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Genetic influence on age-related macular degeneration:
AMD is a genetically complex disorder of the photoreceptor-
retinal pigment epithelium (RPE)-Bruch’s membrane-
choriocapillaris complex [1-4]. Early age-related macular de-
generation (AMD) is characterized by areas of increased pig-
ment or hyperpigmentation (in the outer retina or choroid) and/
or areas of depigmentation or hypopigmentation of the RPE,
associated with intermediate or soft drusen [5]. Late AMD
includes geographic atrophy (GA) and choroidal
neovascularization (CNV). The latter includes any of the fol-
lowing features: subretinal neovascular membranes,
intraretinal or subretinal scars, RPE and neurosensory retinal
detachments, hard exudates, and retinal hemorrhages [5]. Late
AMD is now the most common cause of untreatable blind-
ness in the Western world, with a prevalence of 0.05% before
the age of 50 years and 11.8% after 80 years of age [6]. Unless
effective methods for prevention and treatment are found, the
prevalence of AMD is expected to double in the coming de-
cades due to an expected demographic shift towards aging
populations [6]. The genetic influence on AMD is well known
from family and twin studies [7-14]. First-degree relatives of
patients with AMD, as compared with first-degree relatives in

families without the disorder, are at increased risk (odds ratio,
2.4) for the condition [10], are affected at a younger age
[13,15], and have an increased lifetime risk of late AMD (risk
ratio, 4.2) [13].  In order to determine the relative contribu-
tions of heredity and environment to the etiology of AMD,
Seddon and co-workers performed a population-based twin
study of AMD including both concordant/discordant and
monozygotic/dizygotic sibling pairs [16]. Heritability estimates
for AMD were significant and ranged from 46% to 71%. These
results underscore the need to pursue the search for AMD-
related genes, despite the initial difficulties encountered with
genetic analyses of a complex disease with late onset.

Analysis of candidate genes for age-related macular de-
generation:  The progress made within the last decade by study-
ing hereditary retinal dystrophies has offered some investiga-
tive leads to further study AMD genetics. The similarities that
exist between the phenotypic expression in the hereditary early
onset diseases and some of the later onset complex traits as
seen in AMD suggests a potential involvement of such candi-
date genes in AMD pathogenesis. In addition, candidate genes
were identified based on linkage study results (positional cri-
teria) and knowledge about gene function (functional crite-
ria). However, this approach has not led to a breakthrough
(with the exception of complement factor B (FB) and comple-
ment component 2 (C2), see below). Table 1 summarizes can-
didate genes with negative (i.e. no involvement in AMD patho-
genesis) results to date [17].
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For other genes, some evidence of an association with
AMD has been shown. Genes with at least one result of posi-
tive association are summarized in Table 2 [17]. However,
variations in those genes either account for only a small frac-
tion of AMD susceptibility or the results are inconclusive.

Fibulin5 represents an example of genes that probably
account for only a small fraction of genetic susceptibility to
AMD. Stone and colleagues found that the disruption of a gene
of the same gene family, EFEMP1 (Fibulin3), is linked to
Malattia leventinese/Doyne honeycomb retinal dystrophy [18].
This disorder is characterized by confluent drusen accumula-
tion beneath the RPE, an early hallmark of AMD. EFEMP1 is
an extracellular matrix protein. The interaction with other ex-
tracellular matrix proteins, such as adhesion molecules, col-
lagens, elastins, fibronectins, laminins, tenascins, hemicentins
and vitronectins, suggests an entire group of genes as possible
candidates for involvement in drusen formation [18]. Later,
the same group systematically evaluated five fibulin genes in
a large series of patients with AMD. They demonstrated a sig-
nificant association between sequence variations in fibulin5
and AMD. However, missense mutations in fibulin5 were es-
timated to account for only 1.7% of patients with AMD [19].

The photoreceptor cell-specific ATP-binding cassette
transporter (ABCA4) gene was identified in 1997 and found to
be mutated in patients with Stargardt’s macular dystrophy [20].
ABCA4 has been evaluated as a possible cause for other dis-
eases with similar pathology in the macula including AMD.
Two studies by Allikmets and co-workers provided evidence
for an association between ABCA4 polymorphisms and AMD
[21,22]. While other studies provided support [23,24], a num-
ber of studies failed to confirm an association of ABCA4 with
AMD [25-32]. The number of patients and controls included
in the latter studies appears large enough to rule out a major
contribution of mutant ABCA4 alleles in the predisposition to
AMD; however, they may not be sufficient to allow minor
effects to be discerned. This makes it extremely difficult to
determine the significance of individual mutant ABCA4 alle-

les in the predisposition to AMD, particularly those which are
present in low frequency in the general population. The phe-
notypic similarities between typical juvenile Stargardt’s macu-
lar dystrophy and some forms of late atrophic AMD suggest
that refined phenotyping may be of value in discerning be-
tween the two conditions. Figure 1 shows fundus
autofluorescence images of a patient with Stargardt’s macular
dystrophy (age, 17 years) and a patient with GA due to AMD
(age, 71 years).

The impact of fundus autofluorescence imaging on more
precise phenotyping and its potential as a prognostic marker
has been demonstrated previously [33-35]. In vivo fundus
autofluorescence imaging allows visualization of metabolic
changes on the level of the RPE cell monolayer [36-39] and
therefore provides information beyond conventional fundus
photography or fluorescein angiography. In essence, dominant
fluorophores in lipofuscin granules of the RPE cell monolayer
are recorded, whereby lipofuscin accumulates with age and in
association with various complex and monogenetic retinal dis-
eases. Recently, it has been shown that by means of fundus
autofluorescence imaging different phenotypic patterns of
abnormal fundus autofluorescence in the junctional zone of
late atrophic AMD can be identified [34]. Moreover, there was
a high degree of intra-individual symmetry in the fundus
autofluorescence pattern in the two eyes of individual patients,
but a high degree of inter-individual variability which may
suggest genetic heterogeneity. In a preliminary analysis, seven
AMD patients exhibiting the fundus autofluorescence pattern
“diffuse-fine granular with peripheral punctate spots” (resem-
bling Stargardt’s macular dystrophy; age of onset, 50-84 years)
and 14 GA patients exhibiting other fundus autofluorescence
patterns were screened for ABCA4 mutations. In the first group,
all patients showed at least one mutated allele, and in two pa-
tients, two mutated alleles were detected. In the control group
of 14 AMD patients exhibiting GA, but a different pattern of
abnormal fundus autofluorescence, only two patients showed
one mutated allele [40]. We suggest that this distinct AMD
phenotype exhibiting “diffuse-fine granular with peripheral
punctate spots” reflects genetic alterations in ABCA4 and we
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TABLE 1. CANDIDATE GENE STUDIES FOR AGE-RELATED MACULAR

DEGENERATION

Chromosome                    Gene
----------   ---------------------------------------
   1         ADPRT1, EPHX1, GLRX2, LAMC1,
             LamC2, LAMB3, OCLM, PRELP, RGS16, TGFB2
   2         EFEMP1 (Fibulin 3), GPR75,
             IL1A, Fibulin 2, GPX1
   3         IMPG2
   6         RDS
   7         AhR
   8         NAT2
  10         CYP2E1
  11         CAT, Fibulin 4, VMD2
  12,        A2M, MGST1
  14         CKB
  15         CYP1A1, CYP1A2
  17         APOH, ITGB4
  22         CYP2D6, Fibulin 1, TIMP3

Genes with negative results to date. For references, see Haddad et al.
[17].

TABLE 2. CANDIDATE GENE STUDIES FOR AGE-RELATED MACULAR

DEGENERATION

Chromosome                Gene
----------   -----------------------------
   1         ABCA4, HEMICENTIN (Fibulin 6)
   3         CX3CR1
   6         HLA genes, VEGF, ELOVL4, SOD2
   7         PON1
   9         VLDLR, TLR4
  12         LRP6
  14         Fibulin 5
  17         ACE
  19         APOE
  20         CST3, MMP9

Genes with at least one positive result to date. For a comprehensive
review of these genes including references, see Haddad et al. [17].
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speculate this distinct phenotype represents late onset
Stargardt’s macular dystrophy mimicking atrophic AMD.
These preliminary data suggest that refined phenotyping is
paramount in dissecting the role of candidate genes.

Linkage and association studies in age-related macular
degeneration:  Over the past several years, researchers have
carried out both linkage studies and association studies in an
attempt to identify the genomic regions containing suscepti-
bility loci for AMD. While linkage studies search for genetic
markers that segregate with the disease in a familial constella-
tion, association analyses identify genetic marker alleles that
either cause disease or are in strong linkage disequilibrium
(LD) with the disease-causing alleles.

Fisher and colleagues applied the genome-scan meta-
analysis (GSMA) method that allows linkage results from sev-
eral studies to be combined, providing greater power to iden-
tify regions which show only weak evidence for linkage in
individual studies [41]. This method has been successful in a
number of complex diseases and was applied to six published
AMD genome-wide linkage scans: (1) Abecasis et al. [42],

(2) Iyengar et al. [43], (3) Majewski et al. [44], (4) Schick et
al. [45], (5) Seddon et al.  [46], and Weeks et al. [47]. For each
study, 120 genomic bins of 30 cM were defined and ranked
according to maximum evidence for linkage within each bin.
Bin ranks were weighted according to study size and summed
across all studies. A high summed rank indicates a region with
consistent evidence for linkage across studies. The strongest
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Figure 1. Phenotyping by means of fundus autofluorescence imaging.  Fundus autofluorescence images obtained with a cSLO (Heidelberg
retina angiograph, HRA 2, Heidelberg Engineering, Dossenheim, Germany) according to a standard operating procedure. Left: Patient diag-
nosed with Stargardt’s macular dystrophy (age, 17 years); right: patient diagnosed with atrophic AMD (GA) and a fundus autofluorescence
pattern “diffuse-fine granular with peripheral punctate spots” according to Bindewald et al. [34] (age: 71 years).

Figure 2. Two-locus (LOC387715 and CFH) genotype specific dis-
ease risks.  Two-locus genotype specific disease risks for the two
variants: LOC387715 (A69S) and CFH (Y402H) according to Rivera
et al. [57].

TABLE 3. PREVALENCE OF THE HISTIDINE ALTERATION IN FIVE

DIFFERENT POPULATION FROM DIFFERENT ETHNICITY

      Caucasian    African-American    Hispanic      Japanese       Somali
--   -----------   ----------------   -----------   -----------   -----------
C    0.34 (0.03)   0.35 (0.04)        0.17 (0.03)   0.07 (0.02)   0.34 (0.03)
T    0.66 (0.03)   0.65 (0.04)        0.83 (0.03)   0.93 (0.02)   0.66 (0.03)
CC   0.07 (0.02)   0.11 (0.03)        0.05 (0.02)   0.02 (0.02)   0.07 (0.02)
CT   0.54 (0.04)   0.48 (0.06)        0.25 (0.05)   0.09 (0.03)   0.55 (0.04)
TT   0.39 (0.04)   0.41 (0.06)        0.70 (0.05)   0.89 (0.03)   0.38 (0.04)

Total      148          75                 81           82           128
patients

Values are frequency (standard error) [94].
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evidence for an AMD susceptibility locus was found on chro-
mosome 10q26 where genome-wide significant linkage was
observed (p=0.00025). Several other regions met the empiri-
cal significance criteria for bins likely to contain linked loci
including adjacent pairs of bins on chromosomes 1q, 2p, 3p,
and 16. Several of the regions identified here showed only
weak evidence for linkage in the individual studies. The analy-
sis performed by Fisher and colleagues may help prioritize
regions for future positional and functional candidate gene
studies in AMD.

Complement factor H gene:  Genome-wide linkage analy-
ses and the genome-scan meta-analysis of Fisher and col-
leagues had pointed to a locus on 1q25-q31 [42-44,46-48].
Case-control studies recently identified complement factor H
(CFH) as the responsible gene [49-52]. The CFH Y402H vari-
ant, located within a binding site for C-reactive protein (CRP),
has consistently been shown to reveal strong association with
AMD [53-55].

In a population-based prospective design on a total of 5681
individuals, investigators of the Rotterdam Eye Study have
shown that CFH is implicated in all stages of AMD from early
hallmarks such as drusen to vision-disabling late AMD [56].
The risk increases with each successive stage to an odds ratio
of 11.0 for late AMD. It was calculated that individuals ho-
mozygous for the CFH Y402H polymorphism have a 48%
risk of developing late AMD by age 95 years while this risk
does not exceed 22% for non-carriers. Interestingly, comple-
ment factor H was associated with both late AMD subtypes
(CNV and GA) in this study. Homozygous CFH Y402H car-
riers had a higher risk of bilateral than of unilateral late AMD,
and risks of GA and mixed AMD were slightly but not signifi-
cantly higher than neovascular AMD. This is in agreement
with other studies that reported higher frequencies of CFH
Y402H carriers in persons with GA [54,57] and one study that
suggested a lower risk of GA for a CFH haplotype containing
the non-risk allele [52]. In a comprehensive survey including
variants from three gene loci (CFH, LOC387715/HTRA1, and
C2-FB), Maller and co-workers did not find any association
with phenotypic subclassifications of late AMD despite good
power to detect association [58]. These findings suggest that

the high risk for both subtypes of late AMD signifies a com-
mon pathogenesis involving the complement system.

CFH is an important regulator of the complement sys-
tem. Three enzyme cascades exist (see e.g. figure 5 in [59]):
the classical complement pathway, initiated by antigen-anti-
body complexes and surface-bound CRP; the lectin pathway,
turned on by mannose groups of microbial carbohydrates; and
the alternative complement pathway, activated by surface-
bound C3b. The pathways converge at the point where C3 is
cleaved into C3a and C3b by C3 convertase, which initiates
C5 convertase, finally resulting in the formation of the mem-
brane attack complex with the terminal components (C5b-C9).
CFH specifically inhibits the alternative complement cascade
but also regulates the common pathway. It binds C3b and acts
as a cofactor in the proteolysis of C3b by factor I, resulting in
an inactive C3b molecule. This prevents the production of C3
convertase in the alternative cascade as well as the production
of C5 convertase in the common pathway. As a result, CFH
interferes with the progression of the entire cascade [60-63].
Indeed, Hageman and co-workers showed that CFH and C3b/
iC3b colocalize within drusen, suggesting that these regions
represent complement activating surfaces within drusen and
Bruch’s membrane [52,63]. A recent study suggests that there
may be multiple susceptibility alleles in the CFH genomic re-
gion with non-coding CFH variants possibly playing a role in
disease susceptibility [64]. In this study, Li and co-workers
examined the impact of 84 polymorphisms in a region of 123
kb overlapping the CFH gene on disease susceptibility in 544
unrelated affected individuals and 268 unrelated controls. As
expected, strong association was observed between disease
status and the Y402H-encoding variant (rs1061170). Unex-
pectedly, 20 other variants showed even stronger association.
The strongly associated SNPs fell into two LD groups. The
Y402H-encoding variant was included in one of the LD groups.
The three SNPs showing strongest association were a syn-
onymous SNP in exon 10, rs2274700, and two intronic SNPs,
rs1410996, and rs7535263. The authors conclude that mul-
tiple haplotypes in the genomic region seem to modulate the
AMD disease risk and that there are multiple disease-predis-
posing variants. Because the polymorphisms showing the
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Figure 3. Progression of geographic atrophy imaged by fundus autofluorescence.  Fundus autofluorescence images obtained in 12-month
intervals in an AMD patient with a cSLO (Heidelberg retina angiograph, HRA classic and HRA 2, Heidelberg Engineering, Dossenheim,
Germany). A large kidney-shaped area of GA was present at baseline (left) corresponding to decreased fundus autofluorescence (dark area).
Recovered in yearly intervals, the area of the central atrophic area increased [80].
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strongest association with AMD susceptibility appear not to
effect a change in the CFH protein, the authors speculate that
these variants may be important in regulating the expression
of CFH, or other nearby complement genes or both [64].

The region which includes the CFH gene cluster also con-
tains numerous CFH-like genes (e.g. CFHR1, CFHR2,
CFHR3, CFHR4, and CFHR5), which reveal high sequence
conservation making any analysis difficult. Hughes and col-
leagues genotyped polymorphisms spanning the CFH gene
cluster in 173 individuals with severe neovascular AMD and
170 controls and found a common haplotype, GTATAAAG,
associated with decreased risk of AMD which was present on
8% of chromosomes of AMD patients and 20% of chromo-
somes of controls [65]. They found that this haplotype carried
a deletion of CFHR1 and CFHR3. Protein blot analysis of se-
rum samples from individuals homozygous for each haplo-
type confirmed the absence of CFHR1 and CFHR3 protein.
CFHR1 and CFHR3 proteins usually are present in the circu-
lation and have the potential to compete with CFH for C3
binding. Possibly, CFH produced from full-length transcripts
is beneficial regarding AMD-risk and other CFH-related pro-
teins interfere with regulation of complement activity [65].

It has long been known that the prevalence of AMD var-
ies widely among different ethnicities [66-70]. Moreover, the
phenotypic spectrum of AMD among these groups is quite
heterogeneous [71-75]. For example, in Japanese, soft drusen
are only a moderate risk indicator (18%) for developing CNV
compared with Caucasians, whereas serous pigment epithe-
lial detachments are a very common high risk indicator (58%)
for developing CNV in Japanese [75]. To explore the ethnic
variation of the frequency of the CFH Y402H sequence vari-
ant, Grassi and co-workers analyzed the frequency of the risk
(C) allele in populations from five different ethnicities. Widely
divergent frequencies were noted between some of these popu-
lations (7-35%; Table 3).

These data suggest that there are other as yet unidentified
genetic factors important in the pathogenesis of AMD. These
factors may operate independently or mitigate the affects of
the CFH Y402H sequence variant. Specifically, the findings
suggest the presence of additional genetic risk factors for AMD
in Japanese individuals.

LOC387715/HTRA1: Two recent reports have highlighted
the LOC387715/HTRA1 locus within 10q26 as a second ma-
jor locus contributing to AMD pathogenesis [57,76]. Rivera
and co-workers found the strongest association over the
LOC387715 gene conferring a 7.6-fold increased risk for in-
dividuals homozygous for a potential non-synonymous cod-
ing SNP, Ala69Ser. These findings were fully replicated in an
independent case-control cohort. Furthermore, they replicated
the strong association of AMD with the Y402H coding vari-
ant in CFH. The results indicate an independent contribution
of the effects of risk alleles at the LOC387715 (Ala69Ser) and
CFH (Tyr402His)-gene locus to the overall disease risk (Fig-
ure 2). Very recently, the findings have been independently
replicated by others [58,77-79].

Patient groups of early high-risk AMD and late AMD were
not different in risk allele distribution in LOC387715. This

was also true for GA and neovascular AMD. So far, it is un-
known, whether risk alleles at LOC387715/HTRA1 as well as
CFH correlate with severity stage of AMD or with a clinical
outcome measure that would be a target of therapeutic inter-
vention. Based on longitudinal data of serial fundus
autofluorescence images from patients with late atrophic AMD,
it has become feasible to determine the progression of GA in
individual patients (Figure 3) [35,80].

The GA progression rate represents both a biologically
based quantitative phenotype of late AMD and the most rel-
evant target for therapeutic intervention. In a preliminary analy-
sis, we determined whether the risk alleles of both CFH and
LOC387715/HTRA1 are correlated with the progression of GA
in 207 AMD patients with GA (without any signs of CNV).
We found that the risk allele distribution of Y402H in CFH
and A69S in LOC387715/HTRA1 for patients with GA is simi-
lar to those previously reported for pooled AMD samples.
However, no correlation was found between the rate of pro-
gression of GA and CFH and/or LOC387715/HTRA1 geno-
type [81]. These data suggest that both genes contribute to the
increased risk of late AMD largely or entirely through their
impact on precursors (such as drusen and/or other RPE/Bruch’s
membrane changes). This may have implications for thera-
peutic interventions in patients with late AMD, because the
attempt to modify the respective gene products may not be
promising [81].

DeWan and colleagues performed a genome-wide asso-
ciation study in 96 Chinese patients with neovascular AMD
and 130 controls and confirmed a significant association with
the A69S (rs10490924) polymorphism at the LOC387715/
HTRA1 locus within 10q26 [82]. A more telomeric SNP,
rs11200638, was identified to be in almost complete linkage
disequilibrium with rs10490924. SNP rs11200638 is localized
in the putative GC-rich promoter region of the HTRA1 gene
potentially modulating expression levels of the gene [82]. Yang
and co-workers provided similar findings in 581 Caucasian
AMD patients and 309 controls [83]. DeWan et al. conclude
that HTRA1 influences specifically CNV formation in AMD
pathogenesis [82], although this conclusion seems unsubstan-
tiated as exclusively wet AMD was included in their study.
Unfortunately, the study of Yang et al. does not provide any
information about the study phenotypes [83]. Obviously, such
studies would considerably benefit from more extensive phe-
notypic analyses.

Factor B/complement component 2:  Recent findings have
demonstrated the validity of the candidate gene approach given
the pre-existing knowledge that the complement system plays
a significant role in AMD pathogenesis. Gold and colleagues
reported an association with two other genes that encode regu-
latory proteins acting along the same biological pathway as
CFH [84]. These two genes are factor B (BF) and comple-
ment component 2 (C2), located 500 base pairs apart on chro-
mosome 6p within the major histocompatibility complex class
III region. The reported association was found in a sample of
898 patients with various forms of AMD and 389 controls.
There was a common risk haplotype across BF and C2 (OR,
1.32), as well as two protective haplotypes (OR, 0.36, and

©2007 Molecular VisionMolecular Vision 2007; 13:196-205 <http://www.molvis.org/molvis/v13/a23/>

200



0.45, respectively) [84]. These data have been independently
replicated [58].

Backing the statistical data, BF and C2 expression was
shown in the neural retina, RPE and choroid. BF protein was
present in ocular drusen and Bruch’s membrane and less promi-
nently in the choroidal stroma. The distribution of BF was
similar to that of C3, both of which are similar to that of CFH
and C5b-9 [84].

Gene-gene and gene-environment interaction in AMD:
In a comprehensive survey of variants at CFH, LOC387715/
HTRA1 and C2-FB in 2.172 unrelated individuals (1.238 af-
fected individuals and 934 controls), Maller and co-workers
developed a risk model for AMD based on five validated com-
mon variants. In contrast to the modest elevation in overall
risk to siblings (two- to sixfold [9,10,13]), the predictive value
of specific genotype combinations was notable. For example,
approximately 10% of the population have a 40-fold greater
risk and 1% (high-risk homozygotes at all three loci) have a
more than 250-fold increased risk compared to baseline which
is observed for individuals carrying the lowest-risk genotypes
at all three loci (approximately 2% of the population) [58].
When evaluating the role of gene-gene interaction (epistasis)
among the five common variants at the three loci (CFH,
LOC387715/HTRA1, and C2-FB), statistically significant non-
additive interactions were not found despite excellent power
to detect epistasis. Specifically, a model in which the risk al-
leles at the three loci act independently (individual risks are
multiplied to generate a combined risk profile) provided a
better fit of the observed data than the same model with the
inclusion of interlocus interference [58]. Similarly, the study
of Rivera et al. indicated that the two risk alleles, CFH Y402H
and LOC387715 A69S, independently contribute to disease
risk. Fitting an interaction model between CFH and
LOC387715, no evidence of epistasis was found [57]. Conley
et al. also found an independent multiplicative effect of CFH
and LOC387715 without significant interaction in two inde-
pendent cohorts [78].

Several environmental factors have been identified over
the past decade including cigarette smoking [85-88], higher
body mass index (BMI) [89,90], and nutritional factors [91,92],
with smoking being the most consistent in several population
based studies worldwide [85,86]. So far, however, there are
inconclusive data on gene-environment interactions. In an ex-
tended collection of 848 AMD cases, no significant differ-
ences in risk allele frequency for either CFH or LOC387715
were detected between smokers and non-smokers despite sub-
stantial power by Rivera et al. [57], whereas Schmidt and co-
workers observed significant evidence for a statistical inter-
action between the LOC387715 A69S variant and a history of
cigarette smoking [77]. Despriet and colleagues found that
the combined effect of homozygosity for the Y402H variant
in CFH and smoking exceeds the sum of the independent ef-
fects. Compared with no exposure, smoking increased the risk
of AMD 3.3 times, the presence of two CFH Y402H alleles
increased the risk 12.5 times, while the combination of both
determinants increased this risk 34-fold [56]. In contrast,
Conley and co-workers excluded a significant interaction of

risk allele distribution in CFH or LOC3897715 and cigarette
smoking [78]. Similarly, Seddon and co-workers did not find
a statistically significant interaction between CFH genotype
and cigarette smoking, but the susceptibility to late AMD was
modified by the body mass index (BMI; normal values ac-
cording to WHO, 2000 EK IV: 18,5 kg/m2; -25,0 kg/m2;).
Compared with lean individuals with the CFH TT genotype,
an increased risk of AMD among these lean individuals with
BMI lower than 25 was found only for the CC homozygotes.
For heavier persons with BMI greater than 25, the risk varied
from a non-significant null or slightly protective association
for the TT genotype, to a moderately high 2.2-fold increased
risk for the heterozygotes, and a very high 5.9-fold increased
risk for the CC homozygote state. This interaction between
BMI and genotype related risk of late AMD was statistically
significant for the CT versus TT genotype [93].

Conclusions:  Genetic studies have convincingly demon-
strated that there exist common alleles of substantial effect on
AMD pathogenesis. The finding of such common alleles with
substantial effects makes predictive DNA testing a tempting
option although the mechanisms and thus the biological con-
sequences conferred by the common risk alleles at the respec-
tive gene loci are not yet understood. Consequently, the knowl-
edge of being carrier of risk alleles is currently not matched
by adequate options for preventive strategies or possible treat-
ment modalities.

The finding that variants within CFH and BF are respon-
sible for a large fraction of AMD cases (at least in Cauca-
sians) suggests an important role of the alternative comple-
ment pathway in the pathobiology of AMD and further
strengthens the notion that inflammation has a major role in
this common disease [84].

So far, the identification of genetic factors has not resulted
in therapeutic strategies to modify the disease. The data on
gene-environment interactions are inconclusive and gene-gene
interactions have not been observed despite substantial power.
Other genetic factors most likely have yet to be discovered.
These, in combination with environmental variables, will fur-
ther stratify individual risk more accurately. A correlation be-
tween the common genetic risk variants and clinical outcome
measures (e.g. the progression of GA) has not been observed.
The role of rare variants is still obscure. Especially for the
latter, refined phenotyping may be paramount.

Strategies to elucidate the genetic influence on AMD may
include (1) the search for additional susceptibility genes, (2)
the examination of the role of the known common variants
(especially at CFH and LOC387715/HTRA1), (3) the investi-
gation of gene-environment and gene-gene interaction and (4)
the identification of modifying genes. To achieve these goals,
large cohorts of phenotypically well characterized subcatego-
ries will be needed. Biologically based quantitative
phenotyping is required to increase the power of linkage and
association studies. Because AMD is a complex disease, indi-
vidual gene effects might only be detected within subgroups
of patients with specific environmental exposures. Environ-
mental factors for stratification include cigarette smoking and
body mass index. Also, a given gene variant might only result
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in a detectable phenotype when acting in combination with
additional susceptibility alleles either additively or multipli-
catively. Additional work exploring these types of interactions
should bring us closer to the genes influencing the onset and
progression of AMD.
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