
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/authorsrights

http://www.elsevier.com/authorsrights


Author's personal copy

Physics Reports 535 (2014) 101–138

Contents lists available at ScienceDirect

Physics Reports

journal homepage: www.elsevier.com/locate/physrep

High frequency electric field induced nonlinear effects in
graphene
M.M. Glazov a,∗, S.D. Ganichev b

a Ioffe Physical-Technical Institute of the RAS, 194021 St.-Petersburg, Russia
b Terahertz Center, University of Regensburg, 93040, Regensburg, Germany

a r t i c l e i n f o

Article history:
Accepted 14 October 2013
Available online 19 October 2013
editor: G. E. W. Bauer

Keywords:
Graphene
Nonlinear high frequency transport
Nonlinear optics
Photocurrents
Ratchets

a b s t r a c t

The nonlinear optical and optoelectronic properties of graphene with the emphasis on
the processes of harmonic generation, frequency mixing, photon drag and photogalvanic
effects as well as generation of photocurrents due to coherent interference effects, are
reviewed. The article presents the state-of-the-art of this subject, including both recent
advances and well-established results. Various physical mechanisms controlling transport
are described in depth including phenomenological description based on symmetry
arguments, models visualizing physics of nonlinear responses, and microscopic theory of
individual effects.

© 2013 Elsevier B.V. All rights reserved.

Contents

1. Introduction............................................................................................................................................................................................. 102
2. General remarks ...................................................................................................................................................................................... 103
3. Second order effects: symmetry analysis .............................................................................................................................................. 105

3.1. Photon drag effects in a single layer graphene ......................................................................................................................... 107
3.2. Photogalvanic effects in a single layer graphene...................................................................................................................... 108
3.3. Photogalvanic and photon drag effects in multilayer graphene.............................................................................................. 109
3.4. Second harmonic generation ..................................................................................................................................................... 110
3.5. Optical rectification .................................................................................................................................................................... 110

4. Second order effects: theoretical background ...................................................................................................................................... 111
5. Second order effects: experiment and theory....................................................................................................................................... 113

5.1. Second harmonic generation ..................................................................................................................................................... 113
5.1.1. Microscopic theory ...................................................................................................................................................... 113
5.1.2. Experiment................................................................................................................................................................... 114

5.2. Dynamic hall (photon drag) effect............................................................................................................................................. 115
5.2.1. Microscopic theory ...................................................................................................................................................... 115
5.2.2. Resonant drag effect under interband transitions..................................................................................................... 117
5.2.3. Experiment................................................................................................................................................................... 118

5.3. Photogalvanic effect in the pristine graphene .......................................................................................................................... 119
5.3.1. Microscopic theory ...................................................................................................................................................... 119
5.3.2. Experiment................................................................................................................................................................... 121

5.4. Edge photocurrents .................................................................................................................................................................... 121
5.4.1. Microscopic theory ...................................................................................................................................................... 121

∗ Corresponding author. Tel.: +7 9119130436.
E-mail addresses: glazov@coherent.ioffe.ru (M.M. Glazov), sergey.ganichev@physik.uni-regensburg.de (S.D. Ganichev).

0370-1573/$ – see front matter© 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.physrep.2013.10.003



Author's personal copy

102 M.M. Glazov, S.D. Ganichev / Physics Reports 535 (2014) 101–138

5.4.2. Experiment................................................................................................................................................................... 122
5.5. Summarizing remarks on the second order effects in graphene............................................................................................. 124

6. Third order effects................................................................................................................................................................................... 125
6.1. Phenomenological discussion .................................................................................................................................................... 125

6.1.1. Effects of static and ac fields ....................................................................................................................................... 125
6.1.2. Effects of ac fields ........................................................................................................................................................ 126

6.2. Theoretical background.............................................................................................................................................................. 127
6.3. Third and higher harmonic generation and frequency mixing: experiment.......................................................................... 130
6.4. Coherent injection of ballistic photocurrents: experiment ..................................................................................................... 132
6.5. Summarizing remarks on the third and higher order effects in graphene ............................................................................. 134

7. Conclusions and outlook......................................................................................................................................................................... 135
Acknowledgments .................................................................................................................................................................................. 135
References................................................................................................................................................................................................ 135

1. Introduction

The discovery of graphene opened a new era inmaterial science. Graphene is the first truly two-dimensional (2D) crystal
consisting of just a single layer of carbon atoms arranged in a hexagonal lattice [1–5]. Themain consequence of such a crystal
structure is the linear energy spectrum of electrons and holes, εp = ±v|p|, where v ≈ c/300 is the effective speed, c is the
speed of light, p is the charge carrier momentum and signs ± refer to the conduction and valence bands, which merge at
p = 0 point, at the edges of the Brillouin zone [6–8]. Owing to a specific energy dispersion, graphene has revealed fascinating
effects in a number of experiments. In particular, the linear coupling of the charge carriers energy with their momentum
leads to a peculiar modification of the quantum Hall effect [2,9] and plays an important role in phase-coherent phenomena
such as, e.g., weak localization [10,11], minimal electrical conductivity [2,3,12–14], Klein tunneling [15,16], etc., for reviews
see [4,5,17]. The fact that the band structure resembles the dispersion relation of a massless relativistic particle has created
enormous excitement since graphene provides an excellentmodel system for benchtop studies of quantum-electrodynamic
effects [18,19] making relativistic experiments in a solid state environment feasible [4,20,21]. Another important issue of
this material is the presence of two valleys, each containing a Dirac cone. This constitutes a two-state degree of freedom,
which was suggested to be used in valleytronics [22]. These and other specific features manifest themselves in a linear in
electric field transport in graphene and have made it attractive for fundamental research and numerous applications, for
review see, e.g. Refs. [23–26].

While linear in electric field phenomena in graphene are in focus of the current research, nonlinear transport effects,
where the response is proportional to thehigher powers of the electric field, aremuch less studied. In general, the such effects
are caused by the redistribution of the charge carriers in themomentum and energy space induced by the radiation incident
on the sample. The resulting nonequilibrium distribution can contain oscillating in time and space components as well as
steady-state and spatially homogeneous ones. Hence, the radiationmay cause both ac and dc current flows in amedia,whose
magnitudes are nonlinear functions of the field amplitude andwhose components are sensitive to the radiation polarization.
In conventional three- and two-dimensional semiconductors with parabolic energy dispersion, as well as in metals and
dielectric crystals, a large number of nonlinear effects was observed and studied in great details. Harmonic generation,
frequency mixing, optical rectification, linear and circular photogalvanic effects, photon drag effect, photoconductivity,
coherently controlled ballistic charge currents, etc. are the subjects of intense research and already found a number of
applications [27–33]. Moreover, these effects have been proven to be a very efficient tool to study nonequilibrium optical
and electronic processes in semiconductors and provide information about their fundamental properties. For instance,
they provide an access to the symmetry, peculiarities of the band structure, processes of electron momentum, energy/spin
relaxation etc., as well as allow one to explore the processes of interaction of light with charge carriers (for review see,
e.g. [27–35]). Concerning the carbon based systems, so far the nonlinear transport has been extensively studied for carbon
nanotubes and carbon films [36–43], for review see, e.g. [44].

Naturally, nonlinear effects have attracted attention in graphene [45,46], where a number of phenomena, including
second [47–51] and third [48,52–54] harmonic generation, frequency mixing [48,52,55–57], photon drag effects [58–60],
chiral edge photocurrents [61], ‘‘bulk’’ photogalvanic effects [62], coherent current injection [63–65], time-resolved pho-
tocurrents [66,67], photocurrents in graphene pn-junctions [68–70], spatial self-phase modulation [71] and optical Kerr
effect [72,73],1 have been already addressed theoretically and experimentally. These works demonstrated that the micro-
scopic mechanisms of such effects in graphene can be quite different from their counterparts in ordinary semiconductor
systems. Moreover, all the effects observed in graphene have a common feature: they are strongly enhanced compared
with their analogues in semiconductors. The reasons for this, on the first glance surprising, fact are the high electron ve-
locity and the linear dispersion in graphene. Indeed, the large velocity of electrons in graphene, as compared with typical
semiconductor systems, obviously implies the efficient radiation—electron motion coupling. As for the electron dispersion,

1 Spatial self-phase modulation detected in colloidal dispersion of graphene sheets in organic solvents as well as optical Kerr effect in this system are
out of scope of the present review.
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it crucially affects the details of optical transitions in the electron momentum space (k-space). In particular, the gapless,
linear dispersion allows one to easily suppress some of the optical excitation channels, e.g., leading to the resonant non-
linear response [60]. Moreover, the nonlinearities and the nonlinear response can be enhanced via the excitation of the
plasmonic waves in graphene [74–76]. Therefore, although being limited to a rather small amount of theoretical and even
less experimental works, current research has already demonstrated that studying of nonlinear transport provides an ac-
cess to various properties of graphene. Among others, these studies have proved that graphene, as a nonlinear element, is a
promising material for a variety of different applications and may be used for the development of novel electronic devices
for microwave-, terahertz- and optoelectronic applications. Thus, the experimental and theoretical research in the field of
nonlinear graphene optics and optoelectronics becomes an important task.

The paper is aimed to give an overview of the key properties of graphene as a nonlinearmaterial, to outline themain the-
oretical and experimental results obtained in the nonlinear physics of graphene so far, and stimulate further studies of these
effects in this material. We start with the brief introduction to the nonlinear phenomena in graphene. Then, we describe the
second and third order effects. Each class of the effects is presented in a similar way: we start with the phenomenological
analysis of different phenomena based on the symmetry arguments, provide theoretical background and, one by one, give
an overview of the microscopic theory and the main experimental results. Finally, we summarize the results and discuss
prospectives of future theoretical and experimental studies of the nonlinear electromagnetic response of graphene.

2. General remarks

The standard way to treat the nonlinear effects without going into microscopic details makes use of the symmetry
arguments. This approach allows one to conclude on the experimental geometry and conditions of observation of the
effect under consideration as well as to describe its variation with change of macroscopic parameters, such as intensity
of the radiation, its polarization and angle of incidence without knowing of the microscopic origin. In this way, the electron
ensemble response to the external field can be most conveniently characterized by the coordinate- and time-dependent
electric current density j(r, t). It is expanded in the power series in the external alternating electric field E(ω, q) taken in
the form of a plane wave

E(r, t) = E(ω, q)e−iωt+iqr
+ E∗(ω, q)eiωt−iqr , (1)

where ω is the radiation frequency and q is its wavevector. By that it has a form

jα(r, t) =


σ

(1)
αβ Eβ(ω, q)e−iωt+iqr

+ c.c.


+


σ

(2′)
αβγ Eβ(ω, q)Eγ (ω, q)e−2iωt+2iqr

+ c.c.


+ σ
(2)
αβγ Eβ(ω, q)E∗

γ (ω, q) + . . . . (2)

Here Greek subscripts refer to the Cartesian coordinates, c.c. stands for the complex conjugate, and Eq. (2) is limited to
the second order effects. While the first term in Eq. (2) describes the linear transport, the other terms are the second
order in electric field and include: (i) the contribution oscillating as exp(−2iωt) responsible for the second harmonic
generation (second term) and (ii) time-independent contribution yielding the directed (dc) current generation (last term).
These nonlinear processes are characterized by the nonlinear conductivitiesσ

(2′)
αβγ andσ

(2)
αβγ , respectively,whose specific form

will be detailed below in Section 3. The class of these phenomena can be extended by considering the nonlinear polarization
P , which is described by the equation similar to Eq. (2) and leads to, e.g. the optical rectification effect. The higher order
effects in Eq. (2) like third harmonic generation are denoted by triple dot mark. The corresponding expressions and their
description will be given in Section 6.

On a very general level, the enhanced nonlinear properties of graphene can be illustrated by considering the classical
motion of the charge carrier under the action of the harmonic electric field E(t) = E0 cosωt , where E0 is the amplitude
of the field, ω is its frequency and taking into account the linear energy dispersion, εp = ±v|p|. The electron motion is
described by the second Newton law

dp
dt

= eE0 cosωt,

where e = −|e| is the electron charge. It follows from this equation that electron momentum exhibits harmonic
oscillations p(t) = p0 + (eE0/ω) sinωt , where p0 is the initial value of the electron momentum. In contrast to usual
semiconductor systems with parabolic or slightly nonparabolic dispersion, here the electron velocity, and, hence, other
observable quantities like, e.g. electric current, dipole moment or emitted radiation, demonstrate strongly anharmonic
temporal behavior. Indeed, taking into account that for a massless particle the absolute value of the velocity is fixed, and its
direction is determined by the direction of the momentum, we have [47,77]

v(t) = ±v
p
|p|

= ±v
eE0

|eE0|
sign[sinωt] = ±v

eE0

|eE0|

4
π


sinωt +

1
3
sin 3ωt +

1
5
sin 5ωt + · · ·


.

Here we assume that p0 ≪ eE0/ω, signs + and − correspond to the electron in the conduction and valence band,
respectively. In this simplified model, the nonlinear effects become important even at very small fields: The coefficient
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a b c

Fig. 1. Schematic illustration of the possible optical transitions: (a) direct interband transition, (b) indirect interband transition, (c) indirect intraband
transition. Solid and dashed arrows show electron–photon interaction (solid arrows) and electron scattering caused by impurities or phonons (dashed
arrows). Initial and final states of a photoexcited carrier with wavevectors ki and kf are shown by open and solid circles, respectively. Inequalities define
the corresponding photon energy ranges.

at the third harmonic in the velocity is just 1/3 of the first harmonic coefficient. For doped graphene with the typical
Fermi energy EF ∼ 100 meV the estimations yield that the nonlinear response can already be observed at fields as low
as 102–103 V/cm [74], being several orders of magnitude smaller than required for the same phenomena in other media.

Discussing various routes of nonlinearities in graphene, one should consider the relation between photon and Fermi
energies, which governs the nonlinear response of any material via microscopic mechanism of light–matter coupling. Thus,
before going in details of specific mechanism we address different regimes of optical excitation in graphene. The general
description of radiation induced effects is based on the standard approach replacing the electron momentum p = (px, py)
by p − eA/c in Dirac Hamiltonian

Ĥ(p) = v(σ̂ · p), (3)

with A being vector potential of the electromagnetic field,2 and σ̂ = (σ̂x, σ̂y) is the vector composed of the Pauli matrices,
which serve as basis matrices in the space of the electron states in the conduction and valence bands in the vicinity of Dirac
point.3 The change of frequency, and/or the Fermi energy, EF , not only strongly influence the magnitude of the nonlinear
phenomena, but may change the microscopic picture of their formation or, at certain conditions, may give rise to resonance
responses. Several regimes of light–matter interactiondepending on thephoton energy, h̄ω, electron Fermi energy (in certain
cases temperature) and its momentum relaxation rate, 1/τ , are of importance. As a rule, physical problems of nonlinear
transport are studied for graphene systems, for which the condition

EFτ/h̄ ≫ 1 (4)

is fulfilled, allowing to consider electrons (holes) as free carriers. Moreover, taking into account that the energy distance
from the Dirac point, εp = 0, to other bands in graphene is extremely large, exceeding 10 eV [78,79], one can also disregard
direct optical transitions involving other bands.

It follows then, that three regimes of radiation absorption are relevant to the discussed problem, namely, (i) direct
interband transitions, (ii) indirect phonon or impurity assisted interband transitions and (iii) free-carrier absorption (Drude-
like) due to indirect intraband transitions. These three processes are schematically shown in Fig. 1(a), (b), (c), respectively.
To obtain direct transitions, obviously, the condition

h̄ω > 2EF , (5a)

must be fulfilled. The indirect interband transitions become essential at

EF 6 h̄ω 6 2EF . (5b)

Finally, free carrier absorption caused by indirect intraband transitions may contribute for any relation between h̄ω and EF .
Similar to the case of conventional semiconductors its role increases for larger wavelengths, and for

h̄ω < EF , (5c)

intraband transitions become dominant absorption processes.4

2 Hereafter we use the gauge where the scalar potential of electromagnetic field is absent, ϕ = 0.
3 We note, that such an approximation is suitable only for electrons in a given valley of graphene, i.e. where the interaction with other (distant) bands

is neglected. Moreover we disregarded the trigonal warping of the energy spectrum in each valley, which is pronounced for the energy distance from the
Dirac point higher than ∼ 3 eV.
4 Note, that the impurity ionization, multiphoton and lattice absorption, while being possible, are out of the scope of the present review.
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Besides the microscopic origin of the radiation absorption we distinguish the classical and quantum regimes of
light–matter interaction, which are conventionally given by the relation between h̄ω and EF . In the classical regime charac-
terized by

h̄ω ≪ EF , (5d)

the electron dynamics can be described by means of Newton equations of motion and Boltzmann equation for the distri-
bution function f (p, r, t), which depends on electron momentum, p, position, r , and time, t . Such a description is valid for
the arbitrary values of ωτ . We note also, that according to Eq. (4) if ωτ ≪ 1, then the condition h̄ω ≪ EF is automatically
fulfilled. For photon energy approaching the Fermi energy or for even higher photon energies, at which Eq. (5d) does not
hold, the quantum-mechanical treatment of the radiation interaction with electron system in graphene is required. In the
intermediate frequency range, where h̄/τ ≪ h̄ω ≪ EF , both classical and quantum-mechanical approaches merge.

All described regimes can easily be realized by variation of the photon energy and electron density in graphene. In the
experiments reported so far, making use of the excitationwithmicrowave/terahertz radiation andmid-infrared/visible light
clearly corresponds to the classical or quantummechanical regimes of the light–matter interaction, respectively. This is due
to the fact that the nonlinear transport has been studied in ungated n- and p-type graphene samples, which have rather
high carrier density of the order of several times of 1012 cm−2 and, correspondingly, high Fermi energy ranging from 100
to 400 meV. Besides high Fermi energy, in all studied samples (exfoliated layers on SiO2/Si substrate, epitaxial graphene on
SiC or CVD graphene) the electron mobility is quite low, about several thousands cm2/Vs at room temperature. Such rather
short scattering times τ ranging from units of 10−14–10−12 s enable the investigation of nonlinear effects for the parameter
ωτ about unity giving rise to a number of specific effects for THz/microwave frequencies. In particular, processes sensitive
to the radiation helicity become important and may dominate the nonlinear response for ωτ ∼ 1, see Section 4.

Before we begin the discussion of particular phenomena, we address one more important issue being crucial for all the
nonlinear effect under study, namely, the variation of the radiation polarization state including degrees of linear and circular
polarization. The controllable modification of the radiation polarization not only helps in the analysis of the mechanisms of
the nonlinear response but also gives rise to new phenomena caused by transfer of the radiation angular momenta to the
carriers in graphene. Belowwe show that the various contributions to the nonlinear response are proportional to the Stokes
parameters. Therefore in almost all experiments aimed to nonlinear high frequency effects in graphene the polarization
state of the radiation is controllablymodified bymeans of standard dichroic elements like, e.g., λ/2 and λ/4 plates or Fresnel
rhombus. By that, assuming the radiation propagates along positive z axis, the Stokes parameters [80,81] are given by

S1 =
|Ex|2 − |Ey|2

|Ex|2 + |Ey|2
, S2 =

ExE∗
y + E∗

x Ey
|Ex|2 + |Ey|2

, (6a)

S3 ≡ Pcirc = i
ExE∗

y − E∗
x Ey

|Ex|2 + |Ey|2
. (6b)

Note that as it will be shown below these parameters determine the nonlinear response to linear (S1, S2) and circular (S3)
light polarization. Particularly, S1 and S2 define the linear polarization of radiation in the (xy) and rotated by 45◦ coordinate
frames, and S3 describes the degree of circular polarization or helicity of radiation. Rotation of the polarizer in respect to
the polarization plane of the linearly polarized laser radiation with El ∥ x results in the variation of the S1, S2 and S3. In
particular, rotation of the half-wave plate results in the linearly polarized radiation with

S1 ∝ cos 2α, S2 ∝ sin 2α, S3 = 0, (7a)

where α = 2β defines the orientation of the polarization plane and β is the angle between El the optical axis c. The radiation
ellipticity, particularly, light helicity are conveniently varied by rotation of a quarter-wave plate by angle ϕ, resulting in

S1 ∝ cos2 2ϕ, S2 ∝ sin 4ϕ, S3 ∝ sin 2ϕ. (7b)

We note that at oblique incidence, crucially needed for some nonlinear effects in graphene, the functional behavior of
nonlinear contributions in Eq. (2) is also described by trigonometrical equations (7). This is in spite of the fact, that, strictly
speaking, they are not directly given by the Stokes parameters S1, S2, S3 in form of Eqs. (6).

3. Second order effects: symmetry analysis

The class of the second order effects includes second harmonic generation, dc photocurrent generation, and optical recti-
fication effect. Obviously, the magnitude of the second-order in the electric field response is linear in the radiation intensity
I = c|E(q, ω)|2/2π .5 The appearance and particular behavior of the effects upon variation of incidence angle and polariza-
tion state of the radiation are determined by the symmetry of the system. This is due to the fact that at a spatial inversion

5 We emphasize that themagnitude of electric field acting on the charge carriers in graphene differs from that of an incident wave owing to the presence
of substrate, finite conductivity of graphene itself and interactions. These effects require additional analysis and disregarded hereinafter.
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the vector of electric current j changes its sign while quadratic combinations EαEβ , EαE∗

β in Eq. (2) do not. Hence, the second
order response is allowed if either (i) the spatial inversion is incompatible with the symmetry of the structure under study,
or (ii) second-order conductivities σ

(2)
αβγ and σ

(2′)
αβγ change their signs at spatial inversion. The latter is fulfilled, if components

σαβγ are proportional to the components of the radiation wavevector q. This is because both photon wavevector q and elec-
tric current j change their signs at the spatial inversion and symmetry allows the linear coupling between the current and
photon wavevector in the second-order effects, j ∝ q|E|

2. The sensitivity of the second-order phenomena to the spatial
inversion reveals that peculiarities of the graphene structures, such as coupling with the substrate, presence of adatoms,
terraces, ripples, edges, etc. become crucial. A further consequence is that these effects depend strongly on the radiation po-
larization and the angle of incidence. The addressed restrictions on the second-order conductivities are given by the point-
group operations and determine the experimental geometry. They are analyzed in the first part of this section. Afterwards,
the existing experiments are introduced and discussed in the second part together withmicroscopicmodels. This discussion
is extended by a short account on microscopic theory of some effects discussed in the literature but not observed so far.

Our analysis begins with dc current generation, in order to demonstrate all important features of the nonlinear response,
including an interplay between the spatial symmetry reduction and wavevector induced effects and sensitivity to the
radiation helicity. Further second order effects, such as generation of an ac electric current giving rise to the harmonics
generation or optical rectification, are discussed later on in Sections 3.4 and 3.5. The effect of dc current generation is given by
the second term in the right hand side of Eq. (2). As addressed above, the nonlinear conductivityσ

(2)
αβγ (ω, q)has contributions

due to both the reduced symmetry and radiation wavevector q. Therefore, it can be conveniently decomposed in the sum of
two parts yielding the dc current in the form

jα = σ
(2)
αβγ (ω, q)EβE∗

γ =


σ

(2)
αβγ (ω, 0) + Φαβγµ(ω)qµ


EβE∗

γ , (8)

where linear in the wavevector q terms are taken into consideration, corresponding contribution is described by the fourth
rank tensor Φαβγµ(ω). Such effects are related with the transfer of the photon momentum to the electrons. First we
address the third-rank tensor σ

(2)
αβγ (ω, 0), which describes the class of phenomena known as photogalvanic effects (PGE)

[32–35,82–84] being present in noncentrosymmetric systems only. Therefore, in ideal graphene all photogalvanic effects
are strictly forbidden by symmetry. However, in most of real structures PGE becomes possible, e.g. for the excitation in the
vicinity of the edges, which locally reduce the symmetry, in the samples with ripples, or if the graphene layers are deposited
on the substrate. Two types of photogalvanic effects, linear PGE and circular PGE, are known and are already observed in
graphene [62]. The linear PGE is sensitive to the orientation of the radiation polarization plane, and is described by the
symmetrical with respect to the interchange of β ↔ γ part of σ (2)

αβγ (ω, 0). It is given by

jα ∝ EβE∗

γ + Eγ E∗

β .

This symmetrized combination of electric field components is proportional to the linear combination of the Stokes param-
eters S1 and S2, see Eq. (6a). By contrast, the circular PGE requires angular momentum of photons and, correspondingly,
given by the antisymmetric part of the tensor σ

(2)
αβγ (ω, 0),

jα ∝ EβE∗

γ − Eγ E∗

β ∝ Pcirc.

Here Pcirc is the degree of circular polarization of the radiation given by the Stokes parameter S3, see Eq. (6b).
While the photogalvanic effects are possible only in the systems lacking an inversion center, the dc current generation

proportional to the radiation wavevector q and described by second term in Eq. (8) is allowed both in centrosymmetric and
noncentrosymmetric media and, consequently, can take place in any graphene system. The fact, that the electric current
can be caused by the momentum transfer from photons to electrons was recognized as early as in beginning of 1970s and
the effect was named as a photon drag effect [85,86]. Even earlier, in 1954 Barlow derived such a dc current in terms of ac
(dynamic) Hall effect: The joint action of electric, E , and magnetic, B, fields of the radiation causes a steady-state current in
the form j ∝ [E × B] [87]. These, at first glance, different mechanisms are related to the same phenomena, since for the
plane wave in the form of Eq. (1) the complex amplitudes of electric and magnetic fields are coupled:

B(ω, q) =
1
|q|

[q × E(ω, q)], (9)

and dynamic Hall contribution ∝ EβB∗
γ can be written in form of photon drag effect, i.e. ∝ qδEβE∗

γ . Therefore usually, the
terminology choice between the photon drag and dynamic Hall effects is determined by themicroscopic treatment in terms
of the number of photons absorbed (quantummechanical picture—photon drag effect) or the action of electromagnetic fields
(classical picture—dynamic Hall effect). While hereafter we equally use both terms, for the phenomenological consideration
we prefer the term ‘‘photon drag’’ effect because the second term in Eq. (8) is proportional to the wavevector q. Similarly to
the photogalvanic effect, the photon drag effectmay take place in response to both linearly and circularly polarized radiation,
which are described, respectively, by the symmetric and antisymmetric in βγ ↔ γ β parts of the fourth-rank tensorΦαβγµ.
These effects are termed as linear and circular photon drag effects [88–91].

While point symmetry and, particularly, spatial inversion impose restrictions on the conditions of observation, polariza-
tion and incidence angle dependence of the effects, another important symmetry operation, namely, time reversal places
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additional limitations affecting the frequency dependence of the response. Electric current, j , and radiation wavevector, q,
are odd at time reversal j → −j , q → −q at t → −t . The bilinear combinations of the field related with the linear polariza-
tion EβE∗

γ + E∗

βEγ are invariant under time reversal. Therefore, the symmetric part of the nonlinear conductivity σ
(2)
αβγ (ω, 0)

describing linear photogalvanic effect is odd at time reversal, i.e. it contains odd powers of dissipative constants, i.e. scattering
rates given by the reciprocal relaxation time τ−1 or absorption coefficient. By contrast, the nonlinear conductivity respon-
sible for the linear photon drag effect is even at time reversal and contains even powers of dissipative constants. For current
sensitive to the radiation helicity, i.e., circular photon drag and circular photogalvanic effects, the situation is just opposite.
Now, the circular polarization changes its sign at time reversal, therefore the constants describing circular photogalvanic
effect are even at time reversal, while constants describing circular drag effect are odd. Owing to different properties under
time reversal, the radiation frequency dependences of the linear and circular photocurrents, as well as of photon drag and
photogalvanic effects, are distinct, see below for details.

3.1. Photon drag effects in a single layer graphene

Weshall start the considerationwith the photondrag effect because thismechanismof the dc current generation does not
imply a symmetry reduction and can be present in any graphene sample. Moreover, the photon drag effect makes it possible
to illustrate all facets of phenomenological analysis, including dependence on the incidence angle and effects sensitive to
the photon helicity.

The consistent phenomenological theory of the photon drag effect in graphene layers has been developed in Refs. [59,62].
Disregarding the substrate, infinite homogeneous graphene layer is described by the centrosymmetric D6h point group. It
follows that the tensor Φαβγµ has five linearly independent components, which give rise to corresponding contributions to
the photocurrent. However, two of them are related to normal to the graphene layer component of electric field, Ez , or of
the wavevector, qz , and, in two-dimensional system like graphene, are much weaker compared to the others. Hereafter, we
disregard these contributions for all effects which can be induced without taking into account Ez and qz . Such a model will
be named strictly two-dimensional. Hence, for ideal graphene layer, the photocurrent is given by:

jx = T1qx
|Ex|2 + |Ey|2

2
+ T2qx

|Ex|2 − |Ey|2

2
, (10a)

jy = T2qx
ExE∗

y + E∗
x Ey

2
− T̃1qxPcircêz(|Ex|2 + |Ey|2). (10b)

Here ê = (êx, êy, êz) ≡ q/|q| is a unit vector in the direction of light propagation, and we introduced the coordinate frame
with axes x and y chosen in the graphene plane, z being the sample normal and assume that radiation is incident in the
(xz) plane, therefore, qy ≡ 0, see Fig. 2. Such a choice of the coordinates is adjusted to convenient experimental geometry
where the current is investigated along and normal to the incidence plane. We note that field combinations in Eqs. (10)
directly correspond to Stokes parameters, Eqs. (6). Constants T1 and T2 describe linear photon drag effect. The specific
feature of graphene compared to three-dimensional cubic semiconductors and simple metals is the presence of the circular
photon drag effect given by the constant T̃1. A further peculiarity of the photon drag effect in graphene comes from its two-
dimensional nature: Here the photon drag current is present under oblique incidence only and its direction changes upon
reversal of the incidence angle.6 In the presence of substrate or adatoms deposited on one side of the sample, the symmetry
of graphene reduces to the noncentrosymmetric group C6v. In such a case, the equivalence of the z and −z directions is
removed. Analysis shows that the form of Eqs. (10) remains the same for noncentrosymmetric graphene described by the
C6v point symmetry group.While the functional behavior does not change, the effectmay originate fromdiversemicroscopic
mechanisms and, consequently, be characterized by different magnitudes of the corresponding constants in Eqs. (10).

It follows from Eqs. (10a), (10b) that the photon drag current contains, in general, three contributions illustrated in
Fig. 2, panels (a)–(c). First one, schematically illustrated in Fig. 2(a) results in the photocurrent, which flows along the light
incidence plane. Two other effects are caused by the reduced symmetry of the system and exhibit a specific polarization
dependence described by the combinations of electric field components Ex, Ey in Eqs. (10). The terms proportional to T2 are
sensitive to the linear polarization and yield photocurrent components (i) in the plane of incidence and (ii) perpendicular
to the incidence plane, see Fig. 2(b). By contrast, the current proportional to T̃1 is due to transfer of both light linear and
angular momenta to electrons and reverses its sign by changing photon helicity. This is the circular photon drag effect or,
as addressed in the previous section, circular ac Hall effect, which appears in the transverse to the light propagation plane
geometry, see Fig. 2(c).

In experiments described below, see Section 5, the polarization state of incident radiation was controlled by half- or
quarter-wave plates. In the former case of linearly polarized radiation, its helicity Pcirc ≡ S3 = 0 and, hence, only the
components of the photocurrent proportional to T1 and T2 are excited, see Eqs. (10). For not too large incidence angles θ0,

6 We note that in some systems with reduced symmetry due to e.g., ripples, strain or terraces, the photon drag effect may also be allowed at normal
incidence. However, these contributions are expected to be very small, as they are proportional to two small factors: the photonwavevector and the degree
of asymmetry. Hence, such effects are out of scope of present review.
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a

b

c

d

e

f

Fig. 2. Schematic illustration of the possible contributions to the photon drag and photogalvanic effects. Panels (a)–(b): linear and (c) circular photon
drag effects, respectively [see Eqs. (10) and (11)]. Note that these figures are relevant both to ideal graphene and graphene on the substrate. Panels (e)–(f):
linear and circular photogalvanic effects allowed by symmetry in graphene samples with structure inversion asymmetry, i.e. deposited on substrates [see
Eqs. (12) and (13)]. Panel (d) shows a relevant experimental geometry. After [62].

where sin θ0 ≈ θ0 and cos θ0 ≈ 1 (see Ref. [59] for discussion of the arbitrary incidence angle), the component of the current
in the radiation incidence plane, jx, is given by the sum of the polarization-independent contribution [T1 term in Eq. (10a)]
and the contribution excited by polarized light being proportional to S1 ∝ cos 2α (T2 term). The current component normal
to the incidence plane, jy, is excited by the polarized radiation only, it is proportional to the Stokes parameter S2, which
varies as sin 2α. In the geometry with a quarter-wave plate one obtains elliptically polarized radiation and, in addition to
the contributions described above, one can generate current sensitive to the radiation helicity. Here the perpendicular to
the incidence plane component of the photocurrent, jy, can be presented as a superposition of the contributions excited
by linearly and circularly polarized light, being described by the linear combination of the Stokes parameters S2 and S3,
respectively. For the particular choice of the angles accepted by Eq. (7b) it is described by

jy = jA sin 2ϕ + jB sin 4ϕ, (11a)

where jA = A|E|
2θ0 and jB = B|E|

2θ0 are the magnitudes of circular and linear contributions, respectively. The current in
the incidence plane is given by the superposition of terms ∝ S1 and S2, namely,

jx = jB cos 4ϕ + jC , (11b)

with jC = C |E|
2θ0. Full expressions for the photocurrent components in the terms of Stokes parameters under oblique

incidence are presented in Ref. [59].

3.2. Photogalvanic effects in a single layer graphene

Appearance of the photogalvanic effects implies that the spatial inversion symmetry is broken. Such a situation for flat
infinite sample is realized for the graphene layer deposited on the substrate or if adatoms predominantly are present on one
surface of the material. The symmetry of graphene on a substrate is C6v and the PGE for the oblique incidence in the (xz)
plane is described for not too large incidence angles by

jx = χl
ExE∗

z + E∗
x Ez

2
, (12a)

jy = χl
EyE∗

z + E∗
y Ez

2
+ χcPcircêx(|Ex|2 + |Ey|2), (12b)

where two independent parameters, χl and χc , describe linear and circular PGE, respectively. Similar to the photon drag
effect, the PGE can be generated at oblique incidence only, however, in this case it comes from the necessity to provide
z-component of electric field, rather than in-plane photon wavevector q, see Eqs. (12). Another specific feature of the
PGE compared to the photon drag effect is that it cannot be generated by unpolarized radiation. Linear and circular PGE
currents given by χl and χc are schematically shown in Fig. 2(e) and (f), respectively. It follows from Eqs. (12a), (12b) that
the linear current flows along the projection of the electric field onto the sample plane and, therefore, in general, it has both
components along, jx, and normal, jy, to the light incidence plane. By contrast, circular photocurrent flows perpendicularly
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to the radiation incidence plane, i.e., along y axis in the chosen geometry.We note, that the dependence of the photogalvanic
effect on the polarization state of light and, consequently on the wave plate orientation angles α and ϕ is indistinguishable
from that of the photon drag effect, see Eq. (11). In particular, for small incidence angles

jx = jB′ cos 4ϕ + jC ′ , (13a)
jy = jA′ sin 2ϕ + jB′ sin 4ϕ, (13b)

where jA′ = A′
|E|

2θ0, jB′ = B′
|E|

2θ0 and jC ′ = C ′
|E|

2θ0 with constants A′, B′ and C ′ are circular (jA′ ) and linear (jB′ , jC ′ )
photocurrent components. It follows from Eqs. (12) the parameters jB′ and jC ′ are interrelated according to jC ′ = −jB′

for s polarization at ϕ = 0, while jC ′ = 3jB′ for p polarization at ϕ = 0 [92]. We emphasize, however, that in the case
of photogalvanic effects the microscopic sense of the parameters A′, B′ and C ′ is distinct from that of the corresponding
coefficients A, B and C for the photon drag effect, since PGE is related to the absence of an inversion center.

The requirement of z-component of the field diminishes PGE in graphene, since strictly two-dimensional carriers are
almost unaffected by Ez . This is in contrast to the conventional semiconductor two-dimensional systems like, e.g., quantum
wells and heterojunctions, where in spite of the fact that there is no carrier motion in z direction the wavefunction is
extended over many atomic layers and can be easily affected by an electric field. Due to the fact that the polarization
behaviors of PGE and photon drag are similar, the PGE is usually masked by the stronger drag effect in graphene. Thus, the
observation of PGE is most likely in conditions where the photon drag effect is reduced, e.g. at high radiation frequencies,
see Section 5.3 for details.

The situation changes, however, in graphene structures of lower symmetry, which is reduced, e.g., due to asymmetric
ripples, curvatures, edges, terraces, etc. Here new contributions to PGE appear, which do not require the action of z
component of electric field on electrons. In particular, excitation of edges represents the natural route of the symmetry
reduction. Disregarding the microscopic structure of the edge and presence of the substrate, we deal with the point
symmetry C2v having the two-fold rotation axis perpendicular to the edge and lying in the sample plane. Corresponding
additional to Eqs. (12) contributions to the photocurrent are given by

jy = Rl
ExE∗

y + E∗
x Ey

2
+ RcPcircêz(|Ex|2 + |Ey|2), (14)

where the edge is assumed to be along y axis, and two constants, Rl and Rc , describing the linear and circular edge PGE are
introduced. Comparing Eqs. (6) and (14) we see that the polarization dependences of these contributions are given by the
Stokes parameters S2 and S3, respectively.We emphasize that edge photogalvanic effect can be observed even for the normal
incidence of radiation where the photon drag is forbidden. Obviously, it is sensitive to the quality and microstructure of the
edge and provides an experimental access to this important parameters.

A further reduction of edge symmetry may come from the fact, that the edge orientation of the graphene layer is
maintained with an atomic accuracy and its direction differs from high-symmetry ones. In this case, the point symmetry of
the system lowers down to Cs (if the substrate is absent) or further to C1 (with allowance for the substrate). In both cases
even unpolarized radiation at normal incidence can cause the photocurrent flowing along the edge, and the direction of the
current is determined by the microscopic structure of the edge.

Besides edge photogalvanic effects, the symmetry reduction compared to ideal graphene layer may also come from the
other factors both natural and produced on purpose, e.g., terraces, strain, ripples, artificial lateral superlattices etc. The
symmetry of the system can be lowered depending on the specifics of the perturbation. In all these cases, the current at
normal incidence can be generated by linearly, circularly or even unpolarized light, its direction and particular polarization
dependence indicates the symmetry of perturbation (see e.g. [93,94], where photogalvanic effects in perturbed graphene
with lateral superlattice were addressed theoretically).

3.3. Photogalvanic and photon drag effects in multilayer graphene

An important issue of graphene structures is the possibility to arrange several atomic layers one on the top of the other.
The striking examples of these systems are graphene bilayers and trilayers whose physical properties attract now a great
interest [95–101]. In these kinds of systems the response to z component of electric field required for PGE current can be
enhanced as comparedwith that in the single layer graphene because each additional layer allowsmore freedom for electron
tomove along the sample normal. Therefore, it is expected tomake themost pronounced impact on the photogalvanic effect
by affecting the microscopic processes of the current formation.

Hence, in multilayer systems the coefficients χl and χc in Eq. (12) describing linear and circular PGE under oblique
incidencemay be stronglymodified and enhanced. At the same time, the dominant contribution to the photon drag effect in
themultilayers is given by Eqs. (10) and the constants T1, T2 and T̃1 differ from those in a single layer due to themodification
of electron energy spectrum and scattering processes.

Besides, the multilayer stacking may contribute to the symmetry reduction andmay give rise to the novel photogalvanic
effects inherent in multilayer systems only. The point symmetry of graphene N-layers depends on the stacking type and on
the layer number, N . Here we consider only two ‘‘natural’’ orderings: the rhombohedral stacking (ABCABC. . . ), described by
the point symmetry group D3d, which contains an inversion center [102], and the Bernal one (ABAB. . . ). In the latter case,
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a b

Fig. 3. Schematic illustration of the second harmonic generation described by Eqs. (16). Panel (a) shows current component in the incidence plane at
a double frequency, jx(2ω) excited by fundamental frequency light polarized along y-axis, (b) shows both contributions to the second harmonic current
parallel and perpendicular to the radiation incidence plane for general direction of E(ω). After [106].

the point symmetry is described by either D3d group (for even N), which contains an inversion center, or by D3h group (for
odd N > 1) [103]. For odd N > 1 the CPGE is also symmetry forbidden for ideal system, however, the linear photogalvanic
current becomes possible even for normal incidence7

jx = χ ′

l (|Ex|
2
− |Ey|2), jy = −χ ′

l (ExE
∗

y + EyE∗

x ), (15)

and described by a single parameter χ ′

l . Here x axis is chosen along one of C2 axes in the sample plane. Finally, bulk graphite
is described byD6h point symmetry group, which contains spatial inversion. Hence, in thismaterial the photogalvanic effects
are forbidden and only photon drag current is possible. Like in case of monolayers, the presence of the substrate or the top
gate can reduce the symmetry of the multilayer graphene system and give rise to the photocurrents, which are forbidden
in monolayers. For example, the symmetry of the bilayer deposited on the substrate reduces from D3d to C3v and the linear
photocurrent described phenomenologically by Eqs. (15) becomes possible.

3.4. Second harmonic generation

Phenomenological analysis of the second harmonic generation (SHG) in graphene and graphene-based systems is quite
analogous to that of the dc photocurrents, see Ref. [106] for details. The important distinctions are as follows: (i) unlike dc
current generation where the current flows only in graphene plane, the ac current associated with the harmonic generation
can have normal to the graphene plane component, and (ii) the second harmonic is described by the quadratic combinations
EβEγ in contrast to the dc current formation proportional to the EβE∗

γ . Consequently, the nonlinear conductivity σ
(2′)
αβγ is

invariant under the permutation of the last two subscripts. It follows that for unpolarized and linearly polarized radiation
the symmetry description of the SHG is similar to that of the linear photon drag and photogalvanic effects: In the very same
way, there are contributions to the harmonic related with the absence of an inversion center in the medium and with the
photon wavevector q. In strictly two-dimensional model for an ideal single-layer sample the current at a double frequency
is described by two linearly independent complex constants Q1 and Q2 as

jx(2ω, 2q) = Q1qx(E2
x + E2

y ) + Q2[qx(E2
x − E2

y ) + 2qyExEy], (16a)

jy(2ω, 2q) = Q1qy(E2
x + E2

y ) + Q2[qy(E2
y − E2

x ) + 2qxExEy]. (16b)

Comparing these expressions with Eqs. (10a) and (10b) for linear photon drag effect we see that, as addressed above, the
electric field and wavevector dependences of these effects are just the same. Although second harmonic can be generated
by unpolarized, linearly polarized or even circularly polarized radiation, no contribution sensitive to the radiation helicity to
the second harmonic current is possible owing to the fact that the quadratic combinations EβEγ in Eqs. (16) are not sensitive
to the radiation helicity. Therefore, analogues of the helicity driven dc current given by bilinear contributions EβE∗

γ − E∗

βEγ

in Eqs. (10), (12), (14) are absent for the SHG.
Fig. 3 schematically shows the geometry of the second harmonic generation and the response at a double frequency, 2ω.

For ideal graphene sample the second harmonic is excited only at the oblique incidence of radiation and is caused by the
photon wavevector q. For instance, for qx ≠ 0, qy = 0, there is a component of the in-plane oscillating current j(2ω) parallel
to the light incidence plane described by (Q1 + Q2)qxE2

x + (Q1 − Q2)qxE2
y [Fig. 3(a)]. Additionally, there is a contribution,

2Q2qxExEy, perpendicular to the incidence plane, see Fig. 3(b).
Since the nonlinear conductivities σ

(2)
αβγ describing linear photon drag/photogalvanic effects and σ

(2′)
αβγ responsible for

the SHG, transform under symmetry operations in the same way, the phenomenological analysis of the effects of substrate,
adatoms, ripples, edges, multilayer stacking, etc. on photocurrents, presented above, holds also for the second harmonic
generation.

3.5. Optical rectification

Optical rectification complements the class of the discussed above second order effects resulting in dc or ac electric
current. It refers to the formation of the steady state dielectric polarization P in response to the radiation propagating in
the media [107]. While the point symmetry restrictions on the optical rectification effect are the same as for the dc current

7 The electron states in the single valley K or K ′ of graphene monolayer possess D3h point symmetry, hence, under the normal incidence the linearly
polarized light can induce the valley-orbit currents described in Refs. [104,105].
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generation and described by Eqs. (2), (8), P does not change its sign under the time reversal. Thus the constants responsible
for the optical rectification and dc current generation have different properties at time reversal. As a consequence, in contrast
to photogalvanic or photon drag effects, the optical rectification gives rise to the electric current during the transient process
only, when the illumination is turned on or off [34,108]

j =
dP
dt

. (17)

Accordingly, microscopic mechanisms of the optical rectification, photon drag and photogalvanic effects are different. In
particular, in contrast to the photon drag and photogalvanic effects, optical rectification does not require optical absorption
and may take place in the transparency region.

To complete the picture, we note that the most general case of two incident waves with frequencies ω1 and ω2
(wavevectors q1 and q2) can also be considered. In this situation, the current or polarization response contains the nonlinear
contributions corresponding to the sum and difference of the frequencies, ω1 ± ω2, and wavevectors, q1 ± q2,

jα ∝ Eβ(ω1, q1)Eγ (ω2, q2)e−i(ω1+ω2)t+i(q1+q2)r , (18a)

and

jα ∝ Eβ(ω1, q1)E∗

γ (ω2, q2)e−i(ω1−ω2)t+i(q1−q2)r , (18b)

respectively, giving rise to the three-wave mixing effects. Note that for ω1 = ω2 in Eqs. (18a) we obtain second harmonic
and dc current generation described above. Phenomenological analysis of these effects can be carried out in a way similar
to the description of the photon drag and photogalvanic effects.

4. Second order effects: theoretical background

Microscopic theory of second order effects in graphene was discussed in a number of works considering classical and
quantum regimes of light–matter interaction [40,58–61,74,106]. In order to illustrate the appearance of the second-order
nonlinear effects in ideal graphenewe first consider the classical range of radiation frequencies given by Eq. (5d) and describe
the electron dynamics in the framework of the second Newton law:

dp
dt

+
p
τ

= eE(r, t) +
e
c
[v × B(r, t)]. (19)

The approach is a standard way widely used for other nonlinear media [109,110], the specificity of graphene comes from
the unusual relation between the momentum p and velocity v,

v = vp/p, (20)

and details of effective friction force,−p/τ , acting on the electron due to the scattering processes. Eq. (19) contains both the
force acting from the electric field of the radiation and the Lorentz force caused by the magnetic field of the wave.

Eq. (19) can be solved by iterations in the strength of electro-magnetic field. At a first stage we determine the linear
response of electron on the oscillating electric field. The momentum oscillations are written as

p̃(t) =
eτE∥e−iωt

1 − iωτ
+ c.c., (21)

where E∥ is the field component in the plane of the graphenemonolayer. The second stage of calculations is to determine the
nonlinear response, induced by the forces in the right hand side of Eq. (19). It contains two contributions: One is related to
the action of magnetic field, in which case the second-order correction to the electron momentum is caused by the Lorentz
force. The other one results from the coordinate dependence of the electric field and does not require magnetic field at all.
Below we consider both effects one by one and start with the response to the magnetic field. In this case, the steady state
momentum is given by

p̄ =
eτ
c

[ṽ × B(t)]. (22)

Here the overline denotes the time-averaging, ṽ is the oscillatory part of the velocity determined by Eqs. (20) and (21).
The coordinate dependence of the fields can be neglected. In the same way, the oscillations of the momentum at a double
frequency (second harmonic generation) are given by the similar to Eq. (22) expression:

˜̃p =
eτ

(1 − 2iωτ)c
[ṽ × B(t)]. (23)

Here wide tilde means taking the contribution oscillating at 2ω.
To illustrate the microscopic origin of the second-order responses we consider the photon drag effect as an example.

The steady-state momentum p̄ in Eq. (22) corresponds to the dc current flow. Physically, it is related with the electron drift
caused by the crossed electric andmagnetic fields of thewave. Basic physics of this effect is illustrated in Fig. 4(a).We assume
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(a) Linearly polarized radiation. (b) σ+ , right-handed radiation.

(c) σ+ , right-handed radiation. (d) σ− , left-handed radiation.

Fig. 4. Schematic illustration of the dynamic Hall effect. For simplicity we assume positively charged carriers, i.e., holes. E∥ , Bz and v denote the in-plane
components of electric field of the radiation, z-component of the magnetic field and the electron velocity, induced by electric field, respectively. These
vectors are shown for two time moments, t1 and t2 , corresponding to half-periods of the field oscillations. Microscopically, action of these fields results in
the Lorentz force, FL , and, correspondingly, dc current, j , see text for details. (a) Linear effect. (b) Circular effect, σ+ radiation. The dashed orbit represents
the hole elliptical trajectory caused by the ac E-field. (c) and (d) show top view of panel (b) for σ+ and σ− radiation, respectively. After [58].

the oblique incidence of the radiation in the (xz) plane, and for the sake of illustration, consider the case of s-polarized radi-
ation, where the electric field oscillates in the sample plane. At one of half-periods of oscillation, say, at timemoment t1, the
radiation electric and magnetic fields acting on charge carrier result in a Lorentz force and, consequently, carrier drift in the
direction of the light propagation (longitudinal current). At the second half of period t2 both fields reverse, hence, the drift
direction remains. The resulting current is so called dynamic or ac Hall effect, which was considered by H.M. Barlow [87].
Themechanism of the second-order response due to the joint action of electric andmagnetic fields is named EB-mechanism.
In quantum mechanical approach it corresponds to the magneto-dipole transitions.

While the longitudinal current is expected for unpolarized and even circularly polarized radiation, the appearance of the
photon helicity dependent current is not obvious. However, as shown in Ref. [58] such current indeed emerges if one takes
into account the effect of retardation between the electric field E and the instant velocity of charge carrier v, being most
pronounced for ωτ ∼ 1. The model picture of the circular ac Hall effect is presented in Fig. 4(b)–(d). For circularly polarized
radiation, the electric field rotates around the wavevector q, sketched in Fig. 4(b) for σ+ circularly polarized light. Now,
instead of linear oscillations, the carriers follow the elliptic orbit. At an instant of time t1, the carrier is accelerated by the
in-plane component E∥ of the ac electric field. At the same time, the carrier with velocity v is subjected to the out-of-plane
magnetic field component Bz . Note, that the velocity v does not instantaneously follow the actual E||-field direction due to
retardation: There is a phase shift equal to arctan(ωτ) between the electric field and the electron velocity v. The effect of
retardation, well known in the Drude–Lorentz theory of high frequency conductivity, results in an angle between the ve-
locity v and the electric field direction E∥, which depends on the value of ωτ . The resulting Lorentz force FL = e/c[v × Bz]

generates a Hall current j , also shown in Fig. 4. Half a period later at t2 = t1 + T/2, both v and Bz get reversed so that
the direction of FL and, consequently, the current j stay the same. The oscillating magnitude and direction of Bz along the
trajectory lead to a periodical modulation of the Lorentz force with nonzero average causing a nonzero time-averaged Hall
current with fixed direction. If, as shown in Fig. 4(d), the light helicity is reversed, the electric field rotates in the opposite
direction and, thus, the charge carrier reverses its direction. Hence, owing to retardation, the y-component of FL at t1 and t2
is inverted. Consequently the polarity of the transverse, time-averaged Hall current changes. We stress that the origin of the
circular ac Hall effect is related with the retardation, which is very important if ωτ ∼ 1. Such condition is readily realized
for the state-of-the-art graphene samples at THz frequency range.

Now we turn to another mechanism of the second order response. As it follows from Eq. (19) this contribution comes
from the fact that the momentum oscillations of an electron given by Eq. (21) result in the oscillations of its coordinate,
r̃(t). The electric force acting on electron depends on its position owing to the coordinate-dependence of E , corresponding
contribution has the form [110]

eE∥eiqr−iωt
≈ ei[qr̃(t)]E∥e−iωt ,

and its time average results in the steady-state response, while its second temporal harmonic gives rise to the second
harmonic generation. This mechanism named as qE2 mechanism corresponds to the quadrupole transitions in a quantum
approach.
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The consistent theory of the second order response in the classical frequency range is developed in the framework of
Boltzmann kinetic equation for the position r , momentum p and time t dependent electron distribution function:

∂ f
∂t

+ v
∂ f
∂r

+ e

E +

1
c
[v × B]


∂ f
∂p

= Q {f }, (24)

where Q {f } is the collision integral. Eq. (24) takes into account the action of electric and magnetic fields of radiation and is
solved iteratively in the field amplitudes. The details of calculations are presented in Refs. [58,59,106]. Corresponding results
of calculations, comparison with available experimental data, and the extensions of treatment to cover quantum range of
frequencies and to include the symmetry reduction owing to sample edges or substrate are reviewed below together with
experimental results.

5. Second order effects: experiment and theory

5.1. Second harmonic generation

5.1.1. Microscopic theory
The SHG theory in graphene was presented in several works [50,74,106]. Ref. [74] deals with symmetry arguments and

effects of radiation propagation inmultilayer graphene-based systems. In theworks [50,106] both quantummechanical and
classical regimeswere discussed. The approaches of Refs. [74,106] agree for the intermediate frequencies τ−1

≪ ω ≪ EF/h̄.
Here we follow Ref. [106] and present the results of calculations for the constants Q1 and Q2 describing two independent
contributions to the second harmonic current j(2ω, 2q) ∝ Q1,Q2, see Eqs. (16). These calculations, based on Boltzmann
equation and describe the classical frequency range, yield

Q1 = −
e3v4

2ω


k

τ1,ωf ′

0


τ1,2ω

εk
(3 + iωτ2,ω) + (1 − iωτ2,ω)

dτ1,2ω
dεk


, (25a)

Q2 =
e3v4

2ω


k

τ1,ωf ′

0


τ1,2ω

εk
(1 + 4iωτ2,2ω) −

d
dεk

[τ1,2ω(1 − 2iωτ2,2ω)]


. (25b)

Here f ′

0 = df0/dε,

τn,ω =
τn

1 − iωτn
, (n = 1, 2),

with τ1 and τ2 being the momentum and momentum alignment relaxation times, respectively and the condition h̄ω ≪ EF
is assumed. Using the obtained ac second harmonic current j(2ω, 2q) and Maxwell equation

∆A(r, t) +
4ω2

c2
A(2ω) = −

4π
c

e2iq∥ρ−2iωtδ(z)j(2ω) + c.c., (26)

we obtain the vector potential A(r, t) of emitted radiation. Here q∥ = (qx, qy) is the projection of radiation wavevector
onto the sample plane z = 0. Note, that the current oscillating at a double frequency, j(2ω), is proportional to the square of
incident electric field, i.e. to the intensity of the fundamental harmonic. As a result, the intensity of the second harmonic is
proportional to the fourth power of the incident electric field or the square of the fundamental harmonic intensity.

In the static limit, ω → 0, the coefficients Q1 and Q2 are real and diverge as 1/ω, but the net current j(2ω, 2q) remains
finite due to factors ∝ q in Eqs. (16). Coefficients Q1 and Q2 become, up to common factor, equal to the constants T1 and T2
describing linear photon drag effect, see Eqs. (10) and (29) below, because at ω = 0 responses at zero and double frequen-
cies are indistinguishable. At high frequencies, ωτ1 ≫ 1, ωτ2 ≫ 1, parameters Q1 and Q2 are proportional to 1/ω3, hence,
current density decays as 1/ω2.

A remarkable feature of the SHG microscopic mechanism is the fact, that for ωτ ∼ 1 parameters Q1 and Q2 contain
real and imaginary parts, moreover, the phases of these quantities are different. By that, excitation with linearly polarized
radiation may cause circularly polarized light at a double frequency. Indeed, if the incident radiation contains both x and y
components of E , then the response at the double frequency also contains jx and jy, however, their oscillations are phase-
shifted. Thus, the second harmonic radiation becomes, in general, elliptically polarized. Calculation shows that the degree
of circular polarization of the emission can reach 90% [106]. Note, that this effect is not observed so far.

It is worth to mention that the response of graphene at a double frequency due to the outlined mechanisms can be
much stronger than in conventional semiconductor systems, since electron velocity in graphene exceeds Fermi velocity
of electrons in semiconductor heterostructures. We compare the second order response in graphene with that of a two-
dimensional centrosymmetric systemwith parabolic energy spectrum (Q parab

1 ,Q parab
2 ). In the high frequency limit (ωτ ≫ 1,

h̄ω ≪ EF ) Eqs. (25) yield Q2 = Q1/2 and we obtain the enhancement factor [74]

η =
Q graphene
1

Q parab
1

=
v2

2v2
F
,

where v = 108 cm/s, vF =
√
2EF/m is the Fermi velocity of electrons in the quantum well structure, m is their effective



Author's personal copy

114 M.M. Glazov, S.D. Ganichev / Physics Reports 535 (2014) 101–138

a

b

Fig. 5. (a) Polarization dependence of the normalized second harmonic radiation intensity detected from graphene on SiO2/Si substrate (filled circles)
and purely SiO2/Si substrate (open squares) measured for the fundamental harmonic wavelength λ = 800 nm at room temperature. Here the polar angle
γ is the angle between the incidence plane and [100]-axis of the substrate (see text for details). Solid curves are fits according to Eq. (27). (b) Normalized
second harmonic radiation intensity detected from bilayer graphene on SiO2/Si (filled circles) and from bulk graphite (open squares) and a function of γ .
Solid curves show the fits after Eq. (28) and are normalized such that the isotropic component of the second harmonic signal from silicon would be unity.
The absolute angle is arbitrary for both curves. After [49].

mass. For typical Fermi velocities on the order of vF = 2 × 107 cm/s one has the enhancement factor

η ∼ 10.

Hence, the second harmonic response in graphene may be about an order of magnitude larger than that of other two-
dimensional semiconductor systems. Moreover, it can further be enhanced due to the excitation of plasmons as suggested
in Ref. [74].

5.1.2. Experiment
Second harmonic generation has been first observed in single and multilayer graphene samples on SiO2/Si substrates

applying near-infrared radiation [49,50]. The experiments on harmonic generation reported so far applied linearly polarized
pump beams and the linearly polarized response has been analyzed. The nonlinear optical effects sensitive to the radiation
helicity of the pump beam or resulting in generation of a circularly polarized light are still a challenge. In agreement with
the phenomenological theory presented in Section 3.4, second harmonic has been observed applying radiation at oblique
incidence. Either p- or s-polarized beam of a femtosecond Ti:Sapphire laser operating with pulse energy ≈0.06 nJ and
duration about 150 fs in the wavelength range of 730–830 nm has been used. This experimental situation where h̄ω > EF
corresponds to the quantum frequency range. The radiation falls on a graphene layer at an angle of incidence of θ = 60◦ and
is focused into an elliptical spot size of approximately 7–10µm.Wenote that in graphene, which is strictly two-dimensional
system, the phase synchronization condition needed for harmonic generation in bulk materials is relaxed. The signal at a
double frequency is collected, optically filtered from the fundamental light, and detected using a cooled photomultiplying
tube and photon-counting electronics. It has been verified that the intensity of the second harmonic emission is proportional
to the square of that for the incident radiation. The variations of the signal upon rotation of the radiation polarization vector
as well as rotation the sample about the normal axis have been analyzed. Both methods allow the detailed characterization
of the second harmonic and, together with averaging over many rotations, improve the signal/noise ratio. The latter is of
importance, since the second harmonic intensity froma small graphene sheet is veryweak—a fewphotons per second.While
all four combinations of s- and p-polarized fundamental and second harmonic light have beenmeasured, the highest second
harmonic intensity has been detected for p-polarization of both beams.

The evidence of the SHG in the single layer samples requires careful analysis of the data, in particular, of the dependence
on the incidence plane orientation characterized by an angle γ between the incidence plane and [100] axis of the substrate,
see Fig. 5. As it follows from the phenomenological theory described above in Section 3.4, the secondharmonic emission from
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Fig. 6. Output power P as a function of dc bias voltage U for the second-order (solid line), third-order (dashed line), and fourth order (dash-dotted line)
harmonics excited by radiation with frequency of f0 = 1 GHz. Inset shows metallic coplanar line waveguide graphene multiplier device. After [48].

graphene monolayer is isotropic, its intensity should not change upon variation of the angle γ . However, experimentally
two contributions, the isotropic (γ -independent) and quadrupolar (∝ cos 4γ ) contributions are observed in single layers.
As a result, the normalized SHG intensity as a function of angle γ can be described by the following fitting equation:

I(γ ) = A0 + A4 cos(4γ + δ), (27)
where A0 and A4 are the amplitudes of the isotropic and quadrupolar components and δ ≈ 0 is the phase. The problem in
analysis is that such a behavior is expected and indeed observed from the bare Si substrate [50,111]. However, contribution
of graphene to the second harmonic manifests itself by reduction of anisotropy by about 30% and an increase of intensity,
comparedwith bare substrate. This result is in agreementwith phenomenological description, Eqs. (16),which demonstrates
that the graphene response is isotropic: The intensity of the second order response is the same irrespective of the orientation
of the incidence plane.

The situation drastically changes in multilayer graphene. Here, instead of four-fold, the symmetry of photoresponse
becomes three-fold, which rules out the substrate contribution. It is shown in Fig. 5, where the normalized second harmonic
intensity is plotted as a function of γ . The experimental results now follow the phenomenological equation

I(γ ) = A′

0 + A′

3 cos(3γ + δ′), (28)
where A′

0 and A′

3 are the amplitudes of isotropic (zeroth) and third angular harmonics, δ′ is the initial phase. In this case the
fourth angular harmonic is absent, indicating that the response is dominated by the multilayer graphene rather than by a
substrate. The data not only demonstrate a pure multilayer graphene response but also indicate the symmetry reduction to
C3v supporting the effect of the substrate induced structure inversion asymmetry, see Section 3.3. Based on this difference
in Ref. [49] second harmonic generation effect was suggested for the diagnosing the layering structure of graphene samples.
As recently shown in Ref. [51] the SHG can also be observed in flat graphene at the normal incidence, however, only if
additionally an in-plane static field is applied to graphene sheet. These processes are already third order in electric field and
will be discussed from the theoretical point of view in Section 6.

The discussed above experiments on the second harmonic generation apply infrared radiation with h̄ω ≫ EF which
corresponds to the quantum regime of light–matter interaction. Moreover, the second and higher harmonic generation have
been observed also for the gigahertz frequency range (wavelengths of the order of several millimeters) where the classical
frequency range was realized [48]. For measurements of the microwave frequency multiplication a specific high-frequency
structure, i.e., a metallic coplanar linewaveguide device, was patterned directly on graphene, see inset in Fig. 6. Importantly,
the current–voltage characteristic of used device is linear, ruling out possible mechanisms based on the nonlinear coupling
between quasi-static field and current response. Thus, the physical mechanism of frequency multiplication is related with
strongly nonlinear electromagnetic response of Dirac fermions in graphene. Fig. 6 shows the dependence of the signal at
double frequency on the bias voltage, as well as the powers of the third and fourth harmonics measured on the same device.
The second order nonlinear effect appears at zero bias its power varies from−60 (at excitationwith 10GHz) to−45 dBm (for
1 GHz) as compared to the power of excitation frequency. In contrast to the measurements under infrared excitation [51],
here the static voltage does not lead to an enhancement of the signal. Rather strong nonlinear response suggests that such
graphene-based systems can be efficiently implemented as frequency multipliers in GHz and may be even in THz ranges.
Note that the latter is not yet realized.

5.2. Dynamic hall (photon drag) effect

5.2.1. Microscopic theory
The microscopic theory for the photon drag effect in graphene was developed in Refs. [58,59] for classical frequency

range and in Ref. [62] for the quantum frequency range. Here we start with the presentation of the results of microscopic
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calculations for the classical range of frequencies, h̄ω ≪ EF , based on the Boltzmann equation approach and considering
the classical picture of the effects visualized in the model outlined in Section 4. Amplitude and the sign of the resulting net
dc current j are given by the constants T1, T2, and T̃1 in Eqs. (10). Calculations carried out in Refs. [58,59] and taking into
account both EB and qE2 contributions yield

T1 = −
2e3v4

ω


k

τ1f ′

0

1 + ω2τ 2
1


2


dτ1
dεk

+
τ1

εk


−

1 − ω2τ1τ2

1 + ω2τ 2
2


dτ1
dεk

−
τ1

εk


, (29a)

T2 = −
2e3v4

ω


k

τ1f ′

0

1 + ω2τ 2
1


dτ1
dεk

−
τ1

εk


, (29b)

T̃1 = e3v4

k

τ 2
1 (1 + τ2/τ1)f ′

0

[1 + (ωτ1)2][1 + (ωτ2)2]


dτ1
dεk

−
τ1

εk


. (29c)

Eqs. (29) show that the radiation frequency is an important issue for the current generation. The frequency dependence
of linear and circular currents given by T1 and T̃1, respectively, is shown in the inset in Fig. 9 together with experimental
data discussed in detail later, in Section 5.2.3. In line with qualitative model shown in Fig. 4 in the limit of ω → 0 the linear
photocurrent is constant while circular one is zero. With the frequency increasing, i.e., for ωτ ≫ 1 but h̄ω ≪ EF , the linear
photocurrent decreases as

jB, jC ∝
1
ω2

. (30)

Moreover, due to an interplay of EB and qE2 contributions the linear photocurrent in the incidence plane not only decreases
but may change its sign as a function of the radiation frequency depending on the dominant scattering mechanism [59].
By contrast, the circular photocurrent exhibits nonmonotonic frequency dependence: It rises with increasing frequency,
reaches the maximummagnitude at ωτ ∼ 1 and then drops down as (h̄/τ ≪ h̄ω ≪ EF )

jA ∝
1

ω3τ
. (31)

Although the drag effects are suppressed with an increase of frequency, they may still result in the observable signals, see
below. Such frequency dependence is in agreement with the phenomenological considerations. Indeed, the time reversal
symmetry imposes restrictions on the constants T1, T2, and T̃1 in Eqs. (10) and, hence, on the parameters A, B, and C in
Eqs. (11) governing their frequency dependence. To illustrate these limitations, we consider the regime of low frequencies,
h̄ω ≪ EF , where only intraband transitions are possible. We note that the following quantities: j , q, ωτ , and Pcirc are odd at
the time reversal, while radiation intensity, I , is even at the time reversal. Phenomenological equations (2) are invariant at
time reversal. It follows from Eq. (10) that linear photocurrent is given by

jα ∝ qβFd,l(ωτ)I,

whereFd,l(ωτ) is a function, forced to be even at time reversal. Hence,Fd,l(ωτ) contains only evenpowers ofωτ . By contrast,
the circular photon drag effect given by Eq. (10b)

jα ∝ qβPcircFd,c(ωτ)I,

is described by the function Fd,c(ωτ) odd at time reversal, hence, containing only odd powers of ωτ . Similar relations
are satisfied for the photogalvanic effect given by Eqs. (12), in the latter case, however, since q does not enter the
phenomenological expressions, function describing circular photon drag effect is even at time reversal, and vice versa.

With further increase of the radiation frequency or decrease of the Fermi energywe turn to the quantum frequency range.
We present the results for the case ofωτ ≫ 1 and h̄ω ∼ EF studied in Ref. [62]. The absorption of the electromagnetic wave
in the case of intraband transitions should be accompanied with the electron scattering, otherwise energy and momentum
conservation laws cannot be satisfied. The corresponding processes are schematically depicted in Fig. 7. As a result, one can
express the coefficients T1 and T2 describing linear photocurrent in the following form (ωτ ≫ 1) [62]

T1 = −e3v4 32
h̄ω4


ki

[f (εki) − f (εkf )]
εkf

(εki + εkf )
2
, (32a)

T2 = −e3v4 8
h̄ω4


ki

[f (εki) − f (εkf )]
ε2
kf

+ ε2
ki

+ (h̄ω)2

εki(εki + εkf )
2

. (32b)

Here εkf = εki + h̄ω. It is noteworthy that Eqs. (32) are valid provided h̄ω < EF . We note that although the scattering rates
are not explicitly present in Eqs. (32), the scattering processes are crucial for the photocurrent formation.
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a b c d

Fig. 7. Schematic illustration of the processes responsible for the photon drag effect in the quantum frequency range under intraband transitions (ωτ ≫ 1,
h̄ω 6 EF ). Panels (a)–(d) show phonon/impurity assisted indirect optical transitions via different intermediate virtual states. Arrows show electron–photon
interaction (solid arrows) and electron scattering caused by phonons or impurities (dashed arrows). Initial and final states of a photoexcited carrier with
wavevectors ki and kf are shown by open and solid circles, respectively.

Fig. 8. Schematic illustration of the resonant photon drag effect under interband optical transitions. The tilted arrows show optical interband transitions
inclined in the k space due to the transfer of photon momentum q to electrons. At resonance the final state of the transitions with negative kx lies below
the Fermi energy and, therefore, such transitions are forbidden. By contrast the transitions with positive kx are allowed. The optically induced imbalance
of carriers in the k-space results in fluxes of electrons (filled circuits) in the conduction, ic , and valence, iv bands. Both fluxes contribute constructively to
the electric current, j = e(ic + iv). After [60].

Note, that if the photon energy becomes much smaller as compared with the electron energies, h̄ω ≪ εki , εkf , but
ωτ1, ωτ2 ≫ 1, the classical and quantum approaches merge. One can check that, in agreement with Eqs. (30), Eqs. (32)
yield

T1 = 2T2 =
8e3v4

ω3


k

f ′

0

εk
. (33)

In this frequency range values of T1 and T2 are identical to those presented in Eqs. (29).

5.2.2. Resonant drag effect under interband transitions
A further increase of the radiation frequency or decrease of the Fermi energy opens another absorption channel, namely,

if h̄ω > 2EF the direct interband transitions dominate the absorption of radiation. It gives rise to the novel regimes of the
photon drag effect as it is considered theoretically in Ref. [60]. Schematics of the photocurrent generation is illustrated in
Fig. 8. The microscopic origin of the photocurrent generation in this quantum frequency range is related with the fact that
the electron in the process of transition from the valence band to conduction band shifts in the k space by q, the photon
wavevector.

In the narrow frequency range

|h̄ω − 2EF | 6 h̄vq, (34)

as it is seen from Fig. 8, only transitions at positive momenta are possible due to the final state filling effect. It results in the
strong asymmetry of photoelectrons distribution, which gives rise to the resonant photocurrent. The interband absorption
gives rise to the generation of electron–hole pairs. As a result, a photocurrent is contributed both by the photoelectrons
and photoholes. The hole contribution can be viewed as that of a valence band electron with an opposite wavevector. These
fluxes of conduction and valence band electrons are shown by arrows in Fig. 8. Since the velocity of quasiparticle is given
by h̄−1 dε/dk, the velocities for opposite wavevectors in the conduction and valence band are the same. Consequently, the
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Fig. 9. Helicity dependence of the photocurrent, jy , measured in the direction normal to the plane of incidence. The ellipses on top illustrate the polarization
states for various angles ϕ. Dashed lines show fits to the calculated total current jA + jB comprising the circular contribution jA (full line) and the linear
contribution jB (dotted line), see Eq. (11a). Top and bottom panels correspond to p- and n-type samples, respectively and demonstrate that the current
has opposite signs for opposite carrier polarity. Inset shows frequency dependence of the longitudinal linear, jC , and circular, jA , photocurrents. Circles
and squares are experimental data, solid and dashed curves represent the results of calculation. The agreement is obtained without fitting parameters.
After [58].

fluxes in the conduction and valence bands are the same. Taking into account that the electron generation rate is παI/(h̄ω),
where πα is the monolayer graphene absorbance (α is the fine structure constant) [23,112], and all generated electrons
contribute with velocity v to the drag current one has

j ∼ evτπα
I
h̄ω

. (35)

This effect, known as resonant drag effect, was suggested in Ref. [60]. Although themagnitude of the current is independent
of the photonwavevector q, the resonant effect takes place in the narrow frequency range, Eq. (34), the smaller the smaller q.
If the photon frequency is high enough, h̄ω−2EF > h̄vq, the resonant contribution is absent and the ordinary (nonresonant)
drag current is formed, similarly to the case of semiconductor quantum well structures [113].

5.2.3. Experiment
Dynamic Hall and photon drag effects have been demonstrated applying THz and infrared laser radiation to unbiased

graphene layers produced both by exfoliation and epitaxial techniques [58,59].8 In all experiments known so far, the
limit h̄ω < EF was fulfilled, and, therefore, classical regime of light–matter interaction is realized. To prevent high losses
or electrical shunting by conducting substrates high-resistivity Si or semi-insulating SiC substrates have been used. For
some samples nonconductive polymer films were used for protection of graphene samples from the undesired doping in
the ambient atmosphere [114,115]. To measure photocurrents ohmic contacts were made at samples edges. Details on
the material growth and characterization can be found in [58,115–117]. For optical excitation cw and pulsed molecular
optically pumped terahertz lasers (for laser characteristics see e.g. [118–122]) or tunable CO2 lasers were applied. In the
measurements the spatial beam distribution had an almost Gaussian profile, independently measured by a pyroelectric
camera [123], and the laser spot is always centered between the contacts. This arrangement prevents the temperature
gradient between contacts necessary for the thermoelectric effect like that discussed for graphene in e.g. [124]. A pronounced
signal is detected in a wide range of radiation frequencies, from 0.6 THz (λ ≈ 500 µm) up to about 30 THz (λ = 10 µm),

8 While both types of samples showed the effect, the micrometer sized exfoliated samples displayed an additional edge contribution (discussed below
in Section 5.4) as the spot size of the terahertz laser of 1 mm2 was larger than the graphene flakes.
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a b

Fig. 10. Schematic illustration of indirect intraband Drude transitions with intermediate states in P+

3 band. These transitions together with those shown
in Fig. 7 are important for photogalvanic effect, see text for details. After [62].

and intensities, from mW/cm2 up to MW/cm2. In agreement with theory presented above, the Hall photocurrent appears
under oblique incidence. Fig. 9 shows results obtained on epitaxial single layer graphene excited by elliptically polarized
light in transverse geometry. The polarization state of light was controlled by the rotation of the quarter-wave plate. This
figure reveals that the photocurrent signal is a superposition of circular and linear contributions of comparable strengths.
We emphasize that the circular contribution (j ∝ Pcirc = sin 2ϕ) manifests itself as a change of current direction for left and
right circularly polarized radiation. In accordance with the theory, Section 3.1, the circular photocurrent is observed in the
direction perpendicular to the incidence plane, while linear contribution is detected in the incidence plane together with
polarization independent current. Obviously, the latter effects can be and indeed have been observed for linearly polarized
radiation. Functional behavior of the photocurrent components upon variation of the radiation polarization state, incidence
angle and frequency is in a full agreement with that obtained theoretically in Section 5.2.1. Moreover, the microscopic
theory yields the absolute value of the photocurrent without fitting parameters with only assumption of the short-range
scattering [58]. It is worth to note, that in agreement with theoretical consideration the signal reverse its sign by change
of carrier type from p to n. Strikingly, due to the fact that the conduction- and valence-band are symmetric with respect to
the Dirac point, the opposite polarities of the signal can be observed in the same sample just by changing the Fermi level
position.

5.3. Photogalvanic effect in the pristine graphene

5.3.1. Microscopic theory
Due to symmetry arguments addressed above, photogalvanic effect may emerge only in graphene systems where the

inversion symmetry is broken. Moreover, from the same arguments summarized in Eqs. (12a), (12b) it follows that the
photocurrent in flat infinite graphene can be generated only with allowance for z-component of the incident electric field.
The latter condition hampers the photogalvanic effect formation. Indeed, for strictly two-dimensional model where only
π-orbitals of carbon atoms are taken into account, no response at Ez is possible. However, taking into account other bands
in electron energy spectrum formed from the σ -orbitals of carbon atoms gives rise to the dc current.

Microscopically, the photogalvanic effect arises due to the quantum interference of the Drude-like indirect optical
transitions represented in Fig. 7 (for q = 0) and the indirect intraband transitions with intermediate states in distant
bands depicted in Fig. 10, similarly to the orbital mechanisms of the photogalvanic effects in conventional semiconductor
nanostructures [125–127]. To illustrate the generation of the photocurrent we consider the circular photogalvanic effect.
The current results from the anisotropic distribution of photoexcited electrons, which is caused the different dependence
of the transition matrix elements on the wavevectors: The matrix element of the Drude-like transitions within one band
(Fig. 7) is linear in the wavevectors

M(1)
kf ,ki ∝ A · (ki − kf ),
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whereas the matrix element of the indirect optical transitions involving distant bands M(2)
kf ,ki (Fig. 10) is almost ki and kf

independent. The total transition rate calculated with allowance for the quantum mechanical interference is given by

Wkf ,ki ∝ |M(1)
kf ,ki + M(2)

kf ,ki |
2. (36)

As a result we obtain from Eq. (36) that besides k-even contributions (∝ |M(1)
kf ,ki |

2, |M(2)
kf ,ki |

2), the transition probability
contains k-odd interference term:

∝ 2 Re[M(1)
kf ,kiM

(2)∗
kf ,ki ] ∝ A · (ki − kf ). (37)

It follows from Eq. (37) that the interference contribution is linear in the initial and final wavevectors, ki and kf , hence,
the distribution function of the photoexcited carriers is anisotropic in the k-space. An imbalance of electron population
in different regions of the k-space results in the dc current. We stress that the matrix element M(1) contains the in-plane
components of the radiation vector potential, while the elementM(2) is related with its z-component. Hence, the generated
current is proportional to E∥E∗

z ± c.c. in accordance with phenomenological analysis, see Eq. (12).
As it follows from the above consideration, the optical transitions via distant bands, although providing a tiny fraction

in the total absorption of graphene, are crucial for the current formation. Therefore, we consider them in more detail. Here,
the distant bands, involved in the interference, are described by P+

3 representation (even under the z → −z reflection),
while the conduction and valence band states in graphene transform according to the P−

3 representation (odd under the
z → −z reflection) [78]. Microscopic calculations performed within the basis of 2s and 2p atomic orbitals [78,79] show
that the distance from the P−

3 states forming conduction and valence bands and closest deep valence bands P+

3 , ∆, is about
10 eV. It is noteworthy, that the electron dispersion in these bands has the form, similar to that of conduction and valence
bands: i.e. energy spectrum near K (or K ′) point is linear, however, with different velocity, as it is schematically illustrated
in Fig. 10. Since matrix elements M(1) and M(2) have different parity under z → −z reflection, the quantum interference is
only possible in the case, where the graphene is deposited on the substrate and/or adatoms are present on one side of the
sample, i.e. where the z → −z reflection symmetry is broken.

In the further description we limit our consideration to the circular electric current only, j ∝ χcPcirc, see Eqs. (12). The
calculations carried out in framework of the Fermi golden rule for the quantum frequency rangewhereωτ ≫ 1 and h̄ω . EF
yield [62]:

χc = −ev
4πw

h̄


kikf

τ1(εkf )εki + τ1(εki)εkf

εki + εkf
[f (εki) − f (εkf )]δ(εkf − εki − h̄ω), (38)

where

w =
2πe2vp0
m0cω2

⟨V0V1⟩

∆2
,

V0 and V1 determine the electron–impurity or electron–phonon scattering matrix elements within π-band and between
σ - and π-bands, respectively, p0 is the interband optical matrix element, and ⟨V0V1⟩ denotes the averaging of the product
V0V1 over the disorder realizations. The treatment of the general case is given in Ref. [62].

The direction of the current is determined by the sign of the product ⟨V0V1⟩ and the radiation helicity. The averaged
product ⟨V0V1⟩ has different signs for the same impurities, but positioned on top or bottom of graphene sheet. It is clearly
seen that the photogalvanic current vanishes in symmetric graphene-based structures where ⟨V0V1⟩ = 0.

In the case of the degenerate electron gas with the Fermi energy EF and in the limit of h̄ω ≪ EF Eq. (38) can be recast
as [62]

χc = −8
αed0
∆

⟨V0V1⟩

⟨V 2
0 ⟩

EF
h̄ω

, (39)

where we introduced effective dipole of interband transition

ed0 =
ep0h̄
m0∆

.

Eq. (39) allows us to evaluate the frequency dependence of the circular photogalvanic effect. Namely, at ωτ ≫ 1, h̄ω ≪ EF ,
the circular photocurrent behaves as 1/ω, i.e. it is parametrically larger than the circular drag (or circular ac Hall) effect,
which behaves as 1/ω3, see Eq. (31). This important property is related with the time reversal symmetry: the coefficient χc

describing photogalvanic effect is even at time reversal, while T̃1 describing circular drag effect is odd. Therefore, circular
photocurrent formation due to photogalvanic effect is possible at the moment of carriers photogeneration. Since atωτ ≫ 1
for intraband transitions the absorption rate is proportional to the electron scattering rate, τ−1, and current density is
proportional to the electron scattering time, τ , the circular photocurrent is independent of the scattering rate. Owing to
different symmetry under time reversal the linear photogalvanic effect, by contrast, requires extra scattering, its description
within the same model is presented for the classical frequency range in Ref. [62]. As a result for ωτ ≫ 1 (but h̄ω < EF ) the
following hierarchy of the current magnitudes is possible: (i) circular photogalvanic effect ∝ ω−1, (ii) linear photogalvanic
∝ ω−2τ−1 and photon drag effects ∝ ω−2, (iii) circular photon drag effect ∝ ω−3τ−1.
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Fig. 11. Spectral dependence of the circular photocurrent jy,A measured in the direction normal to the plane of incidence. The data for epitaxial single layer
graphene sample are obtained for circularly polarized infrared light (ϕ = 45◦) and two angles of incidence θ0 = ±20◦ . The inset shows the experimental
geometry. After [62].

5.3.2. Experiment
As we emphasized above, see Section 3.2, the photogalvanic effects in pristine graphene involve z-component of electric

field andmay be observed only under special conditions, where the photon drag contribution is suppressed, in particular, in
the quantum frequency range. Correspondingly, both the circular and linear photogalvanic effects were observed in themid-
infrared range of radiation frequencies (about 30 THz) on epitaxial graphene samples. The demonstration of photogalvanic
effects becomes possible due to two facts: On one hand, at such a high frequencies the photon drag effect is suppressed, and
on the other hand, photogalvanic and drag effects appear to contribute to photocurrent with opposite signs. This interplay
resulted in a change of sign of the photocurrent upon the variation of radiation frequency, see Fig. 11, providing an evidence
for the existence and substantial contribution of the photogalvanic effect [62]. The value of the circular photocurrent caused
by the photogalvanic effect is close to the theoretical estimate after Eq. (39) for sufficiently strong asymmetry degree,
⟨V0V1⟩/⟨V 2

0 ⟩ ≈ 0.5. We emphasize that the photogalvanic effect does exist only due to the structure inversion asymmetry.
Therefore, no photogalvanic effect is expected in graphene with equivalent ‘‘up’’ and ‘‘down’’ surfaces, e.g. in free standing
graphene. It would be observable in such layers only for nonequal numbers of adatoms on the opposite sides of the graphene
sheet. An experimental evidence for a large structure inversion asymmetry due to adatoms and/or substrate has been given
most recently by observation and study of magnetic quantum ratchet effect in similar epitaxial samples [114].

5.4. Edge photocurrents

5.4.1. Microscopic theory
According to the symmetry analysis given in Section 3.2, the presence of sample edges breaks inversion symmetry of the

system and, therefore, their illumination gives rise to the edge photocurrents, considered phenomenologically in Section 3.2.
A microscopic process actuating the edge photocurrent generation is illustrated in Fig. 12(a) for the linearly polarized
radiationwhere the semiinfinite sample occupying x > 0 plane is shown together with the electronmotion in the vicinity of
the edge. The current formation involves the time dependent motion of the charge carriers under the action of the electric
field and the diffusive scattering at the sample edge. The electric current is formed in the narrow stripe with the width
on the order of the mean free path ℓ in the vicinity of the sample edge. It is contributed by the carries pushed towards
the edge by the electric field in one half of a period, since for the diffusive scattering the electrons moving from the edge
have random velocities along the boundary. We note that this mechanism is similar to that of the surface photogalvanic
effect observed in bulk materials [128–131]. The above process results in the linear photogalvanic effect, given by the first
term in phenomenological Eq. (14), jy ∝ ExE∗

y +EyE∗
x . The allowance for the trajectory winding under the action of circularly

polarized radiation, shown in Fig. 12(b), results in the contribution to the current sensitive to the radiation helicity reversing
sign from σ+ (solid) to σ− (dashed). We note that the illumination of opposite edges of the sample results in the opposite
sign of photocurrent (in a fixed frame of coordinates).

Edge photogalvanic effect may also result from the variation of the electron density in the vicinity of the edge due to
the action of the field component perpendicular to the sample edge. To estimate the effect for the classical frequency range,
h̄ω ≪ EF , we use the continuity equation

∂δN
∂t

+
∂ ix
∂x

= 0, (40)

which relates the variation of electron density δN ≡ δN(x, t) = N(x, t) − N0 with the electron flux density i = j/e, where
N0 is the unperturbed electron density, and the coordinate frame with axis y parallel to the edge is used (see Section 3.2).
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a b

c d

Fig. 12. (a) Schematic illustration of the linear edge photogalvanic effect. The oscillations of electric field E(ω) are shown by double-sided arrow. The
motion of a charge carrier (we consider holes for simplicity) towards the edge is shown by the solid red arrow, while the motion from the edge (after
the diffusive scattering) is shown by multiple dashed arrows. The current is formed in the narrow stripe with the width of the mean free path ℓ near
the edge. (b) Schematic illustration of the helicity driven edge current generation. The electric field of circularly polarized radiation rotates clockwise
or counterclockwise resulting in a circular motion of carriers, which is sketched by solid and dashed curved trajectories, respectively. (c) Experimental
geometry for the study of the edge photocurrents. (d) Edge photocurrent topology. Solid and dashed arrows show the current direction for σ+ and σ−

polarizations, respectively. Numbers indicate the photocurrent amplitude JA in microamperes. After [61].

The x component of the flux contains diffusive and drift contributions

ix = −D
∂δN
∂x

+
σ(ω)

e
Ex, (41)

where σ(ω) = C(N0)τ/(1 − iωτ) is the frequency-dependent conductivity, τ is the momentum relaxation time, and
C(N0) = e2EF/π h̄2 [25,132]. The electron gas is assumed to be degenerate, EF = h̄v

√
πN0. The boundary conditions are as

follows: at the sample edge ix = 0, while in the bulk of the sample the current is driven by the electric field only. As a result
we have

δN(x) = δN0 exp


−
1 − i
leff

x


, (42)

where leff =
√
2D/ω = ℓ/

√
ωτ , ℓ = vτ is the mean free path, δN0 = σ(ω)Exleff/[eD(i − 1)]. This description holds for

leff ≫ ℓ. The electron density variation in the vicinity of the boundary is given by

∆N =


∞

0
δN dx =

σ(ω)Ex
iωe

≡ δN0leff/(1 − i). (43)

The dc edge photocurrent can be recast as a linear response to the y component of electric field found with allowance
for the ∆N , the change of electron density induced by Ex field component. The resulting expression for the total current
Jy =


∞

0 jy(x)dx reads

Jy = 2 Re


∂σ(0)
∂N0

∆NE∗

y


=

τ 2

e
dC2(N0)

dN0
Re

 ExE∗
y

iω(1 − iωτ)


, (44)

contains both linear and circular components of the photocurrent in agreement with phenomenological expression (14).
The divergence of circular photocurrent present in Eq. (44) for low frequencies, ωτ → 0, results from the divergence of
leff ∝ (ωτ)−1/2, and may be removed taking into account the self-consistent field, finite size of the illuminated area and
finite size of the contacts used to measure the photocurrent. We note that edge photocurrents have also been treated in the
framework of Boltzmann Eq. (24) in Ref. [61].

5.4.2. Experiment
The photon drag and photogalvanic effects, described in Sections 5.2 and 5.3 are induced in the ‘‘bulk’’ graphene layers

applying THz/IR radiation at oblique incidence and vanish for normal incidence. By contrast, edge photocurrents require
the illumination of sample borders and have a maximum at the normal incidence of radiation. Experiments on edge
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Fig. 13. Circular photocurrent JA measured in epitaxial single layer graphene sample as a function of the laser spot position. The laser spot is scanned
along y and the current is picked up from two contact pairs at the top (open circles) or bottom (full circles) sample edges aligned along x (see inset). Lines
represent the laser beam spatial distribution,which ismeasured by a pyroelectric camera and scaled to the currentmaximum. Top inset shows the scanning
geometry. Bottom inset shows the measured circular photocurrent JA(ωτ) at one of the edge segments of sample (open circles) together with the fit after
microscopic theory (dashed line) developed in the framework of the Boltzmann kinetic equation [61]. After [61].

photocurrents are challenging due to other types of photoresponseswhichmay appear due to inhomogeneities, temperature
gradients or illumination of contacts. However, this difficulty may be avoided by reduction of data analysis to the helicity
dependent contribution, which changes its direction by switching the light polarization from right- to left-handed. Indeed,
all effects mentioned above are unlikely to be sensitive to the direction of electric field rotation. While photocurrents have
been observed in both large-area and small-area samples [61], the analysis of the edge photocurrents is much easier in the
large-area samples. Indeed, inmicrometer-sized exfoliated samples the radiation spot size is much larger than the graphene
flakes and the effects of different edges are superimposed complicating the separation of edge contributions from the data.
By contrast, in large area epitaxial samples, the illumination of a single edge by THz radiation could be realized enabling the
accurate analysis of the individual edge currents.

Fig. 13 shows the circular edge photocurrent JA excited by THz radiation (classical range of frequencies) for the laser spot
scanned across the large-area epitaxial graphene sample along the y-axis. The signal is picked up from a pair of contacts at
the sample top and bottom edges oriented along the x-axis. The current reaches its maximum for the laser spot centered
at the edge and rapidly decays with the spot moving. Comparison of the photocurrent with the laser spot cross-section
(solid and dashed lines) shows that the signal just follows the Gaussian intensity profile showing that the current is due
to illuminating the sample edges. The current direction for σ+ and σ− circularly polarized radiation and the magnitude
of JA for various contact pairs are shown in Fig. 12(d). In these measurements the Gaussian laser spot is always centered
between the contacts preventing the temperature gradient between the contacts, at which signal is picked-up. The figure
documents a remarkable behavior of the circular edge photocurrent: It forms a vortex winding around the edges of the
square shaped samples, which reverses its direction upon switching from σ+ to σ− light. The magnitude and frequency
dependences of the circular edge current shown in the inset to Fig. 13 are in agreement with the developed theory. The only
adjustable parameter is a scattering time in the vicinity of the edge. The scattering times determined by thismethod for each
sample edge are quite close to the average bulk scattering time, the deviations most likely reflect fluctuations of the local
scattering time and hence inhomogeneities in the distribution of scatterers. Actually, measurements of chiral edge currents
provide very sensitive method of mapping the scattering processes at the edges. Moreover, the sign of the current reflects
the type of the charge carriers in the close vicinity of the edge. This feature allowed us to conclude, that the edges of the
n-type epitaxial graphene are, in fact, p-type. The latter, at first glance, surprising result agrees with analysis of the spatially
resolved Raman measurements indicating an enhanced density of p-type carriers at graphene edges [133,134], transport
measurements reporting on the transition from n-to p-type of doping at the edges of graphene flakes on SiO2 [135] and
growth details of epitaxial graphene [61,116,117,136]. The data reveals that the measurements of edge currents may serve
as a local probe of edge properties of graphene even at the room temperature.

As noted above chiral edge photogalvanic current has also been observed in small-area exfoliated graphene layers [59].
In this case the spot size of the terahertz laser radiation of 1 mm2 is much larger than the micron sized exfoliated flakes and
the current is caused by both edge photogalvanic and photon drag (dynamic Hall) effect. Examples of the current helicity
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a b

Fig. 14. (a) Photosignal, Uy ∝ jy , in a single graphene sheet as a function of the angle ϕ, measured for various angles of incidence, θ0 . The data are obtained
applying radiation of the cw THz laser with the photon energy 10.5 meV, power ≈20 mW and a diameter of the laser spot about 1 mm. The data for
θ0 = ±25◦ are shifted by ±25 nV for clarity. The horizontal dashed lines show x-axes for the shifted data (Uy = 0). Full lines are fits to Eq. (45). These
fits can be obtained by the superposition of the photon drag effect at oblique incidence given by Eq. (11a) and the edge photogalvanic effect at normal
incidence, Eq. (14). The inset shows the sample geometry. The ellipses on top of the left panel illustrate the states of polarization for various angles ϕ. Panel
(b) illustrates the experimental configuration. (c) Signals due to circularly polarized radiation Uy,C = [U(σ+, ϕ = 45◦) − U(σ−, ϕ = 135◦)]/2 measured
as a function of the incidence angle θ0 . After [59].

dependence are shown in Fig. 14(a). At normal incidence the data can be well fitted by

J = An sin 2ϕ + Bn sin 4ϕ + Cn cos 4ϕ + Dn, (45)

where An, Bn, Cn andDn are coefficients. For oblique incidence the functional behavior remains unchanged but the individual
coefficients at the second and the fourth harmonics of the angle ϕ change. The overall behavior at any angle of incidence is
well described by the superposition of the edge photogalvanic and dynamic Hall effects of a comparable strength given by
Eqs. (11), (14). The contributions can easily be distinguished by measuring the signal as a function of the angle of incidence.
This is illustrated in Fig. 14(b) for the circular photocurrent where its dependence on the angle of incidence is plotted.
While the photosignal generated at normal incidence is solely determined by the edge photogalvanic current j ∝ cos θ0, the
dynamic Hall effect is given by j ∝ sin θ0 cos θ0, the latter is odd in the angle of incidence and shows up at larger values of θ0.

5.5. Summarizing remarks on the second order effects in graphene

The analysis of second order nonlinear effects shows that the most prominent of them such as second harmonics gen-
eration, photon drag and photogalvanic effects have been observed in graphene and there functional behavior is in a good
agreementwith the state-of-the-art theory. Phenomenological andmicroscopic theories addressed above help to choose the
proper experimental geometry and find key parameters of graphene layer and radiation, allowing to excite and optimize
second order nonlinearities.

As to the quantitative comparison of the experiments and theory as well as of the results obtained on graphene samples
and other well known three- and two-dimensional materials, it still remains a challenging task. The problem is that a
systematic experimental study of these phenomena in graphene is not done as yet. The strength of the second order effects
substantially changes upon variation of the sample temperature, mobility, carrier density, as well as radiation frequency and
its polarization state. The results published so far, to the best of our knowledge, are mostly related with the experiments
limited to room temperature and structures with rather lowmobility and high value of the Fermi level. Concerning the SHG,
the theoretical estimations (see Section 5.1.1 and references therein for details) reveal, that the effect in graphene should
be strongly enhanced compared to well known nonlinear crystals. The fact of the experimental observation of SHG signal
from the atomically thin carbon layers (Section 5.1.2) indirectly confirms this expectation. The quantitative analysis has
been carried out for the photoelectric effects where magnitudes of the photocurrent were possible to measure. As shown in
Sections 5.2–5.4 linear and circular photon drag effects, as well as photogalvanic effects observed for pristine graphene and
graphene edges are in a very good agreement with the developed theory. The comparison of the photoelectric effects with
their counterparts in bulk semiconductors and quantumwell structures is, generally, not an easy task because experiments
whose conditions differ by material only are not performed so far. A clear enhancement is only observed for the circular
photon drag effect. The strength of this photocurrent, steaming from the simultaneous transfer of the photon linear and
angular momenta, is about two orders of magnitude larger than that previously detected for GaAs quantum wells [90]. In
fact both experiment and theory yield the value of the circular photon drag effect in graphene at room temperature of about
10 nA/(W cm) while in GaAs quantum well structure the current of 0.01 nA/(W cm) was reported. By contrast, the linear
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photon drag effect measured in graphene is comparable or somewhat smaller to that detected in bulk Ge and Si crystals. We
emphasize, however, that the photon drag voltage in the latter case has picked-up in crystals of several centimeter length
whereas similar response in graphene is obtained from a monoatomic layer only. While photon drag effect is comparable
or even enhanced compared to other systems, the photogalvanic response in graphene is generally smaller compared to
noncentrosymmetric crystals or quantum wells for two reasons. First of all, PGE requires symmetry reduction and, hence,
it needs a strong inequivalence of z and −z directions. The magnitude of the effect is proportional to degree of structure
asymmetry, which imposes a restriction on the graphene structures which should be deposited on the substrate or have
a strong structure inversion asymmetry due to, e.g., adatoms. Second, the PGE in pristine graphene requires action of the
z-component of the electric field on confined electrons, the effect strongly suppressed for two-dimensional carriers, which
are almost unaffected by Ez , see Section 5.3.1. Consequently the magnitude of the linear and circular photogalvanic effects,
being of the order of 20 pA/(W · cm) at λ ≈ 10µm, is several tens times smaller than that detected in bulk crystals and QWs
[33,82–84]. The only exception is the edge photogalvanic effects. Due to local symmetry reduction at the graphene edges
the effect is excited by an in-plain electric fields and its magnitude becomes of the order of 0.1 nA/W, which is comparable
to the reported values of conventional photogalvanic effects for most of quantum well structures [33,82–84].

6. Third order effects

6.1. Phenomenological discussion

We continue the discussion of nonlinear high-frequency radiation phenomena excited in graphene by turning to the
effects, where induced electric current is proportional to the third power of electromagnetic field. These phenomena are,
in general, related to the class of the four-wave mixing effects, where three waves of different frequencies, ω1, ω2, and ω3,
interact and give rise to the fourth one [27]. Such a situation is described by the general relation

jα(r, t) = σ
(3,g)
αβγ δ(ω1, ω2, ω3)Eβ(ω1, q1)Eγ (ω2, q2)Eδ(ω3, q3)e−i(ω1+ω2+ω3)t+i(q1+q2+q3)r + c.c., (46a)

where q1, q2 and q3 are corresponding wavevectors of the waves and σ
(3,g)
αβγ δ(ω1, ω2, ω3) is the general third order

conductivity. In the field of nonlinear optics it is usual to write similar to Eq. (46a) expression for the media polarization
P(r, t):

Pα(r, t) = χ
(3,g)
αβγ δ(ω1, ω2, ω3)Eβ(ω1, q1)Eγ (ω2, q2)Eδ(ω3, q3)e−i(ω1+ω2+ω3)t+i(q1+q2+q3)r + c.c., (46b)

where the third order susceptibilityχ
(3,g)
αβγ δ(ω1, ω2, ω3) is introduced. Taking into account standard relation Eq. (17) between

the current density and the polarization one obtains9

σ
(3,g)
αβγ δ(ω1, ω2, ω3) = −i(ω1 + ω2 + ω3)χ

(3,g)
αβγ δ(ω1, ω2, ω3). (47)

It is assumed in Eqs. (46) that frequenciesmay take both positive and negative values, the corresponding fields being related
through E∗(ω, q) = E(−ω, −q), the wavevector dependence of σ (3,g) and χ (3,g) is omitted to shorthand the notations. It
is worth to mention, that under spatial inversion both current components, jα , and cubic combinations, EβEγ Eδ , change
their sign, therefore third order effects take place in even centrosymmetric systems without allowance for the radiation
wavevector, q. Moreover, as we addressed in Section 2 in graphene the third order response is possible for the normal
incidence of radiation, where the field has only in-plane components: Ex ≠ 0, Ey ≠ 0, Ez = 0, and the current and/or
polarization is induced in the plane of the structure.

6.1.1. Effects of static and ac fields
It is convenient to start the analysis of the third-order effects from the case, where one of the fields is static, E(0, 0).

One example of such effects is the electric field induced second harmonic generation, observed recently for monolayer
graphene samples [51]. Symmetry analysis of this effect is the same as that of the photon wavevector induced SHG [106],
see Section 3.4, with the replacement of the wavevector components qα by the components of the static field Eα(0, 0). In
particular, in the strictly two-dimensional model, the phenomenological relations describing electric field induced second
harmonic generation are given by Eq. (16) where the components of the photon wavevector qx, qy should be replaced by
the components of the static field Ex(0, 0), Ey(0, 0).

Another particular example is the photoconductivity phenomenon, resulting in the dc current proportional to the intensity
of the radiation at frequency ω and the static field E(0, 0) [32]:

jα(r, t) = σ
(3′′)
αβγ δEβ(ω, q)E∗

γ (ω, q)Eδ(0, 0), (48)

9 This relation becomes ambiguous if the response is static, ω1 + ω2 + ω3 = 0. In this case current generation and dielectric polarization becomes
independent, cf. Section 3.5 where optical rectification was discussed.
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Fig. 15. Schematic illustration of the Hall effect excited by right (a) and left (b) circularly polarized radiation in a biased graphene sample. In the conducting
layers the electric current J togetherwith the electric field rotating at frequencyω the transverse component of the current, JH , appears, whose sign reverses
with radiation helicity. After [142].

with σ
(3′′)
αβγ δ ≡ σ

(3,g)
αβγ δ(ω, −ω, 0). The photoconductivity effects were studied in graphene theoretically and experimentally

in a number of works [124,137–141]. Like photon drag effect, the photoconductivity is described by the fourth rank tensor
σ

(3′′)
αβγ δ . It can be separated into the symmetric and antisymmetric with respect to βγ ↔ γ β permutation parts giving rise

to linear and circular photoconductivities, respectively. Anisotropic linear photoconductivity was discussed theoretically
in detail in Ref. [139]. Circular photoconductivity effect also called photovoltaic Hall effect was predicted for graphene in
Ref. [142], see also [143–148]. It is schematically depicted in Fig. 15. This effect results in the dc current flow perpendicularly
to the static electric field under normal incidence of radiation, ê ∥ z:

j ∝ [E(0, 0) × [E(ω, q) × E∗(ω, q)]] ∝ [E(0, 0) × Pcircê]. (49)

Eq. (49) demonstrates that the pseudovector of radiation circular polarization Pcircê plays a role of the magnetic field in Hall
effect, as illustrated in Fig. 15. The direction of the transverse current, Eq. (49), changes its sign if the helicity of the radiation
is reversed.

6.1.2. Effects of ac fields
The set of the third order effects under study further extends if all components of the incident field oscillate with time.

First, let us consider a situation, where the sample is illuminated with the single monochromatic wave of a frequency ω,
Eq. (1). In this case third order response can be written as

jα(r, t) = σ
(3′)
αβγ δEβ(ω, q)Eγ (ω, q)Eδ(ω, q)e−3iωt+3iqr

+ σ
(3)
αβγ δEβ(ω, q)E∗

γ (ω, q)Eδ(ω, q)e−iωt+iqr
+ c.c. (50)

The first term described by the fourth order tensor σ
(3′)
αβγ δ ≡ σ

(3,g)
αβγ δ(ω, ω, ω) corresponds to the third harmonic generation,

the effect already studied theoretically and observed experimentally for graphene [48,71,149]. Corresponding fourth rank
tensor, σ (3′)

αβγ δ , is symmetric with respect to γ δ ↔ δγ permutation. Hence, from the symmetry point of view its nonzero
components are the same as for the corresponding part of tensor Φαβγ δ in Eq. (8) describing linear photon drag effect. The
second termwith the fourth rank tensor σ

(3)
αβγ δ ≡ σ

(3,g)
αβγ δ(ω, −ω, ω) describes the current at the frequency ω. This effect can

be seen as the correction to the ordinary high-frequency conductivity σ
(1)
αβ in Eq. (2), which is proportional to the radiation

intensity. Actually, it represents the two-photon absorption [35].
Now we turn to the situation where the frequencies of incident waves are different. An important example of such

phenomena is the coherent injection of ballistic currents also known as coherent photogalvanic effect [150,151]. In this case, the
dc current emerges under the illumination of sample with bi-harmonic field with frequencies ω and 2ω. As we show below
in Section 6.2, the current is caused by the quantum mechanical interference of one and two photon absorption processes,
in response to E(2ω, 2q) and E(ω, q), respectively, and has the following phenomenological form

jα = σ̄
(3)
αβγ δEβ(2ω, 2q)E∗

γ (ω, q)E∗

δ (ω, q) + c.c., (51)

where the field acting on the sample is given by:

E(r, t) = E(ω, q)e−iωt+iqr
+ E(2ω, 2q)e−2iωt+2iqr

+ c.c. (52)

The corresponding nonlinear conductivity tensor, σ̄ (3)
αβγ δ ≡ σ

(3,g)
αβγ δ(2ω, −ω, −ω), is symmetric with respect to the permuta-

tion of two last subscripts γ δ ↔ δγ , hence, the phenomenological description of this effect in graphene is similar to that
of linear photon drag effect and of the second harmonic generation. In particular, in strictly two-dimensional model, the
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coherent photogalvanic effect is described by two independent constants,M1 and M2 [cf. Eqs. (16)]:

jx = M1Ex(2ω, 2q)

(E∗

x (ω, q))2 + (E∗

y (ω, q))2


+M2Ex(2ω, 2q)

(E∗

x (ω, q))2 − (E∗

y (ω, q))2

+ 2M2Ey(2ω, 2q)E∗

x (ω, q)E∗

y (ω, q) + c.c., (53a)

jy = M1Ey(2ω, 2q)

(E∗

x (ω, q))2 + (E∗

y (ω, q))2


+M2Ey(2ω, 2q)

(E∗

y (ω, q))2 − (E∗

x (ω, q))2

+ 2M2Ex(2ω, 2q)E∗

x (ω, q)E∗

y (ω, q) + c.c. (53b)

If the static field E(0, 0) in Eq. (49) is replaced by the linearly polarized ac field E(ω′, q′), the transverse (Hall) current
appears to be oscillating at the frequencyω′. In such a case, the polarization plane of the ac field reflected fromor transmitted
through the sample rotates, the direction of rotation is determined by the circular polarization of the field E(ω, q). This
effect can be termed by optically induced Faraday/Kerr effect similarly to the Faraday/Kerr rotation by optically induced spin
polarization in semiconductors [152].

Below we briefly discuss theoretical approaches to calculate the third order effects and available experimental data.

6.2. Theoretical background

The microscopic mechanisms of the third order response are dominated by the energy spectrum nonparabolicity effect
[34,47,153]: As already noted in Section 2, the electron velocity in graphene v depends nonlinearly on the electron
momentum p, see Eq. (20), hence, harmonic oscillations of p driven by external electromagnetic field result in the
anharmonic response in the velocity and in the electric current, that is, in frequency conversion [153].

Since for the third-order effects neither the allowance for the radiation wavevector nor the account of its magnetic field
is needed, its description is quite straightforward in the classical frequency range, h̄ω ≪ EF . We employ the kinetic equation
for momentum and time dependent distribution function:

∂ f
∂t

+ eE(t)
∂ f
∂p

= −
f (p, t) − f0(p)

τ
, (54)

where the simplest form of the collision integral is taken, f0(p) is the equilibrium distribution function. Its solution, which
takes into account electric field to all orders can be written as [154]

f (p, t) = f0[p − p0(t)]e−t/τ
+

1
τ

 t

−∞

dt ′e−
t−t′

τ f0[p − p0(t) + p0(t ′)], (55)

where p0(t) =
 t
−∞

eE(t)dt is the electron momentum acquired from the field and it is assumed that the field was turned
on at t → −∞. Eq. (55) extends the treatment developed in Refs. [47,153] for ballistic electrons to allow for the scattering.
Correspondingly, the induced electric current at zero temperature for degenerate electrons in graphene with density n can
be written at t ≫ τ as

j = env
 t

−∞

dt ′

τ
e−

t−t′
τ

P
√
1 + P2

G


2P

1 + P2


, (56)

where P ≡ P(t, t ′) = [p0(t) − p0(t ′)]/pF , pF is the Fermi wavevector and function G(x) is related with hypergeometric
function as

G(x) = 2F1


1
4
,
3
4
, 2, x2


.

Decomposing Eq. (56) up to the third order of P we obtain the following expression for the nonlinear response:

j = eN0v

 t

−∞

dt ′

τ
e−

t−t′
τ


P −

1
8
PP2


. (57)

Here N0 is the electron density, the first term in parentheses describes linear response and second one describes the third
order effects.

For example, for the incident harmonic radiation E = E0e−iωt the term PP2 is oscillating at 3ω with the result

j(3ω) = −e4N0v
4 3E0E2

0

4E3
F

τωτ2ωτ3ω, (58)

with τω = τ/(1 − iωτ). In the limit ωτ ≫ 1 (but h̄ω ≪ EF ) Eq. (58) agrees with Eq. (9) of [47].
As an example of the static field induced second harmonic generation we consider simplest situation where the static

field E(0, 0) = E0 ∥ x, while the alternating (radiation) field E1 exp(−iωt)+ c.c. is linearly polarized along y axis, i.e. Stokes
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Fig. 16. (a) Scheme of interband optical transitions excited by linearly polarized irradiation with h̄ω ≥ 2EF . Due to selection rules the transitions are
forbidden for k parallel to the linear polarization plane of light. (b) Graphene Hall bar sample irradiated with linearly polarized electromagnetic wave.
Application of a bias voltage leads to an electrical current j , whose magnitude depends on the in-plane orientation of polarization plane of the linear
polarized light given by the azimuthal angle α. (c) Photoconductivity, σ(α), as a function of α, an angle between the current and linear polarization plane
of radiation. After [139].

parameters of incident field are S1 = −1, S2 = S3 = 0. Calculation shows that the current at a double frequency flows along
x axis and is given by

j(2ω) = e4N0v
4 E0E2

1

4E3
F

τ 2
ωτ 2

2ω
2ω2τ 2

+ 6iωτ − 3
τ

. (59)

The microscopic theory of the field induced second harmonic generation for bilayer graphene was developed in Ref. [155]
for the quantum frequency range. It was predicted that AB-stacked bilayer graphene can exhibit a giant and tunable second
order nonlinear susceptibility if the in-plane electric field is applied. The susceptibility varies from 0 to 105 pm/V depending
on the magnitude of the static field and exceeds by 3 orders of magnitude that of conventional nonlinear crystal AgGaSe2.
Such a high values of the electric field induced response is related to the specifics of the bilayer band structure, and its
detailed consideration is out of the scope of this review.

A detailed theory of linear photoconductivity in graphene for the case of interband optical transitionswhere the quantum
regimeof light–matter interaction is realizedwas developed inRef. [139]. Following thisworkwenote, that due to the optical
selection rules the excitation with linearly polarized light generates the distribution of photocarriers containing second
angular harmonic (momentum alignment) whose orientation is determined by the polarization plane of the radiation, see
Fig. 16 andRefs. [105,139] for details. Indeed, the interband transitions are forbidden for electronmomentump being parallel
to the linear polarization plane of radiation, since the perturbation due to electromagnetic radiation ∝ v(σ · A), where A is
the vector potential of radiation does not mix eigenstates of the Dirac Hamiltonian, Eq. (3), with p ∥ A. The matrix element
of the interband transition has a form

M ∝ pxAy − pyAx. (60)

The distribution function of photoelectrons δf is determined by the transition rate ∝ |M|
2, namely,

δf ∝ p2x |Ex|
2
+ p2y|Ey|

2
− pxpy(ExE∗

y + E∗

x Ey), (61)

where Ex and Ey are the incident field components. Apart from the isotropic part ∝ (|Ex|2 + |Ey|2) the photoelectrons
distribution contains second angular harmonics of electron momentum p: cos 2ϕp ∝ (|Ex|2 − |Ey|2) and sin 2ϕp ∝

(ExE∗
y +E∗

x Ey), where ϕp is the angle between p and x axis. As a result, the magnitude of the current of photoelectrons driven
by external bias depends strongly on themutual orientation of the polarization plane of radiation and external electric field.
For the classical frequency range the second-order in the ac field correction to the distribution function assumes the same
form of Eq. (61) giving rise to the anisotropic photoconductivity.

The description of the coherent photogalvanic and frequency mixing phenomena can be carried out along the same lines
for the classical range of frequencies. As a particular example we consider bichromatic field in the form

E = E1 cosωt + E2 cos(2ωt + δ), (62)

incident on the sample. The parameter δ describes the phase shift between ω and 2ω fields. In the geometry E1 ∥ E2 ∥ x the
x-component of the dc current described by phenomenological parameterM1 in Eqs. (53) yields
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a b

Fig. 17. Optical interband optical transition for (a) EF < h̄ω < 2EF and (b) h̄ω > 2EF . The dotted horizontal lines indicate the Fermi level. Solid arrows
denote transitions caused by the beam of frequency ω and dashed arrows show transitions caused by the 2ω beam. Filled circles of various diameters
sketch asymmetric electron populations at ±k caused by the quantum interference of a single and two-photon absorption processes. The photoinduced
imbalance in k-space causes dc current generation. After [63].

jx = −e4N0v
4 9E

2
1E2 cos δ

16E3
F

τ 3

1 + 5ω2τ 2 + 4ω4τ 4
. (63a)

If, by contrast, E1 ∥ y ⊥ E2 ∥ x, then the dc photocurrent described by phenomenological parameter M2 in Eqs. (53) has
form

jx = −e4N0v
4 3E

2
1E2 cos δ

16E3
F

τ 3

1 + 5ω2τ 2 + 4ω4τ 4
. (63b)

Note that, similar to Eq. (63a) expression was derived in Ref. [156] (see also [154]) for the semiconductor system with
nonparabolic energy dispersion. It follows from Eq. (63a) that the coherent photocurrent is extremely sensitive to the phase
relation between two waves: The current is proportional to the cosine of the phaseshift. It is worth to mention that in the
ballistic case (τ → ∞) the first term in Eq. (55) also gives rise to the current∝ ω−3 sin δ, see Ref. [156] for the semiconductor
system with nonparabolic dispersion and Ref. [157] for ‘‘mini-gapped’’ graphene on a substrate. The mechanism of the
coherent photogalvanic effect in the systems with parabolic dispersion is presented in Ref. [151].

In the quantum frequency range, ωτ ≫ 1, h̄ω ∼ EF (or even h̄ω ≫ EF ) the description of the third order phenomena can
be carried out in a similar fashion. Instead of applying Boltzmann equation (54) onemay use similar equation for the density
matrixwhere the collision integral is absent. Such a treatment is outlined in Refs. [40,55,63,158–160]. In the case of intraband
transitions, where the double photon energy exceeds 2EF and two-photon transition becomes possible, see Fig. 17, the
coherent photogalvanic effect can be understood in terms of quantum interference of single and two photon processes [63].
These processes are schematically shown in Fig. 17. To begin with, consider the case where the direct absorption of a single
photon with the frequency ω is forbidden, as illustrated in Fig. 17(a). The matrix element describing the electron transition
from the valence to the conduction band caused by the absorption of one photon with the frequency 2ω is linear in the
electron wavevector k and has a form

M(1)
2ω ∝ kxAy(2ω) − kyAx(2ω). (64)

HereA(2ω) = [Ax(2ω), Ay(2ω)] is the vector potential of the field oscillating at 2ω. Due to the condition h̄ω < 2EF the direct
interband absorption of the radiation with the frequency ω is possible only via the two-photon absorption. Such a second-
order process takes place via the intermediate states in the same band, yielding the matrix element of the two-photon
process in the form

M(2)
ω ∝ [kxAy(ω) − kyAx(ω)][kxAx(ω) + kyAy(ω)], (65)

with A(ω) = [Ax(ω), Ay(ω)] being the vector potential of ω-oscillating field. As both, one 2ω photon absorption and two ω

photon absorption, processesmix the same states they interfere. The total absorption rate is proportional to the |M(1)
2ω +M(2)

ω |
2

with the interference contribution in the form

∝ 2 Re[M(1)
2ω M(2)∗

ω ], (66)

which results in the anisotropic distribution of photoelectrons, shown by filled circles of different sizes in Fig. 17(a) and,
correspondingly, in the electric current. The magnitude and direction of electric current are controlled by the orientation
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Fig. 18. Radiation output power as a function of output frequency, 3f0 , for a graphene based frequency tripler. Curves A, B and C present the characteristics
of three devices with different gap lengths of 300 µm, 400 µm, and 500 µm. Middle inset shows photograph of manufactured device and bottom inset
demonstrates the device cross section. After [162].

of A(ω), A(2ω) and their phase difference. Similar situation occurs if h̄ω > 2EF , i.e. where single photon absorption is also
possible, see Fig. 17(b). While the interference of one and two-photon absorption processes is possible and gives rise to
the electric current, the absorption of single photon with the frequency ω, although being possible, does not result in the
asymmetry of electron distribution and does not lead to current generation. For the case of interband transitions in the
quantum frequency range, we can estimate the third order response following Ref. [55] as a product of the linear interband
conductivity, ∼e2/h̄, the electric field magnitude E and the square of the small parameter (eEv/h̄ω2), which characterizes
the ratio of the work performed by the electric field during one period and the photon energy. The resulting magnitude of
the third order current is

j = C
e4v2

h̄3 ω4
E3, (67)

where the dimensionless parameter C depends on the frequencies and relative amplitudes of incident waves. An enhance-
ment of the third order response as compared with other nonlinear systems can be clearly seen if one introduces effective
nonlinear susceptibility χ (3), see Ref. [55] for details. The estimations presented there demonstrate that for λ ∼ 1 µm the
value of χ (3) is about 10−7 esu (electrostatic units). Moreover, it was demonstrated theoretically in Ref. [161] that the third
order non-linearity in graphene can be tuned and enhanced by themagnetic field, where it may reach values up to 10−3 esu,
being strongest among the non-linear materials known so far.

To conclude this section, we present the results of analytical calculations of the optically induced Faraday/Kerr effect
introduced in Section 6.1.2. Theoretical estimate of this effect for the classical frequency range can be obtained considering
the incident radiation in a form

Ex(t) = E1 cosωt + E2 cosωt, Ey(t) = ∓E1 sinωt, (68)
corresponding to the combination of the circularly polarized wave with the amplitude E1 and linearly polarized wave with
the amplitude E2 ≪ E1. Signs ∓ in expression for Ey correspond to right and left circular polarizations for the wave
propagating along negative z axis. It follows from Eq. (57) that the transverse component of the current in the classical
frequency range is

jy = ∓e4N0v
4 3E

2
1E2

8E3
F

τ 3

1 + 5ω2τ 2 + 4ω4τ 4 (2ωτ cosωt − sinωt) . (69)

The appearance of jy ≠ 0 is responsible for the Faraday rotation of the polarization plane of the transmitted (and Kerr
rotation of reflected) probe beam E2 incident on the excited by circularly polarized beam E1 graphene.

6.3. Third and higher harmonic generation and frequency mixing: experiment

The generation of third harmonic and higher orders nonlinearities (up to seventh order harmonic) were reported first for
millimeter waves in Ref. [48] where the classical range of frequencies, h̄ω ≪ EF , is realized (this experiment on amonolayer
graphene is already described in detail in Section 5.1.2), and in Refs. [52,162]. In the latter work a graphene based frequency
triplerwasmanufactured. The sketch of the setup andphotographof the device is shown in Fig. 18. The nonlinear component
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a

b

Fig. 19. Spectra of third harmonic generation measured in Ref. [54], panel (a), and Ref. [53], panel (b). Insets show the measured third harmonic (TH)
power as a function of the fundamental beam intensity (points). Solid lines show the cubic law fit. After [53,54].

of the device consists of a microstrip line with a small gap covered by a few layer graphene film. A standard microwave set-
up consisting of a generator tunable in the 2.5–5 GHz range and a spectrum analyzer was used. Output frequencies in the
range between 8 and 15 GHz have been obtained with a received output power up to −10 dBm as shown in the main panel
of Fig. 18. Almost flat frequency behavior can be obtained in the whole output frequency range.

Third harmonic was most recently observed in graphene for the fundamental frequency ω in the near infrared range
in two works [54] (exfoliated graphene) and [53] (CVD graphene) for the quantum regime of light–matter coupling. In
Ref. [54] the fundamental wavelength is ≈1.72 µm (third harmonic wavelength is ≈0.575 µm), while in Ref. [53] the
fundamental wavelength was somewhat shorter ≈0.8 µm (third harmonic corresponds to ≈0.265 µm). In the latter case
the third harmonic was close to resonance with the optical transition in theM point of the Brillouin zone making it possible
to enhance the signal. Fig. 19 demonstrates the spectra of the third harmonicmeasured in Ref. [54], panel (a), and in Ref. [53],
panel (b). The insets demonstrate that the third harmonic intensity indeed scales as cube of fundamental harmonic intensity.
According to Ref. [54] the third order susceptibility of graphene for such near-IR frequencies is on the order of 10−8 esu and
is by several order of magnitude larger than in transparent materials.

Besides the third harmonic generation, several other effects caused by the third order nonlinearity have been reported
for near-infrared, optical, and UV frequencies. In particular, the χ (3) have been studied for graphene in solutions by means
of the time-resolved pump–probe techniques [71,72]. In Ref. [71] a purely coherent nonlinear optical response of high-
quality graphene sheets functionalized by alkylamine has been demonstrated. These graphene sheets has been investigated,
using near-infrared, visible, and ultraviolet continuous wave and ultrafast laser beams, and spatial self-phase modulation
has been observed in the solution dispersions. The ultrafast third-order nonlinear optical properties of graphene in both
suspension and film state were studied using femtosecond time resolved optical Kerr gate technique in Ref. [72]. The third-
order nonlinear optical susceptibility of about 4×10−14 esuwas observed for solution of 0.010mg/ml.While huge nonlinear
response has been detected, the signalmay result from the superposition of the nonlinear response of graphene itself and the
effect of reorientation and alignment of graphene sheets in solutions induced by the electromagnetic field which is similar
to the case of liquid crystals [71]. Thus, the detailed discussion of these interesting and important for application results are
out of scope of the present review aimed to pristine graphene and graphene on substrates.

Another experimental manifestation of the third order nonlinearity is a frequency mixing, recently demonstrated for
infrared/red light [55] and radiation and GHz frequency range [52]. Fig. 20(a) shows the setup used in Ref. [55] for the
visible/infrared four-wavemixing experiments carried out for the quantum regime, which involves the generation of optical
frequency harmonics 2ω1 −ω2 under irradiation by twomonochromatic waves with the frequencies ω1 and ω2 as depicted
in Fig. 20(b). Two incident pump laser beams with wavelengths λ1 (tunable from 670 to 980 nm) and λ2 (1130–1450 nm)
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a b

Fig. 20. (a) Schematic illustration of the experimental setup used in the frequency mixing experiments. Emission beam with frequency ωe caused by
mixing of the beams with frequencies ω1 and ω2 is detected by a photomultiplier, PM, and spectrometer, S. (b) Sketch of the frequency mixing effect in
graphene with the three resonant photon energies (arrows) involved in the process. After [55].

Fig. 21. Emission spectra of an exfoliated graphene flake excited with pump pulses of different wavelengths, (λ1 , λ2): (940 nm, 1224 nm), (950 nm,
1210 nm), (958 nm, 1196 nm), (967 nm, 1183 nm), and (977 nm, 1168 nm) from left to right, respectively. After [55].

duration about 6 ps are focused collinearly onto a sample andmix together to generate a third, coherent beamofwavelength
λe. The incident pump pulses are focused onto the sample using a water immersion objective with a numerical aperture
of 1.2, giving rise to a spot size <1 µm and time averaged and peak excitation powers at the sample of about 1 mW
and 10 W, respectively. Note that in these experiments the peak beam power is much higher than in other experiments.
This fact indicates that the graphene samples are robust and rather higher power can be used without damaging samples.
The nonlinear signal is presented in Fig. 21 for different combinations of incident wavelengths λ1 and λ2. The results of
Ref. [55] evidence that the graphene has an exceptionally high nonlinear response,with the effective nonlinear susceptibility
χ (3)

= 10−7 esu being by about an order of magnitude larger than that obtained by third harmonic generation in Ref. [54]
and by several orders of magnitude larger than that for, e.g., gold or glass. Moreover, this nonlinearity is shown to be almost
dispersionless in a wide range of emission wavelengths (from 760 to 840 nm). Interestingly, a high third order nonlinearity
yields an enormously large contrast between the responses of the sample and substrate as well as between the samples
with different number of graphene layers, the latter is due to the linear increase of the χ (3) with the number of layers in the
sample, see Fig. 22(c). This results in much better microscopic images of graphene compared to those obtained in a normal
optical reflection as demonstrated in Fig. 22(a) and (b). Further application of graphene signal mixing has been addressed
in Ref. [52] where signals with GHz frequencies were mixed in different combinations by three layer graphene device with
linear current–voltage characteristic [160].

6.4. Coherent injection of ballistic photocurrents: experiment

Ballistic photocurrents related to the third order nonlinearity have been experimentally demonstrated in the infrared
spectral range with h̄ω > EF , i.e. in the quantum regime of light–matter interaction for multilayer epitaxial graphene film
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(a) (b)

Fig. 22. (a) Green light (550 nm) reflection images of two exfoliated graphene flakes. (b) Nonlinear optical images measured with pump wavelengths of
969 nm and 1179 nm. Image acquisition times are approximately 0.6 s. (c) The contrast in four-wavemixing images as a function of the number of graphene
layers. After [55].

produced on the C-terminated face of single-crystal 4H-SiC [63,64]. In thesemultilayer epitaxial graphene films the first few
layers were heavily doped (1013 cm−2) with the doping decreasing rapidly by four orders of magnitude. Interestingly, sam-
ples used in these experiments have from 9 to 63 graphene atomic layers; but have been shown by independent studies to
have the graphene-like linear band structure and be distinct from bulk graphite [63,163–169]. In order to investigate the co-
herent photocurrent arising on subpicosecond timescale the THz radiation emitted by the current pulse has beenmeasured.
Application of short current pulses for THz radiation generation (Auston switch) has been developed in early 90’s [170,171]
and is currently widely used for generation of THz radiation and time-domain THz spectroscopy [33,172,173]. In this case
the generated electric field

E(t) ∝ dj(t)/dt ∼ j/τp, (70)
where j(t) is the current pulse density and τp is its duration. Since typical current pulse durations correspond to picosec-
ond timescale, the emitted field corresponds to THz frequency range. Consequently, the dynamics of the emitted THz field
reflects behavior of the generated current.

The system used in these experiments consists of pulsed Ti:Sapphire laser, optical parametric amplifier, and a differential
frequency generator yielding 200 fs infrared pulses with intensity of GW/cm2 range. In order to generate the coherent
current, which requires two coherent beams at frequencies ω and 2ω, the beam of the laser operating at a fundamental
frequency is split into two beams. One of those is directed to the sample, whereas the second is frequency doubled by the
second harmonic generation process in the nonlinear crystal. As a result, the fields at the frequency ω and 2ω are coherent
and scale with radiation power as Eω ∝ P1/2

ω and E2ω ∝ P1/2
2ω ∝ Pω . As described above in Section 6.2, due to the interference

of the two-photon transition with the frequency ω and a single photon transition with the frequency 2ω, the current is
generated. This current induces the radiation of THz range, see Eq. (70). An example of the power dependence of the emitted
THz radiation for the fundamental beam wavelength of the 4.8 µm is shown in Fig. 23. As it is seen from Eq. (70) terahertz
radiation signal detected by themethod of electro-optical sampling is associatedwith the two color current injection process
and scales with the pump power as |ETHz | ∝ |j| ∝ PωP

1/2
2ω ∝ P2

ω . The experiment data in Fig. 23 support the expected power
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Fig. 23. Fundamental beam power dependence of the field E(2ω) (black circles) and THz field proportional to the electric current generated in the sample
(gray squares). Solid lines are corresponding power-law fits. Inset shows THz signal from the multilayer graphene sample as a function of time for two
values of relative phases of the first and second harmonics ∆φ. The fundamental beam wavelength used in this experiment is 4.8 µm. After [63].

a b

c

Fig. 24. (a) Experimentally measured x and y components of relative peak THz amplitude proportional to corresponding components of the photocurrent
in the sample, Eq. (70), as a function of the polarization angle between ω and 2ω pulses. The field geometry is illustrated by the coordinate frame on
the right, E(2ω) ∥ x. Theoretical dependence of photocurrent jx [panel (b)] and jy components [panel (c)] calculated for a 70% uncoupled-layer and 30%
coupled-layer. The boundary of the shaded circle represents unit amplitude. After [64].

dependence and are consistentwith a third order optical process. Another proof of the third order optical process comes from
the studies of polarization dependence of the relative THz peaks amplitudes carried out in Ref. [64]. This is shown in Fig. 24(a)
where the dependence of the THz amplitudes, and, correspondingly, amplitudes of the photocurrent j on the angle between
the polarization directions of ω and 2ω pulses, see Eq. (70). The data show that neither model of single layer graphene, nor
that of a bilayer graphene describes experimental data. The results are in agreement with theoretical model [64] where the
mixture of 70% of uncoupled layers and 30% of bilayers was assumed, demonstrating that the interlayer coupling modifies
the polarization dependence of coherently controlled currents, as shown in Fig. 24(b), (c). This work demonstrates that
(i) nonlinear electric transport can be studied on a femtosecond time scale and (ii) the photocurrents can be studiedwithout
necessarily to fabricate contacts to the graphene layer. Both advantages provide a unique access to dynamic of the nonlinear
phenomena as well as allows one to characterize graphene layers in a contactless way.

6.5. Summarizing remarks on the third and higher order effects in graphene

A substantial number of possible third and higher order nonlinear effects has been observed during last three years in
graphene and graphene-based structures. The effects include third and higher harmonic generation, frequency mixing, as
well as coherent injection of ballistic photocurrents. Their experimentalmanifestationsmatchwellwith available theoretical
models, discussed above. The magnitude of third order effects, characterized by the third order susceptibility χ (3), reaches
10−7 esu for graphene samples (see Section 6.3) for details. These values are in agreement with estimations, Section 6.2,
and exceed by far χ (3) reported for nonlinear crystals [174]. As for the coherent photogalvanic effect (injection of ballistic
photocurrents), it was detected by a novel technique, based on THz emission induced by the transient current. This method
reveals key features of the effect, namely, its nonlinear scaling with incident radiation amplitudes as well as the polarization
dependence of the current. The functional behavior of the coherent photocurrents iswell describedby thepresent formalism,
however, extraction of the effects magnitude is still a challenging task.
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7. Conclusions and outlook

The physics of nonlinear phenomena in graphene, although being young, has already resulted in a great variety of
fascinating effects outlined here. Moreover, the field of nonlinear transport and optical phenomena in graphene opens new
prospects for further studies. Many of the effects addressed so far are not yet fully understood and await novel experimental
and theoretical approaches anddetailed studies. Someof the theoretical predictions discussed here demand an experimental
verification. The new horizons appear related with tailoring of the nonlinear response of the material by external magnetic
field, strain or artificial combinations of graphene layers with other materials. Similar effects await to be studied in details
in the systems with akin atomic arrangement or band structure, like Boron nitride (BN), Molybdenum disulfide (MoS2)
and various kinds of topological insulators, for which first results on high frequency nonlinear transport have already been
published [175–178]. Finally, we anticipate, that such effects in graphene will soon find their applications both for material
characterization and development of graphene-based nonlinear devices.
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