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1. Introduction 

 

1.1 Aspects of the anatomy of the eye 

The mammalian eye is constituted of the eye globe (Bulbus oculi) and various supportive 

and protective appendages (Welsch and Deller, 2010). The globe of the eye (Bulbus oculi) 

is composed of light-sensitive and light-refractive components. The cornea, the lens and 

the vitreous humor are counted among the light-refractive tissue elements, while the 

light-sensitive part of the eyeball is represented by the retina (Trepel, 2012). The eyeball 

is enclosing a cavity, filled with a transparent, gelatinous substance, named vitreous 

humor (Corpus vitreum).  The eye globe itself represents a tissue coat of three layers 

(Figure 1):  the external (Tunica fibrosa bulbi), the middle (Tunica vasculosa bulbi) and 

the inner (Tunica interna bulbi) layer  (Welsch and Deller, 2010). 

 

 
Figure 1: Horizontal section across the bulbus oculi 

Modified after (Sobotta, 2013; Trepel, 2012) 
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Since the emphasis of this work is put on the elucidation of the TGF-β signaling pathway 

in the retina, we focus on the innermost layer of the eyeball tunic in the following. 

  

1.1.1 Internal layer of the eye tunic: the retina and the retinal pigment epithelium 

 

1.1.1.1 The retina 

The retina, as the light-sensitive medium of the eye, is responsible for the conversion of 

the physical light impulse into a neuronal stimulus over a series of photochemical 

processes (Trepel, 2012). Within the inner layer of the eye tunic there are two 

distinguishable regions, which merge into each other at the Ora serrata (OS). The Pars 

optica consists of an outer Stratum pigmentosum and an internal Stratum nervosum. The 

anterior Pars caeca comprises a layer without photosensory cells (“caecus”: Latin for 

“blind”), adjacent to the ciliary body (Pars ciliaris retinae) and the iris backplane (Pars 

iridica) (Figure 1) (Trepel, 2012). Although both Stratum nervosum and Stratum 

pigmentosum arise from the optic vesicle, these two tissue layers are quite different: the 

multilayered neural retina contains millions of neurons, interconnected through 

synapses, whereas the pigmented epithelium comprises just a single layer of non-

neuronal, cuboidal cells, containing pigment-bearing melanin granules (Reh, 2012). 

Strata pigmentosum and nervosum exhibit an epithelium-like layered architecture, 

comprised of several distinct layers (Welsch and Deller, 2010). The “outermost” layer 

encompasses the outer and inner segments of the primary light-sensitive neurons: the 

rods, providing black-and-white vision, and the cones, capable of perceiving color vision. 

Their respective cell bodies are located in the outer nuclear layer (ONL) (Figure 2). 

Beneath them (in the direction towards the vitreous humor) follows the outer plexiform 

layer (OPL), that constitutes synapses between the neurons of the ONL and the neurons 

of the inner nuclear layer (INL). Within the INL are situated the cell bodies of the 

bipolar, amacrine and horizontal neurons. The inner plexiform layer (IPL) consists of 

synapses between the neurons of the INL and the retinal ganglion cells (RGCs). The 

adjacent layer is the retinal ganglion cell layer (GCL), the axons of which constitute the 

nerve fiber layer and project to neurons beyond the retina, within higher visual centers of 

the brain (Figure 2) (Trepel, 2012). The information streams, in its simplest and most 

direct flow, from the sensory cells, over the bipolar cells, to the cells in the GCL, which 

bundle their axons to form the optic nerve. Thus, rods and cones, bipolar cells and RGC 

represent the first three neurons of the visual pathway, connected in a fluent network by 

their processes (Welsch and Deller, 2010). The other retinal neurons, the horizontal and 
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amacrine cells, play an important role for contrast enhancement and motion detection 

(Trepel, 2012). The Müller glia cells contribute to the formation of the outer (OLM) and 

inner limiting membranes (ILM) (Magalhães and Coimbra, 1972). The outer limiting 

membrane is situated between the inner segments of the photoreceptors and the ONL, 

while the inner limiting membrane is located on top of the nerve fiber layer, next to the 

vitreous body (Figure 2). 

 

 
Figure 2: Microscopic anatomy of the retina 

The retina, in its light-sensitive area – the Pars optica, shows a complex layered 

architecture, resembling the functional arrangement in a fluent network of neurons, 

interconnected through synapses. Picture taken from (Welsch, 2005). 

 

1.1.1.1.1 Retinal ganglion cells (RGCs) 

The ganglion cells constitute in their entirety the innermost retinal neuronal layer. These 

are typical multipolar nerve cells, containing large euchromatic nuclei and basophilic 

Nissl bodies within an organelle-rich cytoplasm (Mescher, Anthony L., Junqueira, Luiz 

Carlos Uchôa, 2010; Welsch and Deller, 2010). Both bipolar and amacrine cells release 

neurotransmitters at respective synaptic endings to the ganglion cells. The RGCs project 

their axons to the nerve fiber layer and finally form the optic nerve head in the central 

retina (Mescher, 2010). A subset of atypical ganglion cells is photoreceptive itself. They 

express the photopigment melanopsin that is involved in relaying the changes in light 

quantity and quality via respective axons of the retinohypothalamic tract to the 

suprachiasmatic nuclei of the hypothalamus. Thus, RGCs contribute to the  control of the 

physiological circadian rhythms, pupillary light reflex and sleep (Schmidt et al., 2011). 
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1.1.1.1.2 The inner nuclear layer (INL) 

The perikarya of the bipolar cells are the main constituents of the inner nuclear layer 

(INL), besides the cell bodies of Müller glial cells, horizontal and amacrine cells. Bipolars 

extend their processes into the inner (IPL) and outer plexiform layers (OPL) and thus act 

as interneurons, transmitting photoreceptor signals to the RGCs (Welsch and Deller, 

2010). Two types of bipolar cells may be distinguished by means of functional 

characteristics and due to the expression of two types of glutamate receptors: on- and off-

bipolars. Upon light-mediated hyperpolarization of a photoreceptor, a respective on-

bipolar cell would react with depolarization, since its metabotropic glutamate receptors 

(mGluR6) are stimulated. In response to photoreceptor hyperpolarization, the glutamate 

release at the ionotropic receptors (AMPA and kainate cation channels) of the off-bipolar 

cells is reduced, leading to a negative shifting of their membrane potential, i.e. 

hyperpolarization (Masland, 2012). Eventually, the information is relayed to the output 

neurons, the RGCs. This distinctly complex connectivity system within the retina is a 

major component of the visual perception. 

Horizontal cells and amacrine cells also have their nuclei in the INL, while their 

processes spread horizontally in the plexiform layers and thus integrate and fine-tune 

photoreceptor signals over a wide area of the retina (Mescher, 2010). 

The ramified Müller cells constitute the major supportive glial cells of the retina. Their 

nuclei  lie in the INL, while their processes span the entire thickness of the retina (García 

and Vecino, 2003). Müller cells are the only non-neuronal cells that originate from retinal 

progenitor cells (Turner and Cepko, 1987), ensheathing all retinal neurons in the 

vertebrate retina (Bringmann et al., 2006). This tight developmental and morphological 

relationship is reflected by the multiple functions of the Müller cells, encompassing 

maintenance of retinal homeostasis and trophic support for the neurons via release of 

neuroprotective factors (Bringmann et al., 2006). However, aberrant function of the glia 

appears to contribute to certain pathological conditions, such as retinal degeneration 

(Jadhav et al., 2009). Their progress may be accelerated by reactive Müller cell gliosis, 

which involves the dysregulation of various neuron-supportive functions. Thus, 

impairments of any kind on this level must aggravate a present dysfunction of neurons by 

increasing their susceptibility to stressful stimuli in the diseased retina (Bringmann et 

al., 2006). 

 



Introduction 

 

5 

1.1.1.1.3 The light-sensitive neurons of the outer nuclear layer (ONL) 

The outer nuclear layer (ONL) represents the outermost layer of perikarya within the 

Stratum nervosum (Figure 3). Hence, incoming light has to penetrate all the layers in the 

front to reach the photoreceptors. These cells act as neurons, perceiving light sensory 

stimuli (= photoreceptors), i.e. as primary sensory cells (Trepel, 2012). Within the 

mammalian retina the outputs of the two distinct photoreceptor types, the rods and cones, 

constitute the first stage of visual images processing, hence the first neuron of the visual 

pathway. Thereby, the very light-sensitive rods account for vision in dim light and do not 

discern color, while cones contribute to color vision in the conditions of day-light 

(Masland, 2012). The respective axon-like extensions, terminating in distended synaptic 

bulbs, are situated within the outer plexiform layer (OPL) (Figure 3), where signal 

transmission to second-order neurons takes place (Young, 1967). 

 

 
Figure 3: The retinal layers 

A schematic and a corresponding semithin section, showing the configuration of the 

retinal layers. Left-hand side figure taken from: 

http://archive.org/stream/anatomyofhumanbo1918gray#page/1016/mode/2up; on the right-

hand side: semithin section of the mouse retina (by Stefaniya Boneva). 

 

Within almost all mammalian retinae rod photoreceptors, located primarily in the 

periphery, exceed numerically cone photoreceptors, which occupy the Fovea centralis, 

responsible for sharp central vision (Masland, 2012). The high acuity of human vision 

relies heavily upon this cone-rich region, located in the center of a yellowish spot within 

the human retina – the macula (Morrow et al., 1998). In the human retina rods 

outnumber cones by about 20-fold (120 million versus 6 million (Trepel, 2012)), while 
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estimates of the percentage of cones in the rod-dominated murine retina differ 

dramatically, ranging from an assumption of a pure rod retina (because of mice’s 

nocturnal behavior) to numbers of approximately 10% (reviewed in (Carter-Dawson and 

LaVail, 1979)). Carter-Dawson and LaVail based their conclusion of 3% in both the 

central and peripheral retina on elegant nuclear counts and assumed subsequently the 

absence of a fovea-similar region by mice. Since the discrepant rate of rods’ and cones’ 

degeneration hallmarks inherited retinal dystrophies (e.g. retinitis pigmentosa), the 

knowledge of the cones’ (approximate) share in photoreceptors’ quantity is of great 

importance for studies, involving mice as animal models. To sum up, in contrast to 

humans, whose vision depends on three kinds of cones and only one variety of rods, 

rodents rely primarily on rod-mediated vision, since rods account for 97% of their 

photoreceptor cells (75% of all cells in the mouse retina) (reviewed in (Morrow et al., 

1998)).  

Photoreceptors are distinguishable especially by their either rod- or cone-shaped outward 

light-perceiving processes, each composed of both an outer and an inner segment. These 

extensions are adjacent to the retinal pigment epithelium (RPE) and represent the 

outermost layer of the Stratum nervosum (Figure 5B.). The highly specialized functional 

assignment of photoreceptors, which transmit the stimulus of light to corresponding brain 

centers, requires the mentioned segmental organization, featuring a great degree of 

intracellular compartmentalization (Young, 1967). 

The outer segment of each photoreceptor cell is constituted of many hundreds of densely 

packed discs (Figure 4). Each of them represents a double-layered plasma membrane 

invagination: either in terms of membranous disc stacks (rods) (Figure 4A., 4C., 4D.), or 

as membrane enfoldings (cones) (Figure 4B., 4E.) (Welsch and Deller, 2010). The visual 

pigment is restricted, in the form of a transmembrane protein, to these cell membrane 

discs, which maximize the exposure surface area for photons, reacting with 

photopigments. In the adult vertebrate photoreceptor the process of packaging of the 

membrane into a stack of closely spaced discs accounts for the renewal of the outer 

segment (Steinberg et al., 1980). Radioautographic studies (Young, 1967) and 

ultrastructural analyses (Anderson et al., 1978) of retinal photoreceptor cells have 

demonstrated that the outer segments of both rods and cones, respectively, are 

regenerated within a balanced process: new lamellar material is continuously delivered at 

the basis of the segment (Figure 4B.), these newly-formed discs then proceed towards the 

apex of the respective segment, which is ultimately shed and phagocytized by the 

adjacent RPE. Protein constituents, including visual pigments, are synthesized within the 
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inner segment of each photoreceptor cell, more precisely in the ergatoplasm of its myoid 

region, then transferred to the corresponding Golgi complex and through the dense 

aggregations of mitochondria within the ellipsoid region, also part of the inner segment 

(Young, 1968). Upon passing through the extremely narrow modified cilium of the 

connecting stalk structure (Figure 4E.), which unites inner and outer segment, proteins 

are incorporated into the newly formed membranous discs at the basis of the outer 

segment (Young, 1968). Thus, the light-sensitive visual pigments are restricted to the 

outermost portion of the photoreceptor cells. The continuous assembly of new disc stacks 

involves the recycling of old material in a balanced manner (Young, 1971). Since the 

process of shedding detached discs is crucial for the renewal and the homeostasis of 

photoreceptor outer segments (Bonilha et al., 2006), their arrangement among the 

microvilli of the retinal pigment epithelial cells, appears to be not only contingent upon 

development, but also having functional issues. 
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Figure 4: Ultrastructure of photoreceptors 

A. An electron micrograph of a rod outer segment base in a 13-lined ground squirrel. The 

outlined area is shown in inset (on the top right). The small indentations of the cell 

membrane represent newly forming discs, while one disc is pinching off from the cell 

membrane (arrow). Slightly modified after (Anderson and Fisher, 1976). B. An electron 

micrograph of a cone outer segment base (rhesus monkey), the arrow pointing to the most 

basal membrane enfolding. The stacked membranes of the discs are very distinct due to 

the high electron-density of the proteins they contain. Picture taken from (Steinberg et 

al., 1980). C. and D. Parallel arrangement of disc lamellae within a rod outer segment. 

Electron micrograph of a longitudinal section through a part of a rod outer segment 

(rhesus monkey). Arrowhead pointing to the rim of a single disc) (C.). Diagram of a stack 

of mature discs, surrounded by the plasma membrane (pm) (D.). Both panels slightly 

modified after (Steinberg et al., 1980). E. Model for the structure of mammalian cone 

outer segments. Right panel: An entire outer segment and the distal portion of the cone 

inner segment. Left panel: Longitudinal section through a cone outer segment base. The 

membrane at the very base of the stack is continuous with the membrane that borders 

the connecting cilium, while the basal disc stack represents an interconnected network. 

Picture taken from (Anderson et al., 1978). 
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1.1.1.2 The retinal pigment epithelium (RPE) 

The highly specialized tasks, fulfilled by the retinal pigment epithelium (RPE), are of 

great importance for the unimpaired homeostasis of the neural retina. Phagocytosis of 

shed outer segments, aligned nutrients supply and recycling of waste products from 

photoreceptor cells, stable ion conductance, light absorption, growth and 

immunosuppressive factors secretion  and visual pigment regeneration count among the 

essential functions of the RPE (Bonilha et al., 2006; Strauss, 2005). The detached tips of 

photoreceptor outer segments are fused with plenty of lysosomes, present in the 

cytoplasm of the RPE cells (Welsch and Deller, 2010; Young, 1969). Residual, i.e. not 

completely utilized, bodies within the lysosomal vesicles form lipofuscin particles, which 

accumulate within the retinal epithelium cells over a lifetime and which cannot be 

completely handled by means of the depicted autophagic process (de Jong, Paulus T. V. 

M., 2006). Consequently, the concentration of lipofuscin granula is the highest in the 

regions, where the metabolic functions of the retinal pigment epithelial cells are most 

distinct: in the parafoveal region (de Jong, Paulus T. V. M., 2006). Accumulation of 

excessive lipofuscin, beyond normal aging process proportions, is a commonly observed 

pathology in several retinal diseases, such as AMD and inherited dystrophies 

(Nandakumar et al., 2012). By means of in vivo laser scanning ophthalmoscopy (SLO) 

fundus imaging lipofuscin particles can be visualized, since RPE areas, containing the 

degradation material, emit fundus autofluorescence, when excited by blue light. The 

excitation efficiency of lipofuscin lies between 430 and 600 nm, with an emission 

spectrum, ranging from 480 to 800 nm (Nandakumar et al., 2012). By visualizing the 

topographical map of lipofuscin, SLO is able to assess the metabolic health and 

functionality of the RPE (Nandakumar et al., 2012). 

The cuboidal epithelial cells project their delicate apical microvilli in the direction of 

photoreceptors and encompass the tips of their outer segments (Figure 5C.) (Young, 

1971). This intimate morphological relationship between both layers is crucial for the 

maintenance of visual function, especially for regeneration and renewal of photopigments 

after absorption of light units. The process represents the recovery of photoreceptors’ 

excitability, since rods and cones themselves are unable to re-isomerize all-trans-retinal 

back to 11-cis-retinal (Strauss, 2005).  
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Figure 5: Photoreceptor cells and phagocytosis of shed discs by the RPE 

A. A colored scanning electron micrograph of rods (yellow) and cones (green). Picture 

slightly modified after: http://fineartamerica.com/featured/sem-of-rods-and-cones--retina-

spl.html 

B. A schematic drawing of a cone (on the left) and a rod (on the right), as well as of the 

retinal pigment epithelium (RPE), responsible for phagocytosis of shed disc components. 

The outward processes of the receptor cells, adjacent to the RPE, are each comprised of an 

outer and an inner segment, containing the metabolic machinery for the cell's 

biosynthetic and energy-producing processes. The zonulae adhaerentes between the 

sensory cells and the Müller supporting cells form the outer limiting membrane (OLM). 

The RPE’s basal surface faces the acellular Bruch’s membrane, which is constituted of a 

basal lamina, collagen fibers and a dense network of elastic fibers and abuts the 

fenestrated endothelium of the choriocapillaris. Picture modified after (Welsch, 2005). C. 

Terminal disc shedding of a cone outer segment tip (extrafoveal human cone). The RPE 

apical processes (arrows) extend along both sides of the outer segment. Picture taken 

from (Steinberg et al., 1977). 
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1.2 Phototransduction cascade 

 

1.2.1 Phototransduction 

With the aid of the visual pigment, incorporated and very densely packed into the 

flattened membranous discs within the light-sensitive outer segment, photoreceptors 

detect the light stimulus and initiate the phototransduction cascade (Welsch and Deller, 

2010). The respective rod photopigment is called rhodopsin, while cones contain three 

distinct variations of the visual pigment iodopsin, each of them with a specific maximal 

sensitivity in the red, blue, or green spectrum of the visible wavelength. Thus, the three 

functional types of cone cells, which are not distinguishable morphologically, are capable 

of detecting those colors in reflected light (Mescher, 2010). The diverging types of visual 

pigment, absorbing light most dynamically at limited wavelengths, are likely to illustrate 

the functional specificity of rods, which are extremely sensitive even to low light levels, 

responding to a single photon at dusk or nighttime, and cones, which are specialized for 

color vision in bright light. Each of these visual pigments is comprised of a 

transmembrane G-coupled receptor, the opsin, that is covalently bound to the light-

sensitive chromophore retinal (Figure 6A.). When bleached by light, the visual pigment 

triggers the phototransduction cascade, which involves a similar process in both rods and 

cones, but is far better studied for the more abundant rod cells (Mescher, 2010).  

In the dark the depolarized photoreceptor cell continuously releases the neurotransmitter 

glutamate at corresponding synapses to the neurons of the vertical pathways (Crooks and 

Kolb, 1992). The absorption of photons by the retinal of rhodopsin leads to a conformation 

change of the chromophore – from 11-cis-retinal to all-trans-retinal (Figure 6B.). Upon 

this stimulation, opsin activates transducin, a trimeric G-protein, which is coupled to the 

transmembrane receptor opsin. Subsequently, the activated transducin releases a single 

α-subunit, which stimulates another membrane protein, phosphodiesterase (PDE) (Figure 

6A.). PDE is capable of hydrolyzing phosphoric diester bonds and thus catalyzing the 

chemical conversion of cGMP (guanosine 3’,5’-cyclic monophosphate) to 5’-GMP 

(guanosine 5’-monophosphate).  Since the high intracellular concentration of the second 

messenger cGMP keeps the abundant membrane cation channels open, equivalent to the 

depolarization of the photoreceptor cell, less cGMP stimulates the sodium channels to 

close. This results in a hyperpolarization of the cell – the amount of released 

neuromtransmitters at the synapse decreases. This change at the synapse depolarizes in 

its turn sets of bipolar neurons, which send action potentials to the ganglion cells of the 

optic nerve and initiate the visual stimulus to the brain (Mescher, 2010). 
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Figure 6: Rod cell phototransduction 

A. The phototransduction signaling cascade is mediated via G-proteins: the visual 

pigment represents a transmembrane G-protein-coupled receptor, the opsin, covalently 

bound to the chromophore retinal. Upon light stimulation, retinal isomerizes from 11-cis-

retinal to all-trans-retinal and the phototransduction cascade is initiated: the G-protein 

transducin is activated and releases a single α-subunit, which stimulates 

phosphodiesterase (PDE). PDE catalyzes the chemical conversion of cGMP (guanosine 

3’,5’-cyclic phosphate) to 5’-GMP (guanosine 5’-phosphate). High intracellular 

concentrations of cGMP keep the cation channels open, resulting in the depolarization of 

the photoreceptor cell, less cGMP stimulates the sodium channels to close and the cell 

hyperpolarizes (Further details are elaborated in the main text). Figure taken from 

(Mescher, 2010). B. The two isomers of the retinal molecule: before a photon interacts 

with it (a, 11-cis-retinal) and after light-induced photoisomerization (b, all-trans-retinal). 

Figure taken from:  

http://cnx.org/contents/b375ea7d-22d5-4f47-b10a-41dd93637896@5/Sensory_Perception 

 

1.2.2 The visual cycle 

Upon light induction, the conformational change in retinal (Figure 6B.) also causes the 

chromophore to dissociate from the opsin, leaving a bleached opsin, which necessitates a 

reconstitution to the dark-adapted visual pigment form (de Jong, Paulus T. V. M., 2006). 

The free all-trans-retinal diffuses into the pigmented epithelium (Mescher, 2010). Since 

photoreceptors lack a cis-trans isomerase function for retinal regeneration after 

transduction of light energy into electrical stimuli (Baehr et al., 2003), the re-

isomerization process, termed “visual cycle” (Redmond et al., 2005), occurs largely within 

the RPE through many complex intermediate steps. One of them includes the enzyme 

Rpe65, which is capable of converting all-trans-retinyl esters into 11-cis-retinol, a step, 

essential for the proper function of rods and cones (de Jong, Paulus T. V. M., 2006; 

Redmond et al., 1998). In order to ensure constant excitability of photoreceptors, the 

recycled retinal is transported back to rods or cones to allow further phototransduction 
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(Strauss, 2005). This cycle of retinal replenishment upon isomerization and rhodopsin 

recovery after bleaching by light may take about a minute and resembles the slow 

adaptation of the eyes from bright to dim light (Mescher, 2010). 

Mutations of Rpe65 or any other of the enzymes, involved in the regeneration of retinal, 

the chromophore of all visual pigments, result in blindness to a variable extent due to 

malfunction of the retinoid metabolism (reviewed in (Redmond et al., 2005)). The 

unimpaired flow of the visual cycle appears to be crucial for the execution of light damage 

experiments, since genetically altered mice, lacking either the visual pigment rhodopsin, 

or the gene Rpe65, proved to be completely resistant to light-induced apoptosis (Grimm et 

al., 2000). Allelic polymorphisms in the RPE-specific gene Rpe65 account for a modified 

susceptibility to light, as it has been shown by Dancinger and coworkers (Danciger et al., 

2000), who postulated that a single base change in codon 450 alters the sensitivity to 

damage, sustained after light exposure. This point mutation in the Rpe65 gene is 

responsible for a Leu450Met amino acid substitution, which has been proven to increase 

retinal resistance against light-induced stress by slowing down the rate of rhodopsin 

regeneration (Grimm et al., 2000; Wenzel et al., 2001). Reduced levels of regenerated 

rhodopsin (re-synthesized opsin plus 11-cis-retinal) decrease the photon absorption rate, 

thus reducing retinal susceptibility to light damage. Since light exposure has been shown 

to exacerbate the course of retinal degenerative diseases, caused by inherited mutations 

(Sanyal and Hawkins, 1986; Wang et al., 1997), such inherent differences in light damage 

sensitivity appear to be very important for identifying modifying genes, affecting 

phenotypic severity.  

In order to obtain a comparable situation between experimental individuals, we analyzed 

the animals for the mutation in the Rpe65 gene and only homozygous leucine carriers 

were included in our light damage experiments. 
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1.3 The TGF-β signaling pathway 

Since the aim of this work comprises the characterization of the neuroprotective effects of 

TGF-β signaling and the molecular mechanisms, mediating the prevention of apoptotic 

cell death, the following part is devoted to the detailed description of the signaling 

pathway. 

 

1.3.1 TGF-β ligands 

The transforming growth factor beta (TGF-β) protein was originally characterized in 1983 

(Assoian et al., 1983; Frolik et al., 1983; Roberts et al., 1983), following its initial isolation 

from non-neoplastic tissues in 1981 (Roberts et al., 1981). Since then the knowledge, 

regarding the pivotal functions of TGF-β in numerous physiological and pathological 

mechanisms, has grown exponentially, resulting in the identification of a broad spectrum 

of cellular targets and multifunctional actions (Roberts and Sporn, 1990). The distribution 

of TGF-β family ligands in both invertebrate and vertebrate species, ranging from fruit 

flies (Drosophila melanogaster), over the African claw-toed frog (Xenopus laevis) to 

mammals, emphasizes the significance of these factors for developmental fate (reviewed 

in (Goumans and Mummery, 2000; Kingsley, 1994)). Up to date the encoding genes for 

five TGF-β isoforms and their corresponding products have been isolated: three 

mammalian TGF-β1, -β2, and -β3 (Cheifetz et al., 1987; Derynck et al., 1988; Seyedin et 

al., 1987), whereas TGF-β4 (Jakowlew et al., 1988) and -β5 (Kondaiah et al., 1990) 

probably represent the avian (chicken) (Burt and Paton, 1992) and amphibian (Xenopus) 

(Burt and Law, 1994) homologues, respectively, of the mammalian TGF-β1 gene. The 

majority of them play essential roles during embryonic development and within 

maintenance of adult tissue homeostasis and morphogenesis (Feng and Derynck, 2005; 

Goumans and Mummery, 2000; Itoh et al., 2000; Wu and Hill, 2009). 

 

1.3.2 Signaling receptors 

In order to transduce signals to specific target genes, TGF-βs act through cell surface 

receptors, assembled by two types of serine/threonine protein kinases (Massagué, 1998). 

Binding of the ligand induces the composition of a hetero-tetrameric receptor complex of 

two type I (acting as signal propagators) and two type II (fulfilling an activator task by 

phosphorylating the type I components) receptor components (Figure 7) (Massagué, 2012; 

Wrana et al., 1992). The signaling transmembrane receptors, are jointly designated as the 

TGF-β receptor family (Massagué, 1998).  



Introduction 

 

15 

1.3.3 Signal flow within the receptor complex and downstream response mediation 

The TβRII is a constitutively active kinase and auto-phosphorylated (in a ligand-

independent manner), while TβRI is not phosphorylated in its basal state and unable to 

autonomously bind ligands from the extracellular microenvironment (Wrana et al., 1994). 

TβRII only requires a ligand, in order to interact with its substrate, the type I receptor, 

and thus generate the first step of the TGF-β pathway (Massagué, 1998). The receptor 

activates the TβRI by phosphorylation (Wrana et al., 1994), hereby inducing the assembly 

of a heteromeric complex of type I and type II receptors (Figure 7) (Wrana et al., 1992).  

 

 
Figure 7: The TGF-β signaling pathway 

Ligands from the TGF-β superfamily bind to heteromeric receptor complexes, exhibiting 

serine/threonine kinase domains. Subsequently, the type II receptor phosphorylates and 

thus activates the type I receptor, which in its turn phosphorylates a receptor-regulated 

SMAD (R-SMAD). Activated R-SMADs assemble with SMAD4 to form a trimeric complex, 

which is then translocated into the nucleus, where it can interact with certain co-

activators and co-repressors. The particular type of cellular response to the altered gene 

transcription is fine-tuned at several levels through additional inputs, which eventually 

determine the ultimate output. This context-dependent nature of transduction is 

consistent with the diversity of versatile signal, elicited in response to TGF-β-like ligands. 

BMP, bone morphogenetic factors; BMPR-I and -II, bone morphogenetic factor receptors I 

and II; Growth Factor R, growth factor receptor; TGF-β, transforming growth factor beta; 

TGF-β RI, RII, RIII, transforming growth factor beta receptors I, II, III; MAPK/ERK = 

MEK (MAPK/ERK kinase, a mitogen-activated protein kinase kinase), MAPK, mitogen-

activated protein kinase, ERK, extracellular signal-regulated kinase; Jun/Fos, 

transcription factors, forming together the AP-1 complex (Angel and Schorpp-Kistner, 

2006). Figure modified after: http://www.rndsystems.com/Resources/Images/6906.pdf 
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The proteins, belonging to the SMAD family, are the first substrates for the catalytic 

kinase domain of the activated TβRI to be identified (Massagué, 1998). TGF-β receptor 

interactions with these transcription factors mediate gene expression and TGF-β 

signaling may be contextually altered according to the activated SMAD proteins 

(Massagué, 2012). SMADs can be classified in three separate groups: receptor-regulated 

SMAD proteins (R-SMAD proteins; SMAD1, -2, -3, -5 and -8), Co-SMADs (SMAD4), 

associating with the R-SMADs, and inhibitory SMADs (SMAD6 and -7), antagonizing the 

effects of both other groups (reviewed in (Attisano and Wrana, 2002)). R-SMADs act as 

direct substrates for the seven TGF-β receptor type I kinases (Macias-Silva et al., 1996). 

Three of the type I receptors (for TGF-β, activin and Nodal) phosphorylate SMAD2 and 

SMAD3, which thus act as transducers for TGF-β-like signals (Figure 7) (reviewed in 

(Attisano and Wrana, 2002; Massagué, 1998; Massagué, 2012)). Phosphorylated R-

SMADs dissociate from the complex and subsequently consolidate with the collaborating 

SMAD4 (also known as DPC4, deleted in pancreatic carcinoma locus 4), which acts as a 

shared partner of all R-SMADs to mediate transcriptional responses (Massagué, 1998). As 

a signal transducer, the activated trimeric SMAD4-R-SMAD complex (two R-SMADs and 

one SMAD4) is then translocated into the nucleus, where it can access specific promoter 

elements, in order to generate a transcriptional complex and thus activate target genes to 

elicit a cellular response (Massagué, 2000; Shi and Massagué, 2003). 

  

1.3.4 Negative regulation of SMAD-dependent transcription 

Human SMAD6 and -7 belong to a subfamily of antagonistic SMADs, which structurally 

differ considerably from both other subfamilies (Massagué, 1998). These inhibitory 

SMADs are capable of adjusting the signal flow, as they interfere with the 

phosphorylation of R-SMADs (Massagué, 2000). This kind of antagonism counts among 

several crosstalk links and feedback loops, which alter the initial TGF-β input to 

determine the ultimate output (Yan et al., 2009). As the SMAD transduction pathway 

represents just a single thread in a complicated signaling network, its contribution may 

be altered in a process, called “signaling crosstalk”. Such kind of alteration generally 

consists in a negative regulation of the biochemical activity of TGF-β signal mediation 

processes, since the very powerful SMAD pathway most probably needs to be 

domesticated (Massagué, 2000). As primary transducers of TGF-β-like signals 

intracellularly, SMADs are subjected to the signaling potential of the Ras-MEK 

(MAPK/ERK kinase)-ERK (extracellular signal-regulated kinase) pathway, activated by 

agonists, such as EGF (epidermal growth factor) and other Ras-activating mitogens 
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(Figure 7) (Massagué, 1998). In response to growth factor receptor signals or oncogenic 

mutations of Ras ERK-mediated phosphorylations interfere with the accumulation of 

activated SMADs in the nucleus (Kretzschmar et al., 1999). While TGF-β can overrule the 

effects of EGF and other Ras-mitogens in normal epithelial cells, oncogenic Ras mutations 

eliminate TGF-β-antimitogenic and cytostatic effects (Kretzschmar et al., 1999). But more 

importantly, the idea that the MAPK (mitogen-activated protein kinase) pathway can 

alter the activity of SMAD complexes implies that some of the classical agonists of these 

pathways, such as cytokines (tumor necrosis factor-α (TNF-α)) or cellular stress, could 

also influence the activity of SMAD transcriptional complexes. 

 

1.3.5 Disruption of the TGF-β signaling pathway 

Mutated genes, which ordinarily encode for components of the TGF-β signaling pathway, 

can cause various types of human disorders, depending on the level, at which disruption 

occurs. Alterations in TGF-β activity may have profound effects on embryological 

development and tissue homeostasis, including loss of growth inhibitory responses in 

cancer cells, excessive accumulation of fibrotic tissue due to immoderate gain of TGF-β 

activity, inflammatory disorders and many others (Massagué, 1998). Thus, unravelling 

the extent and ambiguous consequences of pathway discrepancies would surely benefit 

not just our understanding of the context-dependent TGF-β signaling in physiology and 

disease, but also the development of medicamentous options for the listed disorders.  
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1.4 The Cre/LoxP recombination system 

The genetic process of enzymatic recombination is a widespread mechanism in both 

prokaryotes and eukaryotes, which enables not only DNA damage repair, but also 

rearrangements of DNA sequences within an individual genome. This kind of 

rearrangement leads to alterations in timing and level of gene expression that are crucial 

for facilitating the genetic diversity and the evolution of organisms in response to 

environmental changes (Alberts et al., 2008). Guided by a specialized set of proteins, site-

specific recombination is capable of modifying gene order along a chromosome, as the 

enzymes break and rejoin two DNA double helices at specific recognition sequences, 

located on separate DNA molecules (donor and recipient DNA) (Alberts et al., 2008).  

The Cre recombinase (cyclization recombination), a 38 kDa protein from the integrase 

family of site-specific recombinases, has its origin in the bacteriophage P1. This enzyme 

catalyzes the synapsis and recombination between two loxP (locus of X-over of P1) 

recognition sites (sequences of 34 bp each) (Hamilton and Abremski, 1984; Sternberg and 

Hamilton, 1981), in fact not needing any additional co-factors, or sequence elements 

(Figure 8). Each loxP nucleotide sequence consists of a 8 bp core spacer sequence 

(determining the orientation), flanked by two palindromic 13 bp sequences (recombinase 

binding elements). In the framework of a recombination event, a single enzyme is 

associated with each palindromic half of a loxP site. This dimer subsequently binds to 

another loxP site dimer, thus assembling a tetrameric recombination synapse and 

bringing the two loxP sites together in an antiparallel manner (Guo et al., 1997). The 

“floxed” double-stranded DNA segment is subsequently cleaved, leaving behind the two 

complementary halves of the pre-recombination sites (Nagy, 2000). The results of cell 

culture experiments, carried out by Sauer and Henderson in 1988 (Sauer and Henderson, 

1988), demonstrated for the first time this type of controlled recombination with the aid of  

the prokaryotic enzyme in mammalian cells, implicating the great importance of this tool 

for creating any desired modification within the mammalian genome. Further 

investigations issued the development of a tissue- and site-specific chromosomal DNA 

recombination, as a function of particular recombinase expression for specifically 

modifying the mammalian genome in vivo  (Orban et al., 1992). 

In order to investigate the role of the TβRII inactivation in a complex multicellular 

organism, double transgenic mice were generated. Since a ubiquitous homozygous 

deficiency of the type II TGF-β receptor results in embryonic lethality due to crucial 

defects in hematopoiesis and vasculogenesis (Oshima et al., 1996), the conditional 

deletion of the TβRII by using the Cre/LoxP system enables to restrict its deletion to 
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spatial or temporal boundaries. In the current thesis, Tgfbr2fl/fl mice, were used that carry 

the loxP sites as flanking sequences of the Exon2 of the TβRII gene (Chytil et al., 2002). 

These mice were mated with appropriate cre mice, heterozygous for either α-Cre or 

LMOP-Cre, in order to trigger a lineage-specific deletion. To inactivate the targeted 

sequence in neural retina cells, originating from the inner layer of the optic cup, the 

expression of the gene, encoding for the Cre recombinase of α-Cre-transgenic mice, was 

directed by a retina-specific promoter element (α) of murine Pax6 (Marquardt et al., 

2001). This alpha enhancer element is responsible for the restricted expression of Pax6 

within the developing neural retina (Kammandel et al., 1999). In transgenic LMOP-Cre 

mice, the expression of the Cre recombinase was confined to rod photoreceptors, as the 

gene is expressed under the control of the long (4.1 kb) mouse opsin-promoter (Le et al., 

2006). 

Genomic alteration was thus, according to the particular recombinase, restricted to either 

neural retina cells, originating from the inner layer of the optic cup, or rod 

photoreceptors, respectively. 

 

 
Figure 8: The Cre/LoxP principal 

A “floxed mouse”, created through homologous recombination, is crossed with a 

transgenic mouse, expressing the Cre enzyme under the control of a specific promoter. 

The loxP sites flank an allele of interest on each side, which is consequently being 

conditionally deleted. Thus, genome alteration in a particularly precise manner is 

enabled. Figure taken from: http://www.tcdm.fi/animal-models/gm-cre-expressing-mouse-

lines/  
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1.5 The light damage model in the context of retinal degeneration 

 

1.5.1 Retinitis pigmentosa (RP) 

Retinitis pigmentosa (RP) comprises a heterogeneous subset of genetic pathologies, 

leading to the disease. It harbors multiple kinds of disorders, differing in their 

inheritance pattern (autosomal-dominant, autosomal-recessive or X-linked trait) and 

underlying gene mutations (more than 45 identified loci), but all of them featuring 

degeneration of rod and cone photoreceptors (Kellner, 2007). With a worldwide prevalence 

of about 1 in 4000 (for a total of more than 1 million affected individuals), RP accounts for 

the most common type of degeneration within the group of hereditary dystrophies of the 

human retina (Hartong et al., 2006).  

The multiple phenotype forms of RP differ dramatically in two variables: the age of initial 

manifestation and the chronological progression of the disease. While some patients 

develop symptomatic visual loss in childhood or even suffer from congenital blindness, 

others remain asymptomatic until mid-adulthood (Kellner, 2007). In spite of this wide 

temporal range, many patients exhibit a classic sequence of night blindness as an early 

symptom in adolescence and slowly progressive loss of mid-peripheral visual field in 

young adulthood. Roughly speaking, the earlier the initial symptoms arise, the greater 

the progression and the severity of functional loss. Advanced stages of this pattern 

include complete side vision deprivation, progressive development of tunnel vision and 

eventual color vision disturbances and central vision loss, typically by the age of 60 years 

(Hartong et al., 2006). Given that the course of visual field constriction is extremely slow 

and familiar predisposition is not present, the disease may escape notice for a very long 

time (Kellner, 2007). Furthermore, a reduction in visual acuity can go undetected, until 

the density of cones in the fovea has decreased by nearly 90% (Geller et al., 1992). The set 

of visual symptoms resembles the gradual loss of the two photoreceptor types in the outer 

nuclear layer: rods, responsible for dark adaptation and achromatic vision in the dark, 

and cones, which mediate color and acuity vision in daylight (Hartong et al., 2006). In the 

majority of cases of this inherited retinal dystrophy, the rods’ functional loss exceeds the 

deficits in cone sensitivity. Analyses of retinal functions within the framework of 

electroretinography provide evidence that diminishment of photoreceptor functionality 

occurs many years before initial subjective symptoms, such as impaired dark adaption, 

visual-field scotomas or visual acuity deficits, are reported (Berson, 1993). Universal 

ophthalmoscopy findings, for instance attenuation of retinal vessels, alterations of the 

retinal pigment epithelium and speckled intraretinal pigmentations in the periphery, 
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referred to as bone-spicule deposits and representing the migration of the RPE into the 

retina in response to photoreceptor-cell death (Li et al., 1995), hallmark RP, but might 

also be completely absent, especially early in the disease’s course (Kellner, 2007). 

Some of the mutations, causing RP, interfere with the rod photoreceptor transduction 

cascade, since the corresponding genes encode proteins, which are known to play essential 

roles in this biochemical pathway. The consequent death of rod cells is most probably 

attributable to the subsequently impaired physiology, while the death of cones is 

secondary and likely to imply the yet mysterious notion that certain rod factors promote 

cones’ survival (reviewed in (Hartong et al., 2006)). For now, the only treatment options, 

RP patients benefit from, are restricted to a symptomatic deceleration of disease 

progression and include nutritional supplements, such as vitamin A palmitate and 

docosahexaenoic acid (DHA) (an omega-3 fatty acid), but other approaches (gene-therapy, 

transplantation of stem cells, RPE or photoreceptors and implantation of retinal 

stimulating devices) are greatly anticipated (reviewed in (Hartong et al., 2006)). 

 

1.5.2 Age-related macular degeneration (AMD) 

The age-related macular degeneration (AMD) is the main cause of irreversible visual 

impairment and blindness by people over 50 years in the developed countries  (Jager et 

al., 2008; Pascolini and Mariotti, 2012). It is likely to become even more significant and to 

even double by the year 2020, due to the rapid growth of the elderly population (Friedman 

et al., 2004). In 1874 this condition was for the first time in the medical world referred to 

as “symmetrical central choroido-retinal disease, occurring in senile persons” (Hutchinson 

J, Tay W., 1874), while the label “age-related macular degeneration” was defined only 

about 30 years ago (de Jong, Paulus T. V. M., 2006). 

The characteristic central visual loss, occurring in AMD, is the result of alterations within 

the physiological structure of the Ruysch’s complex (de Jong, Paulus T. V. M., 2006).  The 

complex is named after the Dutch anatomist Frederik Ruysch and comprises the retinal 

pigment epithelium (RPE), the Bruch’s membrane and the choriocapillaris. The typical 

alterations within this complex occur as a reaction to the focal deposition of polymorphous 

debris between the RPE and the Bruch’s membrane (Figure 9). This pathogenetic 

mechanism, is affiliated to the absent or incomplete phagocytosis of the abnormal 

material by the RPE cells, a process, essential to the renewal of photoreceptor visual 

pigment (Kanski, 2008). 

The two major types of age-related macular degeneration are the non-exudative or “dry” 

and the exudative or “wet” AMD: the non-exudative form of AMD is characterized by the 
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existence of drusen and focal areas of RPE atrophy, while the “wet” form of AMD is 

marked by choroidal neovascularization (CNV) (Bhutto and Lutty, 2012). The clinical 

hallmark of age-related macular degeneration is the existence of drusen (Jager et al., 

2008), representing a discrete accumulation of debris and observed as yellowish spots in 

the macular region during a funduscopic examination (Jager et al., 2008; Kanski, 2008). 

The accumulation of lipid residuals within RPE cells, as aforementioned (1.2.2), leads to 

enzymatic autolysis, cell death and thus to a progressive diminishment of the RPE 

(Schmidt-Erfurth, 2007). The blood and oxygen supply of the photoreceptor cells relies on 

the unimpaired function of the choriocapillaris and its fenestrated endothelium. However, 

the progressive destruction of the RPE leads to a secondary atrophy of the blood vessel 

layer, too (Korte et al., 1984; Schmidt-Erfurth, 2007). The resulting hypoxia impairs the 

proper oxygen consumption by photoreceptors and leads to the accumulation of free toxic 

radicals particularly in the macular region (Schmidt-Erfurth, 2007). The hypoxic state 

stimulates the release of angiogenic factors, such as vascular endothelial growth factor 

(VEGF) from the RPE cells, which accounts for the development of CNV (Figure 9) 

(Spilsbury et al., 2000). Other relevant alterations within the Ruysch’s complex involve 

the deposition of extracellular membranous debris around the Bruch’s membrane. These 

induce the recruitment of inflammatory cells to the retina, capable of secreting 

inflammatory cytokines and angiogenic factors (Figure 9) (de Jong, Paulus T. V. M., 2006; 

Hageman, 2001). Since the access to nutrients from the RPE is critical for the survival of 

photoreceptors, they undergo apoptotic cell death, once the RPE becomes dysfunctional, 

e.g. in the course of age-related macular degeneration (Bhutto and Lutty, 2012; Dunaief, 

2002).  
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Figure 9: An illustrated explanation of AMD 

The drusen and fluid accumulation between the Bruch’s membrane and the photoreceptor 

layer, sitting atop the RPE, causes the recruitment of inflammatory cells to the retina. 

The release of inflammatory cytokines and growth factors stimulates the process of 

angiogenesis, resulting in the growth of new capillaries from preexisting vessels into and 

through the Bruch’s membrane. 

Figure slightly modified after http://www.scienceofamd.org/learn/, a website of The 

Angiogenesis Foundation, accessed on [October 31, 2016]. 

 

1.5.3 Light damage as a model for the study of retinal degeneration 

In a healthy adult retina only a very small portion of photoreceptor cells are affected by 

cell death in humans (only 2 rods/mm2 of retina per year in normal ageing eyes (Curcio, 

2001)) and in the most animal models. Therefore, an experimental model of artificially 

induced apoptosis was developed to allow studies of the apoptotic mechanisms in 

photoreceptors (retinal dystrophies and age-related macular degeneration) (Wenzel et al., 

2005). Hereby, the induction of cell death by a light stimulus is comparable to the 

supposed effect of excessive phototransduction signaling even in the absence of light – a 

scenario that results in retinal degenerative processes, according to the “equivalent light 

hypothesis”, postulated by Fain and Lisman (Fain and Lisman, 1993). Since the decrease 

in rod density in the parafoveal visual field (by approximately 30% in ageing healthy eyes 

(Curcio et al., 1993) and much more severely in eyes, suffering from AMD (Curcio et al., 

1996)) is the crucial variable in the initial phases of AMD, the model of light-induced 

retinal damage is supposed to resemble the loss of rods’ function (Remé et al., 2003). The 

susceptibility of rodents’ eyes to light of a visible wavelength at prevalent intensities 
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(Noell et al., 1966) is the essential condition, which allowed the observation of an 

accelerated and synchronized photoreceptor cell apoptosis. In this thesis, light damage 

experiments were performed to elucidate the role of the TGF-β signaling pathway and its 

possible neuroprotective effect on photoreceptors. 

 

1.5.4 Neuroprotective signaling upon light-induced stress and in the context of 

photoreceptor degeneration 

The fact that photoreceptor degeneration of any kind almost indispensably induces 

Müller cell reactivity implies the existence of a relatively limited number of genes, 

responding to photoreceptor degeneration in the context of inherited diseases (Rattner 

and Nathans, 2005). Genes, coding for photoreceptor-derived endothelin 2 (Edn2), count 

among the mostly upregulated transcripts in the case of retinal injury. The concomitant 

increase of the endothelin receptor B (Ednrb) in Müller cells indicates the signal function 

of Edn2 through this receptor in the case of cell stress (Rattner and Nathans, 2005).  

Another signal, identified as a neuronal survival factor, is represented by the leukemia 

inhibitory factor (Lif), deriving from Müller cells (Joly et al., 2008). The expression of its 

gene is highly upregulated upon photoreceptor death within the INL and induces itself an 

intrinsic molecular defense mechanism, including Edn2, Stat3 (signal transducer and 

activator of transcription 3), Fgf2 (fibroblast growth factor 2) and Gfap (glial fibrillary 

acid protein) (Braunger et al., 2013a; Joly et al., 2008). Bdnf (brain-derived neurotrophic 

factor) is another factor, known to protect photoreceptors against retinal degenerative 

processes (Gauthier et al., 2005; LaVail et al., 1998). 

TGF-ß signaling may increase the potency of certain neuroprotective factors, such as 

Fgf2, ciliary neurotrophic factor (Cntf), and glial cell line-derived neurotrophic factor 

(Gdnf) (Krieglstein et al., 2002). In a model system of peripheral neurons, TGF-ß has been 

shown to regulate neuron survival by enhancing the functions of Cntf or Fgf2. However, it 

does not seem to act synergistically with neuropoietic cytokines, such as  Lif (Krieglstein 

et al., 1998). 

To sum up, in the context of the light damage experiments, performed in this study, an 

upregulation in the levels of Bdnf, Lif and other survival factors, which are most probably 

mediated through Lif (Edn2 and Fgf2), was highly anticipated. Hence, the reaction of 

these transcripts to the retinal injury, sustained by light, was investigated by means of 

real-time polymerase chain reaction (RT-PCR). 
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1.6 Aim of the study 

The major purpose of the current study consists in the definition of the protective role of 

TGF-β signaling for photoreceptors’ survival. Therefore, we will use two mouse strains 

with a recombined and inactivated TβRII either in the cells, which derive from the inner 

layer of the optic cup (Tgfbr2∆oc), or in rod photoreceptors only (Tgfbr2∆rod). 

First of all, we aim to exclude possible side effects, which may arise from the expression of 

an exogenous protein, such as the Cre recombinase, in the retinal cells.  To this end, we 

will perform β-galactosidase staining, in order to visualize the expression pattern of the 

enzyme in both experimental mouse strains, and subsequently conduct morphology 

characterization and morphometric analyses of the inner (INL) and outer nuclear layer 

(ONL) thickness. The results will be depicted in form of Spider diagrams and the 

statistical evaluation of the measurements will expose any possible indications of 

interference of the recombinase enzyme with the tissue homeostasis. To further verify 

whether the expression of the protein would affect the neuronal vulnerability of 

photoreceptors, we will perform light damage experiments, followed by TUNEL-labeling 

of apoptotic cells. 

We will further characterize the successful recombination events by performing the 

Tgfbr2 deletion PCR, Western blot analyses and immunohistochemical staining for TβRII 

and pSMAD3, the cytosolic downstream transducer of TGF-β signals. Following 

phenotype analysis of Tgfbr2∆oc and Tgfbr2∆rod will include the characterization of their 

morphology and the obtaining of statistical evaluations, concerning the thickness of the 

nuclear layers. For Tgfbr2∆oc animals the retinal vasculature will by visualized by in vivo 

funduscopy and fluorescein angiography (FLA). 

In order to assess the notion of the neuroprotective effect of the TGF-β signaling pathway 

in the retina, we will subsequently perform light damage experiments. Morphometric 

analyses will show, whether the deficiency of the type II TGF-β receptor would result in 

alterations, regarding the architecture of the retinal layers. TUNEL-labeling and 

quantification of apoptotic cells after light exposure will demonstrate, if the 

downregulation of TGF-β signaling might diminish photoreceptor survival rates. In vivo 

laser scanning ophthalmoscopy (SLO), optical coherence tomography (OCT) imaging and 

ERG analyses will aim to confirm the gained results. The determination of the underlying 

molecular mechanisms, mediating the presumptive neuroprotective role of TGF-β, will 

include real-time RT-PCR analyses for the mRNA levels of several specific factors before 

and after light exposure. Another potential downstream signaling pathway, including 

(p)AKT, will be explored on protein level through Western blot analyses.  
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2. Material and methods 

 

2.1 Methods 

 

2.1.1 Animal models 

All procedures followed the tenets of the National Institutes of Health Guidelines on the 

Care and Use of Animals in Research and the EU Directive 2010/63/E. All mice were kept 

under standardized conditions for temperature (23ºC ± 2ºC), air humidity (55% ± 5%), 

light (an entraining light-dark cycle, comprising 12 h of light and 12 h of darkness, with 

lights on at 7 a.m. and off at 7 p.m.), light intensity (approximately 400 lux) and access to 

food and water ad libitum. All procedures were performed in mice of both sexes. 

 

Following mouse strains were used in the in vivo experiments: 

1. Tgfbr2fl/fl in a Blab-c background (originally in a 129SV background) 

2. α-Cre mice in a FVB-N background 

3. LMOP-Cre mice in a Balb-c background 

4. Rosa-LacZ reporter mice in a 129SV background 

5. Balb-c wildtype mice 

 

Since it has been proven, that mouse strains vary in their susceptibility to light damage 

according to their genetic background (La Vail, M. M. et al., 1987; La Vail, Matthew M. et 

al., 1987; Noell et al., 1966), the first task before us was the conversion of the pigmented 

Tgfbr2fl/fl mice into an albino phenotype. For this purpose, mice carrying two 

unrecombined Tgfbr2fl/fl alleles were interbred with wild-type Balb-c mice. The 

backcrossing involved seven generations, whereby progeny, heterozygous for Tgfbr2fl/- 

were consistently mated with albino animals in a Balb-c background. After completion of 

this procedure F7 Tgfbr2fl/- mice were interbred with heterozygous mice, transgenic for α-

Cre or LMOP-Cre (Figure 8). Progeny, heterozygous for both the floxed allele and the Cre 

recombinase, were crossed with cre-negative Tgfbr2fl/- animals from the F7 generation. 

Resulting offspring, carrying two Tgfbr2fl/fl alleles (Chytil et al., 2002) and differing in 

their genotype for cre, were used for further experiments. 

Mice, carrying two Tgfbr2fl/fl alleles (Figure 10, upper panel) (Chytil et al., 2002) and 

heterozygous for α-Cre (Tgfbr2fl/fl;α-Cre) (Figure 10, lower panel) (Marquardt et al., 2001), 



Material and methods 

 

28 

had recombined and inactivated Tgfbr2fl/fl alleles in the neural retina cells that originate 

from the inner layer of the optic cup (Braunger et al., 2013b). For the sake of simplicity, 

Tgfbr2fl/fl;α-Cre are referred to as Tgfbr2∆oc in this work, “oc” in resemblance to “optic cup”. 

α-Cre-negative littermates with two unrecombined Tgfbr2fl/fl alleles were used as control 

mice. 

 

 
Figure 10: Schematic of the floxed TβRII gene and the Pax6 α enhancer-directed cre- 

transgenic construct 

Upper panel: A schematic of the targeted murine TβRII receptor gene. As a side note, 

mice showing deletion of Neor cassette only were used as the founders for further 

conditional knockout studies of the TβRII receptor. Figure taken from (Chytil et al., 

2002). Lower panel: In α-Cre mice, the sequence, encoding for the Cre recombinase, was 

placed under the control of an α enhancer element of the murine Pax6 P0 promoter. A 

reporter gene-cassette (IRES (internal ribosomal entry site)-gfp) has been included in this 

construct, in order to encode common cre- and gfp-expression from a single mRNA. Figure 

of the construct taken from (Marquardt et al., 2001), the two other pictures taken from: 

http://www.emory.edu/EMORY_MAGAZINE/issues/2014/spring/features/animals.html 

and http://archive.org/stream/anatomyofhumanbo1918gray#page/1016/mode/2up 

 

Mice, carrying two Tgfbr2fl/fl alleles (Figure 10, upper panel) (Chytil et al., 2002) and 

heterozygous for LMOP-Cre (a mouse rod opsin promoter-controlled cre transgene) 

(Tgfbr2fl/fl;LMOP-Cre) (Figure 11) (Le et al., 2006), had recombined and inactivated 

Tgfbr2fl/fl alleles in rod photoreceptors and were used as experimental animals. For the 

sake of simplicity, Tgfbr2fl/fl;LMOP-Cre are referred to as Tgfbr2∆rod in this work, “rod” in 
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resemblance to “rod photoreceptors”. LMOP-negative littermates with two unrecombined 

Tgfbr2fl/fl alleles were used as control mice. 

 

 
Figure 11: A schematic of the opsin promoter-directed cre-transgenic construct  

LMOP represents the 4.1 kb-long mouse opsin promoter, followed by the coding region of 

the Cre recombinase gene, MT-I A(n), staying for an intron, containing a mouse 

metallothionein polyadenylation signal, and HindIII, representing restriction sites, 

flanking the transgene that carries the mouse opsin promoter. 

Figure of the construct taken from (Le et al., 2006), the three other pictures taken from: 

http://www.emory.edu/EMORY_MAGAZINE/issues/2014/spring/features/animals.html, 

http://archive.org/stream/anatomyofhumanbo1918gray#page/1016/mode/2up                        

and 

https://www.sas.upenn.edu/visual-studies/ (scanning electron micrograph (SEM) of rods’ 

and cones’ outer segments). 

 

Cre-reporter mice (Rosa-LacZ) were purchased from the Jackson Laboratory 

(http://jaxmice.jax.org/, strain number: 3309, strain name: B6;129S4-

Gt(ROSA)26Sortm1Sor/J). Mice, heterozygous for the Gtrosa26tm1Sor targeted mutation, 

were used to monitor the tissue/cellular expression pattern of the cre transgene in both 

cre mouse lines. Hence, homozygous Rosa-LacZ reporter mice (R26R) were interbred with 

either of both cre-transgenic strains (either α-Cre, or LMOP). Cre expression resulted in 

the removal of a loxP-flanked DNA segment that prevents the expression of the lacZ gene 

(Stop sequence), encoding the enzyme β-Galactosidase. When crossed with a cre-

transgenic strain, lacZ is expressed in cells/tissues where Cre is expressed (Figure 12) 

(Soriano, 1999). After performing β-galactosidase staining, the blue color indicates 

tissue/cellular expression of the cre transgene in animals, heterozygous for both cre and 

the R26R allele. Animals, heterozygous for the R26R only, do not display any staining. 
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Figure 12: A schematic of the R26R construct 

The ROSA26 locus of a gene-trap strain was targeted with a ROSA26 reporter (R26R) 

construct to generate a cre-reporter strain. The R26R construct was created by subcloning 

the pROSA26-1 vector and inserting a splice acceptor sequence (identical to the one, used 

in the original gene-trap allele), a neo expression cassette, flanked by loxP sites (indicated 

by black arrowheads), a lacZ gene and a polyadenylation sequence (bpA) at a unique XbaI 

site. Transcriptional read-through was prevented with the use of a triple polyadenylation 

sequence at the 3’-end of the neo expression cassette. Figure taken from (Soriano, 1999). 

 

2.1.2 DNA analysis 

 

2.1.2.1 DNA isolation from mouse tail biopsies 

In order to obtain a tissue sample for the extraction of genomic DNA, the mice were 

sedated with isoflurane and the mouse tail tip, with a length of approximately 5 mm, was 

cut off and transferred to a 1.5 ml cup. Afterwards a mixture of 500 μl mouse tail lysis 

buffer (see Table 37) and 5 μl proteinase K (10 μg/μl stock solution, diluted hereby to a 

final concentration of 0.1 μg/μl) was pipetted thereto. The tissue samples were incubated 

at 50ºC overnight in a thermomixer at 13,000 rpm. DNA was precipitated (Table 1) prior 

to downstream applications. 
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Table 1: Procedure for DNA extraction 

Duration Step Result 

 

5 min 

10 min 

 

 

 

 

5 min 

10 min 

1 min 

5 min 

 

 

 

 

5 min 

1 min 

Add the same volume of isopropanol as lysis solution 

(500 μl), vortex thoroughly and incubate at -20ºC 

DNA     

precipitation 

 

  

 

 

Alcohol washing       

 the pellet and    

 dissolving any   

 remaining salt in   

 the tube 

 

 

 

 

Resuspension of   

 the DNA pellet 

   

Centrifuge at 4ºC (13,000 rpm) and pipette the 

supernatant out (as few as possible – less than 50 μl, 

could be left over) 

Add 500 μl of 70% ethanol and vortex to assure uniform 

dissemination throughout the sample 

Incubate at room temperature 

Centrifuge at 4ºC and 13,000 rpm, outpour the ethanol 

and centrifuge again 

Pipette the rest of the ethanol out and air dry (not 

exceeding the indicated time limit, for drying out too 

long can interfere with following resuspension of the 

DNA) 

Add 100 μl of 5mM Tris (pH 8.0) to each sample, vortex 

and incubate at room temperature 

Centrifuge at 4ºC and 13,000 rpm to get the hair at the 

bottom 

 

5 μl of the supernatant of each tissue sample (through purification obtained concentration 

of 100-200 ng/μl) were diluted to a final concentration of 50 ng/μl. 1 μl of the dilution was 

taken as a DNA template for application in polymerase chain reaction (PCR) analysis. 

 

2.1.2.2 Determination of the concentration of nucleic acids and assessment of their 

purity 

The concentration of DNA samples was determined by measuring the intensity of 

absorbance at wavelengths 260 nm and 280 nm with the help of an UV-Vis 

Spectrophotometer NanoDrop 2000c (Thermo Fisher Scientific GmbH, Schwerte, 

Germany).  

Based on the NanoDrop measurements each DNA tissue sample, which had a 260/280-

ratio of absorbance (A260/280) of at least 1.8, was diluted to a concentration of 50 ng/μl for 

application in polymerase chain reaction (PCR) analysis. 

 

2.1.2.3 Genotyping: Polymerase chain reaction (PCR)  

The polymerase chain reaction (PCR) was developed in 1983 by Kary Mullis (Mullis et al., 

1986) and is a technique for the selective amplification of specific nucleotide sequences by 

a factor of 106. Two oligonucleotide primers, flanking sequences of interest to be 
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amplified, are used in repeated cycles of enzymatic extension by a DNA polymerase. The 

essential steps in each cycle are heat denaturation of double-stranded target molecules, 

primer annealing to their complementary sequences within both strands and enzymatic 

synthesis of DNA. Each successive cycle essentially doubles the amount of DNA, 

synthesized in the previous cycle, hence the oligonucleotide primers can also bind to the 

complementary products. As a result, the flanked sequence accumulates exponentially to 

about 2n, n staying for the number of cycles. The use of the thermostable DNA 

polymerase, purified from the thermophilic bacterium Thermus aquaticus (Taq 

polymerase) makes the reaction simple and very specific (Saiki et al., 1988; Vosberg, 

1989). 

PCR analysis in this project was used in order to screen genotypes and distinguish wild-

type from transgenic α-Cre, LMOP, Tgfbr2fl/fl and R26R animals. The detailed protocols 

are presented in Table 2-6, the PCR programs – in Table 7-11. Primer sequences are 

shown in Table 12. Mouse tail DNA was used as a template in all of the given protocols. 

After successful extraction of the genomic DNA from tail biopsies and purification of the 

nucleic acid samples prior to concentration measurement (Table 1), 50 ng DNA was used 

in each reaction to test for transgenic sequences. 

A verification of transgenic cre animals (α-Cre or LMOP) was accomplished with the aid 

of Cre recombinase PCR. 

 

Table 2: PCR protocol for Cre recombinase PCR 

Master mix                    Volume 

5x DNA buffer 

dNTPs (10 mM) 

MgCl2 (50 mM) 

Cre primer fwd (10 μM) 

Cre primer rev (10 μM) 

Taq DNA polymerase 

H2O  

DNA template                         

                          3 μl 

                       0.3 μl 

                       0.5 μl 

                       0.3 μl 

                       0.3 μl 

                     0.15 μl 

                     9.45 μl 

                          1 μl 

Total reaction volume                         15 μl 

  

The TβRII PCR was used to determine, whether the transgenic sequence of TβRII was 

flanked by flox sites on both sides.  
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Table 3: PCR protocol for genotyping of Tgfbr2fl/fl animals 

Master mix                    Volume 

5x DNA buffer 

dNTPs (10 mM) 

MgCl2 (50 mM) 

TGF-β-R2 fwd (10 μM) 

TGF-β-R2 rev (10 μM) 

Taq DNA polymerase 

H2O  

DNA template                         

                          5 μl 

                       0.5 μl 

                     0.75 μl 

                       0.5 μl 

                       0.5 μl 

                       0.5 μl 

                   16.25 μl 

                          1 μl 

Total reaction volume                         25 μl 

 

A LacZ PCR was performed to screen genotypes for lacZ expression in cre-reporter mice. 

 

Table 4: PCR protocol for genotyping of LacZ animals 

Master mix                    Volume 

5x DNA buffer 

dNTPs (10 mM) 

MgCl2 (50 mM) 

Rosa26-LacZ fwd (10 μM) 

Rosa26-LacZ rev (10 μM) 

Mango Taq 

H2O  

DNA template                         

                          5 μl 

                       0.5 μl 

                     0.75 μl 

                          1 μl 

                          1 μl 

                       0.2 μl 

                     15.5 μl 

                     1.05 μl 

Total reaction volume                         25 μl 

 

To screen for the deletion of TβRII in the conditional knockout animals, a PCR analysis 

from Chytil and coworkers was used (Chytil et al., 2002) and the genotypes of the 

offspring from Cre-expressing transgenic Tgfbr2fl/fl animals were tested. To this end, 

whole retinae were isolated from adult Tgfbr2Δoc/Δrod and their control littermates. 

 

Table 5: PCR protocol for Tgfbr2 deletion 

Master mix                    Volume 

10x DNA buffer 

dNTPs (10 mM) 

MgCl2 (50 mM) 

Chytil fwd (10 μM) 

Chytil rev (10 μM) 

Taq DNA polymerase 

H2O  

DNA template                         

                       2.5 μl 

                       0.5 μl 

                     0.75 μl 

                       0.5 μl 

                       0.5 μl 

                       0.5 μl 

                   18.75 μl 

                          1 μl 

Total reaction volume                         25 μl 
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A point mutation in the Rpe65 gene is responsible for a Leu450Met amino acid 

substitution, which is proven to increase retinal resistance against light-induced damage 

by slowing rhodopsin regeneration (see 1.2.2) (Grimm et al., 2000; Wenzel et al., 2001). 

Therefore, all of the animals, exposed to light in our experiments, were tested by a PCR 

analysis for the transgenic sequence of the leucine encoding allele. Since albino animals 

have a disposition to carrying the light-sensitive leucine variant (Danciger et al., 2000; 

Wenzel et al., 2003), most of our animals were identified as homozygous for the leucine 

type of the point mutation and only homozygous animals were included in this study. 

 

Table 6: PCR protocol for genotyping for the leucine variant of Rpe65 genotype at codon 

450 

Master mix                    Volume 

5x DNA buffer 

dNTPs (10 mM) 

MgCl2 (50 mM) 

MwoI fwd (10 μM) 

MwoI rev (10 μM) 

Mango Taq 

H2O  

DNA template                         

                        10 μl 

                          2 μl 

                          3 μl 

                          2 μl 

                          2 μl 

                          1 μl 

                        26 μl 

                          4 μl 

Total reaction volume                         50 μl 

 

To exclude false positive results, a negative control (the DNA template was substituted by 

water in such a solution) was run simultaneously together with the DNA-containing 

samples for every PCR analysis. The PCR products were separated on the agarose gel and 

the size of the signals was compared to a standard and a positive control that contained 

DNA of an already verified genotype. 

Each PCR reaction tube was vortexed and centrifuged to get all of the solution to the 

bottom of the cup. PCR was run in a Thermocycler (T100TM Thermal cycler, Bio-Rad 

Laboratories GmbH, Munich, Germany) according to following protocols: 

 

Table 7: Thermal cycle profile for Cre recombinase PCR 

Step Temperature Duration 

1. Initialization 

2. Denaturation 

3. Annealing 

4. Extension/elongation 

5. Final elongation 

6. Final hold 

95ºC 

95ºC 

61ºC 

72ºC 

72ºC 

12ºC 

3 min 

30 sec 

30 sec    35x      

35 sec 

5 min 

∞ 
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The distinguishing product of transgenic animals had the length of 270 bp. Controls did 

not show bands of a corresponding size. 

 

Table 8: Thermal cycle profile for genotyping of Tgfbr2fl/fl animal 

Step Temperature Duration 

1. Initialization 

2. Denaturation 

3. Annealing 

4. Extension/elongation 

5. Final elongation 

6. Final hold 

95ºC 

95ºC 

61ºC 

72ºC 

72ºC 

8ºC 

3 min 

30 sec 

1 min     30x 

1 min 

5 min 

∞ 

 

Depending on the presence of flox sites in Tgbr2fl/fl animals, two distinct bands were 

expected on an agarose gel:  one band with a size of 556 bp for a wild-type allele, a 

product of 711 bp appears for a “floxed” allele. Heterozygous animals would show both 

signals. 

 

Table 9: Thermal cycle profile for genotyping of LacZ animals 

Step Temperature Duration 

1. Initialization 

2. Denaturation 

3. Annealing 

4. Extension/elongation 

5. Final elongation 

6. Final hold 

94ºC 

94ºC 

60ºC 

72ºC 

72ºC 

10ºC 

3 min 

30 sec 

30 sec    34x  

35 sec 

5 min 

∞ 

 

Every LacZ transgenic sample generated an amplified product with the molecular size of 

315 bp. 

 

Table 10: Thermal cycle profile for Tgfbr2 deletion 

Step Temperature Duration 

1. Initialization 

2. Denaturation 

3. Annealing 

4. Extension/elongation 

5. Final elongation 

6. Final hold 

96ºC 

96ºC 

62ºC 

72ºC 

72ºC 

10ºC 

3 min 

30 sec 

1 min     34x    

1 min 

10 min 

∞ 

 

The Tgfbr2 deletion product was only amplified in samples, when the Cre recombinase 

had been active. This circumstance is caused through the fact that the product size for 
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control littermates accounts for 3974 bp, while the product size for transgenic animals is 

equal to 636bp.  Due to the elongation time of the PCR program of 1 min, only a signal 

after Cre-mediated TβRII deletion (636 bp) is amplified  (Braunger et al., 2013b). Actin 

was used as a loading control. 

 

Table 11: Thermal cycle profile for genotyping for the leucine/methionine variant of the 

Rpe65 gene 

Step Temperature Duration 

1. Initialization 

2. Denaturation 

3. Annealing 

4. Extension/elongation 

5. Final elongation 

6. Final hold 

94ºC 

94ºC 

55ºC 

72ºC 

72ºC 

10ºC 

2 min 

30 sec 

45 sec    34x    

1 min 

10 min 

∞ 

 

4.5 μl of the PCR product (concentration: 100-150 ng/μl) were digested with 3 μl H2O and 

0.3 μl MwoI for 3.5 h at 37ºC. A manufacturer-recommended buffer could also be used 

instead of water. The digested samples were visualized on a 1% agarose gel, 

supplemented with ethidium bromide. The leucine variant of the Rpe65 gene resulted in 2 

bands (437 bp and 236 bp) after digestion (refer to 2.1.6.2), the methionine codon would 

generate just one band (673 bp). Heterozygous animals would have all three of the bands. 

 

Table 12: Genotyping primer pairs 

Name Mouse strain Oligonucleotide sequence 

Cre primer fwd 

Cre primer rev 

 

TGF-β-R2 fwd 

TGF-β-R2 rev 

 

Rosa26-LacZ fwd 

Rosa26-LacZ rev 

MwoI fwd 

MwoI rev 

Chytil fwd 

Chytil rev 

α-Cre, LMOP 

 

 

Tgfbr2fl/fl 

 

 

R26R 

 

Leu/met variant 

of Rpe65 

Tgfbr2 deletion 

 

5’-ATGCTTCTGTCCGTTTGCCG-3’ (sense) 

5’-CCTGTTTTGCACGTTCACG-3’ (antisense) 

5’-GCAGGCATCAGGACCTCAGTTTGATCC-3’ 

(sense) 

5’-AGAGTGAAGCCGTGGTAGGTGAGCTTG-3’ 

(antisense) 

5’-ATCCTCTGCATGGTCAGGTC-3’ (sense) 

5’-CGTGGCCTGATTCATTCC-3’ (antisense) 

5’-CACTGTGGTCTCTGCTATCTTC-3’ (sense) 

5’-GGTGCAGTTCCACTTCAGTT-3’ (antisense) 

5’-TAAACAAGGTCCGGAGCCCA-3’ (sense) 

5’-AGAGTGAAGCCGTGGTAGGTGAGCTTG-3’ 

(antisense) 
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2.1.2.4 Agarose gel electrophoresis 

To visualize and check whether the PCR amplified the anticipated DNA sequence, 

agarose gel electrophoresis was used to separate the PCR products. For preparation of the 

gel, 1g of agarose was dissolved in 100 ml of TBE buffer. The mixtute was heated up in a 

microwave oven for 5 min, gently shaken halfway through this procedure and afterwards 

let to cool down for a couple of minutes. 3 μl of ethidium bromide was added to the then 

lukewarm solution, prior to pouring it in a slide and letting it cure for at least 30 min. 

Ethidium bromide is an intercalating agent, used as a nucleic acid stain because of its 

fluorescing with an intensive orange color, when exposed to ultraviolet light. 3.5 μl of 

DNA loading Dye (a dense compound, containing glycerol) was added to each one of the 

PCR products before vortexing, centrifuging and loading them on the agarose gel. TBE 

buffer was used as running buffer in the flatbed electrophoresis chamber. All agarose gels 

were run under following conditions for 45 min: 120 V, 500 mA. According to their 

molecular length, PCR products were separated by applying an electric field to the 

agarose gel matrix. The size of the DNA product was determined by comparing it to a 

DNA ladder (GeneRuler 100 bp DNA ladder, Fermentas, St. Leon-Rot), loaded in the very 

left well of the agarose gel and run alongside the PCR products. Furthermore, the 

amplicon was compared to DNA fragments of known size (positive control), allowing a 

correct determination of the product length. Subsequently, photos of the gels were taken 

using the IDA Gel Documentation Systems (raytest GmbH, Straubenhardt). 

 

2.1.3 RNA analysis 

The used RNA samples were isolated from retinae. Prior to this step, the animals were 

sacrificed (6 h after light damage) through cervical dislocation, the eye balls were 

harvested and the top the cornea then cut with a razor blade. The lens and the anterior 

part of the eye were carefully removed before separating the retina from the RPE, 

starting off at the optic nerve head. 

 

2.1.3.1 RNA isolation 

The isolated samples were put in 2 ml Eppendorf tubes, arranged on ice, and immediately 

upon collection, total RNA was extracted from the retinae using 250 μl TRIzol 

(Invitrogen) for each one of the samples. TRIzol is a ready-to-use solution of phenol and 

guanidine isothiocyanate, facilitating an effective inhibition of RNase activity and 

integrity of the RNA during sample homogenization (Life Technologies, 2012). Following 

step consists in adding of chloroform to each one of the samples and centrifugation, 
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leading to the dissolution of the homogenate into three layers: a clear upper liquid layer 

(containing RNA), a semi-solid middle layer (containing DNA), and a red-colored bottom 

organic layer (containing DNA and proteins). Further details, regarding the RNA 

isolation protocol, are listed in Table 13 below, referring to (Life Technologies, 2012). 

 

Table 13: RNA isolation procedure 

Duration Step Result 

5 min 

 

 

15 sec 

2-3 min 

15 min 

 

 

 

 

10 min 

10 min 

 

 

 

5 min 

5-10 min 

 

 

Incubate the homogenate at room temperature 

 

Dissolution of cell 

components 

 

Separation in three 

phases 

 

 

 

RNA 

precipitation 

 

 

 

 

RNA wash 

 

 

RNA-resuspension 

Add 0.2 mL of chloroform per 1 mL of TRIzol, then 

vortex 

Incubate at room temperature 

Centrifuge the sample at 12,000 x g at 4°C 

Pipette the upper colorless aqueous phase out to a new 

1.5 ml tube  

Add 0.5 mL of 100% isopropanol to the aqueous phase, 

per 1 ml of TRIzol, used for homogenization  

Incubate at room temperature 

Centrifuge at 12,000 x g at 4°C 

Remove the supernatant, leaving the RNA pellet only 

Wash the pellet, with 1 mL of 75% ethanol per 1 ml of 

TRIzol (initial homogenization)  

Vortex briefly, then centrifuge at 7,500 x g at 4°C  

Dry the RNA pellet 

Re-suspend in RNase-free water or 

proceed to downstream application, or store at –80°C 

 

2.1.3.2 Complementary DNA (cDNA) synthesis 

A complementary copy is most often generated from a fully spliced mRNA template in a 

reaction, catalyzed by the enzyme reverse transcriptase (RT). This RNA-dependent DNA 

polymerase, which naturally occurs in retroviruses, operates on a single strand of the 

mRNA, synthesizing its complementary DNA. The reaction is based on the hybridizing of 

RNA base pairs (A, U, G and C) to the desoxyribonucleotide triphosphates (T, A, C and G, 

respectively). First-strand cDNA synthesis was performed using the iScript cDNA 

Synthesis Kit (BioRad) according to manufacturer’s instructions - 1 μg of RNA in 

nuclease-free H2O was reverse transcribed according to the protocol below (Table 14) and 

the obtained cDNA was used as a template to amplify targeted genes (Table 15). 
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Table 14: cDNA synthesis: reagents and amplification program 

Reagents In presence of RT In absence of RT 

iScript reverse transcriptase 

5x iScript reaction mix 

1 µg RNA template in H2O 

1 μl 

4 μl 

15 μl                

- 

4 μl 

16 μl 

Total reaction volume 20 μl                        20 μl 

 

Table 15: Applied amplification program 

Temperature Duration 

25ºC 

42ºC 

85ºC 

4ºC 

5 min 

30 min 

5 min 

∞ 

 

2.1.3.3 Quantitative real-time RT-PCR 

A real-time polymerase chain reaction (RT-PCR) is a method, applied to quantitatively 

measure the amplification of DNA/mRNA with the aid of a fluorescent stain (SYBR-Green 

I). The use of a thermal cycler, which is capable of exposing the samples to light of a 

specific wavelength and sensing the emitted fluorescence, enables the detection of a 

target gene simultaneously to the observation of the reaction in real time. An increase in 

a certain DNA product during the PCR leads to an enhancement in fluorescence intensity, 

thus allowing DNA concentrations to be quantified. Quantitative RT-PCR analyses were 

performed using the Bio-Rad iQ5 Real-Time PCR Detection System. RNA that was not 

previously reverse transcribed (see Table 14) and H2O were run as negative controls 

simultaneously to minimize error probability. Further details, regarding the reaction mix 

and the thermal cycle profile, are displayed in Table 16, respectively Table 17. 

 

Table 16: PCR protocol for quantitative real-time RT-PCR analysis 

Reagents Volume 

Sample (with/without addition of RT or with H2O) 

10x PCR buffer 

MgCl2 (25 mM) 

dNTPs (25 mM) 

Taq DNA polymerase (5 U/μl) 

SYBR-Green I (7.4% (v/v) in DMSO) 

Fluorescein 

Primer fwd 

Primer rev 

Nuclease-free H2O 

0.15 μl 

1.5 μl 

0.6 μl 

0.12 μl 

0.06 μl 

0.19 μl 

0.015 μl 

0.17 μl 

0.17 μl 

12.03 μl                     

Total reaction volume   15.005 μl 
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Table 17: Thermal cycling conditions for quantitative real-time RT-PCR analysis 

Temperature Duration       

95ºC 

95ºC 

60ºC 

72ºC 

95ºC 

55ºC 

55ºC + 0.5ºC per cycle 

(melting curve) 

15 min 

10 sec 

40 sec      

10 sec 

1 min 

1 min 

6 sec 

        

  

As a last point in the depicted analysis, it was essential to run a dissociation (melting) 

curve. SYBR-Green I as a DNA-intercalating fluorophore would detect any double-

stranded DNA, for example primer dimers or samples, contaminating actual DNA. The 

molecule slots by definition into the grooves of the double-stranded helix, an action, which 

has a stabilizing effect on DNA’s structure, leading to a higher melting temperature. So 

by running a melting curve, we certified that the desired amplicon only was detected.  

 

2.1.3.4 Primer pairs for quantitative real-time RT-PCR 

All primer pairs were purchased from Invitrogen and designed to extend over exon-exon 

splice junctions with one of the amplification primers potentially spanning the actual 

exon-intron boundary (except for Gapdh). Since intron-containing DNA would not be 

amplified, the risk of contamination due to non-coding gene fragments was reduced this 

way. For sequences of primer pairs, melting temperatures and real-time RT-PCR product 

sizes refer to Table 18. 

 

 

 

 

 

 

 

 

 

 

40x 

81x 
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Table 18: Primer sequences, used for quantitative real-time RT-PCR, melting 

temperatures and product sizes 

Gene Sequence         Position 
TM 

[ºC] 
Product size 

Gapdh 

 

Gnb2l1 

 

Rpl32 

 

Lif 

 

Bdnf 

 

Edn2 

 

Fgf2 

5’-tgtccgtcgtggatctgac-3’ 

5’-cctgcttcaccaccttcttg-3’ 

5’-tctgcaagtacacggtccag-3’ 

5’-acgatgatagggttgctgct-3’ 

5’-gctgccatctgttttacgg-3’ 

5’-gactggtgcctgatgaact-3’ 

5’-aaacggcctgcatctaagg-3’ 

5’-agcagcagtaagggcacaat-3’ 

5’-agtctccaggacagcaaagc-3’ 

5’-tgcaaccgaagtatgaaataacc-3’ 

5’-acctcctccgaaagctgag-3’ 

5’-tttcttgtcacctctggctgta-3’ 

5’-cggctctactgcaagaacg-3’ 

5’-tgcttggagttgtagtttgacg-3’ 

           763–781 

           818–837 

           514–533 

           582–601 

             29–47 

           107–126 

           172–190 

           245–264 

           614–633 

           685–707 

           502–520 

           556–577 

           285–303 

           371–392 

60 

60 

59 

59 

59 

59 

60 

59 

59 

60 

59 

59 

59 

60 

75 bp 

 

88 bp 

 

98 bp 

 

93 bp 

 

94 bp 

 

76 bp 

 

108 bp 

 

The precision of the performed quantification was certified through a normalization of the 

expression level of the target gene to that of a stably expressed gene – a housekeeper 

gene. Hence, the relative quantification in this type of analyses was based on internal 

reference genes to determine and correct non-specific variations in the change of the 

expression level of the target gene. This way, possible differences in RNA quantity or 

quality across experimental samples were detected. In order to determine the most 

suitable internal control gene, three different potential housekeeping genes were tested: 

Gapdh, guanine nucleotide binding protein, beta polypeptide 2-like 1 (Gnb2l1) and 

ribosomal protein L32 (Rpl32). After an initial statistical algorithm was carried out for 

the different housekeepers, the geo mean of the genes was used for the relative 

quantification of retinae samples. Relative quantification was performed applying Bio-

Rad iQ5 Standard-Edition (Version 2.0.148.60623) software (BioRad Laboratories GmbH, 

Munich) and the ΔΔCt method in Excel (Microsoft Corp., Redmond, WA, USA). 

 

2.1.4 Protein analysis 

 

2.1.4.1 Protein isolation 

Neural retinae were treated with TRIzol (Invitrogen) following the manufacturer’s 

instructions, similarly as described for RNA samples previously. The proteins were 

isolated from the phenol-ethanol supernatant layer, left over after an optional DNA 
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precipitation (DNA can be obtained from the interphase and phenol-chloroform layer, 

saved from the phase separation step – refer to 2.1.3.1 and Table 13 for a brief 

recollection). Further details, regarding this procedure, are itemized in Table 19 and 

based on (Life Technologies, 2012). 

 

Table 19: Protein isolation procedure 

Duration Step Result 

 

 

 

2-3 min 

5 min 

 

 

 

 

 

10 min 

10 min 

 

3x 20 min 

 

 

 

3x 5 min 

 

 

5 min 

5-10 min 

 

 

Overnight 

 

 

 

15 min 

10 min 

 

 

Add 0.3 ml of 100% ethanol per 1 ml of TRIzol (used for the 

initial homogenization) to the interphase and phenol-

chloroform layer, saved from the phase separation step 

Incubate samples at room temperature 

Centrifuge at 2,000 x g at 4°C to pellet the DNA 

Transfer the phenol-ethanol supernatant to a new tube 

(Proceed with the DNA wash step and the DNA 

resuspension, using the DNA pellet, if desired) 

 

 

 

(Optional) 

DNA isolation 

 

 

   

 

Protein 

precipitation 

 

 

 

 

 

Precipitated 

protein wash 

 

 

 

 

 

 

 

 

 

Protein 

resuspension 

 

 

Add 1.5 ml of isopropanol to the phenol-ethanol 

supernatant per 1 ml of initially used TRIzol 

Incubate samples at room temperature 

Centrifuge at 12,000 x g at 4°C to pellet the protein, remove 

and discharge the supernatant 

Incubate the protein pellet in 2 ml of a prepared wash 

solution (consisting of 0.3 M guanidine hydrochloride in 

95% ethanol) per 1 ml of TRIzol (used for the initial 

homogenization) (to remove rests of dye and phenol) 

Centrifuge at 7,500 x g at 4°C to re-acquire the pellet, 

remove and discharge the wash solution 

Add 2 ml of 100% ethanol to the protein pellet and vortex 

Centrifuge at 7,500 x g at 4°C, remove and discharge the 

ethanol wash. Dry the protein pellet 

Add a) 1% SDS (200 μl) to the protein pellet and protease 

inhibitors (1:1000) – to recover phosphorylated proteins – 

and incubate at 50ºC in a heat block to completely solubilize 

the protein pellet 

OR b) urea buffer as an alternative approach (if the protein 

pellet is insoluble in SDS – poor solubility may be traced 

back to inappropriate solvents) and incubate at 65ºC 

Sediment by centrifugation at 10,000 x g at 4°C to get any 

insoluble material to the bottom of the tube 

Transfer the supernatant, containing the solution with the 

extracted protein, to a clean tube 

Proceed to downstream applications immediately, or store 

the sample at –80°C 
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2.1.4.2 Western blot analysis 

The Western blot analysis is a molecular biology technique, used to detect target proteins. 

This method makes use of an electrophoretic transmission of proteins from 

polyacrylamide/agarose composite gels, where they are fractioned initially by molecular 

weight, and then transferred in a second step to nitrocellulose membranes. These 

membranes are then stained with antibodies, specific to the target protein (Renart et al., 

1979; Towbin et al., 1979). The method originates from the laboratory of Harry Towbin 

(Towbin et al., 1979). W. Neal Burnette referred to the technique first-time as Western 

blot (Burnette, 1981), which is an allusion to the name Southern blot – a method for DNA 

detection by probe hybridization, called after its developer Edwin Southern. 

In detail, the protein samples, used in Western blot analyses, were first separated by 

SDS-PAGE (10% acrylamide gel electrophoresis) and then transferred by semidry blotting 

(blot device, run for 1.5 h at 25 V and to a maximum of 2000 mA) onto activated (by 

Methanol) polyvinyl difluoride membranes (PVDF; Millipore). Subsequently, the 

membranes were incubated at room temperature with a blocking reagent (refer to Table 

20), solved in Tris-buffered saline (TBS), containing 0.1% Tween 20 (TBS-T; pH 7.2). The 

following incubation step was performed at 4ºC overnight. To this end, the membranes 

were transferred to a falcon and incubated with a primary antibody (TβRII-L21, 

pSMAD3, pAKT or AKT), solved in BSA or non-fat dry milk in TBS-T. The antibodies and 

the appropriate blocking reagents thereto are listed in Table 20. The membranes were 

washed thoroughly (3x 5 min) with TBS-T, prior to an incubation step of the respective 

secondary antibody in a 1:5000 or 1:2000 proportion for an hour at room temperature. 

After washing the membranes again with TBS-T (3x 5 min), a horseradish peroxidase 

(HRP) detection reagent was applied and chemiluminescence was analyzed on a BAS 

3000 imager workstation (Fujifilm). For normalization, protein samples were also stained 

with antibodies for the housekeeping gene glyceraldehyde 3-phosphate dehydrogenase 

(GAPDH, in a 1:5000-ratio, horseradish peroxidase-conjugated, Abcam). Western blot 

signals were compared by relative densitometry with the Aida Image Analyzer v.4.06 

software (Raytest) (method presented in (Braunger et al., 2013b)). 
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Table 20: Antibodies and respective blocking reagents, used for Western blot analyses 

 

2.1.5 Histology 

 

2.1.5.1 Epon embedding, semithin sections and phenotype analysis 

In order to accomplish morphologic and morphometric analyses, untreated (no light) and 

light-exposed animals were sacrificed.  To this end, the enucleated eyes of experimental 

light-exposed mice were analyzed 14 days after light damage and the eyes of their 

untreated control littermates were taken at age between 6 and 8 weeks. Prior to 

enucleation, the eyes were marked on the superior limbus (12 o’clock) using a 27-gauge 

needle, heated  with the Bunsen burner, and then fixed for at least 24 h in Ito’s fixative 

(Ito, S. and Karnovsky, M.J, 1968) – consisting of 2.5% paraformaldehyde (PFA) plus 

2.5% glutaraldehyde (Serva, Heidelberg) in sodium cacodylate buffer (0.2 M; pH 7.6; 

Serva, Heidelberg). This here slightly modified fixative is colloquially known as 

“Karnovsky’s fix”, referring to (Karnovsky, 1965), according to the Science Citation Index 

the publication with the most cited abstract in the history of science. Two hours after 

starting the fixation, the branding identification tag was assigned by a metal minutiens, 

since it is easier to handle during and after the embedding process. Then, the cornea was 

sliced, allowing the fixative to enter the eye ball, as fundus appearance was most 

important for our experiments (detailed method elaborated in a manuscript in 

Primary antibody Blocking reagent Secondary antibody 

TβRII-L21 (Santa Cruz 

Biotechnology); 1:200 in 0.5% 

BSA in TBS-T 

 

pSMAD3 (Abcam); 1:300 in 

0.5% BSA in TBS-T 

 

 

pAKT (Cell Signaling); 1:500 

in 0.3% BSA in TBS-T 

 

 

AKT (Cell Signaling); 1:1000 

in 0.5% non-fat dry milk in 

TBS-T 

Glyceraldehyde 3-phosphate 

dehydrogenase (Abcam); 

1:5000 in 0.5% BSA in TBS-T 

5% non-fat dry milk in TBS-T 

for 10 min + 5% BSA in TBS-

T for 30 min 

 

5% BSA in TBS-T for an hour 

 

 

 

3% BSA in TBS-T for an hour 

 

 

 

5% non-fat dry milk in TBS-T 

for an hour 

 

5% BSA in TBS-T for 30 min 

Chicken anti-rabbit, 

coupled to horseradish 

peroxidase (Santa Cruz 

Biotechnology); 1:5000 

Chicken anti-rabbit, 

coupled to horseradish 

peroxidase (Santa Cruz 

Biotechnology); 1:5000 

Chicken anti-mouse, 

coupled to alkaline 

phosphatase (Santa Cruz 

Biotechnology); 1:2000 

Goat anti-rabbit, coupled 

to horseradish peroxidase 

(Rockland); 1:2000 

no secondary antibody 

required 
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preparation (Braunger et al.)). Following the 24 h fixation step, the eyes were repeatedly 

rinsed (at least 4x 30 min) with Caco buffer (sodium cacodylate buffer, diluted in distilled 

water in a 1:1 proportion) and post-fixed for another 3.5 h in osmium ferrocyanide (2% 

OsO4 (Science Service, München), 1.6% potassium ferrocyanide (Merck, Darmstadt), 

diluted in 0.2 M cacodylate buffer) (after (Forbes and Sperelakis, 1977; Moses and 

Claycomb, 1982)) at 4ºC. The use of a potassium ferrocyanide-reduced osmium post-

fixation was suggested by Elbers and coworkers and Karnovsky (Elbers, P. F. et al., 1965; 

Karnovsky, 1971) to promote the integrity of cell membranes, thus contributing to stable 

fixation. Osmium was thereafter washed out through distilled H2O in at least 4 steps at 

10ºC, in order to prevent any precipitating deposits. Subsequently, the eyes underwent a 

serial dehydration treatment, consisting of an alcohol sequence of a gradually increasing 

concentration. Further details, considering the wash steps, are listed in Table 21. 

 

Table 21: Dehydration prior to Epon embedding 

Step Reagent Temperature Duration 

1., 2. 

3., 4. 

5., 6. 

7., 8. 

9., 10. 

11. 

12., 13. 

14., 15., 16. 

17., 18., 19. 

25% ethanol 

35% ethanol 

50% ethanol 

60% ethanol 

70% ethanol 

70% ethanol 

80% ethanol 

90% ethanol 

100% ethanol 

4ºC                    2x                 

4ºC                    2x      

4ºC                    2x 

4ºC                    2x 

4ºC                    2x 

4ºC 

4ºC                    2x                   

Room temp.      3x            

Room temp.      3x 

15 min 

15 min 

15 min 

15 min 

15 min 

Intermediate storage (at least 2 d) 

40 min  

40 min 

45 min 

 

Eventually, the specimens were embedded in Epon (Serva, Hidelberg, Germany) 

according to standard methods, as previously described in (Kritzenberger et al., 2011) 

(Table 22). Automated dehydration and embedding steps were both performed in the 

tissue processing automat Leica EM TP (Leica microsystems GmbH, Wetzlar, Germany), 

which is capable of maintaining a constant resin processing temperature. 

 

Table 22: Standard methods for Epon embedding 

Step Reagent Proportion Duration 

1., 2. 

3. 

4. 

5. 

6. 

7. 

Propylene oxide 

Propylene oxide/Epon 

Propylene oxide/Epon 

Propylene oxide/Epon 

Epon 

Fresh Epon (in a sealable dessicator) 

                               

                    2x 

3:1 

1:1 

1:3 

20 min 

120 min 

120 min 

120 min 

Overnight 

1-2 days 
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A polymerization step was performed in an incubator: first for 2 h at 30ºC and then at 

60ºC for 48 h. The samples were eventually left to cool down for 30 min at 4ºC. 

The next step in processing the specimens for light microscopy and assessing the impact 

of light damage was the slicing of semithin sections with a thickness of 1.0 μm using an 

Ultracut E Reichert-Jung Microtome (Cambridge Instruments GmbH, Nussloch, 

Germany) and beginning at the inferior side. It was especially paid attention to the slices 

being cut along the mid-horizontal plane (in a nasal-temporal orientation through the 

middle of both quadrants) and to displaying the middle of the optic nerve head (ONH) and 

the pupil, in order to guarantee a similar position in each sample this way. Comparable 

quadrants were essential for further analyses, since it is established knowledge that the 

extent of photoreceptor light damage to rodents’ eyes differs among retinal regions (La 

Vail, M. M. et al., 1987; La Vail, Matthew M. et al., 1987; Tanito et al., 2008). 

Subsequently, the obtained sections were stained according to the Richardson’s protocol 

(Richardson, K. C. et al., 1960) for 15-30 sec at 60ºC. Images of the retina were acquired 

with the help of a light microscope with a panorama function – Axio Imager Z1 (Zeiss, 

Göttingen, Germany) – and at a high enough resolution (63x lens). 

 

2.1.5.2 Morphometric analysis 

Before measuring the thickness of the inner (INL) or outer nuclear layer (ONL), the 

respective measurement points were defined. Therefore, the distance between the ora 

serrata (OS) and the optic nerve head (ONH) was quantified following the circumference 

of the retinal pigment epithelium (RPE) in each hemisphere. As this step requires the 

measurement of a curved line, it was accomplished via the morphometric software 

ImageJ (module: Segmented line). The traced distance was then divided into tenths, 

using an ImageJ plug-in, purpose-written by Sebastian Koschade, and the final nine 

measure points were assigned between each tenth of total length (Figure 13A.) (referring 

to similar methods (Hao et al., 2002; La Vail, M. M. et al., 1987) and to a manuscript in 

preparation (Braunger et al.)). 

The thickness of the INL and ONL was subsequently measured at the nine marked 

positions, starting off at the periphery of the temporal side and proceeding across the 

ONH to the OS on the opposite nasal side. The narrow angle between the ONH and the 

sclera was labeled to be on the nasal half of the mid-horizontal plane through the eyeball. 

The measurement step was performed via the image acquisition and analysis software 

AxioVision SE64 (release 4.9.1, Carl Zeiss, Göttingen, Germany; module: measure 

length). The means and corresponding standard deviations and standard errors of the 
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mean were calculated for each one of the equidistant loci (in each of the experimental and 

control groups of animals) in Excel (Microsoft Corporation, Redmond, WA, USA) and the 

results were depicted in form of spider diagrams (Figure 13B.) (method described in a 

manuscript in preparation (Braunger et al.)). 

 

 
Figure 13: Morphometric analysis following light exposure 

A. A schematic of the exemplary positioning of nine measure points (between each 10th of 

total length) on the nasal hemisphere for inner (INL) and outer nuclear layer (ONL) 

thickness quantification. The following measurements were performed at the assigned 

marks. The narrow angle between the optic nerve and the sclera was assigned to be on 

the side of the nasal hemisphere. B. The exemplary spider diagram of a light-exposed 

retina displays the ONL thickness at 21 adjacent measure points and corresponds to the 

panorama light microscopy image below. OS, Ora serrata; ONH, optic nerve head. Figure 

taken from a manuscript in preparation (Braunger et al.). 

 

2.1.5.3 Paraffin embedding and slices 

Prior to paraffin embedding, the enucleated eyes were brand marked on the superior 

limbus (12 o’clock), fixed for 4 to 6 h in 4% paraformaldehyde in 0.1 M phosphate buffer 

(pH 7.4) and subsequently rinsed thoroughly according to standard protocols (refer to 

Table 23 for further details). 

 

Table 23: Washing steps, prior to paraffin embedding of enucleated eyeballs 

Step Reagent Duration 

1., 2., 3., 4. 

5. 

6. 

7. 

0.1 M phosphate buffer (pH 7.4)              4x 

50% isopropanol 

70% isopropanol 

70% isopropanol 

20 min 

1 h 

1 h 

Storage 
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As elaborated in 2.1.5.1, the branding identification tag was subsequently assigned by a 

metal minutiens to facilitate the embedding procedure. Following dehydration (a 

procedure, consisting of an alcohol sequence with gradually ascending concentration), 

clearing and infiltration steps (Table 24) were performed in a paraffin tissue processor 

HMP 110 (Microm International, Walldorf, Germany). 

 

Table 24: Paraffin dehydration and embedding program 

Step Reagent Duration 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

70% isopropanol 

80% isopropanol 

96% isopropanol 

96% isopropanol 

100% isopropanol 

100% isopropanol 

100% isopropanol 

Xylene 

Xylene 

Paraffin 

Paraffin 

1 h 

1 h 

1 h 

2 h 

1 h 

1 h 

2 h 

1 h 

1.5 h 

2 h 

8 h 

 

Following this processing sequence, the tissue specimens were overlaid in a paraffin wax 

embedding centre type MPS/P2 (SLEE Medical, Mainz, Germany). The paraffin sections 

(6.0 μm) were cut along the mid-horizontal plane, as described in 2.1.5.1, with the aid of a 

Reichert-Jung Supercut 2050 Microtome (Cambridge Instruments GmbH, Nussloch), 

transferred to a water heat bath and then mounted onto microscope slides 

(SuperFrost/Plus; Menzel).  

Prior to downstream procedures, the prepared formalin-fixed, paraffin-embedded tissue 

sections needed to be deparaffinized and rehydrated, undergoing an alcohol array of 

decreasing concentration (Table 25).  

 

Table 25: Deparaffinization and rehydration of paraffin-embedded sections 

Step Reagent Duration 

1., 2. 

3., 4. 

5., 6. 

7., 8. 

9. 

10. 

Xylene                                     2x                   

100% isopropanol                   2x 

96% isopropanol                     2x 

80% isopropanol                     2x             

70% isopropanol 

50% isopropanol 

10 min 

10 min 

5 min 

5 min 

5 min 

5 min 
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Thereupon, the deparaffinized sections were rinsed in deionized water with stirring for 5 

min, washed with phosphate buffered saline (PBS) for 5 min, immersed in a 0.89% NaCl 

for 5 min and then washed again with PBS twice, each time for 5 min. 

 

2.1.5.4 Immunohistochemistry for detection of TβRII and pSMAD3 

The technique of immunohistochemistry visualizes the distribution of specific tissue 

components by assessing the chemical linkage between target epitopes and suitable 

antibodies, tagged to a fluorophore (e.g. fluorescein). Although it had been known since 

the 1930s, following method was first described by (Coons et al., 1942), who used FITC-

labeled antibodies to investigate Pneumococcal antigens in infected tissue. 

Following the deparaffinization step (see Table 25), which enables the antibody-mediated 

antigen detection, the sections were treated according to Table 26, in order to investigate 

the localization of TβRII and pSMAD3 proteins in the retina. Formalin-fixed sections 

underwent a retrieval with boiling citrate buffer (pH 6) to unmask antibody epitopes, 

crosslinked by methylene bridges, which were induced by formaldehyde fixation. To 

diminish the effect of background staining and emphasize the preferential avidity of the 

antibody, the specimens were incubated with a blocking buffer at room temperature (in 

this case 2% BSA, diluted either in PBS (for TβRII), or in TBS-T (for pSMAD3)). Primary 

antibodies (listed in Table 27), solved in a 1:20 proportion (in 0.2% BSA in PBS or TBS-T, 

respectively) to help stabilize the antibody and facilitate coherent dissemination, were 

applied at 4ºC overnight. The washing steps before every antibody application were 

essential for the removal of unbound antibodies. Subsequently, the specimens were 

treated for an hour with biotinylated secondary antibodies, solved in a 1:500 proportion 

(in 0.2% BSA in PBS or TBS-T), and then (for another hour) with Streptavidin Alexa 488 

in a 1:1000 proportion (in 0.2% BSA in PBS or TBS-T). Streptavidin constitutes a 

fluorescently labeled biotin-binding protein that enables the most common indirect 

method of detecting and amplifying the target signal. The conjugated fluorescent reporter 

was later detected by fluorescent microscopy (Axio Imager Z1 (Zeiss, Göttingen, 

Germany)). Counterstaining was performed with DAPI (4’,6-Diamidion-2-phenylindole, 

Vectashield; Vector Laboratories, Burlingame, CA), diluted in a 1:10 proportion in a 

fluorescent mounting medium (DakoCytomation, Hamburg, Germany), in order to 

intensify and give contrast to the initial stain. Eventually, the specimens were sealed by 

mounting a coverslip to stabilize the stain and discourage bleaching of the fluorescent 

marker. 
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Table 26: Immunohistochemistry for TβRII and pSMAD3 

Step Reagent Duration 

1. 

2. 

3. 

4., 5., 6. 

7. 

8. 

9., 10., 11. 

12. 

13., 14., 15. 

16. 

17., 18., 19. 

20. 

Boiling citrate buffer (pH 6) 

Deionized water 

0.1 M phosphate buffer 

0.1 M phosphate buffer (TβRII)/TBS-T (pSMAD3)         3x 

2% bovine serum albumin in 0.1 M PBS/ TBS-T respectively 

TβRII-L21/pSMAD3 (1:20 in 0.2% BSA in 0.1 M PBS/TBS-T) 

0.1 M phosphate buffer or TBS-T                                     3x 

Anti-rabbit, biotinylated (1:500 in 0.2% BSA) 

0.1 M phosphate buffer or TBS-T                                     3x 

Streptavidin Alexa 488 (1:1000 in 0.2% BSA) 

0.1 M phosphate buffer or TBS-T                                     3x 

Counterstaining with DAPI (1:10 in Dako) 

10 min 

5 min 

5 min 

5 min 

45 min 

overnight 

5 min 

1 h 

5 min 

1 h 

5 min 

 

Table 27: Antibodies, used for immunohistochemistry 

 

2.1.5.5 β-Galactosidase histochemistry 

β-Galactosidase staining (Byrne et al., 1994) was performed, in order to assay for β-

Galactosidase activity and verify the recombinase efficiency and pattern, generated by the 

expression of the cre transgene. Hence, homozygous Rosa-LacZ reporter mice (R26R) 

(Soriano, 1999) were interbred with either of both cre-transgenic strains (either α-Cre, or 

LMOP), as described in 2.1.1). Enucleation of the eyes of their offspring was performed at 

age between 7 days and 4 weeks, followed by a fixation step in 0.2% glutaraldehyde in 0.1 

M PBS (pH 7.3) for approximately 30 min (according to previously published protocols 

(Baulmann et al., 2002; DasGupta and Fuchs, 1999)). Subsequently, the eyes were 

washed extensively (3x 10 min) with a detergent rinse, consisting of 0.01% sodium 

deoxycholate (NaDC), 0.02% Tergitol NP-40 (to reduce surface tension of the solution), 2 

mM MgCl2 and 0.1 M phosphate buffer, pH 7.3, and incubated in X-Gal staining solution 

(Byrne et al., 1994) (0.01% sodium deoxycholate (NaDC), 0.02% Tergitol NP-40, 2 mM 

MgCl2 and 0.1 M phosphate buffer, pH 7.3, 5 mM potassium ferricyanide (K3[Fe(CN)6]), 5 

mM potassium ferrocyanide (K4[Fe(CN)6] · 3 H2O) and 1 mg/ml X-Gal) at 37ºC in the dark. 

The target protein β-Galactosidase was detected by employing its enzymatic activity of 

Primary antibody Fixation Secondary antibody 

TβRII-L21 (Santa Cruz 

Biotechnology); 1:20 in 

0.2% BSA in 0.1 M PP 

pSMAD3 (Cell Signaling 

Technology); 1:20 in 0.2% 

BSA in TBS-T 

4% PFA 

 

 

4% PFA 

Anti-rabbit, biotinylated (Vector); 1:500 and 

Streptavidin Alexa 488 (Invitrogen); 1:1000 

 

Anti-rabbit, biotinylated (Vector); 1:500 and 

Streptavidin Alexa 488 (Invitrogen); 1:1000 
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converting the colorless substrate 5-bromo-4-chloro-3-indolyl-β-D-galactopyranoside (X-

Gal) to an insoluble blue product 5,5’-dibromo-4,4’-dichloro-indigo (Byrne et al., 1994).  

After the staining procedure the samples were rinsed thoroughly again (3x 10 min) with 

the mentioned wash buffer and with 0.1 phosphate buffered saline (PBS) for 10 min. The 

specimens were then processed for paraffin embedding (2.1.5.3), after undergoing the 

washing steps 5.-7., listed in Table 23. The β-Gal activity was later visualized by light 

microscopy (Axio Imager Z1 (Zeiss, Göttingen, Germany)). After performing lacZ staining, 

the blue color indicated tissue/cellular expression and activity of the cre transgene in 

animals, heterozygous for both cre and the R26R allele, whereas heterozygous R26R 

animals (not transgene for cre) did not generate any chromogenic response (Soriano, 

1999). 

 

2.1.5.6 Apoptotic cell death: TUNEL analysis 

Apoptosis is a programmed cell death, associated with endogenous endonuclease activity 

(Wyllie, 1980) and hallmarked by chromatin cleavage into low molecular weight 

fragments (Kerr et al., 1972). It is defined by some morphological features, including 

nuclear chromatin condensation, shrinkage of cytoplasmatic organelles, protrusion of the 

cell membrane and chromosomal DNA fragmentation (Kerr et al., 1972; Wyllie et al., 

1984), followed by phagocytosis and digestion by resident cells (Wyllie et al., 1980). 

The TUNEL (terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling) 

assay was originally described by Gavrieli et al. in 1992 as a method for in situ labeling of 

DNA breaks at single-cell level and for application in the study of tissue dynamics 

(Gavrieli et al., 1992) and significantly improved in its sensitivity in the following years 

(Negoescu et al., 1996; Negoescu et al., 1998). The method utilizes the specific interaction 

of 3’-OH nick ends of DNA with terminal deoxynucleotidyl transferase (TdT). This 

enzyme catalyzes the incorporation of fluorescently modified 2’-deoxyuridine-5’-

triphosphate (fluorescein-12-dUTP) at sites of DNA breaks, materializing a 

polydeoxynucleotide polymeric tail (Gavrieli et al., 1992).  

Following a 30 min exposure to light, the eyes of experimental light-exposed animals and 

their untreated control littermates were enucleated 30 h thereafter. Nuclear DNA 

fragmentation, resulting from the apoptotic signaling cascade, was analyzed and 

quantified by the TUNEL imaging assay, using the Apoptosis Detection System 

(DeadEnd Fluorometric TUNEL system; Promega) and according to the slightly modified 

manufacturer’s instructions (Promega, 2009). Prior to TUNEL analysis, which was 

performed on formalin-fixed, paraffin-embedded tissue sections (6.0 μm), the samples 
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were processed, as described previously (2.1.5.3), and deparaffinized and rehydrated, 

undergoing an alcohol array of decreasing concentration according to the protocol, 

described in Table 25. Thereupon, the deparaffinized sections were rinsed in deionized 

water with stirring for 5 min, washed with phosphate buffered saline (PBS) for 5 min, 

immersed in a 0.89% NaCl for 5 min and then washed again with PBS twice, each time 

for 5 min. 

Subsequently, TUNEL-labeling was performed on the pretreated deparaffinized sections 

according to Table 28 (Promega, 2009). In order to permeabilize tissues to the staining 

reagents in the following steps, 10 mg/ml Proteinase K was diluted in a 1:500 proportion 

with PBS and applied thereto. A standard 50 μl volume of rTdT (recombinant terminal 

deoxynucleotidyl transferase) reaction mix, designated for an area not larger than 5 cm2, 

was prepared by compounding 45 μl Equilibration buffer, 5 μl nucleotide mix and 1 μl 

rTDT enzyme. It was added to each one of the tissue samples, prior to incubation at 37ºC 

and avoiding exposure to light from this step forward. Counterstaining was performed 

with DAPI (4’,6-Diamidion-2-phenylindole, Vectashield; Vector Laboratories, Burlingame, 

CA), diluted in a 1:10 proportion in fluorescent mounting medium (DakoCytomation, 

Hamburg, Germany), in order to intensify and give contrast to the primary stain. 

Eventually, the specimens were sealed by mounting a coverslip. 

 

Table 28: TUNEL reaction (after modified manufacturer’s instructions (Promega, 2009)) 

Step Reagent Duration Intention 

1. 

2., 3. 

4. 

5., 6. 

7. 

9., 10. 

11. 

12. 

13. 

14. 

 

15. 

4% PFA in PBS 

PBS                                                 2x 

100 μl of 20 μg/ml Proteinase K  

PBS                                                 2x              

4% PFA in PBS 

PBS                                                 2x 

100 μl Equilibration buffer 

50 μl rTDT incubation buffer 

2x SSC 

PBS 

 

Distilled H2O 

15 min 

5 min 

8-10 min 

5 min 

5 min 

5 min 

10 min 

60 min 

15 min 

5 min 

 

5 min 

Fixate 

Wash 

Permeabilize 

Wash 

Fixate 

Wash 

Equilibrate 

Label 

Stop reaction 

Wash (unincorporated 

fluorescein-12-dUTP) 

Wash 

 

Fluorescein-12-dUTP incorporation in the nuclei of apoptotic cells was visualized by 

fluorescence microscopy. The direct detection of the fluorescent reporter was performed 

through a standard fluorescein filter, set to view the green fluorescence at 520 ± 20 nm 

(GFP channel). DAPI-stained nuclei were visualized at 460 nm (DAPI channel). Images of 
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the entire retina were taken, using a fluorescence light microscope Axio Imager Z1 (Zeiss, 

Göttingen, Germany). To quantify the rate of apoptotic cells following light exposure, the 

number of TUNEL-positive nuclei per ONL (in mm2) was counted via the morphometric 

software ImageJ (plug-in: Analyze, Cell counter) and normalized to the total area of the 

ONL, reckoned via the image acquisition and analysis software AxioVision SE64 (release 

4.9.1, Carl Zeiss, Göttingen, Germany; module: Measure outline). 

 

2.1.6 Animal experiments 

 

2.1.6.1 Light damage 

Following method was elaborated extensively in a manuscript in preparation (Braunger 

et al.). 6-8 week-old animals were initially adapted to cyclic dim light (< 100 lux) for 5 

days and then transferred to complete darkness for at least 18 h (a lightproof box with 

guaranteed ventilation). Experimental mice were moved to a light damage box (Figure 

14), containing transparent cages with stainless steel bar lids on the illumination shelf to 

house the mice for the duration of the light exposure. Light damage was subsequently 

performed either for 30 min (RNA analysis, morphometric analysis, detection of apoptosis 

via TUNEL-assay and ERG), or for an hour (morphometric analysis) – according to the 

intended read-out, and with an intensity of 5000 lux. 

 

 
Figure 14: A schematic drawing of a light damage box 

A. Three double 18 W gas neon lamps, attached to the mirror ceiling and emitting diffuse 

cool white light. B. Illumination plate with a reflecting surface, the height of which can be 

adjusted according to the desired intensity (C.). Figure taken from (Braunger et al.). 



Material and methods 

 

54 

Following light exposure, mice were transferred back to the dark adaption room, in order 

to convalesce in the conditions of dim light (< 100 lux) for not less than 6 h. According to 

the downstream application, the animals were sacrificed at following points of time after 

performed light damage: 6 h (for RNA analysis), 30 h (for TUNEL-mediated apoptosis 

detection) or 14 days (for morphometric analysis). Mice, involved in functional analysis, 

were processed for electroretinograms, which were recorded 14 days after light damage.  

The depicted experiment was always performed at the same time of the day, in the early 

morning, since there are established hypotheses (by (Duncan and O'Steen, 1985; 

Organisciak et al., 2000; White and Fisher, 1987)) that the susceptibility to light-induced 

damage in a rat model (and probably also by mice) depends on the circadian rhythm. 

 

2.1.6.2 Point mutation at codon 450 in the Rpe65 gene: altered susceptibility to 

light damage 

The retinal susceptibility to light stress could be altered by certain allelic polymorphisms,  

including a single point mutation at position 450 in the RPE-specific gene Rpe65 

(Danciger et al., 2000). The resulting Leu450Met amino acid substitution increases the 

retinal resistance against light-induced damage (see 1.2.2). Therefore, only homozygous 

leucine carriers (Figure 15) were included in our light damage experiments, after 

performing a PCR analysis for the known mutation in the Rpe65 gene (see 2.1.2.3). 

 

 
Figure 15: PCR for the leucine/methionine variant of the Rpe65 gene at position 450 

The PCR product (left well) was digested with MwoI. Since the leucine variant of the gene 

generates a restriction site for the enzyme, digestion results in 2 bands (437 bp and 236 

bp, middle well). The methionine codon would generate just one band (673 bp, not shown). 

Heterozygous animals would have all three of the bands (not shown). 
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2.1.6.3 Light damage and morphometric read-out in terms of a spider diagram 

Morphometric analysis was applied, in order to investigate the extent of light-induced 

damage. Experimental mice were exposed to light with an intensity of 5000 lux for either 

30 min, or 1 h and sacrificed 14 days thereafter. The enucleated eyes were treated 

according to the previously extensively described protocols (2.1.5.1) and INL and ONL 

measurements were performed on semithin sections (with a thickness of 1.0 μm and along 

the mid-horizontal plane) (Figure 16). The means, standard deviations and standard 

errors of the mean were calculated for each one of the equidistant loci (in each of the 

experimental and control groups of animals) using Excel (Microsoft Corporation, 

Redmond, WA, USA). The results were depicted in form of spider diagrams (method 

described in a manuscript in preparation (Braunger et al.)). Control animals’ diagrams 

were compared to those of transgenic animals at each one of the obtained 21 measure 

points. 

 

 
Figure 16: A semithin section, exemplary showing the outer nuclear layer (ONL) measure 

technique 

The depicted ONL measure technique is shown here exemplary on a semithin section (for 

an untreated animal (“no light”)). INL, inner nuclear layer; RPE, retinal pigment 

epithelium. 

 

2.1.6.4 In vivo funduscopy and fluorescein angiography (FLA) 

Fundus imaging and angiography were both performed in cooperation with Prof. Jägle, 

Regensburg, and following a method, already elaborated in (Braunger et al., 2013a). The 

purpose of these investigations was to analyze and compare the retinal and choroidal 
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vascular phenotype and circulation flow of Tgfbr2Δoc mice with that of their control 

littermates. Retinal imaging was executed, using a commercially available imaging 

system (Micron III; Phoenix Research Laboratories, Inc.). The mice were anaesthetized by 

injecting ketamine (65 mg/kg b.w.) and xylazine (13 mg/kg b.w.) subcutaneously and their 

pupils were dilated with tropicamide eye drops (Mydriaticum Stulln; Pharma Stulln) 

prior to image acquisition. Light source path and imaging path filters (low band-pass and 

high band-pass) were used for fluorescein angiography (FLA), performed after 

administering 75 mg/kg body weight sodium fluorescein (Alcon) subcutaneously. Sodium 

fluorescein possesses a relatively low molecular weight and thereby it can diffuse through 

the Bruch’s membrane and the pores of the choriocapillaris. In the course of the 

experiment, the animal eyes were illuminated with blue light with a wavelength of 465-

490 nm (white light after passing a blue excitation filter), which was absorbed by 

fluorescein particles within the blood vessels. Only the emitted fluorescence (yellow-green 

light with a wavelength in a spectrum of 520-530 nm) passed a barrier filter, due to the 

relapse of the excited particles to a lower energy level, and was captured by a fundus 

camera to obtain angiograms (Jurklies and Puls S., 2007). 

 

2.1.6.5 In vivo laser scanning ophthalmoscopy (SLO) and optical coherence 

tomography (OCT) 

Scanning laser ophthalmoscopy (SLO) is a confocal imaging technology that uses a laser 

beam to sense (“scan”) the retina point by point and then capture the reflected light, 

passing through a small aperture. By means of this principle, scattered light, which 

otherwise would blur the image, is suppressed and the obtained real-time raster images 

are sharp and high-contrast. These can be assigned unambiguously to a certain point 

(lesion) in the corresponding retinal area, which is being laser scanned at this exact point 

of time (Grus and Kottler, 2007). 

Optical coherence tomography (OCT) is a non-invasive diagnostic imaging procedure, 

employing low-coherence (near-infrared light with a wavelength of 830 nm) 

interferometry to assess the propagation delay of a reflected laser diode beam, normalized 

to a reference beam. The elapsed time is then converted to information of the depth of the 

reflecting layer, which renders an in vivo two-dimensional cross sectional view of the 

retina, accurate to within at least 10-15 microns in its resolution (Grus and Kottler, 

2007).  

SLO and OCT were also performed in cooperation with Prof. Jägle, Regensburg, with the 

objective to visualize in vivo the retinae of Tgfbr2Δoc mice and of their control littermates 
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before and after light damage. Prior to each procedure the mice were anaesthetized and 

their pupils were dilated, as just described for fundus imaging and FLA (2.1.6.4). 

 

2.1.6.6 Functional analysis: Electroretinography (ERG) 

Functional analyses in the form of electroretinograms (ERGs) were performed in 

cooperation with Prof. Jägle, Regensburg, in order to investigate potential differences in 

the extent of photoreceptor light damage between control and Tgfbr2Δoc mice, exposed to 

light 2 weeks beforehand. The purpose of the examinations was also the validation of 

results, acquired through morphometric analysis and in vivo imaging (SLO and OCT), 

with regard to functional alterations (method extensively described in (Braunger et al., 

2013b)). 

By employing electroretinographic techniques, light-evoked electrical responses of 

photoreceptors and downstream retinal neurons can be quantitatively analyzed. These 

responses ensue as a result of electrical potential alterations, contributed by ion 

concentration shifts, particularly sodium and potassium currents (Jurklies, 2007). The 

regular waveform of the ERG reflects the activity of retinal cells, evoked by standardized 

light stimuli and displayed as time course of the signal’s amplitude (in Volt). The initial 

negative deflection, known as the a-wave, is a result of the phototransduction cascade 

processes at the level of cones and rods (Wolpert and Tsang, 2011). The subsequent rise 

towards the positive peak, known as the b-wave, is due to a depolarization, caused by the 

on-bipolar cells, according to an already postulated theory (Stockton and Slaughter, 

1989). The ascending slope from the a-wave to the peak of the b-wave typically shows 

several small oscillatory potentials, or OPs, and reveals the function of the amacrine cells 

and the feedback loops between amacrine cells and bipolars, as well as between amacrine 

cells and retinal ganglion cells (Jurklies, 2007). Under scotopic conditions the evoked 

responses originate primarily from the rod system, while examinations on a light-adapted 

eye (in presence of background illumination) reflect the activity of the cone system. 

Stimulus characteristics (a single flash or flickering) can also alter the generated 

responses. Scotopic threshold responses (STRs) are evoked on a maximally dark-adapted 

eye by very weak light flash intensities (approximately one log unit below the b-wave 

threshold) to yield minor negative components, primarily elicited by the inner retina, 

proximal to bipolar cells (Saszik et al., 2002). They thus represent the most sensitive 

response on a dark-adapted eye. 

Prior to execution of the experiments, mice were dark-adapted for at least 12 h and 

anesthetized by injecting ketamine (65 mg/kg b.w.) and xylazine (13 mg/kg b.w.) 
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subcutaneously, their pupils were dilated with tropicamide eye drops (Mydriaticum 

Stulln, Pharma Stulln). Silver needle electrodes, attached to the forehead and the tail of 

each mouse, served as reference and ground, respectively, while gold wire ring electrodes 

represented active electrodes. Corneregel (Bausch&Lomb) was essential to keeping the 

eyes moisturized and preserving good electrical contact. ERGs were recorded with the aim 

of a Ganzfeld bowl (Ganzfeld QC450 SCX; Roland Consult), an amplifier and recording 

unit (RETI-Port; Roland Consult). Both eyes were examined simultaneously, results 

band-pass filtered (1–300 Hz), and averaged. Single-flash scotopic (dark-adapted) 

responses to a series of 10 LED-flash intensities (ranging from -3.5 to 1.0 log cd.s/m2 with 

an interstimulus interval of 2 to 20 s (for the maximal intensity)) were recorded. For the 

evaluation of temporal characteristics responses to flickering stimuli with an intensity of 

0.5 log cd.s/m2 and frequencies, ranging from 4 to 25 Hz, were registered. After 10 min of 

adaptation to white background illumination (25 cd/m2), single-flash photopic (light-

adapted) responses to three Xenon-flash intensities (1, 2, and 3 log cd.s/m2), as well as 

responses to flickering stimuli (intensity 1.0 log cd.s/m2) with frequencies, ranging from 4 

to 25 Hz, were plotted. The STRs, evoked by very weak white flashes (flash intensities: -

4.05, -3.70, and -3.53 log cd.s/m2), were recorded after dark adaptation, starting 16 h 

before examinations. Oscillatory potentials were extracted from higher intensity 

waveforms, recorded under dark-adapted conditions by band-pass filtering (100–300 Hz). 

For flicker response waveforms, a fast Fourier transform was used to calculate the 

response magnitude and phase and estimate signal significance. All analyses and plotting 

was performed with R 2.15.2 (The R Foundation for Statistical Computing) and ggplot2 

0.9.3 (Wickham, 2009). 

 

2.1.7 Statistical analysis 

All of the presented results are expressed as mean ± SEM. Statistical comparative 

analyses between the mean variables of individual test populations were performed using 

the heteroscedatic, two-tailed Student's t test and utilizing the Excel software (Microsoft 

Corporation, Redmond, WA, USA) or ANOVA analyses in SPSS (IBM Corporation, 

Armonk, New York, USA). P values ≤ 0.05 were considered to be statistically significant. 
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2.2 Material 

 

2.2.1 Chemicals and reagents 

 

2.2.1.1 Laboratory chemicals 

Table 29: Laboratory chemicals 

Reagent Company 

5x MangoTaq Colored Reaction Buffer 

10x NH4
+

 Reaction Buffer 

2-Dodecenylsuccinic acid anhydride (DDSA) 

2-Mercaptoethanol 

2,4,6-Tris(dimethylaminomethyl)phenol (DMP-30) 

Agarose 

Ammoniumperoxodisulfate (APS), 10% (w/v) 

Azur II 

Bovine Serum Albumin Fraction V (BSA) 

Bromphenol blue 

Chloroform 

Dimethyl sulfoxide (DMSO) 

Deoxyribonucleoside triphosphate (dNTP) 

Disodium hydrogen phosphate dihydrate 

(Na2HPO4 · 2 H2O) 

Dry milk (skimmed milk powder) 

Ethanol, absolute 

Ethidium bromide 

Fluorescein 

Fluorescent Mounting Medium 

Formaldehyde 

Glutaraldehyde 

Guanidine hydrochloride (HCl) 

Glycerin 

Glycid ether 

Glycine 

Hydrochloric acid 37% (HCl) 

Immobilon Western HRP-substrate 

Isoflurane 

Isopropanol 

Ketamine 

 

Magnesium chloride (MgCl2) (50 mM) 

Methanol 

Methylene blue 

Methylnadic anhydride (MNA) 

Bioline, Luckenwalde 

Bioline, Luckenwalde 

Serva, Heidelberg 

Roth, Karlsruhe 

Serva, Heidelberg 

Roth, Karlsruhe 

Roth, Karlsruhe 

Merck, Darmstadt 

Roth, Karlsruhe 

Sigma-Aldrich, Taufkirchen 

Roth, Karlsruhe 

Roth, Karlsruhe   

Bioline, Luckenwalde 

Roth, Karlsruhe 

 

Roth, Karlsruhe 

Roth, Karlsruhe 

Serva, Heidelberg 

Quiagen, Hilden 

DakoCytomation, Hamburg 

Roth, Karlsruhe 

Serva, Heidelberg 

Roth, Karlsruhe 

Roth, Karlsruhe 

Serva, Heidelberg 

Merck, Darmstadt 

Merck, Darmstadt 

Millipore, Billerica, USA 

Baxter, Unterschleißheim 

Roth, Karlsruhe 

Wirtschaftsgenossenschaft deu-

tscher Tierärzte (WDT), Garbsen 

Bioline, Luckenwalde 

Merck, Darmstadt 

Merck, Darmstadt 

Serva, Heidelberg 
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Mydriaticum Stulln (tropicamide) eye drops 

Osmium tetroxide 

Paraformaldehyde (PFA) 

Paraffin 

Phosphate buffered saline (PBS) 

Potassium chloride 

Potassium dihydrogen phosphate (KH2PO4) 

Potassium ferricyanide (K3[Fe(CN)6]) 

Potassium ferrocyanide (K4[Fe(CN)6] · 3 H2O) 

Propylene oxide 

Protease-Inhibitor Mix M 

Proteinase K 

Rotiphorese® Gel 30 (30% acrylamide/bisacrylamide 

stock solution, mixing ratio 37.5:1) 

Sodium cacodylate buffer 

Sodium chloride 

Sodium dihydrogen phosphate monohydrate 

(NaH2PO4· H2O) 

Sodium dodecyl sulfate (SDS) 

SYBR-Green I 

TEMED 

(N,N,N’,N’-tetramethylethylenediamine) 

Tergitol 

Tris(hydroxymethyl)aminomethan (Tris) 

ultrapure, MB Grade 

Tris/HCl 

TRIzol Reagent 

Tween 20 

Urea 

Vectashield Mounting Medium for fluorescence 

with 4’,6-diamidino-2-phenylindole (DAPI) 

Water Rotislov (RNase-free) 

Xylazine 

Xylene 

Pharma Stulln GmbH 

Science Service, München 

Sigma-Aldrich, Taufkirchen 

Engelbrecht, München 

Invitrogen, Karlsruhe 

Roth, Karlsruhe 

Roth, Karlsruhe 

Merck, Darmstadt 

Merck, Darmstadt 

Serva, Heidelberg 

Serva, Heidelberg 

Roth, Karlsruhe 

Roth, Karlsruhe 

 

Serva, Heidelberg 

Roth, Karlsruhe 

Merck, Darmstadt 

 

Serva, Heidelberg 

Quiagen, Hilden 

Roth, Karlsruhe 

 

Sigma-Aldrich, Taufkirchen 

Usb Corporation, Cleveland, USA 

 

Roth, Karlsruhe 

Invitrogen, Karlsruhe 

Roth, Karlsruhe 

Sigma-Aldrich, Taufkirchen 

Vector Laboratories, Burlingame, 

USA 

Roth, Karlsruhe 

Serumwerk Bernburg, Bernburg 

Merck KgaA, Darmstadt 

 

2.2.1.2 Enzymes and Taq polymerase 

Table 30: Enzymes and Taq Polymerase 

Enzyme Company 

MangoTaq DNA Polymerase 

MwoI restriction endonuclease 

Proteinase K 

Taq DNA Polymerase 

Bioline, Luckenwalde 

New England Biolabs 

Roth, Karlsruhe 

New England Biolabs 
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2.2.1.3 Reaction kits 

Table 31: Reaction kits 

Kit Company 

DeadEnd™ Fluorometric TUNEL System 

iScript™ cDNA Synthesis Kit 

Promega, Madison, Wisconsin, USA 

BioRad Laboratories, München 

 

2.2.1.4 DNA and protein ladders 

Table 32: DNA and protein ladders 

Ladder Company 

GeneRuler 100 bp DNA ladder 

PageRuler™ Prestained Protein Ladder 

Fermentas, St. Leon-Rot 

Fermentas, St. Leon-Rot 

 

2.2.2 Laboratory consumable supplies and equipment 

 

2.2.2.1 Consumables 

Table 33: Consumable supplies 

Item Company 

3 MM Whatman blotting paper 

Adhesive PCR film 

Biosphere filter tips 

Conical tubes – 15 ml, 50 ml 

Cover slips, 24x 60 mm 

Disposal bags for autoclavation 

Ear clips 

Epon 

Glass pipettes  

iQ™ 96-well PCR plates 

Laboratory glass ware 

Microseal® ‘B’ adhesive seals 

Multi-reaction tubes – 0.5 ml, 1.5 ml, 2.0 ml 

Multidishes Nunclon 

Nitrile gloves 

Nylone membrane 

Omnifix sterile single-use syringes 

Parafilm 

Pasteur pipettes 

Personna razor blades 

Pipette tips 

PVDF western blotting membrane 

Serological pipettes 

Sterican® single-use injection needle 

Neolab, Heidelberg 

Peqlab Biotechnologie, Erlangen 

Sarstedt, Nümbrecht 

Sarstedt, Nümbrecht 

Menzel-Gläser, Braunschweig 

Sarstedt, Nümbrecht 

Hauptner & Herebrholz, Solingen 

Serva, Heidelberg 

Brand, Wertheim 

Bio-Rad, München 

Schott, Roth, VWR 

Bio-Rad, München 

Roth, Karlsruhe 

Nunc, Roskilde, DK 

VWR, Darmstadt 

Roche, Mannheim 

B. Braun, Wertheim 

Pechiney Plastic Packaging, Chicago, USA 

Brand, Wertheim 

American Safety Razor Company, Verona 

Sarstedt, Nümbrecht 

Roche, Mannheim 

Sarstedt, Nümbrecht 

B. Braun, Wertheim 
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Super PAP pen Liquid blocker 

SuperFrost Ultra Plus® glass slide 

SCI Science Services, München 

Menzel-Gläser, Braunschweig 

 

2.2.2.2 Equipment 

Table 34: Laboratory equipment 

Item Company 

Aida Advanced Image Data Analyzer v.4.06 

Axio Imager Z1 microscope 

Axiovert 40 CFL 

Centrifuges 5415D, 5415R, 5804R, 5810R 

Electrophoresis power supply E835 

Excel 

Gel chamber for electrophoresis 

ImageJ 

Innova 4200 shaker 

IQ5 Multicolor Real-time PCR Detection 

System + iCycler 

Inolab pH-meter 

Julabo SW20 water bath 

Kern PJL 2100-2M balance 

LAS 3000 Intelligent dark box 

Mastercycler gradient 

Microm HM 500 OM cryostat 

Milli-Q Plus PF water purification system 

Model 45-101-i class II electrophoresis system 

NanoDrop 2000c UV-Vis Spectrophotometer 

Paraffin tissue processor HMP 110 

Paraffin wax embedding centre type MPS/P2 

PerfectBlue Gelsystem Mini L 

Pipetman pipette 

Polymax 1040 shaker 

Electrophoresis power supply E835 

Research pipettes 

Semi-dry electrophoretic transfer cell 

SPSS 

 

Supercut 2050 Reichert-Jung Microtome 

 

Systec V75 autoclave 

Thermomixer compact 

Tissue processing automat Leica EM TP 

T100TM Thermal cycler 

Ultracut E Reichert-Jung Microtome 

Vortex Genie 2 

Raytest, Straubenhardt 

Zeiss, Göttingen 

Zeiss, Göttingen 

Eppendorf, Hamburg 

Biorad, Hercules, USA 

Microsoft, Redmond, WA, USA 

Peqlab Biotechnologie, Erlangen 

LOCI, Madison, Wisonsin 

New Brunswick, New Jersey, USA 

BioRad Laboratories GmbH, Munich, 

Germany 

WTW GmbH, Weilheim 

Julabo, Seelbach 

Kern & Sohn, Balingen-Frommern 

Fujifilm, Düsseldorf 

Eppendorf, Hamburg 

Microm International, Walldorf 

Millipore Corporation, Billerica, USA 

Peqlab Biotechnologie, Erlangen 

Thermo Fisher Scientific, Schwerte 

Microm International, Walldorf 

SLEE Medical, Mainz, Germany 

Peqlab Biotechnologie, Erlangen 

Gilson, Middleton, USA 

Heidolph, Kelheim 

Consort, Turnhout, BE 

Eppendorf, Hamburg 

Peqlab Biotechnologie, Erlangen 

IBM Corporation, Armonk, New York, 

USA 

Cambridge Instruments GmbH, 

Nussloch 

Systec GmbH, Wettenburg 

Eppendorf, Hamburg 

Leica microsystems GmbH, Wetzlar 

BioRad, Munich 

Reichert-Jung, Kirchseeon 

Scientific Industries, New York, USA 
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2.2.3 Buffers, dilutions and gels compounding 

 

2.2.3.1 Buffers and dilutions 

Table 35: Histology – buffers and dilutions 

 Preparation 

0.1 M Na2HPO4 · 2 H2O (Buffer I) 

0.1 M NaH2PO4 · H2O (Buffer II) 

0.1 M phosphate buffer, pH 7.4 

0.2 M Sodium cacodylate buffer, 

pH 7.4 

25% PFA 

 

4% Paraformaldehyde (PFA) 

fixation solution 

EM fixation medium, pH 7.4 

 

 

Epon stock solution 

 

 

 

 

 

LacZ fixation buffer 

 

 

 

LacZ stain 

 

 

 

LacZ wash buffer 

 

 

 

Osmium ferrocyanide 

 

 

Richardson’s stain 

 

 

35.6g in 2 l H2O dest. 

13.8g in 1 l H2O dest. 

Buffer I:buffer II in a proportion 5:1, pH 7.4 

0.2 M sodium cacodylate buffer (42.8 g/1000 ml) 

Adjust pH (to 7.4) with 0.2 M HCl 

12.5 g paraformaldehyde (PFA) in 40 ml H2O dest. 

(heated up to 70ºC), ad H2O dest. to 50 ml 

4 g formaldehyde (4%) in 100 ml 0.1 M phosphate 

buffer, pH 7.4 

10 ml 25% paraformaldehyde 

50 ml 0.2 M cacodylate buffer, pH 7.4 

30 ml H2O dest. + 10 ml 25% glutaraldehyde 

43.2 g glycid ether 

16.8 g DDSA Epon hardener (2-Dodecenylsuccinic  

acid anhydride) 

30.0 g MNA Epon hardener (Methylnadic anhydride) 

1.5 ml DMP-30 Epon accelerator (2,4,6-Tris(dimethyl-

aminomethyl)phenol) 

48.4 ml 0,1 M phosphate buffer, pH 7.3 

100 μl 1 M MgCl2 

1.0 ml 0.250 M EGTA, pH 7.3 

0.4 ml 25% glutaraldehyde 

72.0 ml LacZ wash buffer 

3.0 ml X-Gal (25 mg/ml in DMSO) 

0.159 g K4Fe(CN)6 · 3 H2O 

0.123 g K3Fe(CN)6 

1 ml 1 M MgCl2 

5.0 ml 1% sodium desoxycholate (NaDC) 

5.0 ml 2% Tergitol 

489 ml 0.1 M phosphate buffer, pH 7.3 

2% OsO4 

1.6% potassium ferrocyanide (96 mg/6 ml), diluted in 

0.2 M cacodylate buffer 

Stock solution I: 5 g 1% Azur II in 500 ml H2O dest. 

Stock solution II: 5 g methylene blue in 500 ml 1% 

sodium tetraborate (Borax) 

Stock solution I:Stock solution II:H2O dest. in a 

proportion 1:1:2 
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Table 36: Protein analysis – buffers and dilutions 

 Preparation 

0.9% NaCl 

10x Phosphate buffered 

saline (PBS), pH 7.4 

 

 

 

10x SDS electrophoresis  

buffer 

 

 

SDS solution, 10% (w/v) 

10x SDS PAGE buffer 

 

 

 

4x SDS sample buffer 

(Laemmli buffer) 

 

 

 

10x TBS, pH 7.4 

 

 

 

1x TBST 

 

 

10x Transfer buffer 

 

 

 

 

1 M Tris/HCl, pH 6.8 

 

1.5 M Tris/HCl, pH 8.8 

 

Urea buffer 

 

 

 

 

Wash buffer for protein 

isolation 

0.9% (w/v) in H2O dest., autoclave 

80 g sodium chloride 

2 g potassium chloride 

4.4 g disodium hydrogen phosphate (Na2HPO4) 

2.4 g potassium dihydrogen phosphate (KH2PO4) 

ad H2O dest. to 1 l, autoclave 

250 mM Tris/HCl 

400 mM glycine 

1% (w/v) SDS 

Solve in H2O; ad 1 l 

10 g SDS, solved in H2O dest.; ad 100 ml 

250 mM Tris/HCl 

400 mM glycine 

1% (w/v) sodium dodecyl sulfate (SDS) 

Solve in H2O; ad 1 l 

0.25 M Tris/HCl, pH 6.8 

30% glycerin 

8% (w/v) sodium dodecyl sulfate (SDS) 

0.02% (w/v) bromphenolblue 

10% β-mercaptoethanol 

30 g Tris(hydroxymethyl)aminomethan (Tris) 

80 g sodium chloride 

2 g potassium chloride 

Solve in H2O; ad 1 l, autoclave 

100 ml 10x TBS 

0.05% (v/v) Tween 20 

Solve in H2O; ad 1 l 

5.8 g Tris(hydroxymethyl)aminomethan (Tris) 

2.9 g glycine 

200 ml methanol 

3.7 ml 10% (w/v) sodium dodecyl sulfate (SDS) 

Solve in H2O; ad 1 l 

121.14 g Tris(hydroxymethyl)aminomethan (Tris) 

Solve in H2O; ad 1 l; adjust pH 

181.71 g Tris(hydroxymethyl)aminomethan (Tris) 

Solve in H2O; ad 1 l; adjust pH 

25 ml 10% sodium dodecyl sulfate (SDS) 

10 ml 1 M Tris(hydroxymethyl)aminomethan (Tris), pH 6.8 

100 μl 0.5 M ethylenediaminetetraacetic acid (EDTA), pH 8 

750 μl β-mercaptoethanol 

24 g urea 

0.3 M Guanidin HCl 

Solve in 95% Ethanol 
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Detection buffer, pH 9 

 

0.1 M Tris/HCl 

0.1 M sodium chloride (NaCl) 

 

Table 37: DNA analysis – buffers and dilutions 

 Preparation 

Mouse tail lysis buffer 

 

 

 

 

 

DNA loading dye 

 

 

10x TBE buffer 

 

 

 

40 ml 1 M Tris/HCl, pH 8.0 (100 mM Tris/HCl, pH 8.0) 

80 ml 25 mM ethylenediaminetetraacetic acid (EDTA) (5 

mM EDTA) 

8ml 10% sodium dodecyl sulfate (SDS) (0.2 % SDS) 

26.6 ml 3 M sodium chloride (200 mM NaCl) 

ad H2O dest. to 400 ml 

Bromphenol blue 0.25% (w/v) 

Xylene cyanol FF 0.25% (w/v) 

Ficoll 15% (w/v) 

108g Tris(hydroxymethyl)aminomethan (Tris) 

55 g borate 

40 ml 0.5 M ethylenediaminetetraacetic acid (EDTA), pH 8 

ad H2O dest. 1 l 

 

2.2.3.2 Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) 

Table 38: SDS-PAGE gels composition 

Gels for SDS-PAGE Stacking gel (1 ml) Resolving gel, 10% Resolving gel, 15% 

H2O dest. 

Rotiphorese® Gel 30 

1 M Tris/HCl, pH 6.8 

1.5 MTris/HCl, pH 8.8 

10% SDS 

10% APS 

TEMED 

0.68 ml 

0.17 ml 

0.13 ml 

- 

0.01 ml 

0.01 ml 

0.001 ml 

1.9 ml 

1.7 ml 

- 

1.3 ml 

0.05 ml 

0.05 ml 

0.002 ml 

1.3 ml 

2.3 ml 

- 

1.3 ml 

0.05 ml 

0.05 ml 

0.002 ml 
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3. Results 

 

3.1 Conditional deletion of TβRII in cells of the neural retina 

In order to investigate the presumably protective role of TβRII for mature photoreceptors 

under light-induced stress, we generated Tgfbr2fl/fl;α-Cre and Tgfbr2fl/fl;LMOP mice, which 

were supposed to have the type II TGF-β receptor conditionally inactivated either in the 

cells, originating from  the inner layer of the optic cup, or in the rod photoreceptors only, 

respectively. For the sake of simplicity, Tgfbr2fl/fl;α-Cre mice are referred to as Tgfbr2∆oc 

and Tgfbr2fl/fl;LMOP mice as Tgfbr2∆rod, in resemblance to the corresponding cells, affected 

by the conditional downregulation of TGF-β signaling. Mice, carrying two unrecombined 

Tgfbr2fl/fl alleles, are referred to as controls.  

 

3.1.1 Conditional deletion of TβRII in optic cup-derived cells of the neural retina 

 

3.1.1.1 Cellular expression of the Cre recombinase in the α-Cre strain 

In order to monitor the tissue expression pattern of the cre transgene in the α-Cre strain, 

Rosa-LacZ reporter mice (R26R) were interbred with the α-Cre strain and β-galactosidase 

staining was performed for the progeny. Since lacZ is only expressed in cells/tissues 

where Cre is expressed and active (Soriano, 1999), double transgenic α-Cre/R26R mice 

reacted with an intense signal throughout the neural retina and the non-pigmented 

epithelium of the ciliary body (Figure 17), i.e. all the cells, deriving from the inner layer of 

the optic cup. In contrast, the eyes of control animals showed no detailed signal, but a 

faint bluish background reaction within the inner retinal layers (Figure 18).  
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Figure 17: Rosa-LacZ reporter mice (R26R): panorama view of β-galactosidase-stained 

eyes 

The panorama picture of the eye of a 7-day-old α-Cre/R26R mouse shows a much more 

enhanced reaction in its neural retina and non-pigmented epithelium of the ciliary body 

(arrows) in comparison to the control/R26R. Figure modified after (Boneva et al., 2016). 

 

 
Figure 18: Rosa-LacZ reporter mice (R26R): detailed view of β-galactosidase-stained eyes 

of 7-d-old animals 

The higher magnification of the β-galactosidase-stained α-Cre/R26R eye from Figure 17 

shows an intense reaction throughout the neural layers of the retina, implying the 

homogenous distribution and activity of the Cre enzyme within all of the cells, deriving 

from the inner layer of the optic cup. RGC, retinal ganglion cells; INL, inner nuclear 

layer; ONL, outer nuclear layer; RPE, retinal pigment epithelium. Figure modified after 

(Boneva et al., 2016). 
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3.1.1.2 The Cre recombinase in the α-Cre strain: influence upon retinal 

morphology and reaction to light-induced stress 

Since the expression of the Cre enzyme itself disguises the remote possibility of 

morphological and functional alterations of the retina, the initial approach of this work 

included a phenotype comparison between α-Cre animals and their wild-type littermates. 

First of all, the eyes of 6-8-week-old mice were enucleated and processed for light 

microscopy, in order to study the morphology and to perform morphometric analyses of 

the retinal layers. The thickness of the INL and ONL was measured on mid-horizontal 

sections, stretching from the temporal to the nasal side through the optic nerve head 

(ONH), and the results were visualized in form of Spider diagrams (refer to Figure 19 for 

INL and to Figure 20 for ONL). The statistical evaluation did not reveal any significant 

differences between the thickness of the INL or ONL in α-Cre animals, when compared to 

wild-type littermates. Consequently, the expression of the Cre recombinase on its own did 

not affect the structural characteristics of the retina. 

 

 
Figure 19: Morphometric analysis of the thickness of the inner nuclear layer (INL), 

measured on mid-horizontal Richardson-stained semithin sections through the eyes of 7-

8-week-old untreated wild-type animals and their α-Cre littermates 

The thickness of the INL was quantified by morphometric analyses and visualized in form 

of a Spider diagram. The statistical evaluation of the results did not reveal any significant 

differences between both experimental groups. Mean ± SEM, n = 7/5 (wild-type to 

transgenic animals). Morphometric analysis performed in cooperation with Tatjana Groß. 

OS, ora serrata; ONH, optic nerve head. Experiment published in (Boneva et al., 2016). 
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Figure 20: Morphometric analysis of the thickness of the outer nuclear layer (ONL), 

measured on mid-horizontal Richardson-stained semithin sections through the eyes of 7-

8-week-old untreated wild-type animals and their α-Cre littermates 

Throughout the circumference of the retina the thickness of the ONL did not differ 

between the eyes of wild-type animals and transgenic littermates (n = 7/5). Data are 

shown as mean ± SEM. Morphometric analysis performed in cooperation with Tatjana 

Groß. OS, ora serrata; ONH, optic nerve head; ONL, outer nuclear layer. Experiment 

published in (Boneva et al., 2016). 

 

To further verify, whether the expression of the Cre recombinase itself would affect the 

neuronal vulnerability and therefore interfere with the planned experiments, light 

damage was performed with wild-type animals and α-Cre littermates, followed by TUNEL 

labeling for apoptotic cells. Since the TUNEL assay specifically tags them, the number of 

fluorescing nuclei was counted and normalized to the ONL area (Figure 21B.). The typical 

pattern of light damage, hallmarked by major concentration of apoptosis in the central 

retina of the ONL, could be observed in the mid-horizontal sections, stretching from the 

temporal OS through the ONH to the nasal side (Figure 21A., right-hand side panel). The 

acquired results were statistically evaluated and no significant differences between the 

apoptotic rates for wild-type and α-Cre animals could be discerned (Figure 21A., left-hand 

side panel). Consequently, the α-Cre strain suited the expectations for a recombinase 

enzyme, which would only delete a certain “floxed” sequence, namely under direction of 

the Pax6 α enhancer element. Further events, regarding parallel activities of the Cre, did 

not need to be anticipated in the following (light damage) experiments.  
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Figure 21: Neuronal vulnerability of α-Cre and wild-type mice: TUNEL labeling in the 

retinae of 6-7-week-old animals 30 h after light-induced damage 

A. Right-hand side panel: The horizontal TUNEL-labeled (green channel) sections 

through the retinal hemispheres of light-exposed animals demonstrate the characteristic 

pattern of retinal damage, sustained by light, i.e. the concentration of apoptotic signals in 

the central retina. Nuclei were stained with DAPI (blue). Left-hand side panel: the 

statistical quantification of TUNEL-labeled cells per 1 mm2 ONL area did not indicate 

any significant differences between wild-type and α-Cre apoptotic rates upon light 

damage. Data is mean ± SEM, n = 7/5 (wild-type to transgenic mice). 

B. The higher magnification of the central retinae shows the localization of the 

fluorescing nuclei within the ONL. Apoptotic cells fluoresced with green signal. OS, ora 

serrata; ONH, optic nerve head; INL, inner nuclear layer; ONL, outer nuclear layer. 

Figure modified after (Boneva et al., 2016). 
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3.1.1.3 Tgfbr2 deletion PCR: characterization of a successfully occurred 

recombination event (Tgfbr2∆oc-mice) 

As mentioned previously, in Tgfbr2∆oc mice Exon2 of TβRII was removed by Cre 

recombinase within the cells, originating from the inner layer of the optic cup. To prove 

that recombination has occurred throughout the concerned layers, primer pairs, shown to 

amplify a corresponding PCR product for transgenic mice, were used in the performed 

PCR analysis (Chytil et al., 2002). A positive signal was detected for the retinal layer 

(Figure 22). Due to the differing product sizes (no deletion: 3974 bp; after deletion: 636 

bp) and the given elongation time of 1 min, the deletion product only was amplified in 

samples, following a Cre-mediated recombination. Actin was used as a loading control. 

 

 
Figure 22: Tgfbr2 deletion PCR with retinal genomic DNA of a 6-week-old Tgfbr2∆oc 

mouse and its control littermate 

In Tgfbr2∆oc mice recombination was proven to occur in the retinal cells. 

 

3.1.1.4 Western blot analysis: protein translation, analyzed in retinae extracts 

To further demonstrate the conditional downregulation of TGF-β signaling (by deleting 

TβRII) on a protein level, Western blot analyses were performed. Protein extracts from 

the retinae of control and Tgfbr2∆oc-animals were tested for the translation of the TßRII 

protein. A distinct band migrated at the expected molecular weight of 70 kDa for the 

retinal lysates of the control animals, while the signal was attenuated in the protein 

extracts from TβRII-deficient littermates (Figure 23A.). GAPDH was run as a loading 

control. The densitometric analysis showed a significantly less intense signal in Tgfbr2∆oc 

animals, when compared to controls (Figure 23B.). 
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Figure 23: Western blot analysis for TβRII in retinae, extracted from 6-8-week-old 

Tgfbr2∆oc animals and their control littermates 

A. The TßRII Western blot analysis shows a signal at the expected molecular weight of 70 

kDa for the retinal lysates of control animals, whereas the signal is markedly reduced in 

the protein extracts of Tgfbr2∆oc animals. GAPDH was run as a loading control. B. 

Statistical evaluation of the densitometric analysis. Data is mean ± SEM, n = 7/8 (controls 

to Tgfbr2∆oc-mice), *p = 0.0388. 

 

3.1.1.5 Immunohistochemistry: localization of TβRII within the transgenic retina 

To further specify the localization of the TβRII protein and ultimately attribute it to 

certain retinal layers, immunohistochemical staining reactions were performed. For the 

retinae of adult control mice distinct immunoreactivity for TβRII was observed within the 

layers of the inner retina, especially the ganglion cell layer (GCL), the INL and some 

extension-like structures within the ONL (Figure 24). TβRII immunoreactivity was 

considerably weaker, even barely detectable (Figure 24), in the retinal layers of Tgfbr2∆oc 

animals. 
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Figure 24: Immunohistochemical staining for TβRII in the retinae of a 6.5-week-old 

Tgfbr2∆oc animal and its control littermate 

Specific immunohistochemical reactivity for TβRII (green) was detectable (arrows) within 

the GCL, the inner nuclear layer (INL) and some extension-like structures within the 

outer nuclear layer (ONL) of a control animal (exemplary shown for the central retina). 

The transgenic animal did not show a similar reaction in the retina. Nulcei were stained 

with DAPI (blue channel). RGC, retinal ganglion cells; INL, inner nuclear layer; ONL, 

outer nuclear layer. 

 

3.1.1.6 TGF-β signaling pathway activation in the retinae of control and Tgfbr2∆oc 

animals 

Upon receptor-mediated phosphorylation of SMAD3, the molecule acts as a transducer for 

TGF-β-like signals (Attisano and Wrana, 2002). To prove whether the intracellular TGF-β 

signaling cascade is affected in the retinae of Tgfbr2∆oc mice, an immunohistochemical 

staining reaction for pSMAD3 was performed. In the eyes of control mice, the specific 

immunohistochemical responses were restricted to the perikarya within the INL and the 

GCL (Figure 25). On the contrary, no such pattern could be observed for the retinae of 

Tgfbr2∆oc animals (Figure 25). An antibody control section confirmed the specificity of the 

secondary antibody (Figure 26) and the successful diminishment of eGFP activity, 

originating from the α-Cre background (Marquardt et al., 2001), most likely due to the 

fixation and paraffin embedding processes. 
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Figure 25: SMAD3 activity in the neural retinae of a control animal and its Tgfbr2∆oc 

littermate 

The 6.5-week-old control animal shows a specific immunohistochemical reaction (green) 

in the central retinal regions, within the cells of the GCL and the INL. Comparable 

signals are considerably weaker, even absent in the retina of the Tgfbr2∆oc littermate. 

Nuclei are stained with DAPI (blue). RGC, retinal ganglion cells; INL, inner nuclear 

layer; ONL, outer nuclear layer. 

 

 
Figure 26: Antibody control 

The section indicates the specificity of the antibody and the successful diminishment of 

eGFP activity, originating from the α-Cre background. RGC, retinal ganglion cells; INL, 

inner nuclear layer; ONL, outer nuclear layer. 
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To further confirm the downregulation of the TGF-β signaling pathway in TβRII-deficient 

animals, Western blot analyses for pSMAD3 were performed. Here, a specific signal was 

detected at the expected molecular weight of 54 kDa in lysates of the neural retinae of 

adult control mice (Figure 27). The signal was considerably weaker in Tgfbr2∆oc animals. 

Relative densitometry showed a significantly higher amount of phosphorylated SMAD3 in 

retinal lysates of control animals, compared to transgenic mice.  

 

 

Figure 27: pSMAD3 Western blot analysis 

A. Western blot analyses for pSMAD3 in retinal proteins of 6-8-week-old control mice and 

TβRII-deficient littermates. GAPDH was used as a loading control. B. Densitometric 

analysis of Western blots for pSMAD3 level. Data is mean ± SEM, n = 8/8 (controls to 

Tgfbr2∆oc mice), *p = 0,0363. 

 

Taken together, these results demonstrate the successful conditional deletion of the TβRII 

in Tgfbr2∆oc mice and the consequent downregulation of TGF-β signaling in cells, 

originating from the inner layer of the optic cup. 

 

3.1.2 Conditional deletion of TβRII in rod photoreceptor cells 

 

3.1.2.1 Cellular expression of the Cre recombinase in the LMOP-Cre strain 

To visualize the tissue expression pattern of the Cre recombinase enzyme in the LMOP-

Cre strain, Rosa-LacZ reporter mice (R26R) were interbred with the LMOP-Cre strain 

and β-galactosidase staining was performed for the progeny. Since lacZ is only expressed 

in tissues where Cre is expressed and active (Soriano, 1999), the eyes of wild-type 
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animals showed no signal (Figure 28). On the contrary, double transgenic LMOP-

Cre/R26R mice reacted with a much more intense signal throughout outer retina (Figure 

28, Figure 29), located primarily within the photoreceptor inner and outer segments 

layers (PIS and POS), the ONL and the outer plexiform layer (OPL). 

 

 
Figure 28: Rosa-LacZ reporter mice (R26R): panorama view of β-galactosidase-stained 

eyes of 3-week-old animals 

The panorama picture of the eye of a LMOP-Cre/R26R mouse shows a more intense 

reaction in its retina in comparison to the control/R26R, indicating the activity of the Cre 

recombinase in the ONL of the double transgenic animal. Scale bars correspond to 200 

μm. Figure published in (Boneva et al., 2016). 

 

 
Figure 29: Rosa-LacZ reporter mice (R26R): detailed view of β-galactosidase-stained eyes  

The detailed magnification of the β-galactosidase-stained LMOP-Cre/R26R eye from 

Figure 28 shows an intense reaction in the outer nuclear layer (ONL) and particularly 

within photoreceptor inner and outer segments (PIS and POS) and outer plexiform layer 

(OPL). RGC, retinal ganglion cells; INL, inner nuclear layer; RPE, retinal pigment 

epithelium. Scale bars correspond to 50 μm. Figure published in (Boneva et al., 2016). 
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3.1.2.2 Tgfbr2 deletion PCR: characterization of a successfully occurred 

recombination event (Tgfbr2∆rod mice) 

In LMOP-Cre mice the expression of the Cre recombinase is restricted to rod 

photoreceptors due to the long (4.1 kb) mouse opsin-promoter (Le et al., 2006). To confirm 

the recombination in rod photoreceptors, the same primer pairs were used as for the 

Tgfbr2∆oc-mice, amplifying a PCR product only, if a recombination event occurred (Figure 

30). Actin was used as a loading control. 

 

 
Figure 30: Tgfbr2 deletion PCR with retinal genomic DNA of an adult 6-week-old 

Tgfbr2∆rod mouse and its control littermate 

The 636 bp PCR product in Tgfbr2∆rod mice confirms the Cre-mediated recombination in 

the retina. Actin was used as a loading control. 
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3.2 Phenotype analysis 

 

3.2.1 Phenotype analysis of the eyes of Tgfbr2∆oc mice 

 

3.2.1.1 Morphology of the retina of Tgfbr2∆oc mice 

Semithin sections of the eyes of at least 6-week-old transgenic animals and their control 

littermates, stained according to the Richardson’s protocol, were analyzed by light 

microscopy. Both genotypes did not show morphological differences (Figure 31, Figure 

32): the eyes were analogous, regarding size and architecture of the retinal layers along 

the full circumference, from the optic nerve head (ONH) to the ora serrata (OS). 

 

 
Figure 31: Semithin horizontal sections through the retinae of a 9.5-week-old control 

mouse and its Tgfbr2∆oc littermate 

The sections (1 μm thick) present both eyes from the optic nerve head (ONH) to the 

periphery. A TβRII deficiency did not lead to morphological alterations in the retina. 
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Figure 32: Detailed view of the central retinae of untreated animals 

The retinae of a 9.5-week-old control mouse and its Tgfbr2∆oc littermate did not show 

morphological differences. Higher magnification of central retinal regions of the semithin 

horizontal sections from Figure 31. 

 

To obtain statistically meaningful data, morphometric analyses were performed. To this 

end, the thickness of both INL and ONL throughout the entire retina was compared in 

untreated (no light) animals (Figure 33, Figure 34). In accordance with previously 

published data of our group (Braunger et al., 2013b), Tgfbr2Δoc animals demonstrated a 

reduced thickness of the INL, when compared to control littermates, with two measure 

points even showing a significant decrease (*p = 0.043 to *p = 0.048) (Figure 33). 

 

 
Figure 33: Thickness of the inner nuclear layer (INL), measured on mid-horizontal 

semithin sections through the eyes of untreated 7-9.5-week-old Tgfbr2∆oc animals and 

their control littermates 

Throughout the circumference of the retina the thickness of the INL was uniformly 

reduced for the eyes of Tgfbr2∆oc animals, compared to control littermates, reaching a 

significant decrease at two measure points (*p = 0.043 to *p = 0.048). Mean ± SEM, n = 8 

each. INL, inner nuclear layer; ONH, optic nerve head. 

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

Ф
Ф



Results 

 

81 

The morphometric analysis of the thickness of the ONL (Figure 34) did not show any 

significant differences for the eyes of Tgfbr2∆oc mice in comparison to their control 

littermates (n = 8 per each group). 

 

 

Figure 34: Thickness of the outer nuclear layer (ONL): eyes of untreated 7-9.5-week-old 

control animals and their Tgfbr2∆oc littermates 

Throughout the circumference of the retina the thickness of the ONL did not differ 

between the eyes of Tgfbr2∆oc animals and their control littermates. Mean ± SEM, n = 8 

each. ONL, outer nuclear layer; ONH, optic nerve head. 

 

3.2.1.2 Vascular phenotype 

To detect any possible alterations in the vasculature of TβRII-deficient animals in vivo 

funduscopy and fluorescein angiography (FLA) were performed on the eyes of 6-week-old 

transgenic and control animals. Tgfbr2∆oc mice did not present any obvious morphological 

differences, regarding the retinal vasculature, in comparison to their control littermates 

(Figure 35).  
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Figure 35: In vivo funduscopy (upper panel) and fluorescein angiography (FLA) (lower 

panel)  

The retinal vasculature of a 1.5-month-old Tgfbr2∆oc animal did not show any obvious 

differences in comparison to the control littermate. In vivo funduscopy and FLA were 

performed in cooperation with Prof. H. Jägle. 

 

3.2.2 Morphological analysis of the eyes of Tgfbr2∆rod mice, bearing the TβRII 

deficiency within the rod photoreceptors 

Mid-horizontal semithin sections of the eyes of at least 6-week-old transgenic animals and 

their control littermates, stained according to the Richardson’s protocol were analyzed by 

light microscopy. Both genotypes did not show morphological differences (Figure 36, 

Figure 37): the eyes were analogous, regarding size and architecture of the retinal layers 

along the full circumference, from the ONH to the periphery. 
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Figure 36: Semithin horizontal sections through the eyes of a 6-week-old control mouse 

and its Tgfbr2∆rod littermate 

The sections (1 μm thick) present similar phenotypes. The size of both eyes is alike and 

the architecture of the retinal layers is regular: all present from the optic nerve head to 

the periphery. 

 

 
Figure 37: Semithin sections through the central retinae of untreated animals 

The retinae of a 6-week-old control mouse and its Tgfbr2∆rod littermate did not show 

morphological differences (higher magnification of central retinal regions of the horizontal 

sections from Figure 36). 

 

Prior to light damage experiments the thickness of both the INL and the ONL throughout 

the entire retina was compared (Figure 38 and Figure 39, respectively). Along the 

circumference of the retina the thickness of the INL (Figure 38) and the ONL (Figure 39) 

did not differ significantly between control animals and transgenic littermates. 
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Figure 38: Thickness of the inner nuclear layer (INL): eyes of at least 6-week-old 

untreated control animals and their Tgfbr2∆rod littermates 

Throughout the circumference of the retina the thickness of the INL did not differ 

significantly between the eyes of Tgfbr2∆rod animals and their control littermates. Mean ± 

SEM, n = 6/4. 

 

 
Figure 39: Thickness of the outer nuclear layer (ONL): eyes of at least 6-week-old 

untreated control animals and their Tgfbr2∆rod littermates 

Throughout the circumference of the retina the thickness of the ONL did not vary 

significantly between the eyes of Tgfbr2∆rod animals and control littermates. Mean ± SEM, 

n = 6/4. OS, ora serrata; ONH, optic nerve head. 
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3.3 Light damage experiments 

Light damage experiments were performed in order to assess the hypothesis that the 

TGF-β signaling pathway plays a neuroprotective role for photoreceptors in the adult 

retina. 

 

3.3.1 Light damage experiments on Tgfbr2∆oc mice: TβRII deficiency within the 

optic-cup-derived cells of the neural retina 

 

3.3.1.1 Morphometric analyses of the light-exposed eyes of Tgfbr2∆oc and control 

littermates 

To evaluate, whether the regular function of the TGF-β signaling pathway in retinal 

neurons and Müller cells would protect photoreceptors from light- induced damage, 6-8-

week-old Tgfbr2∆oc and control animals were treated with cool white light at an intensity 

of 5000 lux for 1 h. 14 days later the eyes were processed for light microscopy and 

semithin mid-horizontal sections were analyzed subsequently. The thickness of the outer 

nuclear layer (ONL) was measured at 21 equidistant loci along the nasal-temporal plane. 

The major portion of light damage on photoreceptors was concentrated in the central 

retina, around the ONH, while the peripheral retina, near the OS, was hardly concerned 

by light stress. However, the resulting Spider diagram did not show any significant 

morphometrical differences between the retinae of Tgfbr2∆oc mice and their control 

littermates (Figure 40). Although the thickness of the ONL was severely reduced in the 

retinae of transgenic animals, the impairment was similar for control eyes, which were 

not affected by the downregulation of TGF-β signaling. 
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Figure 40: A spider diagram, visualizing the thickness of the outer nuclear layer (ONL) of 

8-week-old Tgfbr2∆oc mice and control littermates after exposure to light for 1 h 

Despite the robust diminishment of cell rows within the ONL of Tgfbr2∆oc animals, the 

damage was similar to that, observed for control littermates. Mean ± SEM, n = 5 

Tgfbr2∆oc, n = 6 controls. OS, ora serrata; ONH, optic nerve head.   

 

Following an exposure for only half of the time – 30 min, another morphometric analysis 

was performed. The central part of control retinae demonstrated 6 to 8 rows of remaining 

nuclei in the ONL (Figure 41, upper panel; Figure 42, left-hand side panel). In contrast, 

in Tgfbr2∆oc animals, only 3 to 4 layers of nuclei were present in the ONL following 

damage (Figure 41, lower panel; Figure 42, right-hand side panel).  



Results 

 

87 

 
Figure 41: Deletion of TGF-β signaling in neurons and Müller cells enhances 

photoreceptors degeneration following light damage: retinae of an 8-week-old Tgfbr2∆oc 

mouse and its control littermate 14 d after light exposure 

The semithin sections are stretching through the central and peripheral retina. The outer 

nuclear layer (ONL) in the central part of the TβRII-deficient retina (lower panel) is 

considerably thinner than the respective part of the control retina (upper panel). 

 

 
Figure 42: Higher magnification of the central retina following light exposure 

Semithin sections of a light-exposed 8-week-old Tgfbr2∆oc mouse and its control littermate 

14 d after light damage. The outer nuclear layer (ONL) is flanked by white bars.  
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To obtain statistically meaningful data, the thickness of the ONL was measured on mid-

horizontal sections at 21 equidistant loci along the nasal-temporal plane. The means of 

the individual measure points were visualized in form of a Spider diagram (Figure 43).  

The subsequently performed statistical analysis showed a significantly thinner ONL in 

Tgfbr2∆oc animals, compared to control littermates – a finding, which indicates that 

following light exposure a higher number of photoreceptors degenerated in animals, 

carrying a deletion of the TGF-β signaling pathway in retinal neurons and Müller cells.  

 

 

Figure 43: Deletion of TGF-β signaling in neurons and Müller cells enhances 

photoreceptors degeneration following light damage: Spider diagram 

The spider diagram reflects the thickness of the outer nuclear layer (ONL) of light-

exposed 8-11-week-oldTgfbr2∆oc mice and control littermates. The measurements were 

performed at 21 equidistant loci on mid-horizontal semithin sections, stretching from the 

temporal to the nasal side. Mean ± SEM, n = 6 Tgfbr2∆oc, n = 5 controls. **p < 0.01, *p < 

0.05. OS, ora serrata; ONH, optic nerve head.    

 

3.3.1.2 In vivo laser scanning ophthalmoscopy (SLO) and optical coherence 

tomography (OCT) imaging after light damage 

To further validate our results, laser scanning ophthalmoscopy (SLO) and optical 

coherence tomography (OCT) were executed on the eyes of light-exposed control animals 

and their Tgfbr2∆oc littermates. Here, the configuration of the retinal vasculature 

appeared pretty regular in both control and TβRII-deficient animals. However, the fundus 
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of the light-exposed animals exhibited characteristic autofluorescence, when excited by 

blue light in the frame of SLO imaging (Figure 44A.). Light-exposed TβRII-deficient 

animals showed a more pronounced autofluorescence in comparison to light-exposed 

control animals, a fact that further indicates a thicker, less degenerated retina in the 

control animals and thus affirms once more the presumable neuroprotective role of TGF-β 

signaling in the course of light-induced retinopathy and retinal degenerative diseases. 

In addition, optical coherence tomography (OCT) experiments certified the previously 

acquired morphological data point, as OCT images of light-damaged control animals 

exposed a considerably thicker ONL in the central retinae, when compared to their TβRII-

deficient littermates (Figure 44B.). 

 

 
Figure 44: Deletion of TGF-β signaling in neurons and Müller cells enhances 

photoreceptors degeneration following light damage: in vivo SLO and OCT imaging  

A. Laser scanning ophthalmoscopy (SLO) of a 9-week-old light-exposed Tgfbr2∆oc animal 

and its control littermate. The retina of the control mouse exhibited a less pronounced 

autofluorescence than the one of the Tgfbr2∆oc littermate. B. Optic coherence tomography 

(OCT) of a 9-week-old light-exposed Tgfbr2∆oc animal and its control littermate. The 

thickness of the outer nuclear layer (ONL – black arrows) was considerably thinner in the 

retina of the Tgfbr2∆oc animal. The green punctured lines in the left-hand side images 

serve as orientation sectional planes for the right-hand side figures. Analyses were 

performed in cooperation with Prof. Jägle.  
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3.3.1.3 Functional analysis: Electroretinography (ERG) 

Electroretinography (ERG) was applied in order to verify, whether the structural 

alterations in the retinae of light-exposed Tgfbr2∆oc would correlate with functional 

changes. First of all, analyses were performed on 6-8-week-old untreated controls (Figure 

45, light blue line, WT-LD) and their Tgfbr2∆oc littermates (Figure 45, yellow line, TG-

LD). Scotopic single-flash electroretinograms (ERGs) revealed similar response 

amplitudes (Figure 45B.) and implicit times (Figure 45C.) of the a- and b-waves for both 

Tgfbr2∆oc and control animals, which implied a comparable function of both 

photorececptors and bipolars for all untreated animals. 14 d upon light damage a 

profound loss of the b-wave component was detected for the eyes of Tgfbr2∆oc animals in 

scotopic ERGs (Figure 45A.). Prolonged implicit times and altered response amplitudes 

were observed in a greater extent for Tgfbr2∆oc animals than for control animals, for 

which the a- and b-wave parameters were considerably better preserved (Figure 45B.-D.). 

 

 
Figure 45: Scotopic single-flash ERG recordings for at least 6-week-old control and 

Tgfbr2∆oc animals 

Untreated control (light blue line) and Tgfbr2∆oc (yellow line) animals revealed similar 

responses to single flashes, as far as amplitude of the waveform (B.) and implicit times 

(C.) were concerned. On the contrary, 14 d after light damage prolonged implicit times 

and lower b-wave amplitudes were detected for both controls (dark blue line, WT+LD) 

and Tgfbr2∆oc animals (red line, TG+LD), but in a much greater extent for the latter. 



Results 

 

91 

Under photopic conditions noticeable differences were detected, concerning primarily cone 

bipolar cells responses to single flashes of higher intensities in untreated animals: the 

implicit times were prolonged (Figure 46, right panel) and the b-wave amplitudes (Figure 

46, middle panel) appeared to be lower for Tgfbr2∆oc animals (Figure 46, yellow line), 

when compared to control littermates (Figure 46, light blue line). In contrast to the 

effects, observed under scotopic conditions for light-damaged animals, no such effects 

were detected in light-adapted single-flash ERGs (Figure 46, left panel). 

 

 
Figure 46: Photopic single-flash ERG recordings for at least 6-week-old control and 

Tgfbr2∆oc animals 

Untreated Tgfbr2∆oc animals (yellow line) revealed altered responses to single flashes, 

when compared to control (light blue line) littermates: a lower amplitude of the waveform 

(middle panel) and prolonged implicit times (right panel) were detected. 14 d after light 

damage both tested groups (controls – dark blue line) and Tgfbr2∆oc animals – red line) 

did not exhibit significant differences, concerning implicit times or b-wave amplitudes. 

 

3.3.1.4 Retinal apoptosis following light exposure 

To clarify, whether the morphological and functional differences between control animals 

and their Tgfbr2∆oc littermates were due to the diverging proportion of photoreceptors, 

undergoing apoptosis, TUNEL labeling was performed 30 h after light damage. Here, 

numerous TUNEL-positive nuclei were observed in the ONL, especially in the central 

portions of the retinae of Tgfbr2∆oc and control animals (Figure 47A., right-hand side 

panel). To obtain statistically meaningful data, the total rate of fluorescing cells within 

the ONL was quantified in horizontal sections, stretching through the optic nerve head 

(ONH) of the retina in a temporal-nasal orientation, and the amount was normalized to 

the area of the ONL. The number of apoptotic cells was significantly smaller in control 
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animals (1 ± 0.068 cells per 1 mm2 ONL), compared to Tgfbr2∆oc animals (1.85 ± 0.24 cells 

per 1 mm2 ONL, **p < 0.01) (Figure 47A., left-hand side panel).  

 

  
Figure 47: TUNEL labeling of the retinae of 6-7-week-old control mice and their Tgfbr2∆oc 

littermates, 30 h after light-induced damage 

A. Right-hand side panel: fluorescing TUNEL-positive (green) nuclei were localized 

preferentially in the ONL, showing the characteristic distribution of a light-induced 

retinal damage with the major concentration of apoptotic signals in the central retina. 

Nuclei were stained with DAPI (blue). Left-hand side panel: statistical quantification of 

the TUNEL-labeled cells per 1 mm2 ONL area. Data is mean ± SEM, **p = 0.00497, n = 

7/5 (controls/Tgfbr2∆oc mice). B. Higher magnification of the central retinae. INL, inner 

nuclear layer; ONL, outer nuclear layer; ON, optic nerve; OS, ora serrata. 
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3.3.1.5 Molecular mechanism of the neuroprotective effect of TGF-β signaling 

In order to investigate, whether the protective effect of the TGF-β signaling pathway is 

mediated by an enhanced expression of certain neuroprotective factors, the profiles of 

several of them, frequently associated with light damage, were analyzed by means of 

quantitative real-time PCR (Faktorovich et al., 1992; Joly et al., 2008; Rattner and 

Nathans, 2005; Samardzija et al., 2006). To this end, the analyses were performed in 

retinal RNA samples, isolated from untreated and light-exposed Tgfbr2∆oc mice and their 

control littermates. The mRNA expression level of the leukemia inhibitory factor (Lif) was 

barely detectable in both untreated Tgfbr2∆oc animals and their controls. However, light-

exposed mice from both experimental groups demonstrated a more than 130-fold increase 

in the expression of Lif upon light damage (Figure 48).  

 

 
Figure 48: Expression level of Lif before and after light damage experiments 

Real-time RT-PCR for Lif (leukemia inhibitory factor) in 6-8-week-old untreated (no light) 

and light-exposed (light) Tgfbr2∆oc animals and their control littermates before and 6 

hours after light damage. The mean value, obtained with the RNA from untreated control 

animals, was set at 1. Data is mean ± SEM, n = 5/5 (untreated Tgfbr2∆oc to controls), n = 

5/6 (light-exposed controls toTgfbr2∆oc). The y-axis was broken, in order to visualize 

properly the scarcely measurable Lif mRNA level of untreated animals. 
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Surprisingly, the expression levels of the other analyzed neuroprotective factors, brain- 

derived neurotrophic factor (Bdnf), endothelin 2 (Edn2) and fibroblast growth factor 2 

(Fgf2), did not diverge significantly between the experimental groups of controls and 

Tgfbr2∆oc mice (Figure 49).  

 

 
Figure 49: Real-time RT-PCR results for Bdnf, Edn2 and Fgf2 mRNA in 6-8-week-old 

Tgfbr2∆oc mice and their control littermates 

The statistical evaluation of the real-time RT-PCR results for the expression levels of the 

neuroprotective factors brain derived neurotrophic factor (Bdnf), endothelin 2 (Edn2) and 

fibroblast growth factor 2 (Fgf2) in untreated and light-exposed Tgfbr2∆oc mice and their 

controls did not show significant changes. Data is mean ± SEM, n ≥ 5. 

 

The amounts of translated AKT and phosphorylated AKT (pAKT) were obtained by 

means of Western blot analyses of Tgfbr2∆oc and control retinae. First of all, the relative 

levels of both proteins were compared between untreated controls and Tgfbr2∆oc (Figure 

50). The densitometric analysis of the results showed that both experimental groups did 

not differ with regard to the level of AKT or pAKT in their retinae (Figure 50B., C.).  
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Figure 50: AKT and pAKT protein levels before light exposure 

A. Western blot analysis for AKT and pAKT protein levels in 6-8-week-old Tgfbr2∆oc and 

their control retinae. B. Relative densitometry for AKT levels. Data is mean ± SEM. n = 

4/4 (controls to Tgfbr2Δoc). C. Relative densitometry for pAKT levels. Data is mean ± SEM. 

n = 7/7 (controls to Tgfbr2Δoc). 

 

The Western blot analysis for pAKT in retinal proteins from light-exposed mice revealed a 

distinct band, which migrated at the expected molecular weight of 60 kDa and was more 

intense in the lysates of control animals. The densitometric analysis of the relative 

amount of phosphorylated AKT 6 hours after light damage demonstrated a significantly 

higher level of the protein in control animals, when compared to their Tgfbr2Δoc 

littermates (Figure 51C.).  

 

 
Figure 51: AKT and pAKT protein levels following light exposure 

A. Western blot analysis for AKT and pAKT protein levels in 6-8-week-old Tgfbr2∆oc and 

their control retinae 6 h upon light damage experiments. B. Relative densitometry for 

AKT levels. Data is mean ± SEM. n = 8/7 (controls to Tgfbr2Δoc). C. Relative densitometry 

for pAKT levels. Data is mean ± SEM. n = 8/7 (controls to Tgfbr2Δoc), *p < 0.05. 
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3.3.2 Light damage experiments on Tgfbr2∆rod mice: TβRII deficiency within the 

rod photoreceptors 

The Cre recombinase in Tgfbr2∆oc is expressed both in retinal neurons and Müller cells. 

Therefore, we cannot distinguish for a certainty, which cell type the neuroprotective 

effects, observed in this mouse line, originate from. In a final experiment we aimed to 

identify the very specific cell population that might be responsible for the neuroprotective 

effects of TGF-β signaling. To this end, we used a second cre mouse line with a specific 

expression of the Cre recombinase in rod photoreceptors (Tgfbr2Δrod) and performed light 

damage experiments, followed by TUNEL labeling. 

 

3.3.2.1 Retinal apoptosis following light exposure 

The rate of photoreceptors, undergoing apoptosis, was assessed through TUNEL labeling, 

performed 30 h after light damage. Numerous TUNEL-positive nuclei were observed 

especially in the central parts of the retinae of both experimental groups (Figure 52A., 

right panel). The total number of fluorescing cells within the ONL was quantified in 

horizontal sections through the entire retina and the number was normalized to the area 

of the ONL. The following statistical analysis did not show any significant differences, 

when control animals (1 ± 0.21 cells per 1 mm2 ONL) were compared to Tgfbr2∆rod 

littermates (1.5 ± 0.2 cells per 1 mm2 ONL) (Figure 52A., left-hand side panel).  
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Figure 52: TUNEL labeling of the retinae of 6-8-week-old control mice and their Tgfbr2∆rod 

littermates, 30 h after light-induced damage 

A. Right-hand side panel: fluorescing TUNEL-positive (green) nuclei are localized 

preferentially in the ONL, showing the characteristic distribution of a light-induced 

retinal damage with the major concentration of apoptotic signals in the central retina. 

Nuclei were stained with DAPI (blue). Left-hand side panel: the statistical quantification 

of the TUNEL-labeled cells per 1 mm2 ONL area did not show any significant differences 

between the eyes of both experimental groups, concerning apoptotic cell death upon light-

induced damage. Data is mean ± SEM, n = 6/7 (controls/ Tgfbr2∆rod mice). B. Higher 

magnification of the central retinal regions. ON, optic nerve; OS, ora serrata; RGC, 

retinal ganglion cells; INL, inner nuclear layer; ONL, outer nuclear layer. 
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4. Discussion 

 

Given our results, we conclude that the deficiency of TGF-β signaling in retinal neurons 

and Müller cells enhances the vulnerability of photoreceptors following light-induced 

degeneration. This effect is most likely mediated through Müller cells and involves a 

diminished phosphorylation of AKT, finally resulting in a higher number of apoptotic 

cells, a thinner outer nuclear layer (ONL) and a reduced retinal function.  

 

4.1 Cre recombinase expression and neuronal vulnerability 

The notion that the expression of a foreign protein, such as the Cre enzyme, might alter 

tissue maintenance, is a legitimate concern and arises from findings, demonstrating that 

the high-level endonuclease activity of Cre leads to growth arrest and chromosomal 

aberrations in cultured mammalian cells (Loonstra et al., 2001; Silver and Livingston, 

2001). However, no similar toxicity of the protein could be detected in the frame of in vivo 

gene targeting (Pfeifer et al., 2001). Jimeno and coworkers pointed out that the 

expression of the Cre protein is likely to result in photoreceptors degeneration, though 

probably not due to the presence of the enzyme itself, but because of its overexpression 

(Jimeno et al., 2006). Similar findings, regarding the overexpression of other exogenous 

proteins in photoreceptors, for instance a wild-type human rod opsin, have also been 

reported (Olsson et al., 1992). Nevertheless, based on our results, we conclude that the 

ectopic expression of the enzyme does not interfere with the structure of the retina, at 

least for the investigated mouse line, included in this project – the α-Cre (Boneva et al., 

2016). These results are in accordance with previously published conclusions, concerning 

the LMOP-Cre and the iCre-75, mouse strains with a less pronounced expression of the 

enzyme (Le et al., 2006; Li et al., 2005). 

However, there is evidence that the impairment of glial cell function, for instance through 

expression of external proteins, such as the Cre recombinase, could make the very 

sensitive photoreceptor cells even more vulnerable to apoptosis (Gehrig et al., 2007; 

Karlstetter et al., 2010; Shin et al., 2005; Zeng et al., 2005). In order to assess this notion, 

we performed light damage experiments, triggering the degeneration of photoreceptor 

cells (Remé et al., 2003; Wenzel et al., 2005).  Our results showed no significant 

differences, regarding the susceptibility to light, and thus demonstrated that the 

neuronal vulnerability in the α-Cre strain is not dependent on the presence of the Cre 

recombinase enzyme (Boneva et al., 2016). 
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In the light of some contradictory findings, the first task before us consisted in discarding 

the possibility that the sole expression of the Cre enzyme in the retinal cells might alter 

the conventional architecture and the vulnerability of the neural retina, since both data 

points were to be assessed in this study. To summarize, we conclude that the use of the 

Cre/LoxP system is a safe and reliable method, as far as its use in neuronal tissues is 

concerned. 
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4.2 The light damage model: genetic background and Rpe65 mutation  

The model of light damage was applied, in order to induce retinal lesions in form of 

synchronized apoptosis on the level of photoreceptors (Grimm and Remé, 2013). The 

short-term exposure to bright white light permits the study of molecular mechanisms of 

cell death in a controlled manner. The initial conditions of our light experiments included 

exposure to light at an intensity of 5000 lux for 1 h. Compared to the conditions other 

groups are using, this is still a rather mild regime that we decided to apply with regard to 

the intrinsic constitution of albino mice, which are known to be highly sensitive to light-

induced effects (La Vail, Matthew M. et al., 1987). However, phenotypically identical 

strains may also vary in the severity of retinal degeneration upon light damage due to 

genetic background factors (La Vail, M. M. et al., 1987). In accordance, we detected a 

similar variance of the neuronal susceptibility to the damage model in our light 

experiments: animals in a mixed FVB-N/Balb-c background (α-Cre and wild-type 

littermates) displayed a much more intense rate of apoptosis in comparison to animals in 

a Balb-c background (Tgfbr2∆oc and Tgfbr2∆rod and their respective control littermates). 

The different susceptibility to light most likely originates from the FVB-N background, 

which is associated with the rd1 mutation (Taketo et al., 1991). The homozygous 

mutation is known to affect retinal development, especially by causing degeneration of 

rod photoreceptors (Caley et al., 1972), and was present in a heterozygous variant in the 

F1 generation of our FVB-N/Balb-c animals. Since we cannot exclude the option that the 

heterozygous rd1 mutation could mask the degenerative effects of apoptosis, obtained in 

light damage experiments, heterozygous animals were only compared among themselves 

– the progeny of an α-Cre mouse, in a FVB-N background, and of a Balb-c mouse served 

as test individuals. All other animals, included in our light damage experiments, derived 

from the Balb-c background. Consequently, the effect of light stress was by far not as 

intense, as observed for FVB-N/Balb-c animals, but still sufficient to demonstrate the 

significant difference between transgenic mice and control littermates. 

It has been shown that a single variation in the Rpe65 gene, causing an amino acid 

substitution (Leu → Met) at codon 450 accounts for an enhanced resistance against light-

mediated photoreceptor degeneration (Danciger et al., 2000; Wenzel et al., 2001). 

Therfore, all of the illuminated animals were tested for this mutation and homozygous 

leucine carriers only were used in light damage experiments. 
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4.3 The TGF-β signaling pathway in the light of neuroprotection 

The purpose of this study was to approach the hypothesis that the neuroprotective effect 

of TGF-β signaling does not unfold itself merely in the frame of developmental 

programmed cell death (Braunger et al., 2013b), but also during apoptotic processes in 

the mature mammalian retina. This notion arises from recent insights, reported by 

Walshe and coworkers (Walshe et al., 2009), who managed to block TGF-β in the adult 

mural retina by soluble endoglin, an action, which resulted in vascular and neuronal 

apoptosis. This finding implies the role of the TGF-β signaling pathway in maintaining 

the integrity of the mature retinal architecture and poses the question of the exact course 

of events. The presumable neuroprotective role of TGF-β in the mammalian retina would 

be in accordance with previous findings, indicating the preserving function of this 

signaling pathway throughout the CNS. Among these activities count the protective 

effects against hypoxic and excitotoxic degeneration of cultured neurons (Prehn et al., 

1993b; Prehn et al., 1993a), the reduction of damage to hippocampal neurons, resulting 

from transient global ischemia (Henrich-Noack et al., 1996), the decrease of lesions in the 

course of spinal cord injury in a rat model (Tyor et al., 2002), the survival promoting of 

dopaminergic neurons (Krieglstein et al., 1995), and many others. 

In quest of insight, our group investigated the impact of TGF-β signaling on the survival 

of light-damaged photoreceptors (Kawall, 2015). However, although the morphometrical 

analysis of semithin sections and the quantification of apoptotic TUNEL-positive cells in 

this study suggested a certain protective effect of TGF-β signaling, the differences 

between transgenic animals and control littermates were not pronounced enough. This 

fact was most likely attributable to the pigmentation of the experimental animals in a 

129SV background, concomitant with a profound resistance to light-induced degeneration 

(Danciger et al., 2000; Wenzel et al., 2001; Wenzel et al., 2003).  
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4.4 Deletion of TGF-β signaling in retinal neurons and Müller cells: the Tgfbr2∆oc 

model 

 

4.4.1 Characterization of untreated Tgfbr2∆oc animals 

There are controversial discussions about a lack of Cre recombinase activity in the central 

retina of the α-Cre mouse strain. To the best of our knowledge, these discrepant notions 

might arise from the different experiments, conducted to explore this topic. For instance, 

reporter gene assays, such as histochemical staining by excision of lacZ and concomitant 

activation of an ubiquitously expressed alkaline phosphatase (hPLAP) reporter gene 

(Marquardt et al., 2001), showed diminished Cre activity in the central retina. The 

tenuous point has been addressed by publications, showing the limitations of reporter 

gene expression, especially in adult transgenic animals (Cui et al., 1994; Montoliu et al., 

2000). In contrast to the data, obtained in reporter mice, immunohistochemical analyses 

of direct target genes, for example TβRII (Braunger et al., 2013b), accounted for a 

distribution of the recombination in the central and peripheral retina. In this thesis, the 

visualization of the Cre expression and its activity was based on a cre-reporter mouse 

strain (R26R) (Soriano, 1999), featuring a loxP-flanked DNA segment, preventing the 

expression of a downstream lacZ gene. Consequently, when R26R mice are crossed with a 

cre-transgenic mouse line, the activity of the enzyme leads to the removal of the loxP-

flanked DNA segment, driving the expression of the lacZ protein in all cells, in which Cre 

has been expressed. In α-Cre/R26R mice, we observed a weak, but still detectable staining 

for β-galactosidase in the central retina. In spite of the depicted controversial insights, 

our further experiments, aiming to demonstrate the neuronal vulnerability of retinae, 

lacking the TβRII, showed significant differences in the central retinae of Tgfbr2∆oc 

animals in comparison to their control littermates. A fact that is indicative either of a 

sufficient activity of the Cre recombinase in the central retina of the Tgfbr2∆oc animals, or 

of potential indirect effects, originating from a lack of secreted molecular factors.  

The retinal specificity of the Cre recombinase in the Tgfbr2∆oc mouse strain is ensured by 

the α-enhancer of the Pax6 promoter. Thus, it is constitutively expressed in the cells, 

deriving from the inner layer of the optic cup, from the age of embryonic day 10.5 

(Marquardt et al., 2001). This point in time is coincidental with the interval, when 

developmental programmed neuronal death in the retina begins (Farah and Easter, 

2005). Hence, the Tgfbr2∆oc animal model includes phenomena, occurring during the 

development of the neuroretina and its programmed cell death (Braunger et al., 2013b). 

However, merely a negligible part of the photoreceptors undergoes ontogenetic, 
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programmed cell death during development (Cepko et al., 1996). This fact explains the 

slightly pronounced difference in the ONL thickness of transgenic animals, when 

compared to control littermates. As intensive light exposure results in the degeneration of 

photoreceptor cells only (Organisciak and Vaughan, 2009), we consider potential 

development-related pathologies that might have affected the photoreceptor cells during 

their differentiation as neglectable. Therefore, in our understanding, the Tgfbr2∆oc model 

constitutes an appropriate animal model to investigate the neuroprotective role of the 

TGF-β signaling pathway.      

Nevertheless, the restricted deletion of TβRII in retinal neurons and Müller glia provides 

a plausible explanation for the mild signal, observed in Western blot analyses for TβRII 

and pSMAD3 in Tgfbr2∆oc retinal samples and accounting for residual TGF-β signaling, 

e.g. within astrocytes, microglia, pericytes and the vascular endothelium – cells that do 

not derive from the inner layer of the optic cup and consequently still express the TβRII 

and are thus capable of carrying out the TGF-ß signaling pathway under the conditions of 

a conditional knockout.  

The further phenotype characterization of Tgfbr2∆oc mice included morphological analyses 

of the inner nuclear layer (INL) of transgenic animals and their control littermates, which 

revealed no pronounced discrepancy, as far as the arrangement and the approximate 

dimensions of the retinal layers were concerned. However, the morphometric and 

quantitative evaluations of the acquired data, illustrated in form of Spider diagrams, 

showed that the thickness of the INL in the eyes of transgenic animals tends to be 

reduced in comparison to the controls. Although the differences were not homogenously 

significant, a clear trend was present and consistent with previously published data 

(Braunger et al., 2013b; Kawall, 2015). Our group concluded that alterations of the INL 

thickness are due to a decrease in the number of inherent neurons, caused by deficiency 

in the activity of TGF-β signaling on progenitor cells, prior to their differentiation 

(Braunger et al., 2013b). The findings correspond also with a theory of Young and 

coworkers (Young, 1984), who bring forward the argument that a great number of these 

cells are subjected to programmed cell death in the course of fine-tuning of neuronal 

networks, a process that appears to be more pronounced given a TβRII deficiency. 

Another interesting aspect, addressed in this study, is the one about the functionality 

losses, which would correlate with the decreased number of INL cells, observed in the 

depicted morphometric analysis. The performed scotopic single-flash ERG experiments 

demonstrated similar response amplitudes and implicit times of the b-wave for both 

Tgfbr2∆oc and control animals, which suggests a comparable function of rod bipolars for all 
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untreated animals. According to novel insights, the scotopic b-wave is generated directly 

by rod bipolars (Bach and Kellner, 2000; Tian and Slaughter, 1995). However, a regular 

progression of the b-wave implies merely an intact manner of functioning of the rods, 

triggering a bipolar cells response (Bach and Kellner, 2000). While the rods’ system 

includes just depolarizing (on-) bipolar cells, de- (on-) and hyperpolarizing (off-)bipolars 

exist in the cones’ system. Thus, the b-wave of the photopic ERG is the residual of the 

almost extinguished potentials of hyper- and depolarizing bipolar cells (Bach and Kellner, 

2000; Geller et al., 1992; Sieving et al., 2009). Under photopic conditions, certain 

differences, concerning cone bipolar cells responses to single flashes of higher intensities 

in untreated animals, were detected in our ERG analyses: when compared with control 

animals, implicit times were prolonged and b-wave amplitudes were reduced for Tgfbr2∆oc. 

Bearing in mind the proximal retinal origin of the b-wave, this finding is consistent with 

the developmental post-photoreceptoral loss of neurons in the retinae of Tgfbr2∆oc mice 

(Braunger et al., 2013b) and with the thinner INL of adult mice of the current study. 

Since the functional alterations, observed under scotopic conditions, were not pronounced 

to a similar extent in light-adapted single-flash ERGs upon light damage, the relevance of 

the developmental effect in the context of retinal degeneration did not appear to be of a 

great relevance. These results were not surprising, considering the rod-dominated retina 

of the mouse (Carter-Dawson and LaVail, 1979). 

 

4.4.2 TGF-β signaling in the light damage model 

To our surprise, under the initially determined light conditions (intensity of 5000 lux for 1 

h) a profound light damage effect was observed to an almost equal extent for control 

animals and Tgfbr2∆oc littermates. However, there is evidence that the ocular 

pigmentation is numbered among the factors, capable of modulating the amount of light 

stress (Rapp and Williams, 1980). In our experience, light intensity of 5000 lux is 

sufficient to damage albino animals, while 14,500 lux are applied to pigmented animals. 

Obviously, the effect of the initial illumination was too severe for the eyes of the 

investigated mouse strain in this thesis. Consequently, we exposed a second group of 

animals to 5000 lux for only half of the time, 30 min. Here we observed a pronounced 

neurodegenerative effect for the Tgfbr2∆oc mouse line, which was illustrated in the 

resulting Spider diagrams. Further analyses of Tgfbr2∆oc following light exposure, such as 

TUNEL labeling, SLO and OCT in vivo imaging, ERG, confirmed the obtained results: 

the reduced thickness of the ONL, observed in morphometric analyses of Tgfbr2∆oc 

correlated with a boosted rate of apoptotic cells in the TUNEL assay 30 h after 
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illumination, a greater number of autofluorescing areas in SLO imaging, a thinner ONL 

in OCT and a poorly preserved retinal function in ERG. However, the question remains 

which cells might primarily mediate this effect? Given the acquired results for the 

Tgfbr2∆rod mouse line, the neuroprotective properties of TGF-β signaling do not originate 

from rod photoreceptors, leaving Müller cells or other neurons than rods as potential 

candidates. Furthermore, our data show that the neuroprotective effect of TGF-β 

signaling is limited to a certain extent and vanishes under extreme conditions.  
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4.5 Molecular mechanisms, mediating the neuroprotective effect of TGF-β 

signaling 

After providing evidence for the neuroprotective activity of TGF-β signaling in the 

conducted experiments, we aimed to investigate, whether the observed effect is mediated 

by an enhanced expression of certain neuroprotective factors. To this end, we analyzed 

the expression profiles of several neuroprotective factors, commonly associated with a 

response to light damage (Faktorovich et al., 1992; Joly et al., 2008; Rattner and Nathans, 

2005; Samardzija et al., 2006). While the mRNA expression level of the leukemia 

inhibitory factor (Lif) was barely detectable in both untreated Tgfbr2∆oc animals and their 

controls, light-exposed mice from both experimental groups demonstrated a more than 

130-fold increase in the expression of Lif, a finding that is in accordance with previously 

published results (Braunger et al., 2013a; Samardzija et al., 2006). 

Intriguingly, we did not detect a significant increase in the expression levels of other 

analyzed neuroprotective factors, brain-derived neurotrophic factor (Bdnf), endothelin 2 

(Edn2) and fibroblast growth factor 2 (Fgf2) between the untreated and light-exposed 

controls and Tgfbr2∆oc mice. This result is in contrast with previously published data, 

describing that following light exposure or genetically induced photoreceptor 

degeneration Lif becomes significantly upregulated as part of a retinal protective 

mechanism, including an elevated expression of Edn2 in photoreceptors (Rattner and 

Nathans, 2005) and of Fgf2 in Müller cells (Joly et al., 2008) .  

The performed Western blot analyses for AKT and phosphorylated AKT (pAKT) in retinal 

proteins from light-exposed Tgfbr2∆oc and control animals, showed a significantly higher 

level of pAKT in the retinae of light-exposed control animals. This finding suggests that 

under cell stress conditions, e.g. light exposure, the deletion of the TGF-β signaling 

pathway reduces the activity of the PI3K/pAKT pathway. The TGF-β pathway mediates 

its signals through canonical (SMAD-dependent) and non-canonical downstream cascades 

in a cell context-dependent manner (Derynck and Zhang, 2003; Zhang, 2009). The MAPK, 

Rho-like GTPase and PI3K/pAKT pathways count among these non-canonical, i.e. non-

SMAD pathways, used by TGF-β in its numerous tasks within the cell (Zhang, 2009). 

Wilkes and colleagues showed that the TGF-β-mediated activation of PI3K happens 

independently of SMAD2 or SMAD3 in fibroblast cultures (Wilkes et al., 2005). Findings 

of Yi and coworkers demonstrated in immunoprecipitation studies an indirect constitutive 

association of TβRII with p85, the regulatory subunit of PI3K, and a powerful 

enhancement of PI3K activity, induced by TβRI (Yi et al., 2005). 
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In the context of neuroprotection, TGF-β1 has been shown to enhance the activity of the 

anti-apoptotic factor NF-κB in cultured hippocampal neurons through the PI3K/pAKT 

signaling pathway (Zhu et al., 2004). Caraci and coworkers demonstrated the protective 

role of TGF-β1 against β-Amyloid neurotoxicity in the rat hippocampus and the 

involvement of the PI3K/PAKT pathway in this neuroprotective cascade in vitro (Caraci 

et al., 2008). Our data are in accordance with these findings and highlight the importance 

of a TGF-β-regulated activity of the PI3K/pAKT signaling pathway following light induced 

photoreceptor degeneration. Nevertheless, the diminished phosphorylation of pSMAD3 

upon deletion of TβRII, might still indicate a combinatorial direct, SMAD-mediated, and 

indirect, non-SMAD, effect, emphasizing the notion that the activation of multiple 

cascades through TGF-β might be adjusted according to the cellular context to yield 

neuroprotection ultimately (Caraci et al., 2011). This finding once again underscores the 

complexity of the role of the TGF-β signaling pathway in the adult retina.  
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4.6 Future directions 

It is worthwhile to mention that a deletion of the TGF-β signaling pathway in retinal 

neurons and Müller cells, concomitant with a diminished phosphorylation of SMAD3, did 

not result in gross phenotypic changes of the retina and the photoreceptors in particular. 

Although photoreceptors express TβRII (Obata et al., 1999), this receptor does not seem to 

be essential for their development or maintenance in the adult, healthy retina. However, 

our data provide evidence for a neuroprotective role of the TGF-β signaling pathway in 

the adult retina following light-induced photoreceptor degeneration. Furthermore, it 

elucidates the molecular mechanisms, mediating this effect. Nevertheless, further 

investigations are needed to identify the specific cell type, which primarily mediates this 

effect. Given or results, it is most likely attributable to Müller cells. 
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5. Summary – Zusammenfassung 
 

5.1 Summary 

The aim of this work was to demonstrate the neuroprotective role of TGF-β signaling on 

photoreceptors in the adult retina and to investigate the molecular mechanisms, 

mediating this effect. 

The assessment of this notion included the generation of transgenic mice, bearing a TβRII 

deficiency in different subpopulations of retinal cells. The deletion of TGF-β signaling in 

retinal neurons and Müller cells, accompanied by a reduced phosphorylation of retinal 

SMAD3, led to an increased susceptibility to light-induced degeneration, resulting in a 

thinner outer nuclear layer (ONL), an attenuation of photoreceptors’ responses in the 

frame of functional analyses and elevated rate of TUNEL-positive apoptotic cells in the 

Tgfbr2∆oc mouse model. The downregulation of the pathway in rod photoreceptors 

(Tgfbr2∆rod) did not yield a comparable outcome, a fact, which implicates that other cells 

than rod photoreceptors are most likely responsible for the observed neuroprotective 

effect. To the best of our knowledge, the Müller cells are very likely candidates. 

To identify the molecular machinery, which might convey the neuroprotective properties 

of the TGF-β signaling pathway, real-time RT-PCR analyses for neuroprotective factors 

and Western blot analysis for AKT/pAKT were performed. We found that following light 

exposure, the deletion of TβRII in the Tgfbr2∆oc model resulted in a diminished 

phosphorylation of AKT, a serine/threonine-specific protein kinase, bound and activated 

by PI3K. Thus, the neuroprotective effect, downstream of TGF-β, is most likely regulated 

through the activation of the PI3K/pAKT signaling cascade. 
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5.2 Zusammenfassung 

Die Zielsetzung dieser Arbeit bestand in der Darlegung der neuroprotektiven Rolle des 

TGF-β-Signalweges auf Photorezeptoren in der adulten Netzhaut und in der Erforschung 

der molekularen Mechanismen, welche den Effekt vermitteln. 

Zu der Überprüfung dieser Hypothese gehörte das Generieren von konditionellen 

Knockout-Mäusen, die eine Deletion des TβRII in unterschiedlichen Subpopulationen 

retinaler Zellen aufwiesen. Die Inaktivierung des TGF-β-Signals in retinalen Neuronen 

und Müllerzellen (Tgfbr2∆oc) und die daraus resultierende verminderte Phosphorylierung 

von retinalem SMAD3 führte zu erhöhter Empfindlichkeit der Photorezeptoren 

gegenüber einer lichtinduzierten Degeneration. Diese äußerte sich in einer signifikant 

dünneren äußeren Körnerschicht, in einer reduzierten retinalen Funktion im Rahmen der 

ERG-Analysen und einer gesteigerten Anzahl TUNEL-positiver, apoptotischer Zellen im 

Tgfbr2∆oc-Mausmodell. Die Deletion des TGF-β-Signalweges in Stäbchen (Tgfbr2∆rod) 

führte zu keinem vergleichbaren Ergebnis. Daraus schlussfolgern wir, dass andere Zellen 

als Stäbchen für den neuroprotektiven Effekt Verantwortung tragen und, basierend auf 

den Ergebnissen der Tgfbr2∆oc-Mäuse, sehen wir die Müllerzellen als sehr 

wahrscheinliche Kandidaten an. 

Um die genauen molekularen Mechanismen zu identifizieren, welche die 

neuroprotektiven Eigenschaften des TGF-β-Signalweges vermitteln könnten, wurden 

quantitative RT-PCR für neuroprotektive Faktoren und Western-Blot-Analysen für 

AKT/pAKT durchgeführt. Die densitometrische Auswertung der Western-Blot-Analysen 

zeigte, dass die Deletion des TβRII im Tgfbr2∆oc-Mausmodell zur verminderten 

Phosphorylierung von AKT führt, einer Serin/Threonin-Proteinkinase, die von PI3K 

gebunden und aktiviert wird und letztlich eine protektive, anti-apoptotische Wirkung 

vermittelt. Daraus ziehen wir die Schlussfolgerung, dass der dem TGF-β-Signalweg 

nachgeschaltete neuroprotektive Effekt durch eine Aktivierung der pAKT/PI3K-Kaskade 

reguliert wird.  
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Abbreviations 

 

%     percent 

5’-GMP   guanosine 5’-monophosphate 

α     alpha 

A     ampere 

A260/280    260/280-ratio of absorbance 

AKT Ak strain transforming; “Ak” stays for the nomenclature of a 

mouse, created by Jacob Furth and suffering spontaneous 

thymic lymphomas (Furth, 1978). The viral oncogene, encoded 

in the transforming retrovirus “Akt-8”, was originally 

designated as “AKT” (Staal et al., 1977); Akt-8 itself was 

isolated from a thymoma cell line, originating from AKR mice. 

(the “t” in resemblance to its transforming nature). The later 

cloned human analogues were named respectively (Staal, 

1987). AKT is also known as PKB (protein kinase B). 

AMD    Age-related macular degeneration 

AMPA receptor α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid 

ANOVA   Analysis of variance 

APS    ammoniumperoxodisulfate 

Bdnf    brain derived neurotrophic factor 

BMP    bone morphogenetic factor 

BMPR-I, -II   bone morphogenetic factor receptors I, II 

bp     base pair 

BSA    bovine serum albumin 

b.w.    body weight  

°C     grade Celsius 

Caco buffer    sodium cacodylate buffer 

cd     candela 

cDNA    complementary deoxyribonucleic acid 

cGMP    guanosine 3’,5’-cyclic monophosphate 

CNS    central nervous system 

CNV    choroidal neovascularization 

Cntf    ciliary neurotrophic factor 
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cre     cyclization recombination (transgene) 

Cre     cyclization recombination (enzyme) 

d     day 

DAPI    4’,6-Diamidion-2-phenylindole 

DHA    docosahexaenoic acid 

DMP-30   2,4,6-Tris(dimethylaminomethyl)phenol 

DDSA    2-Dodecenylsuccinic acid anhydride 

DMSO    dimethyl sulfoxide 

DNA    deoxyribonucleic acid 

dNTP    deoxyribonucleoside triphosphate 

DPC4    deleted in pancreatic carcinoma locus 4 

Dpp decapentaplegic, a Drosophila orthologue of TGF-β (dpp, 

respective gene) 

dUTP 2'-deoxyuridine 5'-triphosphate 

Edn2 endothelin 2 

Ednrb endothelin receptor B 

EDTA ethylenediaminetetraacetic acid 

EGF     epidermal growth factor 

eGFP    enhanced green fluorescent protein 

ERG    electroretinography, electroretinogram 

ERK    extracellular signal-regulated kinase 

Fgf2    fibroblast growth factor 2 

FITC    fluorescein isothiocyanate 

FLA    fluorescein angiography 

fwd    forward 

g     gram; standard acceleration due to gravity 

Gapdh/GAPDH  glyceraldehyde 3-phosphate dehydrogenase 

GCL    ganglion cell layer 

GDNF    glial cell line-derived neurotrophic factor 

Gfap    glial fibrillary acid protein 

Gnb2l1   guanine nucleotide binding protein, beta polypeptide 2-like 1  

GTPase a hydrolase enzyme that can bind and hydrolyze guanosine 

triphosphate  

h     hour 

HCl    hydrochloric acid 
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H2O    water 

hPLAP   human placental alkaline phosphatase 

HRP    horseradish peroxidase 

Hz     hertz 

ILM    inner limiting membrane 

INL    inner nuclear layer 

IPL    inner plexiform layer 

k     kilo 

KH2PO4   potassium dihydrogen phosphate 

K3[Fe(CN)6]   potassium ferricyanide 

K4[Fe(CN)6] · 3 H2O  potassium ferrocyanide 

l     liter 

LED    light-emitting diode 

Lif     leukemia inhibitory factor 

LMOP    long mouse opsin promoter 

loxP     locus of X-over of P1 

μ     micro- 

m     meter, milli- 

M     molar  

MAPK    mitogen-activated protein kinases 

MEK MAPK/ERK kinase = mitogen-activated protein kinase kinase 

(also abbreviated as MKK or MAP2K) 

MgCl2 magnesium chloride 

min  minute 

MNA methylnadic anhydride 

mRNA messenger RNA 

MwoI a restriction enzyme from an E. coli strain, carrying the MwoI 

gene from Methanobacterium wolfeii 

n  nano- 

NaCl sodium chloride 

NaDC sodium desoxycholate 

NaH2PO4 · H2O  sodium dihydrogen phosphate monohydrate 

Na2HPO4 · 2 H2O  disodium hydrogen phosphate dihydrate 

NFκB nuclear factor “kappa-light-chain-enhancer” of activated B-

cells 

NH4
+

    ammonium 



Abbreviations 

 

118 

OCT optical coherence tomography 

OLM outer limiting membrane 

ONH optic nerve head 

ONL outer nuclear layer 

OP  oscillatory potential 

OPL outer plexiform layer 

OS  ora serrata 

pAKT phosphorylated AKT 

PBS phosphate buffered saline 

PCR polymerase chain reaction 

PDE phosphodiesterase 

PFA paraformaldehyde 

PI3K phosphatidylinositol 3-Kinase 

pm  plasma membrane 

PVDF polyvinyl difluoride 

R26R Rosa-LacZ reporter mice 

Ras rat sarcoma, in resemblance to the discovery of the first two 

oncogenes as loci of saroma-causing viruses in rats 

(Malumbres and Barbacid, 2003) 

rev  reverse 

RGC retinal ganglion cell 

Rho Ras homologue 

Rho-GTPases Rho family of GTPases 

Rpl32 ribosomal protein L32 

RNA ribonucleic acid 

RP  Retinitis pigmentosa 

RPE    retinal pigment epithelium 

rpm    rounds per minute 

R-SMAD   receptor-regulated SMAD 

RT     reverse transcriptase 

rTdT    recombinant terminal deoxynucleotidyl transferase 

RT-PCR   real-time polymerase chain reaction 

SDS    sodium dodecyl sulfate 

SDS-PAGE   sodium dodecyl sulfate polyacrylamide gel electrophoresis 

sec     second 
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SEM    scanning electron micrograph; standard error of the mean 

SLO    laser scanning ophthalmoscopy 

SMAD SMA/MAD-related (Massagué, 2012), SMA: small size; MAD: 

Mothers against dpp (a Drosophila melanogaster gene) 

(Sekelsky et al., 1995) 

SPSS Statistical Package for the Social Sciences 

STR scotopic threshold response 

Stat3 signal transducer and activator of transcription 3 

Taq a thermostable DNA polymerase, purified from the 

thermophilic bacterium Thermus aquaticus 

TβRI    TGF-β receptor type I 

TβRII    TGF-β receptor type II 

TβRIII    TGF-β receptor type III 

TBE    Tris-Borate-EDTA buffer 

TBS    Tris-buffered saline 

TBS-T    Tris-buffered saline-Tween 20 

TdT    terminal deoxynucleotidyl transferase 

TEMED   N,N,N’,N’-tetramethylethylenediamine 

TGF-β    transforming growth factor beta 

Tgfbr2∆oc   Tgfbr2fl/fl;α-Cre-mice 

Tgfbr2∆rod   Tgfbr2fl/fl;LMOP-mice 

TM    melting temperature 

TNF-α    tumor necrosis factor-α 

Tris    Tris(hydroxymethyl)aminomethan 

TrkB    tyrosine receptor kinase B 

TUNEL terminal deoxynucleotidyl transferase-mediated dUTP nick 

end labeling 

V     Volt 

VEGF    vascular endothelial growth factor   

VPP a mouse model, characterized by a rhodopsin transgene, 

encoding a protein with three amino acid substitutions Val-20 

→ Gly (V20G), Pro-23 → His (P23H), and Pro-27 → Leu 

(P27L) (Naash et al., 1993) 

W     watt 

X-Gal    5-bromo-4-chloro-3-indolyl-β-D-galactopyranoside 
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