundaries of the time series as described in [238]. In the beginning,
the first sample point of the data is defined as first maximum and minimum m1 = t1. Then
the slope between the second (m2|xm2) and third (m3|xm3) maximum is estimated

δ23 =
xm2 − xm3

m2 −m3
=

△xm23

△m23
(3.11)

During estimating the slope, a straight line is built crossing the second and third maximum.
After that, the intersection point δ23(m1 −m2)+ xm2 between the straight line and vertical
line is calculated

xm1 = max[δ23(m1 −m2)+ xm2,x(m1)] (3.12)

This value xm1 will be defined as the new first maximum (m1|xm1), if it is larger than the x-

value of the first sample x(m1). The same procedure is done for the minima at the beginning
and the extreme at the end of the time series data.

3.4.4 Data Requirements

There are some demands related to the data which should be taken into account to ensure
a satisfactory signal decomposition. One of these requirements is the sampling rate of the
time series. EMD results depend highly on sampling conditions [203][174]. Since the EMD
algorithm operates practically on discrete-time signals, a special attention has to be paid to
the fact that extrema has to be correctly detected which requires a fair amount of oversam-
pling.
The Nyquist sampling theorem must be followed to provide a sufficient condition for the
sampling of the signal. Also, the number of extrema in a digitalized signal and its contin-
uous version should be equal. Furthermore, at least 5 samples per period are required to
obtain good results from the Hilbert transform [80]. Further details about the influence of
different sampling rates on the decomposition outcomes are provided in [174][176]. An-
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other key point which plays an important role in detecting the extreme is the amplitude of
the signal. Since it is not possible to detect the extrema of small amplitude oscillations,
the EMD method collapses to extract the components with such very small amplitude com-
pared to the other modes contained in the signal, especially if there is additional noise.
Finally, a third issue that has to be taken into account is related to the frequencies of the
signal, which have only been characterized by numerical experiments, and no theory has
been created yet. EMD acts as a dyadic filter bank with white noise [59][177][235] and
the number of extrema will be decreased by one half from one IMF to the next. Rilling
et al. [178][175] concluded that for a given signal frequency f1, there is a frequency
band B( f1) = [αρ f1, f1],αρ < 1,ρ = a1/a2, for each amplitude ratio ρ ,such that f1 and
f2 ∈ B( f1) cannot be separated. This supports an interpretation of EMD as filter bank.
Using the same filter for two frequencies will lead to represent them by the same IMF.

3.5 EMD Characteristic Features

Since there is no mathematical basis behind the EMD method, its performance has been
studied empirically using numerical solutions. This has enabled a clear understanding of
its decomposition behavior and defined the issues with applying the method, which in turn,
could help researchers to make a decision about applying the method to different types of
signal. In this section, some mathematical properties of EMD which have been obtained
mostly through numerical expressions are explained.

3.5.1 Completeness

One important feature of EMD is that the original signal can be reconstructed by summing
up all IMFs components and the residuum. Hence, the completeness is fulfilled according
to the reconstruction equation

x(tn) =
J

∑
j=1

c j(tn)+ r(tn) (3.13)

Completeness can be evaluated numerically using this equation. The error between the
reconstructed signal and original signal is estimated by subtracting sum of all extracted
IMFs from the original signal

ε =
(

x(tn)−
(

∑
j

c( j)(tn)+ r(tn)
)

)2
/n ≃ 10−30 (3.14)

In practical experiments, the order of magnitude of the reconstruction error is approximately
between 10−15 ∼ 10−16.
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3.5.2 Orthogonality

The orthogonality for the decomposition method is important to ensure that the extracted
components are not overlapping with each other. Mathematically, if two functions x(t) and
y(t) satisfy

t2
∫

t1

x(t) y(t) dt = 0, t1 < t < t2 (3.15)

then x(t) and y(t) are orthogonal.

The orthogonality of the EMD method still is not guaranteed theoretically, however the
extracted IMFs are locally orthogonal [80]. Huang et al. [80] tried to prove the EMD’s
orthogonality by investigating several decomposed data in different research areas. In the
equation Equation 3.1, if r(tn) is considered as an IMF, the data decomposition can be
rewritten simply as

x(tn) = ∑
j

c( j)(tn)+ r(tn) = ∑
j

X ( j)(tn) (3.16)

The square of the signal is

x2(tn) = ∑
j

(X ( j)(tn))
2
+2∑

j
∑
k

X ( j)(tn)X
(k)(tn) (3.17)

Now, the decomposition is orthogonal when the second part of the right side of the equation
is equal to zero. The overall index of orthogonality IO can be defined as follows

IO = ∑
tn

(

∑
j
∑
k

X ( j)(tn)X
(k)(tn)/x2(tn)

)

(3.18)

According to a study of analyzing decomposed wind data by Huang et al. [80], the value of
IO is only 0.0067. The orthogonality of two IMF components, ci and c j can be also defined
as

IOi, j = ∑
t

cic j

c2
i + c2

j

(3.19)

It should be noted that the orthogonality mentioned here refers to local orthogonality, not
global.

3.5.3 Uniqueness

The results of the EMD decompositions of a data set are the same as long as this decomposi-
tion is subject to the same conditions implementation. Changes in the EMD implementation
such as stopping criterion will lead to quantitative and no qualitative change in the resulting
Intrinsic Mode Functions.
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3.5.4 Linearity and Stationarity

Linear systems fulfill the property of superposition [28]. Given two valid inputs: a1(t),
a2(t) and their respective outputs are y1(t) = H{a1(t)}, y2(t) = H{a2(t)}, where H is the
operator that maps an input, a(t) as a function of t to an output, y(t), then a linear system
must satisfy

αy1(t)+βy2(t) = H{αa1(t)+βa2(t)} (3.20)

for any scalar values α and β .
Most real world signals, like biomedical time series, are nonlinear and can approximately
be re-formed as a linear system. However, EMD as a decomposition technique is able to
deal with nonlinear data. Recently there have been attempts to prove the non-linearity of
EMD [208].
For stationarity property, the time series Xt, t ∈ Z (where Z is the integer set) is said to
be strongly stationary if the joint probability of (Xt1,Xt2, ...,Xtk) is the same as that of
(Xt1+τ ,Xt2+τ , ...,Xtk+τ) [28]

FX(xt1+τ , ...,xtk+τ) = FX(xt1, ...,xtk) (3.21)

In other words, strongly stationary means that the joint probability does not depend on the
time itself (t1, ..., tk) but only on the time differences τ . A weaker form of stationarity called
weak-sense stationarity, wide-sense stationarity (WSS) is used in signal processing. The
time series X(t), t ∈ Z is said to be weakly stationary if the variance is finite, i.e. E(X(t)2)<
∞ ∀ t ∈ Z , the mean is constant, i.e. E(X(t)) = µ ∀ t ∈ Z , and the covariance only depends
on τ , i.e. cov(X(t1),X(t2)) = cov(X(t1),X(t1 + τ)) = cov(X(0),X(τ)). Weak stationarity
only requires that the first (mean) and second (variance) moment of the data distribution
P(X(t)) do not vary with respect to time.
Unfortunately, in most real systems, the data are mostly to be nonstationary. The data from
such a system is not easy to analyze. The main feature of EMD is that it can be used to
decompose nonstationary data into a finite number of Intrinsic Mode Functions without any
difficulties. These resulting IMFs used to define the local characteristics of nonstationary
signal through its instantaneous frequency.

3.6 EMD Limitation

Despite of its worthwhile success in many practical applications (see for example [122][123]
[234][37][223][36]), EMD still has some drawbacks. The major drawback of EMD method
is the lack of theoretical framework which leads to difficulties for the characterization and
evaluation of the performance of this approach. Consequently, in practice, EMD can be
efficiently evaluated by simulating the decomposition process using toy data sets and inves-
tigate the effect of various parameters.
In addition to the mathematical model, EMD is an empirically based data-analysis method
which means any physical meaning of the resulting IMFs can not be reliable. However, the
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extracted IMFs maintain their amplitude modulation and changing frequency. As mentioned
above, EMD can not guarantee uniqueness of the decomposition. The variation in choosing
the optimal parameters in EMD leads to the loss of physical uniqueness of the extracted
IMFs which makes it difficult to interpret their physical significance.
One of the major drawbacks of the original EMD is the repeated occurrence of so-called
mode mixing which means a consequence of signal intermittency. Mode mixing appears
when either a single IMF composed of signals of widely different scales, or different IMFs
contain a signal of a similar scale. The intermittency of signal causes aliasing in the time-
frequency distribution, and furthermore, it makes the individual IMF losing of physical
meaning [80][81]. Figure 3.6 shows an example which illustrates how mode mixing prob-
lem occurs when EMD is applied. The signal used in the example is composed of the sum
of two signals sig =Comp1+Comp2 (see Figure 3.6-Left).

• Comp1 = 0.1sin(2πtn+5sin(πt/100))(exp(−(tn−25)2/10))

• Comp2 = sin(0.1πtn)

Comp1 is high frequency intermittent oscillations, whereas Comp2 is a simple sinusoidal
signal with a larger scale. Figure 3.6-Right shows the final decomposition of the signal into
IMFs and a residual (Res). As can be shown, there are still some oscillations of small scale
mixed with large scale in IMF1. In addition, oscillations of large scale also exist in both
IMF1 and IMF2. To alleviate this problem, a new noise-assisted data analysis (NADA)
method is proposed by Wu et al. [236], called Ensemble Empirical Mode Decomposition.

3.7 Evaluation of EMD Performance

In fact, EMD has no mathematical background yet which would allow to evaluate the per-
formance of the algorithm. But EMD could be, in practice, evaluated using toy data sets
efficiently. Interpretation of Intrinsic Mode Function is a major issue in evaluating the EMD
algorithm. EMD is a completely empirical method which make it difficult to ensure the
physical meaning of the extracted IMFs. These IMFs could be different in their appear-
ance and characteristics depending on the parameters used in the algorithm. Moreover, all
IMFs except the first one are sums of the spline which used to estimate the envelopes. This
assumes that all oscillations parts of the original signal can be represented as a sum of
splines. EMD is, further, very sensitive to the sudden changes in the signal e.g. losing the
time series signal in specific time intervals. This can simply result to mode mixing which
prevents interpretation of the extracted IMFs correctly.The second key issue of EMD eval-
uation is the statistical significance of the extracting IMFs. When the data contains noise,
how can the noise be isolated surely from the information? These questions were tackled
by [59][58][235] through a study of noise. Flandrin et al.’research which is based on frac-
tional Gaussian noise suggested that EMD acts as a dyadic filter [59]. Wu and Huang [235]
confirmed Flandrin’s results through studying white Gaussian noise instead of fractional
Gaussian noise. They also tried to evaluate the statistical significance of an extracted IMF
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Figure 3.6 EMD mode mixing problem. Left: the first row is a superposition of the signals
in the second row, Comp1 = 0.1sin(2πtn+5sin(πt/100))(exp(−(tn−25)2/10)) indicated
by Comp1 and the third row, Comp2 = sin(0.1πtn) indicated by Comp2 to generate the
intermittent signal, sig = Comp1+Comp2. Right: the intermittent signal sig followed by
its modes (IMFs) which extracted using plain EMD.

based on the observation that the IMFs of white noise are normally distributed. They as-
sumed that the IMF is informative when its energy density exceeds a noise bound. Energy
density of the nth IMF can be calculated by a mathematical expression. Thus, with the study
of noise, the method provides a way to separate noise from informative signal.
The sifting process is the core of EMD method, and therefore its quality plays an important
role in the performance of EMD method. The quality of a sifting process may be estimated
by the number of sifting steps that is required to extract an IMF. In [82], Huang et al. inves-
tigated the stoppage criterion by changing the number of sifting steps. A confidence interval
of sifting steps in the range of 4 to 8 for each extracted IMF was concluded. The latter is
done by forcing the number of IMFs to be the same for different sifting steps for different
stopping criterion or the way of constructing envelopes.

3.8 EMD Extension

Recently, plain EMD has been extended to improve the algorithm, address problems, adapt
to types of data or extend the application areas. In this context, a short overview about some
of these extensions, namely Ensemble Empirical Mode Decomposition, weighted Sliding
EMD, Multivariate EMD and Green’s function-based EMD will be given briefly.
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3.8.1 Ensemble EMD

One of the major drawbacks of plain EMD is the occurrence of mode mixing which could
happen during the sifting process. It describes a situation where a single mode appears in
different IMFs or local oscillations with widely disparate frequency scales show up in a sin-
gle IMF (see Figure 3.6, IMF1 for example). In general, mode mixing can be defined as a
consequence of signal intermittency. Additionally, often boundary artifacts result from the
sifting process due to improper envelope estimation at the boundaries. To overcome these
problem, a noise assisted data analysis method, called Ensemble Empirical Mode Decompo-

sition (EEMD), was proposed by [236]. The basic idea is to exploit the self-compensating
property of white noise by applying EMD to an ensemble of noisy versions of the original
signal. Final IMFs are obtained as averages over the corresponding modes extracted from
each member of the ensemble. The approach is based on studies of the statistical properties
of fractional Gaussian noise, a versatile model for broadband noise including white noise,
reported by Flandrin [59] and Wu and Huang [235]. They showed that EMD operates as
an adaptive dyadic filter bank when applied to fractional Gaussian noise. Thereby the mean
IMFs keep the natural dyadic filter windows. Thus, mode mixing is significantly reduced
and the dyadic property is preserved.
First white noise of finite amplitude is added to the data, and then the EMD algorithm is ap-
plied. This procedure is repeated many times, and the IMFs are calculated as an ensemble
average, consisting of the signal and added white noise. As an ensemble number increases,
the IMF converges to the true IMF [236][237]. Adding white noise to the data can be con-
sidered a physical experiment which is repeated many times. The added noise is treated as
random noise, which appears in the measurement. In this case, the m− th noisy observation
will be

xm(tn) = x(tn)+ εm(tn) = ∑
j

c
( j)
m (tn)+ rm(tn), (3.22)

where xm(tn) is the true signal, εm(t) is the random noise and c
( j)
m = c( j)+ εm(tn) represents

the IMF obtained for the m-th noise observation. Therefore the resultant IMF c( j) and
residua r(tn) is obtained by averaging all the c

( j)
m of the ensemble.

c j(tn) =
1

M

M

∑
m=1

c j
m(tn) (3.23)

r(tn) =
1

M

M

∑
m=1

rm(tn) (3.24)

where M represents the number of ensembles.

By averaging the respective IMFs, noise contributions will be removed leaving only the
true IMFs. However, in practical applications, the white noise is not eliminated completely
which leads to extract components with more high frequency. Additionally, EEMD needs
to prescribe two parameters, namely the size M of the ensemble and the standard deviation
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σnoise of added Gaussian noise. The ensemble number M should be large while noise am-
plitudes can be selected relatively high. An added white noise of 0.2 ∼ 0.4 amplitude of the
standard deviation of the original signal is suggested by Wu et al. [236].
However, since there is no method to help selecting the right white noise amplitude, there
exist some basic rules which are possible to follow. For data with high frequency, the noise
amplitude could be smaller, and in case of low frequency signal, the noise amplitude can be
high. Additionally, the amplitude of the intermittency can be used as a reference for tuning
noise amplitude. Signals with high intermittency amplitude require higher white noise. It
is worth mentioning that, when the noise amplitude is growing for the decomposition, the
ensemble number also should be higher to decrease the impact of the white noise in the final
result. Furthermore, because of the need to compare the extracted IMFs truly, the number
of IMFs into which the signals are decomposed has been fixed in advance. In this case, the
sifting process does not care about achieving the IMF criteria. However, the decomposition
using EEMD leads to alleviate mode mixing and improve splitting the modes with similar
frequencies. The studied time series contains more local extrema because of the added noise
which demands too much estimation to the envelopes computationally. Hence, EEMD is
computationally costly but it is considered as a further worth enhancement for the EMD
technique.
Figure 3.7 shows the EEMD decomposition for the same signal presented in Figure 3.6.
The signal is decomposed into a series of IMFs by EEMD method using M = 20 and
σnoise = 0.0001, which is shown in Figure 3.7-Right. Adding white noise into the targeted
signal facilitates the separation of its different scales with no appearance of a mode mixing
problem. EEMD has more concentrated and band limited IMFs components compared to
the plain EMD. It represents a significant improvement over the original EMD.

3.8.2 Weighted Sliding EMD

One of the shortcomings of plain EMD is its need of the complete time series before the
analysis can start. Many practical applications record biomedical data over long time spans
thus producing an amount of data which cannot be handled in one stroke because of limited
computational resources. A time version of EMD was proposed by [48], called Sliding Em-
pirical Mode Decomposition (SEMD). SEMD algorithm is based on decomposing a time
series of arbitrary length into a residuum and a certain number of IMF-like functions called
sliding intrinsic mode functions (SIMFs). It considers sub-segments (windows) of the orig-
inal time series of length M. These data windows overlap each other in accordance with the
step size K of the sliding window mechanism. EMD (or EEMD) is applied to each window
separately. Therefore, as each sample makes part of E = M

K
consecutive subsegments, the

final value of an IMF sample results from combining corresponding samples from E subseg-
ments. Because of the above-mentioned boundary problems of EMD, the step size k should
be selected much smaller than m, otherwise discontinuities would occur. In addition to that,
the estimated values of Ei for each sample of x(t) might be different. These results values
of SEMD represent the mean value of all estimates x(t).
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Figure 3.7 EEMD decomposition for eliminating mode mixing problem. Left: the inter-
mittent signal (sig) and its components as presented in Figure 3.6-Left. Right: the intermit-
tent signal (sig) and its extracted modes (IMFs) by applying EEMD.

Eventually, EMD decomposes the segment mi of the original signal into j different IMFs
xmi j(t) and a local residuum rmi

(t) according to

xmi
(t) = ∑

j

xmi j(t)+ rmi
(t), (3.25)

where the number of sifting steps is fixed equally for all segments.

All the resulting IMFs are gathered in a matrix with corresponding sample points in which
the estimated values of every sample represent a column of the matrix with E entries. The
columns for the beginning or end of the time series are incomplete, and consequently they
are ignored in the next steps of processing. This in turn guarantees that all columns contain
the same amount of information which will be used to estimate the average IMF amplitudes
at every time point t in each segment. Finally, this results for t > m

x j(t) =
1

E

i+E−1

∑
i

xmi j(t), (3.26)

r(t) =
1

E

i+E−1

∑
i

rmi
(t), (3.27)

i =
t −m

k
+2 (3.28)
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where xi(t) are the resulting functions called SIMFs, and r(t) is the sliding residuum. Thus,
for every sample x(t)- the mean value of the E decompositions represents the result of the
SEMD decomposition. Note that the number of sifting steps and IMFs should be fixed for
all decompositions of all windows, otherwise problems would appear.
Due to computing the mean value of the E estimates, the influence of the boundary artifacts
will be reduced when using SEMD. However, it is expected that estimates originating from
the boundaries are to be more defective like the ones caused by the middle part of any
specific window. To overcome this problem, an extension to SEMD called weighted Sliding

Empirical Mode Decomposition (wSEMD) was introduced by [47]. wSEMD is based on
a weighted sum of the estimates which will be used to reduce the influence of estimates
stemming from the border of a window. For every window, the resulting IMFs and residua
are multiplied by a vector of rank m that is generated from a Gaussian distribution.

w(n) = exp
(

− 1

2

(

α
2n

N

)2)

, (3.29)

−N

2
≤ n ≤ N

2
, α = 2.5, N = m−1, (3.30)

Further details about SEMD, wSEMD and their applications for biomedical signals can be
found in [48][47][239][241][238][242][240].

3.8.3 Multivariate EMD

Multivariate Empirical Mode Decomposition (MEMD) [170][133] is the multivariate ex-
tension to plain EMD introduced above. When interpreting plain EMD as an univariate
approach of decomposing one dimensional time course, MEMD can be seen as a mul-
tivariate approach by taking the response of a system from several channels as a multi-
dimensional signal with each channel – like EEG-channels for instance – representing one
dimension in an n-dimensional space. The time course can be seen as a trajectory propagat-
ing in this multi-dimensional space and MEMD tries to decompose this signal into multi-
dimensional IMFs, which then can rather be seen as rotational than oscillatory modes. The
main problem for the multivariate approach is that there is no proper definition of extrema
in n dimensions. Rehman and Mandic [170] tackle this issue by generalizing the aspect of
creating envelopes around the time course to n dimensions. At first, a set of Hammersly-
sequenced n-dimensional direction vectors is introduced sampling the n-dimensional space
as uniformly as possible. Afterwards the signal is projected onto each direction vector to get
one-dimensional representations of the signal. Then the extrema of those projections are ex-
tracted and re-projected into the n-dimensional space resulting in sets of n-dimensional max-
ima and minima for each one-dimensional projection, which then can be used to construct
n-dimensional envelopes. Eventually, the core principle of EMD – averaging envelopes –
can be applied to a multivariate signal by averaging these sets of n-dimensional envelopes.
Afterwards, the same procedure as in plain EMD is applied. The stopping criterion for a
multi-dimensional IMF is similar to that of the plain EMD algorithm, besides the compar-
ison of number of zero crossings and number of extrema does not hold anymore, as there
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is no proper definition of zero crossings in n-dimensional space. An additional benefit of
doing MEMD to plain EMD is that – besides improvement in avoiding mode mixing – fre-
quency scales of same index IMFs align [170].
As for the plain EMD approach, an ensemble noise assisted method is proposed for MEMD.
It is important here do distinguish between noise assisted and ensemble approaches. For
plain EMD these two approaches are synonymous. In case of a MEMD it has to be men-
tioned, whether only a noise assisted MEMD (NA-MEMD) [171] or an ensemble noise
assisted MEMD (ENA-MEMD) [172] is applied. Compared to MEMD, the NA-MEMD
introduces l channels consisting of white Gaussian noise in addition to the signal channels
spanning the n-dimensional space of the multivariate signal, since it is suggested not to add
noise onto the already existing signal itself in the multivariate case. After EMD is done the
l noise channels are discarded. For the noise amplitude 2−10% of the signal amplitude is
suggested [172]. The ensemble principle is introduced by creating several realizations of
IMFs by using different initializations of noise for several NA-MEMD runs resembling the
same principle as for EEMD in the univariate case. The multivariate aspect of MEMD can
be exploited in EEG studies by looking for multivariate phase synchrony [148] or several
other intrinsic multi-scale measures [124].

3.8.4 A Green’s function-based EMD

Recently, Al-Baddai et al. [6] has developed a new version of 2 Dimensional Empirical
Mode Decomposition (2D-EMD) based on Green’s Functions (GFs) in tension. The latter
is employed to build surfaces during sifting process instead of using the normal spline in-
terpolation. The main point that GFs forces an envelope or surface to pass through a given
number of the data constraints. Consequently, unwanted oscillations between data points
are avoided. Generally, the general solution of any point on the envelope based on N given
data constraints can be expressed using GFs as follows

s(xu) =
N

∑
n=1

wnΦ(xu,xn) (3.31)

where xu are the points at which the envelope is unknown, xn is the n− th data constraint (in
case of the EMD it represents the extracted extremum during sifting process), Φ(xu,xn) is
the Green’s function and wn are the associated unknown weights in the envelope representa-
tion. It was proven by Sandwell [187] that the Green’s function Φ(x) satisfies the following
relation at any data constraint xn, n = 1, . . . ,N

[

D∆2
op −T ∆op

]

Φ(xu,xn) = δ (xu −xn) (3.32)

where, ∆2
op and ∆op = ∇2, denote the bi-harmonic, the Laplace and the Nabla-operator,

respectively, D is the flexural rigidity of the envelope and the tension parameter T . The
latter must be between 0 and 1 (when T =0, GFs is considered as normal spline interpolation
and when T =1 is considered as linear interpolation). Now, to solve Equation 3.32 for data
constraints, the weights of known data constraints is evaluated first as
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sm =
N

∑
m=1

wm∇Φ(xm −xn) · n̂m m = 1, . . . ,N.

which results in a quadratic linear system

Gw = c

where the Green’s matrix G collects all Green’s functions Φ(xm−xn) at the data constraints
m,n = 1, . . . ,N. Corresponding slopes sm in directions n̂m. To compute the GFs, the curva-
ture of GF is introduced

Ψ(x) = ∇2Φ(x) (3.33)

When Fourier transform is applied, the result will be

[

∆op +
p2

k2

]

Ψ(k) =− 1

T

p2

k2 . (3.34)

Now, when Fourier transform is computed again, the general solution becomes

Ψ(k) =− 1

T

( p2

k2 + p2

)

(3.35)

where k is the wavenumber and k is the Fourier transform of x. The exact solutions, however,
depend on the dimension of the problem. For the case p > 0 which corresponds to T > 0,
the solutions are [187]

1D : φ(x) = e−p|x|+ p|x|−1 (3.36)

2D : φ(x) = log(p|x|)+K0(p|x|). (3.37)

where K0 is the Bessel function. Exact solutions for even higher dimensional problems
exist. However, they are not relevant for the scope of this thesis. Recently, the 2D version,
called GiT-BEMD, has been successfully applied to fMRI images [5]. The latter was jointly
collected with our EEG data. Exact solutions for even higher dimensional problems exist.
However, they are not relevant for the scope of this thesis.





Chapter 4

Contour Integration Task

4.1 Perceptual Learning

An essential task of visual system is to identify shapes and borders of a visual scene that
belong together as meaningful objects. In the early visual system, neurons carry local image
attributes of the visual scene. Visual integration is defined as the process of combining
these attributes into a a unique structure more suitable for the guidance of behavior [162].
This combination which is classified under the term “perceptual grouping” requires some
kind of grouping process. The human visual system performs such grouping processes in a
hierarchy of serial processing steps, depending on spatial, temporal, and chromatic features
of the stimulus [19][161][69][114]. There is a set of rules which was elaborated by Gestalt
psychologists, that manages these grouping processes in order to control the principles of
perceptual organization [100][227]. These rules aim to formulate the regularities according
to which perceptual input is organized in a regular, simple, and meaningful form. The
Gestalt rules of perceptual organization include (see Figure 4.1):
• Proximity: stimulus elements that are near each other are inclined to be perceived as a

group.
• Similarity: stimuli that are perceived similar will be perceived as a group.
• Closure: stimuli are likely to be grouped into complete figures.
• Common Fate: objects are seen as lines that move along the smoothest path.
• Figure Ground: it is known as separating figures from their background.
• Continuity: people connect individual forms so they tried to minimize discontinuity.

One special case of perceptual grouping is contour integration where local parts of an in-
tersected contour are re-integrated to form a continuous contour line, following the Gestalt
rule of good continuation. The latter has been known for a long time ago, see [226], and
it helps to recognize a number of geometric illusions as an object or just as a specified
path of elements in visual perception [54]. Hence, Gabor elements can represent rather the
receptive field properties of orientation selective simple cells in the primary visual cortex.
Consequently, such Gabor elements are used as a favorable stimuli for the examination of
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Figure 4.1 Examples of Gestalt rules for perceptual grouping (adapted from [166]).

these small spatial filters and their interactions [108]. Using Gabor elements with different
orientation angles in psychological experiments is due to a physiological background.

4.1.1 Contour Integration

One such perceptual grouping process is a contour integration which is one of the most
elementary tasks during visual feature integration. It is the main visual process that cre-
ates representations of continuous borders and shapes on the basis of the related orienta-
tions of multiple edge elements. Contour integration is commonly measured as the ability
to detect the shape, position, or existence of a closed contour created from non-adjacent
elements, included within a display of randomly oriented elements. Contours make the
boundaries of objects which are considered as the first stage in shape perception. First
attempts to introduce a descriptive basis for contour integration considered the task is so
complicated for being implemented by local feature processing units early in the visual
area. So, they tried to use a globally mechanism that combines information from multiple
feature dimensions in order to recognize the visual object [209][20]. However, this con-
cept was challenged by many researchers in neuroimaging [12][106][13], computational
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[65][165][120][33][110][191], neurophysiological [118][18][134][186] and psychophysical
studies [54][107][138][180][50][143]. The task of contour integration can be outlined by a
series of three processing stages at different levels of the visual hierarchy according to how it
is achieved by the visual system. Filtering stage is the first stage which would be concerned
with extracting local features of stimulus elements that belong to the same contour. In the
next stage linking stage, connections of similar elements are modeled based on local fea-
tures like orientation, proximity or contrast. The final stage integration stage, is concerned
with grouping individual elements into an entire contour based on the connections models
and consequently, constructing a global perceived object [63]. The ability to integrate the
individual elements (Gabor) into a contour depends on their spacing and orientation with
regard to the path orientation [54][119]. Some stimulus characteristics appear to have an
effect on connecting contour elements: closed contours are more easily detected than open
ones [109][165]. Similarly, symmetric contours are also easier to detect than asymmetric
ones [128]. Actually, contour integration gets better when Gabor elements are oriented in
perpendicular direction to the contour within a closed area, and gets worse, when these el-
ements are oriented parallel to the contour [38]. In this thesis, we used exclusively Gabor
arrays as visual stimuli. It could thus be objected that the results are not specific for con-
tour integration, but reflect some general visual processes under conditions of low stimulus
visibility.
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4.2 Experiment Materials

4.2.1 Subjects

The subjects participating in the study encompassed 5 male and 13 female volunteers be-
tween 20− 29 years old, i. e. (22.79 ± 2.7) [years]. All subjects were right-handed and
had normal or corrected-to-normal vision. Based on self-reports, the subjects had no neu-
rological or psychiatric disorders, brain injuries or drug dependencies. This study also was
approved by the local ethics committee (study number 10− 101− 0035). Subjects were
treated according to the principles laid down in the Helsinki declaration.

4.2.2 Gabor Stimuli

The stimuli were generated with a procedure similar to that of [135]. Stimulus displays
contained odd symmetric Gabor elements arranged in an invisible 10 by 10 grid subtending
16.6 deg×16.6 deg of visual angle. The corresponding stimulus protocol is illustrated in
Figure 4.2. The luminance distribution L(x,y) of a single Gabor element is defined by the
equation

Figure 4.2 Stimulus protocol including Gabor patches either forming a contour (CT)

or none (NCT).

L(x,y) = L0(1+ s(x,y) ·g(x,y)) (4.1)

where L(x,y) [cd/m2] is the luminance at point (x,y) and L0 is the background luminance.
The function s(x,y) represents a 2D - sinusoid, describing the carrier wave, and g(x,y) the
related Gaussian envelope, describing the amplitude modulation. These functions are given
by

s(x,y) =C sin [kx · xcos(θ)+ ky · ysin(θ)] (4.2)
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where C = 0.9 is the Michelson contrast, ‖k=(kx,ky)
T ‖ [rad/m]= 2π f [cpd] is the angular

wave number with f = 3 [cpd] the corresponding spatial frequency in [cycles/deg], and θ
is the orientation from vertical which depends on the experimental condition. Furthermore,

g(x,y) = exp

(

−x2 + y2

2σ 2

)

(4.3)

where σ = 0.25 deg is the standard deviation of the Gaussian envelope, measured in degrees
of visual angle.
For contour displays, a path of 10 invisible line segments was constructed and placed at
a random location within the stimulus area, with the restrictions that none of the segment
centers, where the Gabor elements were finally placed, fell into the inner 2×2 grid cells, and
that at least 4 segment centers fell into the inner 6×6 grid cells. This ensured that the Gabor
path did not cross the central fixation mark, and that the eccentricity of the path was not too
large. The angle between adjacent line segments was the path angle α plus an orientation
jitter ∆α drawn from a uniform distribution p(∆α)∈ [−1,+1]. Gabor elements were placed
at the center of each line segment and aligned to the segments orientation. The separation s

between neighbouring elements depended on the length of the corresponding line segments.
It was chosen as α ± δα = 2 ± 0.55 degrees of visual angle. After setting up the Gabor
path, empty grid cells were filled with randomly oriented Gabor elements. The size of the
grid cells was set to 2s/(1+

√
2) = 1.66 degrees of visual angle. This ensured that mean

distance between distracting Gabor elements was close to the mean distance between the
elements making up the Gabor path. The distracting Gabor elements were placed in the
center of each grid cell and jittered vertically and horizontally by ± 0.55 degrees of visual
angle. New Gabor elements were not drawn if their visible part overlapped with an already
existing Gabor element by more than 5 pixels. The whole stimulus was withdrawn if more
than 10 Gabor elements could not be drawn. Thus, each stimulus contained 90−100 Gabor
elements. For constructing non-contour displays, the same algorithm was used as for the
construction of contour displays but rotating adjoining Gabor elements by ± 45 deg. Thus,
non-contour displays resembled contour displays with respect to spacing, positioning and
the number of elements, but did not contain a Gabor path.
For the experiment, a set of 150 non-contour stimuli was generated, which was the same
for all subjects. Then a set of 150 contour stimuli was generated separately for each subject,
where the path angle α was adjusted to the individual maximum tolerable path angle. These
angles were obtained during behavioral pre-testing and ranged from 21 deg → 34 deg.

4.2.3 Experimental Procedure

Subjects were positioned supine in the scanner. The visual stimuli were back projected onto
a translucent circular screen (LCD video projector, JVC DLA-G20, Yokohama, Japan) and
was seen on a mirror reflecting the projected image. A standard PC running Presentation
12.0 (Neurobehavioral Systems Inc., Albany, Canada) was used for stimulus presentation.
The projector had a resolution of 800 by 600 pixels at a refresh rate of 72 [Hz]. The viewing
distance to the projection screen was 64 [cm].
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The trials started with the presentation of a central fixation cross that remained visible
throughout the experimental block. After a random interval from 1000−3000 [ms], a stim-
ulus was presented for 194 [ms], followed by a blank screen. The next trial started after the
response, or after a time-out of 3000 [ms] if the subject did not respond. The behavioral
responses were recorded with two fiber-optic response boxes (Lumitouch, Photon Control,
Ltd, Burnaby, BC, Canada) where one key was provided for each finger of the left and the
right hand, respectively. The subjects were instructed to detect contour stimuli. One half of
the subjects used the left hand for a contour response and the right hand for a non-contour

response. For the other half of the subjects the response mapping was reversed. Altogether,
the subjects were presented with 300 stimuli in a random order, partitioned into 15 blocks
with 20 trials each.

4.2.4 EEG Data Acquisition

The EEG was recorded concurrently with fMRI in a Siemens Allegra 3 Tesla Head Scan-
ner. In this thesis, we focus on the EEG data. The fMRI results are reported in a sepa-
rate work [4]. The EEG was recorded with an MR-compatible 64 channel EEG system
(BrainAmp MR plus, Brain Products, Gilching, Germany). The scalp EEG was obtained
from 62 equidistant electrodes that were mounted in an elastic cap (EasyCap, Herrsching-
Breitbrunn, Germany) and were referenced to FCz during recording. Impedances were
kept below 20 [kΩ]. The signals were amplified between 0.1100 [Hz], with a notch filter
at 50 [Hz] in order to cancel out mains hum. The sample rate was at the maximum reso-
lution of 5000 [Hz]. To control for eye-movement artifacts, the vertical electrooculogram
was recorded from an electrode placed below the left eye. An electrocardiogram (ECG)
electrode was placed below the left scapula in order to facilitate the off-line removal of
cardioballistic artifacts. The clock of the EEG amplifier was synchronized with the clock
output of the MR scanner using a SynchBox manufactured by Brain Products (Gilching,
Germany). Electrode locations are presented in Figure 4.3.

4.2.5 EEG Data Preprocessing

MR gradient switching produces large artifacts in the EEG each time a new slice is collected.
A second source of artifacts is the movement of electrodes and conductive blood inside the
MR scanner due to the cardiac cycle. The continuous EEG data were cleaned from both gra-
dient and cardioballistic artifacts by means of artifact template subtraction as implemented
in the FMRIB plug-in for EEGLAB [40][150].

• Gradient artifact onsets were determined relative to the MR volume onset marker that
was recorded along with the EEG. With respect to gradient artifacts, a template was con-
structed for each slice artifact and for each channel separately and then subtracted from
the actual artifact. The template consisted of a moving average of 21 neighboring slices
and a linear combination of the major principal components describing the residual arti-
facts that remain after artifact subtraction. These were determined automatically by means
of sorted eigenvalues. The corrected data were down - sampled to 500 [samples/s] and
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Figure 4.3 Position of 62 EEG electrodes.

highpass-filtered (FIR) at 0.5 [Hz]. Bad stretches of data in the continuous EEG, due
to incomplete gradient artifact removal or other idiographic artifacts, were identified and
removed by visual inspection.

• Cardioballistic artifacts occur around heartbeats which show a characteristic deflection in
the ECG electrode denoted as QRS complex. The FMRIB plug-in provides a reliable algo-
rithm for the detection of QRS onsets. For removing cardioballistic artifacts, a temporal
principal component analysis (PCA) was performed on each EEG channel. The first three
components were taken as an optimal basis set for describing shape, amplitude and scale
of the artifact. This set was fit to, and then subtracted from, each artifact instance. As for
the removal of gradient artifacts, this was performed for each channel separately.

Preprocessed EEG data subsequently were subjected to an independent components analy-
sis (ICA) using the extended INFOMAX algorithm [115]. Components related to artifacts
were identified by visual inspection of the component topographies and power spectra. Main
sources of artifacts were eye blinks, eye movements, tonic muscle activity, as well as resid-
ual pulse and gradient artifacts. Components identified as artifact-related were removed,
and the remaining components were back-projected into the EEG signal space. The data
was then segmented into intervals of 3 [s] duration, centered around the stimulus onset, and
baseline-corrected within the whole interval. Single trials were again inspected and rejected
if they contained artifacts. The overall rejection rate was between 6.7 % and 42 % across
subjects (mean 22.5 %), i. e., between 174− 280 trials per subjects (on average 232.5 for
both conditions) were available for the analysis.
EEG data were analyzed using custom code and the EEGLAB toolbox developed at the
Swartz Center for Computational Neuroscience (SCCN), USA [40]
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(http://sccn.ucsd.edu/eeglab/ ). For signal analysis, the segmented data were further
reduced to intervals of 1000 [ms] duration, each containing an onset of a Gabor stimulus.
The epochs (trials) to be analyzed extended from t0 −150 [ms] → t0 +850 [ms] relative to
stimulus onset at t0, corresponding to 500 samples.
Hence, these single trial signals are denoted as

x(ch)(tn,s) with n =−B,−B+1, . . .0,1, . . .M−1, ch = 1,2, . . .C

where ch denotes the index for the recording position (channel), s ∈ SC = {CT,NCT} de-
notes the stimulus condition and nt = 1, . . .Nt with Nt the total number of trials. The index
tn is related to discrete time and t0 indicates the time of stimulus presentation, meaning that
the segment starts B = 75 samples before stimulus onset t0 and lasts more M = 425 samples.
In brain studies, evoked potentials are extracted from single trial recordings by averaging
single-trial signals, corresponding to a particular stimulus, over all trials. In this study, two
different stimulus conditions, either contour true (CT) or non-contour true (NTC), were ran-

domly presented. Then, for each condition, average signals x
(ch)
avg (tn,s ∈ SC) were estimated

x
(ch)
avg (tn,s ∈ SC) = 1

NSC
∑

s∈SC

x(ch)(tn,s) n =−B,−B+1, . . . ,0, . . . ,M−1

resulting, for each participant, in two sets of ERP signals x
(ch)
avg (tn,CT ) and x

(ch)
avg (tn,NCT )

using NCT and NNCT trials, respectively.
Responses to Gabor stimuli exhibited a large biological variability as can be seen from
Figure 4.4. There, for the purpose of illustration only, global ERPs are shown of all subjects
as averages over all channels. Such global averages provide a rough idea about the extent
of biological variability between individual stimulus responses.
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Figure 4.4 Global averages of individual ERPs elicited by the two stimulus conditions

CT and NCT. The ERP amplitudes are normalized to zero mean and unitary standard devi-
ation. ERPs for both conditions are superimposed onto each other, blue: Contour condition
and green: Non-contour condition.





Chapter 5

Forward Modeling of the EEG Data

based on EEMD

The goal of electroencephalogram (EEG) source localization is to find the brain areas that
are responsible for generating the interesting EEG waves. It consists of solving two main
problems, forward and inverse. The EEG forward problem involves calculating the electri-
cal potentials for specific source locations, orientations and signals which is the first step
towards the reconstruction of the spatio-temporal activity of the neural sources of EEG. In
this chapter, a new method to calculate these potentials depending not directly on the raw
data is introduced. First the recorded EEG data are analyzed using a data-driven analy-
sis method, EEMD. This analysis discusses characteristic features of event related modes
(ERMs) resulting from the decomposition. We investigate whether an EEMD analysis can
provide underlying characteristic modes which show differences between stimulus condi-
tions with clear statistical significance. This chapter is organized as follows, Section 5.1
is devoted to setting the optimal way for the analysis which includes estimating: EEMD
parameters, ERP components and ERMs of interest. Estimating EEMD parameters such as
sifting iterations, noise amplitude and ensemble size could affect the characteristic features
of modes which will be extracted next. EEGs are investigated at the level of event related
potentials (ERPs) which represent averages over a sufficiently large number of single trial
recordings. Typical ERP components and their related latencies are then compared for dif-
ferent stimulus conditions. This section tries to explore the interesting ERP components.
Furthermore, this section presents a detailed description of the EEMD analysis applied. It
explains how EEG signals are decomposed by applying EEMD method. The latter will be
done in two different ways: Approach A and Approach B. Several different investigations
and tests will be implemented in this chapter, in Results Section 5.2. The latter accounts for
details of the EEG analysis and summarizes the main findings. It presents and quantifies
the results obtained. Component time courses and related head topographies further illus-
trate these results. Finally, the chapter will end with Discussion Section 5.3 which offers a
thorough discussion of these results.
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5.1 The Optimal Configuration for the Analysis

The optimal analysis of any data entails choosing the "best" between various alternatives.
The goodness of the alternatives has an affect on the performance index. This section dis-
cusses selecting the best structure, method, and parameters for the analysis. EEMD is used
as an analysis tool that allows to extract component signals which contain decisive informa-
tion about responses to contour and non-contour stimuli. EEMD has been selected instead
of plain EMD to avoid problems like mode mixing, boundary effects and so on .

Figure 5.1 Extracted modes when applying EMD and EEMD. Left: EMD decomposition
on ERP of EEG signal. Right: EEMD decomposition on the same EEG signal in the left.

An example of using EMD and EEMD methods to decompose EEG signals is given in
Figure 5.1, where the two methods were applied to the same EEG signal presented in the
first row. As can be seen, IMF2 of EMD decomposition in the left side is a consequence
of signal intermittency. In addition, boundary artifacts resulted from the sifting process at
the boundaries. For example IMF3 and IMF4 of EMD decomposition (left side) can be
alleviated when applying EEMD (right side). Note that the number of extracted modes by
EEMD has increased because of the added noise.

5.1.1 EEMD Preparation

EEMD needs to prescribe two parameters, namely the size E of the ensemble and the stan-
dard deviation σnoise of added Gaussian noise. Those two parameters were chosen empir-
ically after several attempts which indicated an optimal ensemble number E = 20 and a
proper standard deviation σnoise = 0.2 ·σsignal , where σsignal denotes the standard deviation
of the signal amplitude distribution. Figure 5.2 shows EEMD decompositions of EEG signal
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which were implemented with different levels of noise σnoise = [0.001,0.01,0.1,0.2] ·σsignal

and an ensemble size of E = 20. As can be seen in the figure, there are no big differences
between the extracted IMFs, however, a slight improvement has been observed in IMF2 and
IMF3 when EEMD was implemented with noise 0.2.
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Figure 5.2 EEMD decomposition on ERP of EEG signal. In the EEMD, an ensemble size
of E = 20 is used with different added white noise in each ensemble member which has a
standard deviation of σnoise = (0.001,0.01,0.1,0.2) ·σsignal.

To determine the ensemble size E, several EEMD decompositions of EEG signal with dif-
ferent ensemble sizes E = (5,10,20,50) are done using a fixed noise of σnoise = 0.2 ·σsignal

as illustrated in Figure 5.3. The differences between extracted modes when increasing the
ensemble size are only tiny, hence less noticeable. Furthermore, a large ensemble size leads
to increasing the computation time.
Furthermore, because of the need to average corresponding IMFs over several trials, the
number of IMFs into which the signals are decomposed has been fixed in advance. Empiri-
cally, after systematically varying the number of modes, a decomposition into 7 IMFs plus
a residuum was considered most appropriate (see Figure 5.12 and 5.13). Slightly abusing
the definition of a residuum, by integrating the latter as an additional IMF, all signals were
decomposed into 8 IMFs finally. Additionally, the sifting process was implemented with a
fixed number of iterations instead of verifying the IMF condition [240].
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Figure 5.3 EEMD decomposition on ERP of EEG signal. The decomposition is imple-
mented with different ensemble sizes of E = (5,10,20,50) and an added white noise which
has a standard deviation of σnoise = 0.2 ·σsignal .

5.1.2 Event-Related Modes from EEMD Decomposition

A more informative way to analyze ERPs concerns the application of signal decomposition
techniques which offer a principled way of extracting characteristic features from the record-
ings which in turn, reveal significant response differences between both stimulus conditions.
In this work, EEG signals are decomposed by applying ensemble empirical mode decom-
position. The latter will be applied to the set of signals in two different ways. Approach A
preserves phase-locked modes and disregards non-phase-locked modes, while approach B
considers both, phase-locked as well as non-phase-locked, modes during mode decomposi-
tion:

• Approach A: EEMD after averaging over trials.

After averaging over trials, EEMD is applied to all single channel ERPs, i. e. to x
(ch)
avg (tn,CT )

and x
(ch)
avg (tn,NCT ), respectively, thus yielding event-related modes (ERMs) which contain

only those parts of the response signals that are phase-locked to the stimuli. Averaging
has been performed for each stimulus condition separately and EEMD decomposition
was performed for each ERP signal. Then IMF (ERM) amplitudes have been estimated
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within intervals centered at the characteristic peaks of the corresponding ERMs, i. e. for
P100,N200 etc. as was explained above.

• Approach B: EEMD before averaging over trials.

Alternatively, EEMD is applied to each single trial response signal x(ch)(tn,s) at each
channel separately. Then all corresponding IMFs become, for each of the two stimulus
conditions, averaged over all trials to yield related ERMs. The latter now also contain in-
formation about signal components non-phase-locked to the stimuli. The further analysis
for estimating mean peak amplitudes of ERM components has been done in the same way
as already discussed for approach A.

Before applying an EEMD decomposition, all signals were standardized to zero mean and
unit variance (z-score). The following Figure 5.4 illustrates ERMs, obtained from a grand
average of global ERPs, and their related Hilbert - Huang Transforms. Especially ERM3−
ERM6 show rather pronounced oscillations with stable frequencies (see the related Hilbert -
Huang Transforms) ranging from 3 [Hz]−30 [Hz] roughly. Thus these oscillations represent
characteristic EEG bands like theta - or alpha - bands.
The intrinsic mode ERM5, as can be seen in Figure 5.4 and more clearly in Figure 5.5, most
closely reflects the prominent ERPs of the raw data set. The latter corresponds to a grand
average over 18 subjects of the signals recorded at all channels (see Figure 5.6).

5.1.3 The Studied ERP Components

Figure 5.6 illustrates a typical global ERP response, obtained as a grand average over all
channels and over all subjects. Such a grand average ERP exhibits four prominent ERP
peaks after stimulus onset, which will be denoted according their latencies as P100,N200,
P300 and N400, respectively [96]. As can be seen, typically one observes a positive peak oc-
curring roughly at 100 [ms] (maximal response amplitude usually occurring between 70 [ms]
and 180 [ms]) after stimulus onset, called P100. This is followed by a negative peak, called
N200, with maximal amplitude between 150 [ms] and 260 [ms]). P300 identifies the next
positive peak occurring usually between 270 [ms] and 370 [ms], followed by a late negative
potential, denoted N400, at 370 [ms] to 450 [ms]. Note that the Gabor stimuli last for almost
∆tst = 200 [ms] after stimulus onset t0, hence encompasses P100 and part of N200.
In the grand average ERP, differences between stimulus conditions mostly appear for the
early responses, i. e. for P100 and most notably for N200, N400, and seemingly also
between 600 [ms] and 800 [ms]. Mean amplitudes have been estimated therefore within
intervals centered at these characteristic peaks.

5.1.4 Pooling of Electrodes

Our main objective is to investigate the contribution of each brain region in response to
contour stimuli. In addition to that, it is important to determine a unique set of brain ar-
eas that generates scalp-recorded components of interest. Consequently, signals have been
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Figure 5.4 EEMD decomposition on grand average ERPs. Single subject ERPs were aver-
aged over 18 subjects and are shown for two stimulus conditions: Contour and Non-contour.
This signal is generated by averaging all signals from Figure 4.4 for the two conditions
separately. Plots in the left column represent the averaged signal (on top) followed by its
event-related intrinsic modes (ERMs). Plots in the right column present related Hilbert
spectra for each of the corresponding ERMs in the left column.

pooled according to a clustering scheme proposed by Aftanas [2] which divides each hemi-
sphere of the brain into six electrode clusters. This procedure led to six regional means for
each hemisphere which were named according to their spatial positions: Anterior Tempo-
ral (AT), Frontal (FR), Central (CE), Parietotemporal (PT), Parietal (P), and Occipital (OC).
The grouping of electrodes on the left and right hemispheres are depicted in Figure 5.7-Left.
The difference on the latency of the peaks of global average ERPs related with the ERP com-
ponents is clearly visible on the ERP averages of the pooled electrodes. Figure 5.8 illustrates
that those peaks show an earlier response in the parietal -occipital regions (OC,P,PT ) and
later on the frontal regions (FR,AT ). The differences in latencies of ERPs, corresponding
to the pooled signals of the right hemisphere, are marked in Figure 5.8 by the straight lines.
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Figure 5.5 ERP signal and its ERM5. Comparison of the original EEG recording (grand
average over 18 subjects of all channels) with ERM5.

Figure 5.6 Grand average ERPs, obtained as a result from averaging individual global

ERPs from 18 subjects. Such a grand average ERP exhibits four prominent ERP peaks
after stimulus onset, which will be denoted according their latencies as P100, N200, P300
and N400, respectively.

By visual inspection, it can be seen that for the ERP P100, in the occipital brain area an early
response occurs during the time interval 60 [ms]−120 [ms] while in the frontal brain area the
corresponding P100 peak shows up in the interval 120 [ms]− 180 [ms]. Correspondingly,
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Figure 5.7 Pooling schemes. Left: Pooling of electrodes into 6 clusters according to a
scheme proposed by [2]. Right: It shows the two groups of electrodes related with early and
late responses.

for the ERP N200 two intervals were considered corresponding to an early response at
150 [ms]−210 [ms] and a late response at 200 [ms]−260 [ms], respectively.
However, the ERPs of the CE cluster clearly exhibits a double peak structure of the N200
ERP component showing early and late response components simultaneously. This is justi-
fied by the average of the two kind of signals, e.g, early and late responses. To determine the
early and late response signals of electrodes, CE region was divided into three sub-regions:
CE-R1 which consists of FC3,FC5 and FC4,FC6, CE-R2 consists of C3,C5 and C4,C6,
and CE-R3 consists of CP3,CP5 and CP4,CP6 electrodes in the left and right hemisphere,
respectively. Figure 5.9 illustrates that electrodes in the CE-R1 region show later response
signals while electrodes in CE-R2 and CE-R3 regions present early response signals. Con-
sequently, electrodes in CE cluster can be classified as early response signals for CE-R2 and
CE-R3 regions while late response in CE-R1. Given the discussion above, electrodes have
been grouped into early and late response signals as presented in Figure 5.7-Right.

5.2 Results

The following section will present results obtained from the EEMD analysis of EEG record-
ings of 18 subjects during a contour integration task. Results concerning raw data are pre-
sented at the level of event -related potentials (ERPs). Data is then decomposed with EEMD
either using single trial recordings or ERPs.

5.2.1 Raw Data

As explained above, for the ERP P100 in the occipital brain area an early response occurs
during the time interval 60 [ms]−120 [ms] while in the frontal brain area the corresponding
P100 peak shows up in the interval 120 [ms]−180 [ms]. Similarly, for the ERP N200 two
intervals were considered corresponding to an early response at 150 [ms]− 210 [ms] and
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Figure 5.8 The pooled ERPs responses. The ERPs are averaged in pools of electrodes
located on different regions.

a late response at 200 [ms]− 260 [ms], respectively. Next, the difference of the absolute
values of these mean response amplitudes, estimated at each channel and for each stimu-
lus condition, has been computed. Finally, these differences have been averaged over the
population of 18 subjects. A paired t-test identified the channels with the most significant
differences in signal responses. The resulting values have been used to generate correspond-
ing head topographies as illustrated in Figures 5.10 and 5.11. The topograms (see Figure
5.10) illustrate early and late response differences resulting from mean response amplitudes
around the ERP P100. Obviously, early as well as late response differences appear to be
insignificant at a confidence level of α = 0.05. On the contrary, early and late response
differences estimated around the ERP N200 (see Figure 5.11) appear to be significant for
the same confidence level. Early response differences are located in occipital areas of the
brain, while late responses are found in frontal brain areas only. Additionally, such signif-
icant differences are detected only in the right hemisphere. Table 5.1 summarizes p - and
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Figure 5.9 The pooled ERPs responses of CE region divided into three sub-regions. The
ERPs are averaged in pools of electrodes located on different CE sub-regions.

T - values for significant early and late responses at various locations (channels) and for
different confidence levels in case of ERP N200.

Figure 5.10 Head topography of the significant difference of the P100 signals. Top: Early
response, Bottom: Late response



5.2 Results 65

Figure 5.11 Head topography of the significant difference of the N200 signals. Top:
Early response, Bottom: Late response

Table 5.1 Test statistics for ERP N200. Results of statistical tests of differences in mean
ERP amplitudes for the event related potential N200 in early and late response areas. P
- and T - values are reported for different significance levels: (∗) : α = 0.05,(∗∗) : α =
0.01,(∗∗∗) : α = 0.001

5.2.2 ERMs

Approach A: EEMD after averaging over trials.

Averaging has been performed for each stimulus condition separately and EEMD decom-
position was performed for each ERP signal. Then IMF (ERM) amplitudes have been esti-
mated within intervals centered at the characteristic peaks of the corresponding ERMs, i. e.
for P100,N200 etc. as was explained above. Again, a subsequent paired t-test identified the
channels with the most significant differences in signal responses. The resulting values have
been used to generate corresponding head topographies. The latter are very similar to the
ones obtained by approach B, but show lower significance levels. These results are summa-
rized in Table 5.2 and Table 5.3. As can be seen from Table 5.2, early responses have been
observed only for channels located in the occipital and parietal areas of the brain, while a
highly significant late response has been observed for a channel in the frontal area of the
brain. A similar observation holds for the entries of Table 5.3. Significant early response
differences are more numerous for the different N200 ERM components, while again only a
single frontal channel exhibited a significant response difference. Note that even the original
ERP shows significant late response differences for the N200 ERP component.



5.2 Results 66

Table 5.2 Approach A: Test statistics for ERM4 and ERM5 from P100. The table summa-
rizes parameters of the test statistics (p-value, T-value) for ERM4 and ERM5 extracted from
the ERP P100. An EEMD has been applied after averaging over trials to extract ERMs. P-
and T-values are given for different confidence levels: (∗) : α = 0.05,(∗∗) : α = 0.01.

Table 5.3 Approach A: Test statistics for ERM5,ERM6 and ERM7 from N200. The table
summarizes parameters of the test statistics for ERM5, ERM6 and ERM7 extracted from
the N200 ERP. An EEMD has been applied after averaging over trials to extract ERMs. P-
and T-values are given for different confidence levels: (∗) : α = 0.05,(∗∗) : α = 0.01.

Approach B: EEMD before averaging over trials.

Approach B consisted in performing an EEMD of all single trial signals separately. Then an
average over trials has been performed for each IMF, each stimulus condition and each chan-
nel, resulting in corresponding ERMs. The further analysis for estimating mean peak ampli-
tudes of ERM components has been done in the same way as already discussed for approach
A. Figure 5.12 illustrates differences in early P100 responses for both stimulus conditions.
The top row presents on the right the component ERM5 for both stimulus conditions. It
represents an average over all channels which exhibit a significant response difference at
a confidence level of α = 0.05. On the left, the corresponding raw signal is presented for
comparison. In the component ERM5, clear differences are seen in response amplitude for
both stimulus conditions. In the bottom row, the topography resulting from differences in
ERM5 amplitudes related to the ERP P100 at a significance level of α = 0.05 is shown. The
rightmost topogram exhibits those brain regions where significant signal differences could
be detected. As can be seen, early responses are localized in occipital and parietal areas of
the right brain hemisphere only. There, the amplitude of the P100 component of ERM5 is
larger for the stimulus condition NCT than for condition CT (see Figure 5.12). Furthermore,
remember that for the raw P100 ERPs (Figure 5.12, top left) no statistically significant dif-
ferences in response amplitude could be found. Note that the P100 peak maximum, both in
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Figure 5.12 Early stimulus response at ERP P100. Top Left: Standardized original ERPs
for both stimulus conditions. Top Right: ERM5 for both stimulus conditions. Bottom: Head
topographies showing locations of significant differences in ERM5 amplitudes for both stim-
ulus conditions.

the raw signal as well as in the ERM5, occurs shortly before t = 100 [ms], hence represents
what we call an early stimulus response.
Figure 5.13 illustrates differences in what we call late P100 responses for both stimulus con-
ditions. The top row presents to the right the component ERM5 for both stimulus conditions.
It represents an average over all channels which exhibit a significant response difference at
a confidence level of α = 0.05. On the left, the corresponding raw signal is presented for
comparison. In the component ERM5, the differences in response amplitude for both stim-
ulus conditions are even more pronounced than in case of the early response. On the left,
an average of the raw signals of all those channels which exhibit significant response dif-
ferences is shown. In the bottom row the topography resulting from differences in ERM5
amplitudes measured for the ERP P100 at a significance level of α = 0.05. The rightmost
topogram exhibits those brain regions where significant signal differences could be detected.
As can be seen, late responses are localized in frontal and medio-temporal areas in the right
hemisphere only. There the ERM5 amplitude for the stimulus condition CT is larger than
for condition NCT (see Figure 5.13) contrary to what has been observed for the early P100
response in occipital areas. Note that the peak maximum occurs roughly at t ≃ 150 [ms].
Again for the raw P100 ERP signal, no statistically significant differences between both
stimulus conditions could be found. Table 5.4 summarizes, for approach B and the P100
ERP, parameters (p- and T-values) of the test statistics for ERM4 and ERM5 at different
confidence levels. Note that an early response has been observed only for channels located
in the occipital and parietal areas of the brain, while a late response is observed for a channel
in the frontal area of the brain.
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Figure 5.13 Late stimulus response at ERP P100. Top Left: Standardized original ERPs
for both stimulus conditions. Top Right: ERM5 for both stimulus conditions. Bottom: Head
topographies showing locations of significant differences in ERM5 amplitudes for both stim-
ulus conditions.

Table 5.4 Approach B: Test statistics for ERM4 and ERM5 from P100. The table summa-
rizes parameters of the test statistics (p-value, T-value) for ERM4 and ERM5 extracted from
the ERP P100. An EEMD has been applied before averaging over trials. P- and T-values
are given for different confidence levels: (∗) : α = 0.05,(∗∗) : α = 0.01,(∗∗∗) : α = 0.001.

Figure 5.14 illustrates differences in early N200 responses for both stimulus conditions.
The top row presents on the right the component ERM5 for both stimulus conditions. It
represents an average over all channels which exhibit a significant response difference at
a confidence level of α = 0.05. On the left, the corresponding raw signal is presented for
comparison. In the component ERM5, differences in response amplitude for both stimulus
conditions are seen clearly. On the left, an average of the raw signals of all those chan-
nels which exhibit significant response differences is shown. The bottom row shows the
topography resulting from differences in ERM5 amplitudes measured for the ERP N200
at a significance level of α = 0.05. The rightmost topogram exhibits those brain regions
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where significant signal differences could be detected. As can be seen, early responses are
localized in occipital and parietal areas in the right hemisphere mainly but also in the left
hemisphere, contrary to the P100 response. In the indicated brain areas, the ERM5 ampli-
tude for the stimulus condition NCT is again larger than for condition CT (see Figure 5.14).
Note that the negative peak occurs shortly before t = 200 [ms] and exhibits a clear shoulder
shortly after t = 200 [ms].

Figure 5.14 Early stimulus response at ERP N200. Top Left: Standardized original ERPs
for both stimulus conditions. Top Right: ERM5 for both stimulus conditions. Bottom: Head
topographies showing locations of significant differences in ERM5 amplitudes for both stim-
ulus conditions.

Figure 5.15 illustrates differences in late N200 responses for both stimulus conditions. The
top row presents on the right the component ERM5 for both stimulus conditions. It rep-
resents an average over all channels which exhibit a significant response difference at a
confidence level of α = 0.05. On the left, the corresponding raw signal is presented for
comparison. In the component ERM5, again very pronounced differences are seen in re-
sponse amplitude for both stimulus conditions. The bottom row shows the topography re-
sulting from differences in ERM5 amplitudes measured for the ERP N200 at a significance
level of α = 0.05. The rightmost topogram exhibits those brain regions where significant
signal differences could be detected. As can be seen, late responses are localized in frontal
and medio-temporal areas in the right hemisphere only. There the ERM5 amplitude for
the stimulus condition CT is again larger than for condition NCT. Note that for the late
response, the negative peak occurs shortly after t = 200 [ms]. Table 5.5 summarizes, for
approach B and the N200 ERP component, parameters (p- and T-values) of the test statistics
for ERM5−ERM7 at different confidence levels. Early responses were obtained again from
channels in the occipital and parietal regions of the brain, while late responses were located
at channels in frontal regions. Note that the difference between early and late responses is
most clearly shown in ERM5.
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Figure 5.15 Late stimulus response at ERP N200. Top Left: Standardized original ERPs
for both stimulus conditions. Top Right: ERM5 for both stimulus conditions. Bottom: Head
topographies showing locations of significant differences in ERM5 amplitudes for both stim-
ulus conditions.

The ERM5 is the mode that consistently has peaks with latencies similar to the studied ERP
components. Concerning the component P100 of the mode ERM5, an early response is man-
ifest on electrodes located in the occipital and parietal brain areas with a stronger response
amplitude for the NCT - stimulus condition. On the contrary, a late P100 response is clearly
detected in frontal brain areas with a larger response amplitude for the CT - stimulus con-
dition. The delay of the late P100 response component amounts to ∆t ≈ 70 [ms]±10 [ms].
Furthermore, the response differences appear much more pronounced for the late P100 re-
sponse compared to the early P100. A remarkable detail is seen in the P100 response for
the NCT - stimulus condition. The P100 peak corresponding to the NCT - condition, which
is visible in the early response (see Figure 5.12, top right), splits in the late response (see
Figure 5.13, bottom right) into a double peak with one component at a time of occurrence of
the early P100 response, and a later P100 response, peaking roughly 70 [ms] after the early
response. This detail is only visible for the stimulus condition NCT and is absent for the CT -
stimulus. The latter only shows the delayed component. Related head topographies indicate
the brain areas where statistically significant response differences could be detected. They
consistently indicate such differences only for the right hemisphere in broad agreement with
recent findings about a right hemisphere specialization of contour integration [214]. They
appear more focused in frontal areas while they are more diffuse and spatially extended in
occipital, parietal and parieto-temporal areas for the early responses. Clearly, occipital as
well as frontal areas are involved in contour integration as early as for the P100 response
but most notably at the N200 level. This seems to support assertions of a top-down control
in contour integration [217].
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Table 5.5 Approach B: Test statistics for ERM5,ERM6 and ERM7 from N200. The table
summarizes parameters of the test statistics for ERM5, ERM6 and ERM7 extracted from
the ERP N200. An EEMD has been applied before averaging over trials. P- and T-values
are given for different confidence levels: (∗) : α = 0.05,(∗∗) : α = 0.01.

Similar results are obtained for the N200 response. An early N200 response prominently
appears before t = 200 [ms], while a late N200 response is peaking after t = 200 [ms]. The
response amplitude in the early phase is again larger, i. e. more negative, for the NCT -
stimulus condition, while it is weaker in the late phase of the response. Once again, the re-
sponse difference is more pronounced for the late response. Remarkably, the N200 response
contour for the early CT - stimulus response exhibits a shoulder at the time where the late
N200 response amplitude peaks. However, no clear double peak structure appears as for
the P100 CT - stimulus response. If one compares the ERM5 signal structure related to the
different electrodes located on a path from occipital to frontal, a clear shift in the time of
occurrence of the N200 peak from early to late is seen. Thus single ERMs allow to follow a
precise timing of the N200 ERP along the visual processing pathway.

5.3 Discussion

In the study, we presented EEG recordings from 18 subjects which were participating in
a perceptual learning task. More specifically, subjects were presented with Gabor stimuli
which occasionally formed an open continuous contour. Subjects were asked to indicate the
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presence (CT) or absence (NCT) of such contours in their visual field at certain time points.
After proper pre-processing, raw data have been averaged over all trials to extract event
related potentials (ERPs) at every electrode. A global average of such ERPs is illustrated
for all 18 subjects in Figure 4.4. Clearly, there is a large biological variability in the data
with mostly little difference between both stimulus conditions. Note that data have been in-
dividually standardized to zero mean and unit variance. Relative differences between both
stimulus conditions have been preserved that way. Figure 5.6 presents a grand average of
individual global ERPs, indicating most clearly four prominent peaks named P100, N200,
P300 and N400. This grand average suggests that differences in response amplitudes be-
tween both stimulus conditions are most probably to be expected at the early ERPs, i. e. at
P100 and N200. But a statistical testing of observed differences in response amplitudes to
both stimulus conditions could not proof any significant difference in the P100 ERP ampli-
tudes at a significance level of α = 0.05 corresponding to T ≥ 2.1 (see Figure 5.10). For the
N200 ERP response amplitudes, at the same significance level, statistically significant differ-
ences could be found at several electrodes mainly located in the occipital and parietal areas
of the brain but also in frontal brain areas. Interestingly, response amplitudes peaked before

t = 200 [ms] in the occipital and parietal areas but showed a late response after t = 200 [ms]
for the frontal electrodes. Henceforth, these responses are called early and late responses,
respectively. Early and late responses show a delay of roughly ∆t = 100 [ms] and correlate
well with electrode locations in either the occipital or frontal brain areas.
This rough analysis of raw ERP signals has been improved by applying a signal decomposi-
tion technique based on an ensemble empirical mode decomposition (EEMD) as proposed
by Huang et al. [80][236][237]. The analysis has been performed in two different ways: ei-
ther EEMD has been applied before or after averaging over trials. The resulting component
signals extracted have been called event related modes (ERMs). EEMD before averaging
delivered better results with respect to statistical measures, probably because of unfavorable
signal compensations through averaging. Hence, only these results have been presented in
detail. For illustrative purposes only, Figure 5.4 presents a grand average EEG signal extend-
ing from 150 [ms] before stimulus onset at t0 = 0 to 850 [ms] after t0. While the original sig-
nals exhibit only small differences, mainly around ERP N200, some of the extracted ERMs
indicate clear differences between both stimulus conditions. The related Hilbert - Huang
spectra indicate decent regularities in these ERMs with characteristic frequencies which
stay largely constant over the time span considered. Most notable differences are seen for
ERM3,ERM4,ERM5 and ERM6. For example, ERM3 shows a dominant frequency around
ν = 25 [Hz], corresponding to the β - band, ERM4 shows oscillations around ν = 10 [Hz]
which represents an α - activity, ERM5 oscillates with roughly ν = 5 [Hz] indicating a θ
- wave and, finally, ERM6 is dominated by an oscillation with ν ≤ 2 [Hz] corresponding
to a δ - wave. ERM2 is indicative of some high frequency (ν ≥ 30 [Hz]) activity which
might contain γ - wave activities. Note that these spectral characteristics agree between
both stimulus conditions.
Even further insight is provided from ERMs resulting from an EEMD application to the
single trial signals. The resulting intrinsic mode functions (IMFs) have then been averaged
over all trials to result in corresponding ERMs. The largest differences between stimulus
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conditions are seen for ERM4−ERM6, i. e. in the α−,θ− and δ - bands, around P100
and N200. A general characteristic of the ERP components is that a clear transition from
an early response to a late response is observable which exhibits a strong correlation to a
spatial representation of the stimulus response either in the occipital or the frontal brain
areas. Central brain areas show signs of both, early and late responses. The electrodes,
where either the early or the late response could be observed, are shown in Figure 5.7-Right.
While studying the switching between early and late responses in more detail, signals have
been pooled according to a clustering scheme proposed by [2] which divides each hemi-
sphere into six electrode clusters as shown in Figure 5.7-Left. The difference on the latency
of the peaks of ERM5 related with the ERP components is clearly visible on the ERM
averages of the pooled electrodes. Figure 5.16 illustrates that those peaks show an earlier re-
sponse in the parietal -occipital regions (OC,P,PT ) and later on the frontal regions (FR,AT ).
The differences in latencies of ERM5, corresponding to the pooled signals of the right hemi-
sphere, are marked in Figure 5.16 by the straight lines. Similar differences are observed in
the left hemisphere though supported by a smaller statistical significance between the con-
ditions (see Tables 5.4 and 5.5). However, the ERM5 of the CE cluster clearly exhibits a
double peak structure of the N200 ERP component showing early and late response compo-
nents simultaneously. This is justified by the average of the two kinds of signals, e.g, early
and late responses. Surprisingly, the pooled ERM5 of the frontal region shows a similar
double peak structure for the ERP component P100.
Because the human head is a volume conductor, the peaks in the ERP and ERM amplitudes
observed at frontal and occipital electrodes do not necessarily imply that the brain activity
was generated within frontal and occipital sources, respectively. However, a change in to-
pography as seen from the earlier to the later phases of the P100 and N200 peaks clearly
indicates different distributions of neural activity in each phase [116][147]. Thus, the data
favor the view that contour processing involves activity within distributed brain networks,
rather than focal activity within the lower visual cortex [66]. This notion is broadly compati-
ble with results from recent EEG or combined EEG and fMRI investigations [216][141][73].
On contrast to previous studies, we used a data-driven approach for EEG signal decompo-
sition. The findings thus give an independent proof that contour integration depends on
distributed network activity.
The time and frequency ranges where differences between stimulus conditions occurred are
comparable to those of previous studies on oscillatory brain responses during contour inte-
gration. We found the strongest differences at parietal and occipital sites occurring < 200ms

after stimulus onset and in low-to-mid frequencies [217][216][206]. A prominent role for
beta oscillations in contour integration, as observed in our previous studies, did not show
up in the data. Note, however, that a transient increase in beta power would not necessarily
lead to increased amplitudes within one specific ERM. An ERM-based analysis or the EEG
is thus not well-suited for validating the results of previous Fourier-based analyses.
In this study we used exclusively Gabor arrays as visual stimuli. It could thus be objected
that the results are not specific for contour integration, but reflect some general visual pro-
cesses under conditions of low stimulus visibility. Indeed, a recent fMRI study revealed that
brain activity in visual as well as prefrontal areas increased with the presentation duration
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Figure 5.16 The pooled ERM5 responses. The ERM5 are averaged in pools of electrodes
located on different regions.

and so with the visibility of shortly presented gratings [87]. The role of the frontal cortex in
this and in our study is yet unclear. Previous authors argue that frontal cortical activity is re-
lated to a conscious visual experience or to post-perceptual processes like motor preparation
[46][14]. On the other hand, the frontal cortex can also be directly involved into the actual
stimulus processing [87]. The fact that posterior and frontal activity differences between
contour and non-contour conditions occurred very early during processing is more in line
with the latter interpretation.
Thus, it seems warranted to conclude that the observed differences in brain activity originate
from contour processing per se.





Chapter 6

Inverse Modeling of the EEG Data based

on EEMD

Solving the EEG forward problem includes building an electromagnetic model of the sub-
ject’s head. Once this is done, one can try to identify neural sources by solving the inverse
problem. The inverse problem is basically an optimization problem, where the procedure
is to work backwards from the scalp recordings in order to locate the current dipoles which
best explain the recorded EEG. In this chapter, we propose, for the first time, to combine an
EEMD analysis with a source localization scheme, more specifically an sLORETA source
estimation. We investigate whether an EEMD analysis can provide underlying character-
istic modes which, when fed into an sLORETA analysis, can help to localize sources of
neuronal activity reflecting cognitive processing during the contour integration task, em-
ploying CT (contour true) and NCT (non-contour true) stimuli. Hence, measured EEG
responses are subjected to mode decomposition techniques, more specifically to an EEMD,
and sLORETA is applied to the event - related modes (ERMs) extracted to solve the source
imaging problem. Although a wealth of source localization procedures meanwhile exist
[67][76][21][74][89][45], we considered sLORETA because of its straightforward imple-
mentation and its good performance in real applications [159]. As a reminder, the exper-
imental paradigm used in our study was a contour integration task, applied to a group of
18 probands and 300 trials each. A large set of Gabor stimuli was presented repeatedly
which occasionally contained a contour made up by a subset of collinearly oriented Gabor
patches. The participants had to signal the perception of contour or non-contour stimuli
with a manual response. Similarly to the forward modeling in Chapter 5, brain electrodes
have been distinguished according to the timing of their stimulus response. Early responses
were recorded at electrodes localized in the occipital and parietal areas of the brain, while
late responses were located in frontal and medio-temporal areas of the brain. Early and late
responses, manifested in ERP components P100 and N200, turned out most discriminative
in detecting significant response differences to contour and non- contour stimuli. These
components represent the first and second prominent ERP peaks with latencies of roughly
100 [ms] and 200 [ms] after stimulus onset. It has been shown in [10] that the event-related
modes ERM5 most closely reflected the dominant oscillation of the grand average EEGs of
the various subjects.



6.1 Results 76

6.1 Results

The following section will present results obtained from a combined EEMD-sLORETA anal-
ysis of EEG recordings from 18 subjects during a contour integration task. Results related
to raw data are presented at the level of event-related potentials (ERPs). Raw data is then
decomposed with EEMD using single trial recordings. Based on the analysis of Chapter 5,
source localization results obtained with raw data are compared with results obtained from
the most informative event-related mode ERM5. As can be seen in Figure 5.5, the intrin-
sic mode ERM5 most closely reflects the prominent ERPs of the raw data set. The latter
corresponds to a grand average over 18 subjects over all channels. Within each average
time series, the two most prominent potentials of each ERM, denoted, according to their
related ERPs and their latencies after stimulus onset, as P100 (positive response roughly
100[ms] after stimulus onset) and N200 (negative response roughly 200[ms] after stimulus
onset), will be considered. These response amplitudes were most clearly seen in ERM5
and showed statistically significant differences in response to contour versus non-contour
Gabor stimuli. The EEMD analysis further revealed a delay which amounts to 70[ms] when
comparing response latencies at occipital and frontal brain areas. Early P100 and N200
responses occurred at electrodes located in the occipital, parietal and parieto-temporal areas
of the brain, while late P100 and N200 responses appeared at electrodes located in frontal
and fronto-temporal brain areas. The same potentials, when appearing at electrodes in cen-
tral brain areas, showed bimodal early/late response signatures. Note that ERPs have been
pooled as illustrated in Figure 5.7-Right. Note further that the potentials P300 and N400 did
not show any difference in latencies between early and late responses. A statistical paired T
-test of differences in reconstructed response amplitudes to both stimulus conditions resulted
in a series of paired T-test values. The latter served to compare, between the two stimulus
conditions, CT and NCT , and for selected latencies, the response amplitudes which were
reconstructed, employing sLORETA, from both the ERP and the intrinsic mode ERM5.
This section is concerned with estimating the localization of the spatial sources related to
these ERPs in the raw data as well as in the ERMs. For simplicity we confine our discussion
to potentials appearing in mode ERM5. The inverse problem was solved by employing the
sLORETA software package [156]. The related sLORETA values according to the Brod-
mann area (BA) per brain map are given for the sources identified.

6.1.1 Early Response

6.1.1.1 ERP component P100 at 60-120 [ms]

Figure 6.1 illustrates results of an sLORETA analysis of response differences in early stimu-
lus responses for both stimulus conditions. Mean response amplitudes have been estimated
for the interval 60− 120 [ms] around the ERP P100 peak. Shown are significant paired
t-test values for the differences, for both stimulus conditions, of potential readings from all
62 electrodes, as shown in Figure 5.7-Right, have been used as entries to the data matrix Φ.
The graphic illustrates significant differences for the raw ERP Figure 6.1-Top and the mode
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ERM5 Figure 6.1-Bottom. Blue and red colors thereby indicate negative or positive paired
t-test values, respectively.
As can be seen in Figure 6.1-Top, differences of the raw ERP appear in the occipital and pari-
etal brain areas of the left hemisphere at a significance level of α = 0.01. Also some weaker
positive activity differences are detected in the temporal regions of the both hemispheres at
significance level α = 0.05.

Figure 6.1 Early Response (60-120 ms) P100 ERP. Paired t-test values of significant po-
tential amplitude differences at electrodes are illustrated at a significance level as specified.
Views are axial, saggital and coronal. The left column shows the distribution on the scalp.
All 62 electrodes were used as entries to the data matrix Φ. (Top): Raw ERP P100 with sig-
nificance level α = 0.01. (Bottom): ERM5 extracted from the ERP P100 with significance
level α = 0.001. Red color (positive paired T-test values) indicates that the ERP amplitude
for the stimulus condition CT is larger than for condition NCT while blue color (negative
paired T-test values) indicates that the ERP amplitude for the stimulus condition NCT is
larger than for condition CT .

These results should be contrasted to those obtained from studying the mode ERM5 P100
of the EEMD analysis as it appears in the ERP potential. The most noticeable difference is
that ERM5 shows highly localized, significant differences mainly in the temporal, occipital
and parietal regions. There, the amplitude of the early P100 component of ERM5 is larger
for the stimulus condition NCT than for condition CT . The highest differences appear in the
temporal lobe at significance level α = 0.001. Table 6.1 illustrates the significant differences
results of the early P100 response of raw ERP and mode ERM5, respectively, in detail.
The table summarizes the Brodmann areas (BA), MNI coordinates and the neuroanatomical
lobe of the voxels for the P100 early response that showed statistically the most significant
differences of Brodmann area clusters.
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Table 6.1 T-test statistics for early P100 ERP and ERM5 response. The table shows
coordinates of the most significant voxel of clusters. The sign of T-test values indicates
the differences between stimuli (′−′ NCT > CT , ′+′ CT > NCT ). T-values are given for
different confidence levels: (∗) : α = 0.01,(∗∗) : α = 0.001.

6.1.1.2 ERP component N200 at 150-210 [ms]

Next, Figure 6.2 illustrates paired t-test values for the ERP N200 as resulting from an anal-
ysis of the raw data Figure 6.2-Top and the mode ERM5 Figure 6.2-Bottom. Shown are
significant differences in early stimulus responses. N200 early response differences of ERP
N200 are mainly located in limbic lobe and parietal regions of the left hemisphere with sig-
nificance level α = 0.001. There are also significant differences in the frontal and occipital
regions at confidence level α = 0.01. Comparing these results with the outcome of an analy-
sis of mode ERM5, a much more focused significant difference in response activities to both
stimulus conditions is located in the parietal and occipital cortexes of both hemispheres at
a confidence level of α = 0.001. Some positive activity differences also show up in frontal
areas of the right hemisphere where the amplitude of the early N200 component of ERM5
is larger for the stimulus condition CT than for condition NCT .
These results of early N200 response of raw ERP and mode ERM5 are summarized in Table
6.2 . As can be seen from the table, all the results show negative significant differences
where the amplitude for the condition NCT is larger than for the condition CT . Early re-
sponses of raw ERP have been mainly observed for channels located in the limbic, parietal
and frontal areas of the brain, while a highly significant early response of ERM5 has been
observed for channels in the occipital, parietal and frontal areas of the brain.

6.1.2 Late Response

6.1.2.1 ERP component P100 at 120-180 [ms]

When it comes to consider late stimulus responses as seen in raw data sets (see Figure 6.3-
Top), a P100 response peak appears delayed by 70 [ms]. Corresponding source activity
differences between both stimulus modalities mainly show up in central areas. But if mode
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Figure 6.2 Early Response (150-210 ms) N200 ERP. Paired t-test values of significant po-
tential amplitude differences at electrodes are illustrated at a significance level as specified.
Views are axial, saggital and coronal. The left column shows the distribution on the scalp.
All 62 electrodes were used as entries to the data matrix Φ. (Top): Raw ERP N200 with
significance level α = 0.001 . (Bottom): ERM5 extracted from the ERP N200 with sig-
nificance level α = 0.001. Red color (positive paired T-test values) indicates that the ERP
amplitude for the stimulus condition CT is larger than for condition NCT while blue color
(negative paired T-test values) indicates that the ERP amplitude for the stimulus condition
NCT is larger than for condition CT .

Table 6.2 T-test statistics for early N200 ERP and ERM5 response. The table shows
coordinates of the most significant voxel of clusters. The sign of T-test values indicates
the differences between stimuli (′−′ NCT > CT , ′+′ CT > NCT ). T-values are given for
different confidence levels: (∗) : α = 0.01,(∗∗) : α = 0.001.
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ERM5 is considered instead, highly focused activity differences appear (see Figure 6.3-
Bottom). The significant activity differences are only seen in visual cortex of the right
hemisphere. Again, mode ERM5 shows a much more focused activity distribution than the
raw data set.

Figure 6.3 Late Response (120-180 ms) P100 ERP. Paired t-test values of significant po-
tential amplitude differences at electrodes are illustrated at a significance level as specified.
Views are axial, saggital and coronal. The left column shows the distribution on the scalp.
All 62 electrodes were used as entries to the data matrix Φ. (Top): Raw ERP P100 with sig-
nificance level α = 0.001 . (Bottom): ERM5 extracted from the ERP P100 with significance
level α = 0.001. Red color (positive paired T-test values) indicates that the ERP amplitude
for the stimulus condition CT is larger than for condition NCT while blue color (negative
paired T-test values) indicates that the ERP amplitude for the stimulus condition NCT is
larger than for condition CT .

Table 6.3 summarizes, for late response of the P100 ERP, coordinates, T-values of the test
statistics at different confidence levels, the Brodmann area and the anatomical area where
the significant differences are. The highly significant differences are located at frontal and
parietal regions (α = 0.001) while sub-lobar and limbic regions show significant differences
of (α = 0.01). When ERM5 is considered, significant results can be summarized in Table
6.3. As can be noted in the table, the significant results are focused in the occipital and
parietal regions at significance level (α = 0.001).

6.1.2.2 ERP component N200 at 200-260 [ms]

Considering the ERP N200 at the late response electrodes, significant activity differences
show up in occipital and parietal regions of the left hemisphere with negative paired t-test
values, but activity differences with slightly positive paired t-test values also appear in pre-



6.1 Results 81

Table 6.3 T-test statistics for late P100 ERP and ERM5 response. The table shows co-
ordinates of the most significant voxel of clusters. The sign of T-test values indicates the
differences between stimuli (′−′ NCT >CT , ′+′CT > NCT ). T-values are given for differ-
ent confidence levels: (∗) : α = 0.01,(∗∗) : α = 0.001.

frontal regions of the right hemisphere (see Figure 6.4-Top). Positive t-test values have been
observed for channels located in the frontal areas of the brain, while negative t-test values
have been observed for channels in the occipital and parietal area of the brain. Both positive
and negative t-test values of the ERP are slightly different at a significance level α = 0.05.
Again, if it comes to compare these results with those obtained by using only amplitudes of
mode ERM5, highly focused significant activity differences are located in frontal and occip-
ital areas with strongly positive paired t-test values while a clear focus of weakly negative
paired t-test values also appears in parietal areas (see Figure 6.4-Bottom). These results are
summarized in Table 6.4. As can be seen in the Table 6.4, positive differences of the condi-
tions responses are located in the parietal and occipital regions of the brain while negative
differences are detected in the frontal region.

Table 6.4 T-test statistics for late N200 ERM5 response. The table shows coordinates of
the most significant voxel of clusters. The sign of T-test values indicates the differences
between stimuli (′−′ NCT >CT , ′+′CT > NCT ). T-values are given for confidence level:
(∗) : α = 0.01.

These results generally comply, in terms of activated regions, with results from an analysis
of fMRI data which was taken jointly with our data [6][4]. This means that these neurons are
more active than others which also responded to the contour integration task. In [6][4], the
significant activation differences are highlighted in different regions like occipital, bilateral
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Figure 6.4 Late Response (200-260 ms) N200 ERP. Paired t-test values of significant po-
tential amplitude differences at electrodes are illustrated at a significance level as specified.
Views are axial, saggital and coronal. The left column shows the distribution on the scalp.
All 62 electrodes were used as entries to the data matrix Φ. (Top): Raw ERP N200 with sig-
nificance level α = 0.05 . (Bottom): ERM5 extracted from the ERP N200 with significance
level α = 0.01. Red color (positive paired T-test values) indicates that the ERP amplitude
for the stimulus condition CT is larger than for condition NCT while blue color (negative
paired T-test values) indicates that the ERP amplitude for the stimulus condition NCT is
larger than for condition CT .

parietal, temporal and frontal regions (the test has been done using the same p-value, α =
0.001, for all). The fact that, comparing both modalities, occasionally different brain regions
are involved in contour and non-contour processing renders the comparison suitable for
further analysis. Here, for example, with ERM5, the late response N200 is pronounced in
occipital, temporal and frontal regions, precisely as was found with an fMRI analysis in case
of volume intrinsic mode functions (VIMF1, VIMF2, VIMF3 and VIMF4) [4]. Figure 6.5
presents an illustrative comparison of a saggital view of VIMF1 and ERM5 extracted from
the late ERP N200. The VIMFS were extracted by using a new variant of a two dimensional
empirical mode decomposition called GiT-BEEMD [5]. Hence, the superior precision in
spatial localization of activity blobs corroborates the potential of EEMD/2DEEMD when
analyzing functional neuroimages.
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Figure 6.5 EEG compared to fMRI. Saggital view of left: the intrinsic mode VIMF1, as
extracted with GiT-EEMD from fMRI data, and right: data reconstructed from ERM5. The
latter was obtained from EEG data. The comparison concentrates on the late ERP N200.





Chapter 7

EMDLAB Toolbox

To serve the growing interest of the signal processing community in applying Empirical
Mode Decomposition (EMD) as a decomposition technique, a new toolbox, called EMD-
LAB, has been introduced. Traditionally, EEGs are studied at the level of event related
potentials (ERPs) which represent averages over a sufficiently large number of single trial
recordings. In case of multi-trial data, EMD is applied to data either trial by trial or as single-
trial response signal at each channel separately. Then all corresponding IMFs become aver-
aged over all trials to yield event-related modes ERMs. The main goal of EMDLAB toolbox
is to extract characteristics of either the EEG signal by IMFs or ERMs. Since IMFs reflect
characteristics of the original EEG signal, ERMs reflect characteristics of ERPs of the orig-
inal signal. In EMDLAB, data structure and visualization of the extracted modes is adopted
from the EEGLAB MATLAB toolbox [40], therefore it is suggested to use EMDLAB as a
plug-in for EEGLAB. Similarly, the toolbox is primarily designed for EEG data, although
both EEGLAB and EMDLAB can process MEG data as well. EMDLAB toolbox offers a
comprehensive range of EMD methods, including many popular designs like EMD, Ensem-
ble EMD (EEMD), weighted Sliding EMD (wSEMD), and Multivariate EMD (MEMD).
The latter three are extensions of the original EMD algorithm. All these methods have been
discussed in detail in Chapter 3. Contrary to other toolboxes dedicated to the analysis of
ERPs, EMDLAB is used to analyze the characteristic of ERPs based on the extracted modes.
This Chapter is organized as follows: Section EEGLAB and EMDLAB represents an overview
of EEGLAB toolbox and the developed toolbox, EMDLAB. Next, in Section Simulation

and Result we provide an example of EEG data trials drawn from an experiment of a con-
tour integration task [10][73] in order to illustrate the utility of EMDLAB. In this section,
the toolbox components, together with some screenshots from the graphical user interface
(GUI) are described.
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7.1 EEGLAB and EMDLAB Toolboxes

7.1.1 EEGLAB Toolbox

EEGLAB is an interactive toolbox, running under MATLAB, for processing continuous and
event-related EEG, MEG and other electrophysiological data [40]. It provides a graphical
user interface (GUI) which enables users to flexibly and interactively process their EEG
and other brain data using independent component analysis (ICA) and/or time/frequency
analysis (TFA). This GUI allows users processing their data and tuning their parameters.
EEGLAB provides plenty of methods for importing, visualizing, preprocessing data and
modeling event-related brain dynamics. Using the GUI of EEGLAB, users can apply ad-
vanced signal processing techniques to their data [40] such as:

• Multiformat data importing.

• Data visualization through interactive plotting functions.

• Data processing such as artifact removal, event and channel localization, component ex-
traction, time/frequency analysis and forward/inverse source modeling.

• Open source plug-in facility.

One of the strengths of EEGLAB is offering a programming environment which allows
users to distribute newly developed tools and algorithms through EEGLAB plug-in func-
tions. The latter can be downloaded and installed by other users and are available to them
within EEGLAB menus. The toolbox also has an important merit by providing an easy-to-
follow path to write flexible scripts. Each time a user performs any operation in the GUI,
the called function is automatically appended to the EEGLAB command history.

7.1.2 EMDLAB Toolbox

The proposed EMDLAB toolbox can be closely implemented into the EEGLAB toolbox
via the plug-in facility of the GUI. EMDLAB relies largely on the functions of EEGLAB
for importing data and visualizing results. EMDLAB offers additional signal processing
modalities – more specifically EMD and its derivates – to be integrated into EEGLAB for
the analysis of biomedical signals opening up the possibility to extensively process extracted
modes – comparable to the processing of independent components resulting from an ICA,
which is traditionally done with EEGLAB. EMDLAB also provides a GUI, which helps
the user to handle his data and perform signal processing tasks fitted to the EMD analysis.
It renders all implemented options immediately available without the need to resort to the
documentation. The GUI of EMDLAB is designed in such a way that it also can be used
as a teaching tool for beginners. EMDLAB uses the same approach as EEGLAB in a sense
that each time the user selects an operation from the menu the function called by MATLAB
- including all input parameters - is saved to the command history of the EEGLAB session.
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7.2 Simulation and Result

The basic functionality of the EMDLAB toolbox is to provide a plug-in to the EEGLAB
toolbox for analyzing EEG data with EMD or one of its variants implemented in the EMD-
LAB toolbox. The latter includes a group of matlab functions for applying EMD [80],
EEMD [236], wSEMD [47] and MEMD [170]. All these methods have been described
in detail in Chapter 3. EMDLAB relies heavily on EEGLAB’s functions for importing
recorded EEG data. Additionally, EMDLAB uses functions of EEGLAB to analyze and vi-
sualize the modes resulting from an EMD analysis. Corresponding code has been modified
to include, for example, plotting EEG waveforms of each mode or obtaining Event Related

Modes (ERMs) and related topographies, so-called scalp maps. Much like Event-Related

Potentials (ERPs), ERMs are obtained as an average of corresponding IMFs over a set of
trials.
Figure 7.1 shows a screen shot of the graphical user interface of the EEGLAB toolbox
which now contains an EMDLAB menu in case EMDLAB toolbox has been installed al-
ready. As illustrated in the figure, the EMDLAB menu includes two main parts:

• The first part is used to decompose signals using EMD or one of its variants.

• The second part contains various methods to analyze and visualize the extracted modes.

7.2.1 Run EMD

Figure 7.2 presents the main window of the EMDLAB toolbox. It is used to perform the
decomposition using different types of EMD. The system will automatically recognize if
the data set is epoched or continuous. In the former case, an information saying trial-by-

trial will show up in the main window. Otherwise, the information given will be continuous.
Before being decomposed into IMFs, data can be normalized to zero mean and unitary
standard deviation by checking the Normalize box. Normalization is advisable as it helps
to have the same scale for all single trial signals to be compared. Also through this window,
users are able to select any of 4 available EMD algorithms, namely EMD [80], EEMD [236],
wSEMD [47] and MEMD [170]. Any of these algorithms can be applied directly to each
single-trial EEG data set.
EMDLAB asks users to assign the number of modes J which the signal will be decomposed
into. This is needed for the EEMD algorithm to assure comparability of the extracted modes.
However, it also allows the user to deliberately integrate slow modes into the “residuum”,
i. e. the component J + 1. Additionally, this GUI allows the user to easily enter and tune
parameters of each EMD variant such as the variance of the added noise and the ensemble

number in case of EEMD, the window size and the step size in case of wSEMD and the
variance of the added noise and number of noise channels as well as the ensemble number

in case of MEEMD. Furthermore, the studied channels can be selected simply by clicking
the channels button, otherwise all channels will be considered by default.
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Figure 7.1 The main EEGLAB graphical user interface (GUI), with the EMDLAB

menu activated. The datasets menu presents a list of currently active EEG sets, and the
EMDLAB menu shows a list of currently active sets.

Figure 7.2 The EMDLAB main user interface. This window is used for EMD decomposi-
tion. Through this window, user can choose the data, algorithm and appropriate parameters
for the decomposition.

7.2.2 Analyze and visualize modes

After the signal decomposition has been performed, the resulting modes can be analyzed
further using the additional choices of the main EMDLAB menu:
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- Scrolling Modes: allows the user to visualize the extracted modes (IMFs). The user can
simply move between the different modes by using the drop-down menu of the combo
box aside of the “Select Mode” label (see Figure 7.3).

- Power Spectra and Maps: here the power spectra of the extracted ERMs can be plotted as
well as scalp maps of the power within chosen frequency bands. However, first the ERM
of interest should be selected as well as additional required inputs (see Figure 7.4).

- ERM Maps: here the dynamics of topographic maps of the ERMs can be visualized in
either 2D or 3D (see Figure 7.5).

- Mode Properties: single trial IMFs, related ERMs and their activity power spectrum can
be plotted directly by selecting the mode of interest first (see Figure 7.6).

- Hilbert-Huang / Fourier Transform: plotting the Hilbert-Huang spectrum as well as the
Fourier spectrum of a selected mode (see Figure 7.8).

- IMFs and ERM: it offers, for any chosen mode of interest, a color-coded image of all
single-trial IMFs and the related ERM (see Figure 7.12).

- ERM and Maps: this option allows plotting all channels of an ERM of interest plus their
topographic representation (scalp maps) at selected latencies (see Figure 7.13).

- Compare ERMs: this allows the user to compare ERMs of different datasets, i. e. recorded
under different conditions, using simple statistics (see Figures 7.14 and Figure 7.15).

(a) Data scrolling. (b) IMF3 scrolling.

Figure 7.3 Data and its extracted mode (IMF3) scrolling. Here, five data epochs (sepa-
rated by dashed lines) are plotted at 5 electrode sites (channel names on the left). The arrow
buttons scroll horizontally through the data.

In order to demonstrate the utility of the EMDLAB toolbox, we employ a small set of EEG
data trials collected during a contour integration task which have been explained in detail
in Chapter 4. In this sample data, only one stimulus condition with correct answer, contour

true (CT), was selected.
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Figure 7.4 The mode spectra and associated topographical maps. The figure shows the
power spectrum of the 62 channels and the scalp power maps at specific frequencies. Each
colored trace represents the spectrum of the activity of IMF4 of one data channel. The scalp
maps indicate the distribution of power at specified frequencies 5.9, 9.8 and 22.5 Hz.

7.2.2.1 Scrolling Modes

Figure 7.3 represents 5 epochs of 5 EEG channels and their IMF3 after applying EMD.
This scrolling data figure allows users to review data by visual inspection and navigate their
different modes.

7.2.2.2 Power Spectra and Maps

Here the user can exhibit the power spectra, and the related topographic maps, of all or
selected channels at specific frequencies. Figure 7.4 exemplifies the power spectra of all
channels for three different frequencies specified. Note that this offers the possibility to
illustrate the power spectra of pooled electrodes in certain brain areas like the occipital or
frontal regions of the brain, for example.

7.2.2.3 ERM Maps

Figure 7.5 exhibits a series of scalp maps representing activity distributions of ERM4 at
a selected series of trial latencies, i. e. every 20 [ms] from 50 [ms] to 270 [ms]. These
topographies represent the mapping of electrical activity across the surface of the brain at
different latencies. They show the brain regions which act in response to a stimulus.
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Figure 7.5 Topographical 2-D scalp maps of ERM4 at different latencies. They represent
distribution of the activity (given by the scaled color bar) over the head. Dots overlaid on
the scalp maps indicate channels.

7.2.2.4 Mode Properties

Figure 7.6 illustrates the properties of a specific mode, IMF4 for a specific channel O2. This
plot includes a scalp location of O2 channel, its activity power spectrum, and an ERP-image
plot of its activity in single-epochs. The leftmost topogram exhibits the scalp location of
channel O2. On the right, single trial EEG signals composing ERM4 of the EEG signal
recorded at channel O2 is illustrated. Channel signals are color-coded and the resulting
ERM4 signal is added at the bottom of the subfigure. Such a plot can be used to analyze
single trial IMFs of single channel data within an epoch across latencies. These data can
be plotted in any sorting order of interest. The bottom row in Figure 7.6 shows the activity
power spectrum of IMF4 of O2 channel at a frequency range between 2 and 50Hz.

7.2.2.5 Hilbert-Huang / Fourier Transform

Figure 7.7 presents the window which offers tools for spectral analysis of the extracted
modes. As EMD is most useful for non-stationary time series, time - frequency analysis is
most appropriate. As explained above, Hilbert - Huang spectra are obtained from a com-
bination of an EMD of a non-stationary time series with concomitant Hilbert transform of
the real valued signal. Note that the resulting IMFs represent wide-sense stationary sig-
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Figure 7.6 IMF4 properties of channel 10 (O2). Top left: The head plot (top left) con-
taining a red dot indicates the position of the selected channel. Top right: ERP image of
IMF4 , each horizontal line in this colored image representing IMF4 of a single trial in an
event-related dataset. The trace below the ERM image shows the average of the IMF4 of
a single-trial activity, i.e. the ERM average of the imaged data epochs. Bottom panel: the
activity power spectrum of IMF4 for channel 10.

nals, hence can be Fourier - transformed as well. EMDLAB has implemented both spectral
modalities. Figure 7.8 illustrates the use of these modalities employing the EEG signal used
throughout this discussion. While Hilbert - Huang spectra allow to track temporal changes
of each local mode, Fourier spectra represent their spectral content. Both modes of analy-
sis are shown within one window to ease visual comparison. Figure 7.8 illustrates Hilbert
and Fourier spectrum of several ERMs for an EEG single channel, top: Hilbert spectrum
explains the instantaneous frequency over the time and the different colors refers to the
instantaneous amplitude. Down: the Fourier spectrum for the same EEG single channel.
Fourier spectrum of each ERM was represented in different color. It is observed that first
ERMs in Hilbert and Fourier spectrum have high frequencies than the last ERMs which may
reveal that these ERMs mainly describes noise. It is not easily apparent from the plot of the
ERMs in time whether the function is likely to contain meaningful information. Taking
the Hilbert spectrum of the ERMs individually is helpful in identifying which of the modes
contributes most strongly to the overall signal energy. Also temporal changes in frequency
of the ERMs can be followed easily, while their Fourier spectrum only displays the spread
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Figure 7.7 Hilbert-Huang and Fourier spectrum user interface.

Figure 7.8 Hilbert and Fourier spectrum for ERM4-ERM7 of an EEG signal. Top:

Hilbert spectrum of selected ERMs, colorbar indicates the instantaneous amplitude of
ERMs. Down: Fourier Spectrum of selected ERMs, different colors refer to different ERMs.

in energy density and shows strong overlap of the different modes (see Figure 7.8). To fur-
ther clarify the use of the Hilbert - Huang Spectra, Figure 7.9 illustrates the variation of the
time-dependent frequency with time for all trials of one epoch. Hereby the user can choose
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Figure 7.9 Example of Hilbert spectrum image for some extracted modes. From left to
right, top to bottom: Hilbert spectrum image of IMF1-IMF6 of O2 single channel. It is a
color-coded image of IMF1-IMF6 of all single trials. colorbars indicate the instantaneous
frequency of each IMF image.

Figure 7.10 Example of Fourier spectrum image for some extracted modes. From left
to right, top to bottom: Fourier spectrum image of IMF1-IMF6 of O2 single channel. It is
a color-coded image of IMF1-IMF6 of all single trials. colorbars indicate the amplitude of
each IMF image.

the channel as well as the number of IMFs to be shown. Frequency is color-coded, while
the related plot exhibited in Figure 7.10 shows the corresponding variation of the amplitude
of the IMFs during each trial. Here the IMF amplitude is color-coded as shown. Last but
not least Figure 7.11 illustrates the variation in time of the frequency of the specified IMF
for all trials within a certain frequency band selected, and the related variation of the IMF
amplitude as a function of the frequency for all trials of one epoch.



7.2 Simulation and Result 94

Figure 7.11 Hilbert and Fourier spectrum image of IMF5 of O2 channel. Left: Hilbert
spectrum image of IMF5 at selected frequency [1 12]. Right: Fourier Spectrum image of
IMF5 at the same frequencies.

7.2.2.6 IMFs and ERM

This option offers a plot of the activity of a prespecified extracted IMF for all trials within
an epoch. Alternatively the user can select certain trials instead of choosing all trials. Also
shown is the ERM resulting from an average of the specified IMF over all trials. Such trials
and ERMs can be illustrated for each of the electrodes involved. The response activity is
encoded by a color bar exhibited in Figure 7.12. Note that, similar to EEGLAB, the zero
indicates the stimulus onset.

7.2.2.7 ERM and Maps

Figure 7.13 overlays time courses of all ERM4 modes extracted from 62 EEG channel
recordings. Related scalp maps can be illustrated at selected latencies as well. Each of these
traces plots the ERM4 at one channel. The scalp maps shown represent “snapshots” of the
topographic distribution at various latencies 50 [ms],100 [ms],150 [ms],200 [ms] during the
average ERM4 time course.

7.2.2.8 Compare ERMs

This option offers an overview of specified ERMs for the different conditions as well as
their differences at each channel as shown in Figure 7.14. In addition, the user can choose
showing related simple statistics like standard deviations etc. By simply clicking on one of
the channels, the user gets to a more detailed view of the ERMs shown at a specific channel
selected as is illustrated in Figure 7.15 for channel O2. This provides especially an clear
illustration of how the estimated ERMs differ for the two conditions studied.



7.2 Simulation and Result 95

Figure 7.12 Plot of ERM5 image of O2 channel. It is a rectangular colored image in which
every horizontal line represents activity of IMF5 of a single experimental trial. The signal
below the image shows the ERM average of the imaged IMF5 of data epochs.
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Figure 7.13 ERM4 waveforms of 62 channels and their scalp maps at specified laten-

cies. Top: scalp maps show the topographic distribution of average potential of IMF4 at
50,100,150,200ms. Down: each trace in the waveforms plots the averaged ERM4 at one
channel.
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Figure 7.14 62 different ERM plots . Each plot represent ERM5 of two datasets: contour
and non-contour conditions and the difference between them.

Figure 7.15 ERM5 of contour and non-contour conditions and the difference between

them for O2 channel.





Chapter 8

Conclusion

In this investigation we used a data-driven approach to analyze EEG data from 18 subjects
participating in a perceptual learning task. A contour and a non-contour stimulus were pre-
sented within the same trial in fast succession, and subjects were asked to indicate their
presence CT (contour true) or absence NCT (non-contour true). An EEMD method allows
to extract component signals which show differences between stimulus conditions with clear
statistical significance. The analysis has been performed in two different ways: either us-
ing the raw data ERPs or EEMD intrinsic modes called event related modes (ERMs). Most
notably ERM5 exhibits very pronounced differences between contour and non-contour stim-
ulus responses. Signals have been pooled according to a clustering scheme that divides brain
electrodes according to the latencies of the stimulus responses. Early responses are seen in
occipital and parietal areas of the brain, while late responses are located in primary visual,
medio-temporal and frontal areas. The pool of electrodes in the central part of the brain even
exhibits both early and late responses in pronounced double peak structures. Together these
findings provide independent evidence of a view of extended neuronal networks involved in
visual processing, especially contour integration.

Another line of investigation concentrated on identifying related sources of neuronal acti-
vation via inverse modeling. It explored the utility of combining an EEMD analysis with
a source localization scheme, more specifically an sLORETA source estimation. Note that
EEMD has been applied before averaging over trials. Statistically significant differences be-
tween the two stimulus conditions have been seen mainly with ERP components P100 and
N200. The previous study [10] showed that ERM5 exhibits very pronounced differences
between contour and non-contour stimulus responses, hence only ERM5 has been used in
the analysis. As obtained from ERM5, earlier differences (before 210ms) in source activity
between contour and non-contour occurred mainly in occipito-parietal areas, were lateral-
ized to the right hemisphere and showed higher power in the non-contour compared to the
contour condition. Later differences (200−260ms) occurred also in primary visual areas, in
both hemispheres and with higher power in the contour compared to the non-contour condi-
tion. The latter result fits well with the view that contour integration relies on a top-down
flow of information from higher visual areas with large receptive fields into primary visual
cortex. The feedback would enhance activity of neurons coding Gabor stimuli at relevant
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locations and so favor their integration [216][179]. The former result is partly unexpected
in that lower source activity was for contours compared to non-contours. It is possible that
the difference reflects the reduced effort of maintaining grouped compared to ungrouped
visual input in working memory [86][215]. In any way, the fact that the difference showed
up in right hemisphere complies with the previous finding that contour grouping is a right-
lateralized brain function [214]. The results of this study which focuses on identifying
related sources of neuronal activation clearly via inverse modeling of EEG data were ex-
tremely well matched with the previous ones in [10] that discussed the forward problem on
the same data. Results showed that EEMD method allows to extract components, i.e ERM5
which present clearer spatio-temporal differences between the two stimulus responses, CT

and NCT compared to the ERPs of the original signals.

In this thesis, we also presented a new toolbox, called EMDLAB, which allows users to con-
veniently analyze non-stationary time series data sets, especially EEG data, with a heuristic
signal decomposition techniques called Empirical Mode Decomposition. The latter decom-
poses any signal locally without imposing additional conditions like orthogonality, indepen-
dence or sparseness. The new toolbox EMDLAB is provided as a plug-in to the well-known
EEGLAB toolbox and offers an alternative decomposition technique in four different vari-
ants. Beneath plain EMD, a noise-assisted variant, named Ensemble EMD is offered which
is suitable as long as the data size is small enough to be stored in main memory. For very
long time series, the weighted sliding EMD is more appropriate. Finally, a simultaneous
multi-channel analysis can be pursued employing a multi-variate EMD variant. The plug-
in allows to use any data visualization tool provided by the EEGLAB toolbox as well as
statistical data analysis techniques provided there.
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