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Hidden Variable Models for Market Basket Data.

Statistical Performance and Managerial Implications

Harald Hruschka

Abstract

We compare the performance of several hidden variable models, namely binary factor analy-
sis, topic models (latent Dirichlet allocation, correlated topic model), the restricted Boltzmann
machine and the deep belief net. We shortly present these models and outline their estimation.
Performance is measured by log likelihood values of these models for a holdout data set of market
baskets. For each model we estimate and evaluate variants with increasing numbers of hidden
variables. Binary factor analysis vastly outperforms topic models. The restricted Boltzmann
machine and the deep belief net on the other hand attain a similar performance advantage over
binary factor analysis. For each model we interpret the relationships between the most important
hidden variables and observed category purchases. To demonstrate managerial implications we
compute relative basket size increase due to promoting each category for the better performing
models. Recommendations based on the restricted Boltzmann machine and the deep belief net
not only have lower uncertainty due to their statistical performance, they also have more man-
agerial appeal than those derived for binary factor analysis. The impressive performances of the
restricted Boltzmann machine and the deep belief net suggest to continue research by extending

these models, e.g., by including marketing variables as predictors.

1 Introduction

We investigate whether and to what extent different hidden variable models are capable to reproduce
purchase incidence data for an assortment of several product categories. Purchase incidences are
represented by a binary vector. Elements of this vector are set to one if the respective product
category is purchased at a purchase occasion. The market basket corresponding to such an purchase
incidence vector equals the set of product categories purchased.

We consider several types of hidden variable models, namely binary factor analysis (BFA), two
topic models (latent Dirichlet allocation and the correlated topic model), the restricted Boltzmann
machine (RBM), and the deep belief net (DBN). Hidden variables identified by these models can be
seen as dimensions underlying observed purchases of product categories. These models also provide

estimates of how closely each category is associated with a given hidden variable.



In the following we briefly discuss existing publications in which these and related models have
been applied to market basket data (broad overviews of methods for market basket analysis can found
in Boztug and Silberhorn [8] or Reutterer et al. [23]). As early as 1975 Bocker compressed (metric)
expenditures of individual customers in eight categories of household goods to four dimension by
means of principal component analysis [7]. But to our knowledge purchase incidence data have not
been analyzed by appropriate BFA methods though they were already available in the 1980s [2]. The
closest study seems to be one of Kamakura and Wedel who introduce a Tobit factor analytic model
for mixed metric and binary data [20]. These authors look a two variables (total yearly purchase,
purchase incidence) for 39 paper good brands and arrive at a three factor solution.

The use of topic models is widespread in text mining. As a rule they serve to replace words
appearing in documents by a relatively small number of discrete hidden variables which are called
topics. Quite recently latent activities and latent motivations of customers have been derived by topic
models processing purchase incidence data. Hruschka infers ten latent activities based on purchase
incidence data for 60 categories offered by a German supermarket [18]. Jacobs et al. reduce 394
categories of chemist’s products of a Dutch online retailer to 13 topics [19].

The RBM is frequently applied to solve pattern recognition problems, e.g., recognition of handwrit-
ten digits or classification of documents [15]. We are aware of one application to purchase incidences
by Hruschka who chooses a RBM with four hidden variables for data on 60 grocery categories [17].
This RBM outperforms a multivariate logit model with category constants and pairwise interactions
in a holdout data set.

Deep learning methods to which the DBN belongs turn out to be very successful in different
machine learning applications, including speech recognition, computer vision, and natural language
processing [22]. In this paper we estimate several variants of a DBN which comprises two hierarchically
connected RBMs.

We characterize the contribution of this paper over existing work as follows. The paper provides
the first empirical comparison of the performance of several different hidden variables models for
multicategory purchase incidence data. It also the first time that binary factor analysis and a deep
learning method are applied to such data. In addition to performance measurement we also derive
and discuss managerial implications that we obtain on the basis of the better performing methods.

The next section presents the investigated models. We continue by outlining the methods used
to estimate these models by emphasizing methods for the RBM and the DBN. The empirical part
characterizes the data set, compares model performances for a holdout data set and interprets hid-
den variables. In the next section we discuss managerial implications. The paper concludes with a

summary and an outlook at model extensions which look promising.



2 Investigated Models

2.1 Basic Concepts and Notation

We evaluate models by the log likelihood LL for a holdout data set:

N J
LL =" [ynjlog(Pn;) + (1 = yn;) log(1 — Pp;)] (1)

n=1j=1
N denotes the number of baskets in the holdout data set, J the number of product categories. yp;
is a binary purchase incidence which equals one if basket n contains category j. P,; is a shorthand
notation for the purchase probability of category j in basket n estimated by a model conditional on
hidden variables.
Purchases are collected in a binary purchase indicence vector
Yn = (Yn1, "+, Yns) for each basket n. o denotes the binary logistic function o(z) = 1/(1 + exp(—=z))

with real-numbered argument z.

2.2 Binary Factor Analysis

In the binary factor analytic models which we estimate the purchase probability for category j condi-
tional on a vector of hidden variables h,, is specified as:

K

P(ynj = 1|hn) = U(bj + ijk hnk) (2)
k=1

The conditional purchase probability of category j increases (decreases) monotonically with hidden
variable h,j if weight Wj;, is positive (negative). The K-dimensional vector of hidden variables h,,
follows a multivariate normal distribution with zero expectations and covariance matrix 3.

Though these models allow interdependence of marginal distributions, they specify purchases of a
category to be independent of purchases of the other categories conditional on hidden variables (for

more details see [1]).

2.3 Topic Models

We consider latent Dirichlet allocation (LDA) and the correlated topic model (CTM) which are the
two most frequently used topic models (for a comprehensive review see [28]). To attain compatibility
with the other investigated models, we conceive topics as binary hidden variables. In topic models each
basket is associated with a topic-mixing vector and each category is independently sampled according
to a topic drawn from this mixing vector. In other words, topic models include two multinomial
distributions, topic proportions of categories ¢;; and topic proportions 6y, of each basket n [27].
LDA and CTM differ by the way topic proportions of categories are generated. In LDA topic
proportions of categories are generated by a Dirichlet distribution, in CTM by a logistic normal

distribution [6]. That is why the CTM allows for correlation between topics.



The probability that basket n contains category j is related to the topic proportions of this category

and the proportion of topics of this basket for each topic k = 1,---, K in the following manner [11]:
K
P(ynj = 1|hn) = Z d)jkekn (3)
k=1

2.4 Restricted Boltzmann Machines

The restricted Boltzmann machines (RBM) is defined as joint Boltzmann distribution of hidden and
observed variables (category purchases) and was introduced by Smolensky [26]. It consists of one layer
of observed variables and one layer of binary hidden variables. The RBM is called restricted because
variables of the same layer are not connected. Coefficients W, (j=1,---,Jand k=1,---,K) of a
RBM link each observed variable to each hidden variable.

The conditional distribution of each category purchase factorizes given hidden variables and the

conditional distribution of each hidden variable factorizes given purchases:

K
P(ynj = 1|hn) = (T(bj + ZW]k hnk)
k=1
J
P(hnk = 1‘yn) = U(dk + Zijynj) (4)
j=1

b; and dj, are constants which are specific to category j and hidden variable k, respectively.

We follow Hinton in characterizing the working of a RBM [14]. The probability of a market basket
is proportional to the product of the probabilities that the basket would be generated by each of the
hidden variables acting alone. If a hidden variable is zero, its separable probability distribution for
each category is determined by its category constants b; only. But if a hidden variable is one, this
distribution also depends on the coefficients linking the hidden variable to each category.

In a RBM distributions each specific to a hidden variable are multiplied first. The product of
these distributions is normalized in the next step. This way sharp distributions may be detected.
Mixture models (to which topic models belong) on the other hand determine convex combinations
of distributions which are normalized beforehand. For high dimensional data the mixture model
approach may lead to problems, as the final distribution cannot be sharper than the distributions of
the individual hidden variables each of which is adapted to all observed variables [14].

The hidden variables of a RBM produce K different partitions of the input space which define
2K possible regions [3]. Le Roux and Bengio prove that the RBM can approximate any discrete
distribution [21]. Therefore the RBM is not restricted to pairwise interactions, but is capable to also

reproduce higher order interactions.

2.5 Deep Belief Nets

A deep belief net (DBN) comprises several stacked RBMs. In this paper we consider DBNs with three

layers. The first two layers determine hidden variables. The first layer is a RBM based on observed



variables (category purchases) corresponding to the RBM presented in section 2.4. Hidden variables
of the first layer RBM are used as input variables by the second layer RBM. Based on these input
variables the second layer RBM provides second layer hidden variables.

Conditional distributions of inputs and hidden variables for the first and second layers can be

written as:
K
P(yn; =1lh1n) = o(bij+ > Wijk hink)
k=1
J
P(hinklyn) = o(dix + Z Wijk¥ns)
j=1
L
P(hlnk = 1|h2n) = U(ka + Z W2kl h2nl)
1=1
K
P(homlhin) = o(da + ZWZklhlnk) (5)
k=1

K, L are the numbers of hidden variables in the first and second layer, respectively. hy,; denotes
the kth first layer hidden variable for basket n, hs,; the lth second layer hidden variable of basket n,
h1v, hay are vectors of first and second layer hidden variables for basket n. Wi, denotes the coeflicient
linking category j to the kth first layer hidden variable, Way; the coefficient linking the kth first layer
hidden variable to the ith second layer hidden variable. by;, baj, d1x, d2; are constant terms.

As we want to reconstruct the observed market baskets we add a third layer which directly connects

second layer hidden variables to category purchases:

L
P(ynj = 1lhan) = o(bs; + Z W15 hant) (6)
=1

Wsy; denotes the coefficient linking the Ith second layer hidden variable to category j, bs; is a
category constant.
The two RBMs of the DBN produce nested nonlinear transformations of observed market baskets.

Therefore the DBN may provide more abstract representations than a single RBM [5].

3 Estimation

In this section we outline how the different model types introduced in section 2 are estimated. We
briefly describe estimation of BFA and topic models and give more details with respect to the RBM
and the DBN.

BFA models are estimated by means of the R package mirt using a
Metropolis-Hastings Robbins-Monro (MH-RM) algorithm [10]. This estimation algorithm starts from
random initial values for all coefficients and runs several burn in iterations. Each iteration consists
of two steps. In the first step hidden variables are computed by means of Metropolis-Hastings sam-

pling. The second step updates coefficients by a single Newton-Raphson correction for a complete-data



gradient vector and Hessian matrix based on the current hidden variables. After burn in final coeffi-
cients are determined by the Robbins-Monro root finding algorithm (for more details see [10] and the
references given there).

LDA and CTM are estimated by an appropriate variational expectation-maximization (VEM) al-
gorithm implemented in the R package topic models [12]. VEM is related to the class of expectation-
maximization (EM) algorithms, but replaces the expected complete likelihood which is computation-
ally intractable for both topic models by a variational distribution. The VEM algorithms of topic
models in fact minimize the Kullback-Leibler (KL) divergence between the variational posterior prob-
ability and the true posterior probability. Estimates of hidden variables are determined on the basis
of the variational posterior probability (for more details see [12] and the references given there).

Both RBMs and DBNs are estimated using R package deepnet [24]. The joint likelihood of the
RBM P(yy, hy,) is related to the so called energy function E(y,,, hy,) with Z denoting the normalization

constant [5]:
1
P(ynahn) = EEXP(—E(ZJmhn))
J K J K
E(yn,hn) = _(Zzwjkyn]‘hnk + ijynj + dehnk> (7)
j=1k=1 j=1 k=1

The as a rule huge number of configurations of visible and hidden variables prevents direct maxi-
mization of the marginal log likelihood. deepnet uses for estimation the contrastive divergence (CD)
algorithm of Hinton [14] which approximates the marginal log likelihod. The objective of CD is related
to the KL divergence between the data distribution and the model distribution which in theory can
be produced by infinite many Gibb sampling steps. CD uses only a finite number of T sampling steps

instead and determines gradients of RBM parameters as follows:

gr(Wji) = (yihw) — (y; bL.),

gr(by) = (ys) = (y5 ), gr(di) = () — (h) (8)

(.) symbolizes expectations of the product of variables (of the variable) enclosed. N-element vectors
y; and hj contain purchases of category j and values of hidden variable k, respectively. yJT and h{
are analogous vectors whose values are generated by 7' Gibbs sampling steps from the conditional
distributions. Step t samples hf given y!~! and y! given h! for t = 1,--- T with y® equal to the
observed y,.

Estimation of the DBN defined in section 2.5 starts with the greedy layerwise algorithm of Hinton
et al. which determines parameters of successive RBMs by CD [16]. After estimation of the first layer
RBM is finished, its hidden variables are drawn by Gibbs sampling and used as input variables of the
second layer RBM.

After estimation of the second layer RBM all hidden variables are set to mean field expected values



tink and po,; which are defined as [16]:

J

Pink = o(di+ Z Wik Ynj)
j=1
K

pont = o(dy + Z Woaki tink)
k=1

Finally, all parameters of the DBN including those of the third layer are simultaneously estimated

by nonlinear least squares. To this end the parameter values of the two RBMs computed by the greedy

layerwise algorithm are used as initial values.

4 Empirical Study

4.1 Data

We analyze a publicly available data set which contains one month (30 days) of real-world point-of-sale
transactions from a typical local grocery outlet [13]. The data set consists of 9,835 market baskets

refering to 169 product categories. Relative frequencies of the 20 most frequently purchased categories

are shown in table 1.

Table 1: Relative Purchase Frequencies

whole milk 0.256
rolls/buns 0.184
yogurt 0.140
root vegetables 0.109
shopping bags 0.099
pastry 0.089
bottled beer 0.081
canned beer 0.078
fruit /vegetables juices 0.072
brown bread 0.065

other vegetables
soda

bottled water
tropical fruit
sausage

citrus fruit
newspapers

pip fruit
whipped/sour cream

domestic eggs

0.193
0.174
0.111
0.105
0.094
0.083
0.080
0.076
0.072
0.063

lists the 20 highest frequency categories

4.2 Estimation Results

We randomly split the data set into two halves, estimate each model on one half and use the other

half as holdout data for which we compute the log likelihood according to expression (1). We evaluate

models based on their log likelihood value for the holdout data.



BFA models and the two topic models attain their best log likelihood values for five and six
hidden variables, respectively. Among the two topic models the CTM performs better than LDA,
but both topic models are vastly inferior to BFA models with less than seven hidden variables. The
log likelihood value of the best topic model is lower by more than 25,000 compared to the best BFA
model (see table 2). That is why in the following we do not present estimation results of topic models

in more detail.

Table 2: Holdout Log Likelihood Values of BFA and Topic Models

K  BFA LDA CTM

1 -76,576.48

2 -76,833.23 -99,542.95 -99,543.58
3 -75,811.78 -99,530.46 -99,495.59
4 -75806.82 -99,548.71 -99,480.04
5 -73,755.72 -99,549.63 -99,456.21
6 -78,363.77 -99,536.24 -99,436.43
7 -91,862.33 -99,558.74 -99,473.76

Table 3 gives holdout log likelihood values for RBMs and DBNs with different numbers of hidden
variables. We only show DBNs whose numbers of variables are equal in the first and the second second
layers (i.e., L = K), because both lower and higher numbers of second layer variables lead to lower
log likelihood values.

RBM and DBN start to beat the best BFA model at four and five hidden variables, respectively.
The best RBM has 17 hidden variables. Its holdout log likelihood is higher by more than 23,000
compared to the best BFA model. If the DBN has more than nine variables in the second hidden layer
it performs better than the RBM with the same number of variables in the first hidden layer. The
best DBN has 17 hidden variables both at the first and the second hidden layer. It performs better
than the best RBM with a log likelihood higher by about 727.

In the following we interpret the best performing BFA models, RBM and DBN. To this end we
look at the importance of each variable in the last hidden layer which we measure by the average
sum of absolute marginal effects with respect to purchase probabilities across all 169 categories. This
average is computed across all market baskets. Though as a rule the parameter values of a BFA model

and a RBM differ, we obtain the same expression for these two models:
1
N SN Plyng = 1hn) (1= Pynj = 1|hn)) [Wik] (10)
noj
For the DBN the analogous expression for a second hidden layer variable [ is:

5 303 Pl = 1) (1 = Plyng = 1fhzn) W ()



Table 3: Holdout Log Likelihood Values of RBM and DBN

K  RBM DBN
1 -79,276.53

2 -76,968.97 -77,223.20
3 -T4,885.79  -74,584.60
4 -72,147.19  -75,229.42
5
6
7
8
9

-70,225.06  -71,859.35

-68,251.97 -71,116.36

-66,620.47  -66,456.30

-64,639.61  -65,326.33

-61,599.86  -64,234.30
10 -60,209.00 -60,135.23
11 -60,883.98 -57,409.03
12 -57,940.39  -56,516.25
13 -57,792.38  -56,453.84
14 -55,954.81 -54,247.80
15 -53,668.96 - 53,596.10
16 -52,101.18  -51,041.92
17 -50,482.97 -49,755.63
18 -50,504.66 -50,631.04
for all DBN L = K




We also assess the importance of a product category j for a hidden variable k' by its informa-
tion averaged across baskets. Information measures how precise a hidden variable can be estimated
using the respective observable variable (here: purchase of a category). It is defined as squared first
derivative of the probability of the respective observed variable divided by its variance [9].

For a BFA model and a RBM we average information across baskets and obtain:
1 , 2
% 2 Py = 1) (1 = Plyny = 1)) | Y- Wikcorr(k', k) (12)
n k

cor(k/, k) denotes the product-moment correlation between hidden variables k' and k.
For a DBN the analogous expression of average information of a product category j with respect

to a second layer hidden variable I is:
1 R
N > " P(ynj = 1lhan) (1 — P(yn; = 1]han)) [Z Wiicorr(l,1) (13)
n l

Note that in the following we simply write sum of absolute marginal effects and information, when
we mean their respective averages across market baskets. Table 4 shows for the best BFA model
with five hidden variables the sum of absolute marginal effects of hidden variables and informations
of category purchases with respect to each hidden variable which are at least 0.15. Hidden variable 2
is missing as all its informations are lower. We obtain higher values of hidden variable 1 for canned
beer purchases, but lower values for purchases of dairy products or vegetables/fruits. Hidden variable
3 is similar to hidden variable 1, but in addition ham purchases decrease the value of this hidden
variable. Hidden variable 4 is also similar to hidden variable 1 not associated with, e.g., canned beer
purchases. Hidden variable 5 differs from the other hidden variables, as it increases for purchases of
other vegetables, tropical fruit, or yogurt, but decreases for purchases of canned beer or whole milk.

Tables 5 and 6 list hidden variables whose sum of absolute marginal effects amounts to at least 1.0
for the best RBM and the best DBN, respectively. For each hidden variable seven categories with the
highest informations are shown provided that they amount to at least 1.0. In line with their superior
statistical performance information values of categories obtained for RBM and DBN are much higher
than those obtained for the best BFA model. We also note that the categories which are important
to hidden variables are more diverse compared to the best BFA model.

We now interpret hidden variables discovered by the best performing RBM based on table 5.
Very high informations indicate which categories are very important for several hidden variables (e.g.,
shopping bags and rolls/buns for hidden variable 2, shopping bags for hidden variable 3, fruit/vegetable
juice and root vegetables for hidden variable 4). Hidden variable 1 increases for purchases of a shopping
bag and decreases for purchases of specialty fat, flour, pasta, coups, baking powder, or pasta. Hidden
variable 2 decreases for purchases of shopping bags, rolls/buns, dish cleaner, flour, canned fish, instant
food products, or mayonnaise. Hidden variable 3 increases if shopping bags, white whine, ice cream,
or liquor are purchased.This hidden variable decreases for purchases of rolls/buns, bathroom cleaner,
or cooking chocolate. Hidden variable 4 is higher if root vegetables or herbs are purchased and lower

for purchases of fruit/vegetables juice or specialty bar.

10



Table 4: Sum of absolute marginal effects and informations (best BFA model)

hidden variable 1 2.15 hidden variable 3  1.46

whole milk 0.30 - whole milk 0.40 -
other vegetables 0.34 - canned beer 0.33 +
yogurt 0.27 - yogurt 0.25 -
root vegetables 0.25 -  other vegetables  0.24 -
tropical fruit 0.24 - tropical fruit 0.23 -
canned beer 0.24 + Tham 0.15 -
butter 0.16 -

whipped/sour cream  0.16 -

hidden variable 4 1.29 hidden variable 5 1.27

whole milk 0.18 - canned beer 0.20 -

yogurt 0.18 - whole milk 0.20 -

other vegetables 0.17 -  other vegetables  0.18 +

tropical fruit 0.17 - tropical fruit 0.18 +
yogurt 0.16 +

+ and + indicate sign of Wj; contains information values >= 0.15 only

We continue by interpreting hidden variables of the best performing DBN based on table 6. Very
high informations show which categories are very important for several hidden variables (whipped/sour
cream for hidden variable 1, pip fruit and citrus fruit for hidden variable 2, tropical fruit for hidden
variables 4 and 6, domestic eggs for hidden variable 7, yogurt for hidden variable 8). Hidden variable 1
assumes low values if whipped sour cream, citrus fruits, coffee, butter, pip fruit, sugar, and margarine
are purchased. Hidden variable 2 increases for purchases of citrus fruit or rolls/buns, it decreases if
pip fruit, shopping bags, ice cream, white wine, or house keeping products are purchased. Hidden
variable 3 becomes low for purchases of newspapers, whipped/sour cream, citrus fruit,or oil. Hidden
variable 4 increases if canned beer is purchased. It decreases for purchases of tropical fruit, bottled
water, grapes, or turkey. Hidden variable 5 increases if butter milk is purchased and decreases if
sausages or bottled beer are purchased. Hidden variable 6 is positively associated with purchases of
bottled water or canned beer, negatively with purchases of tropical fruit. Hidden variables 7 and 8
assume low values for purchases of domestic eggs or yogurt, respectively.

We do not obtain high product moment correlations in absolute terms between RBM and DBN
for the hidden variables listed in tables 5 and 6 except for the two variables 3 and 2 with a correlation
coefficient of -0.72. This result can be explained by the different signs of that the coefficients for

shopping bags and white wine have for these two hidden variables.
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Table 5: Sum of absolute marginal effects and informations (best RBM)

hidden variable 1 2.83 hidden variable 2 1.53

shopping bags 9.39 + shopping bags 23.67 -
cling film/bags 719 - rolls/buns 11.51 -
specialty fat 6.80 - dish cleaner 2.40 -
flour 6.64 - flour 2.12 -
pasta 6.14 - canned fish 2.04 -
soups 6.10 - instant food products  1.95 -
baking powder 6.05 - mayonnaise 1.93 -
hidden variable 3 1.31 hidden variable 4 1.00

shopping bags 19.60 + fruit/vegetable juice 37.01 -
rolls/buns 5.84 - root vegetables 23.67 +
white wine 5.63 + specialty bar 1.98 -
ice cream 3.28 4+ herbs 1.46 +

bathroom cleaner .71 -
liquor 1.30 +
cooking chocolate 1.28 -

contains hidden variables with sum of absolute marginal effects > 1.0.

+ and + indicate sign of Wjy; contains seven highest information values if > 1.0

12



Table 6: Sum of absolute marginal effects and informations (best DBN)

hidden variable 1 3.50 hidden variable 2 2.25
whipped/sour cream 22.39 - pip fruit 50.00 -
citrus fruit 740 -  citrus fruit 15.05 +
coffee 6.75 - shopping bags 5.99 -
butter 5.83 - rolls/buns 2.83 +
pip fruit 5.57 - ice cream 2.36 -
sugar 5.28 - white wine 2.14 -
margarine 5.10 - house keeping products  1.09 -
hidden variable 3 1.68 hidden variable 4 1.30
newspapers 4.75 - tropical fruit 17.78 -
whipped/sour cream  2.43 - bottled water 6.00 -
citrus fruit 1.29 - canned beer 2.18 +
oil 1.11 - grapes 1.53 -
turkey 1.05 -
hidden variable 5 1.19 hidden variable 6 1.16
sausage 4.97 - tropical fruit 13.95 -
bottled beer 4.06 - Dbottled water 5.89 +
butter milk 2,51 + canned beer 3.27 +
hidden variable 7 1.15 hidden variable 8 1.01
domestic eggs 13.69 - yogurt 16.45 -

contains hidden variables with sum of absolute marginal effects > 1.0.

+ and + indicate sign of W3,;; contains seven highest information values if > 1.0

5 Managerial Implications

To derive managerial implications of this research we assess the effect of a promotion which increases
the purchase probability of a category on an objective which takes all categories into account. As
data on category specific average sales revenues or margins are not available, we look at the relative
increase of basket size averaged across baskets. Basket size corresponds to the sum of purchase
probabilities across all 169 categories, which are estimated by means of the chosen BFA model (five
hidden variables), RBM and DBN (both with 17 variables in the last hidden layer). We compute two
different basket sizes, bsy based on the observed data, and bs;; based on the assumption that the
respective category j is added to 500 baskets which are randomly selected from the baskets which do
not contain this category. Relative basket size increase is defined as (bsi; — bsg)/bsg. A manager who

wants to increase average basket size should execute promotions in categories with high estimated

13



relative basket size increases

Table 7 lists the 20 categories with highest relative basket size increases for each of the three
selected models. The categories with higher relative basket size increases differ extremely between the
BFA model on one hand and the RBM and DBN on the other hand. Only two of the 20 categories,
root vegetables and whipped/sour cream, given for the BFA model belong to the 20 categories with
highest purchase frequencies of table 1. These two categories are also the only ones which can be
found in the columns for the RBM and the DBN. Because of its clearly worse statistical performance,
the categories given for the BFA model should not be recommended for a promotion whose objective
is to increase basket size.

In addition high computation times also suggest not to base such decisions on the BFA model.
The computation time to estimate basket size is higher by a factor greater than 100 compared to the
RBM and the DBN. This fact is caused by more than 1.6 million five dimensional integrals which
must be approximated (one integral for each category and each observed basket).

The 20 categories with the largest relative basket size increase according to the best RBM and
DBN include 15 and 17 of the 20 categories with highest purchase frequencies of table 1, respectively.
But it is wrong to assume that basket size increases with the purchase frequency of a category,
as Spearman correlation coefficients between relative purchase frequencies and relative basket size
increases demonstrate. For the RBM there is no monotone relationship between the two rankings as
a correlation of -0.05 shows. For the DBN the correlation is -0.70 which means that the two rankings
are to some extent reverse to each other. This result agrees with the fact that the three categories
with the highest relative basket size increases according to the DBN (pip fruit, whipped/sour cream,
domestic eggs) are among the five categories with the lowest purchase frequencies given in table 1.

Candidates for promotions are categories with high estimated relative basket size increases accord-
ing to the DBN, because it performs best from a statistical point of view. Of course, such decisions
must be supplemented by managerial judgment, as coefficients of the models investigated here do not
necessarily reflect causal effects. E.g., it can be doubted that promoting shopping bags entails an
increase of basket size. It seems more obvious that a higher baskets size causes customers to also buy

a shopping bag.

6 Conclusions

We compare the capability of several models with hidden variables to reproduce purchase incidence
data for several product categories. As model types we consider two topic models (latent Dirichlet
allocation and the correlated topic model), binary factor analysis (BFA), the restricted Boltzmann
machine (RBM), and the deep belief net (DBN).

We evaluate variants of these models each with different numbers of hidden variables by their log
likelihood for a holdout data set. Topic models turn out to be vastly inferior to the BFA model which
on its own is vastly outperformed by the RBM and the DBN. The DBM attains better log likelihood
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Table 7: Relative Basket Size Increases By Promoting a Category

BFA RBM DBN
preservation products  0.099  shopping bags 0.081  pip fruit 0.105
baby food 0.079  other vegetables 0.076  whipped/sour cream  0.079
baby cosmetics 0.073  domestic eggs 0.072  domestic eggs 0.077
herbs 0.038  fruit/vegetable juice 0.069 citrus fruit 0.077
ready soups 0.036  yogurt 0.068 frankfurter 0.076
pudding powder 0.035  whole milk 0.067 newspapers 0.076
rice 0.035  frankfurter 0.064  yogurt 0.066
root vegetables 0.033  pastry 0.063  bottled beer 0.061
sliced cheese 0.033  root vegetables 0.062  bottled water 0.060
whipped/sour cream 0.031 newspapers 0.059 sausage 0.058
abrasive cleaner 0.031 sausage 0.059  coffee 0.057
cream cheese 0.030 soda 0.059  shopping bags 0.055
butter milk 0.030  rolls/buns 0.055  specialty fat 0.054
flour 0.030  specialty fat 0.053  fruit/vegetable juice  0.051
kitchen utensil 0.029  bottled water 0.053  soda 0.051
onions 0.028  tropical fruit 0.048  pastry 0.049
jam 0.027  dish cleaner 0.046  tropical fruit 0.049
liver loaf 0.027  bottled beer 0.042  other vegetables 0.048
specialty cheese 0.026  specialty vegetables 0.041  whole milk 0.048
curd 0.026  cling film/bags 0.041 root vegetables 0.044

lists 20 categories with highest increases

values than the RBM.

To infer managerial implications we estimate relative basket size increases due to promoting a
product category for the best performing BFA model, RBM, and DBN. Product categories with high
relative increases constitute candidates for a promotion whose the objective is to increase basket
size. Recommendations based on the RBM and the DBN not only have lower uncertainty due to the
statistical performance of these models, but to our opinion have more managerial appeal than those
derived for the BFA model.

The impressive performance advantages of the RBM and the DBN suggest to continue research
by specifying and estimating appropriate extensions of these models. To include predictors, especially
marketing variables on price and sales promotion, seems to be an obvious next step. Other possible
extensions consist in using other dependent variables, e.g., purchase quantity or expenditure. It might
also be feasible to take a more detailed perspective by considering several brands in each of a higher
number of product categories. Existing research so far has either remained at the category level, or
looked at several brands of one category or considered very few brands in very few categories (see,

e.g., the overviews [25] or [8]).
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