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1. Introduction

Whenever an option writer hedges an option, their net payoff is given by the
option’s premium minus the tracking error of the hedging activity. For European
options and in a complete market, there is one hedging strategy that will turn the
random future tracking error into a constant known at inception, rendering the pricing
problem trivial. In reality, markets are neither complete nor friction-less and there
are options and other claims whose payoff can be modified by the holder. Thus,
in practice, the tracking error is random and can depend on a time-continuum of
decisions by both the writer (deciding whether to change the current hedging position)
and the holder (e.g. in the case of the American option, deciding whether to exercise
or not).

While both aspects enjoy extensive treatment in scientific publications, most con-
tributions only look at one aspect in isolation from the other, i.e. they focus either
on realistic (discrete) hedging or on exercise features. The common ad-hoc approach
to decisions embedded in option contracts is stretched over its limit, when applied to
a complex combination of decisions by both counterparties.

This issue concerns, among other fields, the literature on realistically hedging of
American options, which despite its practical relevance comprises only a handful of
contributions. These contributions provide important groundwork, and satisfy many
requirements that are in our view desirable for a solution of the problem. This paper’s
aim is to improve on existing work by combining all these requirements. Table 1
contains the requirements numbered from one to eight in the column headers and
provides an overview of the requirements satisfied by each contribution.
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Chalasani and Jha (2001) 3 3 3 3 3

Bouchard and Temam (2005) 3 3 3 3 3

Coleman et al. (2007) 3 3

Roux and Zastawniak (2008) 3 3 3 3 3

De Vallière et al. (2008) 3 3 3 3 3

Constantinides and
Zariphopoulou (2001)

3 3 3 3 3 3

Constantinides and Perrakis
(2007)

3 3 3 3 3 3 3 n.a.

Ahn and Wilmott (2009) n.a. 3

Gobet and Landon (2014) n.a. 3 3

Table 1: Relevant literature

Due to the limited number of contributions we also include two notable, newer
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contributions on optimal hedging of European options, that therefore violate require-
ment 1.

Contributions failing the second requirement assume some externally given exer-
cise strategy of the holder. As an example take Constantinides and Zariphopoulou
(2001), who state that “[the holder’s exercise time is given by some predetermined
stopping time τ , which] may be the optimal exercise time [...] in the absence of
transaction costs”, or Coleman et al. (2007) claiming that “[t]he holder will choose
an exercise strategy to maximize the option value to him; hedging decisions of the
writer are irrelevant to his exercise decision.” This view neglects the existence of a
possible exercise strategy of the holder which is more expensive to hedge and which
would thus lead to too low selling prices and insufficient insurance against all possible
holder behaviors.

The third requirement is violated if rehedging times are somehow restricted by an
external mechanism e.g. by a predetermined number of hedges, or if rebalancing is
only allowed after some risk measure exceeds a certain threshold (e.g. as in Ahn and
Wilmott, 2009). Such a restriction is always sub-optimal, because it ignores the fact
that at any given point of time, rebalancing is optimal if and only if the reduction in
risk does outweigh the cost associated with rebalancing. This kind of sub-optimality
implies unrealistic behavior: if a trade leads to a more favorable hedging position
now, why should any past consideration stop the hedger from executing it?

These considerations also originate the need to include transaction costs (require-
ment 4)— be it traditional transaction fees, spreads or opportunity costs. Without
transaction costs, the optimal hedging strategy always consists of quasi-continuous
rebalancing, i.e. rebalancing to the optimal hedging position as fast as practically
possible, which is simply unrealistic.

As mentioned above, deriving an optimal hedging strategy means weighing risk
against transaction costs (requirement 5).

Requirement 6 might seem superfluous as it could be argued that the derivation
of a super-hedging price actually satisfies requirement 5. However, the underlying
risk-measure is too risk-averse to be realistic. Option writers do accept the risk of
hedging losses, hence requirement 6.

Requirement 7 demands the remaining risk and transaction costs to actually con-
tribute to the final option price. This requirement is for example missed by Gobet
and Landon (2014). They minimize the product of the number of hedges and the
quadratic variance of the hedging error, two quantities undoubtedly influencing the
bottom line of a real-world hedging activity. However, their combination into a prod-
uct is completely arbitrary and does not translate into a consistent option price, for
there will always exist hedging strategies that do not optimize the above product and
still lead to a lower selling price.

Time consistency (requirement 8), which is neglected in many contributions, is
an important property, especially in the context of pricing options with complex
decisions. Results obtained by time-inconsistent methods will either assume sub-
optimal future choices or do not give the optimal solution from today’s perspective
(see Gerer and Dorfleitner, 2016, for more details on the relation of decisions and time
consistency in option pricing).

The article of Constantinides and Perrakis (2007) actually satisfies nearly all of
our requirements, yet their contribution consists of the derivation of stochastic bounds
on option prices for utility maximizing agents and thus has a different focus.

The isolated treatment of the two decisions by the holder and the writer com-
pletely ignores one of the core aspects of realistically hedged options, namely their
interplay. Questions about the possibility of a holder’s strategy that explicitly exploit
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e.g. a fixed number of hedges by the writer or makes the original hedging strategy
inhibitingly expensive due to transactions costs are not even considered.

This paper solves the problem of realistically pricing and hedging an American
option. It is based on the insight that a realistic hedging theory is always a theory
of hedging with transaction costs: it is not the physical impossibility of continuous
trading that needs to be addressed.1 Instead, we allow continuous trading (in the
limit), but acknowledge that there is some kind of cost associated with each trade.
This cost is weighed against the remaining hedging risk. Expressing both risk and
transaction costs monetarily, gives rise to an optimization problem whose solution is
a finite number of optimally placed hedging trades and a consistent option price.

Our approach is motivated by the understanding of a “price” as an intrinsically
one-dimensional quantity, which does not leave much conceptual freedom. The results
from Gerer and Dorfleitner (2016) imply, that under mild assumptions, the decisions
can be formally eliminated from the problem in a consequent manner without the
need to resort to external concepts and without any further motivating argument.
Our analysis differs from others in that we seek to calculate the agent’s indifference
or reservation price in an uncompromising fashion.

In Section 2, we summarize the formalism and results from Gerer and Dorfleitner
(2016) used in this paper. In Section 3, a general duality between pricing functions
and acceptance sets for payoffs with decisions is applied to derive a general pricing
and hedging principle for options with decision by both parties. Section 4 specializes
this principle to a formula for American options, which is then numerically solved in
Section 5. Conclusions are given in Section 6.

2. Theoretical fundament

The theory is formulated from the perspective of a single market participant, that
we will refer to as agent, engaging in financial activities and entering contracts with
other agents, collectively called her counterparty.

All possible evolutions of the world, their physical probabilities and the
time-dependence of information are described by a filtered probability space
(Ω,F, {Ft}t∈T ,P), where all points of time are given by the totally ordered set T .

Let LGt represent all Ft-measurable random variables into the set G ⊆ R. We
will use the abbreviations Lt ≡ L

〈−∞,∞〉
t , L−t ≡ L

[−∞,∞〉
t , L+

t ≡ L
〈−∞,∞]
t and L±t ≡

L
[−∞,∞]
t , and employ the convention∞−∞ =∞ on R. Define also the set of positive

t-premiums Vt ≡
{
x ∈ L+

t

∣∣∣ 0
a.s.
< x

}
.

We assume decisions happen at predetermined times, Td ⊆ T . As we will see
later, this does not prevent us from describing more complex decision for which the
point of time can also be chosen by the agent, like options with American exercise.
At each point of time t ∈ Td there can be exactly one decision by either the agent or
the counterparty. This poses no limitation, as instantaneous decisions by the same
agent can be merged into a tuple of decisions and it ensures that there is always
a well-defined order between decisions by different agents, even if the physical time
between them can be infinitesimally short. Decisions to be made by the agent happen
at times Ta and decisions by the counterparty at times Tc ≡ Td \Ta.

1With today’s trend to sub-millisecond order execution, continuous hedging could be approxi-
mated sufficiently if there were no transaction costs.
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The decision behavior of the agents will be modeled by decision procedures, de-
scribing how the choices for a subset of decisions depend on the world state. The set
of decision procedures for decisions at times T ⊆ Td is abbreviated by ΦT and defined
as the set of stochastic processes whose values at time t are elements of Dt:

ΦT ≡

{
ϕ : T× Ω→

⋃
t∈T

Dt

∣∣∣∣∣ ϕt : Ω→ Dt, for all t ∈ T
}

(1)

Dt contains all possible choices at time t. We will use the abbreviation Φ ≡ ΦTd .
The payoff of an option with embedded decisions is described by specifying the cu-

mulative discounted cash-flow to be received by the agent for any possible combination
of choices and world states:

Definition 2.1 (Payoffs). Define X tT as the set of Ft-measurable payoffs that only
depend on decisions made at times T ⊆ T :

X tT ≡
{
f : Φ → L±t

∣∣∣ f(ψ) B= f(ϕ), if B ∈ Ft and ψt
B= ϕt for all t ∈ T ∩Td

}
Putting a set B ∈ F∞ above a comparison operator means conditionally almost surely
equal: x B= y ⇔ P({x = y}|B) = 1, with {x = y} ≡ {ω ∈ Ω | x(ω) = y(ω)}.

We will use the abbreviations XT ≡ X∞T and X ≡ XT .

Remark 1. If a random variable x ∈ L±∞ is used in the context of payoffs, it is
understood as the corresponding constant payoff given by ψ 7→ x, which is an element
of XØ, and vice versa.

If not stated differently, all operators, relations and also suprema/infima used on
payoffs are the pointwise versions of their L±∞, P-almost sure, variants: fRg ⇔ ∀ϕ ∈
Φ : f(ϕ)

a.s.
R g(ϕ)

Furthermore, we provide an operation to produce the effective payoff, that results if
an agent or counterparty follows a decision procedure for a certain subset of decisions.
These decisions can be considered fixed and the effective payoff does not depend on
them anymore:

Definition 2.2 (Effective payoff). For any payoff f ∈ X and decision procedure
ϕ ∈ ΦT define the effective payoff, f

[
ϕ
]
∈ XT \T by

f
[
ϕ
]
(ψ) ≡ f(ϕ1T + ψ1Td\T), for all ψ ∈ Φ.

The framework aims to provide the tools to build and analyze pricing theories
for options with decisions. This is achieved by providing a minimal characterization
of acceptance sets and pricing functions, proving their equivalence, and thus making
these concepts usable interchangeably.

A t-acceptance set contains the agent’s acceptable opportunities at time t, i.e.
payoffs without decisions before time t that she accepts as zero-cost investments. We
require the following property to ensure that an acceptance set can serve as modeling
tool for pricing theories:

Definition 2.3 (Proper acceptance sets). A t-acceptance set A is called proper if it
is t-compatible (see below) and A =

{
f ∈ X[t,∞〉

∣∣ {f + x | x ∈ Vt} ⊆ A
}
.

Definition 2.4 (t-compatibility). A non empty set X is t-compatible, if for all
{xn} ⊆ X and mutually disjoint {Bn} ⊆ Ft with P(

⋃
nBn) = 1 it holds

∑∞
n xn1Bn ∈

X, where 1Bn is the indicator function of the set Bn.
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Remark 2. In this framework, the result of a pricing function is understood as the
highest premium the agent would accept to pay for entering the contract, or her bid
price. If a contract’s ask price is wanted, it can be calculated by the negative of the
bid price of the reversed contract.

A t-pricing function is any function π : X[t,∞〉 → L±t .
Remark 3. For a general option f ∈ X—possibly including decisions before t—and
a t-pricing function π, we use π(f) to denote ϕ 7→ π

(
f
[
ϕ
∣∣
〈−∞,t〉

])
, which is a payoff

in the sense of Definition 2.1.
For pricing functions, the property corresponding to properness is cash invariance.

Definition 2.5 (Cash invariance). A t-pricing function π is called cash invariant if
for any payoff f ∈ X and payoff g ∈ X t〈−∞,t〉 with no present or future decision and
g > −∞, it holds π(f + g) = π(f) + g.

We will also use the term normalized pricing function:

Definition 2.6 (Normalized pricing function). A pricing function π is called nor-
malized, if π(0) = 0. Every pricing function π with |π(0)| < ∞ has a normalized
version x 7→ π(x)− π(0).

As proved in Gerer and Dorfleitner (2016, Theorem 3.1) there exists a one-to-one
correspondence between the set of cash invariant t-pricing functions and the set of
proper t-acceptance sets. The duality operations are given in the following definition
and correctly replicate the description of pricing functions in Remark 2:

Definition 2.7 (Duality operations). For any t-acceptance set A define its dual t-
pricing function P [A] by P [A](f) ≡ sup

{
x ∈ L−t

∣∣ f − x ∈ A} for all f ∈ X[t,∞〉.2
For any t-pricing function π define its dual t-acceptance set A[π] ≡{

f ∈ X[t,∞〉
∣∣ 0 ≤ π(f)

}
.

This duality enables us to develop our pricing theory for options with decisions
in terms of the more directly accessible language of acceptance. Specifically, we
will use conservative acceptance, which is employed implicitly in most of the option
pricing literature. For a given t-acceptance set A and a set of admissible decision
procedures S, A∀S and A∃S represent the conservative acceptance sets for decisions
by the counterparty or the agent, respectively. A∀S includes an option if and only if for
every possible decision procedure by the counterparty the resulting effective option is
acceptable:

A∀S ≡
{
f ∈ X[t,∞〉

∣∣ ∀ϕ ∈ S : f
[
ϕ
]
∈ A

}
(2)

It is important to understand, that this presumes nothing about the counterparty’s
actual behavior. For her own decisions, A∃S contains an option if and only if there
always is at least one decision procedure the agent could follow to make the effective
option almost acceptable, as indicated by the +x:3

A∃S ≡
{
f ∈ X[t,∞〉

∣∣ ∀x ∈ Vt,∃ϕ ∈ S : f
[
ϕ
]

+ x ∈ A
}

(3)

2 The supremum is to be understood as the essential supremum, i.e. the supremum in the almost
sure sense.

3See Gerer and Dorfleitner (2016, Example 4.2) for why this definition needs a more complicated
form than Eq. (2)
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In order to talk about acceptance sets and pricing functions at different times,
we introduce acceptance families as time indexed families of proper acceptance sets
{At}t written as A• and pricing families, as time indexed families of cash invariant
pricing functions written as π•.

An especially important property of such families is time consistency (require-
ment 8 in Table 1). By Theorem C.6, the following definitions are equivalent:

Definition 2.8 (Time consistency). A proper acceptance family A• with a normalized
dual π• is called time consistent if f ∈ At ⇐⇒ πs(f) ∈ At, for all s ≥ t.

A normalized pricing family π• is called time consistent if for all s ≥ t and f ∈ X:
πt(πs(f)) = πt(f).

3. Optimal hedging— the general formula

We will treat the hedging activity as decisions within our theory of options with
decisions. Between rehedges there can be further decisions for both the agent and its
counterparty.

This approach will produce the pricing function for the hedging agent as well as the
optimal hedging ratios, i.e. optimally placed rehedgings, without the need to formulate
an exogenous optimization problem. Instead these results are direct consequences of
the construction and imposed properties of the acceptance set and their relation to
pricing functions.

We impose no practical limitation on the number of rehedgings the agent can
perform. For formal reasons, we approximate the set of hedging decisions using a
finite, increasing sequence (τi)i≤n, where the hedging position is closed on the last
date τn.
Remark 4. While this introduces a dependency of the results on the particular choice
of this sequence, the time intervals can be made smaller than any physical time scale of
our world and thus its practical influence eliminated. Numerical calculations typically
will be feasible only for much larger intervals.

The actually number of performed rehedgings will usually be smaller than n, as
at each time τi the agent can decide not to rebalance her hedging portfolio.

The discounted price processes of the assets available for hedging are modeled by
an N -dimensional adapted process X = (Xt)t with finite components. A hedging
decision consists of choosing the amount of shares to hold from each asset, which we
will model using N -dimensional vectors, i.e. Dτi ⊆ RN for all i ≤ n.

Given a decision procedure ϕ ∈ Φ, the future cash-flow of a hedging activity
started with an initial position ϕτi−1 at a time t ∈ (τi−1, τi] is given by

Ht(ϕ) ≡
n+1∑
j≥i

ϕτj−1 ·
(
Xτj −Xmax{τj−1,t}

)
− Cj(ϕ). (4)

The · marks scalar product between two vectors. The first term calculates the gains
from market price movements, and Cj(ϕ) stands for the finite, Fτj -measurable trans-
action costs associated with changing the portfolio from ϕτj−1 to ϕτj at time τj . Cn+1
corresponds to the special case of liquidating the last position ϕτn at τn+1. It is easy
to see that Ht depends on decisions at time τi−1 and later, i.e. Ht ∈ X{τj}ni−1

.
In order to derive the general pricing function of the hedging agent for options

with decisions, we employ the method of Gerer and Dorfleitner (2016, Section 4.3) to
derive the super-replication price for continuous trading. We start with the agent’s
internal acceptance family, A•, containing payoffs or zero-cost investments she accepts
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“as is”, i.e. payoffs that cannot be modified by her beyond the decisions contained
in the payoff, especially not be hedged against. A• needs to capture the agent’s risk
aversion, business model and regulatory requirements. In this section we treat it as
given, for it is completely independent from the aspect of hedging; a separation of
concerns made possible by the development of the proposed framework.

Next, this acceptance family is transformed into the agent’s external acceptance
family, B•, by subtraction of any modifications, which are not part of the original
contract specifications. In the current setting this means subtracting the proceeds of
her hedging activity:

Bt(ϕ) ≡
{
f −Ht

[
ϕ
∣∣
〈−∞,t〉

] ∣∣∣ f ∈ At} (5)

Bt depends on the decision procedure ϕ, because Ht depends on past decisions,
more specifically on the most recent hedging decision. Making this dependency ex-
plicit ensures, that Bt(ϕ) itself contains only options with no past decisions.

Eq. (5) can also be read in the following way: The agent accepts a contract with
another party, if and only if, she internally accepts the contract’s payoff plus the
result of her hedging activity.

Through the duality we know that these acceptance sets uniquely define the hedg-
ing agent’s prices – denoted by η•, which can be calculated using the duality operation
from Definition 2.7:

ηt(f)(ϕ) ≡ P [Bt(ϕ)](f)(ϕ) (6)

for any option with decisions f ∈ X and decision procedure ϕ ∈ Φ.
Of course, η• can also be expressed using A•’s dual pricing family π• = P [A•]:

Lemma 3.1. ηt(f) = πt(f +Ht) for all t and f ∈ X.

Proof. See Appendix B.1.

This is in agreement with the expected result that the price of an option is given
by the internal price of the hedged option.
Remark 5 (Normalization). The above construction of η• will in general not yield
normalized pricing functions, i.e. the price of the zero payoff is different from zero:
ηt(0) = πt(Ht) 6= 0. Depending on the specific nature of A• and π•, it is possible that
the agent assigns a positive net present value to the proceeds of the trading activity
Hi, i.e. πτi(Hi) ≥ 0. This can happen for example, if πt(Xs) > Xt (for s > t),
i.e. buying or selling the market assets represents an acceptable or even arbitrage
opportunity.

If the market is arbitrage free, or the agent’s transaction costs destroy any accept-
able or arbitrage opportunity, then πτi(Hτi)(ϕ) is zero, if ϕτi−1 = 0 and even negative
for ϕτi−1 6= 0, due to the unavoidable costs for closing the current position eventually.

Economically meaningful prices are obtained from the normalized version:

f 7→ ηt(f)− ηt(0)

This calibration ensures that the price of any sure payoff equals the payoff itself
(ηt(g) = g if g ∈ L+

t , which follows from cash invariance), and it is plausible with the
two cases described above: If the agent would pay a positive amount ηt(0) > 0 for the
situation he already is in, normalization decreases all bid prices by that amount, which
could be interpreted as compensation for giving up the current favorable position upon
entering the new contract. In other words, normalization erases the additional value
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ηt(f) assigns to the possibility of trading in the market, which the agent can also do
without f and whose value is thus given by ηt(0).

For an initial unfavorable position ϕτi−1 6= 0, ηt(0)
[
ϕ
]
would be a negative number

representing the negative of the cost associated with optimally closing that position.
In this case normalization would increase the agent’s naked bid price ηt(f), because
entering and optimally hedging f would spare her the cost of closing her current
position.

In addition to the hedging decisions, we explicitly add times for general counter-
party decisions, which will then be used for the early exercise decision in the next
section. Between any two hedging times τi and τi+1 there is a decision of the coun-
terparty located at si:

τi < si < τi+1

Furthermore, for each decision we need a set of admissible decision procedures, de-
noted by Ri ⊆ Φ{τi} and Si ⊆ Φ{si} for all i ≤ n.

The general result needs the following axioms. The first assures that hedging de-
cision cannot see in the future. The additional requirement of t-compatibility derives
from the technical differences between conservative acceptance for the agent and the
counterparty (cf. Theorems C.4 and C.5):

Axiom 1. For all i ≤ n, Ri contains only Ft-adapted decision procedures and is
τi-compatible (cf. Definition 2.4).

The second axiom specifies how decisions are treated. We use conservative accep-
tance (as defined in Eqs. (2) and (3)) at the time of each particular decision. This,
together with time consistency, will be enough to eliminate all future decisions from
the pricing problem.

Axiom 2 (Conservative acceptance). Aτi = A∃Riτi and Asi = A∀Sisi for all i ≤ n.

Feeding all this into our formalism yields the pricing formula for an optimally
hedged option:

Theorem 3.2 (Optimal hedging). Let a A• be a time consistent internal acceptance
family with a normalized dual pricing family π• and assume Axioms 1 and 2. At the
end of the hedging activity, the price of an option f ∈ X can be calculated directly by

ητn+1(f) = πτn+1(f)− Cn+1, (7)

and earlier prices for i ≤ n can be calculated recursively:

ητi(f) = sup
ϕ∈Ri

πτi

(
inf
ψ∈Si

πsi
(
ητi+1(f)

[
ϕ
][
ψ
]

+ ϕτi ·
(
Xτi+1 −Xτi

)))
−Ci

[
ϕ
]
(8)

Proof. See Appendix B.2.

For a hedging strategy a and decision procedure of the counterparty b, the net
payoff of the whole hedging activity is given by the difference of the realized tracking
error and the option’s upfront premium:

δ ≡ (f +Ht)
[
a
][
b
]
− ηt(f)

Conservative acceptance ensures, that for any decision procedure b and ε ∈ Vt there
exists a hedging strategy a such that δ + ε is acceptable.
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4. Optimal hedging of American options

In this section we specialize the results from the previous section in order to price
and hedge an American option from the perspective of the writer. The holder of an
American option with discounted exercise value process g has the right to exercise it
at any time t prior or equal to the expiration date T and receive the amount gt.

This exercise right gives rise to infinitely many decisions: At every instant the
holder can decide to exercise or not to exercise. To model these decision we use the
finite set of decision times {si} introduced in the last section, with sn ≡ T . Following
the reasoning from Remark 4 this implies no loss of generality. We define

Dsi ≡ {1, 0}, where 1 stands for “exercise” and 0 for “do not exercise”, (9)

for all i. The payoff of an American option that has not been exercised before time
si is then for any ϕ ∈ Φ and ω ∈ Ω given by:

fi(ϕ) ≡ gt∗ with the stopping time t∗(ω) = min{t ≥ si | ϕt(ω) = 1} (10)

This definition shows the expected behavior, if the current decision is fixed using a
constant decision procedure:

fi
[
si 7→ 1

]
= gsi for exercise, and fi

[
si 7→ 0

]
= fi+1 for continuation. (11)

Basic theory of stochastic processes ascertains that f is measurable if g is progressively
measurable and ϕ is adapted. And thus due to Corollary A.1 and fi’s pointwise
definition it is a payoff according to our Definition 2.1, or more precisely fi ∈ X{sj}nj=i

,
as it only depends on decision at times {si, . . . , sn}.

While we restrict the admissible hedging procedures through Axiom 1 from the
last section, the only restriction placed on exercise procedures is their being adapted:

Si ≡ Φ{si} ∩ {ϕ | ϕ is adapted to F}, for all i. (12)

So far the optimizations in Theorem 3.2 have to be performed over random vari-
ables making a direct numerical implementation infeasible. However, as they are
limited to “current time” decisions, they can be simplified. We give sufficient (but
not necessary) conditions under which the essential supremum over the set of proce-
dures can be simplified to a pointwise supremum directly over the set of choices:

Lemma 4.1 (Countable present time decisions). If Dt or Ω is countable and S ≡
Φ{t}∩{ϕ | ϕ is adapted to F}, then for every cash invariant t-pricing function π and
f ∈ X it holds:

sup
ϕ∈S

π
(
f
[
ϕ
])

= sup
a∈Dt

π
(
f
[
t 7→ a

])
Proof. See Appendix B.3.

As the payoffs involved do not have any decisions besides the hedging and exercise
decisions, we can give a result that reduces the pricing problem to classical option
pricing theory for options without decisions. To make this explicit we will use A0

•
and

π0
•
to denote the restrictions of A• and π• to options without decisions. Formally, we

define A0
•
≡ A• ∩ XØ and π0

•
= P [A0

•
]. Lemma C.1 proves the expected connection

between π0
•
and π•.

10



Furthermore, we assume for all i that the agent’s hedging decision at τi+1 hap-
pens instantly after the exercise decision si. Formally, these two times collapse for
quantities that do not depend on the decision at si, i.e.

gsi = gτi+1 , and πsi(f) = πτi+1(f), if f ∈ X[τi+1,∞〉. (13)

Now we can derive the main result:

Theorem 4.2. Given X, C, A•, {Ri} and η• as in Theorem 3.2, {Si}, f , A0
•
and

π0
•
as defined above, we define pi as the ask price (cf. Remark 2) at time τi of an

optimally hedged American option:

pi ≡ −ητi(−fi), for all i ≤ n.

The price after expiration is given by

pn+1 = Cn+1, (14)

and earlier prices for i ≤ n can be calculated recursively:

pi = inf
ϕ∈Ri

−π0
τi

(
−max

{
gτi+1 − ητi+1(0), pi+1

}[
ϕ
]

+ ϕτi ·
(
Xτi+1 −Xτi

))
+Ci

[
ϕ
]
(15)

Proof. See Appendix B.4.

As expected, the writer chooses the most favorable hedge and it is most expensive
for her if the holder exercises as soon as the payoff exceeds the price of the continued
option.

The terms Cn+1 and −ητi(0) = −π0
τi(Hi) occurring above could be identified with

the cost of optimally closing the current hedging position. As already discussed in
Remark 5, they are non-negative in a market without acceptable opportunity and
thus add to the payment of gτi faced by the hedging option writer upon exercise by
the holder.

Their appearance is a consequence of the fact that η• is not normalized (in gen-
eral) and it can be trivially checked, that normalizing the result— i.e. calculating
pi + ητi(0)—would remove both terms, whilst introducing a similar term in the con-
tinuation value. We did not state the normalized result, as it would complicate the
recursive calculations, which are more naturally expressed in unnormalized values.

5. Numerical demonstration

In this section we produce numerical results from Theorem 4.2. We will use a
simple market model consisting of a riskless money market account with interest rate
r and a single stock whose discounted price processX• is a geometric Brownian motion
with drift µ > r and volatility σ. Besides analytical tractability and intuitiveness, it
reveals interesting features of the pricing and hedging problem. It should be noted
that our hedging formula can be applied to any model for the price process X.

We are pricing an American put with strike K, i.e. a payoff f as defined in Eq. (10)
with discounted exercise value written as gt(Xt) = Xt −Ke−rt.

The transaction costs consist of a fixed component k0 and a component propor-
tional to the transaction value (with factor k1). Its discounted value is calculated as
follows:

Ci(ϕ) ≡ ci(ϕτi − ϕτi−1 , Xτi) with ci(q, x) = e−rτik0 1q 6=0 + k1x |q|

11



5.1. Selecting a pricing function
Before we can actually implement a numerical program, we need to devise the

agent’s internal pricing family for options without decisions, π0
•

Let us first state the requirements to be met by π0
•
. There is, of course cash

invariance (requirement I), the basic property imposed by our formalism, and time
consistency (requirement II) upon which the results of the previous section rely.

In addition to these two requirements concerning π0
•
directly, we place three further

restrictions on the resulting external pricing family η• (cf. Lemma 3.1). To ensure con-
sistency with existing results we require that without transaction costs and in the limit
of infinitely many hedging times the well-known arbitrage-free prices, i.e. risk-neutral
expectation values, are obtained for continuously replicable payoffs (requirement III).

As noted in Remark 5, η• is not normalized. Thus, ηt(0) = πt(Ht) can be negative
due to transaction costs for closing the current position or positive, if trading in the
market constitutes an acceptable opportunity for the agent. While these effects can
be handled satisfactory by normalizing the result, normalization is only meaningful if
|ηt(0)| <∞, or informally stated, if the agent cannot extract infinite wealth from his
trading activity (requirement IV).

Besides these theoretical requirements, for the purpose of this demonstration we
need readily implementable, numerical algorithms (requirement V).

To satisfy requirement V we exclude all pricing functions or risk-measures whose
calculation relies on Monte Carlo methods. We are aware of the existence of Monte
Carlo methods suitable for American options, but extending and implementing them
for our problem—while deemed possible—would go beyond the scope of this paper.
This excludes all candidates containing the value-at-risk and its variants or derivatives
like the expected shortfall or conditional value-at-risk, most of which also violate
requirement II, time consistency (cf. Cheridito and Stadje, 2009).

We use

π0
t (f) ≡ −1

γ
ln
(
E
[
e−γf

∣∣Ft]), (16)

for some positive degree of risk aversion γ. This function is the indifference price of
the exponential utility function, also known as the negative of the conditional entropic
risk measure and has gained much attention in the field of utility indifference pricing,
among others.

For the remainder of this paper we use the pricing family η• as defined in Eq. (6)
for an acceptance family A• satisfying Axiom 2 and A• ∩ XØ = A

[
π0] with π0

•
as

defined above in Eq. (16). We also define the normalized pricing family η
•
:

ηt(f) ≡ ηt(f)− ηt(0), for all f ∈ X

It is well-known (see e.g. Cheridito and Kupper, 2009, Eq. 3.3) that π0
•
is cash

invariant (requirement I) and time consistent (requirement II). It also satisfies re-
quirement V, because PDE discretization methods for the calculation of conditional
expectations are widely-used and can be applied directly to solve Eq. (15) from The-
orem 4.2.

We do not present a formal proof of requirement III for η
•
, but instead point out

two supporting facts. First, for continuous trading strategies without transaction
costs it has been shown that η

•
yields the risk-neutral expectation value (cf. Davis

et al., 1993, Theorem 1, or for a more recent presentation Becherer, 2003, Eq. 3.8, who
calls this elementary no-arbitrage consistency). Secondly, we confirmed by numerical
calculations that making the time between two rehedges short enough will result in

12



prices sufficiently close to the Black-Scholes price and optimal strategies coinciding
with the Black-Scholes delta.

Again without a formal proof, requirement IV follows from another well-known
result (see e.g. Henderson and Hobson, 2002, Eq. 2): In the case of continuous trading
without transaction costs, it holds that ηt(0) < ∞ and the optimal strategy is given
by:

Zt(Xt) ≡
µ− r
γσ2Xt

(17)

Due to the monotonicity of the supremum in Theorem 3.2 and the monotonicity of
π0, restricting to discrete strategies and introducing transaction costs results in even
smaller prices.

5.2. Translating Theorem 4.2 into a computational procedure
In order to perform the hedging optimization numerically we only consider a

finite number of different hedging positions, i.e. Dτi finite for all i ≤ n. Then
Lemma 4.1 and the Markov property of X• enable us to write Theorem 4.2 in a
form suitable for numerical calculation. Using the ordinary functions zi(h,Xτi) ≡
−ητi(0)

[
τi−1 7→ h

]
for the price of the zero claim and vi(h,Xτi) ≡ max

{
gτi(Xτi) +

zi(h,Xτi),−ητi(−fi)
[
τi−1 7→ h

]}
for the price of the optimally hedged option, both

with a current hedging position h, we get:

vn+1(h, x) = max
{
gτn+1(x), 0

}
+ cn+1(h, x)

zn+1(h, x) = cn+1(h, x)

Conti(h, x, b, q) ≡
1
γ

ln Et
[
eγ(bi+1(q,Xτi+1 )−qXτi+1)

∣∣∣Xτi = x
]

+ q x+ ci(h− q, x)

q∗τi(h, x) ≡ arg min
q∈Dτi

Conti(h, x, v, q) (18)

vi(h, x) = max
{
gτi(x) + zi(h, x),Conti(h, x, v, q∗(h, x))

}
(19)

zi(h, x) = min
q∈Dτi

Conti(h, x, z, q)

We are going to compare the price obtained under the optimal hedging strategy q∗
with classical delta hedging. Let d represent the ask price of an agent who rebalances
daily to the optimal continuous, zero-transaction costs strategy given by the sum
of the option’s Black-Scholes delta, ∆t(x) = ∂

∂xBSt(x), and the utility optimizing
strategy from Eq. (17), Zt(x):

dn+1(h, x) = vn+1(h, x) (20)

di(h, x) = max
{
gτi(x) + zi(h, x),Conti(h, x, d,∆bτic(x) + Zbτic(x))

}
bτic rounds down τi to the beginning of the most recent day.

Our numerical program written in C++ is a direct translation of the above equa-
tions. The conditional expectations are calculated using a finite difference method
with optimal spatial finite difference weights à la Ito and Toivanen (2009) and Crank-
Nicolson time-stepping with Rannacher startup (Rannacher, 1984; Giles and Carter,
2006). The expectation values in Conti(h, x, b, q) are calculated for all pairs (b, q) ∈
{v, z, d} ×Dτi in parallel, achieving quasi-linear speedup on multi-core CPUs.

We will write normalized prices as v ≡ v − z and d ≡ d− z.
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5.3. Numerical results
We now present the results of the calculation using the following specifications.
The American put has a strike price K = 100, volatility σ = 50% p.a., drift

µ = 10% p.a., risk-free rate r = 5% p.a., where one year consists of 252 business days.
We assume very moderate transaction costs, with a fixed component of k0 = 0.001
and proportional component of k1 = 0.025%. The writer’s coefficient of constant
absolute risk aversion is γ = 0.001.

We use 8 hedging and exercise decision times per day, i.e. τi+1−τi = 1/8 day. There
are 150 allowed hedging positions, Dτi = {0, δ, 2δ, . . . , 5} with δ = 5/149 ≈ 0.0336.
Using a higher numbers of daily decisions and possible hedging positions does not
significantly change the calculated values.

The results comprise three aspects: the writer behavior, the holder behavior and
the option price.

The writer’s optimal hedging position is given by q∗t (x, h) from Eq. (18) and de-
pends on current stock price x and hedging position h. Figure 1 plots two examples for
fixed values of h. Instantly after rebalancing to this optimal position, h′ ≡ q∗t (x, h),
the current stock price x will lie in one of possibly several plateaus where x 7→ q∗t (x, h′)
is constant with value h′. As soon as the stock price leaves this plateau, it is again
optimal to rebalance.

The information contained in q∗t can be completely described by two corridors,
the no-trading and the rebalancing corridor. They are depicted in Figure 2 for two
different times t and have the following interpretation: it is optimal to rebalance to
the nearest point of the rebalancing corridor, but only if the stock price leaves the no-
trading corridor. The spikes visible in Figure 2 in both corridors occur in the vicinity
of the optimal exercise boundary of the holder. An effect, of course only revealed by
solving the full optimization problem.

Based on experiments with different values of k0 and k1, we make the following
numerical observations. The rebalancing corridor is always fully contained within
the no-trading corridor, its width is monotonically increasing in k1, the proportional
component of the transaction costs, and it collapses for k1 = 0. The space between the
two corridors exhibits an analogous relationship with k0, the fixed component. The
delta hedging position lies within the no-trading corridor and for stock prices above
the exercise boundary also within the rebalancing corridor. Without transaction costs
both corridors collapse to the delta hedging strategy.

The exercise behavior of the holder is characterized by the exercise boundary,
which separates the continuation regions from the their complement, the exercise
regions. With conservative acceptance the writer is insured against the worst possible
or pessimal exercise strategy. The corresponding continuation regions consist of states
where the maximum in Eq. (19) or Eq. (20) equals the continuation value.

Figure 3 shows the holder’s pessimal exercise boundaries against different writers.
Against the optimal hedger the continuation region is only slightly larger than in the
Black-Scholes case. The most striking finding is that the holder could in fact harm the
delta hedger. The boundary against the delta hedger clearly exhibits a daily recurring
pattern lining up with her daily rebalancings. As expected, the continuation region
is much larger than in the optimal case, which can be explained by the fact that con-
tinuing the claim means more hedging costs for the (sub-optimal) delta hedger. This
holds true as long as the delta hedger actually rebalances and thus incurs transaction
costs. If the delta hedger’s current position equals the next delta hedging position,
there are no transactions costs and thus at these points (also marked in Figure 3) the
extended continuation region stops.
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This shows that for a delta hedger the common assumption of a Black-Scholes
exercise boundary will result in an underestimation of risk caused by the interplay of
American exercise feature, discrete hedging and transaction costs.

Holder and writer behavior are by-products of the main result: the price. Figures 4
and 5 provide two different perspectives on the put’s normalized ask prices of an
optimally hedging writer, v, and a delta hedging writer, d. Figure 4 shows how the
absolute difference v − d depends on the current hedging position for fixed stock
prices. As is expected, once it is optimal to rebalance, the additional transaction
costs of both optimal and delta hedging will be equal, making the difference between
the two independent of the current hedging position.

For a fixed current hedging position and varying stock prices the difference between
both prices and the Black-Scholes price are reflected in Figure 5. It also contains the
relative price reduction to be achieved by optimal hedging, calculated as d/v − 1.

Both figures demonstrate that the writer can always offer a more competitive
price or make a sure profit by optimal hedging instead of delta hedging. This profit
increases with decreasing moneyness. For example, 63 days before expiration at a
stock price of 145.3, the optimal-hedging price is v ≈ 0.787, which is 10.3% lower
than the delta-hedging price.

Last, reducing the risk aversion increases both the optimal-hedging and the delta-
hedging price. However, the effect on the delta-hedging price is weaker and conse-
quently, the profit from optimal hedging will be larger for a less risk-averse agent. In
the above example, if we change γ to γ/2 = 0.0005, v will be 17.3% lower than d.

6. Conclusion

Applying the methods of Gerer and Dorfleitner (2016) to the problem of hedging
options with decisions allows us to derive a general hedging principle in a rigorous but
straight forward manner, starting from a small set of clearly stated assumptions. This
principle is then further specialized to a formula for realistically hedging American
options; a formula that is not conjectured, but formally derived and proved in non-
preexisting fashion.

To demonstrate how to turn this completely model-independent formula into ac-
tual numbers, we fix a market model, a pricing function and transaction costs and
perform numerical calculations. The results of these numerical experiments show that
when compared to the delta hedger, the optimal hedger can offer a significantly bet-
ter price or make a sure profit. Further, they reveal that indeed there is a complex
interaction between hedging decisions and the early exercise decisions.

In addition to the conceptual and theoretical advantages demonstrated by our
holistic approach to decisions embedded in option contracts, these results prove the
usefulness of our method in realistic applications.

We leave it to further research to apply our methods more realistic models than
the above example and to overcome the challenge of a numerical implementation of
our results for these models.
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Figure 1: Optimal hedging position at time t = T − 11 days, q∗
t (x, h), for different stock

prices x and two different current positions h. It is optimal not to rebalance if
the stock prices stay in regions with q∗

t (x, h) = h.
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Figure 2: The two graphs consolidate the optimal hedging behavior at two different times.
Only when the stock price leaves the no-trading corridor, it is optimal to re-
balance. The new optimal position is then given by the nearest point of the
rebalancing corridor. For comparison the delta hedging strategy, ∆t(x) + Zt(x),
is also shown.
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Appendices
A. Pointwise defined payoffs

Corollary A.1. Given a function g : Ω×RN → R and a sequence of times (τi)i∈N,
define f :

f(ϕ)(ω) = g
(
ω, (ϕτi(ω))i∈N

)
, for all ϕ ∈ Φ and ω ∈ Ω (21)

If f(ϕ) is F∞-measurable for all ϕ ∈ Φ, then f ∈ X{τi}i∈N .

Proof. As in Definition 2.1, we assume some set B ∈ F∞ and two decision procedures
with ψτi

B= ϕτi for all i. As a direct consequence of Eq. (21) we have
⋂
i∈N{ϕτi =

ψτi} ⊆ {f(ϕ) = f(ψ)} and applying basic set operations yields:

B \ {f(ϕ) = f(ψ)} ⊆ B \
⋂
i∈N
{ϕτi = ψτi} =

⋃
i∈N

(B \ {ϕτi = ψτi})

From monotonicity and sub-additivity of the probability measure we follow:

P(B \ {f(ϕ) = f(ψ)}) ≤
∑
i∈N

P(B \ {ϕτi = ψτi})

Due to P({ϕτi = ψτi}|B) = 1 for all i (by assumption) and Corollary C.7.1 both sides
of this inequality are zero and thus by the same Corollary P({f(ϕ) = f(ψ)}|B) = 1.

B. Proofs

B.1. Proof of Lemma 3.1
Proof. Take any ϕ ∈ Φ and show:

P [Bt(ϕ)](f)(ϕ) = sup
{
x ∈ L−t

∣∣∣ f[ϕ∣∣〈−∞,t〉]− x ∈ Bt(ϕ)
}

= sup
{
x ∈ L−t

∣∣∣ (f +Hi)
[
ϕ
∣∣
〈−∞,t〉

]
− x ∈ At

}
= πt(f +Hi)(ϕ)

The first and third equation use the definition of P [A] (Definition 2.7). The second
uses the definition of Bt (Eq. (5)).

B.2. Proof of Theorem 3.2
Proof. To prove Eq. (7), we start with Lemma 3.1 and apply cash invariance (Defini-
tion 2.5, applicable due to Hτn+1 = −Cn+1 ∈ X τn+1

{τn} ).
To prove Eq. (8), we define ∆b

a ≡ Ha − Hb. By H’s definition in Eq. (4) and
Axiom 1 we can infer for any τi < t ≤ τi+1 and ϕ ∈ Φ:

∆t
τi(ϕ) = ϕτi · (Xt −Xτi)− Ci(ϕ) ∈ Lt

and thus ∆t
τi ∈ X{τi−1,τi} (22)
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A•’s time consistency (and π•’s normalization) with Theorem C.6 implies π•’s time
consistency. Now we can prove Eq. (8) by eliminating the two decisions at τi and si:

ητi(f) = πτi
(
f +Hτi+1 + ∆τi+1

τi

)
= πτi

(
πτi+1

(
f +Hτi+1

)
+ ∆τi+1

τi

)
= sup
ϕ∈Ri

πτi
((
p+ ∆τi+1

τi

)[
ϕ
])

= sup
ϕ∈Ri

πτi

(
inf
ψ∈Si

πsi
((
p+ ∆τi+1

τi

)[
ϕ
][
ψ
]))

= sup
ϕ∈Ri

πτi

(
inf
ψ∈Si

πsi
(
p
[
ϕ
][
ψ
]

+ ϕτi ·
(
Xτi+1 −Xτi

)))
− Ci

[
ϕ
]

The first equation follows from Lemma 3.1 and ∆’s definition. The second uses
time consistency (Definition 2.8) to introduce πτi+1 and Eq. (22) with cash invariance
to pull out ∆. The third applies Axiom 2 and Theorem C.5 to introduce the supre-
mum. Furthermore it applies Lemma 3.1 in reverse and abbreviates p ≡ ητi+1(f).
The fourth uses again time consistency and applies Axiom 2 and Theorem C.4 to
introduce inf πsi . The fifth expands ∆ and pulls out Ci

[
ϕ
]
using cash invariance.

B.3. Proof of Lemma 4.1
Proof “≥”. Follows directly from monotonicity of the supremum4 and the fact that
t 7→ a ∈ S for any a ∈ Dt by Definition of S.

Proof “≤”. Take any ϕ ∈ S. We have either Dt = {an}n∈N or Ω = {ωn}n∈N. In the
latter case define an ≡ ϕt(ωn) (∈ Dt by Definition of ΦT in Eq. (1)). In both cases
define Bn ≡ {ϕt = an} for any n. It trivially holds

⋃
nBn = Ω. By definition of S,

ϕ is adapted and thus Bn ∈ Ft. By Definition 2.1 of X, we have f
[
ϕ
] Bn= f

[
t 7→ an

]
and thus from locality (by Corollary C.3) we can follow:

π
(
f
[
ϕ
]) Bn= π

(
f
[
t 7→ an

])
≤ sup
a∈Dt

π(f [t 7→ a])

⋃
nBn = Ω together with Corollary C.7.2 yields

π
(
f
[
ϕ
])
≤ sup
a∈Dt

π(f [t 7→ a]).

The assertion now follows from the least upper bound property of the supremum.

B.4. Proof of Theorem 4.2
Proof. Eq. (14) follows from Theorem 3.2 Eq. (7) due to fn+1 = 0 and π’s normal-
ization.

Now prove Eq. (15). With p’s definition and Theorem 3.2 Eq. (8) we get:

pi = − sup
ϕ∈Ri

πτi

(
inf
ψ∈Si

πsi
(
ητi+1(−fi)

[
ϕ
][
ψ
]

+ ϕτi ·
(
Xτi+1 −Xτi

)))
− Ci

[
ϕ
]

= inf
ϕ∈Ri

−π0
τi

(
inf
ψ∈Si

ητi+1(−fi)
[
ϕ
][
ψ
]

+ ϕτi ·
(
Xτi+1 −Xτi

))
+ Ci

[
ϕ
]

4sup A ≤ sup B, if A ⊆ B
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The last equation uses the inf / sup-duality and eliminates πsi using Eq. (13) and π’s
cash invariance and normalization. Furthermore, as the argument of the outer pricing
function does not depend on any decision, we can replace the outer pricing function
by its version without decisions (according to Lemma C.1). It remains to show:

inf
ψ∈Si

ητi+1(−fi)
[
ψ
]

= min
{
ητi+1(−gsi), ητi+1(−fi+1)

}
= −max

{
gτi+1 − ητi+1(0), pi+1

}
The first equation uses Eq. (11) after an application of Lemma 4.1, possible due to
the explicit definition of S in Eq. (12) and the fact that Dsi from Eq. (9) is finite.
The second equation employs Eq. (13), η•’s cash invariance, p’s definition and the
min /max-duality.

C. Results from Gerer and Dorfleitner (2016, referenced hereafter as GD16)

Lemma C.1 (Lemma A.9 in GD16). Take a A0
•
with dual π0

•
and some A• with dual

π• that satisfies A• ∩XØ = A0
•
. Taking into account Remark 3, it holds πt(f) = π0

t (f)
for any payoff with no decisions at or after time t.

Definition C.2 (Locality, Corollary 3.3 in GD16). A t-pricing function π is called
local, if

π(f) B= π(g), for all B ∈ Ft and f
B= g

Corollary C.3 (Corollary 3.3 in GD16). Cash invariance implies locality.

Theorem C.4 (Theorem 4.1 in GD16). If A is a proper t-acceptance set with price
π, then A∀S also is a proper t-acceptance set and its pricing function is given by

P [A∀S ](f) = inf
ϕ∈S

π
(
f
[
ϕ
])

for all f ∈ X[t,∞〉

The agent’s price for any actual decisions procedure followed by the counterparty is
always higher than this price. The agent can keep the difference in the form of his or
her own profit. However, the counterparty can make this profit arbitrarily small (if
the infimum is finite).

Theorem C.5 (Theorem 4.2 in GD16). If S is t-compatible and A is a proper t-
acceptance set with price π, then A∃S is also a proper t-acceptance set and its pricing
function is given by:

P [A∃S ](f) = sup
ϕ∈S

π
(
f
[
ϕ
])

for all f ∈ X[t,∞〉

While this price can be higher than the price for an actually realized decision procedure
by the agent, he or she can make this loss arbitrarily small (if the supremum is finite).

Theorem C.6 (Theorem 5.1 in GD16). An acceptance family is time consistent (cf.
Definition 2.8) if and only if its dual pricing family is time consistent.

Corollary C.7 (Properties of conditionally almost sure, Corollary B.1 in GD16). Let
D be a countable collection of sets with positive probability and A,B ∈ D.

(1) P(B \ C) = 0⇐⇒ P(C|B) = 1

(2) (∀A ∈ D : P(C|A) = 1) =⇒ P(C|
⋃

D) = 1

(3) P(B|A) = P(C|B) = 1 =⇒ P(C|A) = 1
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