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Spin-orbit coupling and spin relaxation in phosphorene: Intrinsic versus extrinsic effects
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First-principles calculations of the essential spin-orbit and spin relaxation properties of phosphorene are
performed. Intrinsic spin-orbit coupling induces spin mixing with the probability of b2 ≈ 10−4, exhibiting a large
anisotropy, following the anisotropic crystalline structure of phosphorene. For realistic values of the momentum
relaxation times, the intrinsic (Elliott-Yafet) spin relaxation times are hundreds of picoseconds to nanoseconds.
Applying a transverse electric field (simulating gating and substrates) generates extrinsic C2v symmetric spin-orbit
fields in phosphorene, which activate the D’yakonov-Perel’ mechanism for spin relaxation. It is shown that this
extrinsic spin relaxation also has a strong anisotropy and can dominate over the Elliott-Yafet one for strong
enough electric fields. Phosphorene on substrates can thus exhibit an interesting interplay of both spin-relaxation
mechanisms, whose individual roles could be deciphered using our results.
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Phosphorene is a monolayer of black phosphorus
[1–5] exhibiting a direct band gap of 2 eV [6,7] and large
anisotropic mobility [6,8,9]. Unlike graphene, phosphorene is
a semiconductor, and unlike two-dimensional transition-metal
dichalcogenides, which are semiconductors too, phosphorene
is distinctly anisotropic thanks to its puckered atomic structure.
The semiconductor property makes phosphorene suitable
for electronic [10] and spintronics applications [11,12], in
particular, for bipolar spin diodes and transistors [13], while
the anisotropy enables directional control of the essential spin
properties, such as spin-orbit coupling and spin relaxation. In
contrast to graphene, whose spin properties are by now well
established [14], there is no unified picture of the spin-orbit
coupling and spin relaxation in phosphorene.

Phosphorene can be extracted from black phosphorus by
mechanical [8,10,15] or liquid [16,17] cleavage techniques.
Inside phosphorene layers, each phosphorus atom is covalently
bonded with three adjacent phosphorus atoms to form a
puckered honeycomb structure due to sp3 hybridization (see
Fig. 1). The puckered structure can be viewed as a two-layer
system in which the bonding energy is dominated by the
in-plane bonds (ppσ and ppπ ) that are much stronger than
the bonds connecting the two sublayers (ppπ ) [18]. Similarly
to graphene, the edges of phosphorene form zigzag (along the
x axis) and armchair (along the y axis) chains [see Fig. 1(b)].

Black phosphorus is described by the nonsymmorphic D2h

point group being isomorphic with the Cmca space group.
Phosphorene shares the same point-group symmetry as its bulk
counterpart. Both structures have inversion symmetry leading
to spin-degenerate eigenstates. Spin-orbit coupling leads to the
spin mixing of the Pauli spinors—the intrinsic effect. When
inversion symmetry of phosphorene is broken by an applied
transverse electric field E or a substrate, the point group is
reduced to nonsymmorphic C2v , with the principal C2 axis
parallel to the direction of the electric field and two mirror
planes σxz and σyz [Figs. 1(a) and 1(b)]. In this case the spin
degeneracy is lifted—the extrinsic (Rashba) effect.

From the spintronics perspective two questions are particu-
larly important to address: (i) what is the intrinsic and extrinsic
spin-orbit coupling (SOC) in phosphorene and (ii) what are
the relevant spin-relaxation time scales. The first question has
been partially answered by Popović et al. [19], who showed

that the extrinsic Rashba effect, due to external electric fields,
is anisotropic with respect to the two principal directions in the
crystal. The second question has been addressed within k · p

theory [18] for the intrinsic effects only.
Here we employ first-principles calculations to address both

questions, providing state-of-the-art, most realistic results for
the extrinsic and intrinsic effects. First, we find that intrinsic
SOC lifts degeneracy of the valence and conduction bands at
the S point, by splitting the bands at about 17.5 meV and
14 meV, respectively. The extrinsic Rashba SOC is much
weaker, of the order of tens of μeV close to the � point (for
electric fields of 1 V/nm), and is found to be significantly
anisotropic for the valence band only. Second, we predict the
spin lifetime in phosphorene to be hundreds of picoseconds up
to nanoseconds, for the experimentally relevant mobilities. We
find that for no and small electric fields up to E ≈ 2.5 V/nm
and carrier densities up to 8×1012 cm−2, the dominant spin-
relaxation mechanism is the Elliott-Yafet [20,21]. For the
in-plane spin orientation the relaxation is almost twice slower
than for spins oriented out of plane. By increased transverse
electric field the D’yakonov-Perel’ [22] mechanism starts to
be the most effective. For carrier density n ≈ 3×1012 cm−2,
it overtakes the Elliott-Yafet at E = 4 V/nm for holes and
E = 5 V/nm for electrons. As a result, the substrates can be
essential for spin dynamics in phosphorene due to an interplay
between the D’yakonov-Perel’ and the Elliott-Yafet relaxation
mechanisms.

Intrinsic phosphorene belongs to the family of cen-
trosymmetric crystals for which the dominant spin-relaxation
mechanism is the Elliott-Yafet scattering [20,21]. The
strength of the scattering can be quantified by the spin
admixture coefficient b2 [20], which is a signature of in-
trinsic spin-orbit coupling. The time-reversal and space-
inversion symmetries require two Bloch states �

↑
n,k(r) and

�
↓
n,k(r) of the same band n and momentum k to be de-

generate (Kramer’s doublets). Due to spin-orbit coupling,
these states are mixtures of spin-up |↑〉 and spin-down
|↓〉 Pauli spinors: �

↑
n,k(r) = [an,k(r)|↑〉 + bn,k(r)|↓〉]eikr,

�
↓
n,k(r) = [a∗

n,−k(r)|↓〉 − b∗
n,−k(r)|↑〉]eikr. For a generic Bloch

state the modulation functions an,k(r) and bn,k(r) are selected
to diagonalize the spin magnetic moment along the chosen
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FIG. 1. Essence of phosphorene crystal structure. (a) Schematic
of a single layer of black phosphorus with drawn symmetry axis C2,
mirror planes σxz and σyz, and the vector of electric field E. The
red-colored atoms form the unit cell of phosphorene, and the gradient
of color of the electric field vector corresponds to higher (red) and
lower (blue) electrostatic potential. (b) Top view to the structure. The
unit cell is marked by orange dashed line. (c) The first Brillouin zone
of phosphorene with labels of high symmetry points.

direction, corresponding to the injected spin in experiment;
for weak spin-orbit coupling, bn,k(r) stands for the small
spin component being admixed to the large spin component
an,k(r), i.e., |an,k(r)|2 � |bn,k(r)|2. The Elliott-Yafet scattering
parameter b2 is defined as the Fermi surface average of the
unit-cell integrated admixture coefficient b2

n,k,

b2 = 〈
b2

n,k

〉 = [ρ(εF)SBZ]−1
∫

FS
b2

n,k/|�vF(εF)|dk, (1)

b2
n,k =

∫
|bn,k(r)|2d3r, (2)

where 0 � b2 � 0.5, ρ(εF) is the density of states per spin
at the Fermi level, vF is the Fermi velocity, and SBZ is the
area of the Brillouin zone. If the scattering potential is spin
independent (scalar impurities and phonons), the intrinsic SOC
leads to spin-flip scattering. The Elliott-Yafet mechanism gives
for the spin-relaxation rate [20,23]

τ−1
s,EY ≈ 4b2τ−1

p , (3)

where τ−1
p is the momentum relaxation rate.

Extrinsic effects appear once the space-inversion symmetry
gets broken, e.g., by a substrate or external fields. The spin
degeneracy gets lifted and another spin-relaxation mechanism
appears: D’yakonov-Perel’ [22]. This mechanism can be
viewed as a motional narrowing of the spin precession in a
fluctuating (due to momentum scattering) emerging spin-orbit
field 	k, which is related to the spin splitting as

Hex = �

2
	k · σ , (4)

where σ is the vector of Pauli matrices. In the relevant
limit of small correlation times (	τp � 1), i.e., when the
precession angle between the scattering events is small, the

spin-relaxation rate becomes [22]

τ−1
s,DP = 	2

⊥τp, (5)

where 	2
⊥ = 〈	2

k,⊥〉 is the Fermi contour average of the
squared spin-orbit field projected to the plane perpendicular to
the spin orientation.

In our first-principles calculations we used the initial crystal
structure parameters from Ref. [1] for bulk black phosphorus.
A sheet of phosphorene was placed in vacuum of 20 Å
and fully relaxed using a quasi-Newton variable-cell scheme
as implemented in the QUANTUM ESPRESSO [24] package.
Positions of atoms have been relaxed in all directions, with
the force convergence threshold 10−4 Ry/a.u. (atomic unit)
and total energy convergence condition 10−5 Ry/a.u. The
norm-conserving pseudopotential, with kinetic energy cutoffs
of 70 Ry and 280 Ry for the wave function and charge density,
respectively, has been used along with the Perdew-Burke-
Ernzerhof exchange-correlation functional [25]. Obtained
structural parameters are summarized in Ref. [26].

Further electronic structure calculations have been
performed using the full-potential linearized augmented plane-
wave method as implemented in the all-electron code pack-
age WIEN2K [27]. Self-consistency has been achieved for a
16×12×1 Monkhorst-Pack k-point grid with 151 k-points
in the irreducible wedge of the Brillouin zone. SOC has
been included fully relativistically for core electrons, while
five valence electrons have been treated within the second
variational step method [28]. For the calculations with the
transverse electric field, we considered a vacuum size of
25 Å. It is known that standard DFT methods underestimate
the band gaps of semiconductors. Theoretical band gaps
of phosphorene spread between 0.7 and 2.2 eV, depending
on the method of calculations [8,9,29–32]. On the other
hand, recent experimental reports suggest the band gap of
phosphorene to be about 2 eV [7,33]. It has been reported
for standard semiconductors [34] that the underestimation of
the band gap significantly impairs SOC effects. Therefore, to
consider a realistic band gap we perform the calculations with
an undressed local-density approximation (LDA) functional
along with the modified Becke-Johnson (mBJ) potential [35]
parametrized to give the band gap of 2.17 eV.

The calculated band structure of phosphorene is shown in
Fig. 2. We get a direct gap at the zone center. Some density
functional theory (DFT) calculations [19,29,36] report a nearly
indirect band gap, with a somewhat displaced valence-band
maximum. The valence band in the vicinity of the � point
along kx is nearly dispersionless, while it is very dispersive in
the ky direction. A similar, but substantially smaller, dispersion
anisotropy is seen in the conduction band. Close to the � point
both, the valence and the conduction band have mainly pz

orbital character, the latter having a small admixture of py

orbitals [26]. The next conduction band minimum appears at
energy 50 meV above the global conduction band minimum
(in direction towards the X point) and consists mainly of px

and py orbitals with an admixture of dx2−y2 electrons. The
small distance of this band to the conduction band minimum
is reflected as an increase of the slope in the carrier density
n(εF) shown in Fig. 2(e) as a function of the Fermi level εF.
For the valence band the carrier density is a smooth quadratic
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FIG. 2. Calculated electronic properties of phosphorene using the
LDA+mBJ (local density approximation–modified Becke-Johnson)
exchange-correlation functional. (a) Band structure along high
symmetry lines. The marked areas (c) and (d) are zoomed in
the bottom row of the figure. (b) p-orbital resolved (yellow-filled
curve, solid and dashed lines) and total (blue-filled curve) density
of states. (c) Splitting of the valence band along the S–X line
due to intrinsic spin-orbit coupling. (d) Sketch of the extrinsic
(Rashba) spin-orbit coupling effect to the band structure close
to �. (e) Carrier concentration as a function of the Fermi level.
The value n = 0 corresponds to the Fermi level at the valence
(conduction) band maximum (minimum). Positive values of n

correspond to electron, negative to hole doping. Empirical fits to
the first-principles results give n1(εF) = −243.3ε2

F − 441.4εF + 0.86,
n2(εF) = 238.9εF − 0.14, n3(εF) = 537.9εF − 15.52, where εF is the
Fermi level in electronvolts and density n in 1012 cm−2.

function of εF. Empirical fits for the dependence n(εF ), which
should be useful for interpreting experiments, are given in the
caption to Fig. 2.

Intrinsic effects. We first discuss the intrinsic SOC and the
Elliott-Yafet spin relaxation. The intrinsic SOC in phosphorene
is relatively strong but does not modify substantially the
band structure close to the band gap. The orbital degeneracy
of the fourfold-degenerate bands [see inset to Fig. 2(c)] is
split into two pairs of spin-degenerate bands. The splitting is
maximal at the S point, 17.5 meV and 14 meV for valence and
conduction band, respectively, gradually decreasing towards
the time-reversal points X and Y . The states at the Brillouin
zone boundaries stay degenerate due to nonsymmorphicity of
the D2h group [37].

The important effect of the intrinsic SOC is the spin
mixing, quantified by b2

k. In Figs. 3(a) and 3(b) we show the
distribution of spin-mixing parameter b2

k in the first Brillouin
zone (BZ) of phosphorene for the spin quantization axis
oriented perpendicular to the two-dimensional plane. The other
spin orientations are discussed in Ref. [26]. For momenta
corresponding to anticrossings and at the BZ edges (except

FIG. 3. Intrinsic spin-orbit coupling effects in phosphorene.
(a) Momentum-resolved spin-mixing parameter b2

k for the valence
band and out-of-plane spin direction. (b) Same as in (a) but for the
conduction band. (c) Elliott-Yafet spin-relaxation rates for valence
electrons, for indicated spin directions, as a function of the carrier
density. (d) Same as in (c) but for the conduction band. Constant
typical momentum relaxation time τp = 100 fs is assumed.

the points X and Y for which b2
k is zero) the values of b2

k are
close to 1

2 . The Bloch eigenstates here are fully spin mixed,
forming spin hot spots [23,38]. At the zone center b2

k is about
10−4. Perturbation theory gives that b is roughly the ratio of
the intrinsic spin-orbit coupling (order 10 meV) and the band
gap (order 1 eV); thus b ≈ 0.01 matches well to the calculated
first-principles value of b2 ≈ 10−4. For comparison, a recent
estimate based on k · p theory gives b2 between 10−6 and
10−5 [18].

Knowing b2 we now calculate the Elliott-Yafet spin-
relaxation rates using Eq. (3). For the momentum relaxation
we take the typical experimental value of τp = 100 fs. The
results can be easily rescaled for the actual experimental
mobilities. Calculated τ−1

s,EY as a function of carrier density
n(εF), for valence and conduction bands and different spin
quantization axes, are shown in Figs. 3(c) and 3(d). The
relaxation rates are almost independent of n, which follows
b2 since we use a constant momentum relaxation time. The
monotonicity of τ−1

s,EY is then unambiguously determined by
b2. The spin-relaxation rates of holes are greater than those of
electrons. Most striking is the strong anisotropy. The largest
spin relaxation is for out-of-plane spins, which relax roughly
twice as fast as the in-plane spins. We predict the longest
spin lifetimes for armchair-oriented spins in the conduction
band and zigzag-oriented spins in the valence band. In the
recent k · p theory [18], the estimated ratio between the
spin-relaxation rate for out-of-plane to in-plane spins was
∼4, which is an overestimation in view of our first-principles
results, but is in qualitative agreement. Similar anisotropies in
Elliott-Yafet spin lifetimes were also predicted for anisotropic
bulk materials and thin metallic films [39–41].

Extrinsic effects. In realistic situations phosphorene sits
on a substrate or is studied in a gating electric field which
breaks space-inversion symmetry (D2h −→ C2v). An extrinsic
Rashba spin-orbit field emerges, lifting the spin degeneracy,
εk↑ = εk↓, according to Eq. (4), except at time-reversal
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FIG. 4. Extrinsic spin-orbit coupling effects in phosphorene.
(a) Spin-orbit field magnitude 	k in the first Brillouin zone for the
valence band and transverse electric field of E = 1 V/nm. (b) Same
as in (a) but for the conduction band. Calculated D’yakonov-Perel’
relaxation rates, assuming τp = 100 fs, as a function of carrier
density for (c) valence band and (d) conduction band for indicated
spin directions. For spins perpendicular to the phosphorene plane
empirical fitting gives τ−1

s,DP(n)[ns−1] ≈ 0.093n for the valence band
and τ−1

s,DP(n)[ns−1] ≈ 0.05n for the conduction band, where n is in
units of 1012 cm−2.

invariant points. Emerged spin-orbit fields give rise to spin
relaxation due to the D’yakonov-Perel’ mechanism, which
competes with the Elliott-Yafet spin-flip scattering. Here we
model the symmetry breaking by applying a transverse electric
field, all within the first-principles calculations, of 1 V/nm. In
Figs. 4(a) and 4(b) we plot the spin-orbit field 	k magnitude
over the first Brillouin zone. Similarly to b2

k, the values of 	k
are peaked at the band anticrossings and at the BZ edges. At
the time-reversal points 	k is zero.

We note that for a bare Perdew-Burke-Ernzerhof exchange-
correlation functional [25] (band gap Eg ≈ 1 eV), the Rashba
spin-orbit coupling due to external electric fields exhibits a
strong anisotropy in the valence as well as in the conduction
band [19]. Our calculations show that increasing the band
gap to the experimental value ≈2 eV removes the anisotropy

from the conduction band, while it is preserved for the valence
band.

To obtain the spin-relaxation rates for the D’yakonov-Perel’
mechanism, we resolve the coordinate components of the
vector spin-orbit fields 	 which lie in the phosphorene plane:
	x along x (zigzag) and 	y along y (armchair) directions.
We extract these components by fitting an effective C2v sym-
metric spin-orbit coupling Hamiltonian to the first-principles
data [26]. In Figs. 4(c) and 4(d) we show the calculated
spin-relaxation rates using Eq. (5), assuming E = 1 V/nm and
τp = 100 fs. The spin lifetime is exceptionally long, of a few
nanoseconds, and exceeds the lifetime from the Elliott-Yafet
mechanism. The relaxation rates for conduction electrons are
twice smaller than for the valence electrons. With a growing
electric field, the D’yakonov-Perel’ mechanism becomes
more significant. For the valence band, it surpasses Elliott-
Yafet’s for n � 6×1012 cm−2, n � 3×1012 cm−2, and n �
2×1012 cm−2 for electric fields E = 3 V/nm, E = 4 V/nm,
and E = 5 V/nm, respectively [26]. For the conduction band
the transitions happen for slightly higher carrier densities.
For electric fields E = 5 V/nm the D’yakonov-Perel’ spin-
relaxation rates are ≈23 times greater than for E = 1 V/nm.
Similarly to b2, the spin-orbit field 	2 reveals a strong
anisotropy. As a result the in-plane spins relax about 1.5–3
times slower than the out-of-plane ones.

In summary, we have studied intrinsic and extrinsic spin-
orbit coupling and spin-relaxation mechanisms in phospho-
rene. The Elliott-Yafet spin relaxation gives spin lifetimes
less than nanoseconds for experimentally relevant samples.
The D’yakonov-Perel’ mechanism matters at large electric
fields. The lifetimes exhibit a large anisotropy for in-plane
and out-of-plane spin orientations.
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