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Linear-scaling explicitly correlated treatment of solids:
Periodic local MP2-F12 method
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D-93040 Regensburg, Germany

(Received 29 August 2013; accepted 29 October 2013; published online 15 November 2013)

Theory and implementation of the periodic local MP2-F12 method in the 3*A fixed-amplitude ansatz
is presented. The method is formulated in the direct space, employing local representation for the
occupied, virtual, and auxiliary orbitals in the form of Wannier functions (WFs), projected atomic
orbitals (PAOs), and atom-centered Gaussian-type orbitals, respectively. Local approximations are
introduced, restricting the list of the explicitly correlated pairs, as well as occupied, virtual, and
auxiliary spaces in the strong orthogonality projector to the pair-specific domains on the basis of spa-
tial proximity of respective orbitals. The 4-index two-electron integrals appearing in the formalism
are approximated via the direct-space density fitting technique. In this procedure, the fitting orbital
spaces are also restricted to local fit-domains surrounding the fitted densities. The formulation of
the method and its implementation exploits the translational symmetry and the site-group symme-
tries of the WFs. Test calculations are performed on LiH crystal. The results show that the periodic
LMP2-F12 method substantially accelerates basis set convergence of the total correlation energy, and
even more so the correlation energy differences. The resulting energies are quite insensitive to the
resolution-of-the-identity domain sizes and the quality of the auxiliary basis sets. The convergence
with the orbital domain size is somewhat slower, but still acceptable. Moreover, inclusion of slightly
more diffuse functions, than those usually used in the periodic calculations, improves the conver-
gence of the LMP2-F12 correlation energy with respect to both the size of the PAO-domains and the
quality of the orbital basis set. At the same time, the essentially diffuse atomic orbitals from standard
molecular basis sets, commonly utilized in molecular MP2-F12 calculations, but problematic in the
periodic context, are not necessary for LMP2-F12 treatment of crystals. © 2013 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4829898]

I. INTRODUCTION

The determinantal expansion of the wave function is the
starting point of the standard quantum chemical models, such
as configuration interaction (CI), many body perturbation the-
ory (MBPT), or coupled cluster (CC). Despite great success of
these methods in countless applications to molecular or even
crystalline systems, high accuracy calculations remain com-
putationally very expensive. One of the problems, contribut-
ing to the high cost of the correlated calculations, is the need
for rich basis sets due to slow convergence of the correlation
energy with the basis set size.

The electron correlation manifests in the many-electron
wavefunction as a cusp at the point of coalescence of two elec-
trons and a Coulomb hole around it. The proper description of
this feature requires terms linear in inter-electron distance r12,
which are absent in the determinantal expansion of the wave-
function. This deficiency, which is actually responsible for the
slow basis set convergence of the correlation energy, can be
repaired by explicitly adding such terms in the wavefunction.
Such an approach is usually referred to as explicitly corre-
lated treatment, and the corresponding methods are marked
by a suffix “R12.” First attempt to use r12-dependent terms in

a)denis.usvyat@chemie.uni-regensburg.de

the wavefunction by Hylleraas, dating back to 1929, turned
out to be very efficient for accurate calculation of the ion-
ization potential of helium atom.1 Application of this method
to larger systems, however, appeared to be computationally
difficult because of expensive and numerous three- and four-
electron integrals appearing in the formalism.

Through years several variants of the method have been
proposed.2, 3 A computationally convenient scheme, which
factorizes three- and four-electron integrals into products of
two-electron integrals by means of resolution of the iden-
tity (RI), was developed by Kutzelnigg3 and Kutzelnigg and
Klopper,4–6 making the explicit correlation technique afford-
able beyond a-few-electron systems.7–11 It has been realized
at some point that the correlation factor r12 is, in fact, prob-
lematic for larger systems, since although correctly describing
the cusp itself, it can be harmful in the far away regions due
to its non-physical growth. Substitution of the explicit r12 fac-
tor by some local function of r12 (which is usually denoted
by the suffix “F12” in the method notation) fixes this problem
and has now become standard in the explicitly correlated ap-
proaches. Particularly accurate description at a moderate or-
bital basis set level is achieved with the Slater-type geminal
1
γ

exp(−γ r12) as the correlation function.12

In the last decade hierarchies of approximations for
the F12 method have been developed and implemented for

0021-9606/2013/139(19)/194101/15/$30.00 © 2013 AIP Publishing LLC139, 194101-1
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different levels of the correlated treatment within MBPT,13–22

CC,23–32 or multireference33–37 theories, as well as a univer-
sal second order F12 correction,38 applicable to any corre-
lated method. As has recently been shown, the F12 treat-
ment can be efficiently combined with the local correlation
scheme18, 19, 21, 32, 39 or other techniques, based on the virtual
space truncation.40–42 This allows for low or even linear scal-
ing of the computational cost with the molecular size, open-
ing a way to approach the basis set limit for quite extended
molecules. Such methods also benefit from the ability of the
F12 treatment to reduce or even eliminate the domain or the
virtual space truncation error, which is intrinsically related to
basis set incompleteness.

Periodic systems are effectively infinite and thus compu-
tationally more difficult than molecules. For polymers, how-
ever, developed methods reach a relatively high level, such
as CCSD43 for the ground state and EOM-CCSD44 for the
excited state. An implementation of a 1D periodic MP2-F12
method has also been reported.45 For 3D-periodic systems,
there exist several variants of periodic MP246–50 and random
phase approximation51, 52 methods. Very recently plane-wave
implementations of several techniques beyond MP2 have
been reported, including CCSD,53 CCSD(T),54 and MP2-
F12.55 The latter work demonstrated that the F12 treatment
can indeed be an efficient complement to the conventional
description of electronic correlation in the delocalized plane
wave basis.

High-level treatment of solids can also be achieved
within the finite-cluster approximation, using various flavors
of fragment approaches.56–62 These techniques can, in princi-
ple, employ any of the available molecular methods, including
explicitly correlated ones. At the same time, obtaining highly
accurate results with such methods can become rather expen-
sive. Moreover, representation of a periodic system with finite
clusters might be rather sensitive to the choice of embedding,
which, in order not to ruin the accuracy of the calculations,
has to be properly set up.

The 3D packing and formal endlessness of crystals im-
pose essential limitations on the use of atomic orbital (AO)
basis sets in periodic calculations. Due to the mutual non-
orthogonality of the standard Gaussian-type orbitals (GTOs),
rich AO basis sets, or those, containing diffuse orbitals, be-
come quasi-redundant in the periodic case, leading to numer-
ical problems in the calculations. The latter can in some cases
be overcome by substantial tightening of the computational
tolerances. However, it enormously raises the computational
cost, while the gain due to the formal richness of the basis set
might remain marginal. Indeed, a quasi-redundant basis set
spans an essentially smaller space than formally assigned to
it, depriving the possibility to control its actual quality. With
that, a systematic improvement of the basis set and energy
extrapolation to the basis set limit become problematic. Gen-
erally the highest level of the AO basis set routinely appli-
cable for periodic calculations is triple-zeta, which is usually
sufficient for Hartree-Fock (HF) or density functional theory
calculations, but not so for an accurate correlated description.

One way to circumvent this problem is to employ or-
thogonal plane wave basis47, 63 or a combination of AOs and
plane waves. Although, adaptation of this technique to the lo-

cal correlation approach is rather difficult, such developments
are under way in our group and will be presented in forth-
coming publications. The F12 technique is a second major
practical possibility to solve the basis set problem in the pe-
riodic correlated calculations. In this paper, we report a 3D
periodic local MP2-F12 method in its 3*A fixed-amplitude
approximation.13 The performance of this method is analyzed
in an application to the LiH crystal, for which MP2 basis set
limit benchmarks exist in the literature.

II. THEORY

The method described below is closely related to
the molecular local MP2-F12 theory by Werner and co-
workers.21 The notations in this paper follow the gen-
eral nomenclature for periodic local methods, developed in
Refs. 64–67. At the same time, it is also to a large ex-
tent compatible with the molecular MP2-F12 formalism of
Refs. 13 and 21. The indices i, j, k, . . . and a, b, . . . denote,
respectively, the localized occupied orbitals [Wannier func-
tions (WFs)], and local virtual orbitals, for which projected
atomic orbitals (PAOs)68–71 are employed. Auxiliary (fitting)
functions used for the density fitting of 4-index integrals are
denoted by the indices P, Q, . . . . Greek symbols stand for the
RI-auxiliary basis functions (α, β, . . . ), as well as for the or-
bital basis functions (μ, ν, . . . ). The symbols r, s, . . . are used
as universal indices for orbitals (occupied, virtual, or auxil-
iary), when their actual character is not relevant. The conven-
tional font indices refer to the orbitals within one cell, while
the calligraphic font indices specify the cells, the correspond-
ing orbitals are centered in.

A. LMP2-F12 energy

In order to introduce the F12 correction to periodic
LMP2, we recapitulate the relevant aspects of the latter.65

The first-order wavefunction in the periodic closed-shell lo-
cal MP2 theory is defined as

�
[1]
LMP 2 = 1

2

∑
iIjJ

∑
aAbB∈[iIjJ ]virt

T
iIjJ
aAbB�aAbB

iIjJ (1)

= 1

2

∑
ijJ

∑
aAbB∈[ijJ ]virt

T
ijJ
aAbB

×
∑
I

�
a(A⊕I)b(B⊕I)
iIj (J⊕I) . (2)

The local approximation restricts the virtual space of each pair
ijJ to the so-called pair domain [ijJ ]virt, i.e., to the PAOs
that are centered on the atoms, spatially close to either i or
jJ .65, 68, 70 The �aAbB

iIjJ are the spin-free configurations, ob-
tained the usual way:72, 73

�aAbB
iIjJ =

∑
σ

â
†
aA,σ âiI,σ

∑
σ ′

â
†
bB,σ ′ajJ ,σ ′�0, (3)

where �0 is the HF determinant, â† and â are the cre-
ation and annihilation operators, respectively, and σ denotes
the spin. Since the ground state is totally symmetric, the
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excitation amplitudes T are invariant with respect to trans-
lations: T

iIjJ
aAbB = T

ij (J�I)
a(A�I)b(B�I). The symbolical operations ⊕

and � applied to the cell indices indicate the actual operations
over the corresponding translation vectors.

In the molecular MP2-F12 theory the first-order wave-
function is augmented with terms, explicitly dependent on
the inter-electron distance r12 and orthogonal to the refer-
ence state. It is computationally convenient in general, and
within the local correlation scheme even essential, to ex-
tend the orthogonality of the explicitly correlated part also
to the space, spanned by the conventional configurations (the
so-called ansatz 3).13 Furthermore, in the resolution of the
identity approach, the explicitly correlated part is projected
onto a space of doubles configurations with the virtual space,
spanned by a formally complete RI basis.6, 13 In the periodic
case these configurations can be denoted as �

αAβB
iIjJ , with the

Greek symbols standing for the RI basis set orbitals. In prac-
tice, the RI-basis is obviously finite, but the effect of this ap-
proximation is usually not dramatic. Furthermore, within the
local correlation scheme the RI basis for a given pair iIjJ
can also be confined to a specific domain [iIjJ ]RI.21 Such
a truncation significantly reduces the cost of the calculations
without compromising their accuracy.

Most of the molecular F12 calculations employ the diag-
onal approximation, due to its efficiency. This approximation
restricts the conventional configurations, the explicit part is
projected on, to have the same occupied orbital pair indices as
in the corresponding explicitly correlated electron pairs. Gen-
erally, diagonal ansätze are not orbital invariant. However, if
the amplitudes corresponding to the explicit configurations
are chosen to satisfy the cusp conditions74, 75 (the so-called
fixed-amplitude ansatz12, 17), the orbital invariance in the di-
agonal formalism is retained (vide infra).

Now generalizing the molecular formalism, in particular
that of Refs. 13 and 21, to the periodic case, we introduce the
explicit configurations �iIjJ ,p, with p = ±1, which within
the diagonal approximation take the following form:

�iIjJ ,p = 1

2

∑
αAβB∈[iIjJ ]RI

(
�

αAβB
iIjJ + p�

αAβB
jJ iI

)
×〈αAβB|Q̂(iIjJ )

12 F12|iIjJ , p〉 (4)

with

|iIjJ , p〉 = 1

2
(|iIjJ 〉 + p |jJ iI〉). (5)

The kernel of the integral in Eq. (4) consists of the correlation
factor12

F12 = − 1

γ
exp(−γ r12), (6)

confined by the scale parameter γ , and the pair specific
strong-orthogonality projection operator21

Q̂
(iIjJ )
12 = 1 +

∑
kK,lL∈[iIjJ ]occ

|kK lL〉〈kK lL|

−
∑

aA,bB∈[iIjJ ]virt

|aA bB〉〈aA bB|

−
∑

αA∈[iIjJ ]RI
kK∈[iIjJ ]occ

(|αA kK〉〈αA kK|

+ |kK αA〉〈kK αA|). (7)

The operator (7) projects out the configurations, involving
occupied-to-occupied excitations, as well as, the pair-specific
conventional periodic LMP2 doubles configurations (the sum-
mation over virtuals is restricted to those in the pair domain).
The sum over occupied indices in the projector (7) runs in
principle over all occupied orbitals. However, due to the lo-
cal representation, the effect of the corresponding terms falls
off exponentially as the distance between the orbital i or jJ
and the orbitals in the projector grows. Therefore, in addition
to [iIjJ ]virt for the virtuals and [iIjJ ]RI for the auxiliary
functions, we define pair domains [iIjJ ]occ to restrict the
ranges for the occupied index summations as well. Truncation
of the otherwise infinite summations ranges, possible within
the local formalism, is essential to arrive at a practicable com-
putational scheme for periodic systems.

Since the auxiliary functions (which are usually chosen
as Gaussian-type orbitals) and the virtuals (PAOs in our ap-
proach), are nonorthogonal (PAOs are actually even redun-
dant), the corresponding bra-parts of the projectors in (4) and
(7) contain the pair specific contravariant vectors:

〈aA| =
∑

a′A′∈[iIjJ ]virt

[(
S[ijJ ]virt

)−1]
aA,a′A′ 〈a′A′|,

(8)
〈αA| =

∑
α′A′∈[iIjJ ]RI

[(
S[ijJ ]RI

)−1]
αA,a′A′ 〈α′A′|.

The matrices (S[ijJ ]virt )−1 and (S[ijJ ]RI )−1 are the inverses (or
pseudo-inverses76 in case of redundant sets, see also supple-
mentary material77) of the square blocks of the PAO and aux-
iliary basis overlap matrices, respectively, corresponding to
the [ijJ ]virt and [ijJ ]RI domains.

The F12 part of the first order wavefunction is expressed
through configurations �iIjJ ,p:

�
[1]
F12 = 1

2

∑
p=±1

∑
iIjJ

T iIjJ ,p�iIjJ ,p

= 1

2

∑
p=±1

∑
ijJ

T ijJ ,p
∑
I

�iIjJ⊕I,p, (9)

where again the translational symmetry has been utilized. The
summation over both sets of indices iI and jJ is formally
full. This makes the set of the configurations, used in the ex-
pansion (9), redundant, since the explicit configurations (and
thus the corresponding amplitudes) are symmetric with re-
spect to permutation of the indices iI and jJ . Technically,
however, such a form of the expansion is preferable, since
utilization of translational symmetry makes i and jJ indices
no longer equivalent (the former is restricted to the reference
cell). Besides, it leads to elimination of the unnecessary fac-
tors in the residual or energy expressions.21 Exploitation of
the index-permutation symmetry as well as the point-group
symmetry is introduced at a later stage (see Sec. II C).
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The second-order F12 energy is defined via the Hylleraas
functional, employing the standard Møller-Plesset partition-
ing of the Hamiltonian with the zeroth-order Fock operator
Ĥ0 = f̂ and energy E0:13

E[2] = 〈�[1]|f̂ − E0|�[1]〉 + 2〈�[1]|Ĥ |�0〉

=
∑
iIjJ

[ ∑
aA,bB∈[iIjJ ]virt

T̃
iIjJ
aAbB

(
KaAbB

iIjJ + RaAbB
iIjJ

)

−
∑

p=±1

(2 − p)T iIjJ ,p(ViIjJ ,p + RiIjJ ,p)

]

=
{∑

ijJ

[ ∑
aA,bB∈[ijJ ]virt

T̃
ijJ
aAbB

(
KaAbB

ijJ + RaAbB
ijJ

)

−
∑

p=±1

(2 − p)T ijJ ,p(VijJ ,p + RijJ ,p)

]}

×
∑
I

1, (10)

where

�[1] = �
[1]
LMP 2 + �

[1]
F12, (11)

T̃
iIjJ
aAbB = 2T

iIjJ
aAbB − T

iIjJ
bBaA , (12)

KaAbB
iIjJ = 〈iIjJ | 1

r12
|aAbB〉, (13)

ViIjJ ,p = 〈iIjJ | 1

r12
Q̂

(iIjJ )
12 F12|iIjJ , p〉, (14)

and RaAbB
iIjJ and RijJ ,p are, respectively, conventional and ex-

plicit residuals, which are discussed in detail in Sec. II B. In
order to arrive at the last equality of Eq. (10) the invariance
of the involved quantities with respect to translation symme-
try operations is utilized. The definition (14) of the V -integral
implies that∑

αAβB∈[iIjJ ]RI

|αAβB〉〈αAβB|Q̂(iIjJ )
12 = Q̂

(iIjJ )
12 , (15)

which is obviously valid for the complete RI-basis, but also
when the RI-space of the domain [ijJ ]RI includes all the
occupied orbitals from [ijJ ]occ and PAOs from [ijJ ]virt. In
the untruncated F12 techniques, the equality (15) is usually
achieved by uniting the AO and auxiliary basis sets to rep-
resent the RI-space (the so-called complementary auxiliary
basis set [CABS] approach).78

As is seen from Eq. (10), the energy in a periodic system
is not well defined. For a cyclic model of a crystal it is pro-
portional to the number of unit cell in the supercell, and for
infinite crystal it becomes infinite. A meaningful and well-
defined quantity, which is usually used in periodic studies, is
the energy per unit cell. For the Hylleraas functional (10), it
is given by the expression in the curly brackets, where one
of the indices (e.g., i) is restricted to the reference cell. The

F12-energy per unit cell in the local representation is thus

E
[2]
F12 =

∑
p=±1

(2 − p)
∑
ijJ

E
[2]
F12 ijJ ,p (16)

with

E
[2]
F12 ijJ ,p = T ijJ ,p(VijJ ,p + RijJ ,p). (17)

The index jJ in (16) is generally not restricted. However,
since in the local representation and with the Slater-type-
geminal (6) as the correlation function the pair F12-energies
decay exponentially with i–jJ interorbital distance, the pair
list can be effectively truncated. Further reduction of the pair-
list size is possible using index-permutation and point-group
symmetry and is discussed in Sec. II C.

As is mentioned above, instead of minimizing the Hyller-
aas functional (10), the values for the explicit amplitudes
can be taken from the coalescence conditions74, 75 for sym-
metric and antisymmetric spatial wave-functions, which gives
TijJ ,p|p=1 = 1/2 and TijJ ,p|p=−1 = 1/4.12, 32, 75 Importantly,
such a scheme preserves the orbital invariance of the F12 en-
ergy within the diagonal approach,17 since the energy (16) re-
duces to the sum of traces of generalized R and V matrices
times a factor.

The residuals RijJ ,p in the fixed-amplitude approach are,
obviously, not zero and need to be evaluated and plugged in
the energy expression (17). The actual form of the residuals is
discussed in Sec. II B.

B. The LMP2-F12 residual

The actual expressions for the residuals RaAbB
iIjJ and

RijJ ,p depend on further approximations. Generally the
conventional and explicitly correlated residuals are cou-
pled via terms, proportional to Fock matrix elements from
the virtual/complementary-auxiliary (i.e., part of the RI
basis, orthogonal to the orbital basis) block.13 Decou-
pling of both residual equations can be achieved by in-
troducing the so-called extended Brillouin condition (EBC)
approximation,4, 6, 13 which assumes these elements to be zero.
The F12 methods, using EBC approximation, are sometimes
denoted by a star in the suffix (e.g., ansatz 3*). RaAbB

iIjJ reduces
then to the usual periodic LMP2 residual,65 which becomes
zero with the optimized LMP2 amplitudes. Within this ap-
proximation the F12 energy (16) is an additive correction to
the standard LMP2 energy,65 evaluated independently from
the latter.

The expression for the explicit correlation residual, as
follows from the Hylleraas functional (10), takes the form13

RijJ ,p = VijJ ,p + BijJ ,pT ijJ ,p

−
∑
kK

(
X

kKjJ
ijJ ,pfikKT kKjJ ,p

+XikK
ijJ ,pT ikK,pfkKjJ

)
, (18)

where f is the Fock matrix, and the expressions for the B- and
X-integrals are given below.
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Writing out explicitly the Q̂12-operator in Eq. (14) yields
for the V -integral

VijJ ,p = KF
ijJ ,p +

∑
kK,lL∈[ijJ ]occ

KkKlL
ijJ FkKlL

ijJ ,p

−
∑

aA,bB∈[ijJ ]virt

KaAbB
ijJ F

aAbB
ijJ ,p

−2
∑

kK∈[ijJ ]occ
αA∈[ijJ ]RI

KkKαA
ijJ ,p F

kKαA
ijJ ,p , (19)

with

KF
ijJ ,p = 〈ijJ | 1

r12
F12|ijJ , p〉, (20)

KrRsS
ijJ ,p = 〈ijJ | 1

r12
|rRsS, p〉, (21)

F rRsS
ijJ ,p = 〈ijJ |F12|rRsS, p〉, (22)

and

F
aAbB
ijJ ,p =

∑
a′A′∈[iIjJ ]virt
b′B′∈[iIjJ ]virt

[(
S[ijJ ]virt

)−1]
aA,a′A′

×Fa′A′b′B′
ijJ ,p

[(
S[ijJ ]virt

)−1]
b′B′,bB,

F
αAkK
ijJ ,p =

∑
α′A′∈[iIjJ ]RI

[(
S[ijJ ]RI

)−1]
αA,α′A′F

α′A′kK
ijJ ,p .

(23)

Note that in the second and third terms of Eq. (19)
(anti)symmetrization of the K-integrals with respect to the
permutation of the orbital indices is not necessary, while in
the last term this (anti)symmetrization allows for uniting both
terms of (7) with mixed auxiliary-occupied summations in
one term.

The terms in the residual (18) explicitly involving X-
integral,

XkKlL
iIjJ ,p = 〈iIjJ |F12Q̂

(iIjJ )
12 F12|kKlL, p〉, (24)

actually need not be evaluated in the diagonal 3A-ansatz. As
was mentioned in Refs. 6 and 13 and is discussed below, these
terms are canceled with the identical terms of the opposite
sign arising in the B-part of the residual. The latter quantity
is quite involved and its efficient treatment requires further
approximations. The general expression for the B-integral is

BiIjJ ,p = 〈iIjJ |F12Q̂
(iIjJ )
12

× (f̂1 + f̂2)Q̂(iIjJ )
12 F12|iIjJ , p〉, (25)

where the superscript of the Fock operator identifies the
corresponding electronic coordinate. In order to avoid
the double RI in (25), slowly converging with auxiliary
basis set size, commonly the commutator f̂ F12 = F12f̂

+ [f̂ , F12] approach is used.4 From the Fock operator, only
the kinetic energy t̂ and exchange operators do not com-
mute with F12. The ansatz A of the MP2-F12 theory,

which we employ in the following, disregards the exchange
commutators.4, 6, 13 Combining this with the generalized
Brillouin condition (i.e., neglect of the Fock matrix elements
from the occupied/complementary-auxiliary block) and EBC,
which altogether is commonly referred to as 3*A (Ref. 13) or
A* (Ref. 14) approximation of the LMP2-F12 theory, yields
for the B-integral:

BijJ ,p = UF
ijJ ,p +

∑
kK,lL∈[ijJ ]occ

UkKlL
ijJ FkKlL

ijJ ,p

−
∑

aA,bB∈[ijJ ]virt

UaAbB
ijJ F

aAbB
ijJ ,p

− 2
∑

kK∈[ijJ ]occ
αA∈[ijJ ]RI

UkKαA
ijJ ,p F

kKαA
ijJ ,p

+
∑
kK

(
fikKX

kKjJ
ijJ ,p + XikK

ijJ ,pfkKjJ
)

(26)

with the intermediate integrals

UF
ijJ ,p = 1

2 〈ijJ |[[F12, t1 + t2], F12]|ijJ , p〉, (27)

UrRsS
ijJ ,p = 〈ijJ |[F12, t1 + t2]|rRsS, p〉. (28)

Within the fixed-amplitude ansatz, the explicit X-dependent
terms of residual (18) indeed cancel with those contained in
the B-integral (26), making evaluation of the X-integral in the
3*A-ansatz superfluous.

To summarize, second order energy calculation in the
LMP2-F12-3*A ansatz consists of independent evaluation of
the conventional LMP2 energy and the explicit F12 compo-
nent via Eq. (16). For the latter, initially the pair-list has to
be set up, to restrict the otherwise infinite summation. This is
discussed in Sec. II C. For each ijJ pair from the pair-list, the
domains [ijJ ]occ, [ijJ ]virt, and [ijJ ]RI have to be defined,
dictating the ranges for the intermediate integrals (20), (21),
(22), (27), and (28), which are the key quantities of the F12
calculation. These integrals are evaluated through density fit-
ting, as described in Secs. II D and III. Contraction of these
quantities according to Eqs. (19) and (26) yields the integrals
V and B and, with that, the residual and the F12 energy.

C. The F12 pair list

As is discussed above, the initial pair-list truncation is
based on the exponential decay of the integrals VijJ ,p and
BijJ ,p, and thus of the pair energy contributions (17), with
distance between i and jJ . Therefore, F12 pair list can be re-
stricted to only strong and weak pairs, defined in the conven-
tional LMP2 calculation. Indeed, in the standard LMP2 com-
putational scheme,65, 70 the integrals (iaA|jJ bB) for distant
ijJ pairs are treated via the multipole approximation, imply-
ing that the product densities iaA and jJ bB do not overlap.
Therefore, the F12-energy contribution from such pairs is ex-
pected to be negligible.

Once the pair list is constructed, the number of pairs ex-
plicitly processed in the F12 calculation can be subject to
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further reduction, based on symmetry arguments. It is
straightforward to apply the index-permutation symmetry.
Since the first index in the pair-list is always restricted to the
reference cell, it has to be combined with the translational
symmetry, yielding

E
[2]
F12 ijJ = E

[2]
F12 j i(�J ). (29)

This reduces the initial list by nearly a factor of 2.
The point group symmetry treatment is more involved,

and can be applied only if the WFs are properly symmetrized.
It is always possible to construct WFs such that they would
form a basis of the irreducible representations (irreps) of the
site groups, corresponding to the centroids of these WFs.
The position of the WFs centroids and the irreps, accord-
ing to which they transform, depend on the symmetry of the
canonical Bloch states (of, in our case, the valence bands) the
WFs are built from.79 General localization procedures,80, 81

however, do not guarantee that the resulting WFs automati-
cally possess the needed symmetry, unless localization is per-
formed directly in the spaces of the corresponding irreps.82

In our approach, the alternative route of Ref. 83 for the
WF symmetrization is used, where the WFs are symmetrized
a posteriori, i.e., after the localization procedure.

Point group symmetry treatment of the two-electron inte-
grals and the doubles amplitudes of the periodic LMP2 the-
ory has been briefly described in Refs. 65 and 84. In the
Appendix we provide a detailed formalism of the symme-
try treatment, based on the theory of induced representations
of space groups,79 in application to the periodic local F12
method in the diagonal approximation.

Restriction of the pair list to the symmetry irreducible
pairs {ijJ }irr and evaluation of the corresponding weight fac-
tors wijJ can be done by application of all the symmetry el-
ements (g|̂a + R) with the condition (A8) (see the Appendix)
to the centroids of the WFs in a pair and identifying the com-
plete symmetry equivalent set (star) of centroid pairs. For a
pair i ′j ′J , a new centroid pair is generated, if the element
(g|̂a + R) does not enter either the site group of the WF i′

centroid qi1 or of the WF j ′J centroid qj1 + RJ (see the Ap-
pendix). Only one centroid pair from each star has to be added
to the list, as the contribution from the rest can be taken into
account by the weight factor. The F12 energy expression then
takes the form

E
[2]
F12 =

∑
p=±1

(2 − p)
∑

ijJ∈{ijJ }irr

wijJ E
[2]
F12 ijJ ,p. (30)

If the symmetry of the bands, the Wannier functions
correspond to, allows for a non-unique choice for their
centroids,79 the highest efficiency in the symmetry treatment
would be achieved with those, having the lowest possible site
group symmetry (i.e., the largest stars of the centroid pairs).
This effect can also be considered from the angle of the sym-
metry equivalence concept of Refs. 85 and 86. The maximal
savings are achieved with orbitals, exhibiting highest sym-
metry equivalence (and lowest symmetry invariance), which
is actually a characteristic property of localized orbitals,
constructed with the Boys localization functional.87 A peri-
odic direct-space generalization of the Boys method,88 com-

bined with symmetrization of the WFs, is, however, not yet
available.

Point group symmetry and index permutation symmetry
(29) treatment of the pair list can be obviously combined. The
result of the index permutation in some pairs might be equiv-
alent to the action of certain point group operations, and, in
such a case, does not bring any further reduction. However,
generally the permutation of the indices is an independent
symmetry operation, not reproduced by any other symmetry
manipulation. In the latter case, the highest possible symme-
try reduction factor is 96, which can occur for some pairs in a
cubic crystal with 48 point group symmetry operations.

D. Local density fitting for 4-index integrals

Truncation of the pair-list and restriction of the con-
traction indices in Eqs. (19) and (26) to the corresponding
domains lead to asymptotically linear scaling of the com-
putational cost with the size of the unit cell. The contrac-
tions (19) and (26) themselves are inexpensive: their nominal
complexity is O(N4), and the actual scaling is approximately
Npair〈Nocc〉2, Npair〈Nvirt〉2, and Npair〈Nocc〉〈NRI〉 for the second,
third, and fourth terms, respectively. Here, Npair denotes the
number of pairs in the pair list, and 〈Nocc〉, 〈Nvirt〉, and 〈NRI〉
denote an average number of orbitals per corresponding pair
domain. The N5-scaling contractions with the inverse over-
lap in (23) are more costly. However, since these transforma-
tions are performed within the pair domains, their actual cost,

which is Npair〈Nvirt〉3 and Npair〈Nocc〉〈NRI〉2 for the F
aAbB
ijJ ,p and

F
kKαA
ijJ ,p , respectively, is not too high either. The bottleneck of

the whole F12 part of the calculation is evaluation of the indi-
vidual integrals of Eqs. (19) and (26).

Conventionally such integrals are evaluated by transfor-
mation of the corresponding 4-index AO integrals,89 which
nominally scales as N5. Alternative technique for calculat-
ing these integrals, applied also in this work, is density fitting
(DF) approximation,64, 66, 90–99 which decomposes the 4-index
integrals into contractions of 3-index quantities. This method,
although not reducing the nominal scaling of the integral eval-
uation, allows for much more efficient treatment even in the
canonical case. Indeed, only the last contraction, i.e., the as-
sembly of the target 4-index integrals from two 3-index ob-
jects, scales as N5, while all other transformations have N4

scaling. Furthermore, by virtue of density fitting, the scaling
of the computational cost of the MP2 or MP2-F12 methods
with number of basis functions per center reduces from N4

to N3. Local approximations further enhance the efficiency of
calculations, since the assembly for each pair involves only
pair-domain-restricted set of indices. The local restrictions
can be imposed on the auxiliary index as well,21, 66, 95, 96, 98, 99

bringing further savings.
In this work, we adapt the direct-space local density fit-

ting technique, developed earlier for the periodic LMP266

and CIS99 methods, to the two-electron integrals of the pe-
riodic local F12 theory. Consider a general two-electron inte-
gral (irR|Î12|jJ sS) (written in the chemical notation) with
a multiplicative operator kernel I12, which is the case for
the integrals KF

ijJ ,p, KrRsS
ijJ ,p, F rRsS

ijJ ,p, and UF
ijJ ,p.14 Using the
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robust DF scheme,93, 100 this integral is approximated as

(irR|Î12|jJ sS)

=
∑

PP∈[irR]DF

dirR
PP (PP|Î12|jJ sS)

+
∑

PP∈[jJ sS]DF

(irR|Î12|PP)djJ sS
PP

−
∑

PP∈[irR]DF
QQ∈[jJ sS]DF

dirR
PP (PP|Î12|QQ)djJ sS

QQ

=
∑

PP∈[irR]DF

dirR
PP (jsS ′|Î12|P (P � J ))

+
∑

PP∈[jsS ′]DF

(
irR

∣∣Î12

∣∣P (P ⊕ J )
)
d

jsS ′
PP

−
∑

PP∈[irR]DF
QQ∈[jsS ′]DF

dirR
PP (P |Î12|Q(Q ⊕ J � P))djsS ′

QQ .

(31)

Here, the P, Q indices denote the fitting functions, [irR]DF

are the local fit-domains, which comprise the fitting functions
supporting a product density | irR), and dirR

PP are the fitting
coefficients, corresponding to the expansion of the product
density | irR) in the fitting basis. In the last equality the trans-
lational symmetry was used, with the unit cell index redefini-
tion

S ′ = S � J . (32)

The fitting coefficients depend on the choice of the metric Îmet
12

for the space of the fitting functions:

dirR
PP =

∑
QQ∈[irR]DF

(irR|Îmet
12 |QQ)

[(
Imet

12

)−1]
QQ,PP

(33)

involving the inverse of the metric matrix[
Imet

12

]
QQ,PP = (

PP
∣∣Îmet

12

∣∣QQ
)
. (34)

The UrRsS
ijJ ,p integral in the context of density fitting is

more complicated, since the kinetic energy operator acts only
on one of the two orbitals forming the product density (on
the right of the operator in the physical notation). However,
following the scheme of Ref. 97, if one opens the commuta-
tor and use the Hermiticity of the kinetic energy operator the
UrRsS

ijJ integral can be written in the chemical notation as

UrRsS
ijJ = ([rR, i](t̂1) |F12| jJ sS)

+ (irR |F12| [sS, jJ ](t̂2)), (35)

where a special notation

|[sS, jJ ](t̂)) = |jJ (t̂ sS) − sS(t̂ jJ )) (36)

was introduced. The integrals of Eq. (35), involving formal
densities |[rR, i](t̂1)) and |[sS, jJ ](t̂2)), can be then subject
the standard DF procedure of Eq. (31).

The fitting metric does not have to coincide with the ac-
tual kernel of the fitted integral. In non-local density fitting,
the choice Îmet

12 = Î12 reduces the robust fit to one term in-
stead of three. However, in the local formalism (with dif-
ferent fit-domains for the bra- and ket-densities) this sim-
plification does not hold. In most of the implementations of
density fitting for two-electron integrals, the Coulomb metric
Îmet

12 = r−1
12 is used, but there are examples of other choices

(e.g., attenuated Coulomb metric,101, 102 overlap metric,47, 102

etc.). In this work we use two types of metric, depending on
the kernel of the integral to be fitted. For the Coulomb in-
tegrals the Coulomb metric is employed, as in the conven-
tional LMP2 part of the calculation. Furthermore, the inte-
grals KaAbB

ijJ are calculated already at the LMP2 stage and
need not be recalculated. For the 3-index two-internal inte-
grals (ikK|PP), that appear only in the F12 part, the half-
transformed intermediates (iμM|PP) of LMP2 can also be
salvaged.

In periodic LMP2 calculations high efficiency in the den-
sity fitting is achieved by using Poisson-type orbital (PTO)
fitting basis.103–105 PTOs, which are defined as Laplacians of
GTOs, are momentless. Therefore, when a PTO is plugged in
a 3- or 2-index Coulomb integral as a fitting function, it re-
duces the latter to a quickly decaying effective one-electron
integral. This, on the one hand, curtails the range of the inte-
grals to be calculated and processed, and, on the other hand,
speeds up evaluation of the individual integrals. The fitting ba-
sis should also include some GTOs to fit the actual moments
of the densities, but the amount of those is not large (com-
monly one GTO per each angular momentum and center).

All the integrals apart from the Coulomb ones are fitted
with the metric Îmet

12 = F12. Since the use of PTOs in these
integrals is problematic, the Coulomb metric would require
recalculation of the 3- and 2-index Coulomb integrals with
the pure GTO fitting basis set. Furthermore, F12 is the natural
choice of the metric for the fit of UrRsS

ijJ (35), since with this
metric the 3-index integrals needed for the assembly of U (31)
and those used for DF coefficients (33),

(
[rR, i](t̂1)

∣∣Îmet
12

∣∣ PP
) = (

irR
∣∣[Îmet

12 , t1]
∣∣PP

)
, (37)

are of the same class. In case of the Coulomb met-
ric for the U-integrals an additional set of integrals(
irR

∣∣[r−1
12 , t1 + t2]

∣∣PP
)

would be needed. In Ref. 97 it was
noted that the metric Îmet

12 = r12 might lead to inaccurate fit-
ting. Indeed, a good two-electron integral estimate of sim-
ilarity between two densities has to emphasize the region,
where r1 is close to r2. The Coulomb metric, for example,
strongly accentuates the contribution from this region. The
extreme case in this respect is the overlap metric with its
δ(r1 − r2) kernel. The r12 metric, on the contrary, depresses
this contribution and is thus not a good metric for fitting pur-
poses. However, substitution of r12 kernel with F12 fixes this
deficiency.

A fit domain [irR]DF for a given density |irR) has to
be chosen such that it provides a sufficient support for it. For
automatic construction of these domains we follow the recipe
of Ref. 66. For the products of a WF i and all the PAOs or
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auxiliary functions centered on a given atom AA a common
fit domain is used. It is determined by calculating pseudo-
populations of densities |iaA) on atoms DD:

qiAA
DD =

∑
a∈A

∑
μ∈D

[1 + P (i, aA)]

(
CμD,i

∑
ν∈D

SAO
μν Cν(D�A),a

)2

,

(38)

which serve as a measure for their support. Here, C is the
AO coefficients of the WFs and PAOs, SAO is the AO over-
lap matrix, and P stands for the symmetric index-permutation
operator. Then the fit domains [iaA]DF|a∈A or [iαA]DF|α∈A

comprise the fitting functions, belonging to NDF centers with
the largest pseudo-populations qiAA

DD . For the WF-WF densi-
ties, a separate fit-domain is built for each particular product
|ikK) on the basis of similar pseudo-populations:

qikK
DD =

∑
μ∈D

[1 + P (i, kK)]

(
CμD,i

∑
ν∈D

SAO
μν Cν(D�K),k

)2

.

(39)

It is seen from (31) that in all the quantities, involved
in the DF procedure, the first index is restricted to the refer-
ence unit cell. The second index rR in the density |irR) is re-
stricted to the so-called united domain of i. That is the union
of all possible pair domains [ijJ ]occ, [ijJ ]virt, or [ijJ ]RI,
depending on the type of r, for a given i. Since jJ is also
restricted according to the pair list {ijJ }irr (see Sec. II C),
the corresponding united domains of i are confined to WFs,
PAOs, or auxiliary functions which are in spatial vicinity of i.

The fitting function index of the DF coefficients in (31)
and (33) runs only over the functions in the fit-domain of
the corresponding density. Hence the set of DF coefficients is
rather compact. For the 3-index integrals, contracted with the
DF coefficients, the fitting function range is more extended,
since it implies addition (or subtraction) of all possible J
vectors (see Eq. (31)). The main computational effort in the
local F12 calculations goes actually in calculation of these in-
tegrals. Nevertheless, since J does not go beyond the limits
dictated by the pair list, the spatial localization of the fitting
functions around the orbitals i is maintained. This preserves
the linear-scaling of the local F12 method, based on density
fitting, with the number of occupied orbitals i per cell.

Furthermore, 3-index integrals with short-range kernels
(20), (22), (27), and (28), involving local orbitals, can ob-
viously be subject to efficient prescreening, which can con-
fine the fitting functions to even much smaller range. The
Coulomb metric is not of short-range, but it effectively be-
comes such with the Poisson fitting functions, which form the
main share of the fitting basis set. Thus only a very small frac-
tion of the whole set of 3-index integrals, namely those with
the Coulomb kernel and GTOs as the fitting functions, are im-
mune to prescreening of the fitting function range. The range
for the |rR) orbitals in the |irR) densities can also be reduced
with respect to that dictated by respective united domains by
means of, e.g., Schwarz prescreening, which allows for a fur-
ther decrease of the prefactor of the computational cost.

III. IMPLEMENTATION

Implementation of the periodic local F12 method is
integrated in the CRYSCOR program package,49 which is
interfaced with the CRYSTAL code.106 The latter provides
the HF reference and the localized occupied orbitals.81 An
a posteriori symmetrization of the Wannier functions is done
also on the CRYSTAL side according to the algorithm of
Ref. 83. The AO coefficients of the symmetrized Wannier
functions are read from a file, generated by CRYSTAL,
along with the corresponding symmetry information (the
space group of the crystal, the site groups of the WFs’
centering points, irreps of the site groups, WFs belong to,
etc.). This information is then utilized to obtain the symmetry
irreducible pair list {iJ } and the weight factors wijJ (see
Sec. II C). Since a similar symmetry treatment is applied to
the conventional LMP2 pair-list,84 the same routines are used
in the F12 part.

The pair domains [ijJ ]occ, [ijJ ]virt , and [ijJ ]RI are
constructed as unions of the corresponding individual WF do-
mains of the orbitals i and jJ . An RI-domain of a WF i com-
prises the functions, belonging to its NRI nearest-neighbour
atoms. For the occupied-orbital domains a distance criterion
is used as well: all WFs located within the cutoff distance of
Rocc from the WF i (with respect to their centering points)
are included in its domain. The PAO-domains can be ob-
tained by means of the Boughton-Pulay procedure70, 107 with
an optional extension to adjacent atoms, or, similarly to the
RI domains, by specifying the number Nvirt of the nearest-
neighbours with respect to the center of the WF i. The [ijJ ]
pair domains define the summation ranges for calculating the
V and B quantities in Eqs. (19) and (26), and the ranges of the
rR and sS orbitals in the target integrals (irR|Î12|jJ sS),
assembled in (31). Furthermore, on the basis of the pair-
domains, united domains for each WF from the reference
unit cell are built. The united domains define the ranges for
the orbitals rR and sS ′ in the three-index integrals and DF-
coefficients in Eqs. (31) and (33).

It is important to note that the frozen core approxima-
tion, commonly employed in correlated calculations, implies
that WFs i and j from the electron pair list {ijJ } are valence-
only states and are thus constructed from the valence Bloch
states. The WFs k and l from the projector Q̂12 in Eq. (7),
on the other hand, span the whole occupied space, including
the core states. Mixing of the core and valence bands during
the construction of a common set of Wannier functions would
lead to loss of orbital invariance in frozen core MP2-F12 cal-
culations. Indeed, the valence WFs in this case would be con-
taminated with some core contributions, while the canonical
frozen core MP2-F12 would be free of such contamination.
To avoid this problem, the localization of the core and va-
lence WFs is carried out in two independent procedures, each
employing only the bands of core and valence Bloch states,
respectively.

The individual 3-index (as well as 2-index) AO integrals
are computed using a module, written by Manby for the Mol-
pro program,97 and adopted in the CRYSCOR package under
a License agreement. In the integrals involving the correla-
tion factor (6), the latter is approximated by 6 Gaussian-type
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geminals, fitted to the Slater type function according to the
procedure of Ref. 13. The computational scheme and the al-
gorithms for calculating and processing the 3- and 4-index
integrals are similar to those, developed for the periodic den-
sity fitted LMP2 method,64, 65, 108 and are in detail explained
in the supplementary material.77

In our implementation, the occupied and virtual orbitals
of the corresponding domains are not explicitly added to the
auxiliary basis as suggested in Ref. 78 (the so-called CABS
approach). Instead, the initial auxiliary basis set is assumed
to be rich enough to already contain those (ABS approach,
Ref. 6). In principle, this means that Eq. (15) is fulfilled only
approximately. However, as calculations on LiH show (see
Sec. IV C), this approximation appears not to be harmful,
since the sensitivity of the results with respect to the quality
of the RI basis turns out to be weak.

Finally, we note that the CRYSTAL code109 presently
cannot process basis functions with angular momentum
higher than 3. This prevents from using the full correlation
consistent orbital basis sets of quadruple-zeta quality and
higher in the periodic LMP2 calculations, since the high an-
gular momentum AOs (beyond f) have to be removed from
the basis set (see, e.g., Ref. 110). In the context of the
F12 method, this limitation also means that the Fock matrix
(which is calculated on the CRYSTAL side) in the auxiliary
basis is available only if the latter does not contain g-GTOs or
higher. In the formalism of the 3*A ansatz, the Fock matrix
in the auxiliary basis does not appear. In more sophisticated
F12-Ansätze,13 however, such matrix (or the exchange part
thereof) is needed. Therefore, with the present version of the
CRYSTAL code the F12 treatment is effectively limited to the
3*A approximation. Other F12-approaches could be in princi-
ple possible, but with small RI-basis, e.g., like in the ansatz 1,
which employs the orbital basis set for the RI.13 This ansatz,
however, is known to provide relatively poor results and is
thus impractical.6

Present unavailability of the Fock matrix in the RI ba-
sis also prevents us from using the RI basis to correct the
HF basis set error (the so-called CABS singles approach),27

commonly applied in molecular F12 studies. This technique
is similar to the one used for correcting HF in the dual basis
set scheme,71, 111 and consists of adding the first-order sin-
gles contribution to the energy, which are calculated from the
occupied-complementary auxiliary block of the Fock matrix.

IV. CALCULATIONS

To test the performance of the local LMP2-F12 method
we apply it the LiH crystal. This system has been recently
studied at the correlated level by several groups, using both
AO and plane wave basis sets in the framework periodic, as
well as finite cluster approaches.47, 50, 55, 58, 112–114 It is virtu-
ally the only crystalline system, for which estimates for the
basis set limit of the MP2 correlation energy have been bench-
marked in the literature and thus can be used as a reference in
this work. Besides, for this crystal a hierarchy of AO basis
sets for periodic calculations has been constructed, providing
progressively improved description.113

TABLE I. The RI-, virtual (PAO-), and occupied-orbital domains, corre-
sponding to the reference WF in the LiH crystal. The domains are specified
by the number of the coordination spheres (stars) of atoms (for the PAO- or
RI-domains) or WFs (for the occupied-orbital domains) around the reference
WF. The type and the number of the atoms in the given star as well as the
distance to the reference WF are also provided. For the occupied-orbital do-
mains the valence WFs are centered on H atoms and core WFs on Li.

Stars Type of atoms Rcut (Å) Nat/NWF

0 H 0 1
1 Li 2.0420 7
2 H 2.8878 19
3 Li 3.5368 27
4 H 4.0840 33
5 Li 4.5661 57
6 H 5.0019 81
7 H 5.7756 93

A. Specification of the computational parameters

Lithium hydride is a cubic crystal with two atoms and
two correlated electrons (within the frozen core approxima-
tion) per cell. For the compatibility of the results of the current
study with those reported earlier, we employ the experimental
lattice parameter of 4.084 Å.

High symmetry of the crystal allows for substantial re-
duction of the pair-list size. At the same time, the symmetry
adapted domains grow in big steps, as they have to include
complete coordination spheres of atoms or WFs, surrounding
a given WF. The information on the domains, corresponding
to the first few coordination spheres used in the present work,
is given in Table I.

Since the standard molecular AO basis sets are very dif-
ficult to process in the periodic HF calculations, the hierar-
chy of the orbital basis sets used in the calculations requires
special attention. First, the basis sets A ([4s3p2d1f] for both
Li and H atoms) from Ref. 113, as a representative of a de-
cent quality periodic basis set was taken. This basis set does
not yet cause convergence problems, while the HF energy is
already close to the basis set limit value.113 For MP2, how-
ever, this basis set yields the energy above the cc-pVTZ result,
obtained with finite clusters. Richer basis sets of Ref. 113:
A(B) ([5s4p3d2f] for Li and [4s3p2d1f] for H) and A(BC)
([6s5p4d3f] for Li and [5s4p3d2f] for H) were also employed.
These basis sets could be processed only in the dual basis set
framework,71 where additional shells of AOs, denoted by a
symbol in parenthesis, were used to span the virtual space
only. The basis set A(B) differs from A only by additional s-,
p-, d-, and f-shells on the Li atom with the exponents 0.14 a.u.
for s-, p-, and d-shells and 0.18 a.u. for the f-shell. These expo-
nents are noticeably lower than those of the most diffuse Li’s
AOs in the basis set A (0.21, 0.22, 0.6, and 0.7 a.u., respec-
tively), but considerably higher than in molecular basis set,
recommended for the F12 calculations (e.g., 0.0076, 0.0091,
0.041, and 0.081 in aug-cc-pVTZ115). Therefore, for the ref-
erence in the discussion below we introduce a term “slightly
diffuse orbitals” to characterize the B-part of the basis A(B)
with respect to both the basis set A and diffuse molecular
basis sets.
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In this work we also employed several smaller basis sets:
(i) the [3s2p1d] basis of Ref. 116 for Li and the [2s1p] cc-
pVDZ basis117 for H, denoted as A1; (ii) the same basis set for
Li as in A1 and the [3s2p1d] cc-pVTZ basis for H, denoted as
A2; (iii) the [4s3p2d1f] basis set A of Ref. 113 for Li and the
[3s2p1d] cc-pVTZ basis for H, denoted as A3.

In principle, standard molecular basis sets, including the
augmented ones, could be formally used in periodic LMP2 or
LMP2-F12 calculations in the dual basis set format. However,
the computational cost of such calculations (i.e., the Fock ma-
trix generation and subsequent correlated treatment) would
become enormous due to inefficiency of direct space pre-
screening in the presence of diffuse AOs. At the same time,
due to the substantial redundancy appearing in such basis sets
within a periodic grid of centers, the diffuse orbitals do not
essentially improve the description, as was demonstrated in
Ref. 113 [the basis set A(BCDE)].

As auxiliary basis sets we employed the standard MP2
fitting basis sets of Weigend,118 optimized for the orbital ba-
sis set of the cc-PVXZ family. Since the WFs in LiH are s-like
orbitals, in the present study the same auxiliary basis sets were
used for both the density fitting and RI. The fit domains were
chosen to consist of 12 atoms (or more if dictated by the sym-
metry of the corresponding |irR) density). Since the Fock
matrix, Wannier functions, and the symmetry information are
provided by the CRYSTAL code, which, as noted above, has
a limitation on the AO angular momentum,109 in the present
implementation of the LMP2-F12 program it cannot exceed
Lmax = 3 for orbital basis set and Lmax = 4 for auxiliary ba-
sis set. The functions of standard basis sets, having the angu-
lar momentum beyond these limits, were disregarded in the
calculations.

Technical parameters of the calculations were the follow-
ing. In the HF calculation the reciprocal space was sampled by
12×12×12 k-mesh, and the tolerances of 10−8 (ITOL1-3),
10−25 (ITOL4), and 10−100 (ITOL5) were chosen to control
the accuracy of the integral evaluation.109 Wannier functions
and PAOs were generated with the 8×8×8 mesh. In the LMP2
calculations, the electron repulsion integrals for the pairs with
up to 8 Å of the interorbital distance were calculated by den-
sity fitting, from 8 till 12 Å by multipole approximation. The
energy contribution from the pairs beyond 12 Å was estimated
by extrapolation of the pair energies according to the C6R−6

law,65 where the pair specific C6 parameters were fitted to the
actual decay of the pair-energies in the range from 8 till 12 Å.
If not stated otherwise, the value of 1 a.u. was taken for the
parameter γ of the correlation factor (6). Other parameters of
the calculations are specified below for each of the calcula-
tions explicitly.

B. Orbital basis set convergence

First we investigate the general performance of the
LMP2-F12 method with respect to the orbital basis set it is
combined with. In molecular studies the F12 correction is
known to be a very efficient way to accelerate the basis set
convergence. However, for high accuracy it is still recom-
mended to employ an orbital basis set of not lower than of a
triple zeta-quality, augmented with diffuse functions. Alterna-
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FIG. 1. Dependence of the LMP2 and LMP2-F12 correlation energy of the
LiH crystal (a), and of the difference between correlation energies of LiH
crystal and LiH molecule (with the same interatomic distance as in the crys-
tal). For the basis set specifications see text and Ref. 113. The basis-set
axis is scaled such that the unity length corresponds to the addition of one
shell of AOs in each angular momentum for one of the atoms (either Li or
H). In all the calculations, the MP2 auxiliary basis sets of cc-pV5Z qual-
ity, the 19-atom/WF domains, and 6 Å for the pair-list cutoff radius were
used. For the correlation energy differences, both the counterpoise (CP) cor-
rected (solid lines) and uncorrected (dashed lines) results are shown. In the
former case, the LiH molecule was surrounded by 17 atoms, allowing for the
same PAO and RI-domains as in the periodic calculation. For the reference,
results of periodic MP2 calculations of Ref. 50, employing the cc-XZVP,
X = D,T,Q basis sets, and finite-cluster calculations using hierarchical
method of Ref. 58, employing cc-pVXZ, X = T,Q basis sets, are also
given: blue and red horizontal lines, respectively. The window of the com-
plete basis set estimates (CBSE) for the MP2 correlation energy spans
the values, obtained in periodic AO,50, 113 plane-wave,47 and finite clus-
ter approaches.58, 114 For the CBSE of the correlation energy difference,
the upper (MP2/cc-pVQ/5Z-extrapolated, −19.074 kcal/mol) and lower
(MP2-F12/aug-cc-pV5Z, −19.156 kcal/mol) CBSEs for LiH molecule were
subtracted from, respectively, the lower (−26.311 kcal/mol) and upper
(−25.941 kcal/mol) edges of the periodic CBSE window.

tively, special basis sets developed for F12 calculations can be
used,119 which also include rather diffuse functions. As dis-
cussed above, this is not an option for periodic AO-based cal-
culations, where diffuse orbitals and thus the standard molec-
ular basis sets require huge computational effort.

Fig. 1(a) presents the results of frozen core LMP2 and
LMP2-F12 calculations employing a series of basis sets spec-
ified in Sec. IV A. As benchmarks we use the results of the
periodic MP2 calculations with the cc-DZVP, cc-TZVP, and
cc-QZVP basis sets,50 and those obtained with the cc-pVTZ
and cc-pVQZ basis sets120 using the finite-cluster approach of
Ref. 58. A window of frozen core complete basis set estimates
(CBSE) from Refs. 47, 50, 58, 113, and 114 is also shown.
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The convergence of the correlation energy with basis set in
the periodic LMP2 calculations is indeed rather slow. The
correlation energy with basis set A, which is formally richer
that triple-zeta, is below the cc-TZVP result, but still notice-
ably above the cc-pVTZ one. Augmentation of the basis set A
with further shells [i.e., employing the A(B) and A(BC) ba-
sis sets] lowers the energy to the quadruple-zeta benchmarks,
yet remaining above the cc-pVQZ result. In Ref. 113 a further
expansion of the basis set was considered, which, however,
did not show a noticeable improvement until bond-centered
orbitals were included.

Addition of the F12 correction substantially improves the
description. The LMP2-F12 correlation energy with the A3
basis is already not far from the quadruple-zeta benchmark
results, while the basis A drops below them, appearing within
sub-kcal/mol proximity of CBSE. The A(B) and A(BC) en-
ergies are inside the CBSE window and, judging by the con-
vergence pattern, at this level they are essentially converged.
Analysis of the A and A(B) results clearly indicates the impor-
tance of slightly diffuse orbitals for F12 calculations. Indeed,
it is these very orbitals that allow the LMP2-F12 energy to
reach the limit value.

In molecular studies, the remaining error of the F12 treat-
ment is known to be systematic, making this method even
more effective for the physically relevant energy differences
than for the formal total correlation energies. The LiH crys-
tal is, however, not a good example in this respect, since the
whole frozen core correlation energy contributes to the co-
hesive energy (the respective neutral atoms have no valence
electron pairs). Nevertheless, in order to investigate the per-
formance of the F12 method for the energy differences, we
study the interaction energy in LiH with the reference to the
LiH molecule (taken with the same Li-H distance as in the
crystal). As is seen from Fig. 1(b) the deficiencies in the MP2-
F12 energies of the LiH crystal and the molecule are indeed
systematic and to a large extent cancel in the energy differ-
ence. The LMP2-F12 interaction energies with basis sets A3
and A are less than just half a kcal/mol off the CBSE, and the
A(B) and A(BC) basis sets provide converged results. Inter-
estingly, in molecular calculations the F12-A ansatz (in con-
trast to F12-B or F12-C ansätze) usually overestimates the
basis set limit result.13 Yet, in LiH this is not the case, either
for crystal or a molecule.

The LMP2-F12 interaction energies depicted in Fig. 1(b)
with filled symbols (and solid lines) were calculated with
counterpoise (CP) correction, i.e., the LiH molecule was sur-
rounded with the 17 ghost atoms (5 Li and 12 H atoms) to
form a 19 atom domain around the H atom (see Table I). How-
ever, since the F12 correction is expected to yield a nearly ba-
sis set limit result, the CP correction might be considered as
unessential. Apparently this is not the case for LiH and the
basis sets employed. With those, if only two centers of the
LiH molecule are populated with atomic orbitals, the LMP2-
F12 interaction energies still contain a sizable basis set su-
perposition error (BSSE), even with the basis sets A(B) and
A(BC). The reason why LMP2-F12 with periodic basis sets
does not yield the limit for the LiH molecule, is the absence
of really diffuse functions in these basis sets, which in molec-
ular case become vital. Indeed, for these two basis sets, the

periodic correlation energy is virtually converged, while the
molecular one is not (−18.65 kcal/mol with MP2-F12/A(BC)
vs −19.07 kcal/mol from MP2/cc-pVQ/5Z-extrapolation or
−19.16 kcal/mol with MP2-F12/aug-cc-pV5Z). At the same
time, with aug-cc-pVTZ MP2-F12 gives for the LiH molecule
virtually the basis set limit result (−19.07 kcal/mol). Fortu-
nately, this deficiency can be to a large extent compensated
by expansion of the orbital domains, possible only by inclu-
sion of ghost atoms. In our case it is equivalent to performing
a counterpoise corrected calculation of the interaction energy.

To summarize, for accurate LMP2-F12 results, the or-
bital basis sets should contain slightly diffuse orbitals in
the periodic case (possibly processed via the dual basis set
technique) and really diffuse ones in molecular calculations.
Since in practical applications of the periodic LMP2 method
the basis sets of the size/quality of A3 or A are usually
utilized,71, 110, 121–124 for such basis sets, the lack of the diffuse
functions has to be compensated by expansion of the PAO-
domains (see also discussion in Sec. IV C). In the molecu-
lar reference calculations, such a domain expansion might re-
quire additional ghost centers to be added according to stan-
dard counterpoise procedure. The calculations on LiH suggest
that even with such basis sets a sub-kcal/mol accuracy, com-
monly sufficient for applications, can be reached.

C. Influence of the local approximations

Finally, we investigate the influence of local approxi-
mations on the stability of the LMP2-F12 method. Table II
compiles the LMP2-F12 correlation energies, computed with
the basis set A and different domain or pair-list truncations,
auxiliary basis sets and values for the correlation parame-
ter γ , as well as the energy difference for the cases where
the corresponding parameters could be varied also in the LiH
molecule. As expected, the F12 treatment is effectively short-
range, allowing for truncation of the pair list on the basis
of the orbital spatial separation. Moreover, this truncation
can be more aggressive than that for the weak/distant pairs
in the LMP2 calculations (which also depends on the over-
lap between orbitals in the pair). As is seen from Table II,
only the extreme diagonal-pair-only truncation leads to inac-
curate results. If the first nearest WF neighbours are included
(Rcut

ijJ = 3 Å, see Table I), the result is already sufficiently

close to the converged one, and increase of the Rcut
ijJ to 8 Å

(i.e., the default cutoff distance for the weak pairs in LMP2)
is not necessary.

To analyze the influence of the domain approximations,
we start with the PAO-domains [ijJ ]virt. The convergence
of the results with PAO-domain size is faster than that for
the LMP2 correlation energy alone, but slower than expected
from molecular local F12 studies.21 Convergence in the to-
tal energies is achieved only after extension of the domain to
19 atoms. Similar pattern is observed for the energy differ-
ence. We attribute such a behaviour to the lack of the slightly
diffuse functions in the orbital basis (see the discussion in
Sec. IV B). Extended domains compensate for the absence
of such functions in the virtual space. For the A(B) ba-
sis, which does include slightly diffuse functions, a nearly
converged result is achieved already with 7-atom domain:
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TABLE II. The periodic LMP2-F12 correlation energy for LiH crystal
(E[2] = E

[2]
LMP 2 + E

[2]
F12), calculated using different PAO-, occupied-orbital

and RI-domains, auxiliary basis sets, pair-list cutoff radius Rcut
ijJ , and explicit

correlation factor parameter γ . Only one parameter is varied at a time. The
reference calculation corresponds to the 19-atom/WF domains, the auxiliary
basis set of VTZ quality,118 Rcut

ijJ =6 Å, and γ = 1.0 a.u. The LMP2 energies
were calculated with the V5Z-quality fitting basis.118 The correlation inter-
action energy (	E[2] = E

[2]
cryst. − E

[2]
mol.) of the LiH crystal with respect to the

LiH molecule with the same Li-H distance as in the crystal is also given for
the cases, where the parameter could be varied simultaneously in the crystal
and the molecule. The LiH molecule was calculated with additional 17 near-
est neighbour ghost atoms, cut out from the periodic structure and populated
with the corresponding atomic orbitals. All energies are in kcal/mol.

Varied parameter Parameter value E
[2]
LMP 2 + E

[2]
F12 	E[2]

Rcut
ijJ /Å 0 −25.285

3 −25.672
6 −25.692
8 −25.693

[ijJ ]virt/atoms 1 −23.494 −5.541
7 −25.498 −6.593
19 −25.692 −6.711
27 −25.717

[ijJ ]occ/WFs 1 −26.105
7 −26.023
19 −25.692
27 −25.692
33 −25.683
81 −25.676

[ijJ ]RI/atoms 1 −29.470 −9.612
7 −25.693 −6.712
19 −25.692 −6.711
27 −25.691

Auxiliary basis VTZ −25.692 −6.711
VQZ −25.600 −6.726
V5Z −25.597 −6.727

γ /a.u. 0.8 −25.688 −6.730
1.0 −25.692 −6.711
1.2 −25.647 −6.677

−26.201 kcal/mol vs −26.243 kcal/mol with 19-atom
domain.

The occupied-orbital domains [ijJ ]occ, unlike the virtual
ones, have to be complete from the onset, in a sense that they
should guarantee strong orthogonality in the projector (7).
They should contain all WFs, which have a non-negligible
overlap with the WFs i and jJ of the pair. As follows from
Table II the occupied orbital domains should be extended at
least up to the second nearest neighbours. However, since the
number of occupied orbitals per cell is much smaller than that
of PAOs or auxiliary functions, extension of these domains is
not problematic.

Of the major importance for the efficiency of the LMP2-
F12 is the effect of the quality of the RI basis sets and size
of the RI-domains on the results. Indeed, the most expensive
steps of the calculation are evaluation and processing of the
integrals involving RI-auxiliary orbitals. A need for extended
RI-domains would automatically lead to enlargement of both
united RI- and united fit-domains, making calculation of the
3-index (iαA|PP) integrals quite expensive. Besides, since

the quality of the fitting basis set has to be adapted to that
of the RI basis set, the density fitting procedure for the inte-
grals with the RI orbitals has the unfavorable quadratic scaling
with RI basis set size, and computation of the DF coefficients
DiαA

PP (Eq. (33)) even cubic scaling. At the same time, within
the ABS approach,6 used in our method, inadequately small
RI basis set can compromise the correctness of the strong or-
thogonality projector, since Eq. (15) then holds only approx-
imately. Fortunately, the present results demonstrate a very
weak sensitivity of the interaction and even total energies to
the size of the RI basis. Only an extreme case of 1-atom RI-
domain is inappropriate, while starting from 7-atom domains
the energy virtually does not change. The influence of the aux-
iliary basis set quality is insignificant too, especially so for the
energy differences. This suggests that auxiliary basis sets of
triple-zeta quality and modest RI-domains (e.g., chosen the
same as the PAO domains) could be sufficient to reach the
sub-kcal/mol accuracy in periodic LMP2-F12 calculations.

Finally, we note that variation of the correlation factor
parameter γ does not noticeably affect the results. This is in
line with molecular studies,125 reporting a very weak depen-
dence of the MP2-F12 correlation energy on this parameter
for a Slater-type geminal as the correlation factor. Although
the dependence of the energy on this parameter is not exactly
systematic, such that the discrepancy in the interaction ener-
gies is roughly as large as in the total energies, it does not
exceed a few hundredths of a kcal/mol.

V. CONCLUSIONS

A periodic local MP2-F12 method in the fixed-amplitude
3*A ansatz, using AO basis set, is described. The method is
formulated in the direct space, employing WFs for the occu-
pied space, PAOs for the virtual space, and atomic-centered
orbitals for the RI space. Both translational and point-group
symmetry are exploited. The point-group symmetry treatment
is based on the site symmetry of the WF centroids.

Locality of the explicit correlation factor, chosen in a
form of a Slater-type geminal, allows for truncation of the
list of the explicitly correlated electron pairs on the basis
of spatial proximity of the localized orbitals, representing
these electrons. Furthermore, in the strong-orthogonality pro-
jector, the virtual, occupied, and RI spaces are restricted to
pair-specific domains, comprising orbitals spatially close to
at least one of the two WFs of the pair. The 4-index inte-
grals are evaluated by means of direct space density fitting,
with the fitting functions restricted to orbital-product-specific
fit-domains. The local approximations reduce both the scal-
ing of the computational cost to asymptotically linear and the
prefactor.

Test calculations on the LiH crystal indicate that the F12
treatment indeed substantially accelerates the basis set con-
vergence. With basis sets of triple-zeta quality, commonly
used in periodic LMP2 applications, results of sub-kcal/mol
proximity to the basis set limit can be obtained. Yet, for reach-
ing the limit, the orbital basis sets should contain a little bit
more diffuse orbitals, than usually employed in periodic stud-
ies (designated here as slightly diffuse). In case such functions
become harmful for the underlying periodic HF method, they
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can be treated within the dual basis set scheme. An alternative
to diffuse functions could be inclusion of a small number of
plane waves in the basis set, instead. Plane waves are mutually
orthogonal and thus are not expected to cause redundancies in
the basis. Development of combined AO/plane wave basis set
for periodic methods is in progress in our group.

The results converge with the domain size reasonably
fast, especially so for the RI-domains. The PAO domains
should, however, be extended to the next nearest neighbours
with respect to the standard ones. However, inclusion of the
slightly diffuse orbitals in the AO basis alleviates this problem
as well. Furthermore, orbital specific virtuals (OSVs) could
be an efficient substitute for PAOs in this respect, since the
former adapt themselves to span the virtual space in an op-
timal way (at least for diagonal pairs) without increasing the
amount of virtual orbitals in the domain. A periodic LMP2
method based on OSVs has been already implemented in our
group,126 and adaptation of the F12 part to OSVs will be re-
ported in one of the forthcoming publications.

After optimization and parallelization of the LMP2-F12
code, safe values for the computational parameter defaults
will be assessed and the method will be included in the
CRYSCOR package, to be used in practical applications. We
also consider the LMP2-F12 method as an essential ingre-
dient of accurate quantum chemical hierarchical scheme for
crystalline systems, where a higher-order treatment is to be
evaluated as a correction to the basis set limit periodic MP2
result. The third and higher order corrections (i.e., the differ-
ence between, e.g., CCSD(T) and MP2 energies) are usually
of a shorter range and of a smaller magnitude than the sec-
ond order energy and less sensitive to the basis set quality
than the latter. Hence, such energy corrections can be calcu-
lated to a good accuracy, employing only moderate basis sets
and cruder local approximations, and added to the periodic
HF+LMP2-F12 result. Presently, calculation of the higher or-
der corrections for periodic systems can be done using finite-
cluster incremental scheme,127 but development of fully auto-
mated periodic coupled cluster treatment is also in progress.
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APPENDIX: POINT GROUP SYMMETRY TREATMENT
OF THE PAIR-LIST IN THE DIAGONAL PERIODIC
LOCAL F12 FORMALISM

Consider a set of WFs {W (γi )
i ′ (r − qi1)}, centered on the

point qi1 and forming a basis of an irrep γ i of the site group
Sqi1 . The index i′ counts the basis vectors of the irrep γ i.
The site group Sqi1 comprises those symmetry operations
(gw |̂aw + Rw)(i1) from the crystal’s space group, which do not
change the vector qi1:

(gw |̂aw + Rw)(i1)qi1 = qi1, w = 1, 2, . . . , Ni
site, (A1)

where Ni
site is the number of symmetry elements in the

site group Sqi1 , and the index i1 means the first vector
qi1 from the star of Ni

star symmetry equivalent points qit,
t = 1, 2, . . . , Ni

star is considered. Although the elements of
Sqi1 can contain non-zero proper Rw and/or improper (frac-
tional) aw translations, depending on the choice of the origin,
this group is isomorphic to a certain point group S(i), contain-
ing orthogonal operations g(i)

w only. The groups S(i) and Sqi1

(as well as Sqit
for any t) have therefore a common set of ir-

reps. By application of the symmetry operations from Sqi1 the
WFs {W (γi )

i (r − qi1)} transform according to the irrep γ i:

(gw |̂aw + Rw)(i1)W
(γi )
i ′ (r − qi1)

=
∑
i ′′

D
(γi )
i ′′i ′

(
g(i)

w

)
W

(γi )
i ′′ (r − qi1), (A2)

where D(γi ) (gw) is the matrix of the irrep γ i, corresponding
to the element g(i)

w of the point group S(i).
Now we choose a particular set of Ni

star operations
(gt |̂at + Rt )

(i1)
star that generate the whole star of qit points from

qi1:

(gt |̂at + Rt )
(i1)
star qi1 = qit , (A3)

and, thus, the WFs, centered on these points:

W
(γi )
i ′ (r − qit ) = (gt |̂at + Rt )

(i1)
starW

(γi )
i ′ (r − qi1). (A4)

Within this choice, a general symmetry element (g|̂a + R) of
the space group, that transforms the point qi1 into qit + RR,
can be always represented as a product of 3 operations:

(g|̂a + R) = (E |̂RR)(gt |at + Rt )
(i1)
star (gw |̂aw + Rw)(i1),

(A5)

where (gt |at + Rt )
(i1)
star has to match the point qit, the index w

in (gw |̂aw + Rw)(i1) is obtained from the relation

g = gtgw, (A6)

and the translation RR has to satisfy the equation

R = RR + at + Rt + ĝt (aw + Rw). (A7)

In the list of WFs pairs, which is the target object for the
symmetry manipulations, the first WFs i are always centered
in the zero cell. Hence, from the whole (infinite) set of possi-
ble symmetry operations (g|̂a + R) of the space group, only
those are relevant, for which RR is zero, or

R = at + Rt + gt (aw + Rw). (A8)

These operations form a group, isomorphic to the point
group of the crystal. Application of a symmetry operation
(g|̂a + R) (with the restriction (A8) for the R translation) to
W

(γi )
i ′ (r − qi1) then gives

(g|̂a + R)W (γi )
i ′ (r − qi1) =

∑
i ′′

D
(γi )
i ′′i ′

(
g(i)

w

)
W

(γi )
i ′′ (r − qit ).

(A9)

The second WF W
(γj )
j ′ (r − qj1 − RJ ) in the pair behaves

under application of symmetry operations in a similar way,
but now with respect to the irrep γ j of site group Sqj1 , cor-
responding to the point Sqj1 . The difference is, however, that
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it is not necessarily centered in the zeroth cell. This can be
formally expressed as

W
(γj )
j ′ (r − qj1 − RJ ) = (E |̂RJ )W

(γj )
j ′ (r − qj1). (A10)

With that, the result of the action of (g|̂a + R) on this function
is

(g|̂a + R)W
(γj )
j ′ (r − qj1 − RJ )

=
∑
j ′

D
(γj )
j ′′j ′

(
g

(j )
w′

)
W

(γj )
j ′′ (r − qj t ′ − RJ ′), (A11)

with

RJ ′ = RR′ + ĝRJ , (A12)

where the particular w′, t′, and R′ index values depend
on the (g|̂a + R) operator and the choice of the set (gt ′ |̂at ′

+ Rt ′)(j1) for generating the star of the points qjt, analogously
to Eqs. (A5), (A6), and (A7).

Since the kernels of the integrals Vi ′j ′J ,p and Bi ′j ′J ,p are
totally symmetric, application of the operation (g|̂a + R) to
both orbitals i and jJ simultaneously does not change the
value of the integral. For a general diagonal integral

IijJ ,p = 〈ijJ |Î12|ijJ , p〉 (A13)

with a totally symmetric kernel Î12, this leads to

Ii ′j ′J ,p = I(g|̂a+R)(i ′j ′J ),p

=
∑
i ′′i ′′′

(
D

(γi )
i ′′i ′

(
g(i)

w

) )∗
D

(γi )
i ′′′i ′

(
g(i)

w

)
×

∑
j ′′j ′′′

(
D

(γj )
j ′′j ′

(
g

(j )
w′

))∗
D

(γj )
j ′′′j ′

(
g

(j )
w′

)
×〈i ′′t j ′′

t ′J ′|Î12|i ′′′t j ′′′
t ′ J ′〉, (A14)

where the notation

|i ′t 〉 = Wi ′ (r − qit ) (A15)

was introduced. Equation (A14) shows that a diagonal integral
can be expressed as a linear combination of symmetry related
integrals, which are, however, not necessarily diagonal, unless
both irreps γ i and γ j are one-dimensional.

At the same time, the F12-energy (16) in the orbital-
invariant diagonal formalism is linear with respect to the sum
of the integrals of the type (A13). Summing up the right- and
left-hand sides of Eq. (A14) over the basis vectors i′ and j′

of the irreps γ i and γ j, and using the unitarity of the irrep
matrices one obtains∑

i ′∈γi

∑
j ′∈γj

Ii ′j ′J ,p =
∑
i ′∈γi

∑
j ′∈γj

I(g|̂a+R)(i ′j ′J ),p. (A16)

This shows that although the individual integrals involving
WF pairs i ′j ′J and i ′t j

′
tJ ′, corresponding to symmetry equiv-

alent centers, might not be identical, sums of such integrals
over the vectors of the irreps γ i and γ j, and thus the related
energy contributions, are, indeed, the same. Therefore it is
sufficient to process only the pairs, where the WFs are cen-
tered on qi1 and qj1 + RJ , and multiply the corresponding
pair energies by symmetry weight factors, equal to the num-
ber of elements in the stars of the center pairs. We note that

for the orbital-variant diagonal F12 ansatz,18, 21, 128 where the
energy is not linear with respect to the sum of the integrals,
such a symmetry equivalence of the pair energies holds only
for one-dimensional irreps.
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