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Abstract

Hardware-in-the-loop (HIL) simulations of two interacting bodies are often accompanied by a time delay. The time delay,

however small, may lead to instability in the HIL system. The present work investigates the source of instability in a two

spacecraft system model with a time delayed contact force feedback. A generic compliance-device-based contact force

model is proposed with elastic, viscous and Coulomb friction effects in three dimensions. A 3D nonlinear system model

with time delay is simulated and the effect of variations in contact force model parameters is studied. The system is then

linearized about a nominal state to determine the stability regions in terms of parameters of the spring-dashpot contact

force model by the pole placement method. Furthermore, the stability analysis is validated for the nonlinear system by

energy observation for both the stable and unstable cases.
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Introduction

Rendezvous and Docking (RvD) is a mission-critical
phase of current space missions to the International Space
Station and of future missions for applications such as
space debris removal and satellite-to-satellite refuelling1–3.
RvD technologies are key to the development of On-
Orbit Servicing (OOS) capabilities, which in turn will
enable, among other objectives, satellite operational lifetime
extension and performances improvement4–8. Various RvD
testing set-ups are available for the ground emulation
of space-like conditions9–13. The air-bearing test-beds
are the most common for simulation and validation of
systems with on-orbit applications. They have, however,
physical limitations9,13. Robotics based RvD simulators,
where multi-degrees of freedom robotic arms are employed
in a Hardware-in-the-Loop (HIL) system, have obvious
advantages,10,14,15 but also face known challenges such as
time delays in the loop.

The interaction of two bodies in contact is central to the
RvD simulations. Experiments have shown that for robotic
impact control, a hardware compliance is a solution to
low contact forces at the contact interface16. Mathematical
models of contact dynamics serve as a tool for the analysis
and evaluation of mechanical systems. Gilardi and Sharf
(2002)17 presented a comprehensive review of the contact

dynamic models in the literature. Earliest known is the
Hertz contact model, a nonlinear model that is limited
only to the elastic impacts without energy dissipation. The
following models accounted for the energy dissipation by
adding a velocity dependent damping term18,19. Bondoky
et al. (2017)20 analyzed different contact dynamic models
on an HIL testbed, and showed that the coefficient of
restitution is the most influencing parameter for contact
dynamics modeling. A linear spring-dashpot contact model
is known for its relative simplicity and ease of analysis
of dynamic systems in contact17. Spring-dashpot contact
model, as well as an even simpler mass-spring model, has
often been employed for analysis and evaluation of HIL
simulations10,16,21–25.
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Combining time delays and high contact stiffness in a
closed loop HIL simulator might cause instability, hardware
damages, and eventually safety hazards26. Osaki et al.22 has
shown analytically that a closed loop HIL system simulating
an elastic collision does not obey energy conservation. To
overcome the problem, time delay compensation for one
dimensional HIL simulations has been addressed in several
ways in the literature20,22–25. The present work, however,
addresses this problem by determining a stability regions
of the compliance parameters for the contact of two bodies
moving in three dimensions.

Target satellite simulator

Chaser satellite simulator

Control room

Figure 1. European Proximity Operations Simulator (EPOS) at
GSOC, DLR 10

The European Proximity Operations Simulator (EPOS)
facility at the German Aerospace Center (DLR) is a robotics
based HIL simulator, which allows testing and carrying out
on-ground RvD simulation of two spacecraft15 as shown in
Fig. (1). The verification of the docking phase of an OOS
mission, particularly via a nozzle, is one of the aims of
performing an RvD simulation on EPOS facility. It consists
of two 6DOF industrial robots, one being stationary and the
other one mounted on rails, giving a total of 13DOF. The
robots at EPOS are capable of carrying payload masses up
to 240 kg with a sub-millimeter and sub-degree position
and pointing accuracy, respectively. The robot commands
are issued to track the trajectory of simulated satellites in
real time. The monitoring system of the facility is capable
of measuring the current position and attitude of the robots.
Efforts were conducted in developing a methodology for
safe testing design at the EPOS10. Testing was performed
and successfully validated the proposed stability analysis.
An average time delay of 32 ms was observed due to
communication channels during testing. The proposed work,
however, was limited to a two-dimensional contact geometry,
the testing was performed in a single-dimensional setting,
and the physical scenario assumed a target satellite at rest
with respect to the inertial frame.

This work builds on previous efforts while relaxing several
assumptions. The contributions of this paper are as follows:
1) the Target-Chaser nonlinear Truth model is extended to
three dimensions and features two moving frames, which
is consistent with scenarios involving satellites of similar
masses; 2) the contact dynamics model is extended and
features a generic compliance device with three dimensional
elastic, viscous, and Coulomb friction nonlinear effects; 3)
the linear stability analysis is extended to a three dimensional
space.

A realistic nonlinear Truth model is developed from
first principles and brought to a reduced order state-space
modeling of the satellites’ and contact point motions.
Simplifying physical assumptions leads to an intuitive model
order reduction. The development of a linearized design
model and physically motivated state transformation lay the
ground for linear stability analysis of the penetration depth
as well as other modes of the contact point motion. The
stability analysis is performed via the pole placement method
for linear time-delay systems. One convenient and elegant
outcome of the proposed methodology is the similarity of
the resulting 3D stability analysis with the work presented
by Zebenay et al. (2015)10, thanks to the decoupled contact
dynamics modes. All primal parameters, e.g. satellites’
masses, inertias, nozzle geometry angle, are lumped within
a smaller set of parameters. A numerical example illustrates
the stability analysis results. Further, nonlinear simulations
of the Truth model are performed in order to verify and
validate the stability analysis. The trajectory of the Chaser’s
probe tip inside the Target’s nozzle in three dimensions is
simulated under various contact interface models and contact
parameters values. An energy based method employed on the
nonlinear model confirms the stability analysis results for the
system under study.

The nonlinear system modeling along with the compliance
device is discussed in the following section. The nonlinear
system model is linearized with further reduction of system
states. The stability analysis of the linearized model is carried
out, and numerically validated for the nonlinear model.

Truth Model

A system of a Target and Chaser spacecraft is shown in Fig.
(2). The Target spacecraft is mounted with a conical nozzle.
The nozzle allows the probe of the Chaser spacecraft to route
in and dock into the target. Points T and C are the center
of masses of the Target and Chaser spacecraft, respectively.
The inertial reference frame fixed to the laboratory, G has the
origin at pointG. The Target and Chaser spacecraft reference
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frames, T and C, are respectively fixed to the Target and
Chaser center of masses.

Probe

Nozzle

Target

Chaser

Q

C

x

x
x
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Figure 2. Target and Chaser spacecraft system

The direction cosine matrix is chosen as the attitude
parameter, as it has an advantage of being a non-singular
attitude representation of a body. DGC and DGT denote the
direction cosine matrices from the inertial reference frame,
G, to the Chaser and Target reference frames, respectively.
The positions, translational velocities, and angular velocities
of the Chaser and Target with respect to G are denoted by
r
C

, r
T

, v
C

, v
T

, ω
C

and ω
T

, respectively. The kinematic
equations of motion are therefore written as follows

ṙ
C
= v

C
(1)

ṙ
T
= v

T
(2)

ḊGC = −ω×
C
DGC (3)

ḊGT = −ω×
T
DGT (4)

Assumption-1: The Chaser and Target spacecraft are
modeled as rigid bodies. The dominant force and torque
during contact between the Chaser and Target are the contact
force and torque, and other causes are neglected. The contact
force is applied at the tip of the probe, Q, which is modeled
as a point.

Assumption-2: The deviation of the probe tip position from
equilibrium relative to the Chaser Body is small.

The force and moment equations of the Chaser and Target
spacecraft at the time of contact are given as follows

m
C
v̇

C
= f (5)

m
T
v̇

T
= −f (6)

J
C
ω̇

C
= r×

CQ
DGC f − ω×CJC

ω
C

(7)

J
T
ω̇

T
= −r×

TQ
DGT f − ω×T JT

ω
T

(8)

where m is the mass, J is the moment of inertia matrix,
with subscripts C and T referring to the Chaser and Target,
respectively. f is the contact force between the Chaser and
Target expressed in inertial frame coordinates. r

CQ
and r

TQ

are the vectors CQ and TQ written in the Chaser and Target

frame coordinates, respectively. The relationship between
vectors r

SQ
and r

TQ
can be expressed in terms of the states

of the system

r
TQ

= DGT [rC
− r

T
+DCGrCQ

] (9)

It is to be noted that the force equations in (5) and (6) are
written in the inertial reference frame coordinates, while
the moment equations in (7) and (8) are written in Chaser
and Target reference frame coordinates, respectively. The
superscript × denotes the cross product skew symmetric
matrix operator on the vector, such that

ω× =




0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0


 (10)

Eqs. (1)-(8) constitute the equations of motion of the
Chaser and Target spacecraft in a 36-dimensional state-space
representation.

Compliance device

A compliance device is a hardware, providing a passive
compliance to the impact due to contact between Chaser
and Target bodies. In this section, equivalent dynamics are
formulated for a generic compliance device model which
contributes to the normal force at the contact point Q. The
equivalent dynamics under specified assumptions are shown
to be dependent on the system state. As the point of contact
Q is moving along the nozzle surface, another frame of
reference, N is defined as shown in Fig. (3). The nozzle
frame, N is defined keeping the origin fixed at point S, with
the xN -axis along the vector r

SQ
and the zN -axis along the

local normal to the surface of the nozzle, n̂. The orientation
of the nozzle frame with respect to the target frame is such
that xN makes an angle θ with xT and yN makes an angle φ
with yT , therefore

DNT =




cos θ 0 − sin θ

− sin θ sinφ cosφ − cos θ sinφ

sin θ cosφ sinφ cos θ cosφ


 (11)

where φ ∈ [0, 2π) is the azimuthal angle and θ is the
constant semi-cone angle of the nozzle. m̂ and t̂ denote the
unit vectors in radial direction, along the xN axis, and in
tangential direction, along the yN axis, respectively.

The contact force at the nozzle surface is a resultant of
the reaction forces normal to the surface, fn, and along the
surface, fn⊥

, as follows
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Figure 3. Nozzle reference frame

f = fn + fn⊥
(12)

Note that f , fn, and fn⊥ are written in inertial frame
coordinates. If n̂ and n̂⊥ respectively denote the unit
vectors along the two mutually perpendicular reaction forces
expressed in the Nozzle frame, N

fn = fnD
N
G n̂

fn⊥
= fn⊥

DNG n̂⊥
(13)

The sliding of contact point Q on the nozzle surface gives
rise to a force of friction between the Chaser and Target
bodies.

Assumption-3: The force of friction is along the surface of
the nozzle,17,18,27 and modeled according to the Coulomb
friction model.

The contact force along the nozzle surface can be written as

fn⊥
= µfn (14)

where µ is the coefficient of kinetic friction between the
nozzle surface and the probe tip. The direction of the friction
force is opposite to the sliding velocity of point Q over the
nozzle surface, given as

n̂⊥ = DTN
(I− nT n

T
T )ṙSQ

||(I− nT n
T
T )ṙSQ

|| (15)

where I is the identity matrix and nT = DNT n̂ is the unit
vector normal to the nozzle surface at the point of contact, as
expressed in the Target fixed frame. The time derivative of
vector r

SQ
results from Eq. (9)

ṙ
SQ

= ṙ
TQ

=−ω×
T
r
TQ

+DGT [vC
− v

T
+DCGω

×
C
r
CQ

] (16)

where r
CQ

is assumed constant, following Assumption-2.

Figure (4) shows a compliance device mounted on the
Chaser spacecraft. The compliance device model consists of
an assembly of springs converging at point P on the probe
RQ. Note that the spring linkage between points R and P is

S1

S2

S3

S4

S5

S6 Chaser

Compliance Device

Q

P

R

Figure 4. Chaser equipped with a compliance device

to provide a compliance if there is an impact along the probe
length and normal to the nozzle surface.

Assumption-4: Each spring exerts a restoring force
proportional to its relative longitudinal displacement.

Figure (5) shows the deviation of the probe RPQ from
the equilibrium position RPoQo. A probe fixed frame P
is defined as shown in Fig. (5) with R as the origin, such
that xP is along the probe longitudinal axis. The axis zP is
perpendicular to xP and lying in the plane containing R, P
and Po, and yP is the third axis of the right hand coordinate
system. The probe frame P can be obtained by successively
rotating the frame C by an angle φP about the x axis and by
an angle θP about the y axis.

d

o oQ

Q

P

P
R C
P

PP

P

θP φP

Figure 5. Compliance device model

If the displacement of point Q is d along the direction
normal to the surface of the nozzle, then the following can
be stated

r
RQ

= l0x̂C − dDNC n̂ (17)

where, r
RQ

is the vector along RQ written in the Chaser
frame coordinates, l0 is the length of the probe at equilibrium
and x̂C = {1, 0, 0}T is the unit vector along the x axis of the
Chaser. The length of the probe and the unit vector along the
probe at any time is given by

l = ||r
RQ
|| (18)

l̂ =
r
RQ

l
(19)

where l̂ is the unit vector along the probe length written in the
Chaser coordinate frame. Let a denotes the ratio of the length
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of PQ and the length of the probe at equilibrium, therefore

r
RP

= r
RQ
− r

PQ

= l0x̂C − dDNC n̂− al0̂l (20)

Using Eq. (20), the shift in the position of point P with
respect to the Chaser, that is vector PoP , can be written as

δr
RP

= −dn̂C − al0 [̂l− x̂C ] (21)

where n̂C = DNC n̂. Therefore, the elongation of the spring-
i, δsi can be expressed as the projection of δr

RP
on the unit

vector along the spring

δsi = ŝTi δrRP
(22)

where ŝi is the inward unit vector along the spring written in
the Chaser frame coordinates

ŝi =
r
RP
− r

RSi

||r
RP
− r

RSi
|| (23)

and r
RSi

are the constant vectors RSi as shown in Fig. (4).
If ki is the stiffness of the ith spring, the force experienced
by the probe due to spring i is given by

fsi = −ki δsi ŝi (24)

Substituting Eqs. (21) and (22) in Eq. (24) and summing over
N springs

fs = −
N∑

i=1

ki(̂siŝ
T
i )[−dn̂C − al0̂l+ al0x̂C ] (25)

Equation (25) gives the net spring force fs acting on the
probe due to the Chaser body. As the probe is continuously
under contact with the Target body at point Q, the projection
of the net spring force on n̂ leads to the normal force fn

fn = −n̂T
C fs

=

N∑

i=1

ki(n̂
T
C ŝi)̂s

T
i [−dn̂C − al0̂l+ al0x̂C ] (26)

Assumption-5: The generic compliance device model only
contributes to the force normal to the nozzle surface.

Under Assumption-5, the projection of the net spring force
on n̂ is the only force relevant to the present model,
and therefore the component along the nozzle surface is

discarded. Substituting l̂ from Eq. (19) leads to

fn =− (1− al0
l
)[

N∑

i=1

ki(n̂
T
C ŝi)

2]d

− al0(
l0
l
− 1)[

N∑

i=1

ki(n̂
T
C ŝi)(x̂

T
C ŝi)]

(27)

Contact point motion

The location of point Q on the nozzle can be solely
determined from the position and attitude of Chaser and
Target. A set of three parameters

(d,m, φ) (28)

defines the position point Q on the nozzle surface, where m
is the distance of pointQ from the origin of Nozzle frame and
φ is the azimuthal angle of Nozzle frame. The displacement
of Q along local normal to the nozzle surface, d, is attributed
to the penetration in the nozzle surface, and is termed as
penetration depth in the rest of the article.

If r
SQ

denotes the vector SQ expressed in Target frame
coordinates, it follows from above that

r
SQ

= DNT [mm̂+ dn̂] (29)

where, m̂ is the unit vector along the radial axis xN . The
azimuthal angle can be found by substituting Eq. (11) in (29)
and taking the projection of r

SQ
along y and z axes of the

Target frame

tanφ = − ŷT
T rSQ

ẑTT rSQ

, ẑTT rSQ
6= 0 (30)

where ŷT = (0, 1, 0)T and ẑT = (0, 0, 1)T are the unit
vectors along yT and zT axes respectively, and from Eq. (9)

r
SQ

= r
TQ
− r

TS

= DGT [rC
− r

T
+DCGrCQ

]− r
TS

(31)

As the probe penetrates the nozzle, the point Q moves in a
direction along the normal to the nozzle surface, such that

d = [DTN rSQ
]T n̂ (32)

where r
SQ

is the vector SQ expressed in Target frame
coordinates. Substituting r

SQ
from Eqs. (31) yields

d = [DGN (rC
− r

T
) +DCN rCQ

−DTN rTS
]T n̂ (33)

where r
TS

is a constant vector TS expressed in the Target
frame coordinates.
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Let r and v denote the relative position and velocity of the
Chaser with respect to the Target, respectively, that is

r = r
C
− r

T

v = v
C
− v

T

(34)

Using Eq. (34) in Eqs. (1)-(9) and (33) yields

ṙ = v (35)

v̇ =
f

mr
(36)

ḊGC = −ω×
C
DGC (37)

ḊGT = −ω×
T
DGT (38)

ω̇
C
= J−1

C
[r×

CQ
DGC f − ω×CJC

ω
C
] (39)

ω̇
T
= J−1

T
[−r×

TQ
DGT f − ω×T JT

ω
T
] (40)

r
TQ

= DGT [r+DCGrCQ
] (41)

d = rTDNG n̂+ rT
CQ

DNC n̂− rT
TS

DNT n̂ (42)

where mr =
m

C
m

T

m
C
+m

T
is the reduced mass of the system

in Eq. (36). Since the resulting equations only feature the
vectors r and v, they are used to define a new set of
state variables. This conveniently reduces the dimension of
the system from 36 down to 30. It should be emphasized
that defining the relative position and velocity as the state
variables does not limit the scope of the analysis of the
system in the following sections.

Time-delayed system

Chaser-Target
   Dynamics

Contact Force
      Model

Time Delay
f

x =
(
r,v,DG

C ,D
G
T ,ωT

,ω
C

)

ẋ = g (x, f)

x
x

h
= x (t− h)

xh

f = h (x)

f

Figure 6. Block diagram of time delayed system model

The HIL Rendezvous and Docking Simulation is
accompanied by a time delay due to communication channels
as shown in Fig. (6). Hence, the position and attitude
commands, x, determined from the contact force and the
Chaser-Target dynamics correspond to the state of the system
at an earlier time. Assuming a time delay of h seconds, the
contact force given in Eq. (12) must be modified as

f(t) = fn(t− h) + fn⊥
(t− h) (43)

where fn(t− h) and fn⊥(t− h) are the contact force com-
ponents normal and along the nozzle surface, respectively.

The force feedback into the simulation at the current time is
denoted by f(t).

Truth model summary

The time delayed system model in the state-space form can
be summarized using Eqs. (1)-(8) as follows

ṙ = v (44)

v̇ =
f

mr
(45)

ḊGC = −ω×
C
DGC (46)

ḊGT = −ω×
T
DGT (47)

ω̇
C
= J−1

C
[r×

CQ
DGC f − ω×CJC

ω
C
] (48)

ω̇
T
= J−1

T
[−r×

TQ
DGT f − ω×T JT

ω
T
] (49)

such that
r
TQ

= DGT [r+DCGrCQ
] (50)

f = fnD
N
G (n̂+ µn̂⊥)

∣∣
t−h (51)

where
DNG = DTGD

N
T (52)

n̂⊥ = DTN
(I− n̂T n̂

T
T )ṙSQ

||(I− n̂T n̂
T
T )ṙSQ

|| (53)

DNT =




cos θ 0 − sin θ

− sin θ sinφ cosφ − cos θ sinφ

sin θ cosφ sinφ cos θ cosφ


 (54)

n̂T = DNT n̂ (55)

ṙ
SQ

= −ω×
T
r
TQ

+DGT [v +DCGω
×
C
r
CQ

] (56)

tanφ = − ŷT
T rSQ

ẑTT rSQ

(57)

r
SQ

= r
TQ
− r

TS
(58)

The compliance device based contact force model is
summarized as

fn =− (1− al0
l
)[

N∑

i=1

ki(n̂
T
C ŝi)

2]d

− al0(
l0
l
− 1)[

N∑

i=1

ki(n̂
T
C ŝi)(x̂

T
C ŝi)]

(59)

where

d = rTDNG n̂+ rT
CQ

DNC n̂− rT
TS

DNT n̂ (60)

l0 = ||r
CQ
− r

CR
|| (61)

l = ||r
RQ
|| (62)
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n̂C = DNC n̂ (63)

ŝi =
r
RP
− r

RSi

||r
RP
− r

RSi
|| (64)

DNC = DGCD
T
GD
N
T (65)

r
RQ

= l0x̂C − dn̂C (66)

r
RP

=

(
1− al0

l

)
r
RQ

(67)

The constants a, r
RSi

, ki, N and µ depend on the geometry
and stiffness properties of the compliance device and the
friction properties of the nozzle/probe interaction surface
material, respectively, and r

CQ
, r

CR
and r

TS
on the geometry

of the Chaser and Target. The constant vectors are given by

n̂ = {0, 0, 1}T ; x̂C = {1, 0, 0}T ;
ŷT = {0, 1, 0}T ; ẑT = {0, 0, 1}T ;

In contrast to the system model in Eqs. (1)-(8), the above
model has a state vector of dimension 30. The reduced
representation of the translational motion states using the
relative motion states only does not impair the generality
of the dynamic analysis that will follow. Indeed, since the
contact force is an internal force, the missing states, that is
the mass barycenter position and velocity, are determined
from the initial conditions.

Design Model

A design model is developed below by using a simpler
contact dynamics model and by linearizing the state-space
equations around nominal pre-contact values under the
assumptions of small linear and angular displacements.
Earlier efforts on modeling the contact dynamics have made
the spring-dashpot system a widely used model because of its
linearity17. In the present section, a spring-dashpot contact
force model is considered for the linearization of the state-
space model.

Simpler contact dynamics model

Assumption-6: The normal force is modeled in accordance
with a spring-dashpot model10,17,27, where the stiffness and
damping coefficients are scalar time-invariant parameters,
that is

fn = −kd− bḋ (68)

where k and b denote the stiffness and the damping
coefficients, respectively.

The penetration depth, penetration rate and other state
dependent variables are derived from the previous section

(see Appendix-A)

d = rTDNG n̂+ rT
CQ

DNC n̂− rT
TS

DNT n̂ (69)

ḋ = vTDNG n̂+ rT ḊNG n̂+ rT
CQ

ḊNC n̂− rT
TS

ḊNT n̂ (70)

where
DNC = DGCD

T
GD
N
T (71)

ḊNT = ω×
N
DNT (72)

ḊNG = DTG [ωT
+ ω

N
]×DNT (73)

ḊNC = −ω×
C
DNC +DGCD

T
G [ωT

+ ω
N
]×DNT (74)

ω
N
=
{
φ̇, 0, 0

}T

(75)

φ̇ =
[ŷT

T + ẑTT tanφ]ṙ
SQ

[ŷT
T tanφ− ẑTT ]rSQ

(76)

where φ, r
SQ

and ṙ
SQ

are obtained from Eqs. (56)-(58).
The Chaser-Target dynamics in Eqs. (44)-(58) along with the
spring-dashpot contact dynamics in Eqs. (68)-(76) constitute
the spacecraft system dynamics model.

Assumption-7: The nozzle surface is frictionless

Assumption-7 simplifies the model by eliminating the
nonlinearity present in the system due to Coulomb friction
model. The contact force is therefore rewritten from Eq. (51)
as

f = fn(t− h)n̂∗T (77)

Linearization

The envisioned scenario consists of the Chaser having
reached a zero relative attitude rate with respect to the Target
and moving towards it at a very small speed with the probe
aligned along the −x-axis of the Target and with identical
z-axes in the Chaser and Target frames. For simplicity, the
Target and inertial frames are assumed to coincide prior to
contact.

Nominal state: Let the nominal state be such that the
Chaser and Target bodies are at rest, and the Chaser position
is r◦ with respect to the Target. The attitude of the Target
frame T at the nominal state is assumed to be along the
inertial frame G, and that of the Chaser frame C is such that
zC -axis is along zG -axis and xC -axis is opposite to xG -axis

r∗ = r◦ (78)

v∗ = 0 (79)

DG∗C =



−1 0 0

0 −1 0

0 0 1


 = I1 (80)
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DG∗T =



1 0 0

0 1 0

0 0 1


 = I (81)

ω∗
C
= 0 (82)

ω∗
T
= 0 (83)

It is to be noted that the penetration depth at the nominal state
depends on the choice of r◦. Considering the penetration
depth at the nominal state to be zero, it follows from Eq.
(32)

d∗ = r∗T
SQ

DN∗T n̂ = n̂∗TT r∗
SQ

= 0 (84)

where
n̂∗T = DN∗T n̂ (85)

is the local normal unit vector at the nominal state expressed
in the Target frame. Let the nominal state vector r∗

SQ
be

denoted by p∗, then using Eq. (31) yields

p∗ = DG∗T [r◦ +DC∗G r
CQ

]− r
TS

= r◦ + I1rCQ
− r

TS
(86)

where DG∗T and DC∗G are substituted from Eqs. (81) and (80),
respectively. Rewriting the penetration depth and azimuthal
angle at the nominal state in terms of p∗

d∗ = n̂∗TT p∗ = 0 (87)

tanφ∗ = − ŷT
T p
∗

ẑTT p
∗ (88)

where Eq. (88) is a direct result of Eq. (30) at the nominal
state. The direction cosine matrix from the Nozzle frame to
the Target frame at the nominal state

DN∗T =




cos θ 0 − sin θ

− sin θ sinφ∗ cosφ∗ − cos θ sinφ∗

sin θ cosφ∗ sinφ∗ cos θ cosφ∗


 (89)

can be found by substituting the resulting φ∗ from Eq. (88).

Assumption-8: The perturbations in the state are small with
respect to the nominal state.

Small perturbations: Let the small perturbations in the
system at the above assumed nominal states be denoted by
δr, δv, δγ

C
, δγ

T
, δω

C
and δω

T
for the relative position,

the relative velocity, the Chaser and Target attitudes, and
the Chaser and Target angular velocities, respectively. The

Chaser and Target attitudes are defined as

δγ
C
=





δφ
C

δθ
C

δψ
C





; δγ
T
=





δφ
T

δθ
T

δψ
T





(90)

where δφ, δθ and δψ denote the angular perturbations about
the x, y and z axes, respectively. Therefore, the angular
kinematic equations in (46) and (47) reduce to

δγ̇
C
= δω

C
; δγ̇

T
= δω

T
(91)

Perturbations in the direction cosine matrices can be written
as

δDGC =




0 −δψ
C
−δθ

C

δψ
C

0 δφ
C

−δθ
C

δφ
C

0


 = −δγ×

C
I1 (92)

δDGT =




0 δψ
T
−δθ

T

−δψ
T

0 δφ
T

δθ
T

−δφ
T

0


 = −δγ×

T
(93)

where the superscript × denotes the cross product operator
as provided in Eq. (10). The perturbations in r

SQ
and ṙ

SQ

are found using Eqs. (31)

δr
SQ

= DG∗T [δr+ δDCGrCQ
] + δDGT [r◦ +DC∗G r

CQ
]

= δr+P
C
δγ

C
+P

T
δγ

T
(94)

δṙ
SQ

= δv +P
C
δω

C
+P

T
δω

T
(95)

where

P
C
= −I1r×CQ

; P
T
= [r◦ + I1rCQ

]× (96)

The perturbation in angle φ is found from Eqs. (30) as

δφ =
[ŷT

T + ẑTT tanφ∗]δr
SQ

[ŷT
T tanφ∗ − ẑTT ]r

∗
SQ

=
−p∗T x̂×T

p∗T [I− x̂T x̂
T
T ]p
∗ δrSQ

(97)

It can be observed from Fig. (3) that

p∗T x̂×T = ||p∗|| sin θ t̂∗TT (98)

p∗T x̂T = ||p∗|| cos θ (99)

where t̂∗T = DN∗T t̂ is the tangential unit vector at the contact
point at nominal state expressed in Target frame. Substituting
from Eqs. (98) and (99) in Eq. (97) yields

δφ = p∗t̂∗TT δr
SQ

(100)
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where
p∗ =

−1
||p∗|| sin θ (101)

The perturbations in DNT about the nominal state can be
found from Eq. (11) as

δDNT = δφ




0 0 0

− sin θ cosφ∗ − sinφ∗ − cos θ cosφ∗

− sin θ sinφ∗ cosφ∗ − cos θ sinφ∗




= δφx×T D
N∗
T (102)

The right hand side of Eq. (102) clearly expresses that the
perturbation in the attitude of the Nozzle frame with respect
to the Target frame is a rotation of the Nozzle frame by
a small angle δφ about the axis xT . Using Eq. (32), the
perturbation in the penetration depth is found as

δd = p∗T δn̂T + n̂∗TT δr
SQ

= p∗T δDNT n̂+ n̂∗TT δr
SQ

(103)

and substituting δDNT from Eq. (102) in Eq. (103) gives

δd = δφp∗Tx×T n̂
∗
T + n̂∗TT δr

SQ

= n̂∗TT δr
SQ

(104)

Equation (104) follows from the choice of the Nozzle frame,
that the unit vectors p∗, xT and n̂∗T are coplanar, and hence
the box product p∗Tx×T n̂

∗
T = 0 . The penetration rate is

written similarly as

δḋ = n̂∗TT δṙ
SQ

(105)

Full order Design model: On substituting Eqs. (94)-(77)
in the nonlinear model, the linearized equations of motion
results in

δṙ = δv (106)

δγ̇
C
= δω

C
(107)

δγ̇
T
= δω

T
(108)

δv̇ =
fn(t− h)

mr
n̂∗T (109)

δω̇
C
= fn(t− h)J−1C

PT
C
n̂∗T (110)

δω̇
T
= fn(t− h)J−1T

(PT
T
+ r×

TS
)n̂∗T (111)

where
fn = −k δd− b δḋ (112)

δd = n̂∗TT δr
SQ

(113)

δḋ = n̂∗TT δṙ
SQ

(114)

δr
SQ

= δr+P
C
δγ

C
+P

T
δγ

T
(115)

δṙ
SQ

= δv +P
C
δω

C
+P

T
δω

T
(116)

where Eq. (112) takes into account the nominal state d∗ = 0

as provided in Eq. (84). The constant matrices P
C

and P
T

are provided in Eq. (96).

The assumption of small perturbations in the attitude
of the system led to consider a three parameter attitude
representation, namely δφ, δθ and δψ about x, y and z axes,
respectively for each Chaser and Target body. The linearized
system model given by Eqs. (106)-(111), thus, resulted in
a system of order 18. However, a redundancy can still be
noticed in the full order model.

Reduced order Design model: A reduced order model
allows an in-depth analysis of a system and lowers the
computational effort of the simulation. As for the problem at
hand, it will be shown at the end of the section that a reduced
order model leads to a simplified system to proceed with the
stability analysis.

It is observed from the state equations in Eqs. (109)-(114)
that the perturbation vector δr

SQ
readily defines a set of state

variables. In the rest of the section, the focus is made on
the contact point dynamics, since a stability of the former
corresponds to the stability in the spacecraft dynamics (see
Appendix-B). The dynamics of the contact point follows
from Eqs. (109)-(116)

δr̈
SQ

(t) = −Bδṙ
SQ

(t− h)−Kδr
SQ

(t− h) (117)

where
B = bMn̂∗T n̂

∗T
T (118)

K = kMn̂∗T n̂
∗T
T (119)

M =
I

mr
+P

C
J−1

C
PT

C
+P

T
J−1

T
(PT

T
+ r×

TS
) (120)

On comparing the system described by Eqs. (106)-(116) and
Eq. (117), it can be stated that the number of state variables
has been reduced from 18 to 6.

Penetration depth dynamics: The penetration depth at
point Q is along the normal to the nozzle surface, given by
Eq. (113). Differentiating Eq. (113) twice yields

δd̈ = n̂∗TT δr̈
SQ

(121)

and substituting from Eq. (117) leads to

δd̈ = −n̂∗TT Bδṙ
SQ

(t− h)− n̂∗TT Kδr
SQ

(t− h) (122)
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It can be noticed from Eqs. (118) and (119)

n̂∗TT B = bdn̂
∗T
T

n̂∗TT K = kdn̂
∗T
T

(123)

where
bd = bn̂∗TT Mn̂∗T (124)

kd = kn̂∗TT Mn̂∗T (125)

Therefore, it follows from Eqs. (113), (114), (122) and (123)

δd̈ = −bd δḋ(t− h)− kd δd(t− h) (126)

Contact point dynamics: Along with the direction normal
to the nozzle surface n̂, the radial direction m̂ and tangential
direction t̂ constitute the Nozzle frame, such that

m̂ = xN

t̂ = yN

(127)

In this section the radial and tangential motion of point Q is
considered along the surface of the nozzle.

Dynamics along the radial direction

The radial component of position of point Q on the nozzle
surface can be written as

m = m̂T
T rSQ

(128)

where, m̂T = DNT m̂. A small perturbation in the radial
position can be written as

δm = m̂∗TT δr
SQ

+ r∗T
SQ
δDNT m̂ (129)

where

m̂∗T = DN∗T m̂ =





cos θ

− sin θ sinφ∗

sin θ cosφ∗





(130)

On substituting Eq. (102) in Eq. (129)

δm = m̂∗TT δr
SQ

+ δφp∗Tx×T m̂
∗
T

= m̂∗TT δr
SQ

(131)

Equation (131) follows from the observation that
p∗Tx×T m̂

∗
T = 0, as p∗ is along m̂∗T . Differentiating Eq.

(131) twice and substituting δr̈
SQ

, δṙ
SQ

and δr
SQ

from Eqs.
(117), (113) and (114), respectively, yields

δm̈ = −bm δḋ(t− h)− km δd(t− h) (132)

where
bm = bm̂∗TT Mn̂∗T (133)

km = km̂∗TT Mn̂∗T (134)

Dynamics along the tangential direction

The tangential component of the position vector of point
Q is characterized by the angle δφ given in Eq. (100) as

δφ = p∗t̂∗TT δr
SQ

(135)

Similarly, differentiating Eq. (135) twice and substituting
δr̈

SQ
, δṙ

SQ
and δr

SQ
from Eqs. (117), (113) and (114),

respectively, gives

δφ̈ = −bt δḋ(t− h)− kt δd(t− h) (136)

where
bt = bp∗t̂∗TT Mn̂∗T (137)

kt = kp∗t̂∗TT Mn̂∗T (138)

Summary: It can be observed from Eqs. (113), (131) and
(135) that the perturbations along the normal, the radial and
the tangential directions are linear combinations of the vector
δr

SQ
, such that





δm

δφ

δd





=



m̂∗TT

p∗t̂∗TT

n̂∗TT


 δrSQ

(139)

where m̂∗T , t̂∗T and n̂∗T are the columns of the matrix DN∗T .
The differential equations along the three directions are
summarized as

δd̈ = −bd δḋ(t− h)− kd δd(t− h) (140)

δm̈ = −bm δḋ(t− h)− km δd(t− h) (141)

δφ̈ = −bt δḋ(t− h)− kt δd(t− h) (142)

where bd, kd, bm, km, bt and kt are given by Eqs. (124),
(125), (133), (134), (137) and (138), respectively. It can
be noticed from Eqs. (140)-(142) that the dynamics of the
contact point normal to the nozzle surface is decoupled from
that along the radial and tangential directions. A perturbation
along the normal direction leads to a subsequent motion of
the contact point along the radial and tangential directions,
moreover, a stability in the motion along the normal direction
implies a stability in the radial and tangential directions.
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Stability Analysis

Pole placement method

The differential equations (140)-(142) are transformed to the
Laplace domain as

s2x(s) + sBxx(s) +Kxx(s) = 0 (143)

where x(s) = {δd, δm, δφ}T is the reduced state in

Laplace domain, and Bx = e−sh
[

bd 0 0
bm 0 0
bt 0 0

]
and Kx =

e−sh
[

kd 0 0
km 0 0
kt 0 0

]
are the damping and stiffness matrices,

respectively. The characteristic equation results from Eq.
(143) as follows

s4
(
s2 + e−shbds+ e−shkd

)
= 0 (144)

The 6th order characteristic equation shows that the modes
of the system are associated with the dynamics of the contact
point along the normal direction. In the remaining section,
only the dynamics of the penetration depth is considered,
which is responsible for the stability of the system. Before
proceeding to the validation of the stability analysis, a few
simplifying assumptions are made on the geometry of the
Chaser and Target bodies with no loss of generality.

Assumption-9: The center of mass of the Target coincides
with the origin of the Nozzle frame. The probe is along
the x-axis of the Chaser body. The axes of the Chaser and
Target frames coincide with the principal axes of inertia of
the Chaser and Target rigid bodies, respectively.

As a result

r
TS

= 0; r
CQ

= {l0, 0, 0}T (145)

where l0 is the length of the probe. Let the moment of inertia
of Chaser and Target bodies be

J
C
=



J

Cx
0 0

0 J
Cy

0

0 0 J
Cz


;JT

=



J

Tx
0 0

0 J
Ty

0

0 0 J
Tz


 (146)

where J
Cx

, J
Cy

, J
Cz

, J
Tx

, J
Ty

and J
Tz

are the principal
components of moment of inertia of Chaser and Target,
respectively. Using these simplifications, bd and kd from Eqs.
(124) and (125) result in

bd =
b

m†
(147)

kd =
k

m†
(148)

1

m†
=

1

mr
+ cos2 φ∗

(
l20 cos

2 θ

J
Cy

+
m∗2

J
Ty

)

+ sin2 φ∗
(
l20 cos

2 θ

J
Cz

+
m∗2

J
Tz

)
(149)

where φ∗ and m∗ denote the nominal azimuthal angle of
the point of contact and the nominal distance SQ. Equations
(147)-(149) encompasses the 2D modeling result by Zebenay
et al.28. The latter is retrieved from Eqs. (147)-(149) by
assuming the motion confined to the common xz-plane of
the Chaser and Target (φ∗ = 0), and the Target inertially
fixed (J

Ty
→∞). It is evident from Eqs. (147)-(149) that the

effective damping, bd and the effective stiffness, kd increase
as the point of contact moves closer to the nozzle tip. Further,
bd and kd also increase with an increase in the probe length
and a decrease in the semi-cone angle of the nozzle.

In order to determine the stability region in presence of
the delay h, the roots of the characteristic equation in Eq.
(144) must lie on the left half complex plane. The stability
analysis follows the pole placement method for linear time-
delay systems of the second order as described in Marshall
et al. (1992)29. Let h and ω denote the delay value and the
value of the first crossing frequency of the poles into the right
half complex plane, then the following relations hold

ω =

√
b2d
2

+

√
b4d
4

+ k2d (150)

h =
1

ω
tan−1

(
ωbd
kd

)
(151)

Equations (150) and (151) give the variation of the effective
damping, bd, and the effective stiffness, kd, with respect
to the time delay, h, such that the system in Eq. (143) is
marginally stable (has poles with zero real part).

Numerical example

The stability regions are determined using pole placement
method as an example case for a typical Chaser and Target
body interacting at one point of contact. The impact of
variations in the cone and probe geometry is illustrated under
the assumptions of invariant mass and moment of inertia,
here mr = 1500 kg, J

Cx
= J

Cy
= 500 kg m2 and J

Tx
=

J
Ty

= 500 kg m2.
Figures (7)-(9) show the stability regions in the damping-

delay and stiffness-delay planes for various values of the
length probe, l0, the nozzle semi-cone angle, θ, and the
distance from the nozzle tip to the contact point, m∗.
Any point lying in the region to the left of a given plot
line describes a stable system. The stability region results
are helpful in the analysis and design of the stiffness and
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Figure 7. Stability region of stiffness and damping with respect to time-delay for varying probe length ((a) k = 1000 N/m, (b)
b = 200 Ns/m, θ = 30◦ and m∗ = 0.5 m)
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Figure 8. Stability region of stiffness and damping with respect to time-delay for varying semi-cone angle ((a) k = 1000 N/m, (b)
b = 200 Ns/m, l0 = 1 m and m∗ = 0.5 m)
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Figure 9. Stability region of stiffness and damping with respect to time-delay for varying distance of contact point from nozzle tip
((a) k = 1000 N/m, (b) b = 200 Ns/m, l0 = 1 m and θ = 30◦)

damping values of the nozzle/probe compliance system that
guarantee stability. It is evident from the figures that beyond a
certain time delay, the system is unstable for a given cone and
probe geometry, irrespective of the compliance parameters.
For a relatively smaller value of the time delay, the system is
stable for a range of values of the compliance parameters, as
illustrated in the plots. A shorter probe length, shorter contact
point distance and larger cone angle broadens the range of
values of compliance parameters for stability. If the cone
and probe geometry are altered, the stability region shifts
accordingly, hence can be used to accommodate the unstable
set of compliance parameters into the stability region.

Numerical Validation

Verification

The nonlinear and linear contact force models provided in
Eqs. (59) and (68) respectively are simulated for nonlinear
Chaser-Target dynamics in a typical RvD scenario, as
provided in Table (1). A constant time delay of 0.016 s
and a nozzle semi-cone angle of θ = 30◦ are assumed for
the purpose of simulation. The initial conditions for the
simulation are assumed such that the Chaser and Target have
z-axes in the same direction and x-axes in the opposite
direction as given in Table (3). The Chaser is moving with
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a relative velocity in x and y directions relative to the Target
at t = 0.

Inertial Parameters Geometric Parameters

mr 1500 kg rTS {1, 0, 0}T m
JC diag(500, 500, 500) kgm2 rCQ {2, 0, 0}T m
JT diag(500, 500, 500) kgm2 θ 30◦

Table 1. Inertial and geometric parameters for Chaser and
Target

Compliance device model parameters

ki 1000 N/m (each)
µ 0.1
l0 1 m
N 4
a 0.8

rRS1
{0, 0, 0}T m

rRS2
{0.2, 0, 0.2}T m

rRS3
{0.2, 0.2 cos 30◦,−0.2 sin 30◦}T m

rRS4
{0.2,−0.2 cos 30◦,−0.2 sin 30◦}T m

Spring dashpot model parameters

k 1000 N/m
b 200 Ns/m
µ 0

Table 2. Geometric and stiffness properties of compliance
device model and spring dashpot model

A particular compliance device model is assumed such
that it consists of four springs (N = 4) of identical stiffness
as provided in Table (2). The springs are attached to the
probe at point P and to the Chaser at points R, S2, S3

and S4 as given in the table. The points S2, S3 and S4

form an equilateral triangle considering a symmetry in
the compliance device geometry. For comparison a spring-
dashpot model is assumed with parameters provided in Table
(2).

r(0) {3.533, 0, 0.25}T m
v(0) {−0.02, 0.005, 0}T m/s

DGC (0)

−1 0 0
0 −1 0
0 0 1


DGT (0)

1 0 0
0 1 0
0 0 1


ωC (0) {0, 0, 0}T rad/s
ωT (0) {0, 0, 0}T rad/s

Table 3. Initial conditions for simulation

The three dimensional plots of the probe trajectory inside
the nozzle are shown in Fig. (10). Each plot correspond to
a contact force dynamics model. The probe tip undergoes
contact with the nozzle surface at multiple points, the
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Figure 10. Trajectory of probe tip for two different contact force
models
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Figure 11. Trajectory of probe tip for compliance device model
with a variation in the coefficient of friction

first three of which are marked with Q1, Q2 and Q3 in
chronological order. It can be observed from Fig. (10) that
the probe tip in the case of a compliance device model
undergoes more angular deviations in the trajectory as
compared to other models.

Figures (11) and (12) show the trajectory of the probe tip
in the yz and xz plane of the Target frame, respectively, as
the coefficient of friction and compliance stiffness varies, for
the compliance device model. The shift in the contact point
Q2 is obvious due to the increase in the friction coefficient.
A higher value of coefficient of coefficient of friction, µ,
causes an increase in the reaction force and thus in the radial
force, which is observed in Fig. (11). Similarly, the shift in
the contact point Q2 in the x direction of the Target frame in
Fig. (12) is due to an increase in the compliance stiffness.
The effect of variation in compliance device parameters
for the Truth model is therefore verified by the numerical
simulations.

Validation

The stability analysis of the linearized system model in the
previous section provides a set of values of the parameters
responsible for stability. The stability region results of the
linearized model will be validated for the nonlinear model
with spring-dashpot contact model. As it is known that
the instability associated with time delays in the closed
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Figure 12. Trajectory of probe tip for the compliance device
model with a variation in stiffness

loop is caused by an increase in energy of the system22,
the kinetic energy of the system is employed to quantify
the stability. The use of kinetic energy is justified as it is
related with the coefficient of restitution. As opposed to
the potential energy of the spring-dashpot, which depends
mainly on the modeling assumptions, the kinetic energy is
directly computed from the state of the system and the force
measurements.

For the case of the spring dashpot contact force model, the
kinetic energy follows from the Chaser and Target dynamics
given in Eqs. (5)-(8) as

E(t) =

∫ t

0

(
vT

C
f − vT

T
f

+ωT
C
r×
CQ

DGC f − ωT
T
r×
TQ

DGT f
)

dt (152)

Note that the kinetic energy expression in Eq. (152)
represents the increase of kinetic energy with respect to the
initial motion at t = 0. Based on the kinetic energy, the
system is passive, lossless and active when E < 0, E = 0

and E > 0, respectively, after the impact30.
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Figure 13. Kinetic energy for the two cases in comparison with
the zero-delay case

There are two test cases considered emerging from the
stability region shown in Figs. (7)-(9). Stiffness and damping
parameters of 1000 N/m and 200 Ns/m, respectively, yield
a stable system when the delay is 0.016 s, but an unstable

one when it is 0.2 s. In both the cases the other parameters,
namely θ = 30◦, l0 = 1 m and m∗ = 0.5 m, are kept
identical. The kinetic energy for the nonlinear system during
the first contact is shown in Fig. (13) for the two cases.

The solid line and the dotted line in Fig. (13) show
the kinetic energy for an ideal simulation case of elastic
impact (b = 0 Ns/m) and a damped impact (b = 200 Ns/m),
respectively. The dip in the curves during the contact is due
to the transfer of the kinetic energy to the potential energy in
the springs and the dissipated energy via the dampers of the
system. It can be observed that, for the ideal simulation of the
damped impact in dotted line, the system experienced energy
dissipation due to damping. The case of damped impact with
a 0.016 s delay in dashed line shows a negative energy after
the impact, therefore the nonlinear system is stable. In the
case of a 0.2 s delay, shown in dot-dashed line, there is an
added energy to the system, leading to a positive energy after
the impact, therefore the nonlinear system is unstable. This
validates the linearized stability analysis of the nonlinear
model.
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Figure 14. Kinetic energy increment for the two cases with
respect to the zero-delay case

A comparison of the two cases with respect to the ideal
simulation of damped impact (h = 0 s, b = 200 Ns/m) is
shown in Fig. (14). It can be observed that for the case of
a 0.2 s delay, the system has gained an additional 7× 10−3

Nm energy with respect to the ideal case due to the time
delay in the loop. A time delay of 0.016 s led to an energy
dissipation of 8× 10−4 with respect to the ideal simulation,
which although guarantees the stability of contact, but does
not reflect the contact dynamics of ideal simulation.

Conclusion

The present work has addressed the problem of instability
in contact during Rendezvous and Docking simulations in
the presence of a time delay in the system. The modeling
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of a two body system, namely, Chaser and Target is carried
out in three dimensions. A nonlinear contact force model is
presented based on a generic compliance device mounted on
the Chaser body, and the resulting contact force is shown to
be a function of the system states. A surface friction force at
the contact point in accordance with the Coulomb friction
model is also considered. The trajectory of the contact
point is simulated and compared with the traditional spring-
dashpot contact force model. The effects of variation in the
surface friction and stiffness are also numerically studied.

The Chaser and Target system is linearized considering a
spring-dashpot model and a reduced set of states, namely
penetration depth, azimuthal angle and distance of the
contact point from the tip on the nozzle surface are
derived. Further, the stability region in terms of the stiffness,
damping, and delay parameters is derived for a varying probe
and cone geometry. The numerical validation via energy
considerations shows that the linearized analysis gives a
satisfying prediction of the nonlinear system stability.
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Appendix-A

The penetration rate can be written from Eq. (42) as

ḋ = vTDNG n̂+ rT ḊNG n̂+ rT
CQ

ḊNC n̂− rT
TS

ḊNT n̂ (153)

In order to find the penetration rate, the time derivative of
Nozzle frame attitude with respect to inertial, Chaser and
Target frames, ḊNG , ḊNC and ḊNT , respectively. In the present

model, the Nozzle frame is known to be rotating with angular
velocity φ̇ with respect to the Target frame about xT -axis

ḊNT = ω×
N
DNT (154)

where, ω
N
= {φ̇, 0, 0}T . The time derivative of azimuthal

angle can be found from Eq. (30) as

φ̇ =
[ŷT

T + ẑTT tanφ]ṙ
SQ

[ŷT
T tanφ− ẑTT ]rSQ

(155)

The time derivative of Nozzle frame attitude with respect to
Chaser and Target frames can be written using Eqs. (52) and
(65) as

ḊNG = ḊTGD
N
T +DTG Ḋ

N
T

= DTG [ωT
+ ω

N
]×DNT (156)

ḊNC = ḊGCD
N
G +DGC Ḋ

N
G

= −ω×
C
DNC +DGCD

T
G [ωT

+ ω
N
]×DNT (157)

Appendix-B

The dynamics of the Chaser-Target system can be expressed
in terms of δr

SQ
by substituting δd and δḋ from Eqs. (113)

and (114) into Eq. (112), and fn from Eq. (112) into Eqs.
(109)-(111) as follows

δv̇ = − n̂∗T n̂
∗T
T

mr

[
bδṙ

SQ
(t− h)

+kδr
SQ

(t− h)
]

(158)

δω̇
C
= −J−1

C
PT

C
n̂∗T n̂

∗T
T

[
bδṙ

SQ
(t− h)

+kδr
SQ

(t− h)
]

(159)

δω̇
T
= −J−1

T
(PT

T
+ r×

TS
)n̂∗T n̂

∗T
T

[
bδṙ

SQ
(t− h)

+kδr
SQ

(t− h)
]

(160)

Using Eq. (116), the dynamics of δr
SQ

can be written as

δr̈
SQ

= δv̇ +P
C
δω̇

C
+P

T
δω̇

T
(161)

Substituting the dynamic equations of the Chaser-Target
from Eqs. (158)-(160) gives

δr̈
SQ

(t) = −Bδṙ
SQ

(t− h)−Kδr
SQ

(t− h) (162)

for some constant matrices B and K. It can be noticed that
spacecraft system dynamics in Eqs. (158)-(160) is a linear
combination of the states of system described by Eq. (162).
Therefore, the stability of the system in Eq. (162) implies the
stability of the spacecraft system.
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