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Abstract: The oxidation of a three-component surrogate jet fuel (consisting of n-dodecane 66.2%, 

n-propylbenzene 15.8% and 1,3,5-trimethylcyclohexane 18.0%, in mol) was studied experimentally 

and numerically within a wide range of temperature, fuel equivalence ratio, and pressure. Three 

different experimental set-ups were exploited, here a jet stirred reactor (JSR), a shock tube, and a 

laminar burner referring to measured data of species profiles (φ = 2.0, T = 575 – 1100 K, p = 1 bar), 

ignition delay times (φ = 1.0, p = 16 atm, T = 700 – 1500 K), and burning velocities (T= 473 K, p = 

1atm, φ = 0.6-2.0). Based on the experimental measurements, an updated detailed chemical-kinetic 

mechanism involving 401 species and 2838 reactions was developed, for a more detailed 

understanding of the oxidation and combustion of the surrogate fuel. In addition, quantum chemical 

methods have been applied for the determination of important initiation reactions by using the 

Gaussian and ChemRate software. In general, the predictions obtained with the mechanism 

developed in this work show a reasonable, often good agreement with respect to the measured mol 

fraction profiles (JSR), ignition delay time data (shock tube), and burning velocities data (flame). A 

negative temperature coefficient (NTC) behavior was observed in the JSR and shock tube 

experiments, due to the long-chain alkanes, here n-dodecane. The NTC effect was successfully 

predicted by the reaction model, with the predictions matching the measurements well. From the JSR 

experiments, 1-octene, 2-propenylbenzene, and propene were detected by GC and GC-MS as major 

intermediates within the oxidation of the surrogate. According to rate-of-production analysis 
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performed at 675 K and 900 K, 1,3,5-trimethylcyclohexane (T135MCH) was found to be mainly 

consumed through H-abstraction reactions and forming C9H17 radicals, which mostly isomerize to 

iso-alkane radicals and further on, decompose to light hydrocarbons. According to the comparison of 

predicted data on ignition (shock tube) and burning velocity (flame) with experimental ones, the 

selected surrogate fuel is considered to be able to reproduce the combustion behavior of a typical 

crude-oil stemming jet fuel. The surrogate fuel mechanism as well as the experimental data will be of 

significant impact on the use in the further work of the combustion of a jet fuel and of other synthetic 

aviation fuels as well. 
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1. Introduction 

Aviation industry experienced a rapid growth in both civilian and military area in the past 

decades. The aviation fuels, as the energy source of aircrafts, have been studied with respect to high 

efficiency and low pollutant emissions, especially in the combustion field. Several studies indicated 

that alkanes, both n- and iso-alkanes, cycloalkanes, and aromatics are the major components of the 

aviation fuels certified [1-5]. For example, the analysis of Chinese No. 3 (RP-3) aviation kerosene 

using gas chromatography-mass spectrometer (GC-MS) by Zheng et al. [6] yielded 53.0% alkanes, 

37.7% cycloalkanes, 4.6% aromatics (percentage in mass), and other minor species. Also, the 

composition of a typical Jet-A fuel was analyzed by the same method yielding to paraffins (60.0%), 

cycloalkanes (20.0%), aromatics (18.0%), and olefins (2.0%) in vol% [1, 7]. As aviation fuels 

typically are mixtures of up to hundreds of different hydrocarbon species, a chemical kinetic reaction 

model involving all these components can hardly be constructed. Thus, the strategy of surrogate 

mixtures composed of only a few compounds has been used to make efficient modeling feasible 

[1-10]. 

In recent years, the oxidation of Jet A-1 as well as Jet A were studied by many researchers by 

using few-component surrogate fuels [2, 3, 5, 11-13], including flame studies, low-temperature 

oxidation, and high pressure combustion investigations. A few studies of RP-3 fuel were also 

reported including reduced combustion kinetic models [6, 14-20]. These studies were mostly 

focusing on high pressure experiments of jet and surrogate fuels, with scarce oxidation studies of 

surrogate fuels, especially with respect to the development of a detailed reaction mechanism of a 

specific surrogate jet fuel. As alkanes, mono- and poly-aromatics and cycloalkanes (also called 

naphthenes) are the three major compounds of jet fuels, the specific surrogate fuel as given by Xu et 

al. [20], 66.2% n-dodecane, 15.8% n-propylbenzene (NPB), and 18.0% 1,3,5-trimethylcyclohexane 



(T135MCH), was used in the present work to study its detailed combustion kinetics. Although 

originally developed as an RP-3 surrogate, this specific surrogate mimics the composition of a Jet A 

fuel since the three selected initial components cover n-alkanes (n-dodecane), aromatics (NPB), and 

branched cycloalkanes (T135MCH); moreover, several iso-alkanes will be generated by the 

isomerization of T135MCH during the combustion process. Furthermore, the composition of this 

surrogate is similar to the above mentioned Jet A fuel analysis. Its H/C ratio of 2.03 and mol weight 

of 148 g mol-1, respectively, match the corresponding values of Jet A-1 (1.91 and 153 g mol-1 [1]) as 

well as of RP-3 (2.05 and 150 g mol-1 [20]). Therefore, this surrogate is appropriate to represent a 

RP-3 and a Jet A-1 fuel. Hence, it is justified to use the surrogate within the experiments for 

comparison with Jet A-1 and the developed reaction mechanism of this surrogate should be suitable 

to predict the combustion behavior of Jet A-1 as well. 

Concerning about previous kinetic work of the specific components of the surrogate, almost no 

kinetic study on TMCH oxidation was reported, in contrast to n-dodecane and NPB, with many 

studies available. In the last years, n-dodecane pyrolysis and oxidation was studied in detail [21-27] 

with providing also information on a kinetic model; furthermore, a few theoretical studies [28-31] 

were also published. At the same time, NPB was widely investigated in low pressure flame [32], 

auto-ignition [33-35], pyrolysis [36], and oxidation [37, 38] experiments.  

These studies were mostly focusing on high pressure experiments of jet and surrogate fuels, 

with scarce oxidation studies of surrogate fuels, especially with respect to the development of a 

detailed reaction mechanism of a specific surrogate jet fuel. 

The present work aims to study the low-temperature oxidation as well as two fundamental 

combustion properties of a three-component surrogate jet fuel (66.2% n-dodecane, 15.8% NPB, and 

18.0% T135MCH by mol) by providing data on species profiles, ignition delay times, and laminar 



burning velocities within a relevant range of temperature, pressure, and fuel equivalence ratio. Based 

on the experimental measurements, a comprehensive reaction model was developed, with exploiting 

quantum chemical methods for the calculations of rate coefficient parameters of H-abstraction 

reactions of the surrogate components. Rate-of-production (ROP) and sensitivity analyses were 

performed to identify the major consumption channels of the surrogate. The detailed reaction 

mechanism with 401 species and 2838 reactions will improve the understanding of the combustion 

characteristics of the surrogate fuel; the reaction model developed within the present work is 

included within the Supplements.  

 

2. Experiments 

Mol fraction profiles 

The experiments were performed in a jet stirred reactor (JSR) used recently in our previous 

work [38-40] at ambient pressure (p = 1 atm) and temperatures ranging between 575 and 1100 K. 

The inlet concentration of the surrogate fuel was chosen to 0.5% (gas phase) diluted with argon, at a 

fuel equivalence ratio (φ) of 2.0. The equivalence ratio of 2.0 will favor the formation of aromatic 

species (a major soot precursor) considerably; thus, these species can be easier detected by GC and 

GC-MS; and the information on the intermediates pattern is of benefit for the validation and 

improvement of the mechanism. In contrast, the oxidation of any fuel at equivalence ratios of φ = 1.0 

and/or φ = 0.4 would generate less intermediates with less concentration and/or rapid generation and 

consumption. For these reasons, the experiments were decided to be performed under a very fuel-rich 

condition, at an equivalence ratio of φ = 2.0. A more detailed description could be found in the 

Supplemental Material. Mass flow controllers (MKS) allow to control the flow rates of O2 (4.1%, 

99.9999% purity by volume) and Ar (95.4%, 99.9999% purity by volume). The specific purity of the 



three components are: n-dodecane (98%, Aladdin), NPB (>99%, TCI, Japan), and T135MCH (>98%, 

TCI, Japan). The fuel itself was injected by a high-pressure infusion pump (FL2200, Zhejiang Fuli 

Analytical Instrument Co., Ltd., China) and vaporized at 473 K in a vaporization tank. All tubes were 

preheated to T = 503 K to avoid condensation. A K-type thermocouple located at the center of the 

sphere was used to measure the reaction temperature. Online GC and GC-MS (Agilent 7890B, 

America) were exploited to analyze 25 stable species in total, with CO, CO2, H2, alkanes, aromatics, 

and oxidized hydrocarbons among them. The composition of test gas mixture is shown in Table 1. 

The original experimental results and detailed information about the analyzing methods are available 

in Section 1 in the Supplemental Material (SM). 

 

Table 1 Composition of the fuel mixture as used within the low temperature oxidation of the 

surrogate in the JSR (mol%) 

φ N-dodecane T135MCH NPB O2 Ar 

2.0 0.331% 0.090% 0.079% 4.140% 95.360% 

Note: The total volume and mass flow rate of surrogate fuel are 1000.00 sccm and 0.047 ml min-1, 

respectively. 

 

Ignition delay time 

Ignition delay times were measured in a high pressure shock tube (46 mm internal diameter), 

with a 10 m driver section and a 3.25 m driven section, at pressures behind reflected shock waves of 

about  p = 16 bar and for stoichiometric fuel air mixtures. Since the experimental approach has been 

already discussed in detail in previous studies (e.g. [2, 41, 42]) only a short description is given here. 

The driven section was electrically heated to T = 433 K, the driver section to T = 393 K. He-Ar 

mixtures were used as driver gas to achieve tailored interface conditions [43]. Test gas mixtures were 

prepared for each experiment by injecting the liquid fuel with a syringe onto fibers permanently 



purged by hot nitrogen which evaporated and transported the fuel into an evacuated mixing vessel. 

Preheated nitrogen and synthetic air were added thereafter to adjust the specific φ-value, here, φ = 

1.0, and the selected dilution, respectively, here 1:2 in nitrogen. The incident shock speed was 

measured over three 30 mm intervals using four piezo-electric pressure transducers. The initial 

temperature and pressure behind the reflected shock wave were computed from the measured 

incident shock speed and the attenuation using a one-dimensional shock model [44]. 

 

Laminar burning velocity 

Values of the laminar burning velocity (Su) were determined within a wide φ-range at a preheat 

temperature of T = 473 K at pressures of p = 1 bar by applying the cone angle method. According to 

Eq. (1): 

Su = vu · sinα           (Eq. 1) 

Su–values are calculated from the cone angle (α) of the flame and the gas velocity (vu) of the 

unburned fuel-air mixture [45, 46]. The preheat temperature of 473 K was chosen as set temperature 

for the measurement to ensure vaporization and to avoid both condensation and autoignition of the 

vaporized fuel in the test rig. This is in particular needed for a complex multi-component mixture 

typical for a jet fuel, having also a broad boiling range. 

 



 

Fig. 1 Experimental set-up for the measurements of the laminar burning velocity (MFC – mass flow 

controller, TB – boiling temperature) 

 

For the determination of the cone angle, premixed conical-shaped flames have been stabilized 

above a flame holder by the use of a coflow, either air for rich flames (φ ≥ 1.0) or a mixture of 5% 

CH4 + 5% H2 + 90% N2 for lean flames (φ ≤ 1.0). A scheme of the experimental set-up is shown in 

Fig. 1. For the preparation of the fuel-air mixture, the fuel was first vaporized at temperatures at 

about 523 K, then mixed with a preheated N2-stream (Linde, 99.999%), and adjusted to the setting 

temperature of T = 473 K. In a second homogenizing step, molecular oxygen (Linde, 99.95%) was 

added according to the ratio in air (N2:O2 = 0.79:0.21). The cone angle detection was performed by 

recording pictures with a CCD-camera (Imager Intense, LaVision). The used burner set-up has been 

described in previous studies, e.g. [42, 47], where more details of the experiment are given. 

 

3. Modeling 

The PSR code and the adapted SENKIN code of the CHEMKIN-II software package were used 

to simulate the JSR data and ignition delay times [44], respectively. In the present work, the ignition 



delay time is defined as the time between the initiation of the reactive system by the reflected shock 

wave and the occurrence of the CH*-maximum, with the same definition used for the calculations, 

too. Simulations of the laminar burning velocities were performed with the open-source software 

Cantera [48] using the free flame model and by considering the multi-component diffusion model 

and thermo-diffusion. The used transport data were based on the Chemkin Transport Database [49]. 

Mesh points were refined to achieve equal solution tolerance leading to about 120 mesh points. 

The low-temperature reaction mechanism as used in the present work is based on our recent 

mechanism which has been developed for describing the oxidation behavior of NPB [38]. The sub 

model of n-dodecane oxidation was employed from Banerjee’s model [21]. This one leads to a better 

agreement with measured species profiles compared to predictions using the very comprehensive sub 

model of n-dodecane as presented by Mzé-Ahmed et al. [25]. Comparison results are given 

exemplarily for n-dodecane, T135MCH, NPB, CO, CO2, and H2 in the Supplemental Material. The 

sub model of T135MCH was constructed based on the reaction model of methylcyclohexane (MCH) 

as given by Wang et al. [50]). The low temperature mechanism was also considered and estimated by 

refering to the low temperature mechanisms of cyclohexane and ethylcyclohexane as reported by 

Mzé-Ahmed et al. [25] and Ning et al. [51], respectively. The rate coefficients of three H-abstraction 

reactions of T135MCH were updated: First, the structure and the energy of the transient states were 

calculated by exploiting the Gaussian 16 software [52] at the CBS-QB3 level [53]; then, the rate 

constants were updated based on the results as calculated applying the ChemRate software [54]. The 

calculated results are shown in Figure S1 (see Section 3 of the SM). The reactions of the T135MCH 

subset, in total 109 reactions with 30 species involved, are collected in Table S2 (see SM). 

The coupled reactions between the three surrogate components, with 39 reactions involved, 

were elaborated within the present work. Six radical isomers of n-dodecane, namely PXC12H25, 



SXC12H25, S2XC12H25, S3XC12H25, S4XC12H25, and S5XC12H25, three radical isomers of NPB, 

namely A1CH2CH2CH2, A1CH2CHCH3, and A1CHCH2CH3, as well as three radical isomers of 

T135MCH, namely PXCH2D35MCH, TXT135MCH, and SXD35MCH, were integrated into the 

coupled reaction network mechanism. The thermochemical data of the species involved in the 

reactions of the T135MCH subset were calculated by using THERGAS [55]. These species as well as 

their corresponding structures and thermochemical data are listed in Table S3 in Section 4 of the SM. 

The complete reaction mechanism composed of 401 species and 2838 reactions as well as the 

thermochemical and transport data are available within SM. 

 

4. Results and discussion 

4.1 ROP and sensitivity analysis 

To illustrate the major reaction channels of surrogate compounds, a reaction flux analysis has 

been performed at T = 900 K, at a conversion ratio of 60.3% for T135MCH, 42.1% for NPB, and 

62.3% for n-dodecane, respectively. The low temperature part was also considered at T = 675 K, to 

account for the NTC regime. At these two temperatures, as presented in Fig. 2, the major 

consumption pathway of T135MCH is the H-abstraction from the ring, to produce SXD35MCH 

(64.05% and 75.46%), which could isomerize to PXCH2D35MCH at low temperature (27.97%). 

Over 90% of the H-abstraction reaction occurred with OH radicals. At high temperature, the three 

C9H17 radicals (PXCH2D35MCH, SXT135MCH, and TXT135MCH, seen in Fig. 2) mainly tend to 

isomerize to open-chain C9H17 hydrocarbon radicals and decompose by C-C bond breaking to C3H6. 

The minor consumption pathways of C9H17 radicals are the abstraction reactions to form the benzene 

ring system, and thus, leading to the formation of benzene, toluene, and 1,3,5-trimethylbenzene 

(T135MB), respectively. These consumption channels are similar to the ones observed within the 



oxidation of methylcyclohexane [50]; methylcyclohexane is mostly consumed through H-abstraction 

reactions, followed by the isomerization of the formed radicals to linear C6 or C7 hydrocarbons, and 

finally, by their decomposition to linear hydrocarbons. Meanwhile, the MCH radicals continue to be 

consumed through H-abstraction reactions and finally formed benzene or toluene, as the minor 

pathways. 

However, at T = 675 K, the pathways of C9H17 radicals significantly changed. At this lower 

temperature, C9H17 radicals are rarely consumed through ring-opening reactions; instead, C9H17 

radicals are mostly consumed through H-abstraction reactions (PXCH2D35MCH), 

methyl-abstraction reactions (SXD35MCH), and H-addition reactions (TXT135MCH, back to 

T135MCH). 

 

 

Fig. 2 ROP analysis of low-temperature oxidation of 1,3,5 trimethylcyclohexane (T135MCH) at T = 

900 K (60.3% conversion, bold) and 675 K (62.5% conversion italic), p = 1atm and φ = 2.0. 

 

Figure 3 shows the major consumption pathways of A1C3H7 (NPB) at 675 K and 900 K. It is 



found that the fuel’s initial consumption is hardly influenced by temperature in contrast to the 

secondary pathways. There are more reactions which force the radicals going back to bigger 

molecules and generate NPB at 675 K finally. This explains the unapparent NTC region of NPB; 

n-propylbenzene (NPB) is primarily converted to A1CHCH2CH3 (35.06%) and A1CH2CHCH3 

(27.87%) to form styrene (A1CHCH2), followed by A1CH2CH2CH2 (19.59%) yielding to benzyl. 

Moreover, another pathway of NPB decomposing to benzene and n-propyl, which is not shown 

in Fig. 3, contributes to about 10% consumption of NPB. It maintains the same pathway as observed 

within the oxidation of pure NPB only [38]. Thus, NPB exhibits to be the main precursor of aromatic 

intermediates within the RP-3/Jet A-1 surrogate oxidation, with styrene identified as the major 

intermediate, besides benzene and toluene, within NPB oxidation. Similar to the pure NPB oxidation, 

more A1CH2CHCH3 is consumed through isomerization reaction because this isomerization reaction 

has less energy barrier (7780 cal/mol) than the ones of the other corresponding reactions (around 

10000 cal/mol), with no need of any further radical to be involved. Keep in mind that within the 

oxidation of T135MCH, pathways forming T135MB are only of minor importance. 

Since the combustion of n-dodecane has been discussed in detail previously [21], the main 

features of the ROP and sensitivity analysis of n-dodecane will be introduced briefly. N-dodecane is 

mostly consumed through H-abstraction reactions yielding six possible C12H25 radicals. These 

radicals tend to form a peroxide radical (PC12H25O2) by O2 addition at low temperature; PC12H25O2 

isomerizes and decomposes to C10H21 along with OH, CO, and CH2O. The radical C10H21 will further 

decompose to C9 to C2 hydrocarbon species by C-C bond breaking. At high temperatures (above 

1000 K), the main pathway is the direct decomposition of C12H25 to smaller hydrocarbon species. 

 



 

Fig. 3 ROP analysis of low-temperature oxidation of n-propylbenzene (NPB) at T = 900 K (42.1% 

conversion, bold) and 675 K (23.9% conversion italic), p = 1 atm, φ = 2.0. Blue arrow indicates the 

pathway only dominates at 675 K. 

 

To identify the reactions that serve as key pathways in the consumption of T135MCH and NPB, a 

local sensitivity analysis (SA) has been performed for the present model, as shown in Fig. 4. It is 

interesting to find that no initial reactions exhibit a significant promoting effect for T135MCH 

consumption; only the reaction A1C3H7 + OH = A1CH2CH2CH2 + H2O plays an important role in the 

NPB consumption sensitivity analysis due to the dominating effect by n-dodecane in the surrogate 

consumption. As shown in Fig. 4, sensitivity analysis reveals also that CH3 + O2 = CH2O + OH and 

CH3 + CH3 (+M) = C2H6 (+M) are the most promoting and inhibiting reactions, respectively, for both 

fuels, at 900 K. This means that the methyl radical (CH3) is the key intermediate in the NPB and 

T135MCH consumption network at 900 K. The oxidation of n-dodecane consumes more H/OH/HO2 



radicals and leads to inhibition effects (rate retarding) on the oxidation of NPB and T135MCH at 

high temperatures. Thus, it will promote NPB and T135MB consumption at low temperatures as it is 

the initial reaction of surrogate consumption. The reactions P12OOHX2 = PC12H25O2 and 

P12OOHX2 + O2 = SOO12OOH promote and inhibit both fuel consumptions, especially at low 

temperature, since these two reactions lead to two directions in the n-dodecane consumption network 

(back to PC12H25O2 and yield to SOO12OOH, respectively). It is interesting to find that the initial 

reaction of NPB (A1C3H7 + OH = A1CHCH2CH3 + H2O) plays different roles in NPB and TMCH 

oxidations at 900 K. This phenomenon is mainly caused by the competition on H/OH/O/HO2 radicals 

between NPB and T135MCH, two of the three components of the specific surrogate as selected 

within this work. 

As n-dodecane is the major compound in this specific surrogate (66.2% in mol), its oxidation 

needs much more radicals compared to the oxidation of NPB and T135MCH, respectively. Thus, 

with less oxygen available at fuel rich conditions, less radicals are available for the oxidation of 

T135MCH or NPB. As a result, the consumption of one compound (NPB) will exhibit a negative 

effect on the sensitivity analysis of the other compound (T135MCH). At 675 K, the reactions belong 

to the n-dodecane low temperature mechanism dominating the promoting effect in NPB and 

T135MCH consumption. Therefore, at low temperature, n-dodecane is the most active component 

and is able to initiate the oxidation of the surrogate. The consumptions of the other two surrogate 

components are driven by the initiation of n-dodecane. 

 



 

Fig. 4 Sensitivity analysis of the surrogate oxidation at low temperatures focusing on T135MCH (a) 

and NPB (b) at 900 and 675 K, 1 atm, φ = 2.0. The temperature of 900 K corresponds to 60.3% 

conversion for T135MCH and 42.1% for NPB, respectively. The temperature of 675 K corresponds 

to 62.5% conversion for T135MCH and 23.9% for NPB, respectively. 

 

4.2 Mol fraction profiles 

In the current work, 25 different species were detected; their mol fraction profiles will be shown 

to be predicted reasonable, often well, by the reaction model as developed within the present work. 

Considering the objective of the surrogate application, only the reactants, products, and six major 

intermediates are discussed in detail in this part; further mol fraction profiles are available in Section 

5 of the SM. Strong effects of the negative temperature coefficient (NTC) on the oxidation of NPB 

and T135MCH were observed in the present work. 

Figure 5 shows the mol fraction profiles of n-dodecane, T135MCH, and NPB (surrogate fuel 

components) as well as CO, CO2, and H2. In general, the current model predicts the conversion of the 

surrogate components and the generation of the three major products well. The oxidation of the 

surrogate fuel starts at 600 K. All components show a NTC effect almost back to initial state at 

775 K. Then the compounds start to be consumed again at 800 K, and are fully converted at 1000 K. 



This NTC effect was already observed in the previous study of n-dodecane [25]. 

According to the ROP study, T135MCH is mainly consumed with the help of H and O2, similar 

to n-dodecane, leading to the NTC effect between these initial reactions of the two components. So it 

can be estimated that a distinct NTC effect occurs in the oxidation of pure T135MCH, similar to 

n-dodecane. Actually, the mol fraction curve of NPB within pure NPB oxidation did not exhibit a 

NTC region. But in this surrogate experiment, NPB, in combination with the other compounds, 

shows a NTC effect, obviously. When n-dodecane and T135MCH are consumed within the NTC 

region, large amounts of OH and HO2 radicals are released via the H-abstractions reactions. These 

radicals will react with NPB yielding A1C3H6 radicals, and, thus, finally will result in the obvious 

consumption at low temperatures. CO as a major product is slightly underpredicted at high 

temperatures. The peroxide OC12OOH is the major precursor of the CO production path at low 

temperatures, whereas the pathway: HCO + O2 = CO + HO2 is the main production way of CO at 

high temperatures. 

According to the results of the ROP analysis, OC12OOH was formed from C12H25 radicals, 

which were generated from the reactions with negative temperature coefficient (here, negative “n” in 

the Arrhenius equation). As the temperature is increasing, less C12H25 radicals are consumed through 

OC12OOH leading to a lower CO production. CO2 is also slightly underpredicted, especially at the 

NTC region, mainly because the key reaction of CO2 formation at low temperatures is: 

CO + OH = CO2 + H, with a low reaction rate at 675 K. The low mol fraction of C2H3CHO also 

contributes to the under prediction of CO2 according to the additional CO2 formation pathway: OH + 

C2H3CHO = CO2 + C2H4 + H. This phenomenon was also seen within the n-dodecane oxidation 

study [25]: the prediction of CO2, which was obviously detected in the NTC region, cannot match the 

measured data. Hydrogen (H2) started to be detected at 975 K; its concentration profile is reasonably 



predicted. This confirms that H-abstraction reactions occurring via H atoms are not the main pathway 

in the NTC region as there was hardly any molecular hydrogen detected in NTC region. In summary, 

the present model provides reasonable predictions on the major species at the investigated 

experimental conditions. 

 

 

Fig. 5 Comparison between the measured (symbols) and modeling results (lines) of n-dodecane (a), 

T135MCH (b), NPB (c), CO (d), CO2 (e), and H2 (f) using the reaction model of the present work, at 

p = 1 atm and φ = 2.0. 

 

Figure 6 depicts the experimental and modeling results of six intermediates, which play a 

significant role in the oxidation of the three surrogate components. In general, the simulated results 

reproduce the experimental data well with respect to the tendencies, peak temperatures as well as 

most of the peak values. Methane (CH4) as one of the most important intermediates within the 

oxidation of many hydrocarbons depicts a very good prediction, with the small peak in the NTC 

effect region also well predicted. ROP analysis reveals that CH4 is mainly produced by methyl 

abstraction from SXD35MCH at 675 K, resulting via H-abstraction from T135MCH, not strongly 



affected by NTC behavior. At high temperatures, CH4 is stemming from the decomposition of C2 or 

C3 hydrocarbon radicals, respectively. The predicted profile of ethene (C2H4) matches the measured 

data, with a slight overprediction at high temperatures. Ethene is a significant intermediate of 

n-dodecane because its precursor is pC4H9, which mainly results from the decomposition of C12H25 

radicals, both at low and high temperatures. Propene (C3H6) is also predicted well by the model of 

the present work. Besides C12H25 or C10H21 radicals, there are some further important C3H6 

precursors such as CH2D35MCH or S7XC7H11-2-46M coming from T135MCH. Thus, it is assumed 

that the production of C3H6 is highly relevant within the consumption of n-dodecane and T135MCH. 

The decomposition of n-dodecane produces another important intermediate: n-butene (n-C4H8). The 

present model gives a reasonable prediction against experimental data of n-C4H8. 

According to the ROP analysis performed, n-C4H8 mainly results from the decomposition of 

S2XC12H25, by C-C bond breaking. N-Octene (n-C8H16) is also identified as a key species within the 

consumption channels of n-dodecane. The ROP analysis reveals that there were formed several C5 to 

C11 alkenes during n-dodecane decomposition; however, only n-C7H14 (see Fig. S2, SM) and n-C8H16 

have been identified by GC-MS, which maintained similar peak values and tendencies for both 

simulated and experimental data. Similar to n-C4H8, n-C8H16 is also generated by C-C bond breaking 

of the C12H25 radical (S5XC12H25). Within the consumption of NPB, A1CH2CHCH2 is revealed as an 

important intermediate. As the initial concentration of NPB is quite low, the peak value of 

A1CH2CHCH2 is not larger than about 50 ppm. The significant feature of the mol fraction profile of 

A1CH2CHCH2 is the high peak value at low temperatures. This is referred to the reaction R1897 

(A1CH2CH2CH2 + O2 = A1CH2CHCH2 + HO2) which was the main consumption pathway of 

A1CH2CH2CH2, with keeping a high reaction rate at low temperatures and becoming less active at 

high temperatures. 



 

 

Fig. 6 Comparison between the measured (symbols) and modeling results (lines) of: CH4 (a), C2H4 

(b), C3H6 (c), n-C4H8 (d), n-C8H16 (e), and A1CH2CHCH2 (f) using the reaction model of the present 

work, at p = 1 atm and φ = 2.0. 

 

Figure 7 shows the simulated and experimental results of two oxygenated species: 

acetaldehyde (CH3CHO) and phenol (A1OH). It can be seen that the reaction model can successfully 

predict the generation of CH3CHO and A1OH in the NTC region, with an underprediction of A1OH. 

ROP analysis reveals that phenyl radicals (A1-), the precursor of A1OH, is generated less at low 

temperatures, as shown in Fig. 3. Both predictions of CH3CHO and A1OH reveal a shifted peak 

compared to the experimental results at higher temperatures, which is mainly effected by the 

underprediction and peaking skewing of C2H5 and A1CHO, respectively. 

 



 

Fig. 7 Comparison between the measured (symbols) and modeling results (lines) of: CH3CHO (a) 

and A1OH (b) using the reaction model of the present work, at p = 1 atm and φ = 2.0. 

 

4.3 Ignition delay time 

The comparison between experimental and simulated data of the ignition delay time is displayed 

in Fig. 8. In general, the present model predicts good results of ignition delay time, especially on 

tendencies. The curve maintains an “S” shape profile as the temperature is decreasing through the 

NTC region, which is in agreement with the results on ignition delay times for n-decane [1] and 

n-dodecane [3], respectively. This reveals that the ignition of the surrogate selected in the present 

work is mainly led by the kinetics of n-dodecane, the long-chain alkane. Although the predicted NTC 

region is shifted a bit towards higher temperatures, the measured ignition delay time is more or less 

overestimated by the model except at the highest temperatures. It should be mentioned that the 

deviations between experiment and simulation are not caused by non-ideal ignition behavior in the 

experiments; the pressure profile does not broaden the NTC-regime. 

The comparison between the surrogate fuel ignition (φ = 1.0, 16 bar, dilution 1:2 with N2) and jet 

fuel ignition at the same mixture conditions is also displayed in Fig. 8. Both of these two curves 

maintain the same tendency, and their NTC transition appears at a similar temperature (850 K), 

although the practical jet fuel exhibits a less pronounced NTC-effect. This less pronounced 

NTC-effect is probably due to the presence of iso-paraffinic species and higher aromatic content in 



the jet fuel. 

 

 

Fig. 8 Comparison between measured (symbols) and calculated (solid curve) ignition delay time data 

of surrogate fuel and jet fuel, respectively. Square – experimental data for surrogate fuel; solid line – 

calculated results of surrogate fuel using the mechanism of the present work; triangle – experimental 

data for Jet A-1 fuel. Experiments were performed for φ = 1.0, p = 16 bar, and a dilution 1:2 with N2. 

 

4.4 Laminar flame speed 

The results of the measured laminar burning velocities and the calculated flame speeds of the 

surrogate are shown in Fig. 9. For comparison, the data of two pure surrogate components, 

n-dodecane and n-propylbenzene, as well as experimental data of a Jet A-1 are included. The 

simulations show a good prediction of the laminar flame speed data, especially for n-propylbenzene, 

with a slight underprediction over the whole -range for all fuels. Although the deviations in the 

-range from 0.6 to 1.5 (and up to 1.7 for n-propylbenzene) are at about 10 %, thus being satisfying 

for flame speed calculations, the experimental data are throughout underpredicted. A comparison to 

literature data in Fig. 10 for n-dodecane and n-propylbenzene, measured each using the counterflow 

technique, shows even slightly higher values for the burning velocity. 



All experimental burning velocities of the specific fuels are very close to each other; thus 

indicating a similar combustion behavior of the surrogate as it is found for the components as well as 

for the considered Jet A-1 fuel. Only for n-dodecane, slightly higher values were measured which is 

caused by its linear structure. As it is visible from Fig. 9, this behavior is not found in the simulations 

due to two reasons: (i) In general, the experimental values are very close by, to predict such small 

differences is quite difficult; and (ii) the sub-mechanism for n-propylbenzene is superiorly optimized 

than the one for n-dodecane (see Liu et al. [38]). So presently the surrogate mechanism predicts 

n-propylbenzene better than n-dodecane leading to the result that the mechanism cannot reflect the 

typical structure dependency of the burning velocity. 

The uncertainties of the measured burning velocities result predominantly from the 

determination of the cone angle and range between 2 % and 13 %, depending on the -value. 

Furthermore, the inaccuracy of the mass flow controllers, possible pressure fluctuations, and the 

treatment of the fuel as ideal gas have also an influence on the uncertainties. Although these sources 

of errors are less important for the determination of the burning velocities they may cause 

uncertainties within the determination of the -value of 2 % to 10 %. All uncertainties are calculated 

from the maximum error. Since the uncertainties are similar for all fuels and to have a clear overview 

in Fig. 9, error bars are drawn only for a few data points. 

 



 

Fig. 9 Measured (symbols) and calculated (curves) laminar burning velocities of the surrogate 

(triangles – red, solid line) and, for comparison, of n-dodecane (diamonds – green, dashed line), 

n-propylbenzene (squares – blue, dashed-dotted line), and Jet A-1 (circles). All data given at 

T = 473 K and p = 1 bar. 

 

 

Fig. 10 Comparison for the measurement of the laminar burning velocity of n-dodecane and 

n-propylbenzene, respectively with literature values from Kumar and Sung [56] as well as from Hui 

et al. [57] 

 

5. Conclusions 

To describe the combustion characteristics of a crude-oil based jet fuel, a three-component 



surrogate fuel (n-dodecane 66.2%, NPB 15.8% and T135MCH 18.0% in mol) was studied in three 

different types of reactors. First, in a jet stirred reactor (JSR, species profiles) at temperatures ranging 

between 575-1100 K,  = 2.0, and ambient pressures. Second, in a shock tube device (ignition delay 

time) at temperatures ranging between 700-1600 K, at  = 1.0 and pressures around 16 bar, 

respectively. Third, furthermore, laminar burning velocities were determined in burner test rig within 

a large fuel equivalence range, with  = 0.6 to 2.0, at a preheat temperature of Tpre = 473 K and at p = 

1 bar. A detailed kinetic mechanism involving 401 species and 2838 reactions was developed by 

exploiting the experimental data as obtained within the present work. In general, a reasonable, mostly 

good agreement with respect to the measured species profiles, ignition delay times, and burning 

velocities was achieved. From the performed flux and sensitivity analysis, H-abstraction reactions 

from methyl were revealed as the main consumption channels of the surrogate components; 

furthermore, these compounds affected each other in these major channels. N-propylbenzene is 

preferably consumed through H-abstraction to A1CH2CHCH3, whereas 1,3,5-trimethylcyclohexane 

tends to form more PXCH2D35MCH than TXT135MCH and SXT135MCH. The oxidation of 

n-dodecane is first yielding six specific C12H25 radicals. These radicals are consumed through 

reactions with peroxides involved and decomposition reactions at low and high temperatures, 

respectively. The existence of the NTC effect was observed, as seen e.g. from the mol fraction 

profiles; this finding is similar to the one observed within the oxidation of previous n-dodecane 

studies. In addition, the performance of the reaction model developed within the present work was 

checked against the experimental ignition behavior and laminar burning velocity of the jet fuel 

surrogate as well as of Jet A-1, showing the applicability of the selected composition of the specific 

surrogate, since the presented reaction model shows a good agreement with the experimental data. 

Thus, these experimental results in conjunction with the detailed chemical reaction model developed 



present a comprehensive study of the oxidation of a jet fuel surrogate which will improve the current 

understanding of the oxidation and combustion of components being of interest for the use in a jet 

fuel surrogate. 
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Section 1: Original experimental data and the detailed analyzing methods 

Table S1 Original experimental data of all species measured in the oxidation of surrogate at low temperature (φ = 2.0). 
Species Mole fractions (ppm) at different temperature (K) 

575 600 625 650 675 700 725 750 775 800 825 850 875 900 925 950 975 1000 1025 1050 1075 1100 

NC12H26 3309.5 3281.4 2000.0 1547.4 1226.9 1140.0 1630.0 3070.1 3270.3 3056.4 2976.4 2389.5 1848.1 1248.9 264.7 94.0 31.6 33.8 7.5 4.8 3.9 3.2 

A1C3H7 791.6 786.8 721.1 626.8 602.5 615.4 646.4 716.2 791.0 766.3 720.4 714.3 618.0 453.5 228.7 121.6 59.9 33.7 11.4 2.2 0.5 0.5 

T135MCH 899.5 888 469.3 356.4 337.1 289.7 332.6 490.1 745.4 844.6 800.6 726.4 535.1 247.3 105.3 41.4 15.6 7.5 1.5 0.2 0 0 

CO 34.0 66.0 832.2 2513.0 2582.0 3046.0 2297.4 1004.3 279.5 204.6 146.9 246.2 1633.3 3652.4 7796.1 14221.2 20703.6 22806.6 24839.0 29238.4 35170.0 38098.7 

CO2 188.6 238.6 1012.3 1268.0 1983.2 1765.8 1470.6 1114.5 439.2 117.9 375.4 468.0 584.7 661.6 822.6 1509.0 2305.8 2959.0 3540.6 4212.6 4746.3 5100.2 

H2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2772.1 3598.1 4397.2 6988.3 11651.8 15861.5 

CH4 0.0 0.0. 1.1 7.4 10.3 17.6 22.9 21 11.3 10.9 29.1 123.1 407.4 1080.9 1729.9 2350.6 2802.7 3158.4 3404.8 3619.7 3728.4 3482.9 

C2H2 0.0 0.0. 0.0. 0.0. 0.0. 0.0 2.0 5.2 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 25.8 47.3 0.0. 0.0. 0.0. 0.0. 0.0. 0.0. 

C2H4 1.6 10.2 42.3 145.8 213.6 304.7 320.0 233.5 73.2 43.1 108.2 488.6 1587.2 3753.5 5234.2 5885.6 5888.0 5544.4 5241.7 4510.2 2515.8 1276.4 

C2H6 0.0 0.0 0.6 1.5 3.3 2.7 1.9 1.7 1.4 0.6 0.9 5.7 29.1 104.0 180.0 231.2 251.3 252.3 244.3 215.5 123.0 58.8 

aC3H4 0.0. 0.0. 0.0. 2.3 4.1 9.0 4.8 4.0 1.4 0.0. 0.0. 0.0 0.8 2.4 1.6 1.7 1.2 2.3 2.6 1.3 0.0. 0.0. 

pC3H4 0.0. 0.0. 0.0. 2.3 3.5 5.8 10.3 14.5 4.1 91.5 135.5 191.3 218.6 266.6 249.7 121.9 165.0 119.1 67.0 85.1 79.0 68.6 

C3H6 0.0 4.7 21.0 68.7 107.4 165.3 206.2 169.0 60.5 36.1 76.3 277.5 726.9 1288.1 1366.4 1089.9 786.3 484.3 296.4 116.9 16.1 6.2 

C3H8 0.0 0.0 0.0 0.0 1.1 1.7 2.7 0.9 0.0 0.0 0.0 0.4 3.3 10.6 15.3 23.6 26.4 27.5 26.3 23.9 11.7 2.8 

1,3-C4H6 0.0 0.7 3.3 6.6 7.3 8.6 25.1 54.5 15.8 14.4 16.0 19.3 23.3 35.0 95.6 153.2 128.5 110.9 71.9 59.0 23.9 0.0 

n-C4H8 0.0 1.9 8.7 37.0 30.0 67.4 108.7 106.0 37.4 56.4 58.1 180.8 326.5 467.9 361.9 219.7 128.0 61.0 27.5 5.9 2.4 0.9 

i-C4H8 0.0 0.0 1.1 4.9 9.3 4.2 4.0 3.5 1.2 1.6 4.2 18.4 20.9 77.6 31.3 23.8 19.1 12.3 8.1 7.7 3.5 3.4 

CH3CHO 1.1 1.1 20.0 36.3 53.5 99.7 139.1 140.7 81.0 62.0 96.8 305.9 552.6 661.8 388.3 196.2 88.8 38.4 11.1 2.6 0.0 0.0 

n-C7H14 0.0 0.1 1.5 3.4 5.7 11.0 18.6 19.6 10.9 8.0 11.8 35.2 61.1 71.0 44.0 23.7 12.3 7.1 3.8 2.3 1.6 1.5 

n-C8H16 0.0 0.0 1.7 3.5 5.0 7.9 12.9 14.7 9.5 7.2 10.3 27.9 48.3 47.2 25.1 11.6 4.9 1.6 0.7 0.3 0.1 0.1 

T135MB 0.4 3.0 15.9 26.8 46.8 66.1 74.6 109.8 54.4 23.6 17.7 29.3 32.3 22.1 5.1 1.4 0.3 0.0 0.0 0.0 0.0 0.0 

A1CH2CHCH2 0.0 1.2 6.6 15.2 18.6 23.3 28.7 40.4 19.5 9.1 7.2 12.8 15.8 11.4 3.0 1.2 0.4 0.0 0.0 0.0 0.0 0.0 

A1CHCHCH3 0.5 0.7 3.7 6.9 8.1 10.0 12.5 12.7 5.4 2.7 2.9 4.3 8.4 10.6 9.4 7.2 5.0 3.7 2.3 1.1 0.0 0.0 

A1OH 16.0 18.6 60.1 349.6 534.0 637.8 765.9 833.2 516.7 309.0 82.0 91.8 112.1 152.7 328.4 589.6 551.6 620.8 686.4 602.8 280.0 177.6 

C14H14 0.0 0.0 1.7 7.8 19.0 28.9 39.5 49.0 37.6 25.8 8.6 4.6 5.8 7.7 11.0 23.8 18.9 13.8 10.6 10.6 5.2 3.8 

 

  



The GC and GC-MS techniques were used to quantify and qualify the outlet species. TCD was used to analyze H2, CO, CO2 and CH4. The quantification of 

light hydrocarbons and aromatics was performed by FID with chromatographic columns of Al2O3-KCl and HP-INNOWax, respectively. The calibration was 

carried out by injecting known amounts of the standard gases. The newly detected intermediates without standard gas were quantified by using effective carbon 

number method. The detection threshold of GC was about 0.1 ppm for FID and 10.0 ppm for TCD. The estimated uncertainty was about ±5% for major species 

and ±15% for intermediates. 

The calculation method of correction factor by using effective carbon number concept was firstly raised by Scanlon et.al in 1985 [1]. A standard of using 

effective carbon number method on aromatics quantification in gas chromatography was set by American Society for Testing and Material in 2012 [2]. In 

gas-chromatograph, response factor is very important and influences the mole fraction results directly. The effective carbon number method shows a 

relationship between two response factors of two aromatics. There is an equation: 

�(�)

�(�)
=

�(�)

�(�)
 

�(�):	response	factor	of	unknown	species 

�(�):	response	factor	of	standard	species 

�(�):	effective	carbon	number	of	unknown	species 

�(�):	effective	carbon	number	of	standard	species 

 

  



Section 2: Reactions of T135MCH subset 

Table S2 Sub-mechanism of T135MCH. exp( )n
ak A T E R T     , units are mol*s-1*cm-3 and cal. 

Reactions A n Ea 

Metatheses and bimolecular initiations 

2597. T135MCH+H = PXCH2D35MCH+H2 8.43E+08     1.9       8575.9 

2598. T135MCH+H = TXT135MCH+H2 1.36E+07 2.1 4098.6 

2599. T135MCH+H = CH3SXD35MCH+H2 3.12E+07 2.1 6474.4 

2600. T135MCH+O = PXCH2D35MCH+OH 6.60E+06 2.4 5504.0 

2601. T135MCH+O = TXT135MCH+OH 4.71E+05 2.5 1110.0 

2602. T135MCH+O = CH3SXD35MCH+OH 1.43E+05 2.7 2106.0 

2603. T135MCH+OH = PXCH2D35MCH+H2O 5.64E+07 1.9 -900.8 

2604. T135MCH+OH = TXT135MCH+H2O 1.00E+08 1.8 2966.0 

2605. T135MCH+OH = CH3SXD35MCH+H2O 6.10E+07 1.8 -1479.0 

2606. T135MCH+O2 = PXCH2D35MCH+HO2 6.00E+13 0.0 50930.0 

2607. T135MCH+O2 = TXT135MCH+HO2 1.20E+14 0.0 44000.0 

2608. T135MCH+O2 = CH3SXD35MCH+HO2 1.20E+14 0.0 47590.0 

2609. T135MCH+HO2 = PXCH2D35MCH+H2O2 9.15E+04 2.7 17496.0 

2610. T135MCH+HO2 = TXT135MCH+H2O2 3.72E+04  2.8 10500.0 

2611. T135MCH+HO2 = CH3SXD35MCH+H2O2 4.22E+02  3.3 14998.0 

2612. T135MCH+CH3 = PXCH2D35MCH+CH4 1.13E+02  3.3 13516.0 

2613. T135MCH+CH3 = TXT135MCH+CH4 5.73E+01  3.3 9022.0 

2614. T135MCH+CH3 = CH3SXD35MCH+CH4 1.00E+02  3.2 11418.0 

Reactions of C9H17 radicals 

2615. PXCH2D35MCH = TXT135MCH 1.15E+07 1.0 28687.0 

2616. PXCH2D35MCH = CH3SXD35MCH 6.00E+07 0.9 22700.0 

2617. PXCH2D35MCH = S7XC7H11-1-46M 8.92E+11  -2.9 19897.0 

2618. PXCH2D35MCH = CH2D35MCH+H 8.14E+14 -2.4 21719.0 

2619. PXCH2D35MCH+O2 = CH2D35MCH+HO2 2.40E+10 0.0 0.0 

2620. TXT135MCH = S6XC7H11-1-24M 7.77E+21 -3.8 22330.0 

2621. TXT135MCH = CH2D35MCH+H 5.68E+24 -5.0 28465.0 

2622. TXT135MCH = T135MCHE+H 1.47E+22 -4.1 24874.0 

2623. TXT135MCH+O2 = CH2D35MCH+HO2 2.80E-01 3.6 11960.0 

2624. TXT135MCH+O2 = T135MCHE+HO2 4.20E-01 3.6 11960.0 

2625. CH3SXD35MCH = S7XC7H11-2-46M  4.98E+22 -4.0 21843.0 

2626. CH3SXD35MCH = T135MCHE+H 2.06E+20 -3.8 23117.0 

2627. CH3SXD35MCH = D35MCHE+CH3 4.24E+21 -3.9 22867.0 

2628. S7XC7H11-1-46M(+M) = S5XC5H8-1-4M+C3H6(+M) 3.98E+12 0.1 27571.6 

2629. S5XC5H8-1-4M(+M) = aC3H5+C3H6(+M) 3.98E+12 0.1 27571.6 

2640. S6XC7H11-1-24M(+M) = S4XC5H8-1-2M+C3H6(+M) 4.57E+12 0.1 24386.4 

2641. S4XC5H8-1-2M(+M) = CH3CCH2+C3H6(+M) 4.57E+12 0.1 24386.4 

2659. S7XC7H11-2-46M(+M) = S5XC5H8-2-4M+C3H6(+M) 3.98E+12 1.1 27571.6 

2660. S5XC5H8-2-4M(+M) = CH3CHCH+C3H6(+M) 3.98E+12 1.1 27571.6 

Reactions of C9H16 



2630. CH2D35MCH+O = C3H6+C5H7-13-2CH2+OH 1.76E+11 0.7 3250.0 

2631. CH2D35MCH+H = C3H6+C5H7-13-2CH2+H2 1.08E+05 2.5 -1900.0 

2632. CH2D35MCH+OH = C3H6+C5H7-13-2CH2+H2O 6.00E+06 2.0 -1520.0 

2633. CH2D35MCH+CH3 = C3H6+C5H7-13-2CH2+CH4 2.00E+11 0.0 7300.0 

2634. CH2D35MCH+HO2 = C3H6+C5H7-13-2CH2+H2O2 1.28E+04 2.6 12400.0 

2635. CH2D35MCH+H = CH2S2XD35MCH+H2 6.75E+05 2.4 207.0 

2636. CH2D35MCH+CH3 = CH2S2XD35MCH+CH4 7.38E+00 3.3 4002.0 

2637. CH2D35MCH+O = CH2S2XD35MCH+OH 1.32E+06 2.4 1210.0 

2638. CH2D35MCH+OH = CH2S2XD35MCH+H2O 5.53E+04 2.6 -1919.0 

2639. CH2S2XD35MCH+H(+M) = CH2D35MCH(+M) 4.00E+14 0.0 0.0 

2642. T135MCHE+H = T3XT135MCH1E+H2 1.69E+05 2.4 207.0 

2643. T135MCHE+CH3 = T3XT135MCH1E+CH4 1.85E+00 3.3 4002.0 

2644. T135MCHE+O = T3XT135MCH1E+OH 3.30E+05 2.4 1210.0 

2645. T135MCHE+OH = T3XT135MCH1E+H2O 1.38E+04 2.6 -1919.0 

2646. T3XT135MCH1E+H(+M) = T135MCHE(+M) 6.65E+13 0.0 0.0 

2647. S6XT135MCH1E+H(+M) = T135MCHE(+M) 1.33E+14 0.0 0.0 

2648. T135MCHE+H = S6XT135MCH1E+H2 3.38E+05 2.4 207.0 

2649. T135MCHE+CH3 = S6XT135MCH1E+CH4 3.69E+00 3.3 4002.0 

2650. T135MCHE+O = S6XT135MCH1E+OH 6.60E+05 2.4 1210.0 

2651. T135MCHE+OH = S6XT135MCH1E+H2O 2.76E+04 2.6 -1919.0 

2652. CH2S2XD35MCH+H(+M) = T135MCHE(+M) 2.00E+14 0.0 0.0 

2653. T135MCHE+H = CH2S2XD35MCH+H2 1.73E+05 2.5 2492.0 

2654. T135MCHE+CH3 = CH2S2XD35MCH+CH4 2.21E+00 3.5 5675.0 

2655. T135MCHE+O = CH2S2XD35MCH+OH 4.41E+05 2.4 3150.0 

2656. T135MCHE+OH = CH2S2XD35MCH+H2O 3.12E+06 2.0 -298.0 

2657. T135MCHE+HO2 = CH2S2XD35MCH+H2O2 9.64E+03 2.6 13910.0 

2658. T135MCHE+O2 = CH2S2XD35MCH+HO2 3.30E+12 0.0 39900.0 

Reactions of C9H15 radicals 

2712. CH2S2XD35MCH(+M) = CH2D35MCH2E+H(+M) 3.13E+08 1.3 44697.6 

2713. CH2S2XD35MCH+O2 = CH2D35MCH2E+HO2 1.60E+12 0.0 15160.0 

2661. T3XT135MCH1E(+M) = T135MCH13E+H(+M) 3.13E+08 1.3 44697.6 

2662. T3XT135MCH1E+O2 = T135MCH13E+HO2 1.60E+12 0.0 15160.0 

2684. S6XT135MCH1E(+M) = T135MCH13E+H(+M) 3.13E+08 1.3 44697.6 

2685. S6XT135MCH1E+O2 = T135MCH13E+HO2 1.60E+12 0.0 15160.0 

Reactions of C9H14 

2714. CH2D35MCH2E+H = S4XCH2D35MCH2E+H2 3.38E+05 2.4 207.0 

2715. CH2D35MCH2E+CH3 = S4XCH2D35MCH2E+CH4 3.69E+00 3.3 4002.0 

2716. CH2D35MCH2E+O = S4XCH2D35MCH2E+OH 6.60E+05 2.4 1210.0 

2717. CH2D35MCH2E+OH = S4XCH2D35MCH2E+H2O 2.76E+04 2.6 -1919.0 

2718. S4XCH2D35MCH2E+H(+M) = CH2D35MCH2E(+M) 1.33E+13 0.0 0.0 

2719. CH2D35MCH2E+H = S6XCH2D35MCH2E+H2 3.38E+05 2.4 207.0 

2720. CH2D35MCH2E+CH3 = S6XCH2D35MCH2E+CH4 3.69E+00 3.3 4002.0 

2721. CH2D35MCH2E+O = S6XCH2D35MCH2E+OH 6.60E+05 2.4 1210.0 

2722. CH2D35MCH2E+OH = S6XCH2D35MCH2E+H2O 2.76E+04 2.6 -1919.0 

2723. S6XCH2D35MCH2E+H(+M) = CH2D35MCH2E(+M) 1.33E+13 0.0 0.0 

2663. T135MCH13E+H = T5XT135MCH13E+H2 1.69E+05 2.4 207.0 



2664. T135MCH13E+CH3 = T5XT135MCH13E+CH4 1.85E+00 3.3 4002.0 

2665. T135MCH13E+O = T5XT135MCH13E+OH 3.30E+05 2.4 1210.0 

2666. T135MCH13E+OH = T5XT135MCH13E+H2O 1.38E+04 2.6 -1919.0 

2667. T5XT135MCH13E+H(+M) = T135MCH13E(+M) 6.65E+13 0.0 0.0 

2670. S6XT135MCH13E+H(+M) = T135MCH13E(+M) 1.33E+14 0.0 0.0 

2671. T135MCH13E+H = S6XT135MCH13E+H2 3.38E+05 2.4 207.0 

2672. T135MCH13E+CH3 = S6XT135MCH13E+CH4 3.69E+00 3.3 4002.0 

2673. T135MCH13E+O = S6XT135MCH13E+OH 6.60E+05 2.4 1210.0 

2674. T135MCH13E+OH = S6XT135MCH13E+H2O 2.76E+04 2.6 -1919.0 

2677. T135MCH13E+H = S4XCH2D35MCH2E+H2 1.73E+05 2.5 2492.0 

2678. T135MCH13E+CH3 = S4XCH2D35MCH2E+CH4 2.21E+00 3.5 5675.0 

2679. T135MCH13E+O = S4XCH2D35MCH2E+OH 4.41E+05 2.4 3150.0 

2680. T135MCH13E+OH = S4XCH2D35MCH2E+H2O 3.12E+06 2.0 -298.0 

2681. T135MCH13E+HO2 = S4XCH2D35MCH2E+H2O2 9.64E+03 2.6 13910.0 

2682. T135MCH13E+O2 = S4XCH2D35MCH2E+HO2 3.30E+12 0.0 39900.0 

2683. S4XCH2D35MCH2E+H(+M) = T135MCH13E(+M) 2.00E+14 0.0 0.0 

2686. T135MCH13E+H = S6XCH2D35MCH2E+H2 1.73E+05 2.5 2492.0 

2687. T135MCH13E+CH3 = S6XCH2D35MCH2E+CH4 2.21E+00 3.5 5675.0 

2688. T135MCH13E+O = S6XCH2D35MCH2E+OH 4.41E+05 2.4 3150.0 

2689. T135MCH13E+OH = S6XCH2D35MCH2E+H2O 3.12E+06 2.0 -298.0 

2690. T135MCH13E+HO2 = S6XCH2D35MCH2E+H2O2 9.64E+03 2.6 13910.0 

2691. T135MCH13E+O2 = S6XCH2D35MCH2E+HO2 3.30E+12 0.0 39900.0 

2692. S6XCH2D35MCH2E+H(+M) = T135MCH13E(+M) 2.00E+14 0.0 0.0 

Reactions of C9H13 radicals 

2668. T5XT135MCH13E(+M) = T135MB+H(+M) 3.13E+08 1.3 44697.6 

2669. T5XT135MCH13E+O2 = T135MB+HO2 1.60E+12 0.0 15160.0 

2675. S6XT135MCH13E+O2 = T135MB+HO2 1.60E+12 0.0 15160.0 

2676. S6XT135MCH13E(+M) = T135MB+H(+M) 3.13E+08 1.3 44697.6 

2724. S4XCH2D35MCH2E+O2 = CH2D35MCH24E+HO2 1.60E+12 0.0 15160.0 

2725. S4XCH2D35MCH2E(+M) = CH2D35MCH24E+H(+M) 3.13E+08 1.3 44697.6 

2726. D35MB1CH2+H(+M) = CH2D35MCH24E(+M) 4.98E+11 0.6 -436.0 

2727. CH2D35MCH24E+H = D35MB1CH2+H2 6.47E+00 4.0 3394.0 

2728. CH2D35MCH24E+CH3 = D35MB1CH2+CH4 3.16E+11 0.0 9500.0 

2729. CH2D35MCH24E+O = D35MB1CH2+OH 6.30E+11 0.0 0.0 

2730. CH2D35MCH24E+HO2 = D35MB1CH2+H2O2 1.30E+11 0.0 14070.0 

2731. CH2D35MCH24E+OH = D35MB1CH2+H2O 1.77E+05 2.4 -602.0 

2732. CH2D35MCH24E+O2 = D35MB1CH2+HO2 1.81E+12 0.0 39717.0 

2733. S6XCH2D35MCH2E+O2 = CH2D35MCH25E+HO2 1.60E+12 0.0 15160.0 

2734. S6XCH2D35MCH2E(+M) = CH2D35MCH25E+H(+M) 3.13E+08 1.3 44697.6 

2735. D35MB1CH2+H(+M) = CH2D35MCH25E(+M) 6.44E+12 0.3 -333.0 

2736. CH2D35MCH25E+H = D35MB1CH2+H2 6.47E+00 4.0 3394.0 

2737. CH2D35MCH25E+CH3 = D35MB1CH2+CH4 3.16E+11 0.0 9500.0 

2738. CH2D35MCH25E+O = D35MB1CH2+OH 6.30E+11 0.0 0.0 

2739. CH2D35MCH25E+HO2 = D35MB1CH2+H2O2 1.30E+11 0.0 14070.0 

2740. CH2D35MCH25E+OH = D35MB1CH2+H2O 1.77E+05 2.4 -602.0 

2741. CH2D35MCH25E+O2 = D35MB1CH2+HO2 1.81E+12 0.0 39717.0 



 

The geometry and the energy of the reactants, products, and transient states were calculated by 

using CBS-QB3 method. The rate constants from 500 to 1500 K (interval by 100 K) of each reaction 

were calculated by using the ChemRate software, “biomolecular reaction” option. The coefficients 

(A, n, and Ea) were the numerical fitting results by using the Arrhennius Law (� = � ∙ �� ∙

��� �−
��

��
�, where � =

����.�

�.���
= 503.5 when the unit of Ea is cal). 

 

Reactions of C5H7-13-2CH2 radicals 

2706. aC3H4+aC3H5 = C5H7-13-2CH2 1.23E+35 -7.8 9930.0 

2707. C5H7-13-2CH2+H(+M) = C5H7-13-2M(+M) 2.00E+14 0.0 0.0 

2708. C5H7-13-2M+H = C5H7-13-2CH2+H2 1.20E+06 2.5 6760.0 

2709. C5H7-13-2M+CH3 = C5H7-13-2CH2+CH4 2.20E+00 3.5 5675.0 

2710. C5H7-13-2M+OH = C5H7-13-2CH2+H2O 3.10E+06 2.0 -298.0 

2711. CH3+lC5H7 = C5H7-13-2M 1.00E+12 0.0 0.0 

Reactions of D35MCHE 

2693. S4XD35MCH1E+H(+M) = D35MCHE(+M) 2.66E+14 0.0 0.0 

2694. D35MCHE+H = S4XD35MCH1E+H2 6.75E+05 2.4 207.0 

2695. D35MCHE+CH3 = S4XD35MCH1E+CH4 7.38E+00 3.3 4002.0 

2696. D35MCHE+O = S4XD35MCH1E+OH 1.32E+06 2.4 1210.0 

2697. D35MCHE+OH = S4XD35MCH1E+H2O 5.53E+04 2.6 -1919.0 

2698. S4XD35MCH1E = C6H7-13-5M+CH3 4.24E+21 -3.9 22867.0 

2699. S6XMCH13E+H(+M) = C6H7-13-5M(+M) 2.66E+14 0.0 0.0 

2700. C6H7-13-5M+H = S6XMCH13E+H2 6.75E+05 2.4 207.0 

2701. C6H7-13-5M+CH3 = S6XMCH13E+CH4 7.38E+00 3.3 4002.0 

2702. C6H7-13-5M+O = S6XMCH13E+OH 1.32E+06 2.4 1210.0 

2703. C6H7-13-5M+OH = S6XMCH13E+H2O 5.53E+04 2.6 -1919.0 

2704. S6XMCH13E = A1+CH3 4.24E+21 -3.9 22867.0 

2705. S6XMCH13E = A1CH3+H 2.06E+20 -3.8 23117.0 



Section 3: Calculated results of H-abstraction reactions of T135MCH 

 

 

Fig S1 The comparison between the estimated rate constants from methylcyclohexane and the 

calculated results. 

 

The geometry and the energy of the reactants, products, and transient states were calculated by 

using CBS-QB3 method. The rate constants from 500 to 1500 K (interval by 100 K) of each reaction 

were calculated by using the ChemRate software, “biomolecular reaction” option. The coefficients 

(A, n, and Ea) were the numerical fitting results by using the Arrhenius Law 

(� = � ∙ �� ∙ ��� �−
��

��
�, where � =

����.�

�.���
= 503.5, with Ea given in cal). 

 



Section 4: Thermochemical data of T135MCH and its derived species 

Table S3 Names, structures, and thermochemical data of T135MCH and its derived species 

 

Species Structure ∆��,����
° (���� ���⁄ ) �����

° (��� ��� �⁄⁄
��
° (�)(��� ��� �⁄⁄ ) 

298 400 500 600 800 1000 1500 2000 

T135MCH 

 

-48.06 90.95 42.96 58.49 71.71 83.11 101.08 113.83 133.10 142.93 

PXCH2D35MCH 

 

46.70 96.62 42.90 57.97 70.57 81.31 98.17 110.18 125.63 138.45 

TXT135MCH 

 

-15.53 

 
96.24 42.59 57.44 69.96 80.70 97.67 109.80 125.43 138.34 

CH3SXD35MCH 

 

-15.53 95.78 42.64 57.62 70.29 81.17 98.27 110.38 127.56 138.74 

CH2D35MCH 

 

-20.41 94.08 39.91 55.02 67.72 78.50 95.10 106.47 124.64 132.89 



T135MCHE 

 

-21.46 96.94 43.83 58.23 70.24 80.36 95.78 106.28 124.34 132.60 

C5H7-13-2M 
 

10.26 83.90 30.49 38.20 44.68 50.19 58.75 64.77 74.97 80.92 

C5H7-13-2CH2 

 

42.36 82.39 29.55 37.02 43.21 48.43 56.43 61.99 70.12 77.27 

CH2S2XD35MCH 

 

4.40 95.28 39.35 53.83 65.96 76.24 92.04 102.86 118.54 128.68 

T3XT135MCH1E 

 

3.35 97.23 43.23 56.86 68.15 77.63 92.13 102.08 116.61 127.97 

S6XT135MCH1E 

 

-1.55 90.95 42.96 58.49 71.71 83.11 101.08 113.83 133.10 142.93 

CH2D35MCH2E 

 

2.68 92.19 40.08 54.07 65.48 74.86 88.54 97.30 113.25 120.89 



T135MCH13E 

 

3.26 94.85 46.73 59.19 69.47 78.02 90.78 99.26 114.60 121.80 

S4XCH2D35MCH2E 

 

27.48 93.39 39.53 52.87 63.71 72.59 85.49 93.67 108.19 116.57 

S6XCH2D35MCH2E 

 

27.48 93.39 39.53 52.87 63.71 72.59 85.49 93.67 108.19 116.57 

T5XT135MCH13E 

 

28.07 95.13 46.13 57.83 67.38 75.29 87.13 95.06 106.37 117.11 

S6XT135MCH13E 

 

28.07 89.88 44.48 56.35 65.91 75.75 87.73 95.63 108.95 117.51 

CH2D35MCH24E 

 

27.93 89.88 44.48 56.35 65.91 73.65 84.66 91.46 104.69 111.00 



CH2D35MCH25E 

 

21.20 91.94 44.40 56.32 65.90 73.66 84.67 91.45 104.52 110.98 

D35MCHE 

 

-13.23 88.76 38.39 51.08 61.70 70.69 84.50 93.99 109.47 116.94 

S4XD35MCH1E 

 

33.27 90.02 38.07 50.21 60.28 68.75 81.69 90.55 103.44 112.78 

C6H7-13-5M 

 

6.71 93.17 37.15 46.99 55.17 62.04 72.52 79.71 91.74 98.79 

S6XMCH13E 

 

36.30 87.86 40.74 50.84 59.16 66.09 76.45 83.34 94.48 101.88 

S7XC7H11-1-46M 
 

20.52 117.91 47.57 60.46 71.21 80.37 94.81 105.30 119.39 132.93 

S6XC7H11-1-24M 
 

17.34 118.80 47.47 60.27 70.94 80.01 94.28 104.63 119.82 132.61 

S7XC7H11-2-46M 
 

17.71 118.08 49.92 62.55 73.14 82.22 96.70 107.36 121.43 134.92 

S5XC5H8-1-4M 
 

36.42 91.73 31.29 39.58 46.43 52.23 61.40 68.15 75.63 86.12 



S4XC5H8-1-2M 
 

33.24 92.62 31.19 39.38 46.15 51.87 60.87 67.47 76.57 85.80 

S5XC5H8-2-4M 
 

33.61 91.90 33.64 41.66 48.35 54.08 63.29 70.20 77.99 88.13 

CH2qjD35MCH 

 

-32.55 110.83 48.84 64.96 78.47 89.93 107.65 119.96 138.27 149.95 

CH2q2jD35MCH 

 

-21.15 116.55 50.26 65.99 79.15 90.32 107.63 119.67 137.66 149.28 

DMCHo-P2 

 

-71.41 43.13 51.65 65.64 77.50 87.60 102.91 112.40 116.26 119.74 

CHOD35MCH2j 

 

-20.31 103.48 41.70 56.44 68.92 79.62 96.23 107.36 117.65 125.54 



CHOD35MCH1E 

 

-44.75 104.46 45.18 60.21 72.79 83.47 99.98 111.55 130.03 137.40 

CHOD35MCH2E 

 

-44.28 104.25 40.53 54.89 66.63 76.35 90.92 101.11 123.25 133.53 

ro34-PO2E 

 

-5.10 125.39 46.74 59.08 69.40 78.22 92.12 102.03 115.18 124.85 

ro61-PO1E 

 

-3.50 125.77 48.84 61.82 72.82 82.36 97.76 109.11 124.18 134.00 

S7X2C7H12-6M 

 

23.77 109.63 42.19 53.17 62.39 70.30 83.02 92.48 106.91 116.97 

CHOS4XC4H7-3M 

 

12.40 99.59 32.56 40.94 48.04 54.22 64.33 71.95 81.96 88.18 



CHCHCHO 
 

-15.66 67.78 16.22 19.98 23.20 25.96 30.27 33.33 37.73 39.82 

S5X2C5H9 

 

41.13 83.41 25.79 32.24 37.59 42.16 49.56 55.16 63.43 69.49 

CHOD35MCH1E4j 

 

1.75 105.73 44.86 59.33 71.37 81.54 97.17 108.11 126.00 134.39 

CHOD35MCH13E 

 

1.75 105.73 44.86 59.33 71.37 81.54 97.17 108.11 126.00 134.39 

TMCH2qj 

 

-37.60 108.33 49.58 65.56 79.13 90.76 108.66 120.23 127.15 133.08 

TMCH2q4j 

 

-26.20 114.05 51.03 66.59 79.81 91.14 108.63 119.94 126.53 132.22 

TMCHo-24 

 

-26.20 114.05 51.03 66.59 79.81 91.14 108.63 119.94 126.53 132.22 



TMCH2q4qj 

 

-62.25 126.60 57.77 74.72 88.85 100.72 118.58 130.05 141.66 150.64 

TMCH2O4q 

 

-96.47 117.50 53.48 68.99 81.55 91.87 107.20 117.95 143.55 155.71 

TMCH2O4oj 

 

-58.76 104.85 47.19 62.22 74.38 84.35 99.21 109.71 134.68 147.35 

ro45-2O4O 

 

-60.48 137.06 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

C4H5O2j4MCHO 
 

-52.07 105.77 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

CH3CHCHO 
 

-2.80 70.66 18.73 22.54 25.69 28.36 32.67 36.15 44.00 48.83 



ro34-2O4O 

 

-63.01 130.75 47.77 61.54 72.79 82.14 96.46 107.16 133.65 147.02 

C5H84j-2CHO 
 

-13.88 101.93 32.65 41.60 48.93 55.09 64.76 72.07 86.99 96.18 

TMCH2q4q6j -50.45 130.95 59.21 75.75 89.53 101.11 118.55 129.76 141.04 149.85 

TMCH6E2o4q 

 

-85.19 122.63 56.11 71.64 84.56 95.34 111.22 120.73 126.44 131.37 

TMCH6E2o4oj 

 

-47.49 111.36 49.80 64.89 77.39 87.82 103.22 112.51 117.66 122.22 

ro34-2o4O6E 

 

-47.99 136.25 49.82 63.31 74.14 83.02 96.50 106.57 132.70 146.17 



S2X2C5H8-4CHO 
 

-15.66 67.78 16.22 19.98 23.20 25.96 30.27 33.33 37.73 39.82 

aC3H5OH 
 

-37.28 78.93 19.19 22.69 25.90 28.88 34.14 38.44 44.80 48.88 

TMCH2O4j 

 

-25.22 100.51 44.95 58.98 70.44 79.96 94.40 104.72 127.45 139.67 

TMCH3E2O 

 

-46.99 104.17 44.07 58.92 70.91 80.71 95.19 105.48 131.13 139.72 

TMCH4E2O 

 

-51.74 104.18 38.00 53.17 65.39 75.38 90.15 100.68 127.61 137.78 

TMCH3E2O5j 

 

-22.18 105.83 43.47 57.55 68.82 77.98 91.54 101.28 126.91 137.01 

TMCH35E2O 

 

-22.18 105.83 43.47 57.55 68.82 77.98 91.54 101.28 126.91 137.01 



ro61-2O3E5E 

 

6.22 115.07 48.59 60.86 70.46 78.12 89.41 98.32 129.63 140.02 

C5H64j-13-2M 
 

-13.88 101.93 32.65 41.60 48.93 55.09 64.78 72.07 86.99 96.18 

ro23-2O3E 

 

-14.64 125.15 48.01 60.28 70.65 79.56 93.67 103.83 119.39 129.95 

ro56-2O4E 

 

-12.57 125.32 44.21 57.36 68.17 77.25 91.35 101.60 120.45 132.26 

S6X2C7H12-4M 

 

22.76 110.78 44.37 55.20 64.32 72.19 84.89 94.40 109.01 118.97 

C5H9-2-4COj 

 

-2.70 98.59 29.56 37.04 43.43 48.97 57.86 64.26 72.60 78.87 

S4X2C5H9  23.70 79.98 23.33 30.02 35.84 40.96 49.21 55.26 64.72 71.28 
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Section 5: Further mol fraction profiles of surrogate oxidation and the selection of JSR 

experimental condition. 

   

   

Fig. S2 Mol fraction profiles of surrogate oxidation. 

It is well known from literature and from our own experience that experiments performed at fuel 

rich conditions such as φ = 2.0 will favor the formation of aromatic species considerably. 

Experiments performed at φ = 2.0 will generate more and different types of intermediates with a 

higher concentration. This is of advantage for two major reasons: (i) species can be easier detected 

by GC and GC-MS; and (ii) the information on the intermediates pattern is of benefit for the 

validation and improvement of the mechanism. In contrast, the oxidation of any fuel at equivalence 

ratios of φ = 1.0 and/or φ = 0.4 would generate less intermediates with less concentration and/or 

rapid generation and consumption. For these reasons, we decided to perform the experiments of a 

very fuel-rich mixture, at an equivalence ratio of φ = 2.0  
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Section 6: Comparison of the simulated results by using Banerjee’s and Mzé-Ahmed’s 

n-dodecane model. 

 

Fig. S3 The mole fraction profiles of major species, simulated by two different surrogate models 

(differed by n-dodecane sub-mech): black solid line – Banerjee’s n-dodecane sub-mech; red dash line 

– Mzé-Ahmed’s n-dodecane sub-mech. 

 

Banerjee’s model is able to match the NTC region much better. Using Mzé-Ahmed’s model, a 

stronger NTC region was predicted than by using Banerjee’s model. Figure S3 shows the simulated 

results by using Mzé-Ahmed’s n-dodecane sub-mechanism, in our surrogate model, instead of 

Banerjee’s n-dodecane sub-mechanism. Under this assumption, the predictions reveal a minor 

agreement with the experimental data. 

Furthermore, the Mzé-Ahmed’s low-temperature mechanism of n-dodecane is too 

comprehensive for a surrogate mechanism, as our mechanism need to be validated against ignition 

delay and flame speed simulations. 

The equivalence ratio, as chosen within the present work, φ = 2.0 means less oxygen and is thus 

closer to the condition of a pyrolysis, with decomposition reactions playing a more important role 
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within the consumption of the fuel considered and with a minor influence of peroxy and hydroperoxy 

radicals, besides HO2. 
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