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IntroductionI.
This work should provide more detailed insights into mechanisms and structural functions of

the transcription factor B, and to some extent, the possible role of the replication protein A in

the process termed transcription. To investigate the interactions of these two factors the in

vitro transcription system of the hyperthermophilic organism Pyrococcus furiosus was used.

The strain was isolated at Porto die Levante, Vulcano, Italy, and described by Fiala, G. and

Stetter, K.O (Fiala, Stetter 1986). It belongs to the domain Archaea, which was defined by

Woese, Kandler and Wheelis by comparison of the ribosomal RNA (Woese et al. 1990).

These studies revealed that basically all living organisms can be referred to one of the three

domain of live: Bacteria, Archaea and Eukarya. Pyrococcus furiosus, the “rushing fireball”,

grows optimally under anaerobic conditions at 95°C with a doubling time of 37 minutes, and

can use different sugars as carbon source (Fiala, Stetter 1986). In 1996, Hethke et al.

established a Pyrococcus cell-free transcription system to enable investigation of

transcription processes (Hethke et al. 1996). This artificial system allows one to analyze the

functions and mechanisms of different transcription factors, as well as the characterization of

distinct subunits of the RNA polymerase using an in vitro reconstitution approach of this

enzyme (Fouqueau et al. 2013). In the following years studies of archaeal and eukaryotic

organisms showed similarities in the genomic sequences concerning the transcription

apparatus, as well as relationships of transcription regulating proteins between bacterial and

archaeal organisms (Kyrpides, Ouzounis 1999). Therefore biochemical analysis of the

archaeal transcription system can be useful to reveal evolutionary aspects between the three

domains, as well as to make statements for eukaryotic systems concerning function and

regulatory mechanisms of the transcription machinery.

The following chapters should give a more detailed insight into the process of transcription,

the similarities between transcription machineries in the domains of life, and a detailed

functional characterization of the transcription factor B. In addition, a short overview on the

replication protein A is given at the end of this introduction, which is also characterized in this

thesis.

A. Transcription - a crucial step in cellular life
Differentiation, cell division, metabolism as well as communication are major events in the life

of multicellular organisms. In addition, single-cell organisms also need to response to

environmental factors like temperature, nutrients, or toxins for optimal growth. Therefore the

regulation of genetic information is a very important step for cells to perform target-driven

functions and tasks. Experiments of Oswald Avery, Alfred Hershey and Martha Chase, as

well as the discovery of the structure of deoxyribonucleic acid (DNA) by James Watson,

Francis Crick and Rosalind Franklin demonstrated that DNA is the central memory of cellular

information (Avery et al. 1944; HERSHEY, CHASE 1952; WATSON, Crick 1953). The

genetic code is defined as the sequence of the four nucleobases, adenine, cytosine, thymine,

and guanine. The so called “Central Dogma” of molecular biology was proclaimed in the late

1950ths and refined in 1970 (Crick 1958, 1970). Herein it was postulated that information

derived from DNA is transcribed into RNA, which can serve as a template for protein

biosynthesis. The resulting proteins are essential for numerous cellular processes like

metabolism, DNA maintaining and repair, signal pathways for cellular response to various

stimuli, and many more, which defines the phenotype of an organism. Since the last decades

up to today this “Central Dogma” was improved continuously, as new functional classes of

RNA molecules and new protein functions, e.g. the reverse transcriptase or post-
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transcriptional RNA processing, were discovered (Shapiro 2009; Koonin 2015). Therefore

information does not flow only from DNA to RNA to the protein, moreover, a complete and

complex network of information flow exists. RNA, in contrast to DNA, contains a reactive OH-

species on the second carbon atom at the ribose, and comprises uracil as nucleobase, the

demethylated form of thymine. Nowadays a lot of different RNA molecules are known.

Beside the well-described classes of transfer RNA (tRNA), messenger RNA (mRNA), and

ribosomal RNA (rRNA) a new RNA group of non-coding RNAs was revealed. These RNAs

are clustered into small non-coding RNAs (snRNAs), like microRNAs (miRNA), small

interfering RNAs (siRNA), Piwi-interacting RNAs (piwiRNA), small nucleolar RNAs (snoRNA)

and long non-coding RNAs (lncRNAs) (see reviews (Ghildiyal, Zamore 2009; Bratkovic,

Rogelj 2014; Fatica, Bozzoni 2014; Bhartiya, Scaria 2016)).

Despite the large number of RNA molecules with numerous different functions the origin is

the same for every type of RNA: they have to be transcribed from DNA. This process is

termed transcription and is carried out by large multi-subunit DNA-dependent RNA-

polymerase (RNAP) enzymes. Eukaryotic organisms possess up to five RNAPs, and

archaea and bacteria have only one enzyme to synthesize RNA, whereas the subunits are

homolog to eukaryotic RNAP II (Werner, Grohmann 2011). The eukaryotic RNA-polymerases

I - III have specific functions. The RNAP I transcribe only rRNA (Engel et al. 2013), the RNAP

II synthesizes mRNA and some small non-coding RNAs (Kornberg 2007), whereas the

RNAP III transcribe the 5S rRNA, tRNAs and small non-coding RNAs (Arimbasseri, Maraia

2016). The nuclear RNAP IV and RNAP V are only present in plant species and some algae,

they contain 10 or more subunits which are more or less related to subunits of other RNAPs,

and are important for small interfering RNA-mediated gene silencing (Landick 2009). To

synthesize RNA, the RNAPs have to be recruited to the DNA by interaction with specific

transcription factors. These general factors need access to specific sequence motifs, and

therefore DNA has to be remodeled first.

1. Genome organization and promoter-DNA accessibility

Transcription is a precisely organized process which enables targeted gene expression, and

is regulated by numerous cellular processes. To transcribe a gene specifically transcription

factors need access to target DNA sequences. The genetic material, which can comprise

millions of base pairs, is structurally organized and condensed by proteins to facilitate

compression of the DNA into a single cell.

DNA of eukaryotes is packaged and organized in the nucleus as chromatin, a

conglomeration of nucleosomes. A nucleosome consists of a histone protein bound to 145-

147bp DNA (Luger et al. 1997). DNA is wrapped around the histones and cannot be the

target of transcription factors due to a steric hindrance. Therefore the chromatin structure has

to be remodeled in a way that the histones were relocated to expose free DNA. This process

is executed in eukaryotic organisms by a large number of proteins which belong to one of

four ATP-dependent chromatin remodeling complex families, whereas the histones can also

be modified e.g. by acetylation, methylation, phosphorylation or ubiquitination (Witkowski,

Foulkes 2015).

Bacteria lack histones or histone-like proteins, and their DNA is packaged as a nucleoid in

the cell, whereas the DNA is bound to and organized by nucleoid-associated proteins (NAPs)

(Dorman 2014). The most abundant chromatin proteins in bacteria are members of the HU

(histone-like protein from E.coli strain U93) protein family, and the related protein HTa can

also be found in some archaeal species which lack histone-like proteins (Dorman 2009;

Zhang et al. 2012b).
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Archaeal organisms show different DNA packaging strategies of their nucleoid. The genomic

DNA of thermophilic organisms is positively supercoiled as a result of the reverse gyrase

enzyme (Brochier-Armanet, Forterre 2007). This enzyme is thought to be exclusive for

hyperthermophilic organisms and therefore this DNA conformation is preferred possibly due

to an adaption to hot environments (Forterre et al. 1996). In addition, the DNA is further

stabilized by DNA-binding proteins. A highly abundant chromatin protein distributed in the

archaeal domain is alba (acetylation lowers binding affinity), or proteins of this family,

respectively (Laurens et al. 2012). Alba can be modified by acetylation and deacetylation

(Wardleworth et al. 2002), whereas in vitro experiments revealed that it can condense, bridge

and loop DNA, but its in vivo dynamics remains unclear (Jelinska et al. 2005; Laurens et al.

2012). In addition to alba, members of the phylum Euryarchaeota possess mainly histone

proteins to organize the DNA (Reeve 2003). These proteins are homologous to the

eukaryotic H3 and H4 histone subunits and form dimers in solution and tetramers when

bound to DNA (Reeve et al. 2004), but lack the typical N- and C-terminal extensions for

modifications (Cheung et al. 2000). In contrast, Crenarchaeota lack eukaryotic-like

structures, but have own small basic DNA-binding proteins like Cren7, which are highly

conserved and exclusive within this phylum, or the related Sul7 proteins (Guo et al. 2008).

These chromatin proteins show high similarity to bacterial NAPs (Driessen, Dame 2011).

Indeed, genes for eukaryotic-like proteins were also found in some organisms of the

Crenarchaeota (Cubonova et al. 2005).

Less is known about the interplay between DNA organizing proteins and transcription factors,

which enable recruitment of the RNA polymerase to the promoter site of a gene for RNA

synthesis. However, it was shown that if promoter regions are occupied by DNA-binding

proteins, the transcription is blocked due to the prevention of factor binding or inhibition of

DNA separation (Soares et al. 1998; Xie, Reeve 2004a; Wilkinson et al. 2010). For example,

transcription is inhibited in the M. jannaschii in vitro system when nucleosome formation at

the promoter site occurs (Wilkinson et al. 2010). Similar effects were observed in M.

thermoautotrophicus, as binding of HMta2 downstream of the transcription start site (TSS)

forms a filament that extends to the upstream part of the +1 site, and prevents transcription

factor binding (Xie, Reeve 2004a). Interestingly, the same protein does not block the RNA

polymerase in the elongation phase, but it lowers the transcription rate (Xie, Reeve 2004a).

Global scale analysis revealed that archaeal histones in general are not present at core

promoters of archaeal genes and it was shown that the region directly upstream of the TSS

is not occupied by histone proteins (Nalabothula et al. 2013). It was pointed out by Peeters et

al. that it is more likely in the genome that sequences direct the positioning of nucleosomes

to enable binding of transcription factors rather than the transcription factors block the

binding of histones in resulting chromatin-free regions (Peeters et al. 2015).

Taken together, it is still enigmatic how transcription is interlinked to genomic organization in

archaeal organisms, because the mechanisms of global gene regulation, as well as the goal-

driven deposition of chromatin proteins to make DNA accessible for transcription remains to

be determined. However, if DNA becomes accessible for transcription factors, numerous

proteins, which regulate transcription by repression or activation, interact with the promoter

site of the gene.

2. Promoter architecture and regulation of gene expression

Basically two types of promoters are known: core promoters, also known as the single peak

or focused promoters, and dispersed or broad peak promoters (Juven-Gershon et al. 2008;

Müller et al. 2007) (Figure 1A). Core promoter is defined as a minimal fragment sufficient to

direct correct basal levels of transcription initiation by RNAP with a well-defined transcription
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start site (TSS) (Butler, Kadonaga 2002; Müller et al. 2007). The broad peak promoters have

several start sites distributed over >100 nucleotides and are typically found in CpG islands in

vertebrates (Carninci et al. 2006). Both promoter types have specific elements, which serve

as interaction platforms for transcription factors. Dispersed promoters lack the TATA-box,

downstream promoter element (DPE) and the motif ten element (MTE), which are typical

components of core promoters (Juven-Gershon et al. 2008). Furthermore, genes regulated

by core promoters are usually issue-specific (Müller et al. 2007), whereas genes regulated by

dispersed promoters are mostly ubiquitously expressed (Carninci et al. 2006).

Core promoters often contain the so called TATA-box, also known as Goldberg-Hogness

sequence (Sassone-Corsi et al. 1981) (Figure 1B). It is an AT-rich element with the

consensus sequence TATAWAAR, whereas the upstream T is most commonly located at -31

or -30 relative to the transcription start site (TTS) +1 (Hausner et al. 1991; Ponjavic et al.

2006; Carninci et al. 2006). This widely used and ancient element is the most conserved

promoter motif in archaea and eukaryotes, and is recognized by the general transcription

factor TATA binding protein (TBP) (Thomm, Wich 1988; Hausner et al. 1996). Despite the

high abundance only 10% of human RNAP II promoters contain a TATA-box (Bajic et al.

2006). A second motif adjacent to the TATA-box is the transcription factor B recognition

element (BRE) which is bound by the transcription factor B (TFB) upstream (BREu) and/or

downstream (BREd) the TATA box (Deng, Roberts 2005; Lagrange et al. 1998). The location

of the BRE relative to the TATA and the transcription start site defines the transcription

direction (Bell et al. 1999). The BRE and the TATA box are strictly required for core promoter

dependent transcription, whereas a third element, the Initiator region (Inr) is not (Gehring et

al. 2016). This regulatory element encompasses the TSS +1. Sequence alignments of

thousands of mammalian transcription start sites showed that the consensus sequence can

be restricted to YR, whereas R is the +1 site (Juven-Gershon et al. 2008) and is often an

adenine (Butler, Kadonaga 2002). Inr is recognized by the transcription factor IID (TFIID) in

eukaryotes and some transcriptional activators in archaea and comprises a high AT content

similar to the TATA box (Gehring et al. 2016). This region is often termed the initially melted

region (IMR), and can extend up to 12 base pairs upstream the +1 site (Bell et al. 1998), and

is an important determinant for the strength of the stimulatory effect of the transcription factor

E (TFE) (Blombach et al. 2015). In addition, a proximal promoter element (PPE) exists in

archaeal organisms, which is located approximately 10 base pairs upstream of the

transcription start site and can increase transcription output through interaction with general

transcription factors (GTFs) (Peng et al. 2009). In contrast, in eukaryotic organisms a

downstream core promoter element (DPE) can be found 28 to 33 base pairs downstream the

TSS, which is important for basal transcription and interacts with the TATA associated

factors (TAF) 6 and 9 of the RNAP I system, and TAFII60 and TAFII40 of TFIID of the RNAP

II system (Burke, Kadonaga 1996). Promoters containing DPE usually lacks a TATA-box

(Müller et al. 2007). Another sequence in eukaryotes was found by computational and

biochemical studies and is called the motif ten element (MTE) (Lim et al. 2004). It is located

+18 to +27 downstream of the TSS, and, like DPE, functions with the Inr in a cooperative

spacer-dependent manner (Lim et al. 2004). Interestingly, optimization of the core promoter

elements TATA-box, DPE, MTE, Inr and BREd /BREu leads to the strongest known in vitro

promoter (Juven-Gershon et al. 2006). A much more specific promoter region is the so called

downstream core element (DCE), which was found in the beta-globin promoter (Lewis et al.

2000) and also characterized in the adeno virus major late promoter (Lee et al. 2005). It

consists of three elements SI (CTTC; from +6 to +11), SII (CTGT; +16 to +21) and SIII (AGC;

+30 to +34), and occurs with the DPE. A second specific region can be found in
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approximately 1% of human core promoters which are TATA-less, and are called X core

promoter element 1 (XCPE1). This element is located from -8 to +2 and interacts only with

sequence specific activators like NRF1, NF-1 and Sp1 (Tokusumi et al. 2007).

Figure 1: Promoter architecture and regulation of gene expression. A) Dispersed and focused (core)

promoters differ in the number of their transcription start sites. B) General core promoter elements of

archaea, bacteria and eukaryotes. C) Mechanism of activation and repression of transcription.

Transcription factors (TF) bind to sequence motifs upstream the BRE/TATA to activate transcription,

whereas binding of TF to elements downstream the BRE/TATA inhibit binding of GTFs and RNAP.

(Modified from Peeters, Charlier 2010; Juven-Gershon et al. 2008; Decker, Hinton 2013).
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Typical archaeal promoters contain a TATA-box, the BRE and Inr motif. In contrast, Bacteria

differ in their promoter architecture in comparison to eukaryotic and archaeal promoters but

comprise also sequences important for the interaction with σ-factors and the RNA 

polymerase. The important sites for interaction with σ-factors are the -35 (TTGACA) and the -

10 (TATAAT) region, whereas the AT-rich UP region and the start site containing core

recognition element (CRE) both interact with the polymerase (Decker, Hinton 2013). An

overview on the common promoter architecture of bacteria, archaea and eukaryotes is

shown in figure 1B. The distinct motifs shown here are all cis-acting regulatory elements

(Butler, Kadonaga 2002), and the presence of distinct motifs and their combinations are one

possibility to regulate gene expression (Colgan, Manley 1995). These elements serve as

platforms for a variety of transcription factors.

In addition to these combinations gene expression can also be regulated by activators,

repressors, enhancers and mediators, which recognize additional specific sequence motifs in

proximity to the promoter (Figure 1C). One of the best studied transcriptional regulator in

archaea is the Leucine-responsive regulatory protein (Lrp), which possess a typical bacterial

helix-turn-helix DNA binding motif, and has a dual role as activator and repressor of

transcription (Peeters, Charlier 2010). Members of the Lrp family regulate almost 10% of all

genes and are mostly involved in amino acid and central metabolisms in bacteria (Cho et al.

2008). In Pyrococcus furiosus, it was shown that the Lrp-like protein LrpA binds closely

downstream the TATA box, forming a TBP/TFB/LrpA complex, which in turn blocks the

binding of the RNA polymerase due to steric hindrance (Dahlke, Thomm 2002). In contrast,

the putative transcription factor 2 (Ptr2) of Methanococcus jannaschii activates transcription

through binding to an upstream element and stimulates recruitment of TBP (Ouhammouch et

al. 2003). A further global regulator of transcription with a dual role is the transcriptional

regulator of mal B operon like factor 1 (TrmBL1), which recognizes the Thermococcales

Glycolytic Motif (TGM) located upstream or downstream of the TATA box to regulate genes

involved in sugar metabolism (Gindner et al. 2014). It was shown in ChIP-Seq experiments

that TrmBL1 binds to TGMs located downstream of the TATA to repress genes involved in

gluconeogenesis, and simultaneously binds to TGMs located upstream of the TATA to switch

on genes involved in sugar metabolism under glycolytic growth conditions, whereas TrmBL1

does not bind TGMs under gluconeogenic growth conditions (Reichelt et al. 2016).

The interplay between transcription factors and regulators in combination with distinct

promoter elements defines the transcriptional activity and the level of gene expression. The

presence of basal factors at the promoter in turn recruits RNAP to initiate RNA-synthesis.

Therefore, the gene expression level of a single cell, as a response mechanism to

environmental signals, depends on many different factors.

B. Initiation of transcription: Preinitiation complex formation
The core promoter-dependent transcription process can be divided into three distinct phases.

In the first stage general transcription factors specifically interact with sequence motifs of the

promoter and bind to DNA until the RNA polymerase is recruited to form a preinitiation

complex (PIC). This complex is formed in a stepwise manner as it was shown with native gel

electrophoresis experiments (Buratowski et al. 1989) and later with cryo-EM analysis (He et

al. 2013). RNAP II preinitiation complexes of eukaryotic organisms consist of in minimum six

transcription factors TFIID, TFIIA, TFIIB, TFIIE, TFIIF and TFIIH, whereas archaeal

organisms require basically the three eukaryote-related factors, TBP, TFB and TFE (Bell,

Jackson 2001; Carlo et al. 2010) (Figure 2). The archaeal transcription machinery therefore

constitutes a simplified version of the eukaryotic RNAP II machinery (Grohmann, Werner
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2011; Decker, Hinton 2013). In contrast, bacterial complexes contain RNAP and σ (Feng et 

al. 2016). After complex assembly several structural rearrangements have to take place to

convert the initiation complex into an initially transcribing complex. These transitions are

shown in chapter I. C (From initiation to elongation and termination). Then RNA synthesis

takes place in the elongation phase until transcription is terminated. The proteins which form

a preinitiation complex at the core promoter of the three domains are shown in the following

chapters.

Figure 2: Comparison of archaeal and eukaryotic Pol II preinitiation complexes. Archaeal PIC consists

of TBP (red; PDB: 5FZ5), TFB (green; PDB: 3K1F), RNA polymerase (grey; PDB: 4QIW), and TFE

(pale green; PDB: 5FZ5) and bent DNA (PDB: 5FZ5), whereas eukaryotic Pol II PIC consist of the

related TBP (red; PDB: 5FZ5), TFIIB (green; PDB: 3K1F), TFIIEα/β (pale green and pale blue; PDB: 

5FZ5), and the eukaryote-specific TFIIAα/β (purple; PDB: 5FZ5) and TFIIFα/β (blue; PDB: 5FZ5) and 

bent DNA (PDB: 5FZ5). Complete Pol II PIC structure was modified from PDB: 5FZ5 (Plaschka et al.

2016). For the archaeal PIC T. kodakarensis RNAP from structure 4QIW (Jun et al. 2014) was fitted to

the complex based on exact overlay of conserved residues in PyMol. TFB/TFIIB was taken from

structure 3K1F (Kostrewa et al. 2009) due to absent domain structures in 5ZF5. TFIIH is missing in the

5ZF5 structure because of insufficient resolution of the cryo-EM structure.

1. The TATA binding protein

The first factor which interacts with the TATA element of a core promoter via an induced-fit

mechanism is the TATA binding protein (TBP) (Chasman et al. 1993; Kim et al. 1993a;

Burley 1996). This protein was formerly referred as the aTFB protein in archaeal organisms,

but because of analogous functions to eukaryotic TBP and the similar structure it was re-

termed TBP in archaea (Hausner et al. 1996). This saddle-shaped protein comprises a

tandem repeat consisting of two conserved domains which are likely the product of ancient

gene duplication (Marsh et al. 1994; Adachi et al. 2008). It also possesses an N-terminal

extension, which is less conserved and poorly understood in its function (Burley, Roeder
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1996). Each of the two domains consists of a five-stranded anti-parallel β-sheet and two α-

helices on the opposite site (Kim et al. 1993a; Kim et al. 1993b). Four β-strands of each 

domain bind to DNA, whereas two α-helices of each domain together with parts of the two β-

strands form the convex opposite site and serve as an interface for proteins which are

involved in transcription initiation (Akhtar, Veenstra 2011). It was shown that TBP can be

exchanged between organisms, e.g. TBP of P. furiosus with Methanococcus TBP, and

Methanococcus TBP with human and yeast TBP (Wettach et al. 1995; Hethke et al. 1996).

Bacteria lack the TATA-binding protein and transcription is basically initiated using

sigma factors, but it was shown that elements of the conserved TBP are part of the RNase

HIII and a DNA glycosylase, likely due to a fusion processes of a TBP core domain and

these proteins (Brindefalk et al. 2013). From this point of view, Brindefalk et al. showed that

sequences of TBP domains can be found in numerous proteins, indicating that a TBP

precursor was present in the last universal common ancestor (LUCA) and evolved either by

fusion processes with other proteins or to itself and functions were adapted, or TBP domains

originated from DNA-glycosylases and TBP becomes a general transcription factor later

(Brindefalk et al. 2013). It is also interesting to note that single TBP-domain sequences were

identified e.g. in Halobacteria and in the Pyrococcus furiosus genome, which encodes a

monopartite TBP of unidentified function in addition to the regular TBP sequence (Brindefalk

et al. 2013).

Genomes of higher eukaryotes encode TBP, TBP-related factors (TRF) and TBP-like factors

(TLF), which are involved in development and differentiation, in particular gametogenesis

and early embryonic development (Akhtar, Veenstra 2011). For RNAP II transcription TBP

together with up to 14 TBP associated factors (TAFs) form the eukaryotic TFIID multi-subunit

complex (Matangkasombut et al. 2004). The core of TFIID is formed by a subset consisting

of TAF4 - TAF6, TAF 8 - TAF10 and TAF12, but no TBP (Leurent et al. 2004). Therefore,

different TFIID variations are present in different tissues and cell types to promote targeted

gene expression (Demeny et al. 2007), and TBP is further not the universal initiation factor in

metazoans like it is in yeast (Akhtar, Veenstra 2011). Recent single molecule analysis on PIC

assembly in eukaryotic Pol II transcription showed that TBP alone indeed binds to the

promoter, but the specificity of the interaction between TBP and DNA is strongly increased if

TBP is part of the TFIID complex (Zhang et al. 2016). In addition, TBP is not only involved in

the initiation of RNAP II promoters, it also has its role in RNAP I and RNAP III initiation. TBP

together with the selectivity factor SL1 and five RNAP I-specific TAFs are required to initiate

RNAP I transcription, whereas TBP and two RNAP III-specific TAFs (BrtI and BdpI)

assemble together with TFIIIB to initiate RNAP III transcription (Drygin et al. 2010; Hoffmann

et al. 2016).

After TBP bind to the TATA element, the DNA is highly bent in approximately 90° angle due

to a transition of DNA into a unique partially unwounded right-handed double helix by a kink

(Kim et al. 1993a; Nikolov et al. 1995; Juo et al. 1996). The kink is caused by two

phenylalanine residues (Phe284 and Phe301 in human TBP) which contact DNA in the minor

groove between the first two base pairs of the TATA-box. The second kink is located at the

7th and 8th base of the TATA-box also by insertion of two phenylalanine residues (Phe193

and Phe210 in human TBP), and DNA is restored back to its usual B-conformation. Binding

of TBP and bending of DNA occur simultaneously (Masters et al. 2003) and DNA bending

was shown to be a prerequisite for transcriptional activation (Gietl et al. 2014). Recent

studies using single molecule analysis showed that DNA in archaeal organisms is bent to

one uniform state by TBP alone in the organism M. jannaschii of the euryarchaeotic lineage.

In contrast, it was shown for S. acidocaldarius, a member of the phylum Crenarchaeota, that
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the general transcription factor B (TFB) is required to stabilize the bent state (Gietl et al.

2014). For Saccharomyces cerevisiae it was shown that DNA bending follows a three-step

binding mechanism, as two different complexes were identified with different bending angles,

whereas addition of the transcription factor IIB (TFIIB) leads to a fully bent state of the DNA

(Gietl et al. 2014).

Beside the stabilization effect of TFIIB, the RNA polymerase II specific auxiliary factor TFIIA

also stabilizes the TBP-DNA interaction in eukaryotic transcription initiation (Kang et al.

1995). This factor consists of two conserved domains, a 12-stranded β-barrel which binds to 

the upstream DNA of the TATA-box and the TBP saddle, and the other domain consists of a

four-helix bundle, forming a boot-shaped heterodimer (Tan et al. 1996; Geiger et al. 1996).

TFIIA is not able to bind DNA alone, but together with TBP or TFIID, binding to DNA is very

efficient (Zhang et al. 2016). TFIIA is not strictly required for transcription initiation, but can

stimulate basal and activated transcription (Imbalzano et al. 1994).

2. The transcription factor B

The next factor associating to DNA and TBP is the general transcription factor B (TFB), or

TFIIB for RNAP II transcription, respectively. Recent studies demonstrated that the

eukaryotic TFIIB requires TFIID and TFIIA to bind transiently to the promoter, and addition of

RNAP II-TFIIF fully stabilizes the association of TFIIB to the preinitiation complex (Zhang et

al. 2016). TFB/TFIIB is a single polypeptide consisting of a carboxyl-terminal B-core domain,

an amino-terminal Zn-ribbon domain, and a region in between, which were later termed the

linker and the reader domain (Ha et al. 1991; Malik et al. 1991; Pinto et al. 1992; Kostrewa et

al. 2009) (Figure 3 A). Magnetic resonance spectroscopy analysis of the human TFIIB C-

terminal B-core domain (TFIIBc), revealed that this domain consist of two direct repeats

which have similar α-helical structures, whereas each repeat contains five alpha-helices A1 

to E1 of repeat one, and A2 to E2 of the more hydrophobic repeat 2 (Bagby et al. 1995). First

crystal structures of TFIIB/TBP/DNA-complexes indicated that the B-core contacts TBP as

well as DNA at the major groove immediately upstream, and at the minor groove

downstream the TATA-box (Nikolov et al. 1995). TFB binds to DNA at the BRE via a helix-

turn-helix motif formed by helices D and E, whereas the TFIIB-DNA contacts were also

verified by DNase I footprinting (Malik et al. 1993), hydroxyl radical footprinting (Lee, Hahn

1995), fluorescence anisotropy measurements and photochemical crosslinking (Lagrange et

al. 1998). Mutational analysis of amino acids of the yeast B-core domain further

demonstrated these interactions, and revealed that the basic amino acids K190, K201, and

K205 play a major role in the interaction with DNA, as these mutants do not form a

TBP/TFIIB/DNA complex in yeast in in vitro gel shift experiments, and showed impairments

in growth in vivo (Bangur et al. 1997). Amino acid exchange of the conserved amino acids

G153 and R154 (Buratowski, Zhou 1993), as well as amino acid substitutions of G247 and

R248 within the second repeat in human TFIIB showed a decreased ability to form

TBP/TFIIB/DNA complexes (Bagby et al. 1995). In addition to the mutational analysis,

sequence alignments further revealed structural similarities to cyclin A, which is a cell cycle

regulating protein (Bagby et al. 1995). From this point of view it was hypothesized that

cyclins may have evolved from more fundamental transcription processes in earlier life

(Bagby et al. 1995).

Structural analysis of the N-terminus of the archaeal TFB of Pyrococcus furiosus showed that

this domain forms a Zn-ribbon fold (Zhu et al. 1996). This domain of TFIIB is required for the

interaction with the RNA polymerase II associated protein (RAP) 30/74, the small subunit of

TFIIF (Ha et al. 1993; Fang, Burton 1996). Moreover, interactions of the Zn-ribbon with

RNAP were observed in vitro (Tschochner et al. 1992; Bushnell et al. 1996).
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Figure 3: Structure, domain organization and multiple sequence alignments of the transcription factor

IIB. A) TFB/TFIIB consists of a C-and N-terminal cyclin fold (cyan), a B-linker region (brown), a B-

reader domain consisting of the loop (blue) and the helix (green), and a Zn-ribbon (pale green) with a

bound Zn
2+

ion (red) (modified from PDB: 3K1F). The domain organization of PfuTFB is given below

from N to the C terminal end, and the same color code is used as in the structure. Amino acids are

shown for the respective domain from N36 (reader helix) to S102 (linker helix). B) Sequence

alignments of the highly conserved TFB/TFIIB B-reader domain. PfuTFB was blasted against

respective organisms of different domains and phyla. Identities of the total TFB and the TFB B-reader

domain is given as percentages. Amino acids highlighted in red are highly, in green strongly, and in

blue weakly conserved within the respective phylum.
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RNA polymerase recruitment was shown to be carried out by the Zn-ribbon domain, using

amino acid mutagenesis approach in yeast (Pardee et al. 1998). Further site-specific photo

crosslinking experiments revealed a specific contact of the TFIIB Zn-ribbon with the surface

of the RNAP II dock domain, overlapping the RNA exit point (Chen, Hahn 2003), whereas

this location of the ribbon was later confirmed in a crystal structure (Kostrewa et al. 2009).

Therefore the Zn-ribbon is essential for RNAP II/TFIIF recruitment. Because of the fact, that

TFIIB stabilizes the TBP/DNA complex by direct interactions with TBP and DNA, and the

observation, that TFIIB plays a role in RNAP II/TFIIF recruitment, it was proposed that this

factor has only a role in bridging between TBP/DNA and RNAP II (Buratowski et al. 1989;

Orphanides et al. 1996; Hampsey 1998). Therefore the domains between the N- and C-

terminal domains where thought to be just a flexible hinge region. Interestingly, first

mutational analysis of the region adjacent to the N-terminal Zn-ribbon revealed that this

domain provides key features for the initiation process (Bangur et al. 1997). It was also

shown that this region of TFIIB is the most highly conserved region amongst known TFB

proteins (Na, Hampsey 1993) (Figure 3 B), and amino acids 52-140 of yeast TFIIB can be

functionally replaced by the corresponding region of human TFIIB (Shaw et al. 1996).

The TFB B-reader helix domain is important for transcription start site selection. Mutational

analysis of this domain in yeast, especially amino acid R64, results in shifts of the

transcription start site in vitro and in vivo, a cold-sensitive phenotype and diminished growth

rates (Pardee et al. 1998; Bangur et al. 1997; Pinto et al. 1992). Amino acid E62 of yeast

TFIIB showed the same effects, but interestingly, the corresponding amino acid E51 of

human TFIIB is not affected by substitutions (Cho, Buratowski 1999). Therefore it was

assumed that the transcription start site selection also depends on the distance between Inr

and TATA, because in yeast promoters the spacing between Inr and TATA differ in

comparison to human promoters (Cho, Buratowski 1999). Additional analysis of TFIIB B-

reader mutations and different Inr sequences made clear that TSS selection is B-reader helix

and RNA polymerase dependent (Li et al. 1994; Faitar et al. 2001). Moreover, it was

postulated that the TSS selection is carried out by scanning of the RNA polymerase to

search for the correct nucleotide to start RNA synthesis (Giardina, Lis 1993). First models of

crystal structures containing TFIIB and RNAP II suggest that the B-reader domain might

contact one strand of the DNA, indicating a supporting role for TSS selection (Bushnell et al.

2004). In addition, mutational analysis of the upstream region immediately next to the Inr site,

especially position -8 eight nucleotides upstream the TSS, in combination with TFIIB B-

reader helix mutations also showed altered patterns in the TSS selection (Kuehner, Brow

2006). In a later published model of a yeast TFIIB/RNAP II crystal structure a contact of

TFIIB B-reader helix and DNA eight nucleotides upstream the TSS was proposed, which

confirmed previous results and strengthen the DNA scanning hypothesis (Kostrewa et al.

2009).

One of the first biochemical analyses of the B-linker domain of the archaeal Pyrococcus

furiosus TFB revealed that mutations or deletion of this domain indeed form a preinitiation

complex, but transcriptional activity is completely lost, and promoter DNA is not melted

anymore, indicating that this domain of TFB plays a key role in promoter opening (Kostrewa

et al. 2009).

The last domain to mention is the TFIIB B-reader loop domain. Because of the close

proximity of the B-reader to the active site of the RNAP in crystal structures containing yeast

RNAP II, TFIIB and DNA it was hypothesized that the B-reader loop stabilizes the

transcription bubble (Bushnell et al. 2004), and the separation of RNA from DNA was

proposed to be carried out by the loop domain by charge-repulsion (Sainsbury et al. 2013).
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Beside the above-mentioned functions of the transcription factor II B, it was also shown that

this factor can be the target for several transcription regulation factors to activate or repress

transcription. It was shown in affinity chromatography experiments that members of the Jun

activator protein family can directly interact with the B-core domain (Franklin et al. 1995). The

receptor for the thyroxine hormone in chicken (cTR3) was shown to bind efficiently TFIIB in in

vitro binding studies (Hadzic et al. 1995), and in a yeast two-hybrid protein interaction assay,

a specific protein-protein interaction between TFIIB and the vitamin D receptor was shown

(MacDonald et al. 1995). In addition, Krüppel, a segmentation protein in Drosophila, also

interacts with TFIIB when bound to DNA, and activates transcription (Sauer et al. 1995).

Another example of specific gene regulation is the cAMP-induced transcription of cAMP-

controlled genes. Here, the cAMP responsive element binding protein (CREB) can

independently and specifically interact with TFIIB in co-immunoprecipitation assays (Xing et

al. 1995). These few examples show that, beside the crucial function in basal transcription

initiation, TFIIB can also be the target for transcriptional regulators.

Orthologues of TFIIB exist in the transcription system of RNA polymerase I and RNA

polymerase III. For RNAP I a TFIIB-like protein was not observed, but with structural

predictions based on computational analysis of specific domains of TFIIB, a factor was

identified, which comprise the cyclin-folds of the B-core domain, the Zn-ribbon domain and a

hinge region similar to the B-reader and B-liker domain (Naidu et al. 2011). This protein is a

TBP-associated factor 1B (TAF1B) in human, and is a subunit of the transcription factor SL1.

It was shown that TAF1B interacts with the RNAP I recruitment factor hRRN3, which

converts the inactive Pol I to an initiation-competent enzyme (Engel et al. 2016), and

therefore plays a role in the recruitment of initiation-competent RNA polymerase I to the

rDNA promoter (Miller et al. 2001). TAF1B lacks the highly conserved B-reader and B-linker

region, and the Zn-ribbon domain plays a role in post-recruitment of the RNAP I in humans

(Naidu et al. 2011). It is also interesting to note that the yeast counterpart of TAF1B, Rrn7,

has little homology to TAF1B, suggesting a co-evolution of the two factors with species-

specific elements of RNAP I (Naidu et al. 2011).

Transcriptional activity and recruitment of RNAP III requires the transcription factor IIIB. This

factor is placed on TATA-less promoters of the Pol III system by TFIIIC, or TFIIIB can

autonomously interact with the few TATA-boxes present in the RNAP III system (Dieci et al.

2000). Once TFIIIB is bound to the promoter it repetitively recruits the 17 subunit RNAP III

(Kassavetis et al. 1990). TFIIIB consists of three subunits, a TATA binding protein, a TFIIB-

related factor 1 (Brf1) and the RNAP III specific B double prime 1 (Bdp1), whereas human

RNAP III contains two homologous Brf proteins, hsBrf1 and hsBrf2 (Willis 2002). The N-

terminus of Brf1 comprises the Zn-ribbon structure of the corresponding TFIIB, but this

domain is not essential for the recruitment of RNAP III (Kassavetis, Geiduschek 2006). It was

shown that Brf1 and Bdp1 mutations failed to open the promoter and therefore the N-terminal

Brf1 domain likely stabilizes the transcribed strand after DNA melting and is essential for

TFIIIB activity (Kassavetis et al. 2001).

Bacteria basically lack TFB and their transcription is initiated by σ-factors. Different types of 

σ-factors evolved in bacterial organisms to regulate targeted gene expression. These 

proteins can be classified into two major groups. The housekeeping factors or σ70, are

necessary for transcription of genes important for cell growth, and can be further classified

into group 1-4, whereas the members of these groups differ in absence or presence of four

distinct σ-domains (σR1.1, σR1.2-2.4, σR3.0-3.2 and σR4.1-4.2 (Lonetto et al. 1992). The 

second major group comprises the unrelated σ54 factors, which are involved in gene

regulation as a response to environmental signals, and require ATP (Paget 2015). For
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example one prominent member of the σ54 family is the well described σ32 factor, the product

of the htpR gene in E.coli, which is important for heat shock response and regulation

(Grossman et al. 1984). The domains of σ70 factors are thought to interact with each other to

maintain a relatively compact organization, making them unable to recognize promoter DNA,

but this conformation is changed if the factor associates with the RNA polymerase (Callaci et

al. 1998). The σ factors bind to the bacterial core RNAP (α2ββ´ω) to form a holoenzyme 

(α2ββ´ωσ) which is recruited to a bacterial promoter to initiate transcription via interaction of σ 

region 2 with the -10 promoter element, and σ region 4 with the -35 promoter element 

(Feklistov et al. 2014). TFB/TFIIB and σ-factors differ in their structure and the general 

domain composition. However, sigma factors were shown to have similar tasks in

transcription initiation, like direction of the RNA polymerase to the transcription start site and

the support of DNA melting and separation of the DNA strands (Feklistov et al. 2014). In

structures of eukaryotic and bacterial preinitiation complexes some regions of the σ-factor 

likely contact the same regions of DNA and the RNAP as the corresponding domains in

TFB/TFIIB. The B-finger, which consists of the B-reader helix and the B-reader loop domain

of TFB/TFIIB and the σ-finger of the conserved linker R3.2 between the domains σ3 and σ4 

are closely located to the transcribed strand of the active site of the RNA polymerase,

indicating direct and similar roles in initiation (Liu et al. 2010; Zhang et al. 2012a; Sainsbury

et al. 2013). Recent structural comparisons and sequence alignments between archaeal

TFB, eukaryotic TFIIB and bacterial σ-factors revealed that these factors are homologues 

(Burton, Burton 2014). Burton and Burton pointed out that a primordial initiation factor was

present in the LUCA comprising more elements of σ, and this factor radiates as the two 

lineages Archaea and Bacteria arise, whereas in Bacteria the σ co-evolves with the RNAP 

and the promoter sequence motif -35. Archaeal TFB has lost two HTH motifs and gained a

Zn-ribbon and a conserved B-reader element, which then evolved in both, the eukaryotic and

the archaeal lineage (Burton, Burton 2014).

It was already observed earlier, that the eukaryotic TFIIB and the archaeal TFB are highly

homologous in structure, domain composition and function (Thomm 1996). Interestingly,

some archaeal species comprise multiple TFB proteins with different functions, e.g. in

Haloferax volcanii, several TFB proteins were identified (Thompson et al. 1999). The genome

of Halobacterium salinarum NRC1 strain encodes seven TFB proteins, whereas tfbF was

shown to be essential for growth under standard conditions (Facciotti et al. 2007), and tfbA,

tfbC, and tfbG are not (Coker, DasSarma 2007). These proteins function together, as an

interaction between the proteins among themselves were demonstrated in protein-protein

interaction assays (Facciotti et al. 2007). TfbF further plays a role in temperature-dependent

gene regulation (Bleiholder et al. 2012). Sulfolobus solfataricus and related members of the

phylum Crenarchaeota contain three paralogs of TFB, whereas tfb3 lack the B-finger and

DNA binding domains, but is significantly upregulated under UV-light exposure (Paytubi,

White 2009). In the genome of the used model organism Pyrococcus furiosus, two TFB

proteins are encoded, whereas TFB1 is homologous to eukaryotic TFIIB, and TFB2 was

proposed to be a paralog of TFB1 (Micorescu et al. 2008). TFB2 lacks the typical conserved

B-finger motif in comparison to TFB1, and it was suggested that TFB2 is expressed under

heat-shock conditions (Shockley et al. 2003).

Taken together, the transcription factor B and its related proteins TFIIB, σ, Brf1, Rrn7 and the 

multiple TFB copies of some archaea are present under different conditions at different

RNAP systems to initiate transcription. Beside the various functions in regulation of gene

expression of the TFB variants, the role of the general transcription factor is to recruit the

RNA polymerase to the promoter and support DNA melting and TSS selection.
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3. The RNA polymerase

DNA-dependent RNA polymerases are the central enzymes for gene expression in all living

cells. These enzymes belong to the conserved protein family of multi-subunit RNA

polymerases, and possess a conserved core consisting of five subunits within all three

domains of live (Werner 2008) (Figure 4). The overall structure of the core polymerase looks

like a `crab claw`, and the two largest subunits form the pincers which defines the main cleft

with a 25Å width for DNA loading (Ebright 2000) (Figure 5). Based on the size of the different

subunits, the nomenclature is Rpb1 for the largest and Rpb12 for the smallest subunit in

eukaryotes, and Rpo1 - Rpo13 in archaea, respectively, whereas latter are often referred to

RpoA´ - RpoG (Figure 4). All subunits can be grouped into three classes. Class I contain the

catalytic subunits, class II the subunits important for the assembly of the holo-enzyme, and

subunits belonging to class III are auxiliary subunits (Werner, Grohmann 2011) (Figure 4).

The assembly of this large multi-subunit enzyme occurs in a stepwise manner and was

described for the eukaryotic Pol II enzyme (Wild, Cramer 2012). Three distinct assembling

steps are forming the complete RNA polymerase, whereas the subunits Rpb10/12/11/3 form

the first subcomplex which then interact with the Rpb2/9 intermediate, and in the last step the

third subcomplex, Rpb1/5/6/8 associates to the other subunits to form the ten subunit core of

the RNA polymerase (Wild, Cramer 2012).

The first crystal structure of the bacterial RNA polymerase was solved in 1999 for Thermus

aquaticus with a resolution of 3.3Å (Zhang et al. 1999), and for yeast RNAP II in 2000 with a

resolution of 3.0Å, whereas this RNAP lacked the stalk subunits Rpb4/7 (Cramer et al. 2000).

Eight years later, the complete RNAP crystal structure of the crenarchaeal organism

Sulfolobus solfataricus was solved at a resolution of 3.4Å (Hirata et al. 2008), which

completes the set of available crystal structures of RNA polymerase enzymes from all three

domains. Intensive structural comparisons of the three enzymes revealed an overall

conservation in sequence, subunit composition, structure, function and mechanism, and

therefore it was pointed out that all RNA polymerases originated from one latest universal

common ancestor (LUCA), and the primordial RNAP resembles rather the bacterial RNAP

structure (Korkhin et al. 2009; Werner, Grohmann 2011). The structural conservation was

also confirmed by the exchange of subunits between Pol II and archaeal RNAP, e.g. RpoP,

which is essential for growth, can be incorporated into a ΔRpb12 RNAP II and can 

complement its function in vivo and in vitro (Reich et al. 2009). In turn, Rpb12, which

contacts Rpb2 and Rpb3, can replace RpoP in the archaeal RNA polymerase (Reich et al.

2009). A further exchange was performed with the eukaryotic Rpb5 subunit and the archaeal

counterpart RpoH (Grünberg et al. 2010). RpoH is required for early steps of transcription

initiation, and the activity of ΔRpoH RNAP can be rescued by Rpb5 (Grünberg et al. 2010). A 

chimeric Rpb5/RpoH construct consisting of the N-terminal yeast Rpb5 domain and the C-

terminal RpoH of Pyrococcus furiosus RNAP, complement growth deficiencies of a ΔRpb5 

RNAP II enzyme, but only if the corresponding amino acid E62 of RpoH is exchanged with

lysine (Sommer et al. 2014).

The most conserved regions of the polymerase enzyme are located around the active center

of the polymerase (Figure 5) on two beta-psi-barrels, forming the site for nucleotide

incorporation (Ruprich-Robert, Thuriaux 2010). It is defined by the two largest catalytic

subunits and each of these subunits are encoded by one gene in bacteria and eukaryotes,

whereas the largest subunit is usually split into two genes RpoA´, and RpoA´´ in archaea

(Werner 2007). The largest subunit comprises the highly conserved elements `lid´, `clamp

coiled-coil domain´, `rudder´, `bridge´, and the `trigger loop´, a couple of `switches´ and a

`funnel´, whereas the `fork loop 1´, `fork loop 2´and the `wall´ together with the `lobe´,
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`protrusion´, and `switch´ are located at the second largest subunit (Ruprich-Robert, Thuriaux

2010). The clamp coiled-coil (CCC) domain is an important binding site for region 2 of the σ70

and TFB/TFIIB, respectively, and together with TFIIB it supports DNA melting and is further

part of the clamp domain (Kostrewa et al. 2009). This domain is either in open or closed

Figure 4: Structural comparison of RNA polymerases of the three domains and their respective

subunits. A) Crystal structure of the bacterial Thermus aquaticus RNAP (Zhang et al. 1999)(PDB:

1I6V), B) the euryarchaeal Thermococcus kodakarensis RNAP (Jun et al. 2014)(PDB: 4QIW), C) the

eukaryotic Saccharomyces cerevisiae RNAP II (Kostrewa et al. 2009)(PDB: 3K1F) and D) the

crenarchaeal Sulfolobus solfataricus RNAP (Hirata et al. 2008)(PDB: 3HKZ) are shown.

Corresponding subunits are equally colored for each structure, whereas the following general color

code is used: class I subunits forming the core are colored with different blue, class II subunits have

red colors and are shared between archaea and eukaryotes, whereas class III subunits are unique

colored and are not shared in every phylum. E) Overview of the subunits for bacterial, archaeal and

eukaryotic Pol I - III enzymes Homologous subunits have the same color, and color code is the same

as in A) - D)( Structure of Pol I and Pol III not shown. Taken from (Vannini, Cramer 2012)).

conformation, which strongly depends on the interaction with the transcription factor E and

the elongation factor Spt4/5, whereas the open conformation enables a better loading of the

DNA, and the closed conformation increases the processivity of the RNAP due to function as

a clamp to keep DNA in position (Grohmann et al. 2011; Schulz et al. 2016).

The rudder and the lid are both part of the largest subunit of the RNA polymerase and are

located at the upstream edge of the RNA-DNA hybrid at the point where the t-strand of the

transcription bubble reanneals with the non-template strand of the DNA (Kuznedelov et al.

2002; Naryshkina et al. 2006). Both are involved in the maintenance of the transcription

bubble during elongation (Vassylyev et al. 2007), whereas the lid element supports the

separation of RNA from DNA by interaction with nascent RNA at the upstream edge of the
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RNA-DNA hybrid in elongation complexes (Naryshkina et al. 2006). The rudder element was

suggested to stabilize the elongation complex via direct interactions with the nascent RNA

(Kuznedelov et al. 2002) and is required for open complex formation (Naji et al. 2007). The

highly flexible trigger loop discriminates between dNTPs and NTPs by direct interaction with

the incoming substrate, and further plays a key role in transcription fidelity (Fouqueau et al.

2013). The bridge helix is also a flexible region which was thought to translocate the DNA

after NTP incorporation, possibly by a kinking mechanism (Weinzierl 2011). Weinzierl

showed that a small protein region termed the link domain is also involved in this process as

this domain functions as a conformational sensor that recognizes pyrophosphate (PPi) and

induces kinking of the bridge helix. Both, the TL and the bridge act in a coordinated manner

(Weinzierl 2011). The fork loop 1 is part of the second largest subunit, and is absent in

bacterial RNA polymerases (Gnatt et al. 2001). This region participate in the maintenance of

the transcription bubble in elongation complexes, and was shown to be essential for

transcription but not involved in preinitiation complex assembly in human (Jeronimo et al.

2004). In contrast, deletion of the fork loop 1 showed no requirement of this domain in

promoter-dependent transcription in archaea (Naji et al. 2007). The fork loop 2 is part of the

second largest subunit and is a small flexible region which was shown to

Figure 5: Crab claw structure and conserved regions of the RNA polymerase enzyme. The

polymerase enzyme resembles a crab claw structure defined by the upper and lower jaw (grey), which

forms the DNA binding cleft (indicated by a black ellipse). Conserved regions are highlighted using the

following color code: Wall (dark green), Lid (yellow), clamp domain (red), rudder (cyan), trigger loop

(orange), fork loop 1 (green), fork loop 2 (brown), bridge helix (blue), Mg
2+

-ions (magenta). The active

site for NTP incorporation is centered next to the Mg
2+

ions and the bridge. Trigger loop and fork loop

2 are truncated in this structure due to the high flexibility. Lobe, protrusion, and switch regions are not

highlighted. Structure modified from PDB: 4BBS (Sainsbury et al. 2013). Structural information taken

from (Kostrewa et al. 2009; Naji et al. 2007; Weinzierl 2011; Fouqueau et al. 2013; Garcia-Lopez,

Navarro 2011; Ruprich-Robert, Thuriaux 2010).
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interact directly with the unpaired DNA at the nt-strand position i+2, which is two nucleotides

next of the incoming substrate binding site (Kireeva et al. 2011). The fork loop 2 is further not

involved in processes like DNA melting, translocation, and transcriptional activity, but it

modulates interactions with the incoming NTP substrate and therefore regulates the catalytic

step during transcription cycle (Kireeva et al. 2011). The highly conserved wall element is

formed by the Rpb2 subunit, and this element enables binding of TFB/TFIIB with its B-core

element, whereas a slight rotation was predicted together with the lobe element and the

protrusion to partially close the cleft (Kostrewa et al. 2009; Sainsbury et al. 2013). The Mg2+

ions are located at the active site and are trapped by aspartate residues, whereas the first

Mg2+ is permanently located at the incorporation site, and the second Mg2+ ion is recruited to

interact with the phosphate residue of the incoming NTP (Sosunov et al. 2003). All RNAPs

share the same mechanism of RNA synthesis and this process is termed the nucleotide

addition cycle (Brueckner et al. 2009).

Despite the high level of conservation between the domains a few differences in structure

exist. The most pronounced difference between the archaeal/eukaryotic RNA-polymerase

and bacterial RNA polymerase is the stalk, which is defined by the subunits RpoE´ and RpoF

in archaea, and their eukaryotic counterparts Rpb4 and Rpb7, respectively (Werner,

Grohmann 2011). In yeast, Rpb4/7 interacts reversibly with the RNAP (Orlicky et al. 2001),

and in archaea the stalk is stably incorporated (Grohmann et al. 2009). It was shown for the

11-subunit RNAP of P. furiosus that the core enzyme without the stalk is able to open DNA,

but not to the full transcription bubble length, whereas addition of RpoE´ stimulates the

transcription bubble formation, and RpoF does not influence the activity of RNAP during

transcription (Naji et al. 2007). The stalk further increase the processivity rate of the RNAP

during elongation (Hirtreiter et al. 2010b), and it was shown that the stalk is necessary for

TFE activity due to the close location of TFE to the stalk, which induces a conformational

change of the clamp to an open configuration to enable DNA loading and better DNA melting

(Schulz et al. 2016).

A striking difference between archaeal and eukaryotic enzymes is the carboxy terminal

domain of the largest subunit Rpb1 in eukaryotes, which lacks in archaeal organisms, and

plays an important role in post-translational modifications during the transcription cycle to

modulate activities in transcription and processing of nascent RNA (Hsin, Manley 2012). The

subunit Rpb9 is a further example of differences between Archaea and Eukaryotes, as this

subunit is exclusive for eukaryotic RNAPs, and it was shown that Rpb9 interact with the

transcription factor IIF in eukaryotes (Ziegler et al. 2003). However, there is also a difference

in the archaeal domain concerning the subunit composition. In Crenarchaeota, the subunit

RpoG (Rpo8, respectively), a homolog of the eukaryotic Rpb8 is present, which lacks in the

RNA polymerase of euryarchaeal organisms, and was first identified in the crystal structure

of the Sulfolobus shibatae RNAP enzyme (Korkhin et al. 2009). This enzyme further contains

a crenarchaeota-specific subunit Rpo13, which concrete function is still unknown, but it was

hypothesized that it plays a role in initiation and elongation, due to the close location to the

proximal path of the DNA (Wojtas et al. 2011).

In Eukaryotes, two further specific RNA polymerases emerged due to the increased

complexity of regulation of transcription of specific genes, the RNA polymerase I and III.

These enzymes contain 14 and 17 subunits, whereas the RNAP II contains 12 subunits, and

ten subunits are shared within the three enzymes (Vannini, Cramer 2012). RNAP I contains

the additional specific subunits A12.2C ribbon, and the subcomplex A49/A34.5 (Kuhn et al.

2007), the Pol III contains the C11C ribbon, the subcomplex C37/C53 and the subunits C82,

C34 and the Pol III specific C31 (Wang, Roeder 1997; Landrieux et al. 2006). Structural
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comparisons showed that the C11 C-ribbon and the A12.2 C-ribbon are related to the TFIIS

C-terminus and therefore involved in RNA cleavage, whereas the C37/C53 subcomplex and

the A49/A34.5 subcomplex are related to the TFIIFα/β subunits of the Pol II system and are 

important for initiation complex formation and start site selection, and the RNAP III specific

subunit C31 stabilizes the open complex (Vannini, Cramer 2012). The C34 subunit functions

in DNA opening (Brun et al. 1997), whereas the C82 subunit is related to the TFIIEα domain 

of the Pol II system (Wang, Roeder 1997).

Despite the degree of specialization of the eukaryotic RNA polymerases, the mechanism of

RNA synthesis is highly conserved. In addition, the multi-subunit enzymes are platforms for

transcription factors as a further point of transcription regulation.

4. The transcription factor E

TBP and TFB alone are sufficient to direct archaeal promoter-dependent transcription in vitro

(Hausner et al. 1996; Qureshi et al. 1997; Bell, Jackson 1998; Soppa 1999). Eukaryotic

RNAP II transcription can also be activated with TBP and TFIIB in vitro, using strong

promoters and negatively supercoiled DNA templates (Parvin, Sharp 1993). However, a third

factor associates to the core preinitiation complex (DNA-TBP-TFB-RNAP) which is termed

transcription factor E (TFE). This factor is not strictly necessary for transcription initiation, but

supports promoter opening and stabilization of the transcription bubble and the complex

(Grünberg et al. 2007).

Eukaryotic TFIIE consists of TFIIEα and TFIIEβ, whereas most archaeal organisms express 

a single TFE, which is structurally similar and homolog to the TFIIEα subunit (Bell et al. 2001; 

Hanzelka et al. 2001). TFIIEα/TFE comprises a winged helix domain and a Zn-ribbon 

domain, whereas TFIIEβ contains two winged helix motifs important for protein-protein 

interactions and DNA binding (Tanaka et al. 2015). Point mutations of the human TFIIEα 

domain revealed that the N-terminal half of the winged helix motif binds to TFIIEβ helix-loop-

helix domain, and the C-terminus of TFIIEα interacts with the N-terminal cyclin-fold of TFIIB 

(Tanaka et al. 2015). Interactions between TFIIEα and TFIIB, and between TFIIEβ and 

subunits p62 and p52 of TFIIH were demonstrated (Ohkuma et al. 1995), as well as contacts

between TFIIEα and RNA polymerase subunits Rpb5, Rpb1 and Rpb2, and between TFIIEβ 

and RNA polymerase subunits Rpb2 and Rpb12 (Hayashi et al. 2005). In eukaryotes

TFIIEα/β helps to recruit the transcription factor TFIIH, which is important for ATP-dependent 

DNA melting (Holstege et al. 1996), whereas deletion of TFIIEα results in impaired growth, 

suggesting an essential role in vivo (Kuldell, Buratowski 1997). For eukaryotic TFIIE a

crosslink to the non-transcribed strand was observed in the open complex (Kim et al. 2000).

In addition, eukaryotic RNAP III comprises two subunits C82 and C34 (human C62 and C39),

which are homologous to TFIIEα and TFIIEβ, whereas RNAP I lack a related TFIIE subunit or 

protein (Carter, Drouin 2010; Vannini, Cramer 2012).

In archaea it was shown that TFE is not strictly required for transcription, but TFE stimulates

transcription initiation at core promoters by enhancing DNA strand separation (Forget et al.

2004; Naji et al. 2007), at weak promoters (Hanzelka et al. 2001) and under TBP limiting

conditions (Bell et al. 2001). Moreover, TFE can bind single stranded DNA nonspecifically,

and using crosslinking experiments it was shown that the winged helix of TFE directly

interacts with the non-transcribed strand of the transcription bubble at position -9 and -11

relative to the TSS (Grünberg et al. 2007). This finding suggested a role for TFE in DNA

melting and stabilization of the transcription bubble, whereas the stimulatory effect of open

complex formation was shown using KMnO4 footprinting (Naji et al. 2007).

Cryo-electron microscopy experiments (He et al. 2013), as well as single molecule FRET

experiments located the winged helix domain of TFIIEα in the preinitiation complex at the tip 
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of the clamp coiled coil domain of the RNA polymerase subunit 1, and the Zn-ribbon domain

at the base of the RNAP clamp in close proximity to the subunits 4/7 of the RNA polymerase

(Grohmann et al. 2011). In this study it was shown that the subunits Rpo4 and Rpo7 are

necessary for TFE activity, and binding of TFE induces a conformational change in the clamp

domain of the RNAP to an open configuration with a higher width of the DNA binding groove,

which enables template DNA loading (Grohmann et al. 2011). Interestingly, TFE and TFB

both interact with the clamp domain, which might be the reason, why TFE can rescue defect

TFB mutations (Grünberg et al. 2007; Grohmann et al. 2011). The interaction of TFE with the

RNAP and the opening of the flexible clamp domain were thought to be concomitant with

DNA melting and template loading, whereas the interaction of TFE to the single stranded

non-transcribed strand increases the stability of the transcription complex (Blombach et al.

2016). Studies in the yeast RNAP II system also demonstrated specific interactions of the

TFIIEα WH domain and RNAP II clamp, and TFIIEβ tandem WH domain with DNA (Grünberg 

et al. 2012). Some members of the Crenarchaeota also encode the TFIIEβ subunit 

(Blombach et al. 2016). In Sulfolobus acidocaldarius, for example both TFIIE subunits are

present, but TFIIEβ was shown to be essential (Blombach et al. 2015). In contrast to the 

eukaryotic and archaeal lineages, bacteria do not use TFE/TFIIEα-like proteins (Chakraborty 

et al. 2012), but interestingly, one factor, CarD shows similar functions in enhancing

promoter opening, but this factor is not related (Bae et al. 2015; Davis et al. 2015).

5. Additional eukaryotic transcription factors TFIIF and TFIIH

TFIIF is a heterodimeric protein consisting of two subunits, TFIIFα, or RNA polymerase 

associating protein (RAP) 74, and TFIIFβ or RAP30 (Flores et al. 1988), whereas the 

subunits in yeast termed Tfg1, Tfg2 and a third yeast-specific subunit Tfg3, which is not

essential for transcription (Chafin et al. 1991). Structural analysis of human TFIIF showed

that both subunits TFIIFα and TFIIFβ contain a winged helix domain, which in turn are 

connected to the dimerization module formed by the N-terminal regions of TFIIFα/β (Gaiser 

et al. 2000; Kamada et al. 2001). It was shown that TFIIF binds to RNAP II, whereas TFIIF is

anchored via its dimerization module and transform the RNAP into a transcription initiation

competent RNAP II/TFIIF complex (Burton et al. 1986; Eichner et al. 2010). Mobility shift

assays with purified human RNAP II, TFIID, TFIIB, TFIIA and the TFIIE subunits revealed

that the small subunit of TFIIF, TFIIFβ (RAP30) is sufficient for the recruitment of RNAP II to 

the promoter site (Flores et al. 1991). Beside the recruitment of RNAP II, a few functions for

TFIIF were predicted in the initiation complex. Cryo electron microscopy of the human

transcription initiation complex indicates that TFIIF stabilizes the downstream DNA of the

cleft, and TFIIF seems to interact with the downstream BRE and with the B-core domain of

TFIIB (He et al. 2013). TFIIF was shown to be involved in TSS selection (Ghazy et al. 2004),

it stimulates first phosphodiester bond formation, and stabilize an early RNA-DNA hybrid

(Khaperskyy et al. 2008). TFIIF further suppresses levels of abortive transcripts during

initiation by increasing the processivity of the RNA polymerase, and together with TFIIH it

supports promoter escape and prevent the arrest of RNAP II during early elongation (Yan et

al. 1999). Paralogues of TFIIF are also present in RNAP I (A49-A34.5) and in RNAP III (C53-

C37) (Geiger et al. 2010).

The last factor which completes the eukaryotic initiation complex is TFIIH. This factor is

recruited by TFIIE, and is usually required for transcription in vitro (Maxon et al. 1994). TFIIH

plays an important role in DNA melting and promoter escape (Goodrich, Tjian 1994; Holstege

et al. 1996). TFIIH is a large multi-subunit complex consisting of 10 subunits in total, whereas

six subunits XPD, p62, p52, p34, p8 and p44 forms the core module of the human TFIIE

(Rad3, Tfb1, Tfb2, Tfb4, Tfb5 and Ssl1 in yeast, respectively), and three subunits CDK7,



Introduction

20

cyclin H, and MAT1 form a kinase module (Kin28, Ccl1, and Tfb3 in yeast) (Gibbons et al.

2012).

The most important subunit for the function of TFIIH is XPB in human and Ssl2 in yeast,

respectively. These subunits, together with XPD/Rad3 are ATPases, whereas both have 3´-

5´ and 5´ - 3´ directionality (Schaeffer et al. 1993; Tirode et al. 1999). Cryo-EM analysis

showed that TFIIH is located above the cleft of the RNA polymerase II and contact the PIC at

two sites, one next to TFIIE, and one is located in proximity to the downstream DNA (He et

al. 2013). It was suggested that TFIIH opens the DNA using ATP as energy source, but it

was shown that opening of DNA can function independently of the Ssl2/XPB helicase activity

(Lin et al. 2005). Moreover, these subunits act as a double stranded DNA translocase to coil

the downstream non-template strand towards the RNAP II cleft, which creates torsion and

unwinding of DNA, which supports DNA opening (Grünberg et al. 2012; Fishburn et al.

2015). In addition, TFIIH is involved in the DNA excision repair pathway via its XPD subunit,

which opens the DNA to excise a mismatched nucleotide (Schaeffer et al. 1993; Egly, Coin

2011).

C. From initiation to elongation and termination
After successful assembly of the complete preinitiation complex at the promoter site the

double-stranded DNA has to be melted around the initially melted region containing the

transcription start site (Pan, Greenblatt 1994; Hausner, Thomm 2001). The resulting single-

stranded region is termed the transcription bubble and extends from -9 to +5 in P. furiosus

(Spitalny, Thomm 2003), and has a size of 18 nucleotides in eukaryotes (Liu et al. 2010), and

14 base pairs in bacterial complexes (Hsu 2002). Recent studies showed that TBP and TFB

are located closer to the surface of RNA polymerase in the archaeal system, which likely

supports DNA melting via a reduced melting temperature (Nagy et al. 2015). In addition, the

AT-composition of the initially melted region further reduces the energy required for

separating both strands, whereas the resulting torsion of the DNA, which is induced by DNA

bending and transcription factors, may also trigger DNA strand separation. However, in

eukaryotes separation is basically ATP-dependent, and driven by the ATPase subunit of

TFIIH (Holstege et al. 1996). Moreover, the clamp coiled-coil domain of the large subunit of

the polymerase, together with the TFB/TFIIB B-linker domain support promoter opening, as

these peptide regions keep the strands apart and stimulate DNA melting (Kostrewa et al.

2009). The transcribing strand slips into the cleft of the polymerase near the active site,

which was thought to be stabilized by the TFB/TFIIB B-reader loop domain (Kostrewa et al.

2009; Sainsbury et al. 2013). The non-transcribed strand is further stabilized by direct

interactions with TFE/TFIIE (Grünberg et al. 2007). The t-strand DNA is threaded through the

active site and scanned for the correct initiation site by the help of the TFB/TFIIB B-reader

helix (Giardina, Lis 1993; Kuehner, Brow 2006). The polymerase starts with RNA synthesis,

leading to short 2-12 nucleotide RNAs in the so-called abortive initiation (Duchi et al. 2016).

This process is not well understood, but it was hypothesized that the polymerase does not

dissociate from the promoter and constantly re-start RNA synthesis (Carpousis, Gralla 1980).

This process is repeated until a stable RNA-DNA hybrid is formed (Pal, Luse 2003). It was

shown in the bacterial system that the production of aborted transcripts happens very fast

until a 6-mer RNA is formed, then the initial complex undergoes pausing to overcome several

checkpoints, and then the synthesis continues (Duchi et al. 2016). The t-strand is pulled

through the active site of the polymerase during initial RNA synthesis, resulting in DNA

scrunching, as the polymerase remains stationary through this event (Revyakin et al. 2006).

When RNA reaches a length of six nucleotides, it was suggested that the B-reader loop
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domain stimulates separation of the RNA strand from DNA due to charge dependent

interactions (Sainsbury et al. 2013). It is further postulated that RNA clashes with the B-

reader helix at a length of eight nucleotides (Kostrewa et al. 2009), whereas it is suggested

that this interaction is necessary to guide the transcript towards the RNA exit channel of the

polymerase (Sainsbury et al. 2013). It was further postulated that the B-reader is displaced

during this process, as this domain was predicted to be in the path of the advancing 5´end of

the RNA (Bushnell et al. 2004; Kostrewa et al. 2009; Sainsbury et al. 2013). The

displacement of the corresponding domain was also shown for the bacterial σ-factor, as the 

3.2 domain is in path of the 5´end of the RNA (Basu et al. 2014). This B-reader displacement

may trigger the following collapse of the transcription bubble, which was hypothesized to take

place at register +10/+11 (Spitalny, Thomm 2003; Luse 2013), and marks the end of

promoter clearance in eukaryotic transcription systems (Pal et al. 2005). In the very last step

of the initiation, it was suggested that the nascent RNA with a length of 12/13 nucleotides

clashes with the TFB/TFIIB Zn-ribbon domain, which blocks the exit pore of the RNA

polymerase, leading to a destabilization of TFB/TFIIB and causes a release of this

transcription factor from the complex (Tran, Gralla 2008; Cabart et al. 2011; Sainsbury et al.

2013). TBP remains bound to the promoter (Xie, Reeve 2004b), and the RNA polymerase

enters the elongation stage of transcription to continue synthesis of RNA.

Recent studies on the archaeal transcription system demonstrated that an elongation factor,

Spt4/5, competes with the initiation factor TFE for binding to the polymerase during transition

from initiation to elongation (Grohmann et al. 2011). Spt4/5 functions as a clamp, it binds

across the main cleft above the DNA and closes the cleft like a clamp, which increases the

processivity of the RNA polymerase during elongation (Schulz et al. 2016). The protein

consists of two subunits, Spt4 and Spt5, which form a stable complex and stimulates

transcription processivity in vitro (Hirtreiter et al. 2010a). The eukaryotic/archaeal subunit

Spt5 possess a NGN sequence (NusG N-terminal), which has a high sequence identity to the

monomeric bacterial elongation factor NusG, and is the important domain for RNAP

interaction (Mooney et al. 2009). Archaeal and eukaryotic Spt5 bind to the small protein

termed Spt4, which is a structural component to stabilize the Spt4/5 complex (Wenzel et al.

2010). The interaction with RNA polymerase can increase the processivity of the enzyme

during elongation, whereas it was shown that a RNAP-Spt4/5 complex can inhibit recruitment

to the promoter site, as the closure of the main cleft prevents DNA loading during the

initiation step (Werner 2012). Archaeal/eukaryotic Spt5 and the bacterial NusG protein

additionally contain KOW domains, which are platforms for other regulating proteins

(Hirtreiter et al. 2010a). One factor which interacts with the NusG KOW domain is Rho, a

termination factor in the bacterial transcription system (Pasman, Hippel 2000).

During elongation process a tight binding of a stable RNA/DNA hybrid is required (Nudler et

al. 1997), but synthesis is often disrupted by pausing, arrest and stalling events due to

missing or misincorporated substrates (Werner, Grohmann 2011). These events cause a

reverse movement of the RNAP and is called backtracking (Erie 2002). This proofreading

mechanism usually leads to a displacement of the RNA 3´end from the active site, and

cleavage of RNA (Lisica et al. 2016). A specific cleavage transcription factor (II)S (TFIIS) was

identified in the archaeal and eukaryotic RNAP II system, which extends into the active site

of the RNAP and supports cleavage of the 3´end of the RNA ( (Izban, Luse 1992; Hausner et

al. 2000; Kettenberger et al. 2004). Bacteria have universal proteins belonging to the

TFS/TFIIS-related GreA family (Esyunina et al. 2016), and RNAP I and RNAP III contain

TFIIS-related subunits A12.2 and C11 which possess own cleavage activity (Chedin et al.

1998; Kuhn et al. 2007). After release of the cut RNA it reanneals with the active site and
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synthesis continues.

The transcription cycle ends with termination of transcription. Several models for the

disassembly of the ternary elongation complex (TEC) were postulated for the respective

RNAP system and are summarized in (Washburn, Gottesman 2015; Porrua et al. 2016).

Termination of archaeal RNAP is almost similar to the termination mechanism described for

RNAP III (Fouqueau et al. 2013) and is often controlled by U-stretches at the end of the RNA

transcripts (Dieci et al. 2013). It was hypothesized that the stretch (six to seven in yeast, four

to five in mammals (Orioli et al. 2011)), results in a weak dU:dA hybrid, which is poorly

stable. This instable construct lead to backtracking and subsequent release of the RNAP III

from the DNA template (Nielsen et al. 2013). The same mechanism was hypothesized for

archaeal organisms. For Thermococcus kodakarensis in vivo (Santangelo et al. 2009),

histone genes in Pyrococcus furiosus (Spitalny, Thomm 2008), as well as for

Methanothermobacter thermoautotrophicus (Santangelo, Reeve 2006) it was shown that

termination in archaea also depends on the presence of oligo(dT) sequences. With

termination of transcription, the RNA transcript is released, and the RNA polymerase can

reassociate to the promoter for a new initiation event to start the next transcription round.

D. The replication protein A of P. furiosus
At the beginning of the thesis experiments were performed in our laboratory in collaboration

with a French institute using the replication protein A of P. abyssi (PabRPA). In network

interaction studies a specific interaction of PabRPA and RNAP was demonstrated (Pluchon

et al. 2013). Due to this interaction, the influence of PabRPA on transcription was

investigated, and it was shown that the presence of PabRPA in the P. furiosus transcription

system stimulates the formation of RNA transcripts in vitro (Pluchon et al. 2013), whereas the

function of RPA in transcription is unknown. To analyze the possible role of the P. furiosus

RPA (PfuRPA) during transcription, several experiments were performed.

RPA is a member of the single stranded binding (SSB) protein family, which are distributed

among the three domains, and are usually present at single stranded DNA, like replication

bubbles, damaged DNA sites, and recombination intermediates (Fanning et al. 2006).

Binding of these proteins to single stranded DNA prevents the reannealing and degradation

of DNA and can help to recruit proteins involved in DNA synthesis and repair (Fanning et al.

2006). RPA is a heterotrimeric complex consisting of three subunits RPA41, RPA14 and

RPA32 in Pyrococcus strains (Komori, Ishino 2001). The large archaeal subunit RPA41

shows sequence similarities to the eukaryotic RPA70 subunit, but the two corresponding

smaller subunits have no sequences in common (Komori, Ishino 2001). Sequence

alignments of euryarchaeal RPAs suggest a closer relationship to eukaryotic RPAs than to

the SSBs in Crenarchaeota or bacterial SSBs (Pluchon et al. 2013), whereas the

crenarchaeal SSB is striking similar to bacterial SSBs (Kerr et al. 2003). On the other hand,

structural comparisons of the important oligonucleotide-oligosaccharide binding (OB) fold of

crenarchaeal SSB indicate a relation to eukaryotic and euryarchaeal OB folds of RPA

(Murzin 1993). The eukaryotic RPA70, as well as the Pyrococcus RPA41 comprises an

additional Zn-finger motif which is strongly conserved (Bochkareva et al. 2000), whereas

RPA70 harbors four (OB) folds, and the smaller subunits contain usually one OB fold

(Skowyra, MacNeill 2012). However, different organisms encode variations of SSBs which

differ in the number of OB-folds, and the presence of a Zn-finger motif (Skowyra, MacNeill

2012).

RPA of Pyrococcus furiosus interact with the recombination proteins RadA and Hjc as well as

with replication proteins like the DNA polymerase, primase, proliferating cell nuclear antigen
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(PCNA) and the replication factor C in immunoprecipitation assays (Komori, Ishino 2001). In

in vitro experiments a stimulation of the RadA promoted strand exchange in presence of RPA

was observed (Komori, Ishino 2001). In Haloferax volcanii the large subunit RpaC contains

three OB folds which are essential for growth, whereas the two smaller subunits RpaA and

RpaB are not (Skowyra, MacNeill 2012). In growth experiments in the Thermococcus

kodakarensis ΔTrmBL2 strain, which lacks the DNA binding protein TrmBL2, RPA is 

upregulated possibly due to the DNA maintenance role of RPA (Maruyama et al. 2011).

Beside the role in replication and DNA maintenance it was shown that Sulfolobus

solfataricus SSB stimulate transcription under TBP limiting conditions and in presence of the

chromatin protein Alba, suggesting a role in chromatin disruption at the promoter and RNA

polymerase recruitment (Richard et al. 2004). The interaction of RPA with the RNA

polymerase was described for Pyrococcus furiosus in co-purification experiments (Komori,

Ishino 2001), and further analysis with a quantitative proteomic approach also showed that

RPA is collocated with RNAP II on transcribed regions of active genes (Sikorski et al. 2011).

In high throughput protein interaction studies yeast Rfa1 (=RPA70, RPA41) is associated

with RNAP II (Krogan et al. 2006). This finding leads to the assumption that RPA is also part

of the elongation complex and binds to and stabilize the transcription bubble (Sikorski et al.

2011). However, the exact role of the replication protein A in transcription and the molecular

interactions with the transcription machinery are still unknown.

E. Scientific questioning of this thesis
At the beginning of this thesis a crystal structure of a eukaryotic initially transcribing complex

(ITC) was solved at a resolution of 3.4Å (Sainsbury et al. 2013). This structure consists of

RNAP II, TFIIB, and a 6nt RNA, which is bound to the transcribed strand (Figure 6). It was

demonstrated that the TFIIB B-reader domain, consisting of the B-reader helix and loop

region, is in close proximity to the active site of the polymerase. Several aspects with respect

to the mechanism of transcription initiation were postulated based on this structure. First, it

was assumed that the B-reader loop stabilizes the initial transcription bubble due to the close

location to the t-strand. Second, the B-reader loop interact with the nascent RNA with a

length of 6nt. Based on the negative charge of the yeast TFIIB B-reader, it was suggested

that RNA is separated from DNA via charge-dependent interactions between the loop region

and the 5´end of the nascent RNA. Third, the advancing RNA clashes with the B-reader helix

to be guided towards the exit channel of the polymerase after it is separated from DNA.

Fourth, because the Zn-ribbon blocks the exit pore of the RNAP II, TFIIB has to be released

from the transcription complex to enter productive elongation, whereas this release is

possibly triggered by a clash of the RNA with the Zn-ribbon at a length of 12/13nt. However,

these postulations derived from structural analysis, which represents one image at a distinct

point during transcription.

Structural information of the archaeal transcription initiation with respect to topological

transitions in the initially transcribing complex and the transition to elongation lacks,

especially for the transcription factor B of the organism P. furiosus.

To investigate dynamic processes of Pyrococcus furiosus TFB (PfuTFB) during transcription

initiation, an approach was used in this study which is based on UV-inducible unnatural

amino acids and specifically radiolabeled DNA templates in the archaeal Pyrococcus furiosus

in vitro transcription system. Distinct amino acids of the PfuTFB, which correspond to amino

acids of the related yeast TFIIB, were substituted with an unnatural amino acid, which reacts

with C-H-bonds to form a covalent linkage when exposed to UV-light. In addition, the DNA is

site-specifically radiolabeled at selected sites on the template. Both, the labeled DNA and the
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respective TFB variants are used in in vitro transcription reactions together with TBP, RNA

polymerase and TFE to map contacts between TFB and DNA. If the crosslinker is in

proximity to the labeled site, the TFB is covalently bound to the DNA, whereas a radiolabeled

band at the size of TFB can be monitored using SDS-PAGE and autoradiography. This

method was basically established by Dr. Robert Reichelt in the laboratory of the associate

Professor Michael Bartlett of the Portland State University, Ohio, USA. To investigate

dynamic rearrangements of the transcription factor B, crosslinking experiments were

performed in stalled complexes at distinct registers from initiation to early elongation. Using

these experiments the movement of TFB domains during transcription initiation can be

analyzed which in turn allows studying interactions between TFB and RNA/DNA, as well as

topological transitions of the TFB within the transcribing complex.

Beside the transitions of TFB, the role of the B-reader loop during transcription initiation was

investigated using an alanine screening approach of selected B-reader amino acids, which

were thought to be involved in transcription bubble stabilization and RNA-DNA strand

stabilization. Here, the TFB alanine variants were tested in several in vitro transcription

assays and the impact of the respective mutation is analyzed.

PfuTFB was further analyzed in single molecule FRET experiments to figure out its function

in DNA bending, which takes place at the beginning of transcription initiation.

In addition, the replication protein A of Pyrococcus furiosus and its possible role in

transcription was characterized using different in vitro techniques.

Figure 6: Crystal structure of the initially transcribing complex of S. cerevisiae. The structure contains

the RNAP II (grey), TFIIB, the transcribing (dark grey) and non-transcribing strand (light blue) and an

additionally 6nt RNA (red) which is bound to the t-strand. The center of the complex is enlarged to

visualize the active site of the polymerase. This site is indicated by the Mg
2+

ions (magenta), the

bridge helix (dark blue) and the trigger loop (silver grey). The TFIIB consists of the N-terminal Zn-

ribbon (yellow), the C-terminal B-core (cyan), the B-linker region (orange) and the B-reader, whereas

this domain is separated into the B-reader helix (green) and the B-reader loop (blue). This B-reader

domain is in close proximity to the active site of the polymerase. The C-terminal cyclin folds of the B-

core domain and the connection between the B-linker and the B-core are missing due to insufficient

resolution of the structure. The structure is modified from (Sainsbury et al. 2013).
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MaterialsII.

A. Chemicals and Reagents

Substance Supplier

Acrylamide, 2x Serva, Heidelberg
Bromphenol blue Serva, Heidelberg
dIC (poly 2´deoxyinosinic-2´-deoxycytidylic acid) Sigma Aldrich, Steinheim
DTT (1,4 Dithiothreitol) Serva, Heidelberg
dNTP Mix (100mM each) Thermo Scientific, Waltham, USA
Dynabeads® His-Tag Isolation and Pulldown Invitrogen (life technologies), Darmstadt
Dynabeads® M-280 Streptavidin Invitrogen (life technologies), Darmstadt
Ethidium bromide Serva, Heidelberg
Formamide Merck, Darmstadt
GeneRuler 100bp / 1kb DNA ladder Thermo Scientific, Waltham, USA
Glycogen (20mg/ml) Roche, Mannheim
Heparin Sigma Aldrich, Steinheim
IPTG (Isopropyl β-D-1-thiogalactopyranoside) Roth, Karlsruhe
Lysozyme Boehringer, Mannheim
Leupeptin Sigma Aldrich, Steinheim
Mineral Oil Roth, Karlsruhe
N,N´- Methylene bisacrylamide, 2x Serva, Heidelberg
NTP´s (ATP, CTP, GTP, TTP) Thermo Scientific, Waltham, USA
PageRuler Prestained Protein Ladder Thermo Scientific, Waltham, USA
p-Benzoyl-L-phenylalanine Bachem, Rubendorf, Switzerland
PCI (Phenol/Chloroform/Isoamyl alcohol) Roth, Karlsruhe
Pepstatin A Sigma Aldrich, Steinheim
Piperidine Fluka, St. Gallen, Switzerland
PMSF (Phenylmethanesulfonyl fluoride) Roth, Karlsruhe
Potassium permanganate Merck, Darmstadt
Rotiphorese Gel 30 Roth, Karlsruhe
Scintillation Cocktail Roth, Karlsruhe
TEMED (N, N, N´, N´-Tetramethylethylenediamine) Roth, Karlsruhe
Tween 20 Thermo Scientific, Waltham, USA
Urea Merck, Darmstadt
Xylene cyanol Roth, Karlsruhe
[α-32P] UTP, [α-32P] dATP, [γ-32P] ATP Hartmann Analytic, Braunschweig
β-Mercaptoethanol Roth, Karlsruhe

Standard chemicals and reagents which are not listed here were obtained from Merck

(Darmstadt), Roth (Karlsruhe), Serva (Heidelberg), and VWR (Darmstadt).

B. Kits

Kit Supplier

DNA Cycle Sequencing Kit Jena Bioscience, Jena
Wizard® SV Gel and Clean-Up System Promega, Mannheim
Plasmid Miniprep Kit, peqGOLD VWR, Darmstadt
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C. Enzymes

Enzyme Supplier

BSA (20mg/ml, special quality) Roche, Mannheim
Dnase I, RNase free Thermo Scientific, Waltham, USA
EcoRI Thermo Scientific, Waltham, USA
Klenow Fragment, exo- Thermo Scientific, Waltham, USA
Lambda Exonuclease New England Biolabs, Ipswich, USA
Lysozyme Roth, Karlsruhe
Phusion HF DNA Polymerase Thermo Scientific, Waltham, USA
S1 nuclease Thermo Scientific, Waltham, USA
T4 DNA Ligase Thermo Scientific, Waltham, USA
T4 Polynucleotide Kinase New England Biolabs, Ipswich, USA

D. Strains

Strain Usage

E.coli BL21 (DE3) Star pEVOL Bpa Expression of TFB-Bpa proteins
E.coli BL21 (DE3) pLysS Expression of TFB-Ala and wtTFB proteins
E.coli BL21 (DE3) Codon Plus Expression of TFE (pf0491)
E.coli DH5α Selection/Storage of gdh-templates and mutated TFB sequences

E. Services

Service Supplier

Sequencing service MWG eurofins, Ebersberg; Seqlab, Göttingen
Oligonucleotide synthesis Biomers, Ulm; MWG eurofins, Ebersberg
Radioactive labeled nucleotides Hartmann Analytic, Braunschweig

F. Softwares

Software Source (Reference)

Aida Image software v4.27 Raytest, Straubenhardt
BioEdit 7.2.5 http://www.mbio.ncsu.edu/bioedit/page2.html (T.A. Hall, 1999)
ImageJ http://imagej.nih.gov/ij/(Abramoff, et. al., 2004)
ClustalOmega http://www.clustal.org/omega/ (Sievers et al. 2011)
Pymol (V.0.99rc6) https://www.pymol.org/ (Schrödinger, LLC)
iSMS 1.05 http://isms.au.dk (Preus et al. 2015)
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G. Plasmids

Plasmid Description Source

pMUR125 pET14-TFB (Goede 2004)
pMUR400 pET14-TFB-StopG41 This work
pMUR401 pET14-TFB-StopP42 This work
pMUR320 pET14-TFB-StopE43 This work
pMUR216 pET14-TFB-StopW44 (Zeller 2011)
pMUR217 pET14-TFB-StopR45 (Zeller 2011)
pMUR218 pET14-TFB-StopA46 (Zeller 2011)
pMUR219 pET14-TFB-StopF47 (Zeller 2011)
pMUR319 pET14-TFB-StopD48 This work
pMUR402 pET14-TFB-StopA49 This work
pMUR403 pET14-TFB-StopS50 This work
pMUR404 pET14-TFB-StopQ51 This work
pMUR220 pET14-TFB-StopR52 (Zeller 2011)
pMUR405 pET14-TFB-StopE53 This work
pMUR406 pET14-TFB-StopR54 This work
pMUR407 pET14-TFB-StopR55 This work
pMUR221 pET14-TFB-StopS56 (Zeller 2011)
pMUR222 pET14-TFB-StopR57 (Zeller 2011)
pMUR408 pET14-TFB-StopE74 This work
pMUR225 pET14-TFB-StopM85 (Zeller 2011)
pMUR409 pET14-TFB-StopF192 This work
pMUR232 pUC19gdhC6modCL2 Reichelt, R.
pMUR234 pUC19-gdhC5 (Spitalny, Thomm 2003)
pMUR235 pUC19-gdhC8 (Spitalny, Thomm 2003)
pMUR236 pUC19-gdhC9 (Spitalny, Thomm 2003)
pMUR237 pUC19-gdhC10 (Spitalny, Thomm 2003)
pMUR239 pUC19-gdhC15 (Spitalny, Thomm 2003)
pMUR8 pUC19-gdhC20 (Spitalny, Thomm 2003)
pMUR323 pUC19-gdhC45 Reichelt, R.
pMUR410 pUC19-gdhC11new This work
pMUR411 pUC19-gdhC12new This work
pMUR412 pUC19-gdhC13new This work
pMUR413 pUC19-gdhC14new This work
pMUR414 pUC19-gdhC15new This work
pMUR177 pET14-TFE (Zeller 2011)
pMUR419 pET14-TFB-R52A Dick, C. (Bachelor thesis)
pMUR420 pET14-TFB-E53A Dick, C. (Bachelor thesis)
pMUR421 pET14-TFB-R54A Dick, C. (Bachelor thesis)
pMUR422 pET14-TFB-R55A Dick, C. (Bachelor thesis)
pMUR423 pET14-TFB-R52E53A Dick, C. (Bachelor thesis)
pMUR424 pET14-TFB-E53R54A Dick, C. (Bachelor thesis)
pMUR425 pET14-TFB-R54R55A Dick, C. (Bachelor thesis)
pMUR426 pET14-TFB-R52-R55A Dick, C. (Bachelor thesis)
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H. Oligonucleotides

Oligonucleotides for TFB-Bpa mutagenesis:

Oligo name Sequence (5´ 3´ direction)

TFBStopG41F-P 5´ Phosphate - TAATTGATATGTAGCCTGAGTG -3´
TFBStopG41R-P 5´ Phosphate - TGTTCTCTTCTATTACATAACC -3´
TFBStopP42F-P 5´ Phosphate - ATATGGGTTAGGAGTGGC -3´
TFBStopP42R-P 5´ Phosphate - CAATTATGTTCTCTTCTATTACA -3´
TFBStopE43F-P 5´ Phosphate - GTCCTTAGTGGCGTGCT -3´
TFBStopE43R-P 5´ Phosphate - CCATATCAATTATGTTCTCTTCTAT -3´
TFBStopD48F-P 5´ Phosphate - GCCACTCAGGACCCATATC -3´
TFBStopD48R-P 5´ Phosphate - GATATGGGTCCTGAGTGGC -3´
TFBStopA49F-P 5´ Phosphate - GCTTTTGATTAGTCTCAA -3´
TFBStopA49R-P 5´ Phosphate - ACGCCACTCAGGAC -3´
TFBStopS50F-P 5´ Phosphate - GCTTAGCAAAGGGAACG -3´
TFBStopS50R-P 5´ Phosphate - ATCAAAAGCACGCCACT -3´
TFBStopQ51F-P 5´ Phosphate - GATGCTTCTTAGAGGGAACGCA -3´
TFBStopQ51R-P 5´ Phosphate - AAAAGCACGCCACTCAGGAC -3´
TFBStopE53F-P 5´ Phosphate - CTCAAAGGTAGCGCAGGTCT -3´
TFBStopE53R-P 5´ Phosphate - AAGCATCAAAAGCACGCC -3´
TFBStopR54F 5´- CAAAGGGAATAGAGGTCTAGAACTGG -3´
wtTFB1StopR54R 5´ Phosphate - AGAAAGCATCAAAAGCACGCC -3´
TFBStopR55F-P 5´ Phosphate - AAGGGAACGCTAGTCTAGAACT -3´
TFBStopR55R-P 5´ Phosphate - ATCAAAAGCACTGAGAAGC -3´
wtTFB1StopE74R 5´- AAAGCCCCTTGTCATGAAGAAG -3´
wtTFB1StopE74F2 5´- CAACTTAGATTGGAATTGACAGATCG -3´
TFBStopF192F-P 5´ Phosphate - AAGTTACAGATAGATTGCGAGAAA -3´
TFBStopF192R-P 5´ Phosphate - CTTCCAATTTCCTTTTTATCAACT -3´

Oligonucleotides for TFB-Ala substitutions

(The primers listed here were used in the Bachelor thesis of Christopher Dick):

Oligo name Sequence (5´ 3´ direction)

R52-Ala-F 5´ Phosphate- TCTCAAGCGGAACGCAGGT -3´
E53-Ala-F 5´ Phosphate- TCTCAAAGGGCTCGCAGGT -3´
R54-Ala-F 5´ Phosphate- TCTCAAAGGGAAGCGAGGTCTAGA -3´
R55-Ala-F 5´ Phosphate- TCTCAAAGGGAACGCGCATCTAGA -3´
R52E53 Ala F 5´ Phosphate- TCTCAAGCGGCACGCAGGT -3´
E53R54 Ala F 5´ Phosphate- TCTCAAAGGGCTGCGAGGTC -3´
R54R55 Ala F 5´ Phosphate- TCTCAAAGGGAAGCGGCGTCTAG -3´
Loop Ala REV 5´ - TTGAGAAGCATCAAAAGCACG -3´
Loop Ala FOR 5´ Phosphate- GCAGCCGCGGCATCTAGAACTGGTGCACCAGAA -3´
Loop-Ala-R 5´ Phosphate- AGCATCAAAAGCACGCCACT -3´
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Oligonucleotides for gdh-C-template generation:

Oligo name Sequence (5´ 3´ direction)

C11newF 5´ - AGGTCATTTGGAGGATATGGG -3´
C12newF 5´ - AGGTACTTTGGAGGATATGGG -3´
C13newF 5´ - AGGTAACTTGGAGGATATGGG -3´
C14newF 5´ - AGGTAATCTGGAGGATATGGG -3´
C15newF 5´ - AGGTAATTCGGAGGATATGGG -3´
C16-C19 Rev 5´ Phosphate - CATTAACGATACATTTTTGGGC -3´

Oligonucleotides for radioactive labeling of gdh-C-cassettes:

Oligo name Sequence (5´ 3´ direction)

gdh-C6modCL2 -4T 5´ - CCAAGCTTGCATGCCTGCAGGTCGACTCTAGAGGATCCCCAAT
TGGCATAACGAT -3´

gdh-C6modCL2-11T 5´ - CCAAGCTTGCATGCCTGCAGGTCGACTCTAGAGGATCCCCAAT
TGGCATAACGATACATGTT -3´

gdh-C6modCL2-19T 5´ - CCAAGCTTGCATGCCTGCAGGTCGACTCTAGAGGATCCCCAAT
TGGCATAACGATACATGTTAGGGCAAT -3´

gdh-C8-4T 5´ - CCAAGCTTGCATGCCTGCAGGTCGACTCTAGAGGATCCCCCAT
ATGCCATTAACGAT -3´

gdh-C8-19T 5´ - CCAAGCTTGCATGCCTGCAGGTCGACTCTAGAGGATCCCCCAT
ATGCCATTAACGATACATTTTTGGGCAAT -3´

gdh-C9-4tnew 5´ - CCAAGCTTGCATGCCTGCAGGTCGACTCTAGAGGATCCCCCAT
ATGCTCATTAACGAT -3´

gdh-C10-4t 5´ - CCAAGCTTGCATGCCTGCAGGTCGACTCTAGAGGATCCCCCCT
TGGCCTCATTAACGAT -3´

gdh-C10-19t 5´ - CCAAGCTTGCATGCCTGCAGGTCGACTCTAGAGGATCCCCCCT
TGGCCTCATTAACGATACATTTTTGGGCAAT -3´

gdh-C10-8nt 5´ - TAGATTCTTTGAGCCTAATCAAATAAACAAAAGGATTTCCACT
CTTGTTTACCGAAAGCTTTATATAGGCTATTGCCCAAA -3´

-19t -C11 new 5´ - CCAAGCTTGCATGCCTGCAGGTCGACTCTAGAGGATCCCCCAT
ATCCTCCAAATGACCTCATTAACGATACATTTTTGGGCAAT -3´

-19t -C12 new 5´ - CCAAGCTTGCATGCCTGCAGGTCGACTCTAGAGGATCCCCCAT
ATCCTCCAAAGTACCTCATTAACGATACATTTTTGGGCAAT -3´

-19t -C13 new 5´ - CCAAGCTTGCATGCCTGCAGGTCGACTCTAGAGGATCCCCCAT
ATCCTCCAAGTTACCTCATTAACGATACATTTTTGGGCAAT -3´

-19t -C14 new 5´ - CCAAGCTTGCATGCCTGCAGGTCGACTCTAGAGGATCCCCCAT
ATCCTCCAGATTACCTCATTAACGATACATTTTTGGGCAAT -3´

gdh-C15-4tnew 5´ - CCAAGCTTGCATGCCTGCAGGTCGACTCTAGAGGATCCCCCAT
ATCCTCCGAATTACCTCATTAACGAT -3´

-19t -C15 new 5´ - CCAAGCTTGCATGCCTGCAGGTCGACTCTAGAGGATCCCCCAT
ATCCTCCGAATTACCTCATTAACGATACATTTTTGGGCAAT -3´

-19t -C20 new 5´ - CCAAGCTTGCATGCCTGCAGGTCGACTCTAGAGGATCCCCCCT
TGGCTCCAAATTACCTCATTAACGATACATTTTTGGGCAAT -3´
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Oligonucleotides for template preparation and sequencing:

Oligo name Sequence (5´ 3´ direction)

M13FOR 5´- GCCAGGGTTTTCCCAGTCACGA -3´
M13REV 5´- GAGCGGATAACAATTTCACACAG -3´
M13FOR-Bio 5´ Biotin - GCCAGGGTTTTCCCAGTCACGA -3´
M13REV-Bio 5´ Biotin - GAGCGGATAACAATTTCACACAG -3´
M13-FOR-P 5´ Phosphate - GCCAGGGTTTTCCCAGTCACG -3´
M13-REV-P 5´ Phosphate - AGCGGATAACAATTTCACACAGG -3´
M13FOR-FAM 5´ (5)6-Carboxyfluorescein - GCCAGGGTTTTCCCAGTCACGA -3´
M13FOR-Cy5 5´ Cyanine 5 - GCCAGGGTTTTCCCAGTCACGA -3´
M13FCy3 5´ Cyanine 3 - GCCAGGGTTTTCCCAGTCACGA -3´
Mat2 5´- CCAAGCTTGCATGCCTGCAGGTCG -3´
T7FOR 5´- TAATACGACTCACTATAGGG -3´
T7REV 5´- CTAGTTATTGCTCAGCGGTG -3´
gdhShortFOR 5´- TAGATTCTTTGAGCCTAATCAAAT -3´
M13R-250 5´- TCATTAATGCAGCTGGCACGAC -3´
M13R-500 5´- TCAGGGGGGCGGAGCCTATG -3´
MiniStartF 5´- TTATATAGGCTATTGCCCAAAAATGTATTACTAATGAGGTAAT

TTGGAGCATATGGGG -3´
MiniStartR 5´- CCCCATATGCTCCAAATTACCTCATTAGTAATACATTTTTGGG

CAATAGCCTATATAA -3´

Miscellaneous oligonucleotides:

Oligo Name Sequence (5´ 3´ direction)

PfuC14-t-strand 5´ Cyanine 3 - CTAGAGGATCCCCCATATCCTCCAGATTACCTCATT
AACGATACATTTTTGGGCAATAGCCTATATAAAGCTTTCGGTAAACAAGA
GTGGAAATCCTTTT -3´

Gdh-C14-34t-nolabl 5´ - AAAAGGATTTCCACTCTTGTTTACCGAAAGCTTTATATAGGCT
ATTGCCCAAAAATGTATCGTTAATGAGGTAATCTGGAGGATATGGGGGAT
CCCTAG -3´

ssgdhCy5 5´ Cyanine 5 – ATTTCCACTCTTGTTTACCGAAAGCTTTATATAGGC
TATTGCCCAAAAATGTATCGTTAATGAGGTAA -3´

SSV T6 nt-strand 5´ Biotin – CGGACCGAAGCGACCATCGCCGGAGAXTGGAGTAAAGTT
TAAATACTG -3´ (X=T-Cy3b)

SSV T6 t-strand 5´ Atto647n – CAGTATTTAAACTTTACTCCAATCCCTGGCGATGGT
CGCGCTTTCGGTCCG -3´
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MethodsIII.

A. DNA preparations

DNA was amplified by PCR from pUC19 or pET14 plasmids using oligonucleotides, Phusion

high fidelity DNA polymerase, the recommended buffer conditions and extension

temperatures. Depending on the reaction, a Mastercycler personal (Eppendorf) or a Thermal

Cycler DOPPIO (VWR) for a temperature gradient was used. All successful amplified DNAs

were purified with Promega Wizard® SV Gel and Clean-Up System, eluted in TE´ buffer

(10mM Tris pH 8.0, 0.1mM EDTA), and the final concentration was determined by photo

spectrometry (NanoDrop ND1000). The quality and the specificity of the amplification were

verified by 1% or 2% AGE.

1. DNA templates for in vitro transcription assays and EMSAs

If not otherwise noted, all PCRs were performed using 0.5µM primer with 60°C

oligonucleotide annealing temperature for M13 primer pairs, 0.02U/µl Phusion DNA

polymerase and 28pM plasmid DNA in 30 cycles. For in vitro transcription templates

standard M13 primer pairs were used for the amplification of gdh-C cassettes on pUC19

plasmids. Fluorescently labeled M13 primers were used for EMSA templates, and

biotinylated primers were used for the immobilization of the respective template DNA.

2. 5´end labeled templates for footprint experiments

A gdh-C20 DNA template was amplified from 28pM of the plasmid pMUR8 in 200µl PCR

volume with 0.5µM of each biotinylated M13 reverse primer and M13 forward primer to

immobilize the transcribed strand. The product was purified and the final concentration was

determined. 1pmol DNA was attached to 10µg streptavidin-coated magnetic particles. Before

nucleic acids were added to the magnetic particles, the beads were separated from

supernatant with magnetic particle separator (MPS), and washed three times for 45 seconds

with buffer A (10mM Tris/HCl pH 7.5, 100mM NaCl, 1mM EDTA). For 50pmol of DNA the

beads were resuspended in 80µl buffer B (50mM Tris/HCl pH 7.5, 100mM NaCl, 1mM

EDTA), and the template was added and incubated for 30 minutes under constant rotation at

room temperature. The supernatant was discarded and the particles were dissolved in 80µl

buffer C (10mM Tris/HCl pH 7.5, 1M NaCl, 1mM EDTA). The sample was left at room

temperature for one minute, repeated one more time, and finally the beads were

resuspended in TE´ buffer to an end concentration of 1pmol/µl. 29pmol of immobilized DNA

were incubated with 40U PNK and 1.11MBq [γ32P] ATP in a total volume of 40µl for 30

minutes at 37°C. After heat inactivation of the enzyme for 10 minutes at 60°C, the sample

was placed on MPS, the supernatant was removed and the template was washed with 50µl

H2O, then DNA was dissolved in 29µl H2O.

3. Mismatch template preparation

The protocol and the primer pairs were used and modified from (Zeller 2011). In independent

reactions two templates were amplified from 28pM pMUR8 (pUC19 gdh-C20) with 0.5µM of

each M13FOR and MiniStartR, and MiniStartF and M13REV, respectively. After purification

and concentration determination 0.57nM of each amplified template were overlapped in a

fusion PCR (A: 30sec 98°C, B: 5sec 98°C, C: 20sec 55°C, D: 20sec 72°C; repeat B-D x 8; E:

120sec 50°C, add primer pairs; F: 5sec 98°C, G: 30sec 60°C, H: 20sec 72°C; repeat F-H x

25; 5 minutes at 72°C) in two independent reactions with primer pair A (M13FOR-

P/M13REV) to phosphorylate the nt-strand, and primer pair B (M13FOR/M13REV-P) to

phosphorylate the t-strand. In addition, two PCRs with 28pM pMUR8 as template were
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prepared with 0.5µM of

each primer pair A and

primer pair B. DNAs were

purified and 4.5pmol of

each were hydrolyzed with

10U λ-Exonuclease in a 

total volume of 50µl for 60

minutes at 37°C and 10

minutes at 75°C for

inactivation of the nuclease.

To receive an nt-strand

mismatch, the nt-strand of

the fused template was

hybridized with the t-strand

of the regular gdh-C20

cassette, and vice versa.

Hybridization was

performed at 95°C for 5

minutes, 45°C for 15

minutes and 40°C for 10

minutes. Quality of

restriction and hybridization

was verified by 2% AGE.

Figure 7: Schematic representation of pre-opened template preparation. The template is based on

mutagenesis and fusion PCR of the original template, followed by Exonuclease digestion and

hybridization. Modified from (Zeller 2011).

4. gdh-C11 - gdh-C15 template generation using PCR mutagenesis

The available plasmid pMUR8 (2.815bp, pUC19 containing the gdh-C20 cassette) served as

basis for the generation of the new cassettes by PCR mutagenesis. The reactions were

prepared in a total volume of 20µl with 0.55fmol pMUR8 and 0.5µM phosphorylated C11-

C19REV primer in combination with 0.5µM of the respective forward primer C11newF -

C19newF. These primers were designed to exchange the nucleic acid of interest via

mismatch base pairing. A temperature gradient PCR with a range of 50°C – 70°C was used

to identify the optimal annealing temperature of the primer pairs. After successful

amplification the DNA was purified and 27fmol were re-circularized in a ligation reaction in a

total volume of 50µl and 5U T4 DNA Ligase for 2 hours at 20°C. 2µl of the ligation sample

was transformed using 50µl competent E.coli DH5α cells. First, the cells were defrosted on 

ice, and then the ligation product was added to the cells and left on ice for 15 minutes. The

sample was heat-shocked for 40-60 seconds at 42°C and subsequently chilled on ice for

additional 2 minutes. 350µl SOC medium (2% v/v Tryptone, 0.5% v/v yeast extract, 10mM

NaCl, 2.5mM KCl, 10mM Glucose, 10mM MgSO4, 10mM MgCl2, pH 7.5) was added and the

cells were incubated at 37°C for 60 minutes under constant rotation before plating on agar

plates containing LB and 100µg/ml ampicillin. After growth two colonies were picked and

each was inoculated in 5ml LB medium supplemented with 100µg/ml ampicillin. The cells

were harvested and the plasmids were purified (Plasmid Miniprep Kit, peqGOLD) and sent to

a sequencing service to verify the correct mutation. The success rate for mutagenesis was

almost 100% for all cassettes, probably due to the usage of 5´phosphorylated primers, as it
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is commonly used in QuickChange™ site directed mutagenesis protocol (Xia et al. 2015) or

recommended in whole-plasmid mutations (Reikofski, Tao 1992).

5. Radio labeled DNA templates for crosslink experiments

The protocol for radioactive labeling of double stranded DNA was used and modified from

(Grünberg 2009). Templates for t-strand labeling were amplified from 28pM of the respective

plasmid using 0.5µM of each Mat2 primer and biotinylated M13 forward primer. For labeling

of the nt-strand 0.5µM of each gdhShortFOR for and biotinylated M13 reverse primer were

used. The 216-231bp PCR products were purified and attached to streptavidin-coated

magnetic particles to a concentration of 1pmol DNA per 1µl beads (Attaching protocol see III.

A. 2). 10pmol of immobilized DNA was hybridized with 10pmol of the respective

complementary single stranded oligonucleotide, while the 3´end of the oligo ends one

nucleotide next to the position for labeling. Hybridization was done at 90°C for 3 minutes,

45°C for 15 minutes, and 40°C for 15 minutes. Samples were shortly spun down with a micro

centrifuge and incubated for additional 3

minutes at 40°C. The semi-hybridized DNA

was incubated with 2.98MBq [α32P] dNTP

(222TBq/mmol) and 5µl Klenow exo- mix I

(0.8µl H2O, 0.2µl 20mg/ml BSA, 2.5U

Klenow Fragment exo-, and 3.5µl DNA Pol

Dilunt: 1.0µg/µl BSA, 30mM Tris/HCl pH

8.0, 7mM MgCl2, 50mM KCl, 2mM β-

mercaptoethanol and 50% (v/v) glycerol) for

10 minutes at 40°C to incorporate the

radioactive nucleotide. 20nmol of each

dNTP and 4µl Klenow exo- mix II (2.32µl

H2O, 0.08µl 20mg/ml BSA, 4U Klenow

Fragment exo-, and 0.8µl DNA Pol Dilunt)

were added and incubated for 10 minutes at

40°C to complete the strand. Templates

were immobilized and washed with 50µl TE´

buffer + 0.1% BSA. Beads were removed

with 20U EcoRI in a total volume of 30µl for

t-strand labeled templates for 60 minutes at

37°C, then magnetic particles were

separated and the supernatant was

transferred to a fresh tube. To remove

beads for nt-strand labeled templates the

magnetic particle separator was placed on

top of the gel dryer

Figure 8: Schematic draw of the specific radioactive labeling of DNA templates. Immobilized dsDNA

template is separated and hybridized using a short complementary single-stranded oligonucleotide.

The [α
32

P] dNTP is incorporated using Klenow exo
-

enzyme, and the strand is completed using

unlabeled dNTPs. Beads were cut off with EcoRI in a last step.

(DrygelSr. Slab gel dryer, Hoefer scientific connected with HydroTech™ Vacuum Pump;

Biorad) and heated up to 80°C, then samples were incubated for 5 minutes and supernatant

was collected (Holmberg et al. 2005). Residual beads were washed with 50µl TE´ buffer and
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after immobilization the supernatant was added to the collected sample. DNA was isolated

with 85µl PCI and vigorous mixing for 40 seconds. After centrifugation at 21.000g for 5

minutes the upper phase was transferred to a new tube and the DNA was precipitated with

ethanol using 1µl glycogen (20mg/ml), 30µl 3M sodium acetate pH 5.2, 185µl H2O and 600µl

ethanol (≥99.98% p.a.) for 45 minutes at -80°C. The sample was centrifuged at 21.000g for 

30 minutes at room temperature, and then supernatant was discarded. The pellet was

washed with 1ml 70% ethanol and centrifuged for 10 minutes at 21.000g. The supernatant

was discarded, and the pellet was dehumidified using a vacuum concentrator (Concentrator

5301, Eppendorf). DNA was dissolved in 20µl TE´ buffer. The radioactive concentration was

measured by placing 2x 1µl of the dissolved DNA on separate glass microfiber filter plates

and dried until liquid was evaporated. 10ml scintillation cocktail together with one filter plate

was placed in a scintillation tube and the activity was measured for 60 seconds in the

Scintillation Analyzer (TriCarb 2900TR, Packard; QuantaSmart™ software). To define the

concentration of the labeled DNA several dilutions of the [α32P] dNTP (222TBq/mmol) stock

solution were analyzed with the Scintillation Analyzer to gain the relation between counts per

minute (cpm) and the respective radioactive concentration. Using this method 1pmol of [α32P]

dNTP (222TBq/mmol) was determined to have 1.52x107cpm at the calculated date of activity.

B. Protein preparations

The TATA binding protein (TBP) was cloned, expressed and purified from students during a

molecular biology practical course and was originally described in (Hausner et al. 1996). This

protein was diluted in 1xTB-0 transcription buffer (40mM Na-Hepes pH 7.3, 250mM NaCl,

2.5mM MgCl2, 0.1mM EDTA, 0.1mM ZnSO4, 10% v/v glycerol) to a final concentration of

50ng/µl and stored in small portions at -80°C.

The RpoD-his tagged RNAP was purified from P. furiosus cells, whereas the cells were

kindly provided by the institute of Microbiology and Archaea Center, University of

Regensburg. .

The genetic sequence of the transcription factor B1 (TFB1; henceforth referred to as TFB)

was fused to an C-terminal histidine tag and cloned into pET14 (pMUR125) by (Goede

2004). The protein was kindly provided by the institute, and later expressed and purified as

described in (III. B. 3).

The replication protein A was kindly provided by Dr. Hausner, W., Institute of Microbiology

and Archaea Center, University of Regensburg.

1. SDS-PAGE and protein concentration

SDS-PAGE

Protein samples were dissolved in 6xSDS loading dye (70% v/v 0.5M Tris/HCl pH 6.8, 10mM

SDS, 30% v/v glycerol, 10% w/v SDS, 0.6M DTT, 0.03% w/v bromophenol blue), and

incubated at 95°C for 4 minutes and analyzed by 12% SDS-PAGE using the Biorad Mini-

PROTEAN® Tetra Cell system, handcast gels (4% stacking gel: 2.4ml H2Omillipore, 0.5ml

Rotiphorese® 30 (37.5:1), 1.0ml 0.5M Tris/HCl pH 6.8 and 10mM SDS; 12% separating gel:

2.7ml H2Omillipore, 3.0ml Rotiphorese® 30 (37.5:1), 1.9ml 1.5M Tris/HCl pH 8.8, 10mM SDS),

running buffer (25mM Tris, 192mM glycine, 3.4mM SDS; (Laemmli 1970)) and the

recommended manufacturer´s protocol (Biorad).
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Protein concentration

The protein concentration was usually determined with Bradford method (Bradford 1976). In

case of TFB the concentration was determined using 12% SDS-PAGE, whereas defined

concentrations of the reference protein BSA and defined volumes of the purified TFB were

separated. The gel was stained with Coomassie staining solution (40% v/v isopropanol, 10%

v/v acetic acid, 0.2% w/v Coomassie R250) and destained with destaining solution (40% v/v

isopropanol, 10% v/v acetic acid) to minimalize background. The gel was scanned and

digitalized, and signals derived from proteins were quantified and compared with ImageJ

software (Abramoff et. al., 2004).

2. Mutagenesis of TFB

The site directed mutagenesis of TFB of Pyrococcus furiosus (pf1377) was achieved by

using oligonucleotides which contained a 1-3nt mismatch to introduce a TAG sequence at

distinct sites at the gene of TFB. For this reaction 14pM of the plasmid pMUR125 (5.566bp,

pET14+TFB) was used together with 0.5µM of the respective oligonucleotides in a PCR with

a total volume of 20µl. For optimal results a temperature gradient PCR was used to identify

the best annealing temperature of the used primer pairs. Successful amplified templates

were purified and 14fmol were re-circularized in a ligation step in a total volume of 50µl with

5U T4 DNA Ligase for 2 hours at 20°C. 2µl of the ligation sample were transformed in

competent E.coli DH5α cells (For transformation see III. A. 4). Two colonies were picked 

from the plated transformation sample and inoculated in 5ml LB medium supplemented with

100µg/ml ampicillin and grown at 37°C. Plasmids were isolated (Plasmid Miniprep Kit,

peqGOLD) and sent to a sequencing service to verify the successful nucleotide exchange of

the wild type codon with the TAG-sequence at the expected site. The success rate was

almost 100% for every TAG introduction, probably for similar reasons like for the template

mutagenesis, chapter III. A. 4, namely the usage of phosphorylated primers (Reikofski, Tao

1992; Xia et al. 2015).

3. Expression and purification of TFB and TFB variants

The plasmids containing the mutated TFB sequences were transformed in the expression

strain E.coli BL21 (DE3) Star pEVOL Bpa (Young et al. 2010) for expression of TFB-Bpa, or

in E.coli BL21 (DE3) pLysS for the expression of TFB-Ala and wild type TFB. Depending on

the transformation efficiency of the expression strain 14 -28fmol plasmid DNA was added to

50µl of competent E.coli cells. The procedure for the heat-shock transformation is the same

like for E.coli DH5α cells (see III. A. 4) whereas a 30 second incubations step at 42°C was 

used instead of the 40 - 60 seconds. Transformed cells were grown on agar plates with

100µg/ml ampicillin and 34µg/ml chloramphenicol. After incubation at 37°C one colony was

picked and diluted in 200µl LB medium, and plated on an agar plate containing the

respective antibiotics. After growth over night at 37°C the cells were removed from the plate

using a spatula to inoculate 100ml of LB medium supplemented with 100µg/ml ampicillin and

34µg/ml chloramphenicol to an optical density at 600nm wavelength of 0.1 - 0.2 (Beckman

DU®640 Spectrophotometer). Cells were grown at 37°C until OD600 reached 0.6 - 0.8. Cells

were chilled on ice for five minutes and induced with 0.5mM IPTG for protein expression. For

simultaneous incorporation of unnatural amino acids expression of modified tRNA´s encoded

on the pEVOL plasmid was induced with 1.3mM L-arabinose in presence of 0.2mM L-p-

benzoyl-phenylalanine (Bpa) (Kauer et al. 1986). Bpa was dissolved in 1M HCl, therefore an

equal volume of 1M NaOH was used to adjust pH. Induced cells were incubated over night at

18°C at constant rotation in the dark (Infors HT Multitron Pro incubator). After induction the
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cells were harvested by centrifugation at 4°C and 6.000g for 15 minutes (JA10 rotor,

Beckman Coulter™ Avanti™ J-25). The pellet of a 100ml culture volume was dissolved in

3ml Binding/Wash buffer (50mM phosphate buffer pH 8.0, 300mM NaCl, 0.01% v/v Tween

20) and a small pile of Lysozyme was added and mixed. The suspension was incubated on

ice for 45 minutes, and then the cells were treated with ultra sound for 6 x 1 minute (50%

intensity, 50% pulse length; Branson sonifier 250) on ice and subsequently centrifuged at

4°C and 21.000g for 60 minutes (Hitachi himac CT15RE, VWR). The supernatant was

transferred into a new tube and the samples were incubated at 70°C for 10 minutes to

denature host proteins. The centrifugation step at 4°C and 21.000g for 60 minutes was

repeated. For 100ml cell suspension 2 x 100µl His-Tag Dynabeads® were transferred in new

tubes and placed at the magnetic particle separator to immobilize the particles. The

supernatant was removed and the protein solution was added to the Dynabeads® and

incubated for 30 minutes at 4°C under constant rotation (Rotamix RM1, Elmi). The magnetic

particles were subsequently immobilized and supernatant was removed. The Dynabeads®

were washed four times with 400µl Binding/Wash buffer by gentle pipetting for 45 seconds.

Finally the protein was eluted by adding 100µl Elution buffer (50mM phosphate buffer pH 8.0,

300mM imidazole, 300mM NaCl, 0.01% Tween 20) to the Dynabeads® and incubated at 4°C

for 30 minutes under constant rotation. The beads were immobilized and the eluted protein in

the supernatant was stored at -80°C in small portions.

4. RNA-polymerase purification

2.0g of frozen P. furiosus cells (RpoD-strep-his cells) were defrosted on ice. Cells were

dissolved in 5.0ml of Lysis buffer (100mM Tris/HCl pH 8.0, 1M NaCl, 20mM imidazole,

2.5mM MgCl2, 20% v/v glycerol; protease inhibitor was added before use) until suspension

turned into a homogenous solution. The sample was treated with ultra sound on ice for 6 x 1

minute (50% intensity, 50% pulse length, Branson sonifier 250). 2.5g glass beads (0.1mm

diameter) were added and intensively mixed in a FastPrep®-24 (MP™) instrument for 4 x 30

seconds at 5.0M/s. The cell suspension was centrifuged at 4°C at 21.000g for 60 minutes

(JA25.50 rotor, Beckman Coulter™ Avanti™ J-25). The supernatant was filtrated with a

sterile syringe and a filter adapter (0.45µm pore diameter). The RNAP was separated with a

HisTrap 1ml FF column at the ÄKTA purification system (Amersham Biosciences) and one-

step eluted with Elution buffer (100mM Tris/HCl pH 8.0, 300mM NaCl, 250mM imidazole,

2.5mM MgCl2, 20% v/v glycerol). The presence of the RNA-polymerase in different fractions

was verified using a SDS-PAGE, and the respective samples were pooled and run on a

Hiload™ 16/60 Superdex™ 75 size exclusion column with gel filtration buffer (100mM

Tris/HCl pH 8.0, 150mM NaCl, 2.5mM MgCl2, 20% v/v glycerol). The fractions containing the

RNAP were collected and stored at -80°C in small portions. The stoichiometry of the RNA-

polymerase subunits was verified by SDS-PAGE, the presence of subunits A´´, E´ and D was

additionally verified using western blot experiments and antibodies against the respective

subunits. Protein concentration was determined using Bradford analysis. Work solution was

prepared by dissolving RNAP in gel filtration buffer to a final concentration of 100ng/µl and

stored at +4°C.

5. TFE purification

The plasmid pMUR177 (pET14+TFE) (Grünberg 2009) was transformed into E.coli BL21

(DE3) Codon Plus (For transformation see III. A. 4) and grown on LB agar plate

supplemented with 100µg/ml ampicillin and 34µg/ml chloramphenicol. One colony was

inoculated in 200µl LB medium and plated on two separate LB agar plates supplemented

with the respective antibiotics. After incubation over night at 37°C cells were collected using
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a spatula and two flasks containing 400ml LB medium were inoculated to an OD600 of 0.1

(Beckman DU®640 Spectrophotometer). Cells were grown to an OD600 of 0.6 and then

induced with 0.5mM IPTG for protein expression at room temperature over night. Cells were

centrifuged at 6.000g for 15 minutes at 4°C (JA10 rotor, Beckman Coulter™ Avanti™ J-25)

and supernatant was discarded. The pellets were dissolved in 5.0ml Lysis buffer (50mM

Tris/HCl pH 8.0, 300mM NaCl, 10mM imidazole, 20% v/v glycerol), pooled, and a small pile

of Lysozyme was added. After incubation at 4°C for 30 minutes the cell suspension was

treated with ultra sound for 6 x 1 minute (50% intensity, 50% pulse length, Branson sonifier

250). A small pile of Dnase I was added and incubated for 10 minutes at 4°C. The

suspension was centrifuged at 20.000g for 30 minutes at 4°C (JA25.50 rotor, Beckman

Coulter™ Avanti™ J-25) and the supernatant was incubated at 70°C for 10 minutes.

Centrifugation at 20.000g for 30 minutes at 4°C was repeated, and the supernatant was

sterile filtered. The protein was separated with a HisTrap 1ml HP column and buffer A (20mM

Na-Hepes pH 7.8, 500mM NaCl, 7mM MgCl2, 10mM imidazole, 10% v/v glycerol) and one-

step eluted with buffer B (20mM Na-Hepes pH 7.8, 500mM NaCl, 7mM MgCl2, 0.01% v/v

Tween 20, 200mM imidazole, 10% v/v glycerol) with an ÄKTA purification system

(Amersham Biosciences). Fractions were analyzed with SDS-PAGE and samples containing

the TFE protein were pooled and run on a HiLoad™ 16/60 Superdex™ 75 size exclusion

column with gel filtration buffer (30mM Tris/HCl pH 7.5, 1mM EDTA, 300mM NaCl, 10% v/v

glycerol). Important fractions were pooled and the protein was stored at -20°C in small

portions.

C. Transcription assays

Basically all samples were analyzed using 7M urea gels containing different polyacrylamide

(PA) concentrations, except for EMSAs (native PAGE) and crosslink experiments (SDS-

PAGE). The following urea-PA gels and electrophoretic conditions were used in this study:

7M urea 6% PA for KMnO4 footprints at 2000V, 50W, 50mA for 3 - 4 hours (Biorad Sequi-

Gen® Cell, gel size: 50cm x 21cm), 7M urea 8% PA for run-off transcription assays at 600V,

48W, 48mA for 3.5 hours (gel size: 30cm x 21cm), 7M urea 12% PA for the verification of

incorporation of radiolabeled dNTPs into DNA at 400V, 40W, 25mA (gel size: 16cm x 13cm),

and 7M urea 28% PA for abortive transcription assays at 2500V, 48W, 20mA for 12 hours

(gel size: 40cm x 21cm). Finished gels were carefully transferred to a chromatography paper

(3MM Whatman™, GE healthcare) and dried with a gel dryer (DrygelSr. Slab gel dryer,

Hoefer scientific, connected to HydroTech™ Vacuum Pump; Biorad) for 35 - 50 minutes at

70°C. An imaging plate (FUJIFILM BAS-IP MS 2040) was placed on the gel for 30 minutes

up to hours, depending on the used radioactive concentration. The IP was analyzed using

Phosphoimager (FUJIFILM FLA 5000) and signals were detected and quantified with Aida

v4.27 software.

1. Electro mobility shift assay

Electro mobility shift assays were done using 26nM RNAP, 56nM 5´-FAM (6-

Carboxyfluorescein)-labeled template DNA gdh-C20 or alternatively labeled templates,

475nM TBP and 270nM TFB in transcription buffer (40mM Hepes pH 7.3, 250mM NaCl,

2.5mM MgCl2, 0.1mM EDTA, 0.1mM ZnSO4), 1mM DTT and 0.1µg/µl BSA in a total volume

of 10µl and incubated at 70°C for 10 minutes. Then 0.5µg dIC (poly-2´deoxyinosinic-2´-

deoxycytidylic acid) was added and incubated for additional 10 minutes at 70°C. Samples

were mixed with 2µl 85% glycerol and separated on handcasted native 4-10% or 4-20%

gradient PAGE at 170V for 35 minutes (4% stacking gel: 2.4ml H2Omillipore, 0.5ml

Rotiphorese® 30 (37.5:1), 1.0ml 0.5M Tris/HCl pH 6.8; 4% separating gel: 1.545ml



Methods

38

H2Omillipore, 0.33ml Rotiphorese® 30 (37.5:1), 0.625ml 1.5M Tris/HCl pH8.8; 10% separating

gel: 1.045ml H2Omillipore, 0.83ml Rotiphorese® 30 (37.5:1), 0.625ml 1.5M Tris/HCl pH 8.8;

20% separating gel: 0.5ml H2O, 1,375ml Rotiphorese® 40, 0.625ml 1.5M Tris/HCl pH 8.8;

running conditions: 25mM Tris, 192mM glycine; Biorad Mini-PROTEAN® Tetra Cell system).

The gel was analyzed using Phosphoimager (FUJIFILM FLA 5000) and Aida v4.27 software.

2. Abortive transcription assay

Transcription initiation assays were performed in transcription buffer (40mM Hepes pH 7.3,

250mM NaCl, 2.5mM MgCl2, 0.1mM EDTA, 0.1mM ZnSO4), 0.1µg/µl BSA and 1mM DTT

using 10nM gdh-C20 template DNA, 10nM RNAP, 238nM TBP and 135nM TFB in a total

volume of 25µl. Samples were incubated with 40µM GpU (Guanylyl-5´-phosphatidyl-Uracil)

dinucleotide primer and 74kBq [α32P]-UTP (111TBq/mmol) for 10 minutes at 70°C. RNAs

were isolated with 40µl PCI and vigorous mixing for 40 seconds. The samples were

centrifuged for 5 minutes at 21.000g and supernatant was diluted in 3x loading dye (98% v/v

formamide, 40µM EDTA, 0.025% w/v bromophenol blue and 0.025% w/v xylene cyanol) and

separated on a 7M urea-28% acrylamide gel.

3. Run-off transcription assay

Transcription assays were performed using 1xTB-0 transcription buffer (40mM Hepes pH

7.3, 250mM NaCl, 2.5mM MgCl2, 0.1mM EDTA, 0.1mM ZnSO4, 0.1µg/µl BSA and 1mM

DTT). 10nM gdh-C20 template DNA, 10nM RNAP, 238nM TBP and 135nM TFB were

incubated with 440µM GTP, 440µM ATP and 440µM CTP together with 2.7µM UTP and

49kBq [α32P]-UTP (111TBq/mmol) for 10 minutes at 70°C in a total volume of 25µl. RNAs

were isolated with 40µl PCI and vigorous mixing for 40 seconds. The samples were

centrifuged at 21.000g for 5 minutes and supernatant was diluted in 3x loading dye (98%

formamide, 40µM EDTA, 0.025% w/v bromophenol blue and 0.025% w/v xylene cyanol) and

separated on a 7M urea-8% acrylamide gel.

4. Chase experiments and stalled transcription complexes

Transcription assays were performed as described in (III.C.3) but a nucleotide mix containing

40µM ATP, 40µM GTP, 2.5µM UTP and 49kBq [α32P]-UTP (111TBq/mmol) were used.

Samples were incubated at 80°C for 3 minutes, whereas the reactions were stopped by

cooling down the cycler, or chased by adding a NTP-mix containing 440µM of each NTP

without radiolabeled UTP and further incubated at 80°C for additional 10 minutes. RNAs

were isolated with 40µl PCI and vigorous mixing for 40 seconds. The samples were

centrifuged at 21.000g for 5 minutes and supernatant was diluted in 3x loading dye, whereas

short transcripts with a length of 6-25nt were separated on a 7M urea 28% polyacrylamide

gel, for longer transcripts a 7M urea-8% acrylamide gel was used.

5. Potassium permanganate footprinting

Reactions were performed in 0.5xTB-0 instead of 1xTB-0 to reduce Na-HEPES

concentration, as this buffer reagent increased the reactive potential which caused high

background on the gel (Lozinski, Wierzchowski 2003). Footprints were performed with

reduced buffer conditions, 0.1µg/µl BSA, 1mM DTT and 3µl of labeled DNA (III. A. 2), 10nM

RNAP, 238nM TBP and 135nM TFB and 217nM TFE in a total volume of 25µl. Samples

were incubated at 70°C for 10 minutes, then 2.5µl of a 250mM KMnO4 solution was added

and further incubated for 5 minutes. Reactions were stopped using 1.5µl β-mercaptoethanol 

and 20µl stop solution (100mM EDTA, 1% w/v SDS) and tubes were subsequently placed on

ice. Samples were placed on the MPS and the supernatant was discarded. Beads were

resolved in 18µl H2O and mixed with 2µl piperidine. After incubation at 90°C for 30 minutes
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the supernatant was transferred into 40µl PCI and mixed for 40 seconds. After centrifugation

at 21.000g for 5 minutes 17µl of the upper phase was transferred into a fresh tube, then 30µl

H2O, 5µl 3M NaAc pH 5.3, 1µl glycogen (20mg/ml ) and 125µl ethanol (>99.98%) was added.

The samples were mixed and incubated at -80°C for 45 minutes, and centrifuged at 21.000g

for 30 minutes. The supernatant was removed and the pellet was washed with 800µl ethanol

(70%), and centrifuged for 10 minutes at 21.000g. The pellet was dehumidified using a

vacuum concentrator (Concentrator 5301, Eppendorf). DNA was dissolved in 10µl TE´-buffer

and mixed with 5µl 3x loading dye and incubated at 95°C for 3 minutes. Samples were

separated on a 6% sequencing gel.

6. Crosslinking experiments

The method was modified form (Micorescu et al. 2008). If not otherwise noted, UV-induced

photo crosslink reactions were performed in a total volume of 25µl with 2nM of radiolabeled

DNA under consideration of the half time of the [α32P] dNTP, 13nM RNAP, 238nM TBP and

135nM TFB (or its variants) in transcription buffer (40mM Na-HEPES pH 7.3, 250mM NaCl,

2.5mM MgCl2, 0.1mM EDTA, 0.1mM ZnSO4) with 0.1µg/µl BSA and 1mM DTT and,

depending on the reaction, with additional 217nM TFE and/or NTP Mix (40µM ATP, 40µM

GTP and 2.7µM UTP). The samples were covered with mineral oil to prevent evaporation

and incubated 5 minutes at 80°C. 2µg heparin was added as competitor and the samples

were exposed to UV-light (Philips TUV 15W/G15T8 UV-C) for 20 minutes at 80°C. Despite

the recommended wavelength of 350-360nm (Kauer et al. 1986; Dorman, Prestwich 1994),

crosslinking efficiency was determined to work optimally at a wavelength of λ=300nm in our 

system. 15µl of the samples were recovered from oil and digested with 1.65µl DNase I-Mix

(1U DNase I, 40mM TRIS/HCl pH 8.0, 7mM MgCl2, 100mM NaCl, 5mM CaCl, 1mM DTT,

0.1µg/µl BSA, 1mM PMSF, 1µg/ml pepstatin, 1µg/ml leupeptin, 50% (v/v) glycerol) for 10

minutes at 37°C. 1.0µl of 10% (w/v) SDS solution was added and incubated at 90°C for 3

minutes. Samples were mixed with 1.92µl 12x Zn/HoAc-Mix (0.1mM ZnSO4, 12% (v/v) glacial

acetic acid) and 1.4µl S1 nuclease-mix (10U S1 nuclease, 20mM TRIS/HCl pH 7.5, 50mM

NaCl, 0.1mM ZnSO4, 0.1µg/µl BSA, 1mM PMSF, 1µg/ml pepstatin, 1µg/ml leupeptin and

50% (v/v) glycerol) and incubated for 10 minutes at 37°C. Reactions were denatured with

4.11µl 6x SDS loading dye, denatured and completely separated using 12% SDS-PAGE.

The gel was transferred into fixation solution (30% (v/v) ethanol, 10% (v/v) glacial acetic acid)

and incubated over night to reduce background signals. The gel was fixated to whatman

paper and radioactive signals were detected with Phospho Imager (FUJIFILM FLA5000) and

analyzed with AIDA v4.27 software.

D. FRET measurements and data acquisition

FRET (Förster resonance energy transfer) measurements were performed by Kevin Kramm

using confocal microscopy and TIRF microscopy (Total internal reflection fluorescence). For

these experiments a SSV T6 promoter DNA containing a 5´ biotin on the nt-strand, an

ATTO647n acceptor dye on the 5´ t-strand, and an internal Cy3b donor dye next to the B

responsive element was used (Gietl et al. 2014). Samples were prepared with 20pM SSV T6

promoter DNA and 1µM TBP and 1µM TFB in transcription buffer containing 40mM Tris/Cl

pH 7.5, 250mM NaCl, 0.1mM EDTA pH 8.0, 2.5mM MgCl2 and 0.1mM ZnSO4 in a total

volume of 200µl. Measurements were performed with the respective microscope technique at

room temperature by Kevin Kramm. Three datasets of the confocal microscopy were

obtained as absolute values for FRET efficiency (E) and the corresponding absolute values

for the number of counted events. The efficiency E can be defined as the number of energy

transfer events during a donor excitation event. The values of each dataset were binned to
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50 data points in total and were plotted as histograms and fitted with a Gaussian fit, including

the calculated mean and standard deviation. Raw data of the TIRF microscopy

measurements were analyzed with iSMS software. In total 250 traces of co-localized FRET

pairs of each sample (DNA without factors and DNA with TFB and TBP) were analyzed and

bleaching events of the donor dye were eliminated. Each dataset was binned with a width of

1.18 and plotted as a histogram. The datasets were fitted with a Gaussian fit, and standard

deviation as well as the mean FRET efficiency were calculated by statistical operations with

SigmaPlot software and/or alternatively with MATLAB (integrated in iSMS software package).
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ResultsIV.
The first part of this chapter is about RPA, in which the results of the in vitro experiments are

shown. Results concerning TFB are structured in three sections. The first is about FRET-

measurements and DNA bending, and the second part is about the role of the TFB B-reader

loop and its charge-dependent interactions during transcription initiation. The last section is

the main part of this thesis, and the topology of TFB in the preinitiation complex as well as

general structural rearrangements of TFB during transcription initiation was investigated. All

sections are discussed in a separate chapter (V. Discussion).

A. Analysis of the replication protein A during transcription
Thomas Fouqueau, a former PhD student at our institute, showed that PabRPA stimulates

transcription in vitro (Pluchon et al. 2013). However, details about the mechanism of the

observed stimulation lacked for the replication protein A. To gain more insights into molecular

interactions between the related PfuRPA and the transcription machinery of P. furiosus, the

protein was analyzed using different in vitro assays. The cell cultivation of the respective

genetic modified P. furiosus strain, as well as purification of PfuRPA was performed by Julia

Winter during an internship at our institute in 2013. Using SDS-PAGE, three subunits were

observed at the expected height of 14kDa, 32kDa and 41kDa and additional MS data

confirmed the presence of the heterotrimeric protein (data not shown).

1. RPA in transcription initiation

To test the functionality of the protein, an electro mobility shift assay (EMSA) was performed

to show the predicted preference to single stranded DNA (Figure 9 A), which is a typical

feature of SSB proteins. PfuRPA was added to the samples with increasing concentrations

and a shift was only observed in presence of single-stranded DNA (Figure 9 A, lane 2-4),

indicating interaction of RPA with the template. Here, the signal intensity rose with increasing

amounts of RPA to 130% at 348nM, and 140% at 523nM, respectively, in comparison to

174nM RPA. In contrast, samples with dsDNA did not show a specific shift on the gel except

some unspecific signals. The dsDNA template was generated by hybridization of the 5´-Cy3-

labeled ssDNA with the complementary unlabeled strand. Unspecific signals were located on

the same height as the signals of samples where ssDNA was present, and the signal

intensity of the lanes with increasing amounts of RPA did not differ, indicating that RPA was

bound to a small subpopulation of residual non-hybridized ssDNA templates. In the lanes

where RPA was absent, no shift was observed for ssDNA, but for dsDNA, which might be a

result of a deficient loading of the sample containing ssDNA at 523nM RPA. However, the

results demonstrated the expected preference to single-stranded DNA.

To analyze if RPA is part of the preinitiation complex, several methods like EMSA with

fluorescently and radioactively labeled DNA as well as the more sensitive western blot

approach was used (data not shown). As the results of these experiments did not indicate a

presence of RPA in the preinitiation complex, a more functional approach was used to

identify a role of RPA in transcription initiation. The results of the abortive transcription

assays are summarized in figure 9 B. To analyze the impact of RPA on the first

phosphodiester bond formation of an initiating complex, three independent technical

replicates were analyzed with equalized buffer conditions and increasing RPA

concentrations. The signal intensity derived from the radiolabeled 3nt RNA products did not

differ with increasing concentrations of RPA in comparison to the sample without RPA,

indicating that RPA does not influence the formation of the first phosphodiester bond.

Therefore, RPA does not stimulate RNA synthesis in the initiation stage of transcription.
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Figure 9: Analysis of RPA during transcription initiation and its preference to ssDNA. A) EMSA with

different concentrations of RPA with ssDNA and dsDNA confirmed the specific interaction to ssDNA.

B) Abortive transcription assays with increasing concentrations of RPA did not show effects, indicating

that RPA functions not during the first phosphodiester bond formation.

2. RPA in transcription elongation

To confirm the results of (Pluchon et al. 2013), an in vitro run-off transcription assay was

performed with increasing concentrations of the replication protein A (Figure 10 A). Under

consideration of the buffer conditions, the signal intensity of the formed 113nt run-off

transcripts rose with increasing amounts of RPA, indicating that more radiolabeled transcripts

were formed in presence of RPA. The activation of transcription was calculated to 2.9-fold in

average of three independently performed experiments with 50nM RPA used. This was also

observed for the P. abyssi RPA with the same amounts, showing that the P. furiosus RPA

has the same effect under run-off conditions. These results indicated that RPA functions

during elongation of transcription, as experiments with respect to the initiation did not show

an effect in presence of RPA. To investigate the possible role in transcription elongation, a

4kb plasmid containing a glutamate dehydrogenase (gdh) promoter and a stalling site at

position +45 relative to the TSS was used. Complexes were stalled at this register using NTP

mix containing [α-32P] UTP, but no CTP (Figure 10 B, lane 1, 3). RPA-buffer (lane 3) and

10nM RPA (lane 4) were added to reactions for one additional minute. The complexes where

then chased for 10 minutes by addition of a molar excess of unlabeled UTP and CTP,

whereby the radiolabeled 45nt RNAs were extended. The results showed that in absence of

RPA the ~4kb run-off product was formed, but several intermediates (marked with *)

appeared. These intermediates derived from chased complexes and indicating an

accumulation of these transcripts during elongation of transcription possibly due to a drop-off

of the RNA polymerase from the plasmid or internal pausing sites. In contrast, the presence

of only 10nM RPA could prevent the formation of these intermediates. In addition, the signal

intensity of the ~4kb band was also higher than without RPA, indicating that more complete

transcripts were formed under these conditions. This result leads to the assumption that RPA

functions during elongation possibly by stabilizing the RNA polymerase during RNA

synthesis. This interaction might reduce stalling and pausing events of the polymerase which

occur regularly during transcription, and therefore more transcripts were formed within the

same time in comparison to samples without RPA. In run-off transcription assays, a
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significant change of the pattern of shortened intermediates between samples where RPA is

absent or present was not observed (data not shown). Therefore, another suggestion is that

RPA increase the transcription speed of the RNA polymerase, which would also lead to a

higher number of formed transcripts within the same time frame.

Figure 10: RPA functions during elongation of transcription. A) Run-off transcription assay with

increasing concentrations of RPA revealed the stimulatory effect, as the formation of the 113nt run-off

transcript increased with higher concentrations of RPA. B) Chase experiments of stalled elongation

complexes on plasmids showed intermediates (marked with *) in absence of RPA, whereas in

presence of RPA no signals at the respective heights were observed, indicating a stabilization effect of

RPA during elongation.

To investigate differences in the transcription speed, which is the number of incorporated

nucleotides per time, transcription assays were performed with and without RPA and

reactions were stopped after distinct time points (Figure 11). For this experiment the run-off

length of the regular gdh-C45 template was extended from 113nt to 250nt by creating new

templates. Complexes were stalled at register +45 in absence and presence of RPA on the

linearized template, and chased by addition of a nucleotide mix containing unlabeled UTP

and CTP in a molar excess. In a first assay, reactions were stopped after every 5 seconds

(Figure 11). Full run-off transcripts were observed after 20 seconds in absence of RPA. In

contrast, the polymerase need only 15 seconds for the 250nt transcript length in presence of

RPA. Comparison of the shorter intermediates (Figure 11, red asterisks) also showed that in

presence of RPA formation of transcripts occurred much faster than in absence of RPA. The

results demonstrated that the stalled RNA polymerase can transcribe much faster in

presence of RPA. However, the same time-dependent experiments were performed without

stalled complexes, in which preinitiation complexes were incubated with RPA and NTPs and

reactions were stopped after distinct time steps (data not shown). In contrast, the differences

between formed transcripts in absence or presence of RPA did not differ remarkably,

indicating that the transcription speed of the RNAP is only slightly increased in presence of
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RPA. This finding leads to the assumption, that RPA can help the RNAP to restart

transcription from stalled complexes, and slightly increases the processivity of the RNA

polymerase.

Figure 11: Time-dependent transcription reactions of chased complexes in absence and presence of

RPA. Stalled complexes were chased and stopped after distinct seconds. In presence of RPA the

250nt run-off product was formed at 15 seconds, whereas in absence of RPA the run-off product was

formed after 20 seconds.

3. Summary of PfuRPA experiments

The purified heterotrimeric PfuRPA showed the expected preference to single stranded DNA

as it was expected for members of the SSB protein family (Figure 9 A). In vitro run-off

transcription assays further confirmed the observed effect of PabRPA, in which the formation

of transcripts is stimulated up to 2.9-fold (Pluchon et al. 2013), indicating that PfuRPA acts in

a similar manner like RPA of P. abyssi (Figure 10 A). However, the exact mechanism of this

stimulation is unknown, and therefore experiments were performed to unravel its possible

function. Western blot experiments as well as EMSAs with radio labeled and fluorescently

labeled DNA templates indicated that RPA is not part of the initiation complex (data not

shown). This finding is further supported by the fact that first phosphodiester bond formation

assays (Figure 9 B) did not show effects in presence of RPA in comparison to samples

without RPA. Moreover, RPA functions in the elongation stage of transcription. It could be

demonstrated that elongating RNA polymerases were stabilized in transcription reactions

using a complete plasmid (Figure 10 B), and formation of intermediates, which appeared in

absence of RPA, can be prevented in presence of this protein. However, it could not be

determined if these intermediates are internal pausing sites, or the polymerase loses its

interaction to the DNA template. In both cases RPA would help the polymerase to overcome

the pausing sites or increase the stability of the elongating complex to prevent its dissociation

from the template. Chase experiments with stalled complexes further showed that in

presence of RPA the polymerase is able to restart transcription much faster than in absence

of RPA (Figure 11).
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B. DNA bending experiments of P. furiosus TFB using FRET
The experiments with RPA focused on the elongation of transcription. However, this chapter

is about the first steps in transcription initiation, in which TBP and TFB associate to the

promoter of the DNA. The resulting DNA bending is a prerequisite for the formation of a

preinitiation complex (Nikolov et al. 1995). In the euryarchaeon M. jannaschii it was shown

that TBP alone can bend DNA, whereas in S. acidocaldarius, a member of the

Crenarchaeota, DNA bending requires TFB (Gietl et al. 2014). To investigate DNA bending in

the organism P. furiosus, single molecule analysis was performed using confocal and total

internal reflection fluorescence (TIRF) microscopy techniques with kindly support of Kevin

Kramm, PhD student of the laboratory of Prof. Dina Grohmann. To enable comparison with

results described in literature, the Sulfolobus spindle-shaped virus 1 T6 (SSVT6) promoter

was used as described in (Gietl et al. 2014), together with own PfuTBP and PfuTFB. This

short template contains a TATA box and a BRE to enable binding of TBP and TFB to the

DNA, and a biotin is present at the 5´ end of the nt-strand for immobilization of the DNA on a

surface (Figure 12 C).

Figure 12: EMSA, principle of FRET and SSVT6 template overview. A) Specific shift signal was

observed in presence of Pyrococcus TBP and TFB, demonstrating that the proteins bind to the viral

promoter. B) Principle of the FRET measurement. In the unbent state of DNA the distance between

the donor dye Cy3b and the acceptor molecule Atto647n is higher than in the bent state of DNA. In the

bent state, the FRET efficiency is higher than in the unbent state due to a higher number of energy

transfers caused by a shorter distance. C) Representation of the SSVT6 promoter used in the study.

The template contains a 5´ biotin for immobilization, a Cy3b donor dye next to the BRE, and an

acceptor molecule Atto647n at the 5´ t-strand (Gietl et al. 2014).
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In addition, two fluorescent dyes are fused to the template, one donor dye Cy3b (Excitation

Abs-λmax= 558nm; Emission Em-λmax=572nm) located next to the BRE on the nt-strand, and

an acceptor molecule Atto647n (Excitation: Abs-λmax= 644nm; Emission: Em-λmax=669nm) on

the 5´ end of the t-strand. The donor dye (D) is excited by a laser beam of a distinct

wavelength under the microscope, whereas the emission spectrum of this donor overlaps

with the excitation spectrum of the acceptor (A) molecule. If both D and A are in distance

closer than 10nm, the acceptor emits light of a distinct wavelength if excited by the donor dye

due to Förster resonance energy transfer (FRET) (Figure 12 B). The number of energy

transfers over the number of donor excitations is termed the FRET efficiency (E). A higher E

value indicate a shorter distance between D and A. Therefore, if DNA is bent, the FRET

efficiency increases due to the shorter distance between the donor and acceptor dye.

First, the binding of TBP and TFB of P. furiosus to the SSVT6 promoter was tested in an

EMSA (Figure 12 A). In presence of TBP and TFB a specific band appeared on the gel,

indicating the formation of a ternary complex consisting of DNA and the two transcription

factors. Because the usual buffer conditions were insufficient for a proper measurement in

the fluorescence microscopy, the composition of the buffer was changed. Reducing agents

like DTT were eliminated and the interfering buffer substance Na-Hepes was exchanged with

Tris. In vitro transcription reactions showed no difference between both buffer conditions

(data not shown). First results were obtained from the confocal microscopy. The great

difference between confocal and TIRF microscopy is the immobilization of the DNA to a

polyethylene glycol surface in the TIRF (Gietl et al. 2014), where single molecules can be

visualized as small spots. In contrast, samples in the confocal microscopy just diffuse

through a focused area. In total, three measurements were performed: One contained only

the SSVT6 promoter, in a second sample TBP and the template were present, and in a third

sample additional TFB was added to the template and TBP (Figure 13). The sample with

DNA (Figure 13 A) showed a stable conformation with a mean FRET efficiency of 28.4% ±

10.6%. This value represented the unbent state of DNA, as no other proteins were present in

the reaction. In the sample containing additional TBP, the mean FRET efficiency did not

differ and had a mean of 28.0% ± 10.5% (Figure 13 B).

Figure 13: Results of the confocal microscopy measurements. A) Measurement of SSV T6 promoter

only. DNA shows a stable conformation and a mean FRET efficiency of 28.4% ± 10.6%. B) Addition of

TBP to DNA does not change the mean FRET efficiency (28.0% ± 10.5%), indicating no bending effect

for TBP alone. C) TFB induces DNA bending. Two populations are present (blue double Gaussian

curve): a first population with a mean FRET efficiency of 24.0% ± 5.7% (red curve) representing the

unbent conformation, and a high FRET population with a mean of 40.7% ± 17.2%, indicating DNA

bending (green curve).
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This finding suggests that TBP alone is not able to bend DNA, or keep the DNA in a bent

state. Addition of TFB leads to a second population with an increased mean FRET efficiency

of 40.7% ± 17.2% (Figure 13 C). This indicates a bent state for the DNA, as the distance

between donor and acceptor is decreased. A second population was detected with a mean

FRET efficiency of 24.0% ± 5.7%, indicating that a subpopulation of DNA in an unbent

conformation is still present. The results of the confocal microscope show that DNA bending

in P. furiosus depends on the presence of TFB, whereas either TBP and TFB bind and bend

DNA simultaneously, or binding of TFB stabilizes the TBP-DNA interaction and bend DNA.

Figure 14: Results of the TIRF microscopy measurements. A) The same setup was used as for

confocal microscopy measurements, but DNA and the respective complexes were immobilized on a

surface. DNA showed a stable conformation with a mean FRET efficiency of 29.6% ± 0.7%. B)

Measurement with additional TFB and TBP. The overall distribution of the FRET efficiency showed two

maxima (blue Gaussian fit), one with a mean FRET efficiency of 26.4% ± 0.2% (red Gaussian fit)

indicating DNA in the unbent state, and a second with a mean FRET efficiency of 48.8% ± 0.2%

(green Gaussian fit) indicating a DNA bending in presence of TFB and TBP.

To confirm these results with a second method, TIRF microscopy measurements were

performed in absence and presence of both transcription factors. To determine the mean

FRET efficiency for the unbent state, a sample containing only DNA was immobilized on the

surface and measured. Here, FRET efficiency had a mean value of 29.6% ± 0.7% (Figure 14

A). Addition of TFB and TBP to the template leads to a mixture of two populations, one

unbent conformation with a mean E = 26.4% ± 0.2%, whereas the second mean E = 48.8%

± 0.2% (Figure 14 B). This result confirmed the measurements of the confocal microscopy

and further indicates that TFB induces bending of DNA, whereas TBP is not able to bend

DNA alone.
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C. The role of the TFB B-reader loop in transcription initiation
At the beginning of this PhD thesis, a crystal structure of the eukaryotic yeast initially

transcribing complex was published containing ScTFIIB, RNAP II, DNA and a 6nt RNA

bound to the transcribed strand at a resolution of 3.4Å (Sainsbury et al. 2013). The structure

revealed that the tip of the B-reader loop of ScTFIIB is located in close proximity to the active

site of the polymerase and might interact with the nascent RNA at a length of 6 nucleotides

(Figure 15 A). Based on this finding, it was hypothesized that the advancing RNA is

separated from DNA with the support of the ScTFIIB B-reader loop domain. Due to the fact,

that the respective site of ScTFIIB contains two aspartate residues D74 and D75 (PfuTFB

E53 and R54), it was suggested that separation occurs via charge-dependent interactions

between the negative charged amino acids of ScTFIIB B-reader loop and the 5´end of the

nascent RNA chain. The separation of RNA from the template is necessary for transcription

initiation, because RNA has to be guided towards the exit channel of the RNA polymerase to

enter productive elongation (Figure 15 C).

Figure 15: Separation model based on the published crystal structure 4BBS. Modified from (Sainsbury

et al. 2013). A) The nascent RNA (red) interacts with the B-reader loop domain of TFB (blue) to be

separated from the transcribed strand (grey) and guided towards the exit channel. Other domains of

TFB are shown in green (B-reader helix), dark green (B-core), orange (Zn-ribbon) and purple (B-

linker). B) Locations of selected amino acids for alanine substitution are indicated and directly interact

with nascent RNA in the structure (4BBS). C) Model of the separated RNA. A 12mer RNA was

modelled into the structure based on the predictions by (Sainsbury et al. 2013). RNA is separated by

the B-reader loop and is guided towards the exit channel, whereas it is closely located to the B-reader

helix. Color code is the same as in A and B.
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Comparison of the eukaryotic B-reader loop tip of different organisms showed that the

respective site contains usually one negative charged amino acid in all selected organisms

except M. jannaschii, whereas archaea additionally possess an overall positive charge due to

the presence of basic amino acids (Figure 16). Eukaryotic organisms lack positive charged

amino acids at the corresponding site. To elucidate the specific role of the acidic amino acid

and in general the B-reader loop of P. furiosus with respect to RNA-DNA separation and its

role in archaeal transcription, several PfuTFB alanine variants were created. The charge of

the loop was stepwise eliminated (Figure 15 B). In total, four single mutations R52A - R55A,

three double variants R52E53A, E53R54A, and R54R55A, and a complete loop alanine

substitution (R52-R55A; referred to as LoopA) were developed during the Bachelor thesis of

C. Dick under my attendance in 2014. In contrast to the ScTFIIB B-reader loop, the overall

charge of the P. furiosus B-reader loop is positive (Figure 16). Nevertheless, its role in

transcription was analyzed using different in vitro transcription assays.

Figure 16: Charge distribution of the conserved TFIIB/TFB B-reader domain of different organisms.

Sequences of members of the eukaryotic domain are compared with sequences derived from archaeal

organisms (NA=Nanoarchaeota; CA=Crenarchaeota; EA=Euryarchaeota). The B-reader loop tip is

indicated by the red line, whereas the location of the B-reader helix (green line) and the loop (blue

line) is shown. Amino acids in grey boxes are unpolar, in white boxes neutral, in blue boxes positively

charged, and in red boxes acidic. The multiple sequence alignment was performed using

ClustalOmega.

1. Analysis of TFB Alanine substitutions in transcription assays

The ability of the developed TFB variants to form a preinitiation complex was tested in an

EMSA experiment (Figure 17). Signals for the ternary TFB/TBP/DNA-complex occurred only

in presence of both transcription factors (Figure 17 A, lane 4), whereas single factors present

with DNA do not form an unspecific interaction (Figure 17 A, lane 2, 3). Addition of RNAP

leads to signals located higher on the gel (Figure 17 A, lane 5-9; B, lane 3-7), representing

preinitiation complexes. Two separated bands were detected in samples containing RNAP,

possibly as a result of two PIC populations. It is possible that one population contains the

stalk subunits Rpo4/7, and the other population lacks the stalk. The experiment showed that

preinitiation complexes formed with single alanine substitutions (Figure 17 A) have the same

pattern like the wild type TFB (wtTFB), except TFB-E53A. The ternary TFB-E53A/TBP/DNA-

complex runs lower than the other complexes on the gel. Therefore the electromobilic

property differs in comparison to usual ternary complexes. The double alanine substitutions
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and the loop tip substitution showed no altered patterns in comparison to the wtTFB (Figure

17 B), indicating that all TFB variants are able to form preinitiation complexes.

Figure 17: EMSA on a 5% native gel of TFB alanine variants and their ability to form a preinitiation

complex. A) A specific shift was observed only in presence of both transcription factors or with

additional RNAP (lane 4-5). TFB variants containing single alanine substitutions form preinitiation

complexes (lane 6-9) in the same manner like the wild type TFB (lane 5), whereas TFB-E53A showed

an altered pattern as the TFB/TBP/DNA-complex runs lower than the comparable complexes. Two

bands were detected in presence of RNAP, possibly representing two PIC populations with and

without the stalk subunits Rpo4/7. B) TFB variants containing multiple alanine substitutions showed

the same pattern like the wtTFB, indicating the formation of a preinitiation complex.

To test the ability of the formation of the first phosphodiester bond of the RNA polymerase

initiated with the TFB variants, an abortive transcription assay was performed (Figure 18 A).

In this assay transcription is initiated using a primer consisting of two nucleotides GpU, and

[α32P] UTP, whereas the primer is extended to a 3nt radiolabeled product by the RNA

polymerase to measure the capability of the RNAP to form the first phosphodiester bond.

The results of the experiments showed that TFB-R52A and TFB-E53R54A showed moderate

transcription levels in comparison to the wtTFB, indicating that the elimination of these

charges at the respective sites do not inhibit or stimulate transcription initiation. In contrast,

RNAPs initiated with TFB-R54A showed a markedly reduced number of aborted transcripts

of only 32% in comparison to wtTFB, suggesting insufficient capability of the enzyme to form

a phosphodiester bond. Single alanine substitutions TFB-E53A and TFB-R55A, the double

alanine variant TFB-R54R55A and the TFB-LoopA mutation showed almost no transcription

initiation, indicating that exchange of these amino acids with alanine are not able to initiate

transcription correctly. Surprisingly, the double substitution R52E53A showed a two-fold

increase of the signal intensity in comparison to the wtTFB. This finding suggests that the

two alanine residues at these positions stimulate the formation of the first phosphodiester

bond. To investigate the impact of the TFB variants on the formation of a run-off transcript, a

multiple-round in vitro transcription assay was performed (Figure 18 B). All transcription

relevant components were incubated with all four nucleotides and [α32P] UTP, and

radiolabeled transcripts with a length of 113nt were formed. The single substitutions TFB-

R52A, TFB-R54A and TFB-E53R54A showed almost similar results like in the abortive

transcription assay, whereas the number of transcripts is slightly reduced to 50%
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Figure 18: Results of abortive and run-off transcription assays with TFB alanine variants. A) Results

of three independently performed abortive transcription assays are summarized in a bar diagram.

Formation of the 3nt radiolabeled product occurs only in presence of all transcription components,

TBP, wtTFB and RNAP (first two lanes). Standard deviation (SD) and average (A) of the quantified

signal intensities of the respective TFB substitutions in comparison to wtTFB were calculated. B)

Three independently performed run-off transcription assays with the respective TFB alanine

substitutions are summarized in a bar diagram. Run-off transcripts are formed only in presence of

transcription factors and RNAP (first two lanes). The standard deviation (SD) and the average (A) of

the formed transcripts were calculated by comparison with the wtTFB signals and are given below.

for TFB-R52A and TFB-E53R54A, respectively. TFB-R54A had almost the same level of

produced transcripts with a value of 37% in comparison to the 32% of the abortive

transcription assay. As it was expected from initiation assays, the substitutions TFB-E53A,

TFB-R55A, TFB-R54R55A, and the TFB-LoopA showed no signals on the gel, indicating that

no transcripts were formed. TFB-E53R54A showed transcript formation at a level

comparable to the wild type TFB. The stimulatory effect observed in the abortive transcription

assay showed no impact in multiple-round transcription assays. The finding, that half of the

used TFB variants showed no or massively reduced transcription levels in abortive and run-

off assays, and the fact, that this region is located very closely to the transcribing strand in

the initiation complex, leads to the assumption that the t-strand of the transcription bubble is

not correctly stabilized.

2. KMnO4 footprint experiments of TFB B-reader alanine variants

To analyze the quality of promoter opening with the different TFB variants KMnO4 footprint

experiments were performed (Figure 19). A DNA template was used which is radiolabeled at

the 5´end of the non-transcribed strand together with potassium permanganate. This reagent

preferably cleaves single stranded DNA at T-residues, and therefore single stranded regions

of the template can be visualized using a sequencing gel. Control samples were used to

show the specificity of the formation of the initial single stranded transcription bubble together

with a sequence ladder to determine the location of the open region of the template (Figure

19 A, B). The sequence from -11 to +8 relative to the transcription start site of the
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non-transcribed strand is shown (Figure 19 A), whereas the initial transcription bubble has a

distance from -9 to +5 (Spitalny, Thomm 2003). T-residues are located at -6, -4, -2, +2 and

+3 within this region, therefore five distinct bands are present on the gel if both strands were

separated and stabilized correctly. Control samples showed that if TBP, TFB or RNAP is

Figure 19: KMnO4 footprint analysis of the TFB alanine variants. A) Sequence ladder of the non-

transcribed strand of the initially melted DNA region of the used gdhC20 template. Sanger reactions

were performed with dideoxynucleotides and radiolabeled M13R primer and separated on a 6%

sequencing gel. TSS is shown in green (+1), and the T-residues within the initially melted region are

colored in red. B) KMnO4 footprints of controls using wtTFB. The distinct pattern consisting of five

bands only occurred in presence of TFB, TBP, and RNAP, whereas additional TFE increases the

signal intensity. C) Footprint analysis of the TFB variants was performed with and without TFE.

missing in samples with labeled DNA, no promoter opening takes place (Figure 19 B).

However, if both transcription factors are present together with RNAP, the specific pattern

can be observed, representing the single stranded region on the template DNA. Additional

TFE increases the signal, as this transcription factor stabilizes the nt-strand by direct

interaction with DNA (Grünberg et al. 2007). The analysis showed that TFB-E53A, TFB-

R54A and the double substitution TFB-R54R55A are insufficient to open the promoter

correctly, whereas addition of TFE can rescue the defects in promoter opening to some

extent (Figure 19 C). TFB-R55A and TFB-LoopA showed a very low ability to open DNA, but

addition of TFE leads to a weak opening of the DNA in case of both TFB variants. TFB-

E53R54A showed the distinct pattern in both absence and presence of TFE, whereas the

mutation TFB-R52A and TFB-R52E53A showed a good opening and a strong signal in
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presence of TFE, indicating a proper melting and stabilization of the initial transcription

bubble. However, almost all TFB variants had a weak signal of the +2 and +3 signals on the

gel in absence of TFE, indicating that this partial region of the DNA can not be stabilized

correctly during promoter opening.

3. TFE can partially compensate defects in promoter opening

It was shown that TFE can rescue defects in promoter opening due to a better stabilization of

the single-stranded region of the transcription bubble in preinitiation complexes (Werner,

Weinzierl 2005). Therefore abortive and run-off transcription assays were performed with

additional TFE to see if some of the TFB variants can overcome defects in transcription

bubble stabilization and form transcripts at a level comparable to the wtTFB (Figure 20).

Assays were performed with and without TFE to compare the increase of the formed

transcripts. The signal intensity of wtTFB showed an increase of 5.3-fold in abortive

transcription assays if TFE is present (Figure 20 A). Additionally, a 5-7-fold increase was also

observed for TFBR52A, TFB-R54A, TFB-R55A, and the two double-substituted proteins,

TFB-R52E53A and TFB-E53R54A, in comparison to samples in which TFE was absent.

Despite the similar activation fold in comparison to the wtTFB, the relative number of formed

transcripts is almost constant between the above mentioned TFB variants and wtTFB in both,

absence and presence of TFE. For example, TFB-R52A showed nearly 50% signal intensity

relative to the wtTFB signal without TFE. The sample with additional TFE showed a signal of

60% relative to the wtTFB + TFE sample, whereas the increase of 7-fold was the highest

observed for the TFB variants. Nevertheless, all TFB mutations mentioned before reached a

level higher than wtTFB without TFE, except TFB-R55A. Therefore TFE can not rescue the

defect of this mutation during transcription initiation. A more dramatic effect was observed for

the mutations TFB-E53A, TFB-R54R55A and TFB-LoopA. Addition of TFE did not show any

effects. Surely, there is also a slight increase of the formed transcripts with activation folds in

the range of 2-3, but the fact, that these mutations do not show nearly any formation of

transcripts, even in presence of TFE, it can be concluded that the substitution of the amino

acids with alanine at these positions lead to a complete collapse of the transcription initiation.

The results of these TFB variants in KMnO4 footprint experiments indeed showed that the

bubble is opened especially at the nt-strand in presence of TFE. Because of the location of

the TFB B-reader loop a defect in the stabilization of the t-strand can not be excluded at this

level. Proper nt-strand stabilization and insufficient t-strand stabilization can also lead to

complexes unable to initiate transcription. However, to investigate if the loop is involved in

strand separation, a run-off transcription experiment was performed in presence of TFE

(Figure 20 B). In this assay RNA has to pass the loop correctly, otherwise RNA is not guided

towards the exit channel, and a run-off signal should not be observed. The wtTFB showed an

increased signal intensity of 2.2-fold in presence of TFE in comparison to the sample without

TFE. TFB-R52A, TFB-R52E53A and TFB-E53R54A showed increased signal intensities of

1.8 - 2.7-fold, which is a comparable level to wtTFB. In comparison to abortive transcription

assays, this result was expected, as these TFB variants showed also similar activation folds

relative to the wtTFB. Interestingly, TFB-R55A, which had a very weak signal in the abortive

transcription assay without TFE, does also not show a run-off product in multiple round

transcription assays. But addition of TFE can raise the signal above the wtTFB niveau and

further showed transcripts of 50% in comparison to wtTFB + TFE sample. In contrast, TFB-

E53A, TFB-R54R55A and the TFB-LoopA showed no formation of the run-off product in

absence of TFE, but addition of this transcription factor led to a slight run-off signal of 13%

and 22%. TFB-E53A showed no run-off product even in presence of TFE, which indicate that
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Figure 20: Abortive and run-off transcription assays in absence and presence of TFE. A) Results of

abortive transcription without TFE (-TFE) and with TFE (+TFE) are summarized in a bar diagram.

Black bars represent the quantified signal intensity of the radiolabeled 3nt RNA product of the TFB

proteins without TFE relative to the quantified signal intensity of the 3nt RNA derived from wtTFB

without TFE. Grey bars represent the signal intensity of RNAs quantified from samples containing TFE

in comparison to wtTFB + TFE. In both cases (-TFE and +TFE) the respective percentages were

calculated and given below the signals. The activation fold (increase) of samples containing TFE was

calculated by comparison with the signal intensity of samples without TFE, whereas wtTFB niveaus

are depicted as horizontal bars at 100% (-TFE) and 530% (+TFE). B) Run-off transcription assays in

absence and presence of TFE. The depiction is the same as in A. Horizontal lines at 100% and 220%

represent the wtTFB signal with and without TFE, respectively. (n.d. = not defined)

a negative charge at this position of TFB is essential for transcription. The results of the run-

off transcription assay together with the results of the abortive transcription assay showed

that some of the TFB variants can not initiate transcription even in presence of TFE. This

finding leads to the suggestion that the t-strand is not correctly stabilized. However, to

investigate the RNA-strand separation in particular, the used transcription assays are

insufficient to give answers to this question, because some TFB variants showed massive

defects in transcription assays. To overcome this problem a pre-opened template was used

which had a mismatch at registers -1 to +2 and therefore contained a mini-bubble around the

start site.

4. RNA-strand separation at heteroduplex DNA templates

To see if the TFB-A variants are involved in the RNA-strand separation, a DNA template

containing a mini-bubble was used. Two templates were generated, whereby one contained

the regular t-strand sequence and a mismatch sequence at the nt-strand, and vice versa

(Figure 21 A). To verify if the pre-opened region is large enough to enable nearly wild type

transcription levels of the TFB variants, an abortive transcription assay was performed

(Figure 21 B).
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This experiment showed that almost all TFB alanine substitutions had wtTFB levels in

formation of the 3nt RNA transcript, except TFB-E53A (31%), TFB-R54R55A (66%) and

TFB-LoopA (83%). The hybridized control template which lacks the mismatch region showed

a 20-fold decreased activity, indicating that the pre-opening of the initially melted region

Figure 21: Transcription assays using pre-opened templates. A) Schematic representation of the used

templates. The pre-opened nt-strand template contained a mismatch at registers -1 to +2 at the nt-

strand (purple) whereas the t-strand had the regular sequence (dark blue). The pre-opened t-strand

template contained an nt-strand with the regular sequence (light blue) and a t-strand mismatch at

registers -1 to +2 (orange). The control template was hybridized in the same manner like the pre-

opened templates, but contained the regular sequences of both the t-strand (dark blue) and the nt-

strand (light blue). B) Abortive transcription assay with a template containing a mismatch at the nt-

strand. Signals were quantified and compared with the signal intensity of the wtTFB sample in which

the heteroduplex template was used. The relative signal intensities were summarized as bar diagrams

and the wtTFB level is represented as a horizontal black line. Assays performed with the hybridized

control template (H) as well as absolute values of the quantification are given below the signals. C)

Run-off experiment with a template containing a mismatch at the non-transcribed strand. Depiction is

the same as in B. D) Run-off transcription experiment with a template containing a mismatch at the

transcribed strand. Depiction is the same as in B and C.
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from registers -1 to +2 supports the initial synthesis of RNA in the abortive transcription

assay. The reduction of the signal intensity of TFB-E53A of 31% further showed that also a

pre-opening of the template does not support formation of the 3nt RNAs in sufficient

amounts, underlining the importance of this amino acid position. However, the same assay

with the pre-opened t-strand could not be performed, as the mismatch creates a region

where a matching dinucleotide primer was not available. Nevertheless, both templates were

used in run-off transcription assays to investigate if the charge of the B-reader loop region is

involved in RNA strand-separation. The run-off transcription assay with the mismatch at the

nt-strand showed similar results like in the respective abortive transcription assay (Figure 21

C). First, the signal intensity of wtTFB raised about 3 - 4-fold in comparison to the hybridized

control template, indicating that pre-opening of DNA supports transcription. In contrast to the

control template, two distinct bands were located at the respective site on the gel at 113nt

which is the run-off length and a second band below, probably at 112 or 111nt. This second

band only occurs in presence of the pre-opened template, suggesting that use of this

template allows non-selective diffusion of NTPs to the start site, whereas transcription

initiates at two different start points, +1 and +2. However, almost all TFB variants showed

transcripts comparable to the wtTFB level, indicating that the use of a heteroduplex DNA

template can overcome the deficiencies in transcription bubble stabilization observed in

previous experiments on the one hand. It further shows that the amino acids substituted with

alanine at the respective sites seem to be not involved in RNA-strand separation on the other

hand. A defect of the separation of the RNA can be excluded, because RNA was guided

correctly towards the RNA exit channel, leading to the formation of run-off transcripts at a

level comparable to wtTFB. The only TFB substitution with an altered signal intensity was

TFB-E53A with only 50% of the formed transcripts in comparison to the wild type TFB. This

finding shows that a pre-opening of the template at the nt-strand leads to more transcripts in

comparison to the experiment with additional TFE, but the reduced amount of formed

transcripts further indicate that the amino acid E53 possibly plays a key role in t-strand

stabilization and/or RNA-separation. To investigate the impact of the E53A substitution on

the t-strand stabilization, a run-off transcription assay with a mismatch at the t-strand was

performed (Figure 21 D). The wtTFB also showed an increase of the formed transcripts of 3 -

4-fold in comparison to the regular, PCR-produced template and the hybridized control

template. The other TFB variants tested showed also transcription levels comparable to the

wtTFB, indicating that a mismatch at the t-strand supports transcription in a sufficient way.

Only TFB-R54R55A and TFB-LoopA showed slightly decreased values in comparison to the

experiment in which the nt-strand mismatch was used. TFB-E53A formed transcripts of 68%

in comparison to the wtTFB and therefore a mismatch at the t-strand increase the

transcription rate of this TFB substitution in comparison to the mismatch at the nt-strand. This

indicates that the amino acid E53 interacts with the t-strand preferably to stabilize the DNA in

the open complex. It might also support RNA strand separation, but if this negative charged

amino acid is sufficient for the separation only, the number of transcripts should be less than

the observed 68%. However, the results of the experiments using mini-bubbles as templates

showed that the transcription output is almost at the wtTFB level, demonstrating that the

charge of the B-reader loop is not important for the RNA-strand separation. Moreover, the B-

reader loop tip region is sufficient for the stabilization of the t-strand in open complexes,

whereas the only negative charged amino acid E53 plays a key role during transcription

initiation, possibly due to charge-dependent interactions with the transcribing strand.
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5. Summary of the TFB alanine substitutions

The TFB B-reader loop tip region was substituted with alanine amino acids to stepwise

eliminate the overall positive charge of this region to investigate the role of this protein

domain during transcription initiation with respect to charge-dependent interactions between

the loop and nascent RNA. Different in vitro transcription assays were performed to observe

impacts of the TFB variants during transcription, and are summarized in figure 22. The

results presented here demonstrate that the variants TFB-R52A, TFB-R54A and TFB-

E53R54A can form preinitiation complexes, initiate transcription and form run-off products

similar or slightly reduced in comparison to the wtTFB. Experiments with additional TFE lead

also to transcription levels comparable to the wild type niveau. This finding indicates that the

charge of the regular amino acids at these positions is not important for the function of the

Figure 22: Summary of the experiments performed with TFB alanine substitutions. All TFB variants

are listed below the wtTFB, and the respective amino acid composition of the B-reader loop tip region

is shown and colored with respect to the particular charge of the amino acids: unpolar (grey), basic

(blue) and acidic (red). The results of the TFB variants are summarized below the respective

experiment, whereas the quality is given as (-) for insufficient results, (+) for weak, (++) for moderate

results or results comparable to wtTFB, and (+++) for increased values in comparison to the wtTFB.

B-reader loop region. In contrast, the double-substitution TFB-R52E53A showed increased

initiation ability and a better opening of the nt-strand in KMnO4 footprint experiments,

indicating that this amino acid composition can stimulate transcription initiation, whereas in

run-off experiments no significant difference in comparison to the wtTFB was observed. The

most dramatic effects were observed for the TFB substitutions TFB-E53A, TFB-R55A, TFB-

R54R55A and the TFB-LoopA. All variants formed preinitiation complexes, indicating that the

integrity of the TFB proteins is unchanged and are sufficient to interact correctly with DNA,

TBP and RNAP. However, none of the substituted proteins is able to initiate transcription,

and no formation of run-off transcripts was observed. Addition of TFE leads to a better
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opening of the initially melted region especially for the nt-strand in KMnO4 footprint

experiments, but in abortive and run-off transcriptions TFE can not rescue the defects,

because the observed signal intensities of the respective experiments were below the wtTFB

-TFE niveau. The experiments with mini-bubbles showed that the transcription level can

nearly be equalized for the TFB variants, allowing investigation of the strand separation. The

assays demonstrated that the charge of the B-reader loop tip region is not important for the

separation of the RNA strand, because run-off transcripts were formed at a level comparable

to wtTFB, indicating that RNA is guided correctly towards the RNA exit channel. Only TFB-

E53A showed also low transcription levels in the assay with the nt-strand mismatch, and

moderate levels in the assay with the t-strand mismatch. Taken together, the B-reader loop

tip region is important for the stabilization of the t-strand of the transcription bubble in

preinitiation complexes. The charge of this protein region is not important for the RNA-strand

separation, whereas the only negative amino acid, E53, is essential for transcription.
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D. TFB-DNA crosslink studies during transcription initiation
The main chapter of this thesis is about structural rearrangements of the transcription factor

B during transcription initiation and transition to early elongation. As it was mentioned in the

outline of the previous chapter, a crystal structure of an initially transcribing complex of the

eukaryotic S. cerevisiae organism was published and served as starting point of this thesis.

The structure contains TFIIB, RNAP II, DNA and a 6nt RNA bound to the transcribed DNA

strand (Figure 6). Several postulations derived from this structure, whereas one issue, the

RNA-strand separation was addressed and discussed in the previous chapter. Beside the

possible role of the TFB B-reader loop domain during transcription, it was also hypothesized

that the B-reader domain is located in close proximity to the active site of the RNAP where it

interacts with nascent RNA. A clash between the nascent RNA and the TFIIB B-reader helix

was postulated to guide the transcript towards the exit channel of the polymerase. This

interaction should take place at an RNA length of 8nt, as it was suggested in a published

open complex model (Kostrewa et al. 2009). A further clash of the RNA with the Zn-ribbon

domain of the transcription factor IIB was further postulated at an RNA length of 12-13nt

because this protein region blocks the exit pore of the channel (Sainsbury et al. 2013).

No structural information is available for the Pyrococcus transcription system with respect to

the topology of TFB within the complex, and structural rearrangements and possible

interactions with RNA and DNA during transcription initiation. To investigate the archaeal

TFB of P. furiosus (PfuTFB) during transcription, a UV-inducible crosslinking system was

used in this study. Based on the relationship between archaeal and eukaryotic transcription

machineries, corresponding amino acids of the PfuTFB were substituted with p-Benzoyl

phenylalanine (Bpa). This phenylalanine derivate reacts preferentially with unreactive C-H

bonds when exposed to UV-light at a wavelength of 350-360nm with a reactive spherical

radius of 3.1Å (Kauer et al. 1986; Dorman, Prestwich 1994). If TFB-Bpa variants were

incubated with RNAP, TBP and DNA and exposed to UV-light, it forms a covalent crosslink

with nucleotides in proximity to the Bpa position. To visualize this interaction, radioactively

labeled nucleotides were used at specific sites of the DNA, whereas TFB-Bpa/DNA

complexes were analyzed by SDS-PAGE. The principle of this method is shown in figure 23.

This approach enables investigation of TFB-DNA contacts in preinitiation complexes and

initially transcribing complexes which in turn allows comprehending structural transitions and

functional interactions of TFB during transcription initiation and transition to elongation. The

presented data shown here are the first biochemical data on dynamic transitions of the

archaeal transcription factor B during transcription initiation and transition from initiation to

early elongation.

The first step was the selection of TFB-Bpa variants suitable for crosslinking experiments. A

set of TFB mutants were created including amino acid positions G41 - A49 of the PfuTFB B-

reader helix (corresponding positions R60 - N68 of Saccharomyces cerevisiae (Sc) TFIIB),

and S50 - R57 of the PfuTFB B-reader loop (corresponding positions D69 - R78 of ScTFIIB).

Both domains are located closely to the active site of the RNA polymerase in the initially

transcribing complex (Figure 29). In addition, PfuTFB linker positions E74 and M85 (R95 and

M104 of ScTFIIB) as well as the PfuTFB B-core position F192 (I209 of ScTFIIB) were

substituted with Bpa for additional crosslink reactions and controls. Because of the potential

impact of unnatural amino acids on protein stability and function the TFB variants were

screened in a set of in vitro transcription reactions.
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Figure 23: Schematic draw of the used crosslinking method. DNA-templates containing a strong

glutamate dehydrogenase (gdh) promoter are radioactively labeled at one specific site using [α-
32

P]

dNTPs. Selected amino acids of the PfuTFB were substituted with the UV-inducible photo-reactive p-

Benzoyl phenylalanine (Bpa). Both were incubated with TBP and/or additional RNAP to form

preinitiation complexes. When RNAP is absent, a DNA/TBP/ TFB-Bpa complex is formed, whereas the

DNA is double stranded (closed DNA). The label at the DNA is not within the reactive radius of the

Bpa, and no crosslink reaction can be observed. Addition of RNAP leads to the formation of open

complexes, whereas Bpa and the label are in close proximity to form a covalent TFB-DNA bond.

1. Analysis and selection of TFB-Bpa variants

First, the ability of TFB-Bpa proteins to form a preinitiation complex was analyzed using

EMSAs (Figure 24). Control samples were performed with a 5´end FAM labeled gdh-C20

template in absence of proteins (Figure 24 A, lane 1), in absence of TFB (lane 2), and with

TFB only (lane 3). A specific signal on the gel occurred only in presence of DNA, TBP and

wtTFB, indicating the ternary DNA/TBP/TFB complex (lane 4). Addition of RNAP shifted the

signal to a band located higher on the gel, indicating preinitiation complex formation (lane 5).

The TFB-Bpa variants were tested in the same manner as wtTFB, whereas the TFB-linker

positions TFB-E74Bpa and TFB-M85Bpa, as well as the B-core TFB-F192Bpa showed signal

patterns comparable to the wtTFB. The TFB B-reader helix variants G41Bpa - A49Bpa can

also form PICs (Figure 24 B, lanes 4 - 11) whereas the TFB-P42Bpa was indeed

successfully created on the plasmid, but overexpression failed several times for unknown
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reasons and is therefore missing in the screening. The TFB B-reader loop mutations S50Bpa

- R57Bpa showed also similar patterns (Figure 24 B, lanes 12 - 19), indicating the presence

of PICs. Therefore, all TFB variants tested have the ability to form stable complexes in

presence of DNA, TBP and RNAP, indicating that the incorporated unnatural amino acids do

not affect PIC formation.

Figure 24: Electro mobility shift assays of TFB-Bpa variants showed preinitiation complex formation.

A) Control samples with DNA (lane 1), DNA, TBP and RNAP (lane 2) and DNA with TFB (lane 3)

showed no unspecific interaction. Reactions containing DNA, TBP and wtTFB (lane 4) formed ternary

DNA/TBP/TFB complexes indicated by the shift of the signal, whereas in presence of RNAP an

additional band is visible, indicating the preinitiation complex (lane 5). The B-linker positions E74Bpa

(lane 6) and M85Bpa (lane 7), as well as the B-core position F192Bpa (lane 8) formed preinitiation

complexes. A native 4-10% gradient gel was used. B) Control samples were performed with wtTFB

(lane 1-3). All TFB-Bpa positions of the B-reader helix domain (G41Bpa - A49Bpa; lane 4 - 11) formed

PICs comparable to the wtTFB. The B-reader loop positions S50Bpa - R57Bpa (lane 12 - 19) showed

similar patterns in comparison to wtTFB (lane 3), indicating PIC formation. A native 4-20% gradient gel

was used.

To test the ability of the formation of the first phosphodiester bond of complexes initiated with

TFB-Bpa variants, abortive transcription assays were performed (Figure 25). The results of

experiments performed with the TFB B-linker positions E74Bpa and M85Bpa showed that the

signal intensities of the labeled 3nt RNAs had the same signal intensity as signals of the

wtTFB, indicating that the incorporated unnatural amino acid at these B-linker sites have no

influence on first phosphodiester bond formation (Figure 25 A). In contrast, the B-core

mutation F192Bpa showed transcription activity of two-third in comparison to the wtTFB

(Figure 25 A). This amino acid position was chosen because of its close location to DNA

(Kosa et al. 1997), and the incorporated Bpa may influence the binding of TFB-F192Bpa to

DNA/TBP which leads to reduced signal intensities in abortive transcription assays. The

results of the TFB B-reader helix Bpa variants are summarized in figure 25 B. Substitutions

G41Bpa, E43Bpa, R45Bpa and D48Bpa showed formation of 3nt RNAs between 10% - 20%

in comparison to the wtTFB. This finding suggests that the substitution of the natural amino

acids at these positions with Bpa influences transcription in a way that open complex

formation, transcription start site selection or other important interactions within the complex

are insufficient to successfully form the first phosphodiester bond. TFB-F47Bpa and TFB-

W44Bpa showed reduced initiation levels in comparison to the wtTFB with values of 28%

and 38%, respectively. Only TFB-A46Bpa and TFB-A49Bpa showed moderate transcript

levels of nearly 60-65% in comparison to the wild type. The screening of the TFB B-reader

loop variants also showed that some TFB substitutions are not able to initiate the synthesis
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Figure 25: Abortive transcription assays of TFB-Bpa variants. A) Results of the B-linker positions

E74Bpa and M85Bpa together with the B-core mutation F192Bpa are summarized as a bar diagram in

comparison to wtTFB. Signals derived from formation of the 3nt radiolabeled RNAs were quantified

and compared to the signal intensity of wtTFB. Reactions were performed in three independent

experiments, whereas the average (A) and the standard deviation (SD) were calculated and shown

below the signals. B) TFB B-reader helix Bpa variants are shown in comparison to the wtTFB.

Depiction is the same as in A. C) TFB B-reader loop Bpa variants are shown in comparison to wtTFB.

Depiction is the same as in A.

of the 3nt RNA product (Figure 25 C). TFB-Q51Bpa, TFB-R54Bpa and TFB-R55Bpa showed

values of the quantified transcripts between 11% - 18%, whereas TFB-R57Bpa is not able to

initiate RNA synthesis. TFB-S50Bpa showed bisected values relative to the wtTFB signals. In

contrast, TFB-E53Bpa and TFB-S56Bpa had slightly increased values in the abortive

transcription assays with values of 133% and 113% relative to the wtTFB, indicating that the

substitution with Bpa at these positions does not influence transcription. TFB-R52Bpa

showed the highest value of the quantified transcripts with 211% in average. Therefore Bpa

stimulates abortive transcription if substituted with the natural arginine at this position. In

addition to the abortive transcription assays run-off transcription assays were performed to

analyze TFB-Bpa variants in multiple transcription rounds (Figure 26). Here, similar results

were observed in comparison to the initiation assays. The TFB B-linker positions E74Bpa

and M85Bpa again showed transcripts at a level comparable to the wtTFB (Figure 26 A). The

B-core position F192Bpa also showed signal intensities of the quantified run-off product with

a value of 95% in average, indicating that this mutation does not hamper the transcription

recycling process over time and therefore only abortive transcription is influenced by this

mutation. Due to the weak ability for transcription initiation, the B-reader helix mutations

G41Bpa, E43Bpa, R45Bpa and D48Bpa showed no formation of the run-off product, as it

was expected (Figure 26 B). Also W44Bpa and F47Bpa showed decreased values in these

assays around 20%, whereas the A46Bpa and A49Bpa had transcription levels with

averaged values of 40% and 48%, respectively. Run-off transcriptions with the TFB B-reader

loop substitutions showed that position Q51Bpa and R57Bpa could not form transcripts

(Figure 27 C), whereas R54Bpa and R55Bpa showed strongly decreased transcription about

27-34% relative to the wtTFB. Only S50Bpa, E53Bpa and S56Bpa showed moderate

transcription levels comparable to the wtTFB with averaged values of 62%, 68% and 75%,

respectively, whereas R52Bpa formed run-off transcripts comparable to wtTFB (119%).
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Figure 26: Summary of the run-off transcription experiments with TFB-Bpa variants. A) Three in-

dependently performed transcription assays were summarized as a bar diagram for the TFB B-linker

positions E74Bpa and M85Bpa, and the B-core substitution F192Bpa. Signals derived from the 113nt

radiolabeled RNA transcripts were quantified and compared to the signals of the wtTFB. The average

(A) and the standard deviation (SD) are shown below the signals. B) Experiments of the TFB B-reader

helix variants. Depiction is the same like in A. C) Control assays were performed in absence of RNAP,

TBP and TFB to show that the formation of the 113nt RNA depends on the presence of all

transcription factors. The B-reader loop Bpa variants are summarized as bar diagrams whereas the

depiction is the same as in A.
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To analyze if the amino acid substitutions affect the promoter opening event, a KMnO4

footprint experiment was performed (Figure 27). Here, it was investigated if the defects of the

TFB-Bpa variants, which showed very weak or no activity in transcription, can be rescued by

the addition of TFE as it was pointed out by (Werner, Weinzierl 2005). Control assays and a

sequence ladder are shown in the previous chapter IV. C. 2 Figure 19, whereas only

samples performed in presence of TFE were shown to analyze defects in promoter opening

which can not be compensated by TFE. The results showed that TFB-mutations G41Bpa,

D48Bpa, Q51Bpa and R57Bpa are not able to open the initially melted region around the

transcription start site in presence of TFE, which would explain the results of the transcription

assays. TFB variants E43Bpa, R45Bpa, F47Bpa, R54Bpa and R55Bpa showed weak

opening of the DNA in presence of TFE, whereas W44Bpa, A46Bpa, A49Bpa, S50Bpa,

S56Bpa, E74Bpa, M85Bpa and F192Bpa showed signals on the gel comparable to the

wtTFB. Only R52Bpa and E53Bpa showed increased ability to open the DNA. The Footprint

experiment demonstrated that substitutions of the natural amino acids at distinct positions

with Bpa can negatively influence the promoter opening, resulting in a very weak or lost

transcriptional activity.

Analysis of the used TFB-Bpa variants showed that indeed all proteins are able to form

preinitiation complexes, but the ability to initiate transcription is restricted to a few Bpa

positions only. As it turned out in footprint experiments, incorporation of the unnatural amino

acid can inhibit promoter opening for some TFB-Bpa mutations. Therefore transcription

initiation and run-off transcription is weak. Based on this analysis only TFB variants were

selected which showed applicable transcription levels.

Figure 27: Footprint analysis of the used TFB-Bpa variants with respect to TFE compensation. A gdh-

C20 template was used, whereas control assays and the sequence ladder are shown in figure 19

(Chapter IV. C. 2). The specific patterns of the cleaved radiolabeled nt-strands are shown for each

TFB-Bpa position in comparison to the wtTFB, whereas only samples containing TFE were depicted.

Domains of the TFB are indicated as horizontal bars and colored for the TFB B-reader helix (green),

the B-reader loop (blue), the B-linker (brown) and the B-core (cyan).



Results

65

The summary of the analyzed TFB-Bpa variants showed that in total 9 of 19 mutants tested

were suitable for crosslink reactions (Figure 28). However, good results of the variants in the

preliminary in vitro experiments were one criterion, whereas the topology of the amino acids

was another important point of the selection. Therefore a set of six TFB variants were

selected (Figure 29). TFB-A46Bpa was chosen because of its location in the helical domain

of the B-reader, whereas TFB-A49Bpa and S50Bpa were not used in this study

Figure 28: Summary of the analysis of the tested TFB-Bpa variants. The results of each experiment

are shown for every of the TFB-Bpa proteins. The ability to form a preinitiation complex tested in

EMSAs as well as the quality of the promoter opening tested in permanganate footprints are indicated

by (-) for insufficient, (+) weak, (++) moderate or wild type level and (+++) increased rates in

comparison to the wild type TFB. For abortive and run-off transcription assays the averaged values of

the respective experiments are shown in percentages relative to the wtTFB. The overall quality of the

single TFB-Bpa positions are highlighted in red for insufficient, yellow for moderate and green for

applicable results. The selected Bpa positions are highlighted in grey, whereas the corresponding TFB

domain is shown above the amino acid positions and colored in green (B-reader helix), blue (B-reader

loop), brown (B-linker) and cyan (B-core).

although they showed also good results in the analysis. To investigate the transition of the

loop and its postulated interactions with nascent RNA, the TFB-S56Bpa was also chosen as

this amino acid is located at the tip of the loop. The other suitable mutation of the loop region,

TFB-E53Bpa, was not selected, but the amino acid position R52 next to it. TFB-R52Bpa had

the best results observed in the analysis of the TFB variants, and was used to constitute and

adjust the crosslinking setup. It is further part of the B-reader loop with the closest distance to

the DNA in the crystal structure (Figure 29). At least, the two B-linker positions E74Bpa and

M85Bpa, and the B-core position F192Bpa showed results comparable to the wtTFB and

completed the set of the used TFB variants. These positions served as control positions to

determine the crosslink specificity on the one hand, and they were used in crosslink

reactions to determine the topology of the TFB within the complex on the other hand.
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Figure 29: Localization of the selected TFB-Bpa variants in the initially transcribing complex (PDB:

4BBS). TFIIB domain organization is depicted in different colors: N-terminal cyclin fold of the B-core

domain (cyan), B-linker (orange) and Zn-ribbon (lime green). The B-reader consists of the helix

(green) and the loop (blue) and is located in proximity to the t-strand (grey). Bpa-substitutions are

highlighted as dots, the position for PfuTFB is given in bold letters, and corresponding ScTFIIB

positions are in brackets, respectively. The active site of the RNAP II is indicated by Mg
2+-

ions

(magenta), the RNA (red) and the bridge helix (dark blue).

2. Specificity of UV crosslinking experiments

The exposure of the TFB-Bpa proteins to UV-light generates a covalent crosslink to C-H

bonds in proximity to the unnatural amino acid. Site-specifically radiolabeled DNA templates

were used to detect specific interactions of TFB with DNA (Figure 23). To ensure the correct

incorporation of the [α-32P] dNTP at the respective site, small volumes of the samples were

taken after the distinct labeling steps and loaded on a gel (Figure 30 C). Three signals were

observed for each template on the gel, whereas the lower bands are from samples after the

incorporation step, indicating that DNA is labeled. These bands of the respective gdh-C

cassettes differ in the height because of the different template length and the corresponding

oligonucleotides in this example. After addition of unlabeled dNTPs, bands occurred at the

top of the gel, demonstrating that the template is completely double-stranded. After EcoRI

treatment the signals were visualized lower on the gel which indicated that the template DNA

was successfully released from magnetic particles. These DNA templates were used in

crosslink reactions together with TFB-Bpa variants.
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Figure 30: Preparation and overview of radiolabeled gdh-C cassettes. A) The transcribed strands of

the particular cassettes are shown in 3´ to 5´ direction. All cassettes contained the strong glutamate-

dehydrogenase (gdh) promoter of P. furiosus. The BRE sequence is depicted in light blue, the TATA

box in black bold letters. The transcription start site is indicated with a red bold letter (+1 C), whereas

the first guanine is in bold dark green. Sites for the incorporation of the radiolabeled nucleotide are

highlighted in red (-4t), dark blue (-11t) and green (-19t). B) Schematic representation of the

incorporation of a radiolabeled nucleotide to a specific site on the DNA. Templates were prepared by

PCR and 5´-biotinylated M13 primer to immobilize the template at the nt-strand (1). DNA strands were

separated and hybridized with an oligonucleotide complementary to the nt-strand (2). Radiolabeled

dNTP together with Klenow exo- were added to incorporate the nucleotide site-specifically at the DNA

t-strand (3). The template was completed by adding a full set of dNTPs (4), and at least the magnetic

beads were removed by EcoRI digestion. C) Specificity of the radiolabeled nucleotide incorporation

was analyzed on a 7M urea 12% PA gel. Semi-hybridized and labeled fragments (lower signals),

strand-completed DNA (upper signals) and EcoRI digested fragments (middle signals) are shown for

the cassettes gdh-C6, gdh-C10 and gdh-C15 as examples.

To identify a specific interaction between TFB and the radiolabeled site of the DNA, samples

were treated with different enzymes and detergents. Dnase I and S1 nuclease were used to

digest DNA and RNA, and the treatment with SDS denatured all proteins and protein-protein

interactions of the complex. The resulting TFB-Bpa protein bound to a small fragment of

radiolabeled DNA was analyzed using SDS-PAGE, whereas the TFB-DNA complex

appeared as a distinct band at the height of 37kDa after the autoradiogram, which is the size

of PfuTFB. To verify that unspecific interactions were correctly digested, an experiment was

performed with several samples containing different sets of proteins (Figure 31) together with

a gdh-C6 cassette containing a [α32P] dATP four nucleotides upstream the transcription start

site (-4t). Control samples which lacked RNAP, TBP or wtTFB were exposed to UV light at a

wavelength of 300nm and separated using SDS-PAGE without treatment (Figure 31 lanes 1 -

3). Several bands appeared on the gel, indicating unspecific interactions of the proteins to

radiolabeled DNA. The same samples were treated with the enzymes Dnase I, S1 nuclease,
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and the detergent SDS after UV light exposure (lane 4 - 6). No signals were detected on the

gel at the respective sites, demonstrating the elimination of all these unspecific interactions.

To show that wtTFB, which does not contain a Bpa photo crosslinker, does not bind to DNA

nonspecifically in the preinitiation complex, samples containing respective transcription

factors were exposed to UV light (lanes 7 - 9) and analyzed by SDS-PAGE. The results

demonstrated that wtTFB does not interact to DNA in the DNA/TBP/TFB complex, as well as

Figure 31: Digestion efficiency of the crosslink reactions with gdh-C6 cassette radiolabeled at -4t. All

samples were separated using 12% SDS-PAGE and analyzed by autoradiography. The samples in the

first three lanes contained different compositions of the transcription factors and RNA polymerase

without nuclease treatment (No treatment) to identify unspecific interactions. The same samples were

used in the lanes 4-6 but Dnase I, S1 nuclease and SDS were used (Nuclease treatment). Samples

containing TBP/wtTFB/DNA-complexes (lane 7), and preinitiation complexes in absence (lane 8) and

presence of TFE (lane 9) as well as samples of stalled complexes at position +6 with and without TFE

(lane 10, 11) do not show a signal on the gel except weak signals marked with a triangle and a circle.

These signals occurred in a factor-nonspecific manner, indicating background.

in preinitiation complexes with and without TFE. Also no signal was observed in stalled

complexes at register +6 in absence and presence of TFE (lane 10, 11), indicating that

wtTFB does not interact nonspecifically with the radiolabeled DNA. These results

demonstrated that both the specific incorporation of radiolabeled nucleotides into DNA and

the elimination of unspecific signals in open preinitiation complexes and stalled complexes

after crosslink reactions worked specific. With this experimental setup crosslinking

experiments were performed with the selected TFB-Bpa mutants.

3. Crosslinking experiments in the preinitiation complex

It was shown that the eukaryotic TFIIB B-reader domain is in proximity to the t-strand and to

the active center of the polymerase in crystal structures (Bushnell et al. 2004; Sainsbury et

al. 2013). Therefore crosslinking experiments were performed with gdh-C6 cassettes

containing a radioactive nucleotide at position -4 relative to the transcription start site on the

transcribing strand. For each Bpa position three samples were prepared, whereas the first

reaction lacked the RNAP to mimic a DNA/TBP/TFB-Bpa complex (Figure 32). In this ternary

complex DNA is in a closed conformation and therefore the radiolabeled site of the DNA is

out of distance to the Bpa. This reaction was performed as a negative control to verify the
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specificity of the crosslink reactions. The second sample contained RNAP to form open

preinitiation complexes in which the photo crosslinker should be in proximity to the labeled

site on the t-strand. The third samples contained additional TFE which is usually part of the

PIC in vivo. The results showed that the wtTFB does not crosslink to the labeled DNA

nonspecifically, as it was expected (Figure 32 A). In contrast, in reactions containing the B-

reader variants A46Bpa, R52Bpa and S56Bpa a signal appeared on the gel at the size for in

TFB at approximately 37kDa, indicating the TFB-DNA complex. This signal was only present

in reactions containing RNAP, suggesting that the crosslink of the B-reader variants is

specific for open complexes. The signal intensity of the crosslinked TFB-DNA complexes

increased with addition of TFE, which indicates that more complexes can be crosslinked in

presence of TFE, or addition of TFE reduces the distance between the Bpa and the label,

possibly due to a better stabilization of the transcription bubble within the complex. The B-

reader loop mutation R57Bpa was also used in the reactions as a negative control, because

this amino acid substitution showed massive deficiencies in promoter opening and

transcription in the analysis. No signal was detected on the gel for this TFB position,

indicating that open complex formation failed. In addition to this crosslink, the B-linker

positions E74Bpa and M85Bpa were also used in reactions containing a gdh-C6 template

with a label at -4t. The results showed that no contact between the Bpa positions and DNA

can be detected. The B-core position F192Bpa showed slight background in the crosslinks

but the fact that the signal decreased with addition of RNAP and TFE, as well as the large

distance of the corresponding amino acid to the labeled site on the DNA in the crystal

structure, suggested that the signal is highly nonspecific.

In a modelled open complex structure of the yeast PIC the TFIIB B-linker strand is in close

proximity to the t-strand approximately 11 nucleotides upstream the transcription start site

(Kostrewa et al. 2009) (Figure 32 D). To test if the t-strand is located in proximity to the

archaeal TFB B-linker strand a gdh-C6 DNA template was designed containing a

radiolabeled nucleotide at position -11t. Crosslink experiments in presence of TFE were

performed with the selected TFB B-reader variants A46Bpa, R52Bpa and S56Bpa together

with the TFB B-linker mutations E74Bpa and M85Bpa as well as wtTFB as a negative control

(Figure 32 B). The B-reader mutations do not crosslink to DNA radiolabeled at -11t,

indicating high specificity of the crosslinking system. A strong crosslink signal for E74Bpa,

but not for M85Bpa at the expected size for TFB was observed in this experiment, indicating

a close location of E74 to the t-strand in the open complex. To test the specificity of the

contact between E74Bpa and DNA a crosslink experiment was performed in absence of

RNAP, in absence of TFE and in presence of all factors (Figure 32 B). The result of this

assay clearly demonstrated that E74 crosslinked specifically to DNA only in the open

complex and the signal is increased by addition of TFE. This finding suggests that the

upstream end of the t-strand transcription bubble is located next to the B-linker strand,

whereas the B-linker helix position M85Bpa seems to be out of distance to crosslink DNA at

this position. The fact, that E74Bpa crosslinks to DNA labeled at -11t but not to DNA labeled

at -4t additionally emphasize the specificity of the crosslink system used in this study.

Because of the close location of TFB-E74 to the very upstream part of the transcription

bubble it was interesting to see if the B-linker mutations are able to crosslink also to the non-

transcribed DNA strand. Therefore, crosslinking experiments were performed using a gdh-

C10-8nt template, which contains a label at position -8 on the nt-strand relative to the

transcription start site, together with the B-linker positions E74Bpa and M85Bpa, as well as

the controls TFB-F192Bpa of the B-core, TFB-R52Bpa of the B-reader and wtTFB (Figure

32C).
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Figure 32: TFB-DNA crosslink reactions in preinitiation complexes. A) The B-reader variants A46Bpa,

R52Bpa and S56Bpa as well as the linker mutations E74Bpa and M85Bpa, and the core mutation

F192Bpa were used in crosslink reactions together with a gdh-C6 DNA template labeled at -4 t-strand.

TFB without Bpa and R57Bpa were used as negative controls. The TBP/TFB/DNA-complexes for each

mutation are represented in the first lanes and the open complexes in the second lanes, respectively.

TFE was additionally present in the samples shown in the third lanes. A radioactive signal was

observed on the 12% SDS-PAGE at a size of 37kDa for the B-reader mutations only in presence of
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RNAP, which is the result of a covalent bond between TFB and the radiolabeled DNA. Signals marked

with a triangle appear in some cases but not factor specific, indicating an unspecific signal. B) Three

B-reader mutations A46Bpa, R52Bpa and S56Bpa together with wtTFB and the two TFB B-linker

mutations E74Bpa and M85Bpa were used in crosslink experiments with gdh-C6 labeled at -11t. TFE

and RNAP are present in every sample. Only E74Bpa showed a specific crosslink signal at the

expected size of 37kDa on the SDS-PAGE. Signals marked with a triangle are unspecific. TFB-

E74Bpa crosslinked to DNA labeled at -11t in presence of RNAP (middle lane) and with additional TFE

(last lane), but not in the TBP/TFB/DNA-complex, indicating a specific interaction of E74Bpa to DNA.

C) The B-linker mutations E74Bpa without RNAP (first lane) and with RNAP (second lane), together

with M85Bpa, as well as the wtTFB, the B-reader mutation R52Bpa and the B-core mutation F192Bpa

were crosslinked to DNA labeled at -8nt. Only E74Bpa showed a signal at the expected height for

TFB, and only if RNAP is present, indicating a specific interaction of E74 and the nt-strand in open

complexes. D) Postulated eukaryotic yeast open complex model containing t-strand region -11t

(PDB:3K1F, (Kostrewa et al. 2009)). TBP is colored in yellow, and TFB domains are depicted in

different colors (B-core in cyan; B-reader helix in green, B-reader loop in blue, B-linker in brown)

whereas RNAP is excluded. TFB-Bpa positions are shown as red dots, whereas the radiolabeled sites

are highlighted in red.

The results showed that TFB-E74Bpa crosslinked to DNA labeled at this specific site only in

presence of RNAP, indicating a specific interaction with DNA in the open complex only. In

contrast, the other positions tested showed no formation of a covalent crosslink between the

Bpa position and the radiolabeled DNA, demonstrating that E74Bpa is the only amino acid

position of the selected variants able to crosslink to the nt-strand. Therefore the location of

E74 is likely between the separated strands at the upstream edge of the transcription bubble.

Figure 33: TFB B-core mutation F192Bpa crosslinks to DNA radiolabeled at -19 t-strand. A) Crystal

structure containing TATA-box, TFB B-core (cyan) and TBP (yellow) of P. woesei (PDB: 3AIS) (Kosa

et al. 1997). Amino acid F192 and DNA at position -19t are indicated by red dots. B) TFB without Bpa,

TFB-R52Bpa, TFB-M85Bpa and TFB-F192Bpa were used in crosslink reactions with a gdh-C6

cassette containing a radiolabeled nucleotide 19 bases upstream of the transcription start site. TFB-

F192Bpa showed the expected radioactive signal on the SDS-PAGE at a size of 37kDa in the

TBP/TFB/DNA-complex and in the open complex with and without TFE, whereas the other mutations

and wtTFB do not crosslink to DNA at this site, indicating a specific interaction of F192 and DNA.

Signals marked with a triangle indicate unspecific background.
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Position F192 of the TFB B-core domain was shown to be in proximity to the DNA in crystal

structures of the related P. woesei ternary TATA-box/TBP/TFB B-core complex (Kosa et al.

1997) and also the corresponding amino acid I209 of the yeast TFIIB in modelled open and

closed complexes (Kostrewa et al. 2009). Therefore crosslink experiments were performed

with the TFB-F192Bpa mutation and a DNA template containing a radiolabeled nucleotide 19

base pairs upstream the transcription start site at the transcribing strand. The results of the

experiments showed that wtTFB, the B-reader position R52Bpa and the B-linker position

M85Bpa do not interact with DNA labeled at this site (Figure 33 B). The B-core mutation

F192Bpa does not contact DNA in absence of TBP, but in DNA/TBP/TFB complexes, as well

as in preinitiation complexes with RNAP and/or additional TFE, indicating a specific

interaction between F192 and DNA at -19t. It is also interesting to note that addition of TFE

to the open complex does not lead to an increased signal as it was shown for the B-reader

variants (Figure 32 A). This finding indicates that TFE does not lead to more PICs due to the

stabilization effect of the transcription bubble in the open complex. Moreover, TFE induces

structural changes at the active site which leads to stronger crosslinks for the B-reader

mutations.

Taken together, mapping of amino acids of TFB to respective sites on the DNA revealed that

the location of selected TFB variants is nearly similar to the location of corresponding amino

acids of eukaryotic TFIIB in crystal structures. This finding suggests a related topology of the

transcription factor B within the open preinitiation complex in the archaeal transcription

system in comparison to the eukaryotic transcription system.

4. Crosslinking experiments in stalled transcription complexes

To analyze possible structural rearrangements of the TFB B-reader domain during transition

from transcription initiation to early elongation crosslinking experiments were performed

using TFB B-reader mutations A46Bpa, R52Bpa and S56Bpa on stalled transcription

complexes. The gdh-C cassettes allowed pausing of transcribing complexes, whereas

cassettes gdh-C6, gdh-C8, gdh-C9, gdh-C10 and gdh-C15 were used in the crosslink

experiments to stall complexes at registers +6, +8, +9, +10 and +15 (Figure 34 A). Each

template was individually radiolabeled at position -4t. Signal intensities of the resulting TFB-

DNA contacts in stalled complexes were compared with those derived from preinitiation

complexes. Altered signal intensities of the crosslinks between PICs and stalled complexes

can be interpreted as a change in the distance between Bpa in the protein and the labeled

DNA, indicating structural changes of TFB and/or DNA.

To validate the correct stalling of transcription complexes, transcription assays with

radiolabeled UTP without CTP were performed to see if the complexes for each TFB mutant

can be positioned correctly on each template. First, the incubation temperature was adjusted

to achieve best stalling results of the complexes to avoid falsified results (Figure 34 B).

Several combinations of the pre-incubation and stalling temperatures were tested using

wtTFB, whereas the samples were analyzed on a high percentage gel to validate specificity

of stalling. The results showed that stalling works optimally at an incubation temperature of

80°C, because additional bands at the upper part of the gel did not appear. In contrast, other

temperatures tested showed signals at the top site of the gel, indicating that the RNA

polymerase read over the -C position of the template, leading to a minor population of run-off

transcripts. Using these conditions a chase-experiment was performed to analyze if the

stalled complexes were transcriptionally active (Figure 34 C). Reactions were split into two

samples after stalling the complexes, whereas CTP and non-labeled UTP was added to the

second reaction. More than 80-85% of the RNAs disappeared in samples were CTP and

non-labeled UTP was added and a signal at the upper side of the gel was detected,
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Figure 34: Analysis of stalled transcription complexes. A) Overview of the templates used for stalling

transcription complexes. All templates contained a strong gdh promoter consisting of a BRE (light

blue) and a TATA-box element (black). The t-strands are shown in 3´ to 5´ orientation which is the

transcription direction. TSS is indicated by a red arrow at +1. Labeling sites for incorporation of radio

labeled dNTPs are highlighted in green (-19t), blue (-11t) and red (-4t). Positions for stalling are shown

as green bold letters. B) Conditions to stall complexes were optimized using different pre-incubation

and stalling temperatures. Gdh-C6 and gdh-C8 templates were used in reactions lacking CTP. The

combination of 80°C pre-incubation and 80°C for stalling showed the best results on the gel because

unspecific signals at the top of the gel were not detected. C) Stalled transcription complexes at register

+6 and +10 were chased by adding UTP and CTP in molar excess. Quantification of the signals

showed that 80-85% of the 6-10nt RNAs can be extended to the full run-off transcript after 20 minutes

incubation time, indicating that the stalled transcription complexes are transcriptionally competent. D)

Selected TFB-Bpa linker and reader variants were stalled at registers +6, +8, +9, +10, +11 and +15,

and the B-core F192Bpa was stalled at +6, +8, +10 to +15 and +20 to analyze if complexes initiated
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with these TFB mutants are able to position complexes correctly at the respective registers. Main RNA

signals were observed at the same heights like RNAs of the wtTFB, indicating that all positions tested

are able to stall the polymerase correctly.

indicating formation of run-off products. The result showed that the stalled transcription

complexes are transcriptionally competent after 20 minutes incubation time, which is the time

of the UV exposure in the crosslinking experiment. In a last experiment the TFB-Bpa

mutations were used in stalling experiments at registers +6, +8, +9, +10, +11 and +15

(Figure 34 D). Register +11 was used as an additional control. All variants tested showed a

distinct RNA pattern on the gel comparable to the wtTFB, indicating that stalling with the TFB

mutants is applicable.

Based on this stalling procedure, the TFB B-reader variants were used in crosslinking

reactions on preinitiation and stalled complexes to identify possible structural

rearrangements of the B-reader domain (Figure 35). The crosslink reaction on ternary

DNA/TBP/TFB-Bpa complexes was performed for every TFB position tested at the gdh-C6

template and is shown on the left lanes of each gel (Figure 35 A, B, C). No signal was

detected in these experiments, indicating a specific crosslink reaction to the t-strand in open

complexes. At registers +6, +8, +9, +10 and +15 crosslinking experiments were performed

with TFE in absence and presence of NTPs without CTP, leading to the formation of

preinitiation and stalled complexes. Signals derived from crosslink reactions on stalled

complexes were compared with signals of preinitiation complexes of the respective cassette.

Altered signal intensities indicating changes in the distance between Bpa and the

radiolabeled DNA, which allows conclusion about structural rearrangements of the B-reader

domain. At register +6 no change in the signal intensity of the stalled complexes in

comparison to the preinitiation complexes was detected for A46Bpa and R52Bpa, whereas

S56Bpa showed a slightly reduced signal of 85%. At register +8 R52Bpa and S56Bpa

showed unaltered patterns in comparison to register +6, whereas the signal of TFB-A46Bpa

decreased to 72%, indicating an increased distance of the B-reader helix to DNA (Figure 35

A). At register +9 A46Bpa and S56Bpa had stronger signals in comparison to register +8. In

contrast, the signal intensity of R52Bpa started to decrease at this point. The signal intensity

of all selected TFB positions are markedly reduced at register +10 and remained unchanged

low at register +15. This finding suggests a translocation of the TFB B-reader domain, which

is likely a displacement of the B-reader domain. Signals are still present on the gels,

suggesting that the residual signal derived from stalled complexes at register +10 is

background. It is possible that not all preinitiation complexes were stalled and are still at the

promoter start site, or the B-reader domain is displaced but is still in a suitable distance for a

weak crosslinking reaction. To examine if the TFB B-reader domain also showed signals in

crosslinking experiments performed under run-off conditions, R52Bpa was used in reactions

containing the respective gdh template and a full set of NTPs. No signal was observed at the

height of TFB on the gel, indicating that the B-reader variant does not crosslink to DNA under

run-off conditions.

To investigate if the observed reduction in signal strength is based on structural

rearrangements of the B-reader domain and not caused by a release of TFB from the

complex, crosslinking experiments were performed with the B-core variant F192Bpa. The

use of this TFB position has the advantage that rearrangements happening at the active site

of the RNA polymerase should not affect the TFB-F192Bpa-DNA interaction. Therefore

changes in resulting signal intensities between stalled and preinitiation complexes indicate

an altered number of TFB proteins present at the DNA.
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Figure 35: Crosslinking experiments with the TFB B-reader mutations A46Bpa, R52Bpa and S56Bpa

and -4t radiolabeled DNA in stalled complexes halted at +6, +8, +9, +10 and +15. A) Crosslink

reactions of the B-reader helix mutation A46Bpa. B) Crosslink reactions of the B-reader loop mutation

R52Bpa. C) Crosslink reactions of the B-reader loop mutation S56Bpa. For each figure the

TBP/TFB/DNA complex is shown in the left lane of the results derived from cassette gdh-C6 as a

negative control. The second lane represents the preinitiation complex, the third lane the stalled

complex. For the results with cassettes C6 to C15 the signal derived from preinitiation complexes (left

lanes) and the signals derived from respective stalled complexes are shown. Signals marked with a

triangle derived from factor unspecific interactions and are not present in every lane. Three individual

experiments were performed, and the signal intensity of stalled complexes were quantified and

compared to the respective signal intensity of preinitiation complexes. The standard deviation (SD)

and the average (A) were calculated and are summarized in a bar diagram.



Results

76

Figure 36: TFB-R52Bpa does not crosslink to -4t radiolabeled DNA under run-off conditions. TFB-

R52Bpa crosslink specifically to DNA labeled at -4 t-strand in open complexes but not in the

TBP/TFB/DNA-complex. Run-off conditions were generated using a complete set of NTPs, whereas

TFB-R52Bpa does not crosslink to DNA, as no signal was observed for the respective cassette at the

expected size of 37kDa. Heparin was used as competitor to prevent re-initiation of TFB to the

promoter site.

To investigate the presence of TFB at register +6, +8, +10 and +15, complexes were stalled

at the respective sites with individually labeled gdh-C templates at position -19t. The results

showed that in three individually performed crosslinking experiments the signal intensity of

stalled complexes do not differ from signal intensities of preinitiation complexes, indicating

that the number of TFBs does not change at the respective registers (Figure 37). Based on

this finding, it can be concluded that the markedly reduced signal intensities observed for the

TFB-Bpa variants of the TFB B-reader domain with DNA labeled at -4t at register +10 (Figure

35) derived from specific transitions of the reader domain. This transition is likely due to a

displacement of the B-reader from DNA, which results in collapse of the transcription bubble.

The use of this TFB-F192Bpa mutation further allows analyzing the position on the DNA,

where TFB release takes place. As it was predicted from the initially transcribing complex

structure, RNA clashes with the Zn-ribbon of TFIIB at a length of 12 - 13nt resulting in

release of the transcription factor. To investigate if archaeal TFB dissociates from the

complex at this position, gdh-C11 to gdh-C14 templates were designed. Stalling of TFB-

F192Bpa was analyzed using [α-32P] UTP (Figure 37 D), whereas a RNA ladder was 

observed, indicating that complexes can be positioned at the respective sites. Crosslinking

experiments using TFB-F192Bpa and the generated templates containing a radioactive label

at -19t were performed, and in addition to the usually used competitor heparin, poly-dAdT

was used to trap TFB to prevent re-association of TFB to the promoter site after a possible

release event. The results showed that the signal intensities of stalled complexes do not

differ from signal intensities of preinitiation complexes at registers +11, +12, +13, and +14. In

contrast, TFB tended to be released from register +15 onwards, is reduced at +20 and

completely absent in crosslinking experiments under run-off conditions. The results suggest

that TFB indeed is released from the complex, as the signal intensity started to decrease

from register +15, but it seems that this is not an instantaneous event, as it was expected.
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Figure 37: TFB is present at register +6 to +14, started to decrease at register +15 to +20, and is

absent under run-off conditions. TFB-F192Bpa was crosslinked in preinitiation complexes (left lanes

for each cassette) and in stalled complexes at the respective site (right lane for each cassette) with

gdh-C cassettes containing a radiolabeled nucleotide at position -19 t-strand. The crosslink under run-

off conditions was performed on the gdh-C20 cassette. All reactions were performed in three

individually experiments, whereas the signals derived from crosslink experiments in halted complexes

were compared to the signals of the respective PIC. The standard deviation (SD) as well as the

average (A) was calculated and summarized in the bar diagram.

5. Summary of the crosslinking experiments

To analyze PfuTFB and its interactions to DNA during transcription initiation and transition to

early elongation, TFB-Bpa variants of the B-reader domain (G41 to R57), the B-linker domain

(E74 and M85) and the B-core domain (F192) were successfully created. The mutants were

screened using in vitro transcription assays to validate the applicability of altered TFB

proteins in crosslinking experiments. Based on the position within TFB and the overall quality

in transcription six positions were selected: three amino acids of the B-reader domain (TFB-

A46Bpa of the reader helix, TFB-R52Bpa and TFB-S56Bpa of the reader loop), two of the B-

linker (TFB-E74Bpa and TFB-M85Bpa), and the B-core variant TFB-F192Bpa (Figure 28).

The selected TFB-Bpa variants were able to form preinitiation complexes (Figure 24), open

complexes (Figure 27), and RNA polymerases initiated with these TFB proteins were able to

form the first phosphodiester bond (Figure 25) and run-off transcripts (Figure 26) in the
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respective experiments. In preliminary experiments stalling of transcribing complexes was

shown to work optimally at 80°C, whereas complexes were transcriptionally competent after

20 minutes incubation time (Figure 34). Stalling of the TFB-Bpa variants on respective gdh-C

templates was shown to be specific, whereas the successful site-specific radioactive labeling

of the DNA templates was verified (Figure 30). The used crosslinking system worked

specific, because nonspecific interactions between proteins and the labeled DNA were

successfully eliminated after exposure to UV light (Figure 31). Crosslinking experiments in

preinitiation complexes with DNA labeled at -4t showed that the B-reader positions TFB-

A46Bpa, TFB-R52Bpa and TFB-S56Bpa can be covalently crosslinked to DNA only in open

complexes when RNAP is present (Figure 32). Control assays with B-linker and B-core

positions, as well as with wtTFB and TFB-R57Bpa, a position insufficient for promoter

opening, showed no or unspecific background. In crosslink reactions with -11t labeled DNA

and -8nt labeled DNA a specific contact between the linker TFB-E74Bpa and DNA was

observed. The TFB-F192Bpa mutation crosslinked to -19t labeled DNA specifically in

TBP/DNA/TFB-Bpa complexes, as well as in open complexes (Figure 33). Crosslinking

reactions on stalled complexes at registers +6, +8, +9, +10 and +15 with DNA labeled at -4t

revealed that the signal intensity of A46Bpa at register +8, and S56Bpa at registers +6 and

+8 were reduced, indicating interactions with nascent RNA (Figure 35). The signal intensity

at register +10 was markedly reduced for all TFB B-reader variants, suggesting a

displacement of the reader domain, resulting in collapse of the transcription bubble. The

presence of TFB at complexes was verified using crosslinking experiments with TFB-

F192Bpa and DNA labeled at -19t. It was shown that the number of TFBs did not differ at

registers +6 to +14, demonstrating that the observed decreased signal intensities at register

+10 are specific for the TFB B-reader domain. The crosslinking experiments further revealed

that the number of TFBs tended to decrease from register +15 onwards, is reduced at +20,

and absent in reactions under run-off conditions, indicating that interactions of TFB within the

complex were destabilized at register +14, resulting in a TFB release.
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DiscussionV.

A. A possible role for RPA during transcription elongation
PfuRPA was used in different in vitro experiments to analyze its possible function during the

transcription process. The protein showed the expected preference to ssDNA (Figure 9 A),

but no effect was observed in abortive transcription assays (Figure 9 B). In addition, western

blot experiments and EMSAs on initiation complexes were performed (data not shown), but

no evidence was found that RPA is part of initiating complexes. In contrast, PfuRPA showed

activity in chase experiments of stalled complexes using a 4kb plasmid in which the

formation of intermediates was prevented (Figure 10 B). PfuRPA further increased

transcription processivity of stalled complexes in time-dependent transcription reactions

(Figure 11). In accordance to the presented results of Pluchon et al., PfuRPA showed

formation of transcripts with 2.9-fold increase, indicating that PfuRPA functions in the same

manner like PabRPA (Pluchon et al. 2013). Therefore PfuRPA likely functions during

elongation of transcription and interacts with RNAP in a stabilizing manner, which further

increases its processivity.

Richard et al. reported a stimulatory effect of the S. solfataricus SSB under TBP limiting

conditions (Richard et al. 2004). In these reactions TBP was reduced to 20% of the regular

concentration and they observed that transcription takes place only in presence of RPA. This

finding would suggest that RPA functions in RNAP recruitment, which leads to more initiation

events and therefore increase transcription output. The idea, that RPA recruits the RNA

polymerase is supported by the finding that RPA is associated with RNAP in solution, which

was shown by (Komori, Ishino 2001). PfuRPA was also tested under TBP-limiting conditions

and showed similar effects as described in (Richard et al. 2004) (data not shown). Because

there is no evidence for a participation of PfuRPA at the preinitiation complex, but

transcription is also stimulated under TBP limiting conditions, an increased processivity of the

RNAP is more likely than a role in RNAP recruitment, which would explain the higher number

of formed transcripts in these assays. However, based on the performed experiments a role

in RNAP recruitment can not be excluded.

Moreover, the herein presented results suggest a stimulation of PfuRPA on transcription,

likely due to a stabilization effect and an increased processivity of the RNA polymerase.

Increased transcription speed as well as the prevention of pausing events of the RNA

polymerase can explain the formation of more transcripts during transcription. However, RPA

was shown to bind ssDNA, and if RPA functions during elongation, this factor should interact

with the single stranded transcription bubble during elongation, as it was hypothesized by

(Sikorski et al. 2011). It was tried to show the presence of RPA in the elongation complex

using western blot experiments as well as EMSAs with radio- and fluorescently labeled DNA

templates, and stalled complexes with radiolabeled RNA (data not shown), but none of these

experiments could verify the presence of RPA in the elongation complex, possibly due to a

weak interaction to the RNAP in the used in vitro assays.

However, to deepen the understanding of the molecular mechanism of RPA during

transcription, KMnO4 footprints on preinitiation complexes as well as on stalled elongation

complexes might elucidate a direct interaction with the single-stranded region of the

transcription bubble. This assay should clarify the proposed DNA melting effect of the SSB

during initiation, which explain the increased transcription rates in the Sulfolobus system

(Richard et al. 2004), and additionally should show if RPA can increase the stability of single-

stranded regions during elongation of transcription due to a direct interaction with the

transcribed or non-transcribed strand in transcribing complexes, as it was postulated for the
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eukaryotic yeast system (Sikorski et al. 2011). Moreover, termination assays might also be

helpful to investigate the function of RPA in the last stage of transcription. If RPA would

support termination, RNAPs are more efficiently dissociated from DNA, which would increase

recycling events to restart the transcription faster.

B. Bending of DNA depends on the presence of TFB in P. furiosus
Bending of DNA at the promoter site is a prerequisite for the correct assembly of the

preinitiation complex and therefore important for specific interactions between the

transcription machinery and DNA (Nikolov et al. 1995). Bending results in a DNA

conformation with a kink of approximately 90° angle, whereas general transcription factors

are required to enable this conformational change (Juo et al. 1996). TBP, which recognizes

the TATA element of the core promoter (Kim et al. 1993a), as well as TFB, which contacts

TBP and DNA on both sides of the TATA (Renfrow et al. 2004), are necessary for this step.

Gietl et al. demonstrated that different organisms follow different DNA bending pathways

using single molecule analysis. DNA bending in the euryarchaeal organism M. jannaschii

requires only TBP to bend DNA and addition of TFB does not change the observed DNA

bending pattern. In contrast, in the crenarchaeal organism S. acidocaldarius presence of

TBP does not bend DNA, but addition of TFB led to a high population of bent DNA and only a

small group of non-bent DNA, indicating that DNA is in a kinked conformation only in

presence of both factors. In addition, a three-step binding scenario was proposed for the

eukaryotic organism S. cerevisiae. Here, addition of TBP results in two interconvertible high

FRET states due to a step-wise binding mechanism of TBP to the promoter, and addition of

TFIIB leads to fully bent DNA conformations (Gietl et al. 2014).

In order to investigate DNA bending behavior in the euryarchaeal P. furiosus transcription

system, FRET measurements were performed using confocal and TIRF microscopy. To

enable comparison with published results, the same SSVT6 promoter was used in this study

as described in (Gietl et al. 2014). The results shown in chapter IV. B demonstrated that

bending of DNA requires the action of TFB, as high FRET populations with a mean FRET

efficiency of 40.7%±17.2% in confocal microscopy measurements, and 48.8%± 0.2% in TIRF

microscopy measurements occurred only in presence of this transcription factor. The

observed results show that DNA bending mechanism is not uniform within the euryarchaeal

phylum, because the mechanism of P. furiosus seems to be more Crenarchaeota-like.

However, binding to and bending of DNA relies on specific interactions of respective amino

acids of TBP and TFB with the nucleic acids and therefore differences in the amino acid

composition at the DNA-protein interfaces can influence the behavior of binding and bending

of the DNA. Therefore complete preinitiation complex structures of members of the different

phyla might be useful to understand the observed differences in bending behavior, but these

structures are lacking. Another point to consider is the template which indeed contains TATA

and BRE, but is a viral promoter (SSVT6). In addition, the measurements were performed at

room temperature, and not at elevated temperatures. Therefore it remains speculative if the

P. furiosus transcription would also show a TFB dependent DNA bending at physiological

temperatures at specific Pfu-promoters or if TBP alone may enable bending. Nevertheless,

the immobilized complexes containing bent DNA were stable in the TIRF measurements for

>30 seconds until the donor dye bleached, and the efficiency value was very stable, showing

that the formed complexes were highly stable and no dynamic switch or intermediate states

were observed. This finding further indicates that TFB interact with the TBP-DNA complex in

a stabilizing manner. It is also not clear if TBP and TFB interact with DNA in a stepwise

manner as it was shown for the eukaryotic system (Masters et al. 2003; He et al. 2013), or if
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both factors interact simultaneously with the promoter DNA. However, based on the relation

to the eukaryotic transcription system, a stepwise binding in which TFB stabilizes the TBP-

DNA interaction seems plausible, whereas bending of DNA depends on the presence of TFB

in the euryarchaeal P. furiosus transcription system.

C. The charge distribution of the B-reader loop is important for

the function of TFB
Since the first RNAP II - TFIIB co-crystal was resolved in 2004, it was shown that the TFIIB

B-reader domain is located in proximity to the active site of the RNA polymerase II (Bushnell

et al. 2004). The reader domain consist of the B-reader helix and the B-reader loop

(Kostrewa et al. 2009), whereas it was shown that the helix is involved in TSS selection

(Pinto et al. 1992; Li et al. 1994; Pardee et al. 1998; Kostrewa et al. 2009). Possible functions

of the B-reader loop derived from structures of a modelled open complex and of an initially

transcribing complex of yeast Pol II system (Kostrewa et al. 2009; Sainsbury et al. 2013).

The structures located the B-reader loop closely to the transcribing strand of the DNA and to

the active site of the polymerase, indicating a role in stabilization of the transcription bubble.

In addition, a further role in RNA-strand separation was postulated via a charge-dependent

mechanism (Sainsbury et al. 2013). To analyze the function of the B-reader loop domain in

the related transcription system of P. furiosus, an alanine screen of corresponding amino

acids was performed using different combinations of TFB B-reader-A substitutions to

stepwise reduce the overall charge of the loop tip region to investigate impacts on

transcription (Figure 15 B).

The results presented in chapter IV. C showed that all TFB variants tested form a

preinitiation complex, but only R52A and E53R54A showed moderate activity, R54A weak

and R52E53A increased or wtTFB activity in abortive and run-off transcription assays.

Promoter opening in absence of TFE was sufficient for three of the TFB mutations (R52A,

R52E53A, and E53R54A), whereas addition of TFE can compensate defects of some of the

proteins tested, indicating that the B-reader loop is involved in stabilization of the

transcription bubble. TFE can usually compensate defects of TFB during transcription

(Werner, Weinzierl 2005), but abortive and run-off transcription assays in presence of TFE

showed that in case of E53A, R54R55A and the LoopA substitution no or very low

transcription was observed. The findings indicate an important role of this B-reader loop

region in transcription initiation which possibly relies on its distinct charge distribution. The

investigated B-reader loop tip region contains one acidic glutamic acid at position 53,

whereas the other positions comprise a basic arginine at position 52, 54 and 55 (Figure 16).

Multiple sequence alignments of this region revealed that all TFBs of the aligned organisms

contain at least one negative charged amino acid at the corresponding E53 position, except

TFB of M. jannaschii. Alanine screening of the M. jannaschii TFB of this domain revealed

that substitution of the corresponding amino acids K87, I88, K89 and R90 (R52, E53, R54

and R55 of PfuTFB) with alanine has no influence on abortive transcription assays except

R90 which showed a reduction to 60% (Wiesler, Weinzierl 2011). The results further showed

that recruitment of the RNA polymerase was reduced in case of I88A (35%), K89A (55%)

and R90 (20%), whereas deletion of three amino acids K87 - K89 and I88 - R90 have no

influence on transcription activity. However, the recruitment of the RNA polymerase seems

not to be diminished in the results shown here, as preinitiation complexes were formed in the

same amount as the wtTFB for all TFB variants used.

Nevertheless, amino acid E53 of P. furiosus TFB seems to be essential for transcription.

Substitution of this amino acid with alanine leads to an altered DNA/TBP/TFB complex
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pattern in EMSA experiments (Figure 17 A), and further showed almost no transcriptional

activity at any assays. Only in experiments with pre-opened templates an activity of 49% (nt-

strand mismatch template) and 68% (t-strand mismatch) was observed (Figure 21). The fact

that the TBP/TFB/DNA complex runs lower on the gel in EMSAs suggests that the TFB

conformation is disordered which results in a change of the electromobilic property. Less is

known about the intramolecular interactions of TFB/TFIIB. Recent fluorescence studies of

human TFIIB B-reader position W52 (PfuTFB W44) suggested structural and dynamic

changes of TFIIB after interaction with DNA, which further indicates that the conformation of

TFIIB differs depending on the interactions to other components of the transcription

machinery (Gorecki et al. 2015). It was also suggested from cryo-EM structures of the human

transcription complex, that the B-reader domain is in a highly disordered conformation

whereas tight interactions where formed when open complex formation takes place

(Plaschka et al. 2016). Therefore E53 might be involved in maintaining a specific

conformation of TFB if not part of the PIC, which would explain why TBP/TFB/DNA

complexes showed altered electromobilic properties but are able to form initiation complexes.

Interestingly, if the amino acid next to E53, R52, is also substituted with alanine, it stimulates

formation of the first phosphodiester bond (Figure 18). The TFB variant R52E53A basically

showed the best results in the screening in contrast to the single substitutions, R52A and

E53A, suggesting that this charge distribution can stimulate transcription initiation and form

run-off transcripts comparable to wtTFB. This finding leads to the conclusion that the acidic

E53 and the basic R52 amino acid of the wild type can be replaced with two unpolar alanine

amino acids at this site. Therefore an overall neutral charge distribution of these two

positions is important for the function of the TFB B-reader loop. However, the LoopA

mutation (which comprises four alanine from R52 to R55), and the double-substituted TFB-

R54R55A showed complete loss of function in the transcription assays, even in presence of

TFE. This finding indicates that the charge composition of the B-reader loop tip is of high

importance for initiating transcription, especially for the conserved residue R55. Every

alanine combination including this amino acid is not able for transcription at a sufficient level.

This result leads to the suggestion that the two basic residues R54 and R55 are also

important for the function of the B-reader loop. Taken together, this protein region tolerates

the combinations AARR, AERR, and in little, RAAR to fulfill its role in transcription initiation.

Interestingly, TFB variant R52Bpa of the crosslinking studies, which contains the negative

charged unnatural phenylalanine derivate, showed 2-fold increase in abortive transcription

assays (Figure 25 C). Therefore and the fact that corresponding eukaryotic TFIIB B-reader

regions comprise an overall negative charge, it might be interesting if transcription can be

enhanced by complete substitution of the archaeal TFB B-reader with acidic residues.

Taken together, the alanine screening of the TFB B-reader loop tip region showed

that substitution of the wild type amino acids at distinct positions can result in a collapse of

the transcription system, due to insufficient interactions of the selected protein region likely

with the t-strand of the transcription bubble in proximity to the active site of the RNAP. It was

shown that the acidic residue E53, together with the basic arginine R55 of the loop are

necessary for correct transcription initiation, whereas the elimination of the overall charge of

the loop tip is also insufficient for correct transcription initiation. Positive charged amino acids

were stepwise eliminated, and the results suggest that important protein-DNA interactions

strongly depend on the charge distribution of this region. Due to the close position of the TFB

B-reader loop to the t-strand, it can be concluded that the overall positive charge of this

region is important for correct DNA strand positioning and stabilization during the strand slips

inside the cleft of the polymerase.
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D. RNA-strand separation does not depend on the charge of the B-

reader loop
Despite the low ability of the TFB alanine substitutions to initiate transcription, RNA-strand

separation was investigated. To overcome deficiencies in promoter opening and/or t-strand

stabilization, a heteroduplex DNA template was used. Surprisingly, a three nucleotide

mismatch (-1 to +2) was sufficient to restore almost wild type transcription levels for all TFB

variants used (Figure 21). From this point of view it can be suggested that the TFB B-reader

loop might be involved in promoter opening directly or indirectly. Due to its overall positive

charge distribution, an interaction with the negative charged backbone might support strand

separation or the slip of the single stranded DNA inside the cleft of the RNA polymerase,

which can be an explanation for the fact that a mini bubble is sufficient for restoration of

transcriptional activity. However, in experiments performed with the pre-opened template

transcript formation took place at wtTFB level except E53A, which showed 50% activity at

templates containing an nt-strand mismatch, and 68% activity at templates containing a t-

strand mismatch. The difference observed at both templates further indicate a direct

interaction of position E53 with the t-strand DNA, as transcription is increased to 140% in

experiments performed with the template containing the mismatch at the t-strand. TFB-

R54R55A and LoopA both showed a slight reduction in these experiments with values

between 82 and 92% for both templates, respectively. Nevertheless, a defect in RNA strand

separation can be excluded as run-off transcripts were formed at levels comparable to

wtTFB. RNA was guided correctly towards the exit channel of the polymerase. If this event is

not performed correctly, the number of formed transcripts shouldn’t be at the wild type level.

Therefore the charge of the B-reader loop domain does not influence the RNA-strand

separation in P. furiosus like it was postulated for the related yeast transcription system.

E. Topology of PfuTFB is almost similar to TFIIB
As it was mentioned in the previous chapter, the B-reader domain is located in close

proximity to the t-strand in an initially transcribing complex of a eukaryotic crystal structure

(Sainsbury et al. 2013). A comparable structure of the related P. furiosus transcription

system is missing, and structural information about the topology of archaeal TFB within the

preinitiation complex was thought to be like in eukaryotic organisms, based on the relation of

transcription components of the two domains. To reveal the position of the TFB domains

within the complex crosslinking experiments were performed. In this approach site-

specifically mutagenized TFB proteins, which contained the UV inducible crosslinking agent

p-Benzoyl-L-phenylalanine (Bpa), were used together with site-specifically radiolabeled DNA

templates. The TFB-Bpa variants of the B-reader domain (G41 - R57), the B-linker (E74 and

M85) and the B-core (F192) were screened in different in vitro transcription assays to select

applicable mutants based on the overall quality of the amino acids and their corresponding

position within the initial transcribing complex structure. The results showed that 9 of 19

screened TFB variants were suitable for crosslinking, and six proteins, A46Bpa, R52Bpa,

S56Bpa, E74Bpa, M85Bpa and F192Bpa were selected (Figure 28). In addition, six TFB-

variants (G41Bpa, E43Bpa, R45Bpa, D48Bpa, Q51Bpa and R57Bpa) showed no

transcriptional activity in the experiments, but formed preinitiation complexes. Substitutions of

the corresponding amino acids in M. jannaschii revealed that the highly conserved residues

MjaTFB-E78 (PfuTFB E43), MjaTFB R80 (PfuTFB R45) and MjaTFB R92 (PfuTFB R57) with

phenylalanine or a negative charge results in very low or loss of transcriptional activity,

indicating that these residues are essential for the function of TFB (Wiesler, Weinzierl 2011).

In case of MjaTFB R92 substitution with any amino acid results in loss of transcriptional
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activity, indicating that the charge of this residue is essential. It was also reported for yeast

TFIIB that ScTFIIB R78 (PfuTFB R57) is also essential for transcription (Bangur et al. 1997).

In the yeast crystal structure of the initially transcribing complex, R78 was shown to interact

with D70, F66 and G80 of TFIIB, which in turn interacts with the rudder element of the RNAP

II, indicating that this residue is of high importance for the correct formation of Pol II-TFIIB

contacts (Sainsbury et al. 2013). The results shown here together with results described in

literature for TFB proteins of other organisms, it can be concluded that the conserved amino

acids G41, E43, R45, and especially R57 are essential for the function of PfuTFB during P.

furiosus transcription.

The selected TFB variants were used in specific crosslinking experiments. The results

showed that TFB mutations located within the B-reader domain (A46, R52 and S56)

crosslinked to DNA which contained a radioactively labeled nucleotide at position -4t (Figure

32), whereas this contact was only observed in presence of RNAP, indicating an interaction

to the transcribing strand specifically in the preinitiation complex. In contrast, control samples

performed with the linker mutations E74Bpa and M85Bpa did not show a specific interaction.

Renfrow et al. showed also an interaction between TFB and DNA at position -4t, which is

almost absent in closed complexes, and strongly increased in reactions containing RNAP in

the Pfu transcription system (Renfrow et al. 2004). Therefore the results presented here

demonstrate that the B-reader domain specifically interact with the t-strand in open

complexes only. The results further show that the B-reader domain is located next to the

transcribing strand in proximity to the active site of the RNAP, which is in accordance to

published structures of modelled open complex and initially transcribing complex (Kostrewa

et al. 2009; Sainsbury et al. 2013) and cryo-EM structures of yeast and human preinitiation

complexes (Plaschka et al. 2016). Therefore a similar topology of this TFB domain can be

suggested for the archaeal P. furiosus transcription system.

In reactions using DNA templates labeled at -11t a crosslink reaction was observed for the

linker position E74, but not for the B-reader positions, which emphasize the specificity of the

used crosslinking method. E74 also crosslinked to the nt-strand labeled at position -8.

Contacts between TFB and DNA at -10t but not at -12t (Renfrow et al. 2004), and at -9nt

(Micorescu et al. 2008) were also reported in literature, and the results presented here

demonstrated that E74 is likely the interacting residue and may explain the results observed

in these studies. The interaction between E74 and the t-strand was suggested for the

corresponding amino acid of ScTFIIB in the open complex model (Kostrewa et al. 2009),

whereas the corresponding PfuTFB M85 amino acid contacts the nt-strand in the structure.

However, PfuTFB M85Bpa does not contact one of both strands in the experiments,

indicating that this residue is out of distance for a crosslink reaction. Therefore it can be

suggested that the nt-strand is located closer to the B-linker strand than to the B-linker helix

position M85, which differs from the open complex model, whereas the nt-strand is not

clearly defined in this model, and is further not resolved in the initially transcribing complex.

KMnO4 footprints of the open region of P. furiosus transcription estimated the detectable size

of the transcription bubble from -9 to +5 of the nt-strand (Spitalny, Thomm 2003). As E74Bpa

crosslinks to both strands, it can be concluded that this amino acid position is in between of

the two strands located at the upstream edge of the transcription bubble, possibly involved in

stabilization of the separated strands. This finding is further in accordance with the published

open complex model for eukaryotic TFIIB (Kostrewa et al. 2009) and with recent

observations for the archaeal transcription system of M. jannaschii (Nagy et al. 2015).

In addition, the B-core position F192Bpa crosslinked specifically to DNA labeled at position -

19t in the ternary DNA/TBP/TFB complex as well as in open complexes (Figure 33). The B-
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core position F192 was selected for the experiments because a contact to DNA at -19t was

proposed from a DNA/TBP/TFB-core crystal structure of the related P. woesei (Kosa et al.

1997). The results shown here demonstrated that this specific contact is also formed in the

P. furiosus system, and might be the explanation why an interaction between TFB and DNA

at -18t and -20t in open complexes and DNA/TBP/TFB complexes was also observed in the

Pfu transcription system reported by Renfrow et al. 2004. However, the corresponding amino

acid I209 of the yeast TFIIB showed also contacts to DNA in the open complex model

(Kostrewa et al. 2009) but is located a few bases upstream. This finding can be explained

with results of FRET measurements for the complete archaeal M. jannaschii preinitiation

complex, where it was shown that archaeal TBP and TFB are located closer to the surface of

the RNA polymerase (Nagy et al. 2015). This finding might explain the distance between

I209 and -19t in the postulated eukaryotic structure, and would also suggest a closer location

of TFB to RNAP in Pyrococcus furiosus transcription.

Taken together, the results of the crosslinking experiments in the preinitiation complex reveal

an almost similar topology of the TFB B-reader and B-linker domain of the archaeal P.

furiosus transcription in comparison to eukaryotic TFIIB in published structures, whereas the

location of the nt-strand and the B-core position F192 seems to be slightly different.

F. The TFB B-reader domain is displaced at register +10
The amino acid substitutions of the B-reader domain, TFB-A46Bpa, TFB-R52Bpa and TFB-

S56Bpa were used in crosslinking experiments on stalled transcription complexes to reveal

structural transitions of this domain during transcription initiation and transition to early

elongation. The results showed that at register +6 the signal intensity of the obtained

crosslink for position S56Bpa is decreased. Sainsbury et al. postulated a RNA-DNA

separation model, which is based on the charge-specific interaction of the B-reader loop and

the nascent RNA at this position (Sainsbury et al. 2013). In contrast, P. furiosus does not

comprise a negative charged B-reader loop, but in accordance to the model, the homology

between TFB and TFIIB, and the fact that the B-reader of P. furiosus is in a similar location

than its eukaryotic counterpart, a direct interaction with RNA can be assumed. In the

bacterial system, a similar contact between the σ3.2 region, which corresponds to the B-

reader loop, and the nascent RNA was postulated using FRET technique, as the initial

transcribing complex containing a 6mer RNA paused at this site (Duchi et al. 2016).

Crosslinking experiments of human TFIIB in preinitiation complexes together with a three

nucleotide long RNA further revealed a close location of TFIIB to RNA in proximity to the

active site of the RNAP II (Bick et al. 2015), which also indicate a TFB-RNA interaction

observed in the experiments. A further interaction between the B-reader domain and the

RNA was detected in experiments at register +8 for the helix position A46 (Figure 35). The

signal decreased to approximately 70%, indicating a larger distance between the DNA and

the incorporated Bpa. RNA was predicted to clash with the helix of TFIIB at positon +8 in the

open complex model (Kostrewa et al. 2009). The results presented here confirmed the

postulated interaction between RNA and the B-reader helix. The biggest changes in the

crosslink pattern were observed in register +10 for all TFB B-reader variants. Here signal

intensities dropped down to approximately 30% in comparison to the signals of the

preinitiation complex and remained unchanged low at register +15, indicating a structural

transition of the complete B-reader domain. The use of the B-core position F192 in

crosslinking experiments on stalled complexes at this register demonstrated that TFB is fully

present, indicating that the observed changes for the B-reader domain are specific for this

protein region. Pal et al. postulated a transition of the corresponding TFIIB domain due to the
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collapse of the transcription bubble at registers +10/+11 (Pal et al. 2005). In the bacterial

system a transition of the corresponding region σ3.2 was observed, as this domain is in path 

of the advancing 5´end of the RNA, but takes place at register +6/+7 (Basu et al. 2014). In

addition, KMnO4 footprint experiments also reported a reduction in the size of the

transcription bubble at registers +10/+11 for the P. furiosus transcription system (Spitalny,

Thomm 2003). In accordance with the herein obtained results, the TFB B-reader domain is

displaced at register +10, possibly due to interactions with RNA and the B-reader helix. The

B-reader displacement further results in the collapse of the transcription bubble, as the

stabilizing interaction between DNA and B-reader is attenuated.

G. TFB tends to be released from register +15 onwards
Using the TFB-F192Bpa variant the point of TFB release was determined. The results show

that the signal intensities of TFB-DNA interactions in stalled complexes at registers +6 to +14

do not change in comparison to the signals derived from the respective preinitiation

complexes, indicating that TFB is not released at these positions. At register +15 the signal is

slightly decreased, and further at +20, whereas crosslinking experiments under run-off

conditions showed just background signals. The results indicate that TFB release starts from

+14 onwards, but is not an instantaneous event as it was expected. For the human

transcription system a TFIIB release was described to take place at an RNA length of

12/13nt in vitro (Cabart et al. 2011). It was also postulated that the matured RNA with the

same length clashes with the Zn-ribbon domain of TFIIB in the crystal structure of an initially

transcribing complex of yeast, as this domain blocks the exit pore of the RNA polymerase II

(Sainsbury et al. 2013). It was also shown by Xie et al that TFB is released in in vitro

experiments lacking TFE in the archaeal M. thermoautotrophicus system when complexes

were chased to position +24 (Xie, Reeve 2004b), as well as for the human in vitro

transcription system, for which a TFIIB release was shown to take place between +6 and +16

(Tran, Gralla 2008). However, a release of TFB in the P. furiosus transcription was expected

at registers +12/+13, but this event could not be pinpointed to these distinct nucleotide

positions. However, due to the fact that the signal started to decrease at register +15

onwards, it can be suggested that TFB is destabilized at registers +13/+14 and starts to be

released at register +15, but it remains speculative why the transcription factor is not

released completely at one distinct register. It is possible that the release process happens

slowly due to persisting interaction between TFB and DNA, TBP and RNAP.

H. Concluding aspects
Archaeal TFB and eukaryotic TFIIB show a high degree of structural and functional

conservation. Both proteins are very important for transcription, as both factors fulfill crucial

steps during initiation. In P. furiosus, TFB is sufficient to form a stable DNA/TBP/TFB

complex with DNA in a bent conformation. The B-reader loop of PfuTFB comprises a positive

charge, but the corresponding region of the eukaryotic ScTFIIB is negative. The charge

distribution of this domain is essential for the function of PfuTFB during transcription likely to

stabilize the transcribed strand of the transcription bubble. In contrast, this domain is not

involved in RNA-strand separation, like it was proposed for eukaryotic TFIIB. In addition,

archaeal preinitiation complexes consist of a reduced number of transcription factors than the

eukaryotic complex, but it has to undergo nearly the same transitions to initiate RNA

synthesis. For example, the TFIIB/TFIID stabilizing factor TFIIA, as well as TFIIH, which

supports DNA melting and translocation of the RNAP are missing in archaeal transcription.

Therefore, archaeal transcription is a simplified version of the eukaryotic transcription, and is

more deeply rooted in the tree of life. Despite similar roles in both transcription systems, the
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Figure 38: Complete initiation of transcription of Pyrococcus furiosus. Transcription starts with binding

of TBP and TFB to the promoter site, whereas DNA bending relies on the presence of TFB. The

polymerase is recruited to the promoter to form a preinitiation complex. DNA is melted around the start

site whereas the charge of the TFB B-reader loop region is important for t-strand loading and

stabilization of the single-stranded area. The RNA polymerase starts to synthesize RNA, and at a

length of 6nt it interacts with the TFB B-reader loop region, whereas the charge of this loop is not

required for RNA-strand separation. RNA then clashes with TFB B-reader helix at a length of 8nt, and

at a length of 10nt it displaces the TFB B-reader domain. This translocation results in collapse of the

transcription bubble, and in a further destabilization of TFB. The transcription factor is completely

destabilized at register +13/+14 possibly due to a clash of RNA with the Zn-ribbon, which induces the

release of TFB from register +15 onwards. The RNA polymerase can reinitiate to the promoter to start

the next transcription cycle.
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archaeal TFB might have more fundamental roles during transcription, as the eukaryotic

system gained several additional factors which are involved in initiating processes.

The role of the transcription factor B in transcription initiation of P. furiosus with respect to the

results obtained in this thesis is summarized in figure 38.

Despite the reduced degree of complexity of the archaeal transcription system, several

postulations derived from eukaryotic cryo-EM and crystal structures were addressed in this

thesis using crosslinking experiments in stalled transcription complexes. The crosslinking

method used in this study was highly specific and enabled detection of TFB-DNA contacts

during transition from initiation to elongation and monitoring dynamic transitions of TFB. In

addition to other methods like single molecule FRET analysis, crosslinking is also a powerful

tool to elucidate functional interactions and structural rearrangements of proteins and their

targets. Crosslinking might be applicable to investigate DNA scrunching during transcription

initiation, as well as interactions of other DNA binding proteins, which are involved in

regulation of transcription.

The results of the crosslinking experiments presented here show the first dynamic transitions

of the archaeal transcription factor B, and provide evidence for structural rearrangements

within the complex during transition from initiation to elongation. The data further confirm

several postulated events derived from eukaryotic complexes and therefore complement the

structural information on a biochemical level. The results further give a better understanding

of the archaeal transcription initiation mechanism and show similarities as well as differences

between the archaeal and the eukaryotic transcription machineries.
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AbstractVI.
The preinitiation complex of the transcription machinery in archaeal organisms resembles a

simplified version of the eukaryotic RNA polymerase II transcription system. Both systems

share homologous general transcription factors to recruit RNA polymerase to the promoter to

initiate RNA synthesis. The transcription factor (II)B plays an important role during

transcription initiation. Based on eukaryotic cryo-EM and crystal structures several functional

interactions and structural transitions of TF(II)B were proposed. To detect specific

interactions of the archaeal P. furiosus TFB during transcription initiation different in vitro

transcription assays were performed. In addition, the replication protein A of P. furiosus was

also investigated using various in vitro experiments.

Crosslinking experiments using TFB, which contained a UV inducible photo crosslinker, and

site-specific radioactively labeled DNA templates revealed an almost similar topology of the

archaeal TFB B-reader and B-linker domains in the preinitiation complex in comparison to

corresponding regions predicted in eukaryotic structures. Unlike it was postulated in open

complex models, the non-transcribed strand is located closer to the B-linker strand than the

B-linker helix. The B-core amino acid F192 contact DNA 19 nucleotides upstream the

transcribed strand, in accordance to a published crystal of P. woesei TATA/TBP/TFB-core

structure, but is different to predicted eukaryotic closed and open complex models.

Crosslinking experiments in stalled complexes showed that RNA interacts with the B-reader

loop at a length of 6nt, and further clashes with the B-reader helix domain with a length of

8nt. At register +10 the TFB B-reader is displaced, which causes collapse of the transcription

bubble. It was also demonstrated that TFB is present at register +6 to +14 in the complex,

and tended to be released from register +15 onwards, indicating a destabilization of TFB at

register +13/+14.

Alanine substitutions of amino acids of the TFB B-reader loop revealed that this region

mainly stabilizes the transcription bubble due to charge-dependent interactions with the

transcribing strand. In contrast to the predicted RNA-DNA separation model derived from a

eukaryotic initially transcribing complex, RNA-strand separation does not depend on the

charge of the PfuTFB B-reader loop.

Single molecule FRET experiments revealed that DNA bending depends on the presence of

TFB in P. furiosus.

In vitro transcription assays with RPA showed that this protein has binding preference to

single stranded DNA. Experiments further showed that RPA is not involved in transcription

initiation, but it stimulates transcription. Therefore RPA functions during elongation of

transcription, possibly due to a stabilization of the RNA polymerase and increase of the

processivity.

The results presented here give a more detailed insight into molecular interactions of TFB

and are the first biochemical data on dynamic rearrangements of TFB during transcription

initiation and transition to early elongation. It further deepens the understanding of archaeal

transcription processes and complements structural information derived from related

eukaryotic organisms.
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ZusammenfassungVII.
Der Präinitiationskomplex der Transkriptionsmaschinerie archaeeller Organismen gleicht

einer vereinfachten Version des eukaryotischen RNS Polymerase II Komplexes. Beide

Systeme verwenden zum Teil homologe Transkriptionsfaktoren, um die RNS Polymerase zur

Initiierung der RNS-Synthese an den Promoter zu rekrutieren. Der Transkriptionsfaktor (II)B

hat dabei mehrere wichtige Funktionen in diesem Komplex. Basierend auf eukaryotischen

Kristall- und cryo-EM Strukturen wurden funktionelle Interaktionen und strukturelle

Veränderungen vorhergesagt. Um spezifische Wechselwirkungen des archaeellen TFB aus

P. furiosus während der Transkriptionsinitiation zu detektieren, wurden verschiedene in vitro

Transkriptionsexperimente verwendet. Zudem wurde ein weiteres Protein, das

Replikationsprotein A aus P. furiosus, in verschiedenen Experimenten hinsichtlich dessen

Funktion untersucht.

Crosslink-Experimente, in denen TFB mit einem UV-induzierbaren Crosslinker ausgestattet

und zusammen mit spezifisch radioaktiv markierten DNS Matrizen verwendet wurde, zeigten,

dass die TFB B-reader und B-linker Domänen eine nahezu ähnliche Lage im

Präinitiationskomplex aufweisen, wie die entsprechenden Domänen in eukaryotischen

Strukturen. Anders als im Model eines offenen Transkriptionskomplexes liegt der nicht-

transkribierte Strang näher am B-linker Strang als an der B-linker Helix. In Übereinstimmung

mit einer publizierten P. woesei TATA/TBP/TFB-Kern Struktur zeigte die Aminosäure F192

aus der TFB Kerndomäne einen Kontakt zur DNS 19 Nukleotide stromaufwärts am

transkribierten Strang, und weist damit Unterschiede zu modellierten Strukturen von

geschlossenen und offenen eukaryotischen Transkriptionskomplexen auf. Crosslink-

Experimente in gestellten Komplexen zeigten, das RNA mit einer Länge von 6nt mit der B-

reader Schleife interagiert, und anschließend mit einer Länge von 8nt mit der B-reader Helix

zusammenstößt. An Position +10 ist die TFB B-reader Domäne verschoben, was zu einem

Zusammenbruch der Transkriptionsblase führt. Es konnte auch gezeigt werden, dass TFB in

den Registern +6 bis +14 im Komplex vorhanden ist, und dazu tendiert, ab Position +15

freigesetzt zu werden, was auf eine Destabilisierung des TFB an Position +13/+14 hindeutet.

Alanin-Substitutionen von Aminosäuren der TFB B-reader Schleife zeigten, dass

diese Region hauptsächlich die Transkriptionsblase stabilisiert aufgrund ladungsabhängiger

Wechselwirkungen mit dem transkribierten Strang. Im Gegensatz zum postulierten RNS-

DNS Separationsmodel basierend auf einer eukaryotischen Struktur eines initial

transkribierenden Komplexes ist die Trennung der Stränge nicht von der Ladung der TFB B-

reader Schleife abhängig.

In Einzelmolekül-FRET Studien konnte gezeigt werden, dass die DNS-Biegung in P. furiosus

von TFB abhängig ist.

In vitro Studien mit RPA zeigten, dass dieses Protein eine Einzelstrang-Präferenz besitzt.

Die Experimente deuten darauf hin, dass RPA nicht an der Initiation beteiligt ist, aber

Transkription konnte stimuliert werden. Es wurde gezeigt, dass RPA in die Elongation der

Transkription eingreift, da es möglicherweise die RNS Polymerase stabilisiert und dessen

Prozessivität erhöht.

Die hier gezeigten Daten geben einen detaillierteren Einblick in molekulare Interaktionen von

TFB, und sind die ersten biochemischen Daten über dynamische Veränderungen von TFB

während der Transkriptionsinitiation und dem Übergang in die frühe Elongation. Das

Verständnis der archaeellen Transkriptionsprozesse soll damit vertieft werden, und die

strukturellen Informationen aus den verwandten eukaryotischen Organismen komplettieren.
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AppendixVIII.

A. Abbreviation list
α Alpha 
A Ampere
A [%] Average in percentage
Abs Absorption
AGE Agarose gel electrophoresis
Å Angstrom
ATP Adenosine triphosphate
β Beta 
b Base
bp Base pair
Bq Becquerel
Bpa p-Benzoyl-L-phenylalanine
BSA Bovine serum albumin
c Centi
°C Degree Celsius
CPM Counts per minute
C-term. Carboxy terminal
CTP Cytosine triphosphate
Da Dalton
Δ Delta 
dIC Poly 2´deoxyinosinic-2´-deoxycytidylic acid
DNA Deoxyribonucleic acid
dNTP deoxy nucleoside triphosphate
ds Double stranded
DTT 1,4 Dithiothreitol
E. Escherichia
EDTA Ethylenediaminetetraacetic acid
e.g. exempli gratia
EM Electron microscopy
Em Emission
EMSA Electro mobility shift assay
et al. et alii
f Femto
F Forward
FAM 6-Carboxyfluorescein
FRET Förster resonance energy transfer
γ Gamma 
g Gram
g (=RCF) Relative centrifugal force
gdh Glutamate dehydrogenase
GpU Guanylyl-5´-phosphatidyl-Uracil
GTF General transcription factor
GTP Guanine triphosphate
IPTG Isopropyl β-D-1-thiogalactopyranoside 
k Kilo
λ Lambda 
l Liter
LB Lysogeny broth
µ Micro
m Milli
M Mega
M (chem. unit) Molar
Mja Methanocaldococcus jannaschii
n Nano
NaAc Sodium acetate
nt Nucleotide
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N-term. Amino terminal
NTP Nucleoside triphosphate
nt-strand Non-transcribing strand
OD Optical density
p Pico
p.a. pro analysi
Pab Pyrococcus abyssi
PAGE Poly acrylamide gel electrophoresis
pH Pondus hydrogenii
PCI Phenol/Chloroform Isoamyl alcohol
PCR Polymerase chain reaction
Pfu Pyrococcus furiosus
PIC Preinitiation complex
PMSF Phenylmethylsulfonyl fluoride
Pol Polymerase
PVDF Polyvinylidene fluoride
R Reverse
RNA Ribonucleic acid
RNAP RNA polymerase
RPA Replication protein A
s (sec) Second
σ Sigma 
Sc Saccharomyces cerevisiae
SD [%] Standard deviation in percentage
SDS Sodium dodecyl sulfate
ss Single stranded
SSB Single stranded binding
T Tera
TBP TATA binding protein
TEC Ternary elongation complex
TEMED Tetramethylethylenediamine
TF Transcription factor
TFB Transcription factor B
TFE Transcription factor E
TIRF Total internal reflection fluorescence
t-strand Transcribing strand
TSS Transcription start site
U Unit
UTP Uracil triphosphate
UV Ultra violet
V Volt
v/v Volume per volume
W Watt
wt Wild type
w/v Weight per volume
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B. Figure list
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IIB.
10
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15
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