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Abstract— Motion planning for fast locomotion of compli-
antly actuated robotic legs is generally considered to be a
challenging issue, posing considerable real-time problems. This
is at least the case if time-continuous trajectories need to be
generated online. In this paper we take advantage of a simple
controller structure, which reduces the motion planning to a
discrete-time planning problem, in which only a small set of
input parameters need to be determined for each step. We show
that for a planar leg with serial elastic actuation, hopping on a
ground with stairs of irregular length and height can be planned
online, based on a parameter mapping which has been learned
in a data-driven manner by performing hopping trials with an
adaptive exploration algorithm to evenly sample the parameter
space. Experiments on a planar hopping leg prototype validate
the approach.

I. INTRODUCTION

Compliant actuators in robotic legs can increase robust-
ness, performance, and energetic efficiency [1], [2]. Intro-
ducing springs in the joints of the rigid multi-body system
results in a dynamics which acts as a low-pass filter between
the links and the motors, thus reducing force peaks due
to impacts and unexpected contact forces. In particular, the
capability of buffering and directed releasing elastic energy
increases the available peak power at the links (w. r. t. the
motors). By exploiting resonance like effects also the energy
consumption can be reduced. This is of major importance
especially for explosive motion tasks such as aperiodic
jumping. On the other hand, introducing springs in the drive
trains of the robotic joints also increases the order of the
dynamics such that the control variables cannot be directly
actuated. This makes the planning and control a challenging
task.

There exist several approaches to plan and control highly
dynamical periodic or explosive motions of compliantly
actuated robots so far [3], [4], [5], [6], [7], [8], [9], [10], [11],
[12]. The approaches of [3] and [4] exploit the elasticities
by constrained numerical optimization. The resulting optimal
control strategy strongly depends on the dynamics model of
the plant and the computational cost of the approach explodes
with the number of degrees of freedom. While the pioneering
methods of Raibert [5] benefit from a harmonization of the
robot and control design, the approaches [6], [7], [8], [9]
are based on fundamental virtual and template models of
dynamic locomotion. These models have to be implemented
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Fig. 1. Targeted hopping based on data-driven mapping of a compliantly
actuated robotic leg. The input to the mapping is the trunk velocity at
touchdown ẋTD ∈ R2 and the desired foot displacement ∆xd

1 ∈ R1. The
output are the controller parameters anglular switching amplitude α̂ and
radial switching amplitude r̂ (not depicted in the plot).

in the deviating dynamics of the compliantly actuated seg-
mented legs. The methods of [10], [11], [12] either search
for a limit cycle dynamics or for a locomotion trajectory
by extensive open-loop optimization or reinforcement learn-
ing. Since these approaches are designed to work off-line,
they cannot adapt to model uncertainties or environmental
changes.

In our previous work we demonstrated the concept of
regulating the velocity of a stationary limit cycle for a
hopping motion on a compliantly actuated robotic leg [13].
The underlying bang-bang controller allows to plan motions
in discrete space with only a small set of parameters. In
contrast to the model-based or simulation data based methods
of [5] or [14] we achieved stable jumping velocities with a
simple velocity regulator that adjusts the controller parameter
once per jumping cycle without model knowledge of the
plant. We accomplished a reproducible sequence of aperiodic
jumps on uneven terrain on the real robot using parameters
optimized in simulation. However, model identification and
validation is a time consuming process, which needs to be
repeated for each prototype modification.

In this paper, we directly incorporate feedback of the
plant in the planning process. By utilizing the feature of
the discrete parameterization, a pure data-driven approach on
parameter planning of directed aperiodic jumping motions
is implemented, i. e., all action commands for the robot
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are generated using data from previous real robot trials.
The direct relation between the current state of the leg, the
input parameters and a set of reference variables allows to
generate a mapping for the control of the hopping motions,
as depicted in Fig. 1. The intermediate step of parameter
identification is not required, neither for the controller, nor
for the planner. Moreover, the evaluation of all data recorded
from the hardware system circumvents the need to search for
parameters that produce a desired output, i. e., to compute
the inverse mapping. This step is often done by means of
extensive off-line optimization in simulation. In addition, we
apply a simple but effective nearest-neighbor-based explo-
ration approach to sample the input space. This allows to
generate data for the mapping which covers all of the feasible
input space while being able to choose the desired sampling
density.

The paper is structured as follows: the idea of the pure
data-driven planning approach is explained in Sect. II.
Sect. III presents the underlaying jumping control approach.
The generation of the data-driven mapping is proposed in
Sect. IV. Sect. V shows the performance of the approach. A
brief conclusion is presented in Sect. VI.

II. THE IDEA

Pure data-driven approaches are not common in robotics
applications, because it is typically expensive to generate
a sufficient amount of training data. Problems of hardware
wearout and usually no parallelism, especially when working
with unique prototypes, often make large amounts of policy
execution on hardware infeasible [15]. Furthermore, exploit-
ing the configuration space of a robot to its limits may cause
damage to the robot or make its use unsafe. For this reason
simulations are often prefered, where execution is safe and
parallelism is possible.

Nevertheless, for the following reasons we considered a
pure data-driven approach to be feasible in the scenario
of a planar leg as well as a quadrupedal robot in future
experiments: (i) an underlying bang-bang controller reduces
the parameter planning task to a time discrete problem, (ii)
the use of serial elastic actuators prevents simple forward
kinematics and dynamics calculations, (iii) since the con-
troller does not require a dynamics model of the plant, the
approach can be applied to low cost and rapid prototyping
robotic legs.

By carrying out the parameter planning solely based on
data recorded from hardware trials, the requirement to have
an accurate system model and adapting it to every system
change as well as to deal with deviations between simulation
and real hardware is completely canceled. In our case,
gathering new data to adapt control parameters is done within
minutes. We plan to consecutively extend this method to
more complex robotic systems, e.g. a quadrupedal robot,
for which we are able to utilize a similar discrete control
approach.

III. CONTROL OF JUMPING SEQUENCES

A. Control
This section presents the approach to control data-driven

jumping sequences.
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Fig. 2. Model of the compliantly actuated leg (left) and description of the
stance dynamics in polar coordinates (right).

B. Model

The method will be introduced for the model of a com-
pliantly actuated leg as shown in Fig. 2 (left). The leg is
assumed to be attached to the main body (trunk) with very
high inertial properties such that its rotation can be neglected,
i. e., the trunk has only the two translational degrees of
freedom of the plane.1 The position of the trunk is measured
by Cartesian coordinates x ∈ R2. The thigh is connected
to the trunk by a rotational joint with coordinate q1. The
shank is hinged to the thigh with relative coordinate q3.
There is a pulley concentric with the hip joint with relative
coordinate q2, which couples to the knee joint such that
q3 = q2 − q1. The length of the leg segments is assumed
to be equally a > 0 and the mass of thigh and shank
is assumed to be negligible (compared to the mass of the
trunk m > 0). Furthermore, each degree of freedom of the
leg (thigh and pulley) is actuated via a linear spring with
constant stiffness k > 0. A point-foot is considered, which
is constrained during stance phases to touch the ground. This
choice of model parameters has the advantageous implication
that during the stance phase, the dynamics of the model
expressed in polar coordinates (cf. Fig. 2 (right)) is governed

1Note that this assumption holds especially for quadrupeds, where the
fore- and hindlegs are configured symmetrically and the center of mass
(COM) of the trunk is located at the center of pivot points of the legs.

τr ≤ ετrτr > ετr

Push off initiation
ᾱ = α0 + α̂
r̄ = r0 + r̂

Flight phase
ᾱ = α0

r̄ = r0

Fig. 3. Representation of the controller as finite state machine. The
controller switches only between two constant positions.
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]
.2 The polar rest angle and length

(ᾱ, r̄) are considered as control input, i.e., the leg positions
before the elastic component.

From (1) it can be seen that the dynamics of the considered
articulated leg mechanism (in stance) behaves like the spring
loaded inverted pendulum (SLIP) with an additional torsional
spring acting in the direction of the polar angle. Therefore,
the control method, as will be presented in the following, can
be applied to all systems, which display such a fundamental
template model behavior of legged locomotion.

The model (1) (capturing the dynamics during the stance
phase) is conservative. However, the real system is subject to
dissipation due to joint friction and impact losses. Therefore
a controller is required, which counterbalances the energetic
losses, and generates the (desired) jumping motion. The
control principle is based on switching the rest positions of
the springs [16]. It can be implemented by the finite state
machine (FSM) as shown in Fig. 3. The FSM consists of
one state for the flight phase and landing and one state for
the pushoff initiation. The transition between these states is
triggered, when the elastic force in radial direction

τr = −k 1√
4a2 − r2

[ρ(r)− ρ(r̄)] (2)

2The negative or positive sign selects the solutions q3 > 0 or q3 < 0,
respectively.

TABLE I
CONTROLLER PARAMETERS OF ONE JUMPING CYCLE.

steady-state orientation α0 in rad
steady-state length of leg axis r0 in m
angular switching amplitude α̂ in rad
radial switching amplitude r̂ in m
switching threshold ετr in N

hits the threshold ετr > 0 from below (flight phase to
pushoff) or from above (pushoff to flight phase). Thereby,
the controller depends only on the parameters as listed in
Tab. I and Fig. 4 (left) depicts measurements of all variables
for a complete control cycle.

C. Discrete jump mapping

In the following, we define a mapping which relates a
given initial state of the leg and a desired jumping distance
to controller parameters which achieve this goal. On the
basis of the events described in Fig. 5, we make simplifying
assumptions on the controller parameters and states:

1) the configuration velocity of the leg at touchdown is
negligible, i. e., (α̇, ṙ)TD = 0;

2) the configuration of the leg at touchdown is α = ᾱ =
α0 = const. and r = r̄ = r0 = const.;

3) the spring compression which triggers the switchings
is constant, i. e., ετr = const.

Effectivly, assumptions 1) and 2) mean that the leg reaches
the steady state while in mid-air and the setpoint is defined
by α0 and r0. Additionaly, we experimented with including
parameter history of previous steps into the mapping, which
helped to improve performance of the mapping. Then, given
a desired jumping distance ∆xd

1, the discrete jump mapping

Fig. 4. Left: Plot of log data during jumping. Depicted is one and a half jump cycles. The area with grey background is the phase with ground contact
as measured using τr . As this is threshold-based, one can see that there is a small delay between actual ground contact – τr starts increasing – and TD
detection. The plot shows the behavior of the motor positions in polar coordinates ᾱ and r̄, link side positions α and r and trunk velocities ẋ. Values are
scaled to fit the plot. Right: A full set of data points for which α̂ is plotted against a (desired) jump distance ∆xd and the horizontal velocity ẋ1. The
third input dimension, the vertical velocity ẋ2, is coded by color. The grey surface is the resulting inverse mapping for generating control parameters.
Depicted is a slice of the mapping calculated with mean vertical velocity of the data set. The plot shows the non-linear nature of the relation between
inputs and outputs.
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Fig. 5. Events of one jumping cycle used to define discrete jump mapping.

takes the form

α̂t = γ(∆xd
1, ẋ

TD, α̂t−1, ζ = const.) (3)

where ζ = (α0, r0, r̂, ετr ) are parameters of the mapping.

IV. DATA-DRIVEN MAPPING GENERATION

In this section we describe the process of generating a
mapping between input parameters of the controller and
the system output from trials on the hardware. The goal
is to produce input commands for consecutive experiments.
This method exploits the advantage provided by the time
discrete parameterization of the controller to easily generate
data samples that correlate input parameters, input states and
output states for each jump. Therefore, we first introduce
the procedure for recording data samples. Based on this, we
apply a regression model, namely Kernel Ridge Regression
(KRR), to calculate a mapping that generates command
inputs for desired outputs.

A. Data Acquisition

To effectively cover the state space, one has two options:
sampling in the output space or in the input space. The
first allows precise exploration of the desired behavior,
however requires to use the imprecise backward mapping
for ”guessing” the appropriate inputs, i.e., online learning.
Sampling directly in the input space has an uncertainty on
the resulting output, but allows batch learning after data
acquisition. We decided to take the latter approach, while
a comparison of sampling effectiveness is planned for future
work.

The data to calculate the mapping is generated by giving
input commands to the robot and recording the response
of the system. To be able to use the mapping universally
for periodic as well as aperiodic jumping, the parameter
sampling has to cover the input space as exaustively as
possible. While the control parameter part of the mapping
can easily be sampled over the full range of the parameter,
the system state part of the mapping cannot be commanded
directly. Hence, the exploration has to generate motions that
allow to sample the system state space as well. For our
system this means that we need to generate samples that

result in output velocities which cover the full value range
of the system.

Specifically, we have to enforce samples of three different
types:
• Corresponding velocities and control parameters. These

are samples which lie on the diagonal of an α̂-ẋ-plot
(as in Fig. 6). The control parameter is similar to the
one that generated the input state.

• Higher input velocity than the output velocity with the
next control parameter. Samples lie below the diagonal,
the whole system is decelerated.

• Lower input velocity than the result with the next
control parameter. Samples are above the diagonal and
the system is accelerated.

In practice, extreme cases of the latter two types are abrubtly
jumping on the spot after a wide jump or even jumping
backwards and vice versa.

The input and output parameters are either recorded as
they are commanded to the leg (controller parameters ξ)
or measured using sensors integrated in the plant. Motor
positions are measured inside the servo motors and then
transformed to polar coordinates ᾱ and r̄. The link side
joint angles q (and therefore the leg positions in polar
coordinates α and r) are measured with separate sensors
after the spring element. The torques are estimated from the
difference between motor and link position. The horizontal
and vertical positions x are measured using angular sensors
in the boom holding the trunk.

B. Exploration

We implemented a nearest-neighbor-based approach that
calculates for a given input system state ẋTD and a predefined
parameter range [α̂min, α̂max] (i. e., the range in which valid
motions are generated) the optimal next α̂ with respect to
the current state of the exploration. For our system, α̂ is
physically limited for backwards jumps by knee ground
contact. For forward jumps, too high values cause the system
to become unable to reach the steady state position before
next ground contact. The method calculates the Eucledean
distance between the input state and every sample of the
current data set (normalized to [0, 1]). The samples that fall
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Fig. 6. 1D example for the exploration algorithm. For a given input velocity
ẋin, all samples k with ẋin− εẋ < ẋk < ẋin + εẋ are used to calculate
α̂next. It is chosen so that the distance to all other α̂-values (including
boundaries) is maximized. In the multidimensional case, the similarity is
measured using the Euclidean norm of the difference between input vector
and sample vector.

below a certain threshold εẋ are considered as similar. The
next α̂ is then chosen so that the difference to the set of all α̂
of the similar samples and the parameter limits is maximized
(see Fig. 6). This allows to cover the entire state space with
a small number of samples.

As a result, the method always chooses the region of
the parameter space with least exploration for a given state
and automatically samples the system state, since input
velocities are always paired with a new control parameter,
i. e., for similar input velocities the control parameter is
always different. In consequence, a jump very likely results
in an output velocity previously not measured and they are
distributed over the whole state space. The density of the
exploration is then directly proportional to the amount of
samples recorded.

C. Regression Mapping

The righthand plot of Fig. 4 shows an example data
set with 600 sample points. As can be seen, the relation
between input variables and system output is clearly non-
linear. Hence, in order to create a correct mapping, we need
to use a non-linear regression method. We decided to use
Kernel Ridge Regression with an RBF-kernel, as it is a fairly
simple regression method that directly incorporates input
data without the need to choose a regression model [17],
as would be required e.g. for a Multilayer Perceptron. The
only tunable parameter is the width λ of the RBF-kernel.
Choosing a high value increases the influence of distant
samples, while choosing a low value only includes samples
in close vicinity. This parameter is easily tuned by means of
cross validation, where the data set is split into a number of
subsets, where one set functions as test set and the others as
training set. All possible combinations are then testet over a
grid of λ-values and the value with the lowest test error is
chosen.

Fig. 7 depicts the regression error of the KRR regression
for the recorded data set with 600 samples as well as a
separate test set with 400 samples.

V. EXPERIMENTS

The mapping generated in Sec. IV has been tested ex-
perimentally for planning aperiodic motions on real hard-
ware. The robotic leg consists of spring mechanisms with
a constant stiffnes K ≈ 2.75 Nm/rad, which are serially
connected to position controlled servo units. The first series
elastic actuator (SEA) is directly connected to the thigh link,
the second SEA is connected to the knee link via belt drives.
The total robot size is 25 cm, the hip heigth when fully
streched is 15.5 cm. The total weight of the leg is about
500 g.

In the experiments we evaluated different types of se-
quences and scenarios. First, we evaluated the accuracy
by commanding linearly increasing jump width, with ev-
ery width being repeated several times. Second, we tested
arbitrary sequences with randomly sampled targets. This is
closest to the jump sequences ocurring during exploration.
Additionally, we sampled targets randomly but limited the
increase in jump width so that several jumps are needed
to change the jump width from one target to another. An
example for this is depicted in Fig. 8 (top). Finally, we
experimented with hopping on stairs of different heights and
widths. For this we placed a parcour of stairs with heights
up to 2 cm. Due to a lack of a vision system the position
of each step was teached to the system beforehand3. The
system is then programmed to approach the stairs with a
fixed step width and then adjust the width dynamically so
that the leg lands directly in front of a step and consecutively
executes a wide jump. Since every new jump is based on the
currently measured state, errors do not accumulate as for
offline planned motions. A plot for this is shown in Fig. 8
(bottom).

3in fact, the next step is to replace the hard-coded parcours with an
unknown one and determine the position of the stairs by vision. The
challenge therefore is on the vision system, while the planning problem
is solved by this paper.
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mean error max. error
regression ∆x1 train [m] 0.0027 0.0096
regression ∆x1 test [m] 0.0029 0.0086
regression α̂ train [rad] 0.0057 0.0209
regression α̂ test [rad] 0.0068 0.0178

Fig. 7. Regression error for the KRR evaluated with the training data
set and test data set. The histogram shows the error for the regression of
the base data with ∆x1 as output. The distribution of the histogram for
both data sets roughly resembles the Gaussian distribution, which means
that the errors are distributed normally. The table also lists the errors for
the regression with α̂ as target, which is the inverse mapping used in the
experiments. Train and test errors are both times close together with train
error a bit lower. This allows to conclude that no overfitting is present.



Fig. 8. Error plot for test sequences of the limited random case (top) and
the targets during a stairs hopping experiment (bottom). Depicted are the
commanded target distance ∆xd and the measured result, as well as the
error between both. The purple line nn dist shows for each jump’s set of
input parameters an estimation of how well it is covered by the data set in
form of the minimal distance to any sample in the data set.

A. Results
As can bee seen in the plots in Fig. 8, the robot is able

to perform the commanded jump sequences for both cases
accurately. A summary of the overall error for each type
of experiment is listed in Table II. We recorded about 150
samples for each experiment. The average error in three
cases is very similar and is below two millimeters. Relative
to the widest jump of all experiments, which was about 6
cm, this is an error of about 3%. However, the maximum
error shows significant differences with the biggest error
happening during the unrestricted random jumps, where
the biggest discrepancies between touchdown velocity and
desired step width occur. The best performance in this regard
was achieved with the limited random targets, where the
conditions are very stable.

VI. CONCLUSION

The main contribution of the paper is exploring the oppor-
tunities offered by the concept of a switching based bang-
bang controller with discrete parameterization per jump.
Despite using serial elastic actuation, which is naturally
a complex control task, our methodology allows to plan
parameters for targeted jumping without use of a dynamics

TABLE II
EXPERIMENTAL RESULTS.

# mean error max. error
linear 160 0.0017 (2.8%) 0.0078 (12.8%)
random 150 0.0018 (3.0%) 0.0086 (14.3%)
lim. random 150 0.0019 (3.2%) 0.0058 (09.5%)
all 460 0.0018 (3.0%) 0.0086 (14.3%)

model and complex offline calculations. The experiments
demonstrate that for different regression algorithms the sys-
tem is able of performing highly accurate aperiodic hopping
maneuvers with online planned parameters. It takes roughly
half an hour of time to generate sufficient data to adapt
the parameter mapping to changes of the system. Our next
steps are the extension to multilegged systems where deeper
analysis of the experimental data for better feature extraction
is necessary. With higher dimensionality in such systems, the
focus also lies on better ways of sample generation to cope
with the increased complexity.
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