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We report on the observation of a terahertz radiation-induced photon drag effect in epitaxially grown n-
and p-type (Bi1−xSbx)2Te3 three-dimensional topological insulators with different antimony concentrations x

varying from 0 to 1. We demonstrate that the excitation with polarized terahertz radiation results in a dc electric
photocurrent. While at normal incidence a current arises due to the photogalvanic effect in the surface states,
at oblique incidence it is outweighed by the trigonal photon drag effect. The developed microscopic model and
theory show that the photon drag photocurrent can be generated in surface states. It arises due to the dynamical
momentum alignment by time- and space-dependent radiation electric field and implies the radiation-induced
asymmetric scattering in the electron momentum space. We show that the photon drag current may also be
generated in the bulk. Both surface states and bulk photon drag currents behave identically upon variation of
such macroscopic parameters as radiation polarization and photocurrent direction with respect to the radiation
propagation. This fact complicates the assignment of the trigonal photon drag effect to a specific electronic
system.
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I. INTRODUCTION

Much attention in condensed-matter physics is currently
directed towards understanding electronic properties of Dirac
fermions in three-dimensional (3D) topological insulators
(TIs), which challenge fundamental concepts and hold great
potential for electronic, optic, and optoelectronic applications
(see, e.g., Refs. [1–9]).

Recently, nonlinear high-frequency electron transport phe-
nomena [10–13] in TI systems have attracted growing interest.
There have been many theoretical and experimental works
in the past few years on helicity-controlled photocurrents
[14–18], the linear photogalvanic effect [19–21], local pho-
tocurrents [22,23], edge photocurrents in two-dimensional
(2D) TIs [24,25], coherent control of injection currents [26,27],
photon drag currents [19,28,29], second-harmonic genera-
tion [30], photoinduced quantum Hall insulators [31,32],
cyclotron-resonance-assisted photocurrents [33,34], quantum
oscillations of photocurrents [35], photogalvanic currents
via proximity interactions with magnetic materials [36–38],
and the photoelectromagnetic effect [39]. These phenomena,
scaling in the second or third order of the radiation electric
fields, open up new opportunities to study Dirac fermions,
which has been already demonstrated for graphene (for a
review see Ref. [13]) and several TI materials (see, e.g.,
Refs. [15,19,23,34]). An important advantage of the nonlinear
high-frequency transport effects is that some of them, being
forbidden by symmetry in the bulk of most 3D TIs, can be
applied to selectively probe the surface states even in TI ma-
terials with a finite bulk conductivity. Utilizing photocurrents,
this advantage has been used to study Sb2Te3 and Bi2Te3

3D TIs [19], in which conventional dc transport experiments,
particularly at room temperature, are handicapped by a large
residual bulk charge-carrier density [40–45].

It has been shown in Ref. [19] that the photocurrent excited
by normal incident terahertz (THz) radiation is generated

due to the photogalvanic effect. The latter originated from
the asymmetric scattering of Dirac fermions driven back and
forth by the ac electric field and is allowed only in the
noncentrosymmetric surface states. The experiments further
hinted at a possible contribution of the photon drag effect, a
competing photocurrent resulting from the light momentum
transfer to charged carriers. However, no experiments which
provide clear evidence of the photon drag effect in TI materials
have been reported so far.

Here we report on the observation of the photon drag
effect in (Bi1−xSbx)2Te3 3D TIs excited by THz radiation. We
demonstrate that while at normal incidence the photocurrent
is dominated by the photogalvanic effect, at oblique incidence
it is outweighed by the photon drag effect. The latter is shown
to be caused by the in-plane component of the photon wave
vector q‖. Strikingly, the observed photon drag current does not
change its sign upon inverting q‖. This seemingly surprising
result is caused by the fact that in materials with trigonal
symmetry the photon drag current is proportional not only to
the photon wave vector but also to the product of in- and out-of-
plane components of the radiation electric field. Since both q‖
and the product of the electric fields change their sign, the total
sign remains unchanged. Importantly, the trigonal photon drag
effect can be generated in the surface states as well as in the
bulk, being described by the same phenomenological equation.
Our experimental findings are well described by the developed
theory and microscopic model based on the Boltzmann kinetic
equation for the carrier distribution function. Both photon
drag and photogalvanic effects are investigated in epitaxially
grown (Bi1−xSbx)2Te3 bulk materials of various compositions
determined by the antimony content x. The variation of
x enabled us to study photocurrents in different systems,
including binary and ternary TIs with smooth changes from n-
to p-type bulk conductivity (see Refs. [46,47]), as well as in
heterostructure samples, consisting of an n-type Bi2Te3 and a
p-type Sb2Te3 layer (see Ref. [48]). In the latter the chemical
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TABLE I. Sample parameters and the amplitudes of photocurrents Ax excited by normal incident radiation with f = 3.3 THz. Angles of
incidence θ = 0 and 180◦ correspond to the front and back excitation, respectively.

Sb content Type Bulk Ax (nA cm2/W)

Sample ID Type Structure x carriers θ = 0 θ = 180◦

BST127 binary 20 nm Bi2Te3 0 n 0.32 0.8
BST307 binary 13 nm Bi2Te3 0 n 3.1 7
BST323 ternary 24 nm (Bi1−xSbx)2Te3 25 n 1.8
BST306 ternary 23 nm (Bi1−xSbx)2Te3 40 n 0.06 0.04
BST641 ternary 175 nm (Bi1−xSbx)2Te3 43 n 0.4 0.6
BST305 binary 27 nm Sb2Te3 100 p 0.025 0.02
BST508 heterostructure 10 nm n-Bi2Te3 − − 0.3

+7.5 nm p-Sb2Te3

potential can be tuned by varying the thickness of the upper
Sb2Te3 layer.

II. SAMPLE DESCRIPTION

The samples were grown by molecular beam epitaxy (MBE)
on Si(111) substrates in the so-called van der Waals (vdW)
growth mode [49]; that is, there are only weak bonds between
the substrate and the TI epilayers, so that the large lattice
mismatch does not hinder the growth of single-crystal TI
films with a high structural quality [50–52]. Before insertion
into the MBE chamber, the Si(111) surface was chemically
cleaned to remove the native SiO2 and to passivate the

surface with hydrogen. Prior to the TI layer deposition, the
substrate was heated up to 600◦ C for 20 min to desorb the
hydrogen atoms. The Bi, Sb, and Te atoms were deposited on
the substrate using effusions cells, working at temperatures
of 530 ◦C (Bi), 450 ◦C (Sb), and 380 ◦C (Te), whereas the
substrate temperature was 300 ◦C. The Bi2Te3 (Sb2Te3) layer
was deposited with a slow growth rate of 27 nm/h (9 nm/h).
The sample BST641 was grown at temperature TBi = 470 ◦C,
TSb = 417 ◦C, TTe = 330 ◦C, Tsubstrate = 300 ◦C and with a
growth rate of 10 nm/h for 1050 min, which corresponds
to a thickness of 175 nm. The structure composition and
thickness of all investigated samples are given in the Table I. To
characterize the samples, electrical measurements on Hall-bar

FIG. 1. ARPES investigation of the surface electronic structure of different TI samples, measured at low temperature (T ≈ 25 K) using
photon energy of 8.4 eV. The spectra unambiguously prove the existence of topological surface states in each material. (a) Results for pure
n-type Bi2Te3. The corresponding results for samples (b) BST306 and (c) BST641, i.e., the n-type (Bi0.6Sb0.4)2Te3 and (Bi0.57Sb0.43)2Te3

ternary TIs, (d) for sample BST508, i.e., the n-type 10-nm Bi2Te3/7.5-nm Sb2Te3 TI heterostructure, and (e) for sample BST305, i.e., the
p-type Sb2Te3. The top panels depict the constant-energy contour at εB = 0 with indicated crystallographic directions showing the hexagonal
warping of the energy spectrum of the topological surface states. The middle panel illustrates the binding-energy-dispersion spectra ε(k) map
at ky = 0 along the �̄M direction, where the upper part of the topological surface states is revealed while the Dirac point is buried in the bulk
valence-band maximum. Additionally, the energy distribution curves, integrated over the entire image, are shown beside the middle panels.
The bottom panels depict the respective momentum distribution curves. The ones for εB = 0 are highlighted in red.
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FIG. 2. (a) X-ray-diffraction pole figure scan around the (1,0,5)
reflection of the Bi2Te3 sample BST127 showing that one domain
orientation (highlighted by the solid red line) dominates. It also
reveals that the crystallographic axes lie parallel to the sample edges.
Insets sketch domain orientations illustrated by the solid red line
connecting the top Bi atoms in the top right panel and the side view
of one quintuple layer (see the bottom right panel). (b) Photocurrent
Jx(α)/I in Bi2Te3 sample BST127 measured for front and back
illumination at T = 296 K. Solid lines show fits after Eq. (1). Note
that the same dependencies are obtained after phenomenological [see
Eq. (4)] and microscopic theory [see Eq. (19)] for the photogalvanic
effect.

structures using a standard four-point probe and lock-in
technique were carried out at T = 1.5 K. The bulk charge-
carrier densities have been determined as follows: For binary
n-type Bi2Te3 and p-type Sb2Te3 the bulk carrier density
is n ≈ p ≈ 5×1019 cm−3. For ternary (Bi1−xSbx)2Te3 alloys
with x of about 0.4–0.5 we obtain n ≈ p ≈ 5×1018 cm−3. The
sample (Bi0.57Sb0.43)2Te3 (BST641), the most insulating in the
bulk, is n type and has a carrier density of n = 3×1017 cm−3.

The existence of topologically protected surface states has
been verified by means of angle -resolved photoemission
spectroscopy (ARPES) [53,54] (see Fig. 1). Selected samples
have been exposed to air and were transferred into a laboratory-
based high-resolution ARPES chamber. In order to remove
the oxidized layer and surface contaminants, the samples
needed to be cleaned by repeated steps of gentle sputtering
using 750 eV Ar ions and annealing to 250 ◦C to 280 ◦C.
After this cleaning procedure ARPES maps were obtained at
low temperatures (T ≈ 25 K) employing a monochromatized
microwave-driven Xe source with a photon energy of 8.4 eV.

FIG. 3. (a) Photocurrent Jx/I measured in Bi2Te3 sample
BST127. (b) Photocurrent Jy/I measured in (Bi0.57Sb0.43)2Te3 sample
BST641. Plots show the dependence of the photocurrent excited by
normal incident radiation with f = 2.0 THz on the azimuth angle α.
Angles of incidence θ = 0 and 180◦ correspond to the front and back
excitations, respectively. Solid lines show fits after Eq. (1). Note
that the same dependencies are obtained after phenomenological
[see Eq. (4)] and microscopic theory [see Eqs. (19) and (26) for
the photogalvanic and the photon drag effect, respectively]. Insets
sketch the setup and the orientation of the electric field. Note that
the photocurrent is probed in the directions coinciding with the
principal axes of the trigonal system. (c) Temperature dependence of
the photocurrent measured in the Bi2Te3 sample BST127 and Sb2Te3

sample BST305. All data are normalized to the value for T = 4.2 K.

Topological surface states have been identified in all of the
samples (see also Refs. [47,48]). Further, the energetic position
of the Dirac point εB(DP) was extracted from the ARPES
data. For all samples εB(DP) are on the order of hundreds of
meV, comparable with values reported previously for similar
materials [46].

Additionally, x-ray diffraction (XRD) measurements were
performed in order to verify the single crystallinity of the
thin films and the orientation with respect to the Si(111)
substrate and to determine the domain orientation (see Fig. 2).
The XRD data demonstrate the formation of two trigonal
domains, which are mirror symmetric to each other, and
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TABLE II. Frequencies and corresponding wavelengths used in
the experiments.

f (THz)

3.9 3.3 2.0 1.1 0.8 0.6

λ (μm) 77 90 148 280 385 496

show, however, that the majority of the domains have the
same orientation [19,55]. The domains can also be seen in the
atomic force microscopy images showing trigonal islands (not
shown). Height profiles prove that the quintuple layers (QL)
have steps of about 1 nm [19,51]. Using the XRD results,
we prepared square-shaped samples with edges cut along
crystallographic axes x and y (see Fig. 2). To enable electrical
measurements two pairs of Ohmic contacts were prepared in
the middle of the 5×5 mm square sample’s edges.

III. EXPERIMENTAL TECHNIQUE

Experiments on photocurrents in (Bi1−xSbx)2Te3 3D TIs
were performed while applying radiation from a high-power
pulsed molecular THz laser [56,57]. Using NH3, D2O, and
CH3F as active gases for the optically pumped laser, 40-ns
pulses with a peak power of P ≈ 10 kW were obtained at
different frequencies f (see Table II and Refs. [58–60]).
The radiation induces indirect (Drude-like) optical transitions

FIG. 4. (a) Jy/I measured in Bi2Te3 sample BST127 for f =
3.3 THz. (b) Jy/I measured in (Bi0.57Sb0.43)2Te3 sample BST641 for
f = 1.1 THz. The data show the dependence of the photocurrent on
the azimuth angle α excited by normal incident radiation. Angles of
incidence θ = 0 and 180◦ correspond to the front and back excitations,
respectively. Solid lines show fits after Eq. (1). Note that the same
dependencies are obtained after phenomenological [see Eq. (4)] and
microscopic theory [see Eqs. (19) and (25) for the photogalvanic and
the qz-photon drag effects, respectively].

because the photon energies are much smaller than the carrier
Fermi energy. The beam had an almost Gaussian form, which
was measured by a pyroelectric camera [61,62]. A typical
spot diameter depends on the radiation frequency and varies
between 1 and 3 mm. The electric field amplitude E0 of the
incoming radiation was varied from about 1 to 30 kV/cm
(radiation intensities I from about 1 to 1000 kW/cm2).

The samples were illuminated at normal and oblique
incidence. In experiments at normal incidence front and back
illumination was used with an angle of incidence θ = 0◦ and
180◦, respectively (see Figs. 3 and 4). In the measurements
applying oblique incident radiation the angle θ was varied
between −35◦ and 35◦ (see insets in Figs. 5 and 6). Note that
larger angles of incidence were not used in order to avoid the
illumination of contacts and edges. The photocurrents were
analyzed in two directions, x and y, perpendicular to each
other and parallel to the sample edges (see inset in Fig. 3).
Most experiments at oblique incidence were carried out for
the (yz) plane of incidence. In some additional measurements
the orientation of the plane of incidence was rotated by the
angle ψ with respect to the (yz) plane (see inset in Figs. 7
and 8).

The dc photocurrent J was excited in the temperature range
from T = 4.2 to 296 K. It was measured as a voltage drop,
U ∝ J , across a 50 � load resistor and recorded in unbiased
samples with a storage oscilloscope. To control the incidence
power of the laser the signal was simultaneously measured at
a reference THz detector [63]. To examine the photocurrent

FIG. 5. Azimuth angle dependencies of the photocurrent Jy/I

excited in (Bi0.57Sb0.43)2Te3 sample BST641 by normal and oblique
incident radiation. The data demonstrate that the polarization depen-
dence does not change upon variation of the angle of incidence either
for (a) the case in which the current decreases at oblique incidence
(f = 2.0 THz) or (b) the case in which it increases with increasing |θ |
(f = 3.3 THz). Solid lines show fits after Eq. (1). Note that the same
dependencies are obtained after phenomenological [see Eq. (4)] and
microscopic theory [see Eqs. (17), (19), and (25) for the photogalvanic
and both photon drag effects].
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FIG. 6. Dependencies of the photocurrent amplitudes Ax,y on the angle of incidence θ obtained for different frequencies and three samples:
Sb2Te3 (BST305), (Bi0.57Sb0.43)2Te3 (BST641), and Bi2Te3 (BST127). Solid lines show fits after Eq. (4) and calculations after Eqs. (19), (25),
and (17). Dotted and dashed lines show contributions of the photogalvanic effect and photon drag effect caused by the qx component of the
photon wave vector. The curves are calculated after Eqs. (19) and (17), respectively. Note that solid curves in (e) and (f) are obtained by
also taking into account the contribution of the photon drag effects caused by the qz component of the photon wave vector. The latter effect
(not shown) mainly contributes to the signal at normal incidence and is the cause of the difference between the value of the calculated total
photocurrent (solid line) and the photogalvanic effect contribution (dotted line). It has a negative sign and decreases with increasing θ . The
relative contributions of the photogalvanic and photon drag effects are obtained from the measurements applying front and back illuminations;
see Figs. 3 and 4 as well as Table I. The inset in (a) sketches the setup.

behavior upon the variation of the polarization state half- and
quarter-wavelength plates were employed. The initial laser
radiation was linearly polarized along the y axis. By using
λ/2 plates, the azimuth angle α was varied between the linear
polarization of the sample and the y axis (see inset and top
panel in Fig. 3).

By applying λ/4 plates, we obtained elliptically (and
circularly) polarized radiation. In this case, the polarization
state is determined by the angle ϕ between the plate optical
axis and the incoming laser polarization. Here the electric field
vector is lying parallel to the x axis. The polarization states for

FIG. 7. Azimuth angle dependencies of the photocurrent Jy/I

excited in Bi2Te3 sample BST127. The data are obtained at oblique
incidence radiation (f = 2.0 THz) for θ = 20◦ and different orienta-
tions of the plane of incidence with respect to the y direction given by
the angle ψ ; see the inset. The data are shown for the angles ψ = 0◦,
40◦, and 90◦. The solid lines are calculated after Eq. (5).

several ϕ are shown in the top panel of Fig. 9. In this geometry,
the radiation helicity is varied as Pcirc = sin 2ϕ [64,65].

IV. EXPERIMENTAL RESULTS

Irradiating the (Bi1−xSbx)2Te3 3D TIs with linearly polar-
ized THz radiation, we observed a dc current in both the x

and y directions. The photocurrent was detected in the whole
frequency range used from 0.6 up to 3.9 THz. The signal
followed the temporal structure of the laser pulse. Its variation
upon rotation of the polarization plane is well fitted by

Jx = [−A(f ) cos 2α + C(f )]E2
0 ,

Jy = [A(f ) sin 2α + C ′(f )]E2
0 , (1)

in which E2
0 ∝ I is the squared radiation electric field and A,

C, and C ′ are fitting parameters [see Figs. 3(a) and 3(b)]. The
above polarization dependencies were observed in all samples
and for all frequencies. Cooling the sample from room tem-
perature to 4.2 K did increase the photocurrent amplitude [see
Fig. 3(c)], whereas the overall behavior remained unchanged.

As we have shown in Ref. [19], two phenomena can be the
cause of the THz radiation-induced photocurrents, described
by Eqs. (1), namely, the photogalvanic and the photon drag
effects [66]. Experiments applying front and back illumination
with normally incident radiation allow us to distinguish them
from each other. While the photogalvanic current is determined
by the in-plane orientation of the radiation electric field [19]
and, consequently, remains unchanged for both geometries,
the photon drag current is additionally proportional to a
component of the photon momentum q. Therefore, changing
q → −q (front to back illumination) does not affect the
photogalvanic effect but inverts the sign of the factor A(f ) for
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FIG. 8. (a) Azimuth angle dependencies of the photocurrent
Jx/I excited in Bi2Te3 sample BST127. The data are obtained at
oblique incidence radiation (f = 2.0 THz) for θ = 20◦ and different
orientations of the plane of incidence with respect to the y direction
given by the angle ψ . The data are shown for the angle ψ changing
from 0◦ to 130◦ with steps of 
ψ = 10◦. Solid lines show fits after
Eqs. (5). The measured phase shift as a function of ψ for (b) the data
shown in (a) and (c) samples BST641, BST127, and BST305 and two
radiation frequencies. Here solid and open symbols correspond to the
frequencies f = 2.0 and 3.3 THz, respectively. The solid line shows
a fit with φ = 2ψ .

the photon drag effect. Note that for front and back illumination
at normal incidence the wave vector q is directed parallel or
antiparallel to the z direction. As an important result we found
that the sign of the amplitude A(f ) remains unchanged (see
exemplary Figs. 3 and 4 for samples BST127 and BST641
and Table I for all investigated samples at f = 3.3 THz). This
fact provides clear evidence that the photocurrent at normal
incidence is dominated by the photogalvanic effect in the
investigated 2D Dirac fermion systems. In samples BST127
and BST641 excited with f = 2.0 THz, the contribution
of the photon drag is vanishingly small (see Fig. 3). At
other frequencies and samples the photon drag effect may
yield a contribution up to one third compared to that of
the photogalvanic effect, resulting in larger signals for back
illumination than for the front one [67] (see Fig. 4 and Table I).

So far we have presented data obtained for normal
incidence. Illuminating the samples at oblique incidence,
we found that all characteristic properties of the photocur-
rent, including its polarization behavior, remain unchanged
(see Fig. 5). In contrast to the measurements at normal
incidence, the magnitude Ax,y(f,θ ) depends now additionally
on the incident angle θ , as well as on the direction in which the

FIG. 9. Helicity dependence of the photocurrent, Jx/I , measured
in Bi2Te3 sample BST127 at normal as well as oblique incidence in
the direction normal to the plane of incidence. The ellipses on top
illustrate the polarization states for various angles ϕ. Solid lines show
fits after Eqs. (4), where the polarization-dependent terms take, for
this geometry, the form Jx = Ax(f )(cos 4ϕ + 1)/2.

current is examined: At large θ and for the plane of incidence
coinciding, e.g., with the yz plane the photocurrent magnitudes
measured in the x and y directions become slightly different.
For some excitation frequencies the photocurrent amplitude
Ax,y(f,θ ) did decrease upon the increase of the angle θ ,
exemplarily shown for the current measured in the x direction
in Figs. 5(a), 6(a), and 6(b). Note that the change of Ax,y(f,θ )
is even in the angle θ .

Strikingly, at other radiation frequencies we observed that
for positive as well as for negative θ the signal rises with an
increase of the angle of incidence [see Figs. 5(b) and 6(c)–6(f)].
This behavior is observed for photocurrents measured in
directions parallel as well as normal to the plane of incidence
[see Fig. 6(d)]. It is also detected for any orientation of the
plane of incidence. Figure 7 shows the corresponding data
for three positions of the incident plane determined by the
angle ψ . The figure reveals that the signal varies as Jy =
Ay(f,ψ) sin(2α − φ)E2

0 and the most pronounced change in
the photocurrents’ polarization dependence is the appearance
of a φ = 2ψ phase shift. A detected small variation of
Ay(f,ψ) as a function of ψ cannot be discussed earnestly since
precise adjustment ensuring that, for different ψ , technically
obtained by rotating the sample, the laser spot remains on
the same sample position is hard to realize. To support the
conclusion that the rotation of the incident plane results in
a 2ψ phase shift, we measured photocurrents depending on
the linear polarization by changing the angle ψ by steps of
10◦ in the range from 0◦ to 130◦. Figure 8(a) demonstrates
the dependencies obtained for Bi2Te3 sample BST127. The
corresponding dependency of the measured phase shift φ on
the angle ψ is shown in Fig. 8(b), and that for other samples
and frequencies is shown in Fig. 8(c). The figures demonstrate
that in all cases φ ≈ 2ψ .

Finally, we discuss the results obtained by applying ellip-
tically (circularly) polarized radiation. These measurements
were particularly motivated by the search for the circular pho-
togalvanic [14,68,69] and circular photon drag effects [70,71],
i.e., photocurrents changing their direction upon switching of
the radiation helicity [10,11,13], recently observed for Bi2Te3
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TI excited by near-infrared light [30]. Applying radiation
at oblique incidence and measuring the photocurrent in the
direction normal to the plane of incidence (yz), i.e., in the
geometry for which circular photogalvanic [30,72,73] and
circular photon drag effects [13,70] are expected, we detected a
current which can be well fitted by Jx = Ax(f )(cos 4ϕ + 1)/2
(see Fig. 9). Figure 9 clearly shows that for circularly polarized
radiation (ϕ = 45◦ and 135◦) the signal vanishes. In fact, the
term in brackets describes the degree of linear polarization in
the λ quarter-plate geometry. Therefore, the observed current
is identical to the one excited by linearly polarized radiation,
which was already discussed above. Examining different
samples in the whole investigated THz frequency range, we
observed the same result: No trace of a helicity-dependent
photocurrent has been detected.

To summarize, experiments on different types of TI samples
provide a self-consistent picture demonstrating that the pho-
tocurrents (i) are caused by effects proportional to the second
power of the radiation electric field and can be excited by
both normal and oblique incident radiation, (ii) are excited by
linearly polarized radiation, (iii) vary with the azimuth angle α

as J ∝ A(f,θ,ψ) sin 2α with a possible phase shift depending
on the experimental geometry and crystallographic direction
in which the photocurrent is measured (see Figs. 7 and 8), (iv)
have the same sign but may have distinct magnitudes of the
factor A(f ) for front and back normal incident illumination
(see Figs. 3 and 4), and (v) are described by an even function
of the angle of incidence θ with the magnitude A(f,θ ) for
different radiation frequencies, increasing or decreasing with
an increase of θ (see Figs. 5 and 6).

V. DISCUSSION

Now we discuss the origin of the observed photocurrents,
which are induced by spatially homogeneous terahertz radia-
tion and scale with the second power of the radiation electric
field. We begin with the standard way to treat second-order
effects without going into microscopic detail, which makes
use of the symmetry arguments. This approach allows us
to explore what kind of photocurrents are allowed in the
considered system and to describe their variation upon a
change of the macroscopic parameters, such as radiation
intensity, polarization, and incident angle. With this, the
response of the charge carriers ensemble to the external field
can be characterized conveniently by the coordinate- and
time-dependent electric current density j (r,t). It is expanded
in a power series in the external alternating electric field E(r,t)
in the form of a plane wave:

E(r,t) = E(ω,q)e−iωt+iqr + E∗(ω,q)eiωt−iqr , (2)

where ω = 2πf is the angular frequency and q is its wave
vector. Limiting the consideration to the second-order effects,
we obtain the photocurrent density j ∝ J in the form [12,56]

jλ =
∑
μ,ν

χλμνEμE∗
ν +

∑
δ,μ,ν

TλδμνqδEμE∗
ν + c.c., (3)

where the expansion coefficients χλμν and Tλμνδ are third- and
fourth-rank tensors, respectively, and E∗

ν = E∗
ν (ω) = Eν(−ω)

is the complex conjugate of Eν . The first term on the right-hand
side of Eq. (3) represents photogalvanic effects, whereas

the second term describes the photon drag effect containing
additionally the wave vector of the electromagnetic field. We
emphasize that while the photogalvanic effect requires the
absence of an inversion center and can be excited only in the
surface states of the investigated TIs, a photon drag current can
be generated in the centrosymmetric bulk as well. Moreover, in
the case of the trigonal, the photon drag effect is described by
the same phenomenological equations for bulk and surface
states and therefore behaves identically upon variation of
macroscopic parameters, such as radiation polarization.

Equation (3) can be simplified considering the point group
C3v , which describes the symmetry of the surface states in
(Bi1−xSbx)2Te3. To be specific we first obtain the photocur-
rents excited in the crystallographic directions x and y with
the radiation plane of incidence (yz). Taking into account the
fact that we detected only photocurrents excited by linearly
polarized radiation that are even in the angle of incidence θ ,
we can omit all contributions of photocurrents sensitive to the
radiation helicity and those giving a response that is odd in the
angle θ . Under these conditions we derive for j

jx = (χ + Tzqz)
(
E2

x − E2
y

) − T‖qyEyEz

= j off − cos 2α E2
0

1
2

[
(χ − Tzq cos θ )

(
t2
s + t2

p cos2 θ
)

+ T‖qt2
p sin2 θ cos θ

]
,

jy =−2(χ + Tzqz)ExEy − T‖qyExEz

= sin 2α tstp[(χ − Tzq cos θ ) cos θ + T‖q sin2 θ/2]E2
0 .

(4)

Here tp and ts are the Fresnel transmission coefficients for s-
and p-polarized light, and j off is the polarization-independent
offset, which is equal to zero for θ = 0 (see the Appendix).
The constants χ , T‖, and Tz are coefficients describing
the photogalvanic effect, the photon drag effect at oblique
incidence, and the photon drag effect at normal incidence,
respectively.

At normal incidence we obtain the photogalvanic effect
and the photon drag effect, caused by the z component of
the photon wave vector. They are given, respectively, by the
terms proportional to factors χ and Tz. Both effects have the
same polarization dependence and vary with the azimuth angle
α according to jx ∝ (E2

x − E2
y) ∝ cos 2α and jy ∝ 2ExEy ∝

sin 2α, in agreement with the results of experiments [see
Figs. 3, 4, and Eq. (1)]. For χ � T qz reversing the radiation
propagation direction (θ = 0 ⇒ θ = 180◦) does not affect the
polarization dependence. It may, however, change the signal
magnitude because χ + Tzqz is different for negative and
positive qz, corresponding to front and back illumination.
Exactly this behavior has been observed in experiments
showing that at some frequencies the photon drag due to the z

component of the wave vector yields a minor contribution
to the total photocurrent (see values of Jx at θ = 0◦ and
180◦ in Table I and Fig. 4). At oblique incidence the Ex

and qz components are reduced, and the magnitudes of both
photocurrents diminish equally for positive and negative angle
θ [see Fig. 5(a) and dotted lines in Fig. 6].

According to Eqs. (4), at oblique incidence the photon
drag effect, coupled with the in-plane wave vector qy , can
also contribute to the total photocurrent. Its dependence on
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the azimuth angle α formally coincides with that of the
contributions discussed so far, jx ∝ EyEz ∝ cos 2α and jy ∝
ExEz ∝ sin 2α. However, it obviously vanishes at normal
incidence (qy = 0) and, in contrast to the photogalvanic effect,
increases with the rising angle of incidence (see dashed lines
in Fig. 6). Moreover, the sign of the products (EyEzqy)
and (ExEzqy) stays the same for positive and negative θ . A
dominating contribution of this effect has been observed at
large angles of incidence for all samples and for almost all
frequencies. The most clear evidence for this conclusion is
supported by measurements shown in Figs. 5(b) and 6(c)–6(f)
demonstrate that the photocurrent rises with the increase of
the angle θ .

Rotation of the incident plane by the angle ψ changes the
relative orientation of the electric field and crystallographic
axes, modifying Eqs. (4). Taking into account that in all exper-
iments described above T‖qy 
 (χ + Tzqz) and considering
small angles θ , which is relevant to the experimental data of
Figs. 5 and 6, we obtain

jx ≈ − cos (2α − 2ψ)(χ − Tzq + T‖qθ2/2)t2E2
0 ,

jy ≈ sin (2α − 2ψ)(χ − Tzq + T‖qθ2/2)t2E2
0 . (5)

Here t = tp = ts is the amplitude of the transmission
coefficient for small θ , and the offset current is omitted.
Equations for an arbitrary angle of incidence are given in
the Appendix. Equations (5) show that the rotation of the
incident plane mainly results in a 2ψ phase shift for both
photocurrents jx and jy . This phase shift has been observed
for all samples and frequencies (see Figs. 7 and 8). While the
above results were obtained while considering the point group
C3v of the surface states, our analysis shows that the same
behavior of the photon drag current upon variation of radiation
polarization, rotation of the plane of incidence, direction of
radiation propagation, etc., is found for the bulk point-group
symmetry D3d . Therefore, in contrast to photogalvanics, this
photocurrent can be attributed to surface states or the electron
gas in the bulk only by a careful analysis of the influence of
different microscopic parameters on the photocurrent behavior.

VI. MICROSCOPIC MODELS

In general, second-order high-frequency effects are caused
by the redistribution of charge carriers in the momentum space
induced by the illumination of the sample with radiation. The
resulting nonequilibrium distribution can contain components
which are oscillating in time and space, as well as steady-state
and spatially homogeneous ones. Hence, the irradiation may
cause both ac and dc flows in a medium. Their magnitudes
are nonlinear functions of the field amplitude, and their
components are sensitive to the radiation polarization. In the
following section we present models visualizing the physics
of nonlinear responses. For simplicity we assume positively
charged carriers, i.e., holes for which the directions of the
carrier flow and the corresponding electric current coincide.

A. Trigonal photogalvanic effect

The model and the microscopic theory of the photogalvanic
effect have been discussed in detail in Ref. [19], demonstrating
that the photocurrent stems from the asymmetric scattering of

FIG. 10. Model of the photogalvanic effect, excited in surface
states of (Bi1−xSbx)2Te3 due to the asymmetry of elastic scattering of
holes by wedges.

free carriers excited by irradiation with an ac electric field. As
we show below, the asymmetric scattering is also responsible
for the observed photon drag effects. Therefore, to introduce
the concepts essential for the formation of the latter effects and
to provide a complete picture of the photocurrent formation
in TI, we will briefly address the model of the photogalvanic
effect.

The current generation process is illustrated in Fig. 10.
As addressed above, the symmetry of the surface states in
(Bi1−xSbx)2Te3 3D TIs is C3v . This point group implies that
the anisotropy of carrier elastic scattering is the same as for
scattering by a double triangular pyramid, whose side and top
views are sketched in Fig. 10(a). Note that for C3v symmetry
scattering by the top and bottom pyramids has different
probabilities. In the framework of the photogalvanic effect
caused by the in-plane motion of free carriers the scatterers can
be considered randomly distributed but identically oriented
wedges lying in the QL plane. The preferential orientation
of wedges is supported by the x-ray data shown above [see
Fig. 2(a) and Refs. [19,74]]. In the absence of radiation,
the flows of anisotropically scattered holes [see right panel
Fig. 10(a)] exactly compensate each other. Application of
linearly polarized THz radiation results in an alignment of
carrier momenta: the total flow of holes driven back and
forth by ac electric field E(t) increases. The corresponding
stationary correction to the hole distribution function scales as
a square of the ac electric field magnitude [75]. The stationary
alignment of carrier momenta itself does not lead to a dc
electric current, but due to asymmetric scattering by wedges,
the excess of the flux of carriers moving along the field violates
the balance of flows [73,76], and the linear photogalvanic
current is generated [77]. The direction of the induced current
depends on the relative orientation of the ac electric field
and wedges: For example, a field parallel to the wedges’
base [E ‖ y; see Fig. 10(b)] yields the current flow in the x

direction, while rotation of the electric field by 90◦ reverses the
current direction [see Fig. 10(c)]. The polarization dependence
of the photogalvanic current in the x and y directions is
described by the terms with χ in Eqs. (5) and by Eq. (19).
Note that the coefficient χ has opposite signs for holes and
electrons.
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FIG. 11. Model of the trigonal photon drag effect caused by the
in-plane wave vector qx . To be specific, we discuss the hole gas in the
surface states excited by oblique radiation with the incidence plane
(xz); see (c). The triangle in the left picture in (d) shows the top view
of the considered scattering potential. The side view of the scatters is
sketched in the right picture.

B. Trigonal photon drag effects caused by the in-plane
component of the photon wave vector

The trigonal photon drag effect caused by the in-plane
component of the photon wave vector results in a dc current
increasing with the increase of the angle of incidence. It is
described by an even function of the angle θ . Similar to
the photogalvanic effect, the photon drag current formation
involves asymmetric scattering of free carriers and will be
discussed in relation to the surface states. The model for the
photon drag effect in the bulk is based on similar arguments
but will not be further discussed here. The trigonal photon drag
effect results from a dynamical alignment of carrier momenta.
It is generated due to the in-plane profile of the radiation
electric field and implies the difference in the scattering
probabilities for different half periods of the electromagnetic
wave. The process of the current generation is illustrated
in Fig. 11. Like in the model for the photogalvanic effect,
we consider the scatterers to be randomly distributed but
identically oriented pyramids in the QL plane [see Fig. 11(d)].
In the absence of radiation, the flows of the thermalized
charge carriers which are anisotropically scattered by pyramids
exactly compensate each other. Optical excitation disturbs the
balance due to the action of the high-frequency electric field E
on charged carriers, we assume holes. The discussed trigonal
photon drag current is caused by the dynamic variation of the
electric field E in the direction of the radiation propagation
[see Fig. 11(a)]. The strength of the corresponding force acting
on holes is given by |e|E‖eiq‖r−iωt ≈ |e|i(q‖r)E‖e−iωt , where
e is the elementary charge [13,78]. The force is coordinate
dependent and causes the hole acceleration to be directed
parallel to the x direction for Ex > 0 (antiparallel for Ex < 0)
and, consequently, to increase the hole flow by δi+x (δi−x )
[see horizontal arrows in Fig. 11(a)]. As a result of this
dynamical momentum alignment the balance of the hole
flows scattered by pyramids in the vicinity of the electric
field Ex nodes becomes locally violated [see Figs. 11(a)
and 11(d)]. The asymmetric scattering may cause equal in

magnitude but oppositely directed local electric currents jx1

and jx2 in the vicinity of x1 and x2, whereas the total electric
current remains zero. However, steady-state dc electric current
indeed emerges if one additionally takes into account the z

component of the radiation field and the retardation between
the electric field and the instant velocity of the charge carrier.
The photocurrent reaches its maximum at ωτ about unity. The
effect of the retardation, well known in the Drude-Lorentz
theory of high-frequency conductivity, causes a phase shift
between the electric field Ex and the instant change of the hole
velocity δvx given by arctan(ωτtr). Consequently, the nodes
of the charge-carrier velocity δvx are shifted with respect
to that of the electric field Ex ; these nodes are indicated in
Fig. 11(b) as x ′

1 and x ′
2. The carriers in the vicinity of the x ′

1
and x ′

2 positions are subjected to the electric fields Ez(x ′
1) and

Ez(x ′
2), which have opposite signs. The Ez(x ′

1) [Ez(x ′
2)] field

is pushing the carriers to the base (top) of the pyramids, which
increases (decreases) the scattering probability in the vicinity
of x ′

1 (x ′
2). Consequently, it changes the magnitudes of the local

currents jx ′
1

and jx ′
2

caused by the asymmetric scattering. The
variation of the scattering probability upon the action of the
out-of-plane electric field δW p′ p(Ez) is described by Eq. (11)
in Sec. VII. As a result the oppositely directed local currents do
not compensate each other anymore, and a dc electric current
proportional to the product qxExEz emerges. Changing the
angle of incidence from θ to −θ reverses the sign of both qx

and the product ExEz so that the direction of the dc current
remains unchanged. We emphasize that such a contribution to
the photon drag effect is specific to trigonal systems and it is
absent in, e.g., hexagonal systems like graphene [13,71].

VII. MICROSCOPIC THEORY

Now we turn to the microscopic theory of the photon
drag effect, presented in the surface states. In the classical
regime achievable in our experiments, which is characterized
by �ω � εF, the photocurrents can be well described by means
of Boltzmann’s kinetic equation for the coordinate-dependent
carrier distribution function f p(r),

(
∂

∂t
+ eE(r,t) · ∂

∂ p
+ v p · ∂

∂ r

)
f p(r)

=
∑

p′
[W p p′f p′(r) − W p′ pf p(r)], (6)

where e > 0 for holes and e < 0 for electrons, v p = v0 p/p

is the velocity of surface charge carriers with a momentum p,
v0 is the Dirac fermion velocity, and W p′ p is the probability
of a charge carrier having momenta p and p′ before and after
scattering, respectively. The lack of an inversion center for the
surface charge carriers makes their elastic scattering asymmet-
ric, so that W p p′ �= W− p,− p′ [73,76], and a dc electric current
results. Note that this asymmetry takes place even for isotropic
scatterers like impurities or phonons. The photocurrent can be
calculated as follows [12]:

j = e
∑

p

v pδf p , (7)
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where δf p is the correction to the distribution function
quadratic in the radiation electric field amplitude and linear
in the photon momentum.

To calculate the asymmetric part of the scattering prob-
ability, which is responsible for the photocurrent formation,
we take into account warping of the energy spectrum. Without
warping, the energy dispersion of the surface states is described
by the Hamiltonian [1]

H0 = v0(σxpy − σypx) , (8)

where σx,y are Pauli matrices. The Hamiltonian (8) yields
the linear energy dispersion εe,h = ±v0p and corresponding
wave functions �

(0)
e,h = [1, ∓ iexp(iϕ p)]/

√
2 for electrons and

holes, where ϕ p is the angle between the carrier momentum
p and the x axis. The warping of the energy spectrum reflects
the trigonal symmetry of the surface and is described by, in
addition to Eq. (8), a small term given by [79]

Hw = λwσzp
3 sin 3ϕ p , (9)

where λw is a warping constant. This is the perturbation which
leads to the hexagonal warping of the energy surfaces [80]
clearly detected by ARPES (see the top panels in Fig. 1).

The perturbation caused by the terahertz radiation electric
field Ez changes the surface charge-carrier wave functions
due to the admixture of bulk states from various bands. The
corresponding Hamiltonian is linear in the coordinate z,

Hem = −ezEz. (10)

Taking into account both perturbations Hw and Hem in the first
order, we obtain the corrected electron wave function:

�e = �(0)
e + λwp2 sin 3ϕ p

2v0
�

(0)
h + eEz

∑
n

zns

εn

�n,

where the index s labels the bulk orbitals from which the
surface states are formed and n enumerates other energy
bands of the bulk crystal. Here we assume that all bulk bands
lie far enough away from the Dirac point so the energies
|εn| 
 εF = v0pF, where pF is the Fermi momentum.

Calculating the matrix elements of scattering by a static
potential, we obtain from Fermi’s golden rule the scattering
probability in the form W p′ p = W

(0)
p′ p + δW p′ p. The field-

independent part is given by the usual expression, taking into
account the absence of back scattering for Dirac fermions [81]:

W
(0)
p′ p = π

�
〈|V ( p′ − p)|2〉(1 + cos θ p′ p)δ(v0p − v0p

′),

where V ( p) is the Fourier image of the scattering potential,
θ p′ p = ϕ p′ − ϕ p is the scattering angle, and the angular
brackets mean averaging over positions of scatterers [80]. The
linear in Ez correction is given by

δW p′ p = 2π

�
δ(v0p − v0p

′)
∑

n

〈Im(VsnznsV
∗
ss)〉/εn

× eEz sin θ p′ p
λp2

v0
(sin 3ϕ p′ + sin 3ϕ p). (11)

Here Vss and Vsn are the intra- and interband matrix elements
of the scattering potential, respectively. The latter is caused
by the short-range scatterers with the momentum transfer

∼�/a0 
 pF, where a0 has an atomic scale; therefore, the
average product is assumed to be independent of ϕ p and
ϕ p′ [82]. We emphasize that the obtained correction, Eq. (11),
is responsible for the effect of the Ez electric field on the
scattering by pyramidlike scatters discussed in the model of
the photon drag effect (see Sec. VI B).

Using the derived scattering probability W p′ p, we solve
the Boltzmann equation (6) and obtain the r-independent
correction to the distribution function δf p, which allows us
to calculate the photon drag current given by Eq. (7). For this
we will search for the correction to the distribution function
responsible for the dynamical alignment momentum f

(da)
p .

First, we find the linear in E‖ solution given by

f (E)
p (r) = − df0

dε p

eτtr

1 − iωτtr
(E‖ · v p), (12)

where f0 is the Fermi-Dirac distribution function and the
transport relaxation time τtr determining the mobility of
2D Dirac fermions is related to the symmetric part of the
scattering probability as τ−1

tr = ∑
p′ W

(0)
p′ p(1 − cos θ p′ p). The

photon wave vector is accounted for by the space derivatives
in the kinetic equation [13]

v p · ∂f
(E)
p

∂ r
= i(v p · q)f (E)

p =
(

iω − 1

τ2

)
f (da)

p . (13)

The time τ2, which is of the order of τtr, describes the relaxation
of the above-discussed alignment of charge-carrier momenta.
It is defined as follows:

τ−1
2 =

∑
p′

W
(0)
p′ p(1 − cos 2θ p′ p). (14)

From Eq. (13) we find the correction to the distribution
function describing the dynamical alignment of momenta in
the form

f (da)
p = df0

dε p
ieτ2τtr

(v p · q)(E‖ · v p) − (q · E‖)v2
p

/
2

(1 − iωτtr)(1 − iωτ2)
. (15)

Now we take into account the anisotropic scattering which
manifests as a correction given by Eq. (11). The r-independent
correction to the distribution function δf p is found from the
following equation [83]:

∑
p′

δW p′ p
(
f (da)

p + f
(da)
p′

) = −δf p

τtr
. (16)

Finally, from Eq. (7) we find the trigonal photon drag
current. Experiments reveal that the photocurrent in all samples
is caused by the linearly polarized radiation. For excitation by
oblique incidence in the (xz) plane it is described by

jx = T‖qxExEz = eβλwp2
Fωτ2(τtr + τ2)

4
(
1 + ω2τ 2

2

) σ (ω)qxExEz,

jy = −T‖qxEyEz. (17)

Here the high-frequency conductivity is given by the Drude
expression for degenerate 2D carriers,

σ (ω) = e2εFτtr

4π�2
(
1 + ω2τ 2

tr

) .
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FIG. 12. Frequency dependencies for photogalvanic and photon
drag photocurrents calculated after Eq. (19) (dashed curve) and
Eq. (17) (solid curve), respectively. The curves are normalized by
the corresponding photocurrent maximum. The photon drag current
is multiplied by −1 because these terms always have, in experiments,
the opposite sign.

We introduce the anisotropic scattering constant which is
nonzero due to the C3v symmetry of the studied system,

β =
∑

n〈Im(VsnznsV
∗
ss)〉/εn

〈|V ( p′ − p)|2 sin2 θ p′ p〉 , (18)

where brackets in the denominator mean averaging over both
scatterer positions and the scattering angle θ p′ p. The derived
Eqs. (17) show that, in line with experiments (see Fig. 6) and
the discussion in Sec. V, the current is even in the angle of
incidence and vanishes for normal incidence at which qx = 0.
For elastic scattering by Coulomb impurities, the relaxation
times are related as τ2 = τtr/3. According to Ref. [19], in this
case the photogalvanic current is given by

jx = χ
(
E2

x − E2
y

) = ev0
2τtr

EF
� σ (ω)

(
E2

x − E2
y

)
,

jy = −2χExEy, (19)

where � is the factor describing the C3v symmetry of the
studied system. In the studied samples we can estimate
� ∼ 10−4–10−5 (see also Ref. [19]).

The frequency dependencies of trigonal photon drag
and photogalvanic currents are plotted in Fig. 12. While
photogalvanic current drops monotonously with an increase
in frequency, the photon drag current has a maximum at
ωτtr ≈ 2. At high frequencies, both linear photon drag and
linear photogalvanic currents decrease as ω−2. The difference
between the frequency dependencies may be the cause for
the observed variation of the ratio between photon drag and
photogalvanic currents, which varies in the range from about
−2 to −15 for different samples and frequencies.

The ratio of the photon drag and photogalvanic currents can
be estimated as

T‖q/χ ∼ (
λwp2

F

/
v0

)
(βqεF/�). (20)

The first factor is a dimensionless degree of warping which
can be of order of unity in our samples according to ARPES

measurements (Fig. 1). In our experiments, the trigonal photon
drag current at oblique incidence is larger than the photogal-
vanic one. This allows us to estimate the interband scattering
parameter β defined by Eq. (18): in the studied samples
β > 10 Å/eV. From the difference in sign between the
photogalvanic and trigonal photon drag currents systematically
observed in experiment we conclude that the products βλw,
describing the trigonal photon drag and the photogalvanic
constant �, are of opposite sign. We note that since the
photogalvanic effect is generated in the surface states with
amplitudes comparable to those of the trigonal photon drag
effect, we can draw the conclusion that the latter is also
generated in the surface states. However, we do not find any
straightforward experimental arguments to discriminate the
contributions of the surface and bulk states in TIs with residual
bulk conductivity. Moreover, these photon drag currents may
be of the same magnitude because they are both determined
by small radiation-induced corrections to the elastic scattering
probability.

Finally, we note that the solution of the Boltzmann equation
also yields the circular photon drag current proportional to the
radiation helicity,

j circ
x = −eβλwp2

Fτ2(1 − ω2τtrτ2)

4
(
1 + ω2τ 2

2

) σ (ω)
qxqy

q
Pcircts tp|E0|2,

j circ
y = eβλwp2

Fτ2(1 − ω2τtrτ2)

8
(
1 + ω2τ 2

2

) σ (ω)
q2

x − q2
y

q
Pcircts tp|E0|2.

(21)

It follows from these expressions that the circular photon drag
current is zero at ωτtr ≈ 1, a value at which the linear photon
drag current is close to its maximum (Fig. 12). The vanishing
contribution of the circular photocurrent in the vicinity of
ωτtr ≈ 1, the condition corresponding to our experiments,
may explain the fact that in the studied frequency range no
helicity-dependent current has been detected.

Microscopic theory of the photon drag effect due
to the qz component of the photon wave vector

Last but not least, we obtain the trigonal photon drag current
caused by the qz component of the photon wave vector. It is
given by

jx = Tzqz(|Ex |2 − |Ey |2),

jy = −Tzqz(ExE
∗
y + EyE

∗
x ), (22)

where Tz is a real constant. The equations reveal that the
photocurrent can be excited by linearly polarized radiation
and is sensitive to the polarization plane position with respect
to the crystallographic axes.

The microscopic picture of the photocurrent generation
can most conveniently be described in terms of the radiation
magnetic field B rather than the transfer of the normal
component of the photon wave vector qz to free carriers.
Indeed, the latter is not possible in strictly 2D systems. Using
the relation B = (c/ω)q×E, we can rewrite Eq. (22) as
jx ∝ ExB

∗
y + EyB

∗
x + c.c. and jy ∝ ExB

∗
x − EyB

∗
y + c.c.

In order to develop a microscopic theory for the photocur-
rent given by Eq. (22), we take into account the Lorentz force
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of the radiation magnetic field acting on the 2D carriers. The
corresponding Hamiltonian has the following form:

HB = ez

m0c
(Bxpy − Bypx). (23)

Taking into account both HB and the warping perturbation
Eq. (9) in the first order, we derive the linear in B correction
to the elastic scattering probability δW

(B)
p′ p . It is obtained from

δW p′ p, Eq. (11), by substitution,

Ez → 1

m0c
[By(px + p′

x) − Bx(py + p′
y)].

Now we solve the Boltzmann kinetic equation (6) account-
ing for the correction δW

(B)
p′ p to the scattering probability. It has

the form

∑
p′

δW
(B)
p′ p

(
f (E)

p − f
(E)
p′

) = −δf
(B)
p

τtr
, (24)

where δf
(B)
p is the correction to the distribution function linear

in B and the linear in E‖ correction f
(E)
p (r) is given by Eq. (12).

The current density linear in both E‖ and B‖ is calculated
by Eq. (7) with the above correction δf

(B)
p . The result has the

form

jx = Tzqz

(
E2

x − E2
y

) = −eβλp2
FεF

4ωm0v
2
0

σ (ω)qz

(
E2

x − E2
y

)
,

jy = −2TzqzExEy. (25)

Comparing the photocurrent amplitudes at normal and
oblique incidence, Eqs. (17) and (25), we obtain

Tz/T‖ ∼ 1 + (ωτtr)2

(ωτtr)2

εF

m0v
2
0

. (26)

This estimate demonstrates that, because the radiation mag-
netic field affects elastic scattering weaker than the electric
field, Tz is substantially smaller than T‖. Since m0v

2
0 ∼ 10 eV,

the factor εF/m0v
2
0 is on the order of 10−1 to 10−2 for our

samples. This estimation explains why in all our experiments
T‖ 
 Tz. The smallest values of T‖/Tz obtained are 40 times
for sample BST127 and 80 for sample BST641. In both cases
the samples were excited by radiation of f = 3.3 THz. For
other conditions the ratio was even larger, or the qz-related
photon drag contribution was not detectable. The only reason
why we were able to detect such a small contribution at all is
that photon drag due to the in-plane wave vector vanishes at
normal incidence, whereas that caused by the qz component
achieves its maximum. Finally, we note that constant Tz has a
frequency dependence different from that of T‖. In particular,
the role of the qz-photon drag current is enhanced at small
frequencies, ωτtr � 1.

VIII. CONCLUSION

To summarize, our experiments on a large set of n- and
p-type (Bi1−xSbx)2Te3 three-dimensional topological insula-
tors demonstrated that normal incident THz radiation results
in the photogalvanic current induced in the surface states. At
oblique incidence, however, in particular at large angles of
incidence, it is outweighed by the photon drag effect. The

microscopic model and theory developed show that the photon
drag photocurrent is caused by the dynamical momentum
alignment by the time- and space-dependent radiation electric
field and imply the difference in the scattering probabilities
for different half periods of the electromagnetic wave. Both
photocurrents observed even at room temperature stem from
scattering events and therefore can be applied to study the
high-frequency conductivity in TI.
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APPENDIX

Phenomenological analysis of the C3v symmetry at linear
polarization of radiation accounting for the photogalvanic and
photon drag effects yields even in θ photocurrents (4), which
can be conveniently written in the following form:

jx + ijy = (χ + Tzqz)(Ex − iEy)2

+ T‖(qx − iqy)(Ex − iEy)Ez. (A1)

We consider oblique incidence with an incidence plane at
an angle ψ with the yz plane, and α is an angle between
the radiation electric vector and the incidence plane (α = 0
corresponds to p polarization). In these notations we have

qx − iqy = −iq sin θe−iψ , qz = −q cos θ, (A2)

Ex − iEy = −(ts sin α + itp cos α cos θ )E0e
−iψ , (A3)

Ez = tpE0 sin θ sin α. (A4)

Here E0 is the electric field amplitude in vacuum, and ts , tp are
Fresnel transmission coefficients for s and p polarizations.

Substitution of the wave vector and electric field compo-
nents into Eq. (A1) yields the photocurrent in the following
form:

jx = j off − cos (2α − γ )
√

(Ac cos 2ψ)2 + (As sin 2ψ)2E2
0 ,

(A5)

jy = sin (2α − γ ′)
√

(As cos 2ψ)2 + (Ac sin 2ψ)2E2
0 . (A6)

Here the amplitudes are functions of the incidence angle,

Ac = 1
2

[
(χ−Tzq cos θ )

(
t2
s + t2

p cos2 θ
) + T‖qt2

p sin2 θ cos θ
]
,

(A7)

As = ts tp cos θ (χ − Tzq cos θ ) + T‖qts tp sin2 θ/2, (A8)

the phase shifts are given by

tan γ = As

Ac

tan 2ψ, tan γ ′ = Ac

As

tan 2ψ, (A9)
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and the α-independent offset photocurrent is

j off = − sin2 θ

2

[
(χ − Tzq cos θ )f (θ ) + T‖qt2

p cos θ
]
E2

0 ,

(A10)

where

f (θ ) ≡ t2
p cos2 θ − t2

s

sin2 θ

= ts tp(tp cos θ + ts)

2 cos θ

[
1 + n cos θ − 1

n2(1 +
√

1 − sin2 θ/n2)

]
.

(A11)

Taking into account that in our structures T‖q 
 χ,Tzq, we
have at small θ

jx = − cos (2α − 2ψ)(χ − Tzq + T‖qθ2/2)t2E2
0 + j off,

(A12)

jy = sin (2α − 2ψ)(χ − Tzq + T‖qθ2/2)t2E2
0 . (A13)

Here t is the amplitude transmission coefficient for normal
incidence, and

j off = −T‖qθ2t2E2
0

/
2. (A14)
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Mussler, and D. Grützmacher, Cryst. Growth Des. 15, 390
(2015).

[56] S. D. Ganichev and W. Prettl, Intense Terahertz Excitation of
Semiconductors (Oxford University Press, Oxford, 2006).

[57] C. Drexler, S. A. Tarasenko, P. Olbrich, J. Karch, M. Hirmer,
F. Müller, M. Gmitra, J. Fabian, R. Yakimova, S. Lara-Avila,
S. Kubatkin, and S. D. Ganichev, Nat. Nanotechnol. 8, 104
(2013).

[58] S. D. Ganichev, W. Prettl, and P. G. Huggard, Phys. Rev. Lett.
71, 3882 (1993).

[59] S. D. Ganichev, I. N. Yassievich, W. Prettl, J. Diener, B.
K. Meyer, and K. W. Benz, Phys. Rev. Lett. 75, 1590
(1995).

[60] S. D. Ganichev, E. Ziemann, Th. Gleim, W. Prettl, I. N.
Yassievich, V. I. Perel, I. Wilke, and E. E. Haller, Phys. Rev.
Lett. 80, 2409 (1998).

[61] P. Olbrich, E. L. Ivchenko, R. Ravash, T. Feil, S. D. Danilov,
J. Allerdings, D. Weiss, D. Schuh, W. Wegscheider, and S. D.
Ganichev, Phys. Rev. Lett. 103, 090603 (2009).

[62] V. Lechner, L. E. Golub, P. Olbrich, S. Stachel, D. Schuh, W.
Wegscheider, V. V. Bel’kov, and S. D. Ganichev, Appl. Phys.
Lett. 94, 242109 (2009).

[63] S. D. Ganichev, Y. V. Terent’ev, and I. D. Yaroshetskii, Pis’ma
Zh. Tekh. Fiz. 11, 46 (1985) [Sov. Tech. Phys. Lett. 11, 20
(1985)].

[64] V. V. Bel’kov and S. D. Ganichev, Semicond. Sci. Technol. 23,
114003 (2008).

[65] S. D. Ganichev, S. A. Tarasenko, V. V. Bel’kov, P. Olbrich,
W. Eder, D. R. Yakovlev, V. Kolkovsky, W. Zaleszczyk, G.
Karczewski, T. Wojtowicz, and D. Weiss, Phys. Rev. Lett. 102,
156602 (2009).

[66] The polarization-independent offsets C and C ′, which are in
most samples much smaller than A(f ), may be caused by the
non-perfectly-flat surface, which locally reduces the symmetry
of the surface states and allows a polarization-independent
contribution to both effects [19].

[67] The difference in the photocurrent magnitudes A(f ) for front
and back illuminations may be additionally affected by the
unequal photocurrent contributions excited in the top and
interface surfaces separated by the bulk material, e.g., due to
different scattering times.

[68] S. D. Ganichev, V. V. Bel’kov, P. Schneider, E. L. Ivchenko,
S. A. Tarasenko, W. Wegscheider, D. Weiss, D. Schuh, E. V.
Beregulin, and W. Prettl, Phys. Rev. B 68, 035319 (2003).

[69] S. D. Ganichev, P. Schneider, V. V. Bel’kov, E. L. Ivchenko,
S. A. Tarasenko, W. Wegscheider, D. Weiss, D. Schuh, B. N.
Murdin, P. J. Phillips, C. R. Pidgeon, D. G. Clarke, M. Merrick,
P. Murzyn, E. V. Beregulin, and W. Prettl, Phys. Rev. B 68,
081302(R) (2003).

[70] H. Diehl, V. A. Shalygin, V. V. Bel’kov, Ch. Hoffmann, S. N.
Danilov, T. Herrle, S. A. Tarasenko, D. Schuh, Ch. Gerl, W.
Wegscheider, W. Prettl, and S. D. Ganichev, New J. Phys. 9,
349 (2007).

[71] J. Karch, P. Olbrich, M. Schmalzbauer, C. Zoth, C. Brin-
steiner, M. Fehrenbacher, U. Wurstbauer, M. M. Glazov, S. A.
Tarasenko, E. L. Ivchenko, D. Weiss, J. Eroms, R. Yakimova, S.
Lara-Avila, S. Kubatkin, and S. D. Ganichev, Phys. Rev. Lett.
105, 227402 (2010).

[72] S. D. Ganichev, E. L. Ivchenko, and W. Prettl, Phys. E
(Amsterdam, Neth.) 14, 166 (2002).

[73] W. Weber, L. E. Golub, S. N. Danilov, J. Karch, C. Reitmaier,
B. Wittmann, V. V. Bel’kov, E. L. Ivchenko, Z. D. Kvon, N. Q.
Vinh, A. F. G. van der Meer, B. Murdin, and S. D. Ganichev,
Phys. Rev. B 77, 245304 (2008).

[74] H. Zhang, C.-X. Liu, X.-L. Qi, X. Dai, Z. Fang, and S.-C. Zhang,
Nat. Phys. 5, 438 (2009).

[75] The stationary correction to the distribution function f p(t) is
obtained by writing it as an expansion in powers of the electric

125434-14

http://dx.doi.org/10.1103/PhysRevB.86.201401
http://dx.doi.org/10.1103/PhysRevB.86.201401
http://dx.doi.org/10.1103/PhysRevB.86.201401
http://dx.doi.org/10.1103/PhysRevB.86.201401
http://dx.doi.org/10.1063/1.4865423
http://dx.doi.org/10.1063/1.4865423
http://dx.doi.org/10.1063/1.4865423
http://dx.doi.org/10.1063/1.4865423
http://dx.doi.org/10.1038/srep14184
http://dx.doi.org/10.1038/srep14184
http://dx.doi.org/10.1038/srep14184
http://dx.doi.org/10.1038/srep14184
http://dx.doi.org/10.1038/srep11540
http://dx.doi.org/10.1038/srep11540
http://dx.doi.org/10.1038/srep11540
http://dx.doi.org/10.1038/srep11540
http://dx.doi.org/10.1103/PhysRevLett.103.246601
http://dx.doi.org/10.1103/PhysRevLett.103.246601
http://dx.doi.org/10.1103/PhysRevLett.103.246601
http://dx.doi.org/10.1103/PhysRevLett.103.246601
http://dx.doi.org/10.1103/PhysRevB.80.085303
http://dx.doi.org/10.1103/PhysRevB.80.085303
http://dx.doi.org/10.1103/PhysRevB.80.085303
http://dx.doi.org/10.1103/PhysRevB.80.085303
http://dx.doi.org/10.1103/PhysRevB.81.205407
http://dx.doi.org/10.1103/PhysRevB.81.205407
http://dx.doi.org/10.1103/PhysRevB.81.205407
http://dx.doi.org/10.1103/PhysRevB.81.205407
http://dx.doi.org/10.1021/nl501489m
http://dx.doi.org/10.1021/nl501489m
http://dx.doi.org/10.1021/nl501489m
http://dx.doi.org/10.1021/nl501489m
http://dx.doi.org/10.1103/PhysRevB.82.241306
http://dx.doi.org/10.1103/PhysRevB.82.241306
http://dx.doi.org/10.1103/PhysRevB.82.241306
http://dx.doi.org/10.1103/PhysRevB.82.241306
http://dx.doi.org/10.1126/science.1189792
http://dx.doi.org/10.1126/science.1189792
http://dx.doi.org/10.1126/science.1189792
http://dx.doi.org/10.1126/science.1189792
http://dx.doi.org/10.1038/ncomms1588
http://dx.doi.org/10.1038/ncomms1588
http://dx.doi.org/10.1038/ncomms1588
http://dx.doi.org/10.1038/ncomms1588
http://arxiv.org/abs/arXiv:1511.00965
http://dx.doi.org/10.1038/ncomms9816
http://dx.doi.org/10.1038/ncomms9816
http://dx.doi.org/10.1038/ncomms9816
http://dx.doi.org/10.1038/ncomms9816
http://dx.doi.org/10.1103/PhysRevLett.108.115501
http://dx.doi.org/10.1103/PhysRevLett.108.115501
http://dx.doi.org/10.1103/PhysRevLett.108.115501
http://dx.doi.org/10.1103/PhysRevLett.108.115501
http://dx.doi.org/10.1021/cg301236s
http://dx.doi.org/10.1021/cg301236s
http://dx.doi.org/10.1021/cg301236s
http://dx.doi.org/10.1021/cg301236s
http://dx.doi.org/10.1063/1.4818456
http://dx.doi.org/10.1063/1.4818456
http://dx.doi.org/10.1063/1.4818456
http://dx.doi.org/10.1063/1.4818456
http://dx.doi.org/10.1063/1.4789353
http://dx.doi.org/10.1063/1.4789353
http://dx.doi.org/10.1063/1.4789353
http://dx.doi.org/10.1063/1.4789353
http://dx.doi.org/10.1038/nphys1274
http://dx.doi.org/10.1038/nphys1274
http://dx.doi.org/10.1038/nphys1274
http://dx.doi.org/10.1038/nphys1274
http://dx.doi.org/10.1038/nature08234
http://dx.doi.org/10.1038/nature08234
http://dx.doi.org/10.1038/nature08234
http://dx.doi.org/10.1038/nature08234
http://dx.doi.org/10.1021/cg501471z
http://dx.doi.org/10.1021/cg501471z
http://dx.doi.org/10.1021/cg501471z
http://dx.doi.org/10.1021/cg501471z
http://dx.doi.org/10.1038/nnano.2012.231
http://dx.doi.org/10.1038/nnano.2012.231
http://dx.doi.org/10.1038/nnano.2012.231
http://dx.doi.org/10.1038/nnano.2012.231
http://dx.doi.org/10.1103/PhysRevLett.71.3882
http://dx.doi.org/10.1103/PhysRevLett.71.3882
http://dx.doi.org/10.1103/PhysRevLett.71.3882
http://dx.doi.org/10.1103/PhysRevLett.71.3882
http://dx.doi.org/10.1103/PhysRevLett.75.1590
http://dx.doi.org/10.1103/PhysRevLett.75.1590
http://dx.doi.org/10.1103/PhysRevLett.75.1590
http://dx.doi.org/10.1103/PhysRevLett.75.1590
http://dx.doi.org/10.1103/PhysRevLett.80.2409
http://dx.doi.org/10.1103/PhysRevLett.80.2409
http://dx.doi.org/10.1103/PhysRevLett.80.2409
http://dx.doi.org/10.1103/PhysRevLett.80.2409
http://dx.doi.org/10.1103/PhysRevLett.103.090603
http://dx.doi.org/10.1103/PhysRevLett.103.090603
http://dx.doi.org/10.1103/PhysRevLett.103.090603
http://dx.doi.org/10.1103/PhysRevLett.103.090603
http://dx.doi.org/10.1063/1.3156027
http://dx.doi.org/10.1063/1.3156027
http://dx.doi.org/10.1063/1.3156027
http://dx.doi.org/10.1063/1.3156027
http://dx.doi.org/10.1088/0268-1242/23/11/114003
http://dx.doi.org/10.1088/0268-1242/23/11/114003
http://dx.doi.org/10.1088/0268-1242/23/11/114003
http://dx.doi.org/10.1088/0268-1242/23/11/114003
http://dx.doi.org/10.1103/PhysRevLett.102.156602
http://dx.doi.org/10.1103/PhysRevLett.102.156602
http://dx.doi.org/10.1103/PhysRevLett.102.156602
http://dx.doi.org/10.1103/PhysRevLett.102.156602
http://dx.doi.org/10.1103/PhysRevB.68.035319
http://dx.doi.org/10.1103/PhysRevB.68.035319
http://dx.doi.org/10.1103/PhysRevB.68.035319
http://dx.doi.org/10.1103/PhysRevB.68.035319
http://dx.doi.org/10.1103/PhysRevB.68.081302
http://dx.doi.org/10.1103/PhysRevB.68.081302
http://dx.doi.org/10.1103/PhysRevB.68.081302
http://dx.doi.org/10.1103/PhysRevB.68.081302
http://dx.doi.org/10.1088/1367-2630/9/9/349
http://dx.doi.org/10.1088/1367-2630/9/9/349
http://dx.doi.org/10.1088/1367-2630/9/9/349
http://dx.doi.org/10.1088/1367-2630/9/9/349
http://dx.doi.org/10.1103/PhysRevLett.105.227402
http://dx.doi.org/10.1103/PhysRevLett.105.227402
http://dx.doi.org/10.1103/PhysRevLett.105.227402
http://dx.doi.org/10.1103/PhysRevLett.105.227402
http://dx.doi.org/10.1016/S1386-9477(02)00371-5
http://dx.doi.org/10.1016/S1386-9477(02)00371-5
http://dx.doi.org/10.1016/S1386-9477(02)00371-5
http://dx.doi.org/10.1016/S1386-9477(02)00371-5
http://dx.doi.org/10.1103/PhysRevB.77.245304
http://dx.doi.org/10.1103/PhysRevB.77.245304
http://dx.doi.org/10.1103/PhysRevB.77.245304
http://dx.doi.org/10.1103/PhysRevB.77.245304
http://dx.doi.org/10.1038/nphys1270
http://dx.doi.org/10.1038/nphys1270
http://dx.doi.org/10.1038/nphys1270
http://dx.doi.org/10.1038/nphys1270


PHOTON DRAG EFFECT IN (Bi1−xSbx)2Te . . . PHYSICAL REVIEW B 93, 125434 (2016)

field f p(t) = f0 + f (1)
p (t) + f (2)

p with the oscillating in time term
f (1)

p (t) ∝ exp (−iωt) and the stationary term f (2)
p ∝ |E|2 being

second order in the electric field.
[76] V. I. Belinicher and B. I. Sturman, Sov. Phys. Usp. 23, 199

(1980).
[77] The oscillating in time term f (1)

p (t) (see [75]) does not disturb the
balance of scattered carriers and, consequently, does not results
in a dc current.

[78] V. I. Perel’ and Ya. M. Pinskii, Fiz. Tverd. Tela 15, 996 (1973)
[Sov. Phys. Solid State 15, 688 (1973)].

[79] L. Fu, Phys. Rev. Lett. 103, 266801 (2009).

[80] Note that, in spite of the fact that Hw ∝ λw , the correction
to the electron energy is quadratic in λw because linear in
λw terms are forbidden by time-inversion symmetry, so that
δε p = −[(λw)2p5/4v0] cos 6ϕ p.

[81] S. Das Sarma, S. Adam, E. H. Hwang, and E. Rossi, Rev. Mod.
Phys. 83, 407 (2011).

[82] S. A. Tarasenko, Phys. Rev. B 83, 035313 (2011).
[83] Note that if one first takes into account δW p′ p, then the correction

to the distribution function contains EzE
∗
x -like bilinear combi-

nations of the electric field amplitudes which are r independent,
and hence, its gradient is zero.

125434-15

http://dx.doi.org/10.1070/PU1980v023n03ABEH004703
http://dx.doi.org/10.1070/PU1980v023n03ABEH004703
http://dx.doi.org/10.1070/PU1980v023n03ABEH004703
http://dx.doi.org/10.1070/PU1980v023n03ABEH004703
http://dx.doi.org/10.1103/PhysRevLett.103.266801
http://dx.doi.org/10.1103/PhysRevLett.103.266801
http://dx.doi.org/10.1103/PhysRevLett.103.266801
http://dx.doi.org/10.1103/PhysRevLett.103.266801
http://dx.doi.org/10.1103/RevModPhys.83.407
http://dx.doi.org/10.1103/RevModPhys.83.407
http://dx.doi.org/10.1103/RevModPhys.83.407
http://dx.doi.org/10.1103/RevModPhys.83.407
http://dx.doi.org/10.1103/PhysRevB.83.035313
http://dx.doi.org/10.1103/PhysRevB.83.035313
http://dx.doi.org/10.1103/PhysRevB.83.035313
http://dx.doi.org/10.1103/PhysRevB.83.035313



