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Introduction:  The InSight [1] Discovery-class 

mission to study the martian interior landed in the 

Elysium Planita region [2] of Mars on November 26
th

, 

2018, and  will install the first geophysical station on 

the planet. A heat flow probe termed the Heat Flow 

and Physical Properties Package (HP
3
) [3] is one of the 

mission’s three geophysical instruments, and HP
3
 will 

emplace a suite of temperature sensors to a depth of up 

to 5 m using a self-hammering mechanism called the 

HP
3
-mole. During penetration, the regoltith’s thermal 

conductivity will be measured using the mole’s TEM-

A sensors [3] as a modified line heat source [3,4]; 

measurements will be performed at depth intervals of 

50 cm.  

The principle of the mole relies on moving the reg-

olith in front of the probe out of the mole path, thus 

reducing regolith porosity in the vicinity. Depending 

on  regolith relative density, the volume affected ex-

tends to 2-3 mole diameters [5]. Such compaction can 

increase regolith thermal conductivity, and similar 

effects have been reported for the Apollo lunar heat 

flow experiments [6], resulting in a downward correc-

tion of the reported values by 30-50% [7]. While the 

higher Martian atmosphere pressure largely mitigates 

the influence of compaction on thermal conductivity, a 

quantitative analysis of the effect has so far not been 

performed.  

Experimental Setup: We have used a flight-

equivalent HP
3
 mole model to perform compaction and 

thermal conductivity tests under representative envi-

ronmental conditions. The general test setup is shown 

in the top panel of Fig.1 and schematics of the setup 

are given in the bottom panel. The test cylinder con-

tains regolith simulant, mole, and a reference conductivi-

ty measurement using a Transient Hot Strip (THS) [4]. The 

test cylinder was placed inside a vacuum chamber, and 

air pressure was held constant to within 0.5 mbar dur-

ing each experimental run. Depending on the experi-

ment, background pressure was between 6 and 10 mbar 

using ambient air. 

The experimental procedure was as follows: 1) The 

container was filled and the reference THS measure-

ment strip was installed. Then, the mole was installed 

in its mounting fixure (compare top panel of Fig. 1) 

and the container was moved into the vacuum cham-

ber. 2) A THS measurement was conducted to deter-

mine the pre-compaction thermal conductivity of the 

regolith simulant. The mole then penetrated to a 55 cm 

tip depth and another THS measurement was per-

formed to verify that hammering does not influence the 

THS reference. 3) The chamber was closed and 

pumped down. 4) Another THS measurement and a 

TEM-A measurement were performed after the soil 

had thermally equilibrated.  

 

 

 
 

Figure 1. Top: Experimental setup showing the HP
3
 

mole in the center prior to penetration. The THS refer-

ence measurement strip is buried on the right hand 

side of the test cylinder. Bottom: Schematic setup of 

the experiment showing the THS reference strip on the 

left and the HP
3
 mole in the center of the test cylinder, 

fully buried. 
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Figure 2. Top: Grainsize distributions for the three 

different simulants tested. Bottom: Minimum, maxi-

mum, and average density as a function of grain densi-

ty for the three simulants tested.  

 

Regolith simulants used in the tests were a broken 

up basalt mixed with 25% dust (Syar), quartz sand 

(Quartz), as well as a dunite powder (MSS-D). Grain-

size distributions as well as the minimum (loose) and 

maximum (compacted) densities of the simulants are 

shown in Fig. 2. While the quartz sand has a very nar-

row grain-size distribution and is not very compactale, 

the MSS-D is highly compactable. Syar is in-between 

the two. During soil preparation, care was taken to 

place the soil in a loosely compacted state, as the influ-

ence of compaction is expected to be most pronounced 

in this setting [5]. 

Results: Results of the tests are summarized in Ta-

ble 1, where conductivities determined using the THS 

reference as well as the HP
3
-mole TEM-A measure-

ments are shown. For all tests the influence of compac-

tion at the location of the THS reference strip was 

below 2-3%, within the uncertainty of the method. 

Some TEM-A measurements suffer from increased 

background temperature drift, resulting in increased 

systematic uncertainties for the associated conductivity 

values. 

 During the tests, some soils inside container settled 

by a few cm, indicating soil compaction. For MSS-D, 

settling was ~3 cm during hammering, and pre- and 

post-hammering TEM-A thermal conductivities were 

0.055 and 0.06 W/mK, respectively. This indicates a 

10% increase of thermal conductivity due to the ham-

mering action. For Quartz sand, no soil settling was 

observed and TEM-A results are indistinguishable 

between pre- and post-hammering in a first measure-

ment, while a repetition of the experiement indicates a 

9% increase of conductivity. However, the soil was not 

fully thermally equilibrated during the second test run, 

such that the apparent increase is likely due to system-

atic measurement errors. For Syar, soil settled by ~1.5 

cm during hammering, and observed compaction 

amounts to a 7% increase in thermal conductivity. 

However, these results again  suffer from background 

temperature drift, which makes them less reliable.  

 

Soil THS [W/mK] TEM-A [W/mK] Δk [%] 

MSS-D 0.055 0.060 9 

WF-34 0.094 0.092 -2 

WF-341 0.089 0.098 10 

Syar1 0.142 0.167 18 

Syar1,2 0.142 0.152 7 

 

Table 1 Results using the THS reference method as 

compared to conductivity values determined using the 

HP
3
 TEM-A after penetration. 

1
Measurements suffer 

from background temperature drift. 
2
Same measure-

ment as above, but evaluated at shorter times to reduce 

the influence of background drift.  

 

Discussion: On Mars, we expect moderately com-

pacted soil with a grain size distribution in-between 

that of Quartz and Syar, but without the dust fraction 

[2,8]. Therefore, some effect of compaction on thermal 

conductivity may be expected, but this should be less 

than the ~10% worst case conditions studied here. On 

Mars, results obtained using TEM-A will furthermore 

be compared to thermal inertia estimates using the HP
3
 

radiometer [3] as well as estimates derived from the 

attenuation of the annual temperature wave. These 

should be useful to verify/correct the TEM-A meas-

urements. 
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