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ABSTRACT

The detection of ships and other objects at sea using space-
bourne SAR is well established. The current focus is to ex-
tract as much additional information as possible from these
detections. Convolutional neural networks (CNN) enable the
empirical modelling of an arbitrary function relating an image
patch to a data point in the desired parameter space. This pa-
per describes the application of a forked CNN to the problem
of ship parameter estimation using a compound loss function.
In this way, the ship heading, dimensions and type are simul-
taneously estimated using a single network. The results sug-
gest that this is an efficient method for generating an accurate
model.

Index Terms— neural networks, synthetic aperture radar,
object classification

1. INTRODUCTION

Space-bourne synthetic aperture radar (SAR) is capable of
measuring large areas in all weather conditions, independent
of natural illumination. As such, it has become indispensable
for monitoring the world’s oceans. The observation of metal-
lic structures on the ocean surface using SAR is a common use
of the technology and considered important for maintaining
safety and security at sea. As large, angular, metallic objects,
ships have a very large radar cross-section and are thus read-
ily detected amongst the clutter of the ocean surface [1][2].
Oil platforms, offshore wind turbines and icebergs are sim-
ilarly distinct, usually presenting a much larger radar cross-
section than the surrounding environment [3][4]. Once de-
tected, the next task is to determine the characteristics of the
objects observed. Neural networks have been introduced to
perform classification of maritime objects and shown excel-
lent results [5][6]. In the study presented here, a neural net-
work was trained to estimate the heading, length and width,
and type, of a ship from small image patches extracted from
the full SAR acquisition.

2. NETWORK IMPLEMENTATION

Large neural networks are currently amongst the most favoured
tools for analysing complex datasets. Convolutional neural

networks (CNN) are particularly suited to image analysis
tasks. By restricting the spatial dimensions of the extracted
features and constructing a sequence of layers, a feature hier-
archy from simple edges to complex shapes can be produced.
These features can then be used to discriminate between dif-
ferent input images. In this study the network was constructed
in Python using the TensorFlow library with ancillary pro-
cessing using the OpenCV and Numpy libraries [7][8][9].
Figure 1 shows a schematic of the network architecture. It
was designed to be large enough to accomplish the tasks at
hand, but small enough to remain trainable with the limited
dataset available and within a reasonable time frame. Three
convolutional layers are used to produce a set of features.
These features are then fed into three separate fully-connected
network paths, one for each output. Identification of the rel-
evant image features is shared, and in this way the network
can benefit from a simple form of curriculum learning [10].
The ship heading is the easiest problem for the network to
solve and thus the initial training was performed using only
the heading part of the loss function. The other components
were then added and benefited from the approximate features
already discovered.

The ship heading is a cyclical variable and thus difficult to
extract via regression, as virtually identical observations can
be paired with very different parameter values. Instead a clas-
sification approach has been shown to give better results [11].
A set of 8 bins are used to span the possible values [0,360].
The number of bins is kept small to reduce the fraction of
edge cases and make the training easier. Additional sets of
bins are then added, offset from the original by a fraction of
the bin width. The network is trained against each set of bins
independently, yet simultaneously, using a softmax function
to give a probability for each bin at the output, and cross-
entropy loss. In this study, nine sets of 8 bins were used, each
offset by 5◦, as shown in the left-hand branch of the network
architecture in Figure 1. Figure 2 shows two sets of bins as
an example in red (solid) and blue (dashed). As discussed in
[11] the heading can be extracted by constructing a probabil-
ity density function and then finding the angle that maximises
that function. Combining the results in this way, a high angu-
lar resolution is recovered.

The other outputs do not require additional processing.
The ship dimension component was trained using simple re-
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Fig. 1. A schematic of the CNN network architecture. The
three branches return the heading (left), dimension (centre)
and type (right) of the detected vessel.

gression with a Huber loss function to give the values in me-
tres directly. The ship-type is another classification problem.
The probability is again calculated using a softmax function at
the output and trained using cross-entropy loss. For this work,
ships were divided into broad type classes (Cargo, Tanker,
Fishing, Passenger, Other). The number of classes was deter-
mined by the data available. Classes without sufficient rep-
resentation in the data were grouped into ”Other” rather than
discarded. This gives the class set a degree of completeness
required for operational deployment. The total loss function
for the network is then the sum of the three individual loss
functions.

Ltotal = Lheading + Ldimension + Ltype

Lheading =

9∑
j=1

8∑
i=1

pij log qij

Ldimension =

{
0.5× |x− y|2, |x− y| ≤ 1

|x− y| − 0.5, |x− y| > 1

Ltype =

5∑
i=1

pi log qi

Fig. 2. An illustration of sets of 8 bins used for heading de-
termination. Only two of the nine used are shown for clarity.

3. DATASET

The data used in this study is derived from TerraSAR-X (TS-
X) stripmap multi-look ground range detected (MGD) images
with VV and HH polarisation and pixel size between 2-4 m
[12]. The acquisitions were made over the North Sea and the
Mediterranean. Ships were detected and extracted from the
SAR images using a constant false alarm rate (CFAR) algo-
rithm [13][2]. The ground truth information used for train-
ing the network was derived from the automatic identification
system (AIS). The AIS messages were automatically paired
to the SAR ship detections by matching the latitude and lon-
gitude, and the time stamp, interpolating between subsequent
AIS data points where necessary. Additional checks were per-
formed by hand. Ships were extracted within small patches,
resampled at 3 m pixel spacing and trimmed to squares of 176
by 176 pixels. The image patches were normalised via a log-
arithmic function to the range [-1,1] using the following pro-
cedure, where max and min values are found separately for
each patch.

σ0 → a = log(σ0 + 1)

a→ b = 2

(
a−min(a)

max(a)−min(a)

)
− 1

In total, 7535 unique detections of ships were included
in the data set. The data were augmented by a factor of four
by performing horizontal and vertical mirroring operations on
the original image patches. The data were divided into three
parts; 70% for training the network, 15% to test the perfor-
mance during training, and 15% for a final validation of the
network performance. For the training data set, patches from
the sub-dominant ship-type classes were duplicated such that
each class was approximately equally represented. All of the
results in §4 were produced using the validation data subset.

4. RESULTS AND DISCUSSION

From space, ships display a significant degree of fore-aft sym-
metry leading to 180◦ ambiguities in ship heading retrieval.
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One of the key results of this paper is the ability of the CNN
to break that degeneracy. Figure 3 shows the accuracy of the
estimated heading. On a log-scale it is clear that the forward
direction is favoured by approximately two orders of magni-
tude over the reverse. Preliminary investigation suggests that
the network makes use of any wake pattern within the sur-
rounding sea as well as features of the vessel itself.
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Fig. 3. A histogram showing the accuracy of the predicted
ship heading.

Right-angles or corner geometries naturally produce ex-
tremely high radar return signals with large side lobes. Such
imaging artefacts can substantially extend the apparent size
of a ship [14]. The ship width, as the smaller dimension, is
more susceptible to distortion in this manner. Figure 4 shows
the fractional error in the estimated dimensions, (xestimated−
xtrue)/xtrue. The plots show a slight bias towards underesti-
mating the length and width, although in both cases it is well
below the standard deviation. This may be a result of uneven-
ness in the ship dimension distributions. Vessels over 200 m
in length are comparatively rare in this dataset, and thus less
well modelled by the network.

The results of the ship-type classification are shown in
Figure 5 in terms of the F1-score, a metric combining pre-
cision and recall.

F1-score = 2

(
Precision× Recall

Precision + Recall

)
The diagonal elements are clearly dominant with the most
significant confusion arising between the cargo and tanker
classes. Whether it is a particular subset of these classes that
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Fig. 4. Histograms of the estimated ship dimension fractional
error for length (top) and width (bottom)
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tend to be misidentified or if these observations were made
under sub-optimal conditions is the subject of further study.

0.906 0.000 0.010 0.002 0.072

0.003 0.985 0.022 0.004 0.001

0.012 0.000 0.968 0.007 0.007

0.018 0.000 0.003 0.982 0.002

0.069 0.000 0.003 0.000 0.923

Cargo Fishing Other Passenger Tanker

True Label

Cargo

Fishing

Other

Passenger

Tanker

P
re

d
ic

te
d

 L
ab

el
  

  
  

  

0

0.2

0.4

0.6

0.8

1

Fig. 5. The ship type estimation F1-score matrix. Note that
bins with no significant figures are indeed empty.

This study suggests that a shallow CNN trained to model
multiple, complementary parameters simultaneously, and
with very limited preprocessing of the input images, can
perform accurate ship parameter estimation.
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