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We investigate the dynamic nuclear spin polarization in an n-GaAs lateral channel induced by

electrical spin injection from a (Ga,Mn)As/n-GaAs spin Esaki diode. Signatures of nuclear spin

polarization are studied in both three-terminal and non-local voltage signals, where a strong

electron spin depolarization feature is observed close to zero magnetic field. This is due to the large

nuclear field induced in the channel through hyperfine interaction between injected electron spins

and localized nuclear spins. We study the time evolution of the dynamic nuclear spin polarization

and evaluate polarization and relaxation times of nuclear spins in the channel. VC 2012 American
Institute of Physics. [http://dx.doi.org/10.1063/1.4767339]

Electrical spin injection from ferromagnets to lateral

semiconductor structures1,2 makes it possible to investigate a

variety of physical phenomena relevant to nuclear spins by

all electrical means,3,4 which so far have only been studied

in nanostructures at high magnetic fields,5 in the quantum

Hall regime,6–8 and by optical means.9–12 Recent works

focused on dynamic nuclear spin polarization (DNP)

effects,3,4 occurring as a result of strong coupling between

spin-polarized electrons and lattice nuclei through hyperfine

interaction. The reason for this is that thanks to DNP, an all-

electrical initialization and manipulation of nuclear spins,

potentially useful for future quantum computing, could be

easily done by electrical spin injection. The nuclear spin

polarization and nuclear magnetic resonance (NMR) have

been intensively studied in ferromagnetic metal/semiconduc-

tor hybrid structures with a Schottky barrier junction.3,4 The

spin injection efficiency in these devices was on the order of

a few percent, thus enabling only static investigations of the

nuclear spin polarization due to the weak hyperfine interac-

tion. (Ga,Mn)As/n-GaAs spin Esaki diodes on the other hand

showed high spin injection efficiency exceeding 50% at low

bias2 owing to the high spin polarization of (Ga,Mn)As.16,17

While a full theoretical understanding of DNP in all-

electrical spin injection devices with lateral structures has

not fully been established yet, the nuclear magnetic field is

proportional to the spin polarization of electrons in the chan-

nel PN¼ (n"� n#)/(n"þ n#)¼DlD(EF)/n, where nr denotes

total carrier concentration with up and down spins, respec-

tively, and Dl and D(EF) are spin splitting of the Fermi level

and density of states at the Fermi energy, respectively. Here

PN, which decays with distance from the spin injector, can

be described by the product of spin injection efficiency Pinj

and spin injection current Iinj as follows:18

PNðxÞ ¼ PNð0Þexp � x

ksf

� �
¼ 3qNksf PinjIinj

2SEF
exp � x

ksf

� �
;

(1)

with qN, S, kN being resistivity and cross-sectional area of

the channel and electron spin diffusion length in the channel,

respectively. Since the spin Esaki diode provides high spin

injection efficiency at relatively high bias voltages, these struc-

tures could lead to a more efficient nuclear spin polarization

and manipulation compared to metal/semiconductor hybrid

structures. This enables us, e.g., to investigate the time evolu-

tion of the nuclear spin polarization. In this letter, we present

the time evolution of nuclear spin polarization and depolariza-

tion as well as NMR studies in an all-semiconductor spin injec-

tion device with the (Ga,Mn)As/n-GaAs Esaki diode spin

polarizers13–15 and detectors using both non-local spin-valve

(NLSV) and local three-terminal (3T) techniques.

A spin injection device was fabricated from an epitaxial

wafer, grown by molecular beam epitaxy, consisting of

semi-insulating GaAs, 300 nm GaAs buffer layer, 500 nm

AlGaAs/GaAs superlattice, 1-lm-thick n-GaAs followed by

15 nm of GaAs with linearly graded doping n ! nþ with

n¼ 2.5� 1016 cm�3 and nþ¼ 6.0� 1018 cm�3, 8 nm nþ-

GaAs, 2.2 nm AlGaAs diffusion barrier and finally 50 nm

(Ga,Mn)As. A 10-lm-wide mesa, oriented along the [010]

GaAs direction, is used as a transport channel where six

(Ga,Mn)As/n-GaAs spin Esaki junctions, defined by electron

beam lithography and reactive ion etching, constitute spin-

injection and detection contacts (see Fig. 1(a)). The distances

between contact 2 and contacts 3, 4, 5 are 5, 20, and 25 lm,

respectively. In the experiments, the four contacts in the mid-

dle (contacts 2–5) in the size of 1� 10 lm2 are used as spin

injectors or detectors while contacts 1 and 6 serve as refer-

ence electrodes. All measurements are performed at T¼ 4 K,

which is much lower than the ferromagnetic transition tem-

perature of the (Ga,Mn)As electrodes. An easy axis of

(Ga,Mn)As is in-plane parallel to the h100i direction.

First, we demonstrate electrical spin injection into the

GaAs channel by measuring NLSV and also Hanle effect, i.e.,

the depolarization of spin accumulation by a perpendicular

external magnetic field. The filled and open black symbols in
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Fig. 1(b) show a typical NLSV trace as a function of the in-

plane magnetic field By (bottom horizontal axis in Fig. 1(b))

under the spin injection current I21¼þ50 lA. This positive

bias corresponds to the spin extraction resulting in a spin accu-

mulation in the n-GaAs channel. For NLSV measurements, a

small Bz¼ 2 mT is applied normal to the surface to polarize nu-

clear spins along the z-direction near By¼ 0 mT. The non-local

voltage V46 shows abrupt voltage changes around By¼ 13 mT

and 21 mT, ascribed to a switching between parallel (V"") and

anti-parallel (V"#) alignment of injector and detector magnetiza-

tions. In contrast to previous measurements of the NLSV sig-

nal,2 the present sample shows complete parallel and anti-

parallel magnetization configurations due to enhanced strain-

induced uniaxial anisotropy along the easy axis in [100] direc-

tion.19 From the amplitude DV¼V"" � V"# of the NLSV signal

and its distance dependence, we obtain the spin injection and

detection efficiencies of 4.1% and 57%, respectively, and a spin

relaxation length of 10.6 lm for I21¼þ50 lA (see Ref. 2 for

more details). Figs. 1(c) and 1(d) summarize distance and bias

dependence of the signal amplitude DV and spin polarization in

the channel PN, with the latter calculated using Eq. (1). Both

DV and PN are proportional to the product of spin injection effi-

ciency and spin injection current, with the former dropping rap-

idly with increasing bias voltage.2 As a result, they both show

maximum values for a current range from around þ50 up to

around 100 lA, which for electron spin polarization underneath

the spin injector reaches PN(0)¼ 52%. The above current val-

ues were then chosen for most of the following experiments

because of the efficient hyperfine interaction. Around

By¼ 0 mT, the depolarization dip due to the DNP is clearly

observed. The voltage value V0¼�1.14 mV measured at

By¼ 0 mT is half way between V"" (�1.30 mV) and V"#
(�0.91 mV). According to the standard equation of the NLSV

signals,18 this voltage corresponds to the zero spin signal.

Therefore, the measured V0 constitutes the background signal,

commonly measured in NLSV measurements.1,2

The electron spin depolarization is further confirmed by

measuring the non-local voltage as a function of the perpendicu-

lar magnetic field Bz shown by blue and yellow circles in Fig.

1(b). These Hanle curves, obtained at By¼ 15 mT (parallel mag-

netization) and 26 mT (anti-parallel magnetization), are plotted

in the same figure as the NLSV signal but as a function of Bz

(top horizontal axis in Fig. 1(b)). At sufficiently large Bz, where

injected electron spins are completely depolarized, the non-local

voltage drops to the background value V0 which shows a quad-

ratic dependence on Bz (green-dashed line in Fig. 1(b)).2 We do

not observe the so-called Hanle oscillations,20 since they are

suppressed by the applied in-plane magnetic field.

The origin of the depolarization curve was discussed in

Ref. 8. In the presence of hyperfine interaction between nu-

clear and electron spins, the total magnetic fields acting on

the electron spins are the sum of the applied external mag-

netic field B and the internal nuclear magnetic field BN. In

steady state, the latter can be expressed as21

BN ¼ fbN
B � hSi

B2
B (2)

assuming that the Knight field and local dipole fields are

negligibly small. Here, the electron spin polarization hSi is

equal to 1/2 when the electron spins are fully polarized. The

average spin polarization hSi can be replaced by the spin

polarization in the channel, as given by Eq. (1), divided by 2.

FIG. 1. (a) Schematic diagram of the sample (not to scale) and coordinate system. Local voltage V3T is measured between contacts 2 and 6 by three-terminal

method with a spin injection current applied from contacts 1 to 2, while non-local voltages V36, V46, V56 are measured between contacts 3, 4, 5, and contact 6.

(b) The NLSV signal as a function of By swept from positive to negative saturation field (open black symbols) and back (closed black symbols) with Bz¼ 2 mT.

Hanle signal taken by the non-local voltage is shown as a function of Bz for parallel (By¼ 26 mT, open blue circles) and antiparallel (By¼ 15 mT, open yellow

circles) contact magnetization configuration. Red lines show the best fitting results of the data with Eq. (3). Insets show the relative directions of electron and

nuclear spins. (c) The amplitude of NLSV signal, defined as difference of non-local voltages between in parallel and anti-parallel magnetization configuration,

as function of injector-detector separation. (d) The amplitude of NLSV signal at the contact 3 (black squares), calculated spin polarization below the injector

(red circles), and spin injection current (blue triangles) as a function of 3T bias voltage across the spin injector.

212402-2 Shiogai et al. Appl. Phys. Lett. 101, 212402 (2012)
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The value of bN was calculated to be �17 T in bulk n-GaAs

and typical value of fbN is experimentally measured to be

�1.7 T.21 According to Eq. (2), BN is oriented either parallel

or antiparallel to B depending on the direction of electron

spins. This is illustrated by the simple vector diagrams in

Fig. 1(b) for different By values. At By¼ 0 mT, the nuclear

field BN is oriented along the z-axis due to the small applied

Bz. Since large BN causes a fast precession of electron spins

in the xy-plane, in-plane spin components are averaged to

zero. From Eq. (2), we evaluate the strength of BN under-

neath the contact 4 to be 65.5 mT using the spin polarization

PN of 51.8% and ksf of 10.6 lm obtained from NLSV meas-

urements at I21¼þ50 lA. The induced nuclear field is large

enough for the electron spins to start the precession. There-

fore, the electron spin polarization along BN is reduced by a

factor of cosa with a being the angle between B and By.

Since the ferromagnetic contact detects a spin polarization

projected onto its magnetization direction, i.e., the y-direc-

tion in the present configuration, the spin signal V46 – V0 can

be fitted with

VNL � V0 � hS0icos2a �
B2

y

B2
y þ B2

z þ DB2
; (3)

where DB corresponds to the half width at half maximum of

the Lorentz curve �(1þDB2/By
2)�1 when Bz¼ 0 mT.3 Since

the nuclear spins are polarized in both NLSV and Hanle

effect geometries, Eq. (3) can be applied for both configura-

tions using DB as free parameter. The best fits for both

NLSV and the Hanle type curves using Eq. (3) are shown in

Fig. 1(b) as solid red lines. For both cases, we obtain a small

correction term DB� 5 mT. This suggests that a field perpen-

dicular to the swept field is present in the sample when the

latter is swept across the zero. In. Ref. 3, such field is attrib-

uted to dipole-dipole interactions between nuclear spins.

Generally, all these experiments demonstrate that the nuclear

field can be well controlled by a small external magnetic

field in accordance with Eq. (2).

To further confirm a coupling of electron and nuclear

spins, we performed NMR studies. During these measure-

ments, an oblique static external magnetic field Byz was

applied at an angle of 15� with respect to the y-axis in the yz-

plane, while the ac field was aligned along the x-axis perpen-

dicular to the static one. Figure 2(a) shows a frequency scan

of the non-local voltage V36 at different strengths of

Byz¼�43.0 mT, �34.9 mT, and �26.7 mT. When the ac

magnetic field is not at resonance, all nuclear spin species

and electron spins are polarized along the external magnetic

field. At resonance, the corresponding nuclear spins start to

rotate and acquire an angle with the electron spins, resulting

in precession of electron spins along the reoriented nuclear

field.22 As a result, the component of electron spins along

the external magnetic field is reduced, leading to reduced

voltages. We observed such NMR signals both in NLSV and

3T configurations. Resonance frequencies obtained from

three-terminal voltages, V3T, and three different non-local

voltages V36, V46, and V56 increase linearly with the external

magnetic field as is summarized in Fig. 2(b). From the linear

slope of the resonant frequency shift with the magnetic field,

three resonance peaks in Fig. 2(a) are identified as single

spin resonances of the three main isotopes 75As, 69Ga, and
71Ga, while the fourth one corresponds to the second-order

resonance of the isotope 75As. The resulting gyromagnetic

ratios of 4.53 6 0.015, 6.38 6 0.017, 8.14 6 0.016, and

9.07 6 0.015� 107 rad/Ts for 75As, 69Ga, 71Ga, and 2(75As)

resonances are in good agreement with the reported values

corresponding to 4.596, 6.450, 8.196, and 9.192� 107 rad/

Ts.23 These NMR measurements provide clear evidence that

polarized nuclear spins get electrically detected.

Finally and most importantly, we investigated the time

evolution of polarization and relaxation of nuclear spins in ac-

cordance with investigations on spin-LEDs.11,12 In the mea-

surement, the external magnetic field Byz was aligned 15� off

the y-direction and the time evolution of the V3T voltage was

monitored. In Fig. 3(a), we plot the three-terminal resistance

R3T defined as V3T/I21 measured while sweeping Byz from neg-

ative to positive values with I21¼þ50 lA. We clearly

observe a jump at Byz� 15 mT related to the magnetization

switching in the contact and a depolarization peak around

Byz¼ 0 mT indicating the clear evidence of DNP. The time

evolution measurements are performed at Byz¼ 2.34 mT, indi-

cated with a black dashed line in Fig. 3(a), in the following

way: First, Byz is swept from a negative saturation field

through zero up to 2.34 mT with the current off condition in

order to obtain antiparallel alignment between the

FIG. 2. (a) NMR spectrum at different static fields Byz¼�43.0 mT,

�34.9 mT, �26.7 mT. Different colored symbols represent resonance peaks

of different nuclear species. (b) Resonance frequencies as a function of

external magnetic field for all spin detectors, i.e., V3T (open triangles), V36

(open squares), V46 (filled triangles), and V56 (filled squares).
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magnetization of the (Ga,Mn)As spin injector and the in-plane

component of the external magnetic field. After that, the injec-

tion current I21 is turned on to accumulate electron spins

underneath the contact, which increases the measured V3T. As

a result of the spin injection, the DNP is generated so that the

precession and depolarization of the injected electron spins

are induced due to the nuclear field. Such an electron spin dy-

namics is reflected by the time evolution of the measured V3T

which decreases as the nuclear polarization builds up and sat-

urates after a certain time interval at a value corresponding to

the saturation nuclear field for a given experimental condition.

In Fig. 3(b), we plot the time evolution of the voltage change

DV3T¼V3T – V3T
sat, where V3T

sat is the voltage measured at

saturation for I21¼þ104 lA. As can be seen in Fig. 1(d), the

spin polarization PN shows a value close to maximum at this

spin injection current. In Fig. 3(a), the red arrow indicates the

maximum voltage change DV0
3T with respect to the initial

value. Hence, the curve in Fig. 3(b) gives us the information

about the time evolution of the nuclear polarization. We find

that the time evolution curve can be well fitted with a double

exponential decay of the form

DV3T ¼ V1expð�t=s1Þ þ V2expð�t=s2Þ: (4)

From a fit, we obtain s1¼ 20.9 6 0.7 s and s2¼ 158.7 6 1.0 s

with V1 and V2 being 0.13 and 0.34 mV, respectively. The

two different polarization times may be due to the different

mechanism behind the polarization dynamics, e.g., regular

hyperfine interaction and nuclear spin diffusion. According

to previous reports, the latter mechanism needs to be taken

into account also for nuclear spin relaxation.24 To measure

the relaxation of nuclear spins, we first apply the current for

a time long enough to saturate the DNP signal, switch off the

current for a time interval Dt, and then monitor the signal af-

ter switching the current back on. Figure 3(c) shows some of

the experimental curves displaying V3T as a function of labo-

ratory time with different off-state times Dt applying,

as before, Byz¼ 2.34 mT and an injection current I21

¼þ104 lA. The whole set of curves was obtained as fol-

lows: (i) the spin injection current was switched on for

20 min and a nuclear polarization build-up curve, similar to

the one in Fig. 3(b), was obtained; (ii) I21 was switched off

for a time interval Dt; (iii) the current was switched back on

to repeat (i) and (ii) but with Dt increased by 3 s. Every time

after switching off the current, nuclear spins relax during the

time interval Dt and the electron spin polarization partially

recovers. This is reflected in the initial value V3T
ini of the

three-terminal voltage measured immediately after switching

the current on again, which is increased by DV3T
rel with

respect to the saturation value V3T
sat measured before switch-

ing the current off. DV3T
rel is then a measure of the relaxa-

tion of nuclear spins with time Dt. Figure 3(d) shows the

dependence of DV3T
rel on Dt, which can be well fitted with

DVrel
3T ¼ Vini

3T � Vsat
3T ¼ DV0

3Tf1� expð�t=T1Þg; (5)

FIG. 3. (a) Three terminal resistance R3T obtained for Iinj¼þ50 lA under oblique external magnetic field, 15� off from the y-axis in the yz-plane. The red

arrow shows the resistance change due to nuclear spin polarization, corresponding to the initial value of DV0
3T , as indicated in (b) (see text for details). (b)

Time evolution of the nuclear spin polarization (black open symbol) at Byz¼ 2.34 mT and corresponding fit using Eq. (4) (green line). (c) V3T as a function of

laboratory time at Byz¼ 2.34 mT in Iinj¼þ104 lA for 20 min and subsequently switching it off with different Dt steps (see text). For clarity, only some typical

polarization curves are shown. (d) Relaxation curve of nuclear spins as a function of switch-off time Dt (open black circles) with corresponding fit (red line)

based on Eq. (5).
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where T1 represents the spin lattice relaxation time of nuclear

spins. From the fit, we obtained a spin lattice relaxation time

of 117 s. Such a time scale on the order of minutes is consist-

ent with optically detected NMR measurements in bulk n-

GaAs25 and ten times shorter than the nuclear spin relaxation

time in depleted GaAs.26 We ascribe the difference with

respect to the latter experiment to the fact that in our case,

hyperfine interaction of nuclear spins with surrounding elec-

trons dominates the nuclear spin relaxation, while in the case

of depleted GaAs nuclear spin diffusion is the dominant

mechanism.26

In conclusion, we have clearly demonstrated the presence

of DNP in lateral all-semiconductor structures through the

observed depolarization signature in NLSV that can be

explained by a dynamically polarized nuclear field. The NMR

experiment revealed that all possible nuclear species in the

present experiments were polarized. We also demonstrated

the time evolution of nuclear spin polarization and relaxation

in the NLSV device in n-GaAs channel. Time evolution of the

DNP was able to be observed due to the high spin injection ef-

ficiency from the (Ga,Mn)As/n-GaAs spin Esaki diode, prom-

ising the effective initialization and manipulation of nuclear

field with a small external magnetic field.
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