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We report on the experimental realization of a current-controllable lateral S-(S/F)-S Josephson

junction based on the inverse proximity effect in the superconductor-ferromagnet bilayer (S/F).

The dependence of the critical current on the magnetic field Ic(B) shows a Fresenel-like pattern,

which could qualitatively be understood with the theory of Josephson junctions in a magnetic field

gradient. The amplitude and the period of the Ic(B) pattern can be controlled by spin-polarized

quasiparticles injection into the weak link. The period change suggests controllability of effective

area of the Josephson junction. Furthermore, a temperature-induced transition from a weak-link

behavior to a strong coupling between the superconducting banks is also observed in these lateral

Josephson junctions. VC 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4792213]

The controllability of the supercurrent in a Josephson

junction1 has attracted a considerable attention and can be

achieved in several ways. For instance, in a weak link, where

the junction is created by two superconducting banks (S)

separated by a normal metal (N), the supercurrent can be

controlled by a transversal current flow through the normal

region;3 in this case the observed suppression of the super-

current is due to the presence of hot electrons in the normal

metal. Moreover, by controlling the energy distribution of

the current carrying states in the N-part of the weak link, one

can even reverse the direction of the supercurrent.4,5 Never-

theless, there is a lack of the work showing the control over

both the supercurrent and the effective area of the Josephson

junction which affects its magnetic properties.

In a previous article,6 we presented the utilization of the

inverse proximity effect7 in a superconductor-ferromagnet

(S-F) bilayer to generate a lateral weak link of S-(S/F)-S

type by the proximity-induced suppression of the supercon-

ducting order parameter. We used a bilayer cross strip geom-

etry, i.e., an F strip on top of a S strip. The critical

temperature of the superconducting layer was suppressed in

the S/F intersection area. Furthermore, at appropriate thick-

nesses of S and F layers, the structure revealed the dc and ac

Josephson effect.

In this paper, we demonstrate a controllable planar S-(S/

F)-S Josephson junction that is realized by injecting quasi-

particles from the ferromagnet into a superconductor. To

increase spin-polarization, we used iron (Fe) as ferromagnet;

hence a weak link is formed by the inverse proximity effect

in the Nb/Fe bilayer.

The layout of the junction is shown in Fig. 1(a). The

structure was defined by electron beam lithography in the fol-

lowing steps: (i) Au alignment markers and electrodes for

injection were thermally evaporated and patterned by a posi-

tive PMMA lithographic lift-off process, (ii) a 20 nm tick Nb

layer was e-gun evaporated in a ultra high vacuum chamber,

then patterned into a 900 nm wide strip by negative ARN

resist and etched by SF6 reactive ion etching, (iii) a 15 nm

thick Fe layer was e-gun evaporated and lifted-off by a posi-

tive PMMA process to form a 220 nm wide strip orthogonal to

and on top of the Nb layer. To ensure good electrical contact,

the short rf-plasma cleaning of the Au electrodes and Nb strip

was done right before the Fe deposition. At T¼ 4.2 K, the

interfacial resistance between the Nb and Fe strips was about

10 mX, measured in the configuration denoted by red letters

in Fig. 1(a). All critical current (Ic) measurements were per-

formed using a 4-point lock-in method in the way that the dif-

ferential resistance dV/dI vs. the bias current I is measured.

Then, the critical current was defined as the value where the

onset of resistance appears (more in Figs. 2(b) and 2(c)).

The critical current Ic of the Nb-(Nb/Fe)-Nb weak link

was measured in the configuration denoted by the light blue

letters in Fig. 1(a). The temperature dependence of the critical

current Ic, shown in Fig. 1(b), reveals three different regimes.

In the upper range from 6.4 K up to the critical temperature of

the Nb film Tc (6.8 K), we observed the Josephson effect. At

temperatures below 6.1 K, a regular superconducting conden-

sate was developed and found to dominate over the weak link

behavior. In between 6.1 and 6.4 K, the two mechanisms were

shown to compete.

For a better understanding of these regimes, we measured

the threshold curves Ic(B) with a magnetic induction field B

applied perpendicularly to the junction plane, as indicated in

Fig. 1(a). The threshold curves at various temperatures are dis-

played in Fig. 3(a). With decreasing temperature, the curves

gradually develop into three distinctive types of behaviours.

At 6.5 and 6.6 K, within the Josephson regime, the interfer-

ence patterns are well defined. In between 6.1 and 6.5 K, the

main peak is not rounded anymore but seems to be cut off on

the top. Below 6.1 K, as expected from the previous measure-

ments,6 the Ic(B) curves could not be well defined. This is

due to the fully developed superconducting condensate

leading to a strong coupling between the Nb banks. In other

words, at sufficiently low temperatures the local suppression

of the pair amplitude by the ferromagnet (Fe) is unable to

a)Author to whom correspondence should be addressed. Electronic mail:

ondro.vavra@gmail.com.

0003-6951/2013/102(7)/072602/3/$30.00 VC 2013 American Institute of Physics102, 072602-1

APPLIED PHYSICS LETTERS 102, 072602 (2013)

 Reuse of AIP Publishing content is subject to the terms at: https://publishing.aip.org/authors/rights-and-permissions. Download to IP:  132.199.145.239 On: Thu, 20 Oct

2016 09:18:38

http://dx.doi.org/10.1063/1.4792213
http://dx.doi.org/10.1063/1.4792213
mailto:ondro.vavra@gmail.com
http://crossmark.crossref.org/dialog/?doi=10.1063/1.4792213&domain=pdf&date_stamp=2013-02-20


form a proper weak link. The Ic(B) curves at below 6.1 K

exhibit a “roof”-like structure on top of the zero-field peak.

To identify this feature, the behavior around zero magnetic

field was measured in detail on different samples. The two

resistance criteria adopted during the dV/dI measurement

resulted in two different Ic values, and thus two different Ic(B)

behaviours as shown in Fig. 2(a). The first onset of the resist-

ance (low current criterion) corresponds to the critical current,

Ic1, of the weak link, whereas the second current jump, Ic2, on

the differential resistance curve (high current criterion) corre-

sponds to the transition of the Nb leads into the normal state.

The low and high criteria are shown in Figs. 2(b) and 2(c),

respectively. At a certain magnetic field [2 mT in Fig. 2(a)],

the two curves merge into one, implying that the supercon-

ducting condensate is so strong that the influence of the

inverse proximity effect can be neglected.

As shown in Fig. 1(a), the injection current, Iinj, is split

into two equal currents on both sides of the Fe injector,

Iinj1¼ Iinj2¼ Iinj/2 and injected into the Nb leads; the voltage

was measured between the probes labeled Vþ and V�. The

red curve in Fig. 1(b) shows the measured temperature de-

pendence of the critical injection current, Iinj,c, defined as the

minimum injection current required to drive the Nb/Fe

bilayer into the normal state.

However, the most visible impact of the injected spin-

polarized quasi-particles into the Nb-(Nb/Fe)-Nb weak link

can be seen on the interference patterns Ic(B) shown in Fig.

3(b). Both amplitude and period of the patterns decrease

with increasing the injection current Iinj. Above all, the

threshold curves do not represent the Fraunhofer-like pat-

terns, which are typically measured in homogeneous Joseph-

son junctions immersed in a uniform magnetic field.

In our case, the patterns rather mimic the Fresnel-like

behavior predicted and experimentally verified for the

Josephson junctions exposed to an inhomogeneous magnetic

field.8,9 In our experiment, the inhomogeneity of the

FIG. 2. (a) The Ic(B) curve explaining its “roof feature.” Differential dI/dV

curves with two critical current values: (b) Ic1 is taken with the lower resist-

ance criterion and Ic2 with the higher resistance criterion.

FIG. 3. (a) The temperature development of critical current vs. magnetic

field pattern Ic(B), (b) the dependence of the Ic(B) pattern on the injection

current Iinj at 6.5 K (dashed guide lines indicate the change of the period).

FIG. 1. (a) Sample micrograph. The Josephson weak-link is formed where

the narrow horizontal Fe strip crosses the vertical wide Nb strip. The light

blue labels denote the current and voltage contacts for the four-point differ-

ential resistance measurements with injection currents Iinj1,2¼ Iinj/2. The red

labels indicate how the Nb-Fe interfacial resistance is measured. (b) Tem-

perature dependences of the critical current Ic and of the critical injection

current Iinj,C.
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magnetic field comes from the shape of the injectors (e.g.,

the step at the Nb edges) and the injection currents flowing

via the Fe strips into the Nb. Since they flow in opposite

direction they generate opposite magnetic fields, B1 ¼ �B2,

i.e., a magnetic field gradient.

The skewness of the threshold curves in Fig. 3(b)

unequivocally indicates the presence of the self-field effect.10

This effect can typically be observed in long Josephson junc-

tions, that is, when one of the junction dimension (in our case

the width, w¼ 900 nm, of the Nb strip) is larger than the

Josephson penetration depth1 kJ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U0=2pl0jcd

p
, where U0

is the magnetic flux quantum, l0 the vacuum permeability, jc
is the Josephson critical current density, and d the weak link

magnetic thickness given by the sum of Fe-strip width

(220 nm) and the field penetration into the S-parts on each

side of the weak link. For our thin Nb layer, the London pene-

tration depth kL has to be replaced by the larger Pearl penetra-

tion depth2 kP ¼ k2
L=tNb where tNb ¼ 20 nm is the Nb

thickness. Assuming kL ’ 45 nm, we obtain kP ’ 100 nm

and d ’ 420 nm. Assuming the current density to be uniform

over the weak link cross section, w� tNb, the critical current

of about 50 lA, measured at 6.5 K, results in a jc of

3� 109 A=m2. Such large values of jc and d yield a rather

smaller Josephson penetration depth kJ ’ 440 nm, indicating

that the weak link normalized length is ‘ ¼ w=kJ ’ 2. The

threshold current IcðBÞ for a long overlap-type Josephson

junction with uniform bias and asymmetric boundary condi-

tions was numerically computed for ‘ ¼ 8 and is shown in

Fig. 4.

For qualitative modelling, we assumed a uniform current

distribution, which leads to a larger normalized length than

inferred from the experiment. In the real junction, the bias

current flow along the Nb edges11,12 which makes the effec-

tive current density larger, the real Josephson penetration

depth shorter and the true junction normalized length larger,

as suggested by the numerical simulations.

In summary, we measured and qualitatively explained

the behaviour of the planar Josephson weak link with the fer-

romagnetic injectors. To explain Fresnel-like Ic(B) pattern,

we employed the model of Josephson junction exposed to

magnetic field gradient. Via current injection from the ferro-

magnet into the superconductor, we could control the ampli-

tude of critical current and the period of Ic(B) dependence,

i.e., area of the junction. For quantitative explanation, one

has to take into account the non-uniformity of the current

flow via Nb strip. The impact of spin-polarization on the

properties of such junctions can be investigated by the use of

different ferromagnetic materials as injector and their addi-

tional polarization by in plane magnetic field.
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FIG. 4. Numerically computed threshold current IcðBÞ for a long overlap-type

Josephson junction with uniform bias and asymmetric boundary conditions.
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