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Abstract—It is a constant challenge to better under-
stand the underlying dynamics and forces driving the
Earth system. Advances in the field of deep learning allow
for unprecedented results, but use of these methods in
Earth system science is still very limited. We present a
framework that makes use of a convolutional variational
autoencoder as a learnable kernel from which to extract
spatio-temporal dynamics via PCA. The method promises
the ability of deep learning to digest highly complex
spatio-temporal datasets while allowing expert inter-
pretability. Preliminary results over two artificial datasets,
with chaotic and stochastic temporal dynamics, show that
the method can recover a latent driver parameter while
baseline approaches cannot. While further testing on the
limitations of the method is needed and experiments on
real Earth datasets are in order, the present approach
may contribute to further the understanding of Earth
datasets that are highly non-linear.

I. INTRODUCTION AND MOTIVATION

In recent decades, the volume of Earth observations
and Earth system model simulations has substantially
increased. Yet, harvesting knowledge from such abun-
dant and complex data is a difficult task. Finding and
studying spatio-temporal patterns is one of the principal
goals of the climate community.

First attempts in this direction came with the intro-
duction of Empirical Orthogonal Functions (EOFs) [1].
While several limitations of EOFs [2], e.g., the modes are
not orthogonal, are met by approaches such as Rotated
EOF (REOF) [3][4], some limitations remain, e.g, only
linear modes can be observed. Earth system dynamics
are, however, often non-linear [5][6], hence, Kernel-
PCA [7] can offer some explanatory power. The feature
function maps the original data into a new feature space
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where some non-linear dependencies of the original
data become linear. However, choosing the best kernel
function among the zoo of existing kernel functions is
difficult and important [8].

Deep learning is an extremely active research area
that shows huge success in a broad area of applications
[9]. We use a deep convolutional variational autoencoder
(VAE) [10] to unsupervisedly approximate a useful fea-
ture function and therefore, indirectly a kernel function
to further extract dynamical, non-linear patterns from
Earth system data. It has been shown that VAEs are
able to produce efficient high-level representations from
complex inputs [10]. The original data is projected into
a new abstract space where each dimension represents
a higher order feature. Performing a PCA over the
projected data results in a decomposition of the main
dynamics driving the dataset. Kernel-PCA is one of
the most polyvalent dimensionality reduction techniques
[11], we paired it with the flexibility and power for
encoding high order features of VAEs. Other authors
have used autoencoders to approximate kernel functions
[12]; however, the novelty of the present approach is to
use the abstract representation of the VAE to represent
latent dynamics through the PCs. Note that, despite the
similarity, the resulting PCs of our method are no direct
improvement of EOFs or REOFs since the PCA in our
approach is performed over an abstract space of higher
order features.

We present an overview of our SupernoVAE approach
and preliminary results over two simulated datasets with
chaotic and stochastic temporal dynamics driven by
a latent space dependent parameter. SupernoVAE can
recover the underlying parameter from the datasets while
EOF, REOF, and kernel-PCA using some standard kernel
functions cannot.

II. METHODS AND NOTATION

SupernoVAE. Figure 1 summarizes the SupernoVAE
workflow. Let X be the input-data in the input space
X . First, the data X is used to train a VAE that learns
two functions. One function, the encoder, maps every
Xmn ∈ X onto a distribution over the feature space H,
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Fig. 1: SupernoVAE workflow: As explained in Sec. II, in a first step, a VAE is trained with the climate data. In the second step (orange
lines), the encoder part of the VAE is used to compute H and the PCs of it.

the other one, the decoder, maps a sample drawn from
this latent distribution back to X . Both functions are
trained to combine to the identity. The ratio between the
temporal dimensions in X and the dimensions of the
feature spaceH is given by the hyper-parameter θ. If θ =
1.00 the entire temporal series could be passed into the
embedding and the VAE would not learn any temporal
dynamics. To prevent this, variational autoencoders are
trained with a latent loss that penalizes them for choosing
the covariance of the latent distribution far of the identity
matrix. Therefore, the encoder and decoder can not learn
the identity since the sample, drawn for reconstruction,
might be far off the mean of the latent distribution.

For our tests, the encoder network consists of 6 one-
dimensional convolutional layers, performing convo-
lutions in the time dimension, alternating with batch
normalization layers. The last convolutional layer is
followed by a fully-connected layer mapping to a
mean and a covariance of a distribution over H. The
architecture of the decoder mirrors the encoder. In a
second step, PCA is performed over the means H of the
latent distributions corresponding to X . Each Hmn ∈ H
is an abstract representation of higher order features of
Xmn ∈ X , thus, the first PCs of H depict the main
underlying dynamics that drive X and are laid out for
expert interpretation.

Kernel PCA SupernoVAE is a Kernel-PCA using a
learned kernel function. To apply PCA to inputs xi, we
first calculate the covariance matrix (cij) = 〈xi, xj〉, do
an eigenvalue decomposition and then project the inputs
onto the space spanned by the first k eigenvectors. In
a Kernel-PCA, we substitute the scalar product by a
kernel function k : X ×X → R. The resulting Gram
matrix is used instead of the covariance matrix. From
the representer theorem [7] we know that every kernel
function can be expressed as the concatenation of a
scalar product and a feature function

k(xi, xj) = 〈φ(xi), φ(xj)〉 .

Therefore, applying kernel PCA is the same as applying
the feature function to every example and applying
regular PCA. In the SupernoVAE framework the encoder-
part of the autoencoder works as the feature function
φ : X → H . Hence, one can think of SupernoVAE as
an unsupervised method to learn a kernel function for a
kernel PCA.

Datasets. Two toy datasets were generated to test
this approach. Both have two spatial dimensions m ∈
{1, . . . , 360}, n ∈ {1, . . . , 180} and one temporal
dimension t ∈ {1, . . . , 696}. Let F be a real valued
matrix (Fig. 2.a) which will represent the latent driver
parameter in the datasets. The first dataset, in the
following referred to as Lorenz ’96, is created by
computing a ten-dimensional Lorenz dynamical system
[13] with dynamics

dxmn
i

dt
= (xmn

i+1 − xmn
i−2)x

mn
i−1 − xmn

i + Fmn

and assuming that only the first variable x1 is measured
in analogy to the real climate system where not all
physically relevant variables can be measured. The
Lorenz ’96 can be considered as a simple model for
chaotic spatio-temporal weather dynamics. The second
dataset, here referred to as Cellular automaton, is a
variant of the model proposed by von Neumann [14].
The value at each position in the grid rises at every
timestep until a threshold is exceeded and the value is
set to 0. The probability to start rising again afterwards
depends on the values of its Moore neighbors in the grid.
There is an oscillatory hyper-parameter that increases the
chance of starting to rise and introduces the possibility
of becoming 0 prior to reaching the threshold. The
effect of this parameter is smoothed out by F . That is,
Fmn regulates the inherent stochasticity of Xmn. This
can be understood as a very simple model of a forest
area with F representing different soil properties and
X representing the biomass of each tree.

As a result, dynamics in both datasets vary across
locations (m,n) and lead to chaotic in one and chaotic
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TABLE I Summary of results. The column Reconstruction shows the coefficient of determination of the VAE reconstructions and the
input time series, the columns 1st, 2nd and 3rd PC show the coefficient of determination between the kth principal component and the
forcing pattern F . The coefficient of determination for the baseline methods were smaller than 0.00114, see Table II. The PC marked * is
represented in Fig. 2 (c).

Lorenz ’96 Cellular automata

θ Reconstruction 1st PC 2nd PC 3rd PC Reconstruction 1st PC 2nd PC 3rd PC

0.01 0.129 0.000 0.001 0.001 0.513 0.009 0.002 0.005
0.10 0.643 0.476 0.000 0.022 0.968 0.627 0.003 0.005
1.00 0.865 0.756* 0.851 0.001 0.981 0.287 0.005 0.767

time-permuted time-permuted

0.10 0.446 0.001 0.000 0.000 0.939 0.598 0.027 0.007
1.00 0.988 0.006 0.000 0.000 0.997 0.397 0.328 0.074

and stochastic behavior in the other dataset. To ensure
that the results are caused by the different dynamics
and not by statistical properties we created for each
dataset a time-permuted version where the values of time
series at each location have been independently randomly
permuted. Finally, each time series was normalized by
subtracting its mean and dividing it by its standard
deviation.

Experiments. The VAE was trained for θ ∈
{0.01, 0.10, 1.00} on both datasets, and for θ ∈
{0.10, 1.00} on the time-permuted datasets. We expect
to recover F in one of the first principal components
since it is the main source of variability in the datasets.
The autoencoder is able to reconstruct the time series
from the latent distribution corresponding to this time
series. Hence the information on the driving parameter
F must be contained in the latent distribution. The
correlation between F and the first three components of
each model were recorded. Analogously, the correlation
of F to the first components of EOF over the original
data and off-the-shelf Kernel PCA using the suggested
kernels of the Scipy-library [15] (Linear, Polynomial,
RBF, Sigmoid and Cosine) and there standard hyper-
parameters in Scipy-library were compared and used
as a baseline. The Lorenz model is chaotic and F
corresponds to the amount of chaos in each time series.
The cellular automaton is stochastic and F corresponds
to the amount of stochasticity in each time series. Both
of these properties are hard to identify using off-the-
shelf Kernels. Hence, all baselines failed to identify F .

III. RESULTS AND DISCUSSION

Table I summarizes the experimental results of Su-
pernoVAE. It can be observed that there is a correlation
between the quality of the reconstruction and the
coefficient of determination between F and the PCs.

Fig. 2: Plot of (a) F , (b) the 1st PC for the Lorenz ’96 dataset
and (c) the 1st PC for Lorenz ’96 after applying SupernoVAE. E.V.:
Explained Variation by the first principal component.

This shows that the different temporal dynamics are
learned by the autoencoder and mapped into the latent
distributions if the dimensionality of the feature space
allows for such information to be stored. The coefficient
of determination for F and the results of the baseline
methods (EOF, Kernel-PCA) applied directly to X
was smaller than 0.001, consequently, none of these
approaches were able to find F , ref. Table II.
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TABLE II Summary of results. Coefficient of determination for the Baseline Kernel PCA and EOF methods between the kth principal
component and the forcing pattern F .

Lorenz ’96 Cellular automata

Method 1st PC 2nd PC 3rd PC 1st PC 2nd PC 3rd PC

EOF 5.94 · 10−6 5.22 · 10−8 1.36 · 10−7 7.13 · 10−5 4.81 · 10−6 7.42 · 10−5

Linear Kernel 8.15 · 10−4 3.24 · 10−4 3.84 · 10−5 7.80 · 10−5 1.63 · 10−6 5.16 · 10−5

Poly Kernel 2.12 · 10−4 2.54 · 10−4 1.87 · 10−6 4.72 · 10−4 1.36 · 10−4 1.31 · 10−5

RBF Kernel 5.12 · 10−4 1.17 · 10−5 9.53 · 10−5 4.06 · 10−4 9.65 · 10−5 1.63 · 10−4

Sigmoid Kernel 9.42 · 10−4 2.48 · 10−7 3.83 · 10−4 6.65 · 10−4 1.13 · 10−3 1.13 · 10−5

Cosine Kernel 1.06 · 10−3 6.35 · 10−5 2.76 · 10−5 1.17 · 10−4 4.50 · 10−5 2.60 · 10−5

For the two datasets, the VAE finds meaningful
features and temporal dynamics such that the time series
can be reconstructed despite the noise introduced by
sampling from the latent distribution. However, when
the time series is permuted, there are no temporal
patterns and the network is not able to learn higher-
order features. Therefore the only way to decrease
the reconstruction loss is to learn the identity even if
that implies a high latent loss created by pushing the
covariance towards zero. The correlation found between
the principal components on the embeddings of the
time-permuted Lorenz ’96 is less than 0.001, while the
reconstruction in both datasets is better for the time-
permuted model corroborating this explanation.

In the cellular automaton dataset, the latent forcing
F affects both the temporal dynamics and the data
distribution. Permuting in time does erase the temporal
dynamics, but the data distribution is still hinting at the
latent forcing F . Hence the forcing pattern is correlated
to the PCs in this model. These preliminary results show
that SupernoVAE is capable of recovering latent forcing
from the temporal dynamics that otherwise might go
unnoticed by the baseline methods.

IV. CONCLUSIONS

We introduced SupernoVAE and demonstrated in
two toy examples that it was capable of finding the
driving parameter of dynamics in contrast to the tested
baseline methods. We showed that SupernoVAE captured
time dynamics and not just distribution information.
The proposed method allows the clustering of temporal
dynamics in non-linear Earth datasets. Since the core of
the method is based on a convolutional neural network,
it scales very well in the number of input variables.
This allows for using multivariate inputs. Besides, it
can be extended to account for data in three spatial
dimensions by using 3D convolutions and can adopt
other neural network architectures like RNN-LSTM

mechanics. Even though the work presented here is
only a proof of concept and further research is needed
to reach substantial results in climate science, there are
reasons to believe that the method is capable of finding
unknown non-linear latent dynamics underlying climate
data.
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