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Semiconductor nanowires based on non-nitride III-V compounds can be synthesized under certain growth
conditions to favor the appearance of the wurtzite crystal phase. Despite reports in the literature of ab initio band
structures for these wurtzite compounds, we still lack effective multiband models and parameter sets that can be
simply used to investigate physical properties of such systems, for instance, under quantum confinement effects.
In order to address this deficiency, in this study we calculate the ab initio band structure of bulk InAs and InP
in the wurtzite phase and develop an 8 × 8 k · p Hamiltonian to describe the energy bands around the � point.
We show that our k · p model is robust and can be fitted to describe the important features of the ab initio band
structure. The correct description of the spin-splitting effects that arise due to the lack of inversion symmetry
in wurtzite crystals is obtained with the k-dependent spin-orbit term in the Hamiltonian, often neglected in the
literature. All the energy bands display a Rashba-like spin texture for the in-plane spin expectation value. We
also provide the density of states and the carrier density as functions of the Fermi energy. Alternatively, we
show an analytical description of the conduction band, valid close to the � point. The same fitting procedure is
applied to the 6 × 6 valence band Hamiltonian. However, we find that the most reliable approach is the 8 × 8
k · p Hamiltonian for both compounds. The k · p Hamiltonians and parameter sets that we develop in this paper
provide a reliable theoretical framework that can be easily applied to investigate electronic, transport, optical,
and spin properties of InAs- and InP-based nanostructures.
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I. INTRODUCTION

In the past decade, the development of low-dimensional
III-V semiconductor nanostructures has witnessed great ad-
vances [1]. For instance, one interesting feature that was
observed in the synthesis of III-V nanowires is the appearance
of the wurtzite (WZ) crystal phase, instead of the usual
zinc-blende (ZB) [2]. This created new possibilities of III-V
compounds with WZ structure besides the well-established
nitride-based materials. Moreover, controlling the growth
conditions, e.g., temperature and III/V ratio, it is possible to
achieve not only single crystal phase nanowires [3,4] but also
to mix ZB and WZ regions with sharp interfaces in the same
nanostructure, which is known as polytypism [5–7]. It has been
demonstrated that mixed phases greatly affect the physical
properties, for example, of the light polarization [8–10],
electron transport [11,12], and photoconductivity [13].

Among these new III-V compounds with WZ structure,
InAs and InP are particularly important. InAs WZ has a
large spin-orbit coupling (SOC) which favors the study
of spin-related phenomena, for instance, spin field effect
transistors [14], and the search for the elusive Majorana
fermions [15]. Also, InAs WZ shows remarkable piezoelectric
and piezoresistive properties [16] that, combined with the
InAs narrow band gap, can operate in the near-infrared
regime. On the other hand, InP is a promising candidate for
photovoltaic applications [17] and for enhancing the efficiency
of solar cells [18]. In fact, a silicon-integrated nanolaser
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of InP nanowire has already been demonstrated at room
temperature with a wide wavelength range due to the WZ/ZB
polytypism [19]. Furthermore, it is also possible to combine
InAs and InP WZ compounds in axial [20] and radial [21]
heterostructures, which opens the path for novel opportunities
in band gap engineering.

Theoretical studies based on WZ III-V compounds in-
cluding InAs and InP were reported using different ab initio
approaches. The main focus of these studies was the determi-
nation of the lattice parameters, band gaps, and SOC energy
splittings in the valence band [22–27]. Of these references,
De and Pryor [23] provide useful information that can be
used in effective models, such as the effective masses and the
spin-splitting parameters. The issue of using these parameters
is that they are only valid in the immediate vicinity of the
� point [∼2% of the first Brillouin zone (FBZ)], limiting
the range of physical phenomena that can be investigated. In
order to achieve a better description farther away from the �

point, a multiband effective model is desirable. Although k · p

models and parameters are well established for WZ III-nitride
compounds [28,29], there are only a few reports in the literature
for non-nitrides, such as InP [10,30] and GaAs [31].

In this study, we develop a robust 8 × 8 k · p Hamil-
tonian to describe the ab initio band structure calculated
by WIEN2k [32] of InAs and InP in the WZ phase. We
show that our fitted parameters reproduce the ab initio band
structure, capturing the important anticrossings and spin-
splitting features up to 1.0 nm−1 (∼10% of the FBZ in the kxky

plane and ∼22% in the kz direction). At � point, each band is
twofold degenerate and for the valence band we found that the
band ordering, from top to bottom, is HH (heavy hole), CH
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(crystal field split-off hole), and LH (light hole) for InAs and
HH, LH, and CH for InP. This ordering is due to an interplay
of SOC energy splittings and the crystal field energy splitting.
The intricate behavior of spin splittings, arising from the bulk
inversion asymmetry (BIA) of the WZ structure, is correctly
described by the k-dependent SOC term, often neglected in the
literature. Calculating the spin expectation value for the Bloch
states, we find a Rashba-like spin texture [33] with either
clockwise (CW) or counterclockwise (CCW) orientation.
All these spin-dependent features extracted from our k · p

Hamiltonian and parameter sets were systematically checked
to agree with ab initio calculations. Furthermore, based on
our effective 8 × 8 Hamiltonian, we calculated the density of
states (DOS) and predict the carrier density as a function of
the Fermi energy. We also provide an analytical description of
the conduction band valid close to the � point and a compact
description of the valence band (6 × 6 Hamiltonian). But, we
would like to emphasize that the best description of InAs
and InP WZ is obtained using the total 8 × 8 Hamiltonian.
In summary, the main goal of our paper is to provide a
realistic k · p description that can be used to study charge and
spin transport, optics, as well as (superconducting) proximity
effects in semiconductor heterostructures, e.g., quantum wells
and wires. Such heterostructures cannot be investigated by
first principles due to their mesoscopic sizes, and the k · p

technique (using the prescription �k → −i �∇) is currently
perhaps the best choice for obtaining physically relevant
quantities for them.

This paper is organized as follows: In Sec. II we present the
ab initio band structure of InAs and InP WZ. The multiband
k · p model and its considerations are discussed in Sec. III. In
Sec. IV, we describe our main results: (i) the fitting approach,
(ii) the comparison between the ab initio and k · p for band
structure and the spin splittings, (iii) the spin expectation value
for all energy bands, and (iv) the DOS extracted from the 8 × 8
Hamiltonian. The analytical description of the conduction
band (CB) close to the � point is presented in Sec. V, and
the compact form of the valence Hamiltonian, along with
its parameters, is shown in Sec. VI. Finally, in Sec. VII we
present our conclusions and possible direct applications of our
effective multiband model.

II. AB INITIO BAND STRUCTURE

The ab initio electronic structure for InAs and InP in the
WZ phase was calculated within the density functional theory
(DFT) framework [34], using the full potential linearized
augmented plane wave method implemented by the WIEN2k
code [32]. To account for local and semilocal functional
deficiencies to correctly describe band gaps in semiconductors,
we used an efficient and accurate alternative for electronic
structure calculations based on the modified Becke-Johnson
(mBJ) exchange potential [35] with LDA (local density
approximation) correlation [36]. It has been shown that the
semilocal mBJ exchange potential provides prediction of band
gaps of the same order [37–39] as hybrid functionals [40]
and the GW method [41–43]. In addition, the semilocal
approach to the exchange-correlation functional is barely
expensive when compared to the LDA [44] or the generalized
gradient approximation [45]. The SOC is included within

the second variational step [46]. Regarding the technical
details of our calculations, we expanded the wave functions
in atomic spheres for orbital quantum numbers up to 10; the
plane wave cutoff multiplied with the smallest atomic radii
equals 10 and the irreducible Brillouin zone was sampled with
600 k points. Further details on ab initio calculations of III-V
semiconductors, either with ZB or WZ structure, using the
mBJ potential can be found in Ref. [47].

The particular order of cation (In) and anions (As, P) within
the unit cell determines spin orientation [49]. We consider the
following primitive basis vectors for corresponding hexago-
nal Bravais lattice, �a1 = a(

√
3, − 1,0)/2, �a2 = a(0,1,0), and

�a3 = c(0,0,1), where a and c are the WZ lattice parameters.
Using the three basis vectors �ai (i = 1,2,3) we define the
following four atomic positions that form the WZ structure:
(2/3,1/3,u) and (1/3,2/3,1/2 + u), with u = 0 for anion
and and u = 3/8 for cation. We note that in general there
might be u = 3/8 + ε with a small dimensionless cell-internal
structural parameter ε describing a deviation from ideal
tetrahedrons as one observes for SiC polytypes [50]. In
our calculations we considered ε = 0 since it is a rather
small valued parameter [25,51]. For the lattice parameters we
considered a = 4.2742 Å and c = 7.025 Å [52] for InAs and
a = 4.1148 Å and c = 6.7515 Å [53] for InP.

We show the band structures obtained with WIEN2k in
Fig. 1(a) for InAs and Fig. 1(b) for InP. Both compounds show
a direct band gap at the � point with values of Eg = 0.467 eV
for InAs and Eg = 1.494 eV for InP. Due to the hexagonal

Γ Γ

Γ

FIG. 1. Ab initio band structure along high-symmetry lines for
(a) InAs and (b) InP in WZ phase. The inset shows the FBZ of
WZ structure indicating the high-symmetry points. The rectangles
highlight the region of interest around the � point.
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FIG. 2. Band structure for WZ (a) InAs and (b) InP around � point
for kz (�-A) and kx (�-K) directions. The solid lines indicate the outer
branch and the dashed lines indicate the inner branch of the spin-split
bands. The thin (gray) lines indicate the energy bands outside our
range of interest. (c) Change in the irreducible representations of
energy bands at � point under SOC. The subscripts v and c added to
the irreducible representations indicate valence and conduction bands,
respectively, and the prime distinguishes between the two possibilities
of �7. The numbers in square brackets are the degeneracy of the bands.
Our notation for the irreducible representations follows Ref. [48].

symmetry of WZ, the � point, as well as the symmetry line
connecting �-A (hexagonal axis), belongs to the C6v symmetry
group [54], which has only two-dimensional double-group
representations. From this follows that the states along
the hexagonal axis are spin degenerate [54,55]. Irreducible
representations of other points in the FBZ compatible with
spin are singly degenerate. Hence, except for accidental or
time-reversal degeneracies at � and A points, spin splittings
must occur for all bands.

In Figs. 2(a), for InAs, and 2(b), for InP, we display the
rectangular regions of Fig. 1, i.e., a zoom of the band structure
around the � point. At this energy range, the anticrossing
and spin-splitting features of the band structures are evident.
Because of large SOC in InAs, the valence band energy levels
are farther apart than InP bands and additional curvatures are
present along the kz direction. For InP the top two valence
bands along kz show similar curvatures and no anticrossing is
visible. The effect of SOC in the energy bands at the � point is
shown schematically in Fig. 2(c). Without SOC, the irreducible
representations belong to the simple group, while with SOC,
they are referred to as the double group. This distinction is
important for k · p perturbative approaches.

We present a comparison between our ab initio calculations
and other theoretical papers in the literature in Table I. Besides
the lattice constants a and c we compare the values of the
internal parameter u, the energy gap Eg , and the energy
difference between the top valence band �9v and the other
bands �7v and �′

7v [following the notation of Fig. 2(c)]. These
energy differences are defined as �E97 = E(�9v) − E(�7v)
and �E′

97 = E(�9v) − E(�′
7v). It is very common to compare

the crystal field splitting energy, �1, and the SOC energy,

TABLE I. Comparison of theoretical data for InAs and InP in
WZ phase. The lattice constants a and c are given in Å, and u

is dimensionless. The band gap, Eg , and the valence band energy
differences, �E97 and �E′

97, are given in eV.

a c u Eg �E97 �E′
97

InAs This study 4.2742 7.0250 0.37500 0.4670 0.0592 0.3527
Ref. [23] 4.1505 6.7777 0.37500 0.4810 0.1050 0.4690
Ref. [25]∗ 4.2570 6.9894 0.37447 0.4810 0.0573 0.3937
Ref. [27] 4.2564 7.0046 0.37400 0.4610 0.0700 0.3640
Ref. [47] 4.2742 7.0250 0.37422 0.4610 0.0660 0.3600

InP This study 4.1148 6.7515 0.37500 1.4940 0.0354 0.1450
Ref. [23] 4.2839 6.9955 0.37500 1.4740 0.0630 0.3480
Ref. [24] 4.1500 6.9120 0.37100 1.4936 0.0450 0.2430
Ref. [25]a 4.1148 6.7515 0.37458 1.5760 0.0321 0.1339

aThe values of a, c, and u are from Ref. [53].

�SO ; however, these parameters are usually obtained under
the quasicubic approximation and do not provide a direct
comparison with experiments such as �E97 and �E97′ . We
can see that all the values obtained by our calculations are
within the range of reported data in previous papers. We
also compare experimental measurements of the energy gap
with our calculated values, shown in Table II. We focused
on experimental data obtained by photoluminescence mea-
surements at low temperature of large-diameter nanowires, so
that lateral quantum confinement is negligible. For both InAs
(despite the reduced set of available data) and InP compounds,
our calculated values of the energy gaps are consistent with
the experiments. Furthermore, photoluminescence excitation
measurements can probe the �7v and �′

7v valence bands and
allow us to check our calculated values for �E97 and �E′

97
energies. To the best of our knowledge, such experiments are
only available for InP. Typical values found for �E97 and �E′

97
in InP WZ are 0.044 eV and 0.187 eV in Ref. [9], 0.043 eV and
0.179 eV in Ref. [56], and 0.044 eV and 0.182 eV in Ref. [57].
Our calculated values for InP of �E97 = 0.0354 eV and

TABLE II. Comparison between theoretical and experimental
values of the energy gap. We indicate the temperature of the
photoluminescence measurements in parentheses.

Eg (eV) Eg (eV)
This study Experiment

InAs 0.467 0.520 (7 K)a, 0.500 (20 K)b

0.458 (5 K)c

InP 1.494 1.492 (10 K)d, 1.494 (10 K)e

1.490 (20 K)f, 1.491 (4 K)g

1.493 (4 K)h, 1.488 (6 K)i

aReference [60]
bReference [61]
cReference [62]
dReference [57]
eReference [56]
fReference [63]
gReference [3]
hReference [64]
iReference [9].
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�E′
97 = 0.145 eV (from Table I) are also in good agreement

with these experimental trends. For completeness, we provide
in Appendix A the calculated values of effective masses around
the � point.

III. k · p FORMULATION

One alternative approach to ab initio band structure
calculations is the k · p method. In the k · p approach, the
many-body interactions of electrons with nuclei and other
electrons are described by an effective potential which has the
same periodicity as the Bravais lattice of the crystal [58]. Such
periodic property of the potential allows us to use Bloch’s
theorem for the total wave function. The single-particle
Hamiltonian for the periodic part of the Bloch function, un,�k(�r),
can be written as

H = p2

2m0
+ V (�r)︸ ︷︷ ︸
H0

+ �

4m2
0c

2
[ �∇V (�r) × �p] · �σ

︸ ︷︷ ︸
HSO

+ �
2k2

2m0︸ ︷︷ ︸
Hk2

+ �

m0

�k · �p︸ ︷︷ ︸
Hkp

+ �
2

4m2
0c

2
[ �∇V (�r) × �k] · �σ

︸ ︷︷ ︸
HkSO

, (1)

in which the different terms in the Hamiltonian are identified
for convenience.

We can solve the above equation perturbatively expanding
the functions un,�k(�r) around a specific reciprocal space point
for which we know the solutions for the Hamiltonian. Since
WZ InAs and InP have a direct band gap at the � point, this is
the chosen expansion point. The perturbative technique we use
in this paper is Löwdin’s formalism [59]. In this approach, the
functions at the � point, i.e., the basis set to expand un,�k(�r),
are divided into classes A and B. The energy bands we are
interested in describing comprise the class A while the other
energy bands belong to class B. The contribution of states in
class B appear in second or higher orders of perturbation. The
matrix elements we consider can arise from first- or second-
order perturbation, reading as

H
(1)
f,αα′ = 〈α|Hf |α′〉 (2)

and

H
(2)
fg,αα′ =

B∑
β

〈α|Hf |β〉〈β|Hg|α′〉
Eαα′ − Eβ

, (3)

where Hf and Hg can be any of the terms of Eq. (1), except
H0.

Since the unperturbed term, H0, in Eq. (1) does not
contain SOC effects explicitly, we consider the simple group
description of the energy bands, the most usual approach in
the literature [65]. Under such approximation, the states in
class A belong to the irreducible representations shown on the
left side of Fig. 2(c), a 4-dimensional Hilbert space, combined
with the spin-1/2 angular momentum, a 2-dimensional Hilbert
space. Therefore, the 8-dimensional basis set for the k · p

Hamiltonian in Dirac notation [66] is given by

|c1〉 = −
∣∣(�x

5v + i�
y

5v

)↑〉
√

2
, |c5〉 = −

∣∣(�x
5v + i�

y

5v

)↓〉
√

2
,

|c2〉 =
∣∣(�x

5v − i�
y

5v

)↑〉
√

2
, |c6〉 = |�1v↓〉,

(4)
|c3〉 = |�1v↑〉, |c7〉 = i|�1c↑〉,

|c4〉 =
∣∣(�x

5v − i�
y

5v

)↓〉
√

2
, |c8〉 = i|�1c↓〉,

with 1–6 representing the valence band states and 7–8 the
conduction band states. Since �5v is two dimensional, we
identified its basis states by |�x

5v〉 ∼ x and |�y

5v〉 ∼ y. The
single arrows (↑,↓) represent the projection of spin up and spin
down, eigenvalues of the σz Pauli matrix. The states in class
B have simple group symmetries �1, �3, �5, and �6, which
is the only necessary information to calculate second-order
contributions.

To describe the interaction among the energy bands, we
consider all terms of Eq. (1) in first-order perturbation and
only the term Hkp in second order. Therefore, the total matrix
Hamiltonian in the basis set (4) comprises the following terms:

H = H0 + H
(1)
SO + H

(1)
kp + H

(1)
kSO + H

(2)
kp , (5)

with the explicit form of each matrix and the definition of the
parameters given in Appendix B.

In Fig. 3 we show schematically the interactions for each
term in the total Hamiltonian (5). The Fig. 3(a) represents the
unperturbed Hamiltonian without SOC, where states |c1(4)〉
and |c2(5)〉 are degenerate for spin up (down). The only
terms that couple different spin projections arise from H

(1)
SO

or H
(1)
kSO , Figs. 3(b) and 3(d), respectively. Usually H

(1)
kSO is

neglected in WZ Hamiltonians [28,29,31,67–70]. However,
the explicit interactions for nonzero k values are crucial to
correctly describe the spin-splitting properties. We included
H

(1)
kSO following the approach of Dresselhaus for ZB [71].

Moreover, the coupling of H
(1)
SO to other terms provides

additional contributions to the spin splitting of energy bands.
Besides spin-splitting properties, we want a good description
of the band structure curvatures. Such effects can be modeled
by linear and quadratic terms of the H

(1)
kp and H

(2)
kp , Figs. 3(c)

and 3(e), respectively. The only term that allows a k-dependent
self-interaction of states is H

(2)
kp which gives the effective mass

contribution to our model.
Although the k · p method provides the functional form

of the Hamiltonian, the parameters that describe different
materials cannot be found by group theory arguments only.
In order to calculate the matrix elements we would need
the functions at the expansion point and also the periodic
potential V (�r). Alternatively, we can directly fit the k · p

Hamiltonian to the ab initio band structure to extract the
parameters [29,31,67,69,72].

IV. NUMERICAL FITTING OF THE 8 × 8 k · p
HAMILTONIAN

We start our fitting approach by calculating the k-
independent parameters of the Hamiltonian, i.e., the energy
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FIG. 3. Possible interactions of the Hamiltonian terms (a) H0, (b)
H

(1)
SO , (c) H

(1)
kp , (d) H

(1)
kSO , and (e) H

(2)
kp . The arrows on top of panel (a)

indicate spin-up and spin-down projections of the basis states. Since
|c1(4)〉 and |c2(5)〉 are degenerate, we indicate the interactions arising
from |c1(4)〉 with solid lines and the interactions arising from |c2(5)〉
with dashed lines. For the other states without degeneracy we used
solid lines. In panel (a) we show the energy splittings without SOC,
formally defined in Appendix B.

splittings. The values for crystal field splitting, �1, and the
conduction band energy, Ec, can be obtained from the ab initio
calculation without SOC, which is in fact the assumption of
the k · p perturbative theory [H0 term; see Fig. 3(a)]. This
approach is very useful because it simplifies the calculation
of the SOC energy splittings inside the valence band, �2

(coupling same spins) and �3 (coupling different spins), and
the SOC between conduction and valence bands, �4. Please
refer to Appendix B for the formal definition of these splitting
energies. By setting the values of �1 and Ec, it possible to
have �2 = �3 and neglect the cubic approximation [28]. If the
values of �1 and Ec were not found without SOC, we would
have to determine 5 variables having only 3 linear independent
combinations of the energy bands with SOC. This approach
would provide a range of possible values and further analysis
would be necessary. Starting with �1 and Ec values without
SOC, we obtained four different solution sets for the SOC
splitting energies since �3 and �4 are off-diagonal terms in
the Hamiltonian and can assume positive or negative values
with the same magnitude. At the � point any of these solution
sets give the same eigenvalues; therefore we set �3 to be
positive [23–25,27] and investigated the effect of positive and
negative values of �4.

Before starting the fitting of the k-dependent parameters, it
is important to define the fitting region we are interested in,
which is connected to the limits of our k · p model. Basically,

in order to describe as precisely as possible the 8 bands
we are interested in, we should stay in a region away from
the influence of remote bands, roughly k ∼ 1.5 nm−1; see
Figs. 2(a) and 2(b). We also want to have a nice description of
the anticrossings in the band structure around k ∼ 0.5 nm−1.
Furthermore, in the k · p Hamiltonian kx and ky directions
are equivalent, but this is not the case for the ab initio band
structure. Around k ∼ 1.0 nm−1, the ab initio band structures
along the �-K and �-M directions are different, especially
the spin splitting, which is another feature to be described.
Therefore, it is reasonable to set the goal of our fitting at
k = 1.0 nm−1 to find the best parameter set that describes the
ab initio band structure around the � point for all 8 bands.

To increase the accuracy of our parameter sets, we fitted,
simultaneously, the energy bands in multiple directions of the
FBZ (�-K, �-M, �-A, �-H, and �-L). The fitting algorithm
was developed using the LMFIT [73] package of Python
assuming several minimization methods available. We noticed
that the minimization methods behave differently and usually
provide different parameter sets. After an initial fit, we chose
the best parameter set and used it as input for a new fit using
all minimization methods again. To find the best fit, the band
structures and spin splittings are compared by their residue [74]
up to k = 1.0 nm−1 for all directions. The best parameter sets
for InAs and InP found by our fitting approach are presented
in Table III.

TABLE III. Parameter sets of the 8 × 8 Hamiltonian for InAs and
InP WZ. The energy splittings are given in eV, linear parameters in
eV Å, and second-order parameters in units of �

2/2m0.

Parameter InAs InP

Energy splittings
�1 0.1003 0.0945
�2 0.1023 0.0279
�3 0.1041 0.0314
�4 0.0388 0.0411
Ec 0.6649 1.6142

Linear parameters
A7 −0.4904 −0.1539
P1 8.3860 7.6349
P2 6.8987 5.5651
α1 −0.0189 0.2466
α2 −0.2892 −0.2223
α3 −0.5117 −0.2394
β1 −0.0695 −0.0481
β2 −0.2171 −0.1386
γ1 0.5306 0.2485

Second order parameters
A1 1.5726 −1.0419
A2 −1.6521 −0.9645
A3 −2.6301 −0.0694
A4 0.5126 −1.2760
A5 0.1172 −1.1024
A6 1.3103 −0.5677
e1 −3.2005 −0.5732
e2 0.6363 2.4084
B1 −2.3925 −7.7892
B2 2.3155 4.3981
B3 −1.7231 9.1120
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FIG. 4. Comparison of band structures calculated from the fitted
k · p model (solid lines) and the ab initio WIEN2k (dashed lines) for
(a) InAs and (b) InP. The vertical dashed lines at 1.0 nm−1 indicate
the borders of the fitting range.

In Fig. 4, we present the comparison between the fitted
and WIEN2k ab initio band structures along kz and kx for
InAs and InP. All the important features around the � point,
i.e., anticrossings and spin splittings, are captured by our
model. We notice a good agreement up to k = 1.0 nm−1 with
small deviations above it, indicating that we are reaching the
region where the influence of remote energy bands becomes
important. We labeled the valence bands according to the
composition of states at the � point. Following Chuang and
Chang’s notation [75], HH is purely composed of |c1(4)〉 states,
LH has more contribution from |c2(5)〉 than |c3(6)〉 states, and
CH has more contribution from |c3(6)〉 than |c2(5)〉 states. Since
this analysis is usually performed without the �4 parameter,
we also calculated �2 and �3 considering �4 = 0 and we
found that the same labeling holds (these values are shown in
Sec. VI). Furthermore, we also compared the k · p composition
with the projection to atomic orbitals of the ab initio wave func-
tions and the same trends can be noticed. The labeling order of
CH-LH in InAs is due to the values of SOC splitting energies,
which are slightly larger than the crystal field splitting. For InP,
the crystal field splitting is dominant leading to LH-CH order-
ing. Although this labeling of the valence band can be confus-
ing, it is very useful to extract optical trends from the band-egde
transitions. For instance, if we take into account optical transi-
tions arising from the top two valence bands, we can expect InP
light polarization to be more in-plane due to LH contribution
than InAs due to CH contribution. Finally, for the conduction
band of both InAs and InP we simply label it CB, short notation
for conduction band; CB is mainly composed of |c7(8)〉 states.

Let us take a closer look at the spin-splitting properties
obtained from the k · p model and the ab initio. We show the
comparison between the two methods in Fig. 5 for InAs and
InP along the kx direction. Similarly to the band structure, we
have a good agreement up to k = 1.0 nm−1 with deviations
above this region. The intricate behaviors, i.e., the appearance
of maxima and crossings between HH spin-split bands, are also
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FIG. 5. Comparison of the spin splittings along kx for the energy
bands (a) CB, (b) HH, (c) CH, and (d) LH of InAs and (e) CB, (f)
HH, (g) LH, and (h) CH of InP. The line schemes follow Fig. 4.

described by our model. All these spin-splitting characteristics
have only one physical origin, the BIA of the WZ structure. The
strength of SOC is greater in InAs than InP, visible at the peak
values and positions. From the largest to the smallest values
of the spin splitting, we have CH (LH), LH (CH), CB, and HH
for InAs (InP). Furthermore, a linear behavior is maintained
for InP CB throughout the fitting region. For InAs, this linear
behavior is attained only in a small region close to the �

point. In Appendix C, we present the band structure and spin
splittings for the other FBZ directions used in the fitting.

Another feature we investigated is the spin orientation, i.e.,
the spin expectation value, 〈�σ 〉, for the different energy bands,
presented in Fig. 6 for the kxky plane (kz = 0). We chose
the constant-energy contours to be En(kx = 0.5 nm−1,ky =
0,kz = 0) of the outer branch, i.e., ECB ∼ 630.0 meV, EHH ∼
−37.2 meV, ECH ∼ −123.0 meV, ELH ∼ −391.8 meV for
InAs and ECB ∼ 1563.5 meV, EHH ∼ −21.9 meV, ELH ∼
−75.0 meV, ECH ∼ −156.7 meV for InP. We found that all the
investigated energy bands show a Rashba-like spin texture. For
InAs, the bands CB, HH, and CH have the same spin texture,
i.e., CW (CCW) orientation for the inner (outer) branch, while
LH has the CCW (CW) orientation for the inner (outer) branch.
In other words, the top two valence bands have the same spin
texture while the third valence band has the opposite. For InP,
the same spin texture holds, even though the labeling of CH
and LH is reversed. The spin textures calculated with the k · p

model were also checked with the ab initio calculations.
Performing the fitting approach with the negative sign of

�4 we obtained the same behavior of the band structure and
the spin splittings, but with a reversed orientation in the spin
texture, i.e., CW orientation becomes CCW and vice versa for
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FIG. 6. Spin texture in the kxky plane (kz = 0) for the energy
bands (a) CB, (b) HH, (c) CH, and (d) LH of InAs and (e) CB,
(f) HH, (g) LH, and (h) CH of InP. The blue arrows indicate
clockwise orientation while the red arrows indicate counterclockwise
orientation. The amplitudes of all arrows are multiplied by 0.3 to fit
the figure. The constant-energy contours are also drawn in the figure
in black for the outer branches and in gray for the inner branches.

all bands. Specifically, we found that starting with negative
value of �4, the signs of parameters A7, α1, α2, α3, γ1, B1, B2,
and B3 are changed, but not their amplitude. This change in the
spin texture is a feature expected from ab initio regarding the
cation and anion positions within the crystal unit cell [49] and
it is reflected in our k · p model and parameters. Therefore, in
order to provide reliable parameter sets for k · p Hamiltonians,
not only the band structure and the spin splittings should
be checked but also the spin orientation. We would like to
emphasize that all these features were systematically checked
in this study.

A. Density of states and carrier density

Relying on the effective 8 × 8 k · p Hamiltonian, it is
straightforward to calculate a smooth DOS using a fine 3-
dimensional (3D) mesh of k points (300 × 300 × 300) without
much computational effort. In Fig. 7(a) we show the DOS for
the conduction band of InAs and InP. For comparison, we also
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FIG. 7. Calculated DOS for (a) conduction band and (b) valence
band of InAs, InP, and the 3D parabolic band model using an effective
mass of m∗ = 0.1. Carrier density, n, as a function of Fermi energy,
Ef , for (c) electrons and (d) holes obtained by the integration of the
DOS in panels (a) and (b), respectively. The dashed vertical lines in
panels (b) and (d) indicate the LH energy at � point for InP while the
solid vertical lines indicate the CH energy energy at � point for InAs.

show the DOS for the 3D parabolic band model [DOS(E) ∝√
E], which is just a straight line in the log-log scale. Due to the

complex behavior of the InAs and InP conduction bands, we
clearly see deviations from the linear behavior, especially for
InAs. For the DOS of the valence band, presented in Fig. 7(b),
the deviations from the parabolic model are much more visible,
showing explicitly the need of a multiband approach. When the
valence band energy approaches the CH (LH) region of InAs
(InP), the DOS changes its curvature. Moreover, the valence
band DOS is approximately one order of magnitude larger
than the DOS of the conduction band, a behavior attributed to
the small curvatures of the valence bands, i.e., large effective
masses for holes (in a single band picture). Integrating the
DOS we obtain the carrier density as a function of the Fermi
energy, presented in Figs. 7(c) and 7(d) for electrons and holes,
respectively. Typically, InP supports larger values of the carrier
density than InAs. For instance, for 100 meV above the energy
gap ∼1.6 × 1018 cm−3 for InAs and ∼6.5 × 1018 cm−3. In the
Supplemental Material [76] we provide a curve fitting of the
carrier density curves that can be directly applied to predict the
carrier concentration or the Fermi energy without the explicit
DOS calculation using the 8 × 8 k · p Hamiltonian.

V. ANALYTICAL DESCRIPTION FOR
CONDUCTION BAND

Since the conduction band has a predominant contribution
of |c7(8)〉 states, it is useful to provide an analytical description
that holds for small regions close to the � point that can
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be easily used in spin dynamics studies. We apply Löwdin’s
approach again, but now dividing the basis states A [Eq. (4)] of
the full matrix into two new classes A′ (|c7,8〉) and B′ (|c1,··· ,6〉.
Using only the terms we already calculated in the full Hamilto-
nian as contribution to the effective Hamiltonian, this Löwdin
approach is usually referred to as folding down [59,68]. The
effective Hamiltonian for the first-order folding down, keeping
terms up to k3, can be written as

HCB = M(�k)I2 + �	(�k) · �σ , (6)

in which I2 is a 2 × 2 identity matrix and M is the effective
mass term given by

M = Eg + mzk
2
z + mxy

(
k2
x + k2

y

)
, (7)

with the coefficients mz and mxy given by

mz = e1 + P 2
1

Ec

+ 2β2
1

Ec − �1 + �2
+ 2�2

4(A1 + A3)

(Ec − �1 + �2)2 ,

mxy = e2 + 1

2

(P2 + β1)2

Ec − �1 + �2
+ 1

2

(P2 − β1)2

Ec − �1 − �2

+β2
2

Ec

+ 2�2
4(A2 + A4)

(Ec − �1 + �2)2 . (8)

The SOC field �	(�k) is written as

�	(�k) = [
α + γzk

2
z + γxy

(
k2
x + k2

y

)]⎡⎣ ky

−kx

0

⎤
⎦, (9)

with linear and cubic coefficients given by

α = −γ1 + 2�4(P2 + β1)

Ec − �1 + �2
,

γz = 2
√

2β1B3 − 2β2B1

Ec

+ 2�4(P2 + β1)(A1 + A3)

(Ec − �1 + �2)2 ,

γxy = −2β2B2

Ec

+ 2�4(P2 + β1)(A2 + A4)

(Ec − �1 + �2)2 . (10)

This analytical approach for the conduction band provides
a reasonable description up to 0.2 nm−1 for InAs and 0.6 nm−1

for InP, which is roughly 100 meV above the energy gap in
both cases. The numerical values of mz, mxy , α, γz, and γxy can
be obtained by replacing the parameters with values presented
in Table III. Setting the k-dependent SOC parameters γ1 and
β1 to zero, we recover the analytical linear splitting found in
Ref. [68]. Our approach has the advantage of also providing
the analytical description of the cubic terms. For additional
corrections to the cubic term, it is possible to include higher
order terms in the folding-down approach. The comparison to
ab initio data using the analytical expressions presented in this
section can be found in the Supplemental Material [76].

VI. COMPACT DESCRIPTION FOR VALENCE BAND

Because of the coupling from the crystal field and SOC
energies, the best simplified description for the valence band
is simply neglecting the coupling with the conduction band,
thus leading to a 6 × 6 matrix. It is possible to write this
6 × 6 Hamiltonian in a compact form using direct products of
3 × 3 (orbital) and 2 × 2 (spin) matrices [28,72]. In the basis

set {|c1〉,|c3〉,|c2〉,|c5〉,|c6〉,|c4〉}, the compact form of valence
band is written as

HVB = �1J
2
z I2 + �2Jzσz +

√
2�3(J+σ− + J−σ+)

+ (
A1I3 + A3J

2
z

)
k2
zI2 + (

A2I3 + A4J
2
z

)(
k2
x + k2

y

)
I2

−A5
(
J 2

+k2
− + J 2

−k2
+
)
I2

− 2A6kz({JzJ+}k− + {Jz,J−}k+)I2

+ iA7(J+k− − J−k+)I2

+ i
√

2α1[{JzJ−}(σzk+ − 2σ+kz)

−{JzJ+}(σzk− − 2σ−kz)]

+ i[(α3 − α2)J 2
z − α3I3](σ+k− − σ−k+) (11)

with {JaJb} = 1
2 (JaJb + JbJa), J± = 1√

2
(Jx ± Jy), σ± =

1
2 (σx ± σy), and k± = kx ± iky . The definitions of Jx,Jy , and
Jz matrices can be found in Appendix A [Eq. (A3)] of Ref. [28].
The matrix In is an n-dimensional identity. The product of
3 × 3 matrices (A) with 2 × 2 matrices (a) is defined here as

Aa =
[
a11A a12A

a22A a22A

]
. (12)

To obtain the best parameter sets that describe the ab initio
band structure, we performed the same fitting approach as
described in Sec. IV. We found that, in order to attain the
monotonic behavior of the bands, some features of the band
structure or the spin splittings are not matched as precisely
as the results using the 8 × 8 Hamiltonian. For instance, the
band structures and the spin splittings for InP look reasonable;
however, the spin orientation for LH and CH shows opposite
trends. For InAs, the spin texture follows the correct behavior;
however, the band structure and the spin splittings show the ab
initio features shifted to higher k values. We show the fitting
results for the 6 × 6 description and the comparison to ab initio
in the Supplemental Material [76]. The best parameter sets are
displayed in Table IV. We would like to emphasize that the

TABLE IV. Parameter sets of the 6 × 6 valence band Hamiltonian
for InAs and InP WZ. The units follow Table III.

Parameter InAs InP

Energy splittings
�1 0.1003 0.0945
�2 0.1038 0.0286
�3 0.1037 0.0310

Linear parameters
A7 −0.5565 −0.0917
α1 −0.0237 0.3309
α2 −0.0758 −0.0702
α3 −0.0967 −0.0521

Second order parameters
A1 −17.2689 −10.5414
A2 −1.2047 −1.4542
A3 16.6637 9.4589
A4 −7.6202 −3.2741
A5 −5.9281 3.9468
A6 −7.3872 −0.2759
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most reliable approach is to use the 8 × 8 Hamiltonian with
parameter sets we provide in Sec. IV.

VII. CONCLUSIONS

In this paper, we have calculated the band structure of
InAs and InP in the WZ phase using the WIEN2k ab initio
code. Both compounds have a direct band gap at the � point
with the SOC effects clearly larger for InAs than InP. Our
calculations are consistent with theoretical and experimental
reported values in the literature. In order to describe the band
structure around the FBZ center, we developed a multiband
8 × 8 k · p model for the first conduction band and the top
three valence bands, including spin. The fitted parameters
we obtained for the k · p Hamiltonian recover the important
features of the ab initio band structure with good agreement
up to 1.0 nm−1 for multiple directions in the FBZ. Due to the
stronger SOC of InAs compared to its crystal field splitting,
the labeling of LH and CH energy bands at the � point is
reversed from InP. Regarding the spin-splitting properties, we
included the k-dependent SOC term in the Hamiltonian, which
is usually neglected in the literature. This term, combined with
the other indirect couplings in the Hamiltonian, allowed the
description of the spin-splitting properties farther away from
the vicinity of the � point. Our model captured all the important
features including the description of maxima values and also
the crossing between the spin-split bands (clearly seen in the
HH band of InP, for instance). All these intricate behaviors
of spin splitting have a unique physical origin, the BIA of
the WZ structure. Furthermore, we calculated the in-plane
spin orientation, i.e., the spin expectation value, of the energy
bands and found that they all have a Rashba-like spin texture,
either CW or CCW. This spin orientation was also compared to
ab initio data to correctly identify the signs of the parameters
in the Hamiltonian. Using our multiband k · p Hamiltonian,
we obtained the DOS for conduction and valence bands and
calculated the carrier density as a function of the Fermi energy.
In addition to the 8 × 8 Hamiltonian, we present analytical
expressions for the effective masses and the SOC field of
conduction band which holds in the vicinities of the � point.
For completeness, we also fitted the 6 × 6 k · p model for the
valence band to the ab initio data. We emphasize that the best
effective description that matches our ab initio calculations is
the full 8 × 8 k · p Hamiltonian.

In conclusion, we provided in this study robust k · p

models and parameter sets that can be straightforwardly
applied to investigate novel effects in InAs- and InP-based
nanostructures. For instance, polytypic systems of mixed WZ
and ZB have already been demonstrated experimentally for
both InAs and InP with great growth control of the different
phases [2] and there are also theoretical models to treat such
systems [10,30,77]. Furthermore, InAs nanowires are also a
platform for studies in Majorana fermions [15]. One of the
key ingredients for such realization is the presence of a robust
SOC to split the energy bands, a feature already included in
our model. Finally, it is straightforward to include strain effects
by using the well-established WZ strain Hamiltonian [28,30]
combined with the elastic constants and deformation potentials
for InAs and InP in the WZ phase already reported in the
literature [26,78–80].

ACKNOWLEDGMENTS

The authors acknowledge financial support from CAPES
PVE (Grant No. 88881.068174/2014-01), CNPq (Grants
No. 149904/2013-4, No. 88887.110814/2015-00, and No.
304289/2015-9), DFG SFB 689, and FAPESP (Grant No.
2012/05618-0). P.E.F.J. thanks A. Polimeni for suggesting the
calculation of effective masses.

APPENDIX A: EFFECTIVE MASSES

Very close to the � point we can estimate the effective
masses by fitting a parabolic dispersion to the ab initio data. In
Table V, we show the values of effective masses along the kz

and kx directions for the highlighted energy bands of Figs. 2(a)
and 2(b). For the kx direction, we calculated the effective
masses assuming the average value of the spin-splitting bands,
i.e., (Eo + Ei)/2 with the subindex o (i) indicating the outer
(inner) branch.

APPENDIX B: HAMILTONIAN TERMS AND
PARAMETERS

In this Appendix, we present the matrix forms of all terms
in Eq. (5) and the definition of parameters using the simple
group formalism.

Matrix representation of H0:

H0 = diag[�1,�1, 0,�1,�1, 0,Ec, Ec], (B1)

with the definitions 〈�x
5v|H0|�x

5v〉 = 〈�y

5v|H0|�y

5v〉 = �1,
〈�1v|H0|�1v〉 = 0, and 〈�1c|H0|�1c〉 = Ec.

The zero energy is defined without SOC for states |c3〉 and
|c6〉. The parameter �1 is the crystal field splitting energy,
which arises due to the WZ anisotropy between the xy plane
and z direction, and the conduction band energy is denoted by
the parameter Ec. It is possible to make the connection with the
energy gap including SOC coupling by writing Ec = Eg + �c,
for instance. It is also convenient to consider a diagonal energy
offset to set the top valence band at zero energy.

TABLE V. Effective masses for InAs and InP along kz (m∗
‖) and

kx (m∗
⊥) for the highlighted bands of Figs. 2(a) and 2(b). The effective

masses were obtained by fitting a parabola up to 2% of the FBZ along
the specified directions.

InAs InP

m∗
‖ m∗

⊥ m∗
‖ m∗

⊥

�7c 0.0370 0.0416 0.0947 0.1183
�9v −0.9738 −0.0795 −1.0646 −0.2091
�7v −0.0551 −0.1046 −0.3064 −0.1988
�′

7v −0.0863 −0.1838 −0.1016 −0.4887
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Matrix representation of H
(1)
SO :

H
(1)
SO =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�2 0 0 0 0 0 0 0
0 −�2 0 0 0

√
2�3 0 i

√
2�4

0 0 0 0
√

2�3 0 0 0
0 0 0 �2 0 0 0 0
0 0

√
2�3 0 −�2 0 i

√
2�4 0

0
√

2�3 0 0 0 0 0 0
0 0 0 0 −i

√
2�4 0 0 0

0 −i
√

2�4 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (B2)

with the definitions

�2 = i�

4m2
0c

2

〈
�x

5v

∣∣∂V

∂x
py − ∂V

∂y
px

∣∣�y

5v

〉
,

�3 = i�

4m2
0c

2

〈
�

y

5v

∣∣∂V

∂y
pz − ∂V

∂z
py |�1v〉 = i�

4m2
0c

2
〈�1v|∂V

∂z
px − ∂V

∂x
pz

∣∣�x
5v

〉
, (B3)

�4 = i�

4m2
0c

2

〈
�

y

5v

∣∣∂V

∂y
pz − ∂V

∂z
py |�1c〉 = i�

4m2
0c

2
〈�1c|∂V

∂z
px − ∂V

∂x
pz

∣∣�x
5v

〉
.

Matrix representation of H
(1)
kp :

H
(1)
kp =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 iA7k− 0 0 0 − 1√
2
P2k− 0

0 0 −iA7k+ 0 0 0 1√
2
P2k+ 0

−iA7k+ iA7k− 0 0 0 0 P1kz 0

0 0 0 0 0 −iA7k+ 0 1√
2
P2k+

0 0 0 0 0 iA7k− 0 − 1√
2
P2k−

0 0 0 iA7k− −iA7k+ 0 0 P1kz

− 1√
2
P2k+ 1√

2
P2k− P1kz 0 0 0 0 0

0 0 0 1√
2
P2k− − 1√

2
P2k+ P1kz 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (B4)

with the definitions

A7 = i√
2

�

m0

〈
�x

5v

∣∣px |�1v〉 = i√
2

�

m0

〈
�

y

5v

∣∣py |�1v〉,

P2 = i
�

m0

〈
�x

5v

∣∣px |�1c〉 = i
�

m0

〈
�

y

5v

∣∣py |�1c〉,
(B5)

P1 = i
�

m0
〈�1v|pz|�1c〉,

k± = kx ± iky.

Matrix representation of H
(1)
kSO :

H
(1)
kSO =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 − i√
2
α1k− 0 −iα2k− 0 1√

2
β1k− 0

0 0 − i√
2
α1k+ −iα2k− 0 i

√
2α1kz

1√
2
β1k+ −√

2β1kz

i√
2
α1k+ i√

2
α1k− 0 0 −i

√
2α1kz −iα3k− 0 β2k−

0 iα2k+ 0 0 0 i√
2
α1k+ 0 − 1√

2
β1k+

iα2k+ 0 i
√

2α1kz 0 0 i√
2
α1k− −√

2β1kz − 1√
2
β1k−

0 −i
√

2α1kz iα3k+ − i√
2
α1k− − i√

2
α1k+ 0 −β2k+ 0

1√
2
β1k+ 1√

2
β1k− 0 0 −√

2β1kz −β2k− 0 −iγ1k−
0 −√

2β1kz β2k+ − 1√
2
β1k− − 1√

2
β1k+ 0 iγ1k+ 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (B6)
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with the definitions

α1 = �
2

4m2
0c

2

〈
�x

5v

∣∣∂V

∂x
|�1v〉 = �

2

4m2
0c

2

〈
�

y

5v

∣∣∂V

∂y
|�1v〉,

α2 = �
2

4m2
0c

2

〈
�x

5v

∣∣∂V

∂z

∣∣�x
5v

〉 = �
2

4m2
0c

2

〈
�

y

5v

∣∣∂V

∂z

∣∣�y

5v

〉
,

α3 = �
2

4m2
0c

2
〈�1v|∂V

∂z
|�1v〉,

(B7)

β1 = �
2

4m2
0c

2

〈
�x

5v

∣∣∂V

∂x
|�1c〉 = �

2

4m2
0c

2

〈
�

y

5v

∣∣∂V

∂y
|�1c〉,

β2 = �
2

4m2
0c

2
〈�1v|∂V

∂z
|�1c〉,

γ1 = �
2

4m2
0c

2
〈�1c|∂V

∂z
|�1c〉.

Matrix representation of H
(2)
kp :

H
(2)
kp =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ + θ −K∗ −H ∗ 0 0 0 T ∗ 0
−K λ + θ H 0 0 0 T 0
−H H ∗ λ 0 0 0 U 0

0 0 0 λ + θ −K H 0 T

0 0 0 −K∗ λ + θ −H ∗ 0 T ∗
0 0 0 H ∗ −H λ 0 U

T T ∗ U ∗ 0 0 0 V 0
0 0 0 T ∗ T U ∗ 0 V

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (B8)

with elements given by

λ = A1k
2
z + A2

(
k2
x + k2

y

)
,

θ = A3k
2
z + A4

(
k2
x + k2

y

)
,

K = A5k
2
+,

H = A6k+kz, (B9)

T = iB3k+kz,

U = i
[
B1k

2
z + B2

(
k2
x + k2

y

)]
,

V = e1k
2
z + e2

(
k2
x + k2

y

)
,

and all the parameters in units of �
2/2m0.

The term Hk2 is already included in the diagonal terms
of H

(2)
kp . Strictly speaking, the matrix representation H

(2)
kp is

defined as

H
(2)
kp,αα′ = Hk2δαα′ +

B∑
β

〈α|Hkp|β〉〈β|Hkp|α′〉
Eαα′ − Eβ

. (B10)

The second-order k · p parameters A1 to A6 are defined the
same way as in Ref. [28], while e1, e2, B1, B2, and B3 are given
by

e1 = 1 + 2

m0

B[�1]∑
β

|〈�1c|pz|β〉|2
E1c − Eβ

,

e2 = 1 + 2

m0

B[�5]∑
β

|〈�1c|px |β〉|2
E1c − Eβ

= 1 + 2

m0

B[�5]∑
β

|〈�1c|py |β〉|2
E1c − Eβ

,

B1 = 2

m0

B[�1]∑
β

〈�1v|pz|β〉〈β|pz|�1c〉
E1v1c − Eβ

,

B2 = 2

m0

B[�5]∑
β

〈�1v|px |β〉〈β|px |�1c〉
E1v1c − Eβ

= 2

m0

B[�5]∑
β

〈�1v|py |β〉〈β|py |�1c〉
E1v1c − Eβ

, (B11)

B3 =
√

2

m0

⎛
⎝B[�1]∑

β

〈�x
5v|px |β〉〈β|pz|�1c〉

E5v1c − Eβ

+
B[�5]∑

β

〈
�x

5v

∣∣pz|β〉〈β|px |�1c〉
E5v1c − Eβ

⎞
⎠

=
√

2

m0

⎛
⎝B[�1]∑

β

〈�y

5v|py |β〉〈β|pz|�1c〉
E5v1c − Eβ

+
B[�5]∑

β

〈
�

y

5v

∣∣pz|β〉〈β|py |�1c〉
E5v1c − Eβ

⎞
⎠,
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FIG. 8. Comparison of band structures for (a) �-M, (b) �-H,
and (c) �-L directions of InAs and (d) �-M, (e) �-H, and (f) �-L
directions of InP. The line schemes follow Fig. 4.

with nonzero contributions represented by the irreducible
representations in the brackets above the summation.

APPENDIX C: FITTING IN OTHER DIRECTIONS

The comparison between the fitted and WIEN2k ab initio
band structures is displayed in Fig. 8 for the �-M, �-H, and �-L
directions. For the �-M direction, we have the same behavior
discussed for �-K. However, the k · p band structures in the
�-H and �-L directions have closer values to ab initio. This
better agreement arises from the second-order parameters A6

and B3 which only couple the kxky plane to kz, providing
additional corrections to the band structures.

In Fig. 9 and Fig. 10, we show the comparison of spin
splittings along the �-M, �-H, and �-L directions for InAs
and InP, respectively. For the �-H and �-L directions, the spin
splittings are usually smaller compared to �-K and �-M. This
difference, however, depends on the material and the energy
band. For instance, CH and LH values for InAs in �-H and
�-L are approximately half the value in the �-K and �-M
directions while LH and CH values for InP are approximately
one-fourth of the values. Because of these larger differences for
InP, the spin splittings for CH bands along �-H and �-L show
a small deviation compared to ab initio [Figs. 10(h) and 10(l)].
However, the crossings for HH bands [Figs. 10(f) and 10(j)]
are precisely reproduced. Comparing all directions, we verify
that our k · p model and parameter sets reproduce with great
agreement the ab initio band structure and spin splittings along
all the considered directions of the FBZ.
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FIG. 9. Comparison of the InAs spin splittings for (a), (e), (i) CB;
(b), (f), (j) HH; (c), (g), (k) CH; and (d), (h), (l) LH along �-M, �-H,
and �-L directions. The line schemes follow Fig. 4.
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