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Abstract—In this paper, classical (iterative) decoding schemes
for moderate-density parity-check (MDPC) codes are consid-
ered. The algorithms are analyzed with respect to their error-
correction capability as well as their resilience against a re-
cently proposed reaction-based key-recovery attack on a variant
of the MDPC-McEliece cryptosystem by Guo, Johansson and
Stankovski (GJS). New message-passing decoding algorithms are
presented and analyzed. The proposed decoding algorithms have
an improved error-correction performance compared to existing
hard-decision decoding schemes and can reduce the effectiveness
of the GJS reaction-based attack for an appropriate choice of
the algorithm’s parameters.

I. INTRODUCTION

In 1978, Rivest-Shamir-Adleman (RSA) proposed a pubilic-
key cryptosystem whose security is based on the hard problem
of factoring large integers. In 1999, Shor presented a factor-
ization algorithm for quantum computers that is able to factor
large integers in polynomial time [1] and thus renders the RSA
cryptosystem insecure if quantum computer of sufficient scale
can be built one day. This result gives rise to developing
cryptosystems that are post-quantum secure.

McEliece proposed a code-based cryptosystem [2] that
relies on the hardness of decoding an unknown linear error-
correcting code and thus is resilient against efficient fac-
torization attacks on quantum computers. One drawback of
the scheme is the large key size and the rate-loss compared
to the RSA cryptosystem. Many variants of the McEliece
cryptosystem based on different code families were considered
in the past. In particular, McEliece cryptosystems based on
low-density parity-check (LDPC) allow for very small keys but
suffer from feasible attacks on the low-weight dual code due
to the sparse parity-check matrix [3]. Variants based on quasi-
cyclic (QC)-LDPC codes that use sparse column scrambling
matrices to increase the density of the public code parity-
check matrix were proposed in [4], [5]. However, unfortunate
choices of the column scrambling matrix allow for structural
attacks [6].

The family of moderate-density parity-check (MDPC) codes
admit a parity-check matrix of moderate density,1 yielding
codes with large minimum distance [7]. In [8] a McEliece

1The existence of a moderate-density parity-check matrix for a binary linear
block code does not rule out the possibility that the same code fulfills a
(much) sparser parity-check matrix. As in most of the literature, we neglect
the probability that a code defined by a randomly-drawn moderate parity check
matrix admits a sparser parity-check matrix. Guarantees in this sense shall be
derived based on random code ensemble arguments.

cryptosystem based on QC-MDPC codes that defeats informa-
tion set decoding attacks on the dual code due to the moderate
density parity-check matrix is presented. For a given security
level, the QC-MDPC cryptosystem allows for very small key
sizes compared to other McEliece variants.

Recently, Guo, Johansson and Stankovski (GJS) presented
a reaction-based key-recovery attack on the QC-MDPC sys-
tem [9] which was modified in [10], [11] to attack the QC-
LDPC cryptosystems [5], [12]. These attacks reveal the secret
sparse parity-check matrix by observing the decoding failure
probability for chosen ciphertexts that are constructed with
error patterns of a specific structure. Modified versions of
the attack can even break a system that uses CCA-2 secure
conversions [13].

In this paper we analyze iterative decoding algorithms for
(QC-) MDPC codes with respect to their error-correction
capability and their resilience against the GJS attack [9]. We
present novel hard-decision message-passing (MP) algorithms
that can reduce the effectiveness of the GJS key-recovery at-
tack from [9] and have an improved error-correction capability
compared to existing hard-decision decoding schemes. Density
evolution (DE) analysis for the novel decoding schemes is
performed which allows to predict decoding thresholds as well
as to optimize the parameters of the algorithm.

II. PRELIMINARIES

Denote the binary field by F2 and let the set of m × n
matrices over F2 be denoted by Fm×n. The set of all vectors
of length n over F2 is denoted by Fn

2 . Vectors and matrices
are denoted by bold lower-case and upper-case letters such as
a and A, respectively. A binary circulant matrix A of size
Q is a Q × Q matrix with coefficients in F2 obtained by
cyclically shifting its first row a = (a0, a1, . . . , aQ−1) to right.
The set of Q×Q circulant matrices together with the matrix
multiplication and addition forms a commutative ring and it is
isomorphic to the polynomial ring

(
F2[X]/

(
XQ − 1

)
,+, ·

)
.

In particular, there is a bijective mapping between a circulant
matrix A and a polynomial a(X) = a0 + a1X + . . . +
aQ−1xQ−1 ∈ F2[X]. We indicate the vector of coefficients of
a polynomial a(X) as a = (a0, a1, . . . , aQ−1). The weight of
a polynomial a(X) is the number of its non-zero coefficients,
i.e., it is the Hamming weight of its coefficient vector a.
We indicate both weights with the operator wht (·), i.e.,
wht (a(X)) = wht (a). In the remainder of this paper we use
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the polynomial representation of circulant matrices to provide
an efficient description of the structure of the codes.

A. QC MDPC-based Cryptosystems

The QC-MDPC McEliece cryptosystem [8] allows for a
very simple description without the need for row and column
scrambling matrices. Due to the moderate density of the parity-
check matrix, known decoding attacks on the dual code [3] are
defeated. The parity-check matrix consists of blocks of Q×Q
circulant matrices which allows for very small key sizes due
to the compact description of the circulant blocks.

A binary MDPC code of length n, dimension k and row
weight dc is defined by a binary parity-check matrix H that
contains a moderate number of dc ≈ O(

√
n log(n)) ones per

row. For n = N0Q, dimension k = K0Q, redundancy r = n−
k = R0Q with R0 = N0−K0 for some integer Q, the parity-
check matrix H(X) of a QC-MDPC code in polynomial form
is a R0 ×N0 matrix.

Without loss of generality we consider in the following
codes with r = Q (i.e. R0 = 1). The parity-check matrix
of QC-MDPC codes with r = Q has the form

H(X) =
(
h0(X) h1(X) . . . hN0−1(X)

)
. (1)

Let DECH(·) be an efficient decoder for the code defined by
the parity-check matrix H .

Key generation:
• Randomly generate a parity-check matrix H ∈ Fr×n

2 of
the form (1) with wht (hi(X)) = d

(i)
c for i = 0, . . . , N0−

1. The matrix H with row weight dc =
∑N0−1

i=0 d
(i)
c is

the private key.
• The public key is the corresponding binary k×n generator

matrix in systematic form, i.e.,

G(X) =
(

I (g0(X), . . . , gK0−1(X))
T
)
.

G(X) can be described by K0Q bits (public key size).

Encryption:
• To encrypt a plaintext2 u ∈ Fk

2 a user computes the
ciphertext c ∈ Fn

2 using the public key G as

c = uG + e (2)

where e is an error vector uniformly chosen from all
vectors from Fn

2 of Hamming weight wht (e) = e.

Decryption:
• To decrypt a ciphertext c the authorized recipient uses

the private key DECH(·) to obtain

uG = DECH(uG + e).

• Since G is in systematic form the plaintext u corresponds
to the first k bits of uG.

2As in [8] we assume that the CCA-2 security conversions from [13] are
used to allow for systematic encoding without security reduction.

B. A Reaction-Based Attack on the QC-MDPC McEliece
Cryptosystem

GJS proposed a reaction-based key-recovery attack on the
QC-MDPC McEliece cryptosystem [8] which is currently the
most critical attack against the scheme [14]. Efficient iterative
decoding of LDPC/MDPC codes comes at the cost of decoding
failures. The GJS attack exploits the observation that the
decoding failure probability for some particular error patterns
is correlated with the structure of the parity-check matrix H
(secret key). We now describe briefly how the attack proceeds.

The Lee distance dL between two entries at position i and
j of a binary vector a = (a0 a1 . . . an−1) is defined as [15]

dL(i, j)
def
= min {|i− j|, n− |i− j|} .

The Lee distance profile3 of a binary vector a of length Q is

D(a)
def
= {d :∃i, j∈(0, Q−1) s.t. ai =aj =1 and dL(i, j)=d}

where the maximum distance in D(a) is U = bQ2 c. The
multiplicity µ(d) is defined as the number of occurrences of
distance d in the vector a. A binary vector a is fully specified
by its distance profile D(a) and thus can be reconstructed
with high probability from D(a) [9] (up to cyclic shifts).

Let Ψd be a set containing all binary vectors of length n
with exactly t ones that are placed as b t2c pairs with Lee
distance d in the first Q positions of the vector. By limiting
the errors to the first Q positions, only the first circulant block
h0(X) of the matrix H(X) will determine the result of the
decoding procedure. The GJS attack proceeds as follows:
• For d = 1, . . . , U generate error sets Ψd of size M each

(with M being a parameter defining, together with U , the
number of attempts used by the attacker).

• Send M ciphertexts (2) with e ∈ Ψd for all d = 1, . . . , U
and measure the frame error rate (FER).

Since the decoding failure probability is lower for e ∈ Ψd

with d ∈ D(h0), i.e. if µ(d) > 0, for sufficiently large M the
measured FER can be used to determine the distance profile
D(h0). The vector h0 can then be reconstructed from the
distance profile D(h0) using the methods from [9].

The remaining blocks of H(X) in (1) can then be recon-
structed via the generator matrix G(X) using linear algebraic
relations. The success on the attack depends on how the
systems deals with decoding failures since the FER can only be
measured if retransmissions are requested. Another important
factor is which decoding scheme is used. In [9], [10] it is
shown that the GJS attack succeeds if bit-flipping (BF) or
belief propagation (BP) decoding algorithms are used.

The attack can be defeated on a protocol level by limiting
the lifetime of a key (see [12]). However, this protocol-
based fix affects the performance of the cryptosystem since it
requires a recurring generation of key-pairs. Hence, decoding
algorithms that are more robust against this attack can increase
the lifetime of a key and thus improve the performance of the
cryptosystem.

3We use the term “Lee distance profile” (instead of “distance spectrum” as
in [8]) to avoid confusion with the distance spectrum of linear block codes.



C. Classical Decoding Algorithms

In the following we describe classical decoding algorithms
for LDPC codes and analyze their error-correction capability
for MDPC codes as well as their resilience against the GJS
attack. For decoding we map each ciphertext bit ci to +1 if
ci = 0 and −1 if ci = 1 yielding (with some abuse of notation)
a ciphertext c ∈ {+1,−1}n. We consider next iterative MP
decoding on a bipartite graph consisting of n variable nodes
(VNs) and r check nodes (CNs). A VN vj is connected to
a CN ci if the corresponding entry hi,j in the parity-check
matrix is equal to 1. We consider next only regular graphs, i.e,
graphs for which the number of edges emanating from each
VN equals dv and the number of edges emanating from each
CN equals dc. We refer to dv and dc as variable and check
node degree, respectively. The neighborhood of a variable node
v is N (v), and similarly N (c) denotes the neighborhood of
the check node c. We denote the messages from VN vj to CN
ci by mvj→ci and the messages from ci to vj by mci→vj . In
the following we omit the indices of VNs and CNs whenever
they are clear from the context. For the following algorithms
(except BP), each VN v is initialized with the corresponding
ciphertext bit c ∈ {+1,−1}.

1) Bit-Flipping: For decryption in the QC-MDPC cryp-
tosystem [8] an efficient BF algorithm for LDPC codes (see
e.g. [16, Alg. 5.4]) is considered. This algorithm is often
referred to as “Gallager’s bit-flipping” algorithm although it
is different from the algorithm proposed by Gallager in [17].

Given a ciphertext c, a threshold b ≤ r and a maximum
number if iterations Imax, the BF algorithm proceeds as
follows. Each VN sends the message mv→c = c to all
neighboring CNs c ∈ N (v). The CNs send the messages

mc→v =
∏

v′∈N (c)

mv′→c

to all neighboring VNs v ∈ N (c). Each variable node counts
the number of unsatisfied check equations and sends to its
neighbors the “flipped” ciphertext bit if at least b parity-check
equations are unsatisfied, i.e.

mv→c =

{
−c if |{c′ ∈ N (v) : mc′→v = −1}| ≥ b
c otherwise

.

The algorithm terminates if either all checks are satisfied or
the maximum number of iterations Imax is reached.

In [8] it is suggested to compute b according to [17,
p. 46, Eq. 4.16] which will lead to suboptimal results since
the BF decoder is different from the decoder analyzed in [17].

2) Gallager B: An efficient binary MP decoder for LDPC
codes, often referred to as Gallager B, was presented an
analyzed in [17]. The VN send the messages

mv→c =

{
−c if |{c′ ∈ N (v) \c : mc′→v = −c}| ≥ b
c else

.

(3)

This means that in the first iteration VN v sends the message
mv→c = c to all neighboring CNs c ∈ N (v). The CNs send
the messages

mc→v =
∏

v′∈N (c)\v
mv′→c (4)

to the neighboring VNs. After iterating (3), (4) at most Imax

times, the final decision is given by

ĉ =

{
−c if |{mc→v = −c}| > b

c else
. (5)

For fixed (dv, dc) the average error correction capability
over the binary symmetric channel (BSC) and the optimal
value for b (see [17, Eq. 4.16]) for the ensemble of (dv, dc)
LDPC codes can be analyzed, in the limit of large block
lengths, using the density evolution (DE) analysis [17], [18].

3) Miladinovic-Fossorier (MF) Algorithms: Two proba-
bilistic variants of Gallager’s algorithm B were proposed by
Miladinovic and Fossorier in [19, Sec. III.A]. At each iteration
` the VN to CN messages (3) in Gallager B are modified with a
certain probability p(`)e . By defining an initial value p(0)e = p∗

and a decrement pdec ≤ p∗, one can compute p(`)e by

p(`)e =

{
p
(`−1)
e − pdec if p(`−1)e > pdec

0 else
. (6)

Variant 1 (Miladinovic and Fossorier (MF)-1): If the
number of incoming CN messages different from c that do not
agree with c exceeds the threshold b, i.e. if |{c′ ∈ N (v) \c :
mc′→v = −c}| ≥ b, the VNs send the messages

mv→c =

{
−c with probability 1− p(`)e

c with probability p(`)e

and mv→c = c otherwise.

Variant 2 (MF-2): With respect MF-1, we shall now introduce
the iteration counter for the messages that are output by VNs
and by CNs. At iteration `, is the number of message at the
input of a VN v sent by its neighboring CNs exceeds the
threshold b, i.e. if |{c′ ∈ N (v) \c : m

(`−1)
c′→v = −c}| ≥ b, the

VN sends the message

m(`)
v→c =

{
−c with probability 1− p(`)e

m
(`−1)
v→c with probability p(`)e

while m(`)
v→c = c otherwise.

The check node operation as well as the final decision
remains the same as in Gallager B (see (4) and (5)). By
definition the probability p

(`)
e has two degrees of freedom,

namely p∗ and pdec, which are subject to optimization.
4) Algorithm E: A generalization of Gallager B that ex-

ploits erasures, further referred to as Algorithm E, was in-
troduced and analyzed in [18], [20]. To incorporate erasures
the decoder requires a ternary message alphabet {−1, 0,+1},
where 0 indicates an erasure. The VNs send the messages

mv→c = sign

ωc+
∑

c′∈N (v)\c
mc′→v

 . (7)



Here, ω is a heuristic weighting factor that was proposed in
[18] improve the performance of Algorithm E which may vary
over iterations. We consider next the simple case where ω is
kept constant through all iterations. The check nodes operate
the same way as in Gallager B, i.e the CNs send the messages
mc→v according to (4). After iterating (4) and (7) at most Imax

times, the final decision is made as

ĉ = sign

ωc+
∑

c∈N (v)

mc→v

 .
In [18] a DE analysis for Algorithm E was derived which

allows to compute an estimate of the optimal weight ω. For
odd dv Algorithm E is equivalent to Gallager B with threshold
b = dω+dv−1

2 e and thus is also vulnerable against the GJS
attack.

5) Belief Propagation (BP) Decoding: BP decoding is
a soft-decision decoding algorithm that is optimum in the
maximum a posteriori (MAP) sense over a cycle-free graph.
Each VN v is initialized with the log-likelihood ratios

mch = c ln
n− e
n

where c is ciphertext bit corresponding to v. The VNs send
the messages

mv→c = mch +
∑

c′∈N (v)\c
mc′→v (8)

to the CNs. In turn, the CNs send the messages

mc→v = 2 tanh−1

 ∏
v′∈N (c)\v

tanh
(mv′→c

2

) . (9)

After iterating (8), (9) at most Imax times, the final decision
at each VN is made as

ĉ = sign

mch +
∑

c∈N (v)

mc→v

 .
It was conjectured for QC-MDPC codes [8] and finally

shown for QC-LDPC codes [10] that the GJS attack is also
successful for QC-MDPC McEliece cryptosystems under BP
decoding.

D. Simulation Results

We now present simulation results of the GJS attack on
variants of the QC-MDPC cryptosystem using the above
described schemes. We consider next an QC-MDPC code
ensemble C with n = 9602 and k = 4801 and parity-check
matrix in the form

H(X) = (h0(X) h1(X))

where h0(X) and h1(X) are two polynomials of degree less
than 4801 and wht (h0) = wht (h1) = 45. The ensemble
C was proposed in [8] for 80 bit security. To analyze the
resilience against the GJS attack, we performed Monte Carlo
simulations for codes randomly picked from C collecting up to

0 5 10 15 20 25 30 35 40
10−2

10−1

100

µ(d) = 0 µ(d) = 1 µ(d) = 2 µ(d) = 3

Simulation point

F
ra
m
e
E
rr
o
r
R
a
te

BF decoding, δ = 5, e = 100

Algorithm E, ω = 13, e = 100

MF-1 decoding, p∗ = 0.28, pdec = 0, e = 100

BP decoding, e = 112

Fig. 1. GJS reaction-based attack on the code ensemble C with BF decoding,
MF decoding, Algorithm E and BP decoding. For the MF-2 decoder an
attacker needs to collect much more samples to reconstruct D(h0).

200 decoding failures (frame errors) with Imax = 50 iterations.
For each multiplicity in D(h0), 11 different error sets Ψd

(simulation points) were simulated. As in [10] the weight of
the error patterns was chosen such that the FER is high enough
to be easily observable in the simulations.

The simulation results in Figure 1 for one code from C
show that all considered schemes are vulnerable against the
GJS attack. For the MF decoding scheme the probability p(`)e

was chosen such that the FER for all multiplicities appearing
in D(h0) are similar. To be able to reconstruct the distance
profile D(h0) if the MF decoding scheme with the appropriate
choice of p(`)e is used, the attacker needs to collect much more
samples compared to the other approaches. Since simulations
of different codes from C show very similar results we
conjecture that the choice of p(`)e rather depends on the code
ensemble than on the code itself.

III. SECRET KEY CONCEALMENT VIA MODIFIED
ITERATIVE DECODING

In this section we propose new methods to modify MP
decoding algorithms that admit erasures. The methods allow
to modify MP decoding algorithms in a probabilistic manner
to combat the GJS attack for an appropriate choice of the
decoding parameters. The main idea is, that similar to the
MF decoding scheme (see Sec. II-C3), we modify the VN
to CN messages at each iteration with a given probability. In
particular, we modify the MP decoder such that the messages
mv→c are erased (i.e., set to 0) under certain conditions with
a given probability p

(`)
e . Remarkably, we will see how this

results also in an improved error-correction capability. We
will refer to this approach as random erasure message-passing
(REMP) decoding and we apply it to modify Algorithm E.



A. First Modification of Algorithm E (REMP-1)

We modify Algorithm E such that any nonzero message
mv→c in iteration ` is erased with probability p

(`)
e . At the

VNs we first compute a temporary output message

m̃v→c = sign

ωc+
∑

c′∈N (v)\c
mc′→v

 .
If the message m̃v→c is not an erasure, i.e. if m̃v→c 6= 0, the
VN sends

mv→c =

{
m̃c→v with probability 1− p(`)e

0 with probability p(`)e

(10)

and mv→c = 0 else. At the CNs we perform the same
operation as in Algorithm E (see (4)). The final decision, after
iterating (4) and (10) at most Imax times, is given by (12). As
for the MF algorithm, the probability p

(`)
e may be decreased

as ` grows following (6).

B. Second Modification of Algorithm E (REMP-2)

In the second modification of Algorithm E from Sec. II-C4
the messages mv→c at iteration ` are erased (i.e. set to mv→c =

0) with probability p
(`)
e if they contradict the corresponding

ciphertext bit c. At the VNs we first compute a temporary
output message

m̃v→c = sign

ωc+
∑

c′∈N (v)\c
mc′→v

 .
If the message m̃v→c contradicts the ciphertext bit c, i.e. if we
have m̃v→c = −c, the VN sends

mv→c =

{
m̃c→v with probability 1− p(`)e

0 with probability p(`)e

(11)

and mv→c = m̃c→v otherwise. At the check nodes we perform
the same operation as in Algorithm E (see (4)). The final
decision, after iterating (4) and (11) at most Imax times, is
given by

ĉ = sign

ωc+
∑

c∈N (v)

mc→v

 . (12)

Again, as for the MF algorithm, the probability p
(`)
e may be

decreased as ` grows following (6).

C. Performance Analysis & Simulation Results

1) Density Evolution Analysis: We first analyze the error-
correction capability of the two modifications of Algorithm E
from Sec III-A and Sec. III-B. As first estimate of the code
performance, we employ the DE analysis [18] to determine the
iterative decoding threshold of a (dv, dc) unstructured MDPC
code ensemble over a BSC with error probability ∆ (see full
version of the paper [21]). The decoding threshold is denoted
as ∆? and represents the largest channel error probability
for which, in the limit of large n and large Imax, the bit
error probability of code picked randomly from the ensemble

becomes vanishing small [18]. We then get a rough estimate
on the error correction capability as4 δ? = bn∆?c. For a
moderate block length n, δ? provides only a coarse estimate
to the number of errors at which we expect the FER to rapidly
decrease (so-called waterfall region), with the accuracy of the
prediction improving as n grows large. With a slight abuse
of the wording, we refer to δ? as decoding threshold as well.
We further denote the decoding threshold under Algorithm
E, REMP-1 and REMP-2 as δ?E, δ?1 and δ?2 , respectively.
The decoding thresholds do not only depend on the selected
algorithm, but also on the algorithm parameters. The results
for the code ensembles with N0 = 2 for the security levels
(SLs) of 80, 128 and 256 bit from [8, Tab. 2] are summarized
in Table I. For Algorithm E, the value of ω has been chosen to
maximize the decoding threshold. For REMP-2 we have that
pdec = 0. In some cases, the variants REMP-1/2 provide gains
for suitable choices of the parameters (ω, p∗, pdec).

TABLE I
DECODING THRESHOLDS OF ALGORITHM E AND IT VARIANTS FOR THE
MDPC CODE ENSEMBLES WITH THE PARAMETERS FROM [8, TAB. 2].

REMP-1 REMP-2 Alg. E
SL p∗ pdec δ?1 (ω) p∗ δ?2 (ω) δ?E (ω)
80 10−3 0 107(13) 0.1 108(13) 106(14)

128 10−1 10−3 153(18) 0.76 157(14) 153(18)
256 2 · 10−3 2 · 104 296(27) 0.65 301(23) 294(26)

2) Simulation Results: To validate the performance esti-
mates obtained through DE, we simulated the error-correction
capability of the decoding schemes from Section II-C and
Section III. The results in terms of FER as a function of
the error pattern weight are depicted in Figure 2. The results
confirm the trend predicted by the DE analysis that the
error-correction capability improves upon existing decoding
algorithms. Even for erasure probability values chosen to
conceal the structure of H(X) (yielding a suboptimal choice
with respect to the error correction performance), REMP-2
outperforms Algorithm E and the BF/MF algorithms.

D. Resilience Against the GJS Attack

We now analyze the resilience of the proposed decoding
schemes against the GJS attack. For the REMP-1/2 decoding
schemes we performed Monte Carlo simulations for codes
randomly picked from C collecting up to 200 decoding
failures (frame errors) with Imax = 50 iterations. For each
multiplicity in D(h0), 11 different error sets Ψd (simulation
points) were simulated. The simulation results in Figure 3
show that, for an appropriate choice of parameters, the REMP-
1/2 decoding schemes have a similar FER for all multiplicities
appearing in D(h0). Hence, the reconstruction of the distance
profile D(h0) from the observed FER is much harder which

4At the decoding threshold ∆? a vanishing small bit error probability may
not imply a vanishing small block error probability. For the regular MDPC
ensembles under consideration the threshold on the bit error probability and
the one on the block error probability do coincide over binary-input output-
symmetric memoryless channel under BP decoding [22]. In our estimate, we
implicitly assume that the result extends to Algorithm E and its variants.
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Fig. 2. Error-correction performance (FER) over the weight of the error
patterns. The figure shows that the proposed REMP schemes significantly
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0 5 10 15 20 25 30 35 40
10−2

10−1

100

µ(0) = 0 µ(0) = 1 µ(0) = 2 µ(0) = 3

Simulation point

F
ra
m
e
E
rr
or

R
at
e

Algorithm E, ω = 13, e = 100

REMP-1, ω = 13, pe = 1.2 · 10−4, e = 100

(a)

0 5 10 15 20 25 30 35 40

10−1

100

µ(d) = 0 µ(d) = 1 µ(d) = 2 µ(d) = 3

Simulation point

F
ra
m
e
E
rr
or

R
at
e

Algorithm E, ω = 13, e = 100

REMP-2, ω = 13, pe = 0.35, e = 106

(b)

Fig. 3. GJS reaction-based attack on the code ensemble C with (a) REMP-1
and (b) REMP-2 decoding. The results show that an attacker has to collect
much more samples to be able to reconstruct the distance profile D(h0).

significantly delays the GJS attack and increases the lifetime of
the public key. To conceal the structure of H(X) the choice of
p
(`)
e for a particular error weight e is crucial. If p(`)e is chosen

too large the picture is inverted, i.e. higher multiplicities have
a higher FER than lower multiplicities. Thus the error weight
e should be computed after decoding and ciphers generated
with an error weight different from e should be rejected to
prevent attacks that exploit this effect.

IV. CONCLUSIONS

Classical iterative decoding schemes for moderate-density
parity-check (MDPC) codes were analyzed with respect to
their error-correction capability as well as their resilience
against the recent Guo, Johansson and Stankovski (GJS) key-
recovery attack. A new decoding method called random era-
sure message-passing (REMP) that allows to improve existing
message-passing (MP) decoding algorithms with respect to

their error-correction capability as well as their resilience
against the GJS attack was proposed. Two REMP variants of
an existing MP decoder that have an improved error-correction
performance for MDPC codes compared to existing schemes
were presented and analyzed. The simulation results show
that the proposed REMP schemes significantly reduce the
effectiveness of the GJS attack for an appropriate choice of
decoding parameters.
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