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Dendroidal sets as models for connective spectra
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Abstract

Dendroidal sets have been introduced as a combinatorial model for homotopy
coherent operads. We introduce the notion of fully Kan dendroidal sets and
show that there is a model structure on the category of dendroidal sets with
fibrant objects given by fully Kan dendroidal sets. Moreover we show that the
resulting homotopy theory is equivalent to the homotopy theory of connective
spectra.
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1. Introduction

The notion of a dendroidal set is an extension of the notion of a simplicial
set, introduced to serve as a combinatorial model for 1-operads [MW07]. The
homotopy theory of 1-operads is defined as an extension of Joyal’s homotopy
theory of 1-categories to the category of dendroidal sets. More precisely there
is a class of dendroidal sets called inner Kan dendroidal sets (or simply 1-
operads) which are defined analogously to inner Kan complexes (also known as
1-categories) by lifting conditions [MW09]. These objects form fibrant objects in
a model structure on the category of dendroidal sets, which is Quillen equivalent
to coloured topological operads as shown in a series of papers by Cisinski and
Moerdijk [CM13a, CM13b, CM11].

The category of dendroidal sets behaves in many aspects similarly to the
category of simplicial sets. One instance of this analogy is the model structure
described above generalizing the Joyal model structure. Another instance is the
fact that there is a nerve functor from (coloured) operads into dendroidal sets
generalizing the nerve functor from categories into simplicial sets. But there are
two important aspects of the theory of simplicial sets that have not yet a counterpart
in the theory of dendroidal sets:

1. Kan complexes and the Kan-Quillen model structure on simplicial sets1.

1In fact there is a model structure constructed by Heuts [Heu11a] that could be seen as a
counterpart. We comment on this model structure later.
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2. The geometric realization of simplicial sets.
The two aspects are closely related since the geometric realization j�j W sSet! Top
is a left Quillen equivalence with respect to the Kan-Quillen model structure on
simplicial sets. With respect to the Joyal model structure the geometric realization
functor is still a left Quillen functor (but not an equivalence), as follows from the
fact that the Kan-Quillen model structure is a left Bousfield localization of the Joyal
model structure. The problem of finding counterparts for these structures in the
theory of dendroidal sets has been raised almost with the introduction of dendroidal
sets, see e.g. [Wei11, Section 5].

In the present paper we construct analogues of 1 and 2 for the category of
dendroidal sets. More precisely we introduce the notion of a fully Kan dendroidal
set which (in analogy to a Kan complex in simplicial sets) has fillers for all horns
of dendroidal sets and not just for inner horns (as for inner Kan dendroidal sets),
see Definition 3.1. As a first result we show that a certain subclass of fully Kan
dendroidal sets, called strictly fully Kan dendroidal sets, spans a category equivalent
to the category of Picard groupoids, Corollary 3.4. This already provides a hint as to
what the geometric realization might be since it is well known that Picard groupoids
model all connective spectra with vanishing �n for n� 2, [May08, JO12].

In fact, fully Kan dendroidal sets model all connective spectra. This is the main
result of this paper:

Theorem (Theorems 4.2, 4.6 and 5.4) There is a model structure on dendroidal
sets, called the stable model structure, with fibrant objects given by fully Kan
dendroidal sets which is a left Bousfield localization of the Cisinski-Moerdijk model
structure. Moreover the stable model structure on dendroidal sets is Quillen
equivalent to connective spectra.

The stable model structure has good formal properties, i.e. it is left proper,
simplicial, tractable and combinatorial. Furthermore it allows for an explicit char-
acterization of weak equivalences between fibrant objects. The Quillen equivalence
between dendroidal sets and connective spectra factors through the category of
group-like E1-spaces.

The proof of our theorem is based on constructions of Heuts [Heu11a, Heu11b].
Heuts establishes a model structure on dendroidal sets, called the covariant model
structure, which lies between the Cisinski-Moerdijk model structure and the stable
model structure. Although we had at first obtained the stable model structure by
different techniques, in this paper we construct it as a left Bousfield localization of
the covariant model structure. This enables us to directly use another main result
of Heuts: there is a Quillen equivalence between the covariant model structure and
the model category of E1-spaces. Our Quillen equivalence (Theorem 5.4) can
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Dendroidal sets as models for connective spectra

then be derived by showing that the stable localization on the side of dendroidal
sets corresponds to the group-like localization of E1-spaces, see section 5. One
disadvantage of this construction is that establishing the explicit description of
fibrant objects is technically demanding, see sections 6 - 8.

Finally we want to mention that our results not only show that fully Kan
dendroidal sets form a model for Picard1-groupoids but also that the1-category
of Picard1-groupoids is a full reflective subcategory (in the sense of Lurie [Lur09,
Remark 5.2.7.9]) of the 1-category of 1-operads. The functor associating a
spectrum to a dendroidal set will be further investigated in [Nik13] and related to
the geometric realization of simplicial sets.

Acknowledgements. The authors thank Gijs Heuts, Ieke Moerdijk, and Markus
Spitzweck for helpful discussion and Konrad Waldorf for comments on the draft.
Special thanks to Urs Schreiber for the suggestion to look at fully Kan dendroidal
sets in order to find a geometric realization. The first author would also like to thank
the Croatian Science Foundation for financial support and the Radboud University
Nijmegen for its kind hospitality during the period in which this article was written.

2. Dendroidal sets and model structures

In this section we will review some facts from the theory of dendroidal sets without
always giving explicit references. For more details we refer the reader to the lecture
notes [MT10] and the papers [MW07, MW09].

First, we briefly recall the definition of the category of dendroidal sets. It is
based on the notion of trees. A (finite rooted) tree is a non-empty connected finite
graph with no loops equipped with a distinguished outer edge called the root and
a (possibly empty) set of outer edges not containing the root called leaves. By
convention, the term vertex of a tree refers only to non-outer vertices. Each tree T
generates a symmetric, coloured operad �.T / (in the category of sets) which has
the edges of T as colours and a generating operation for every vertex. Using this
construction we can define the category � which has finite rooted trees as objects
and the set of morphisms between trees T and T 0 is given by the set of operad maps
between operads �.T / and �.T 0/. Similarly to the definition of simplicial sets we
define the category of dendroidal sets as the presheaf category on �:

dSet WD Œ�op;Set�:

The dendroidal set represented by a tree T is denoted by �ŒT �. In particular for
the tree j with one edge which is also a leaf and a root, we set � WD �Œ j �.
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The inclusion of � into the category of coloured, symmetric operads induces a
fully faithful functor Nd W Oper ! dSet called the dendroidal nerve. We have
Nd .�.T //D�ŒT �.

There is a fully faithful embedding of the simplex category � into � by
considering finite linear ordered sets as linear trees. This induces an adjunction

iŠ W sSet dSet W i�

where the left adjoint iŠ is fully faithful (there is also a further right adjoint i� which
does not play a role in this paper).

The theory of dendroidal sets behaves very much like the theory of simplicial
sets. In particular, for each tree T there is a familiy of subobjects of �ŒT � in dSet
called faces. There are two types of faces: the inner faces which are labeled by the
inner edges of T and the outer faces which are labeled by the vertices of T with
exactly one inner edge attached to it. The boundary @�ŒT � of �ŒT � is by definition
the union of all faces of T . A horn is defined as the union of all but one face, see
[MW09] or [MT10]. We distinguish inner and outer horns and we write ƒaŒT �
where a is an inner edge or an outer vertex of T .

Definition 2.1 Let T be a tree with at least 2 vertices. We call a hornƒaŒT ���ŒT �
a root horn, if a is the unique vertex attached to the root.

The corolla Cn is the tree with one vertex and n leaves. There are nC 1 faces
of a corolla Cn, one for each colour (edge). The horns are the unions of all but one
colour, denoted by ƒaŒCn� where a is the omitted colour. We call this horn a leaf
horn if a is the root (i.e. the leaf horn is the inclusion of the leaves) and a root horn
otherwise.

Note that most trees do not have a root horn. A root horn can only exist, if the
tree is a corolla or the whole tree is concentrated over a single leaf of the root vertex.

Definition 2.2 A dendroidal setD is called inner Kan if it admits fillers for all inner
horns, i.e. for any inner edge e of a tree T and a morphism ƒeŒT �! D there is a
morphism �ŒT �!D that renders the diagram

ƒeŒT � D

�ŒT �

commutative. A dendroidal Kan complex is a dendroidal set that admits fillers for
all horns that are not root horns.
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Dendroidal sets as models for connective spectra

The class of inner Kan dendroidal sets has been introduced and studied in
[MW09, CM13a] and the class of dendroidal Kan complexes in [Heu11b]. The
main results are

Theorem 2.3 (Cisinski-Moerdijk) There is a left proper, combinatorial model
structure on the category of dendroidal sets with cofibrations given by normal
monomorphisms and fibrant objects given by inner Kan dendroidal sets. This
model category is Quillen equivalent to the model category of coloured topological
operads.

Theorem 2.4 (Heuts) There is a simplicial left proper, combinatorial model
structure on the category of dendroidal sets with cofibrations given by normal
monomorphisms and fibrant objects given by dendroidal Kan complexes. This
model structure is called the covariant model structure and is Quillen equivalent
to the standard model category of E1-spaces.

The slogan is that inner Kan dendroidal sets are a combinatorial model for
topological operads and dendroidal Kan complexes are a model for E1-spaces.
The weak equivalences are called operadic equivalences in the Cisinski-Moerdijk
model structure and covariant equivalences in the Heuts model structure. Note in
particular that the covariant model structure is simplicial in contrast to the Cisinski-
Moerdijk model structure. The simplicial enrichment in question is induced by the
Boardman-Vogt type tensor product on the category dSet, see [MW09].

3. Fully Kan dendroidal sets

Similarly to the Definition 2.2 of inner Kan dendroidal sets we give the following
definition.

Definition 3.1 A dendroidal set D is called fully Kan if it has fillers for all horn
inclusions. This means that for each morphism ƒaŒT � ! D (where a is an inner
edge or an outer vertex) there is a morphism �ŒT �!D rendering the diagram

ƒaŒT � D

�ŒT �

commutative. D is called strictly fully Kan if additionally all fillers for trees T with
more than one vertex are unique.

Remark 3.2 � A fully Kan dendroidal set is also a dendroidal Kan complex and
an inner Kan dendroidal set.
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� The reader might wonder why we do not impose uniqueness for corolla fillers
in the strictly fully Kan condition. The reason is that this forces the underlying
simplicial set to be discrete as we will see in Proposition 3.5.

Let C be a (small) symmetric monoidal category. We can define a coloured
operad OC as follows. The colours are the objects of C . The set of n-ary operations
is defined as

OC .c1;:::;cnIc/ WD HomC .c1˝ :::˝ cn;c/:

The †n-action is induced by the symmetric structure on C and the composition is
given by composition in C . Note that the expression c1˝ :::˝cn is strictly speaking
not well-defined in a symmetric monoidal category. One can either make a choice
of order in which to tensor (e.g. from left to right) or work with unbiased symmetric
monoidal categories. These are symmetric monoidal categories which have not only
two-fold, but also n-fold chosen tensor products. For a discussion of these issues
see [Lei04, Chapter 3.3].

We denote by Sym the category of symmetric monoidal categories together
with lax monoidal functors. Recall that a lax monoidal functor F W C ! D is a
functor together with morphisms F.c/˝F.c0/! F.c˝ c0/ for each c;c0 2 C and
1! F.1/ which have to satisfy certain coherence conditions but do not have to be
isomorphisms. The construction described above gives a fully faithful functor

Sym! Oper:

By composing with the dendroidal nerve Nd W Oper ! dSet for each symmetric
monoidal category C we obtain a dendroidal set which we denote by abuse of
notation with Nd .C /.

In [MW09] it is shown that a dendroidal set is strictly inner Kan if and only if
it is of the form Nd .P / for a coloured operad P . An analogous statement is true
for strictly fully Kan dendroidal sets. Recall that a symmetric monoidal category
is called a Picard groupoid if its underlying category is a groupoid and its set of
isomorphism classes is a group, i.e. there are ‘tensor inverses’ for objects.

Proposition 3.3 A dendroidal set D is strictly fully Kan if and only if there is a
Picard groupoid C with D ŠNd .C /.

Proof: First assume that D is strictly fully Kan. Then D is, in particular, a strictly
inner Kan dendroidal set and [MW09, Theorem 6.1] shows that there is a coloured
operad P with Nd .P / Š D. Let C be the underlying category of P . Since the
underlying simplicial set of Nd .P / is a Kan complex we conclude that C is a
groupoid.

By [Lei04, Theorem 3.3.4] an operad P comes from a unique symmetric
monoidal category as described above if and only if for every sequence c1;:::;cn
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of objects in P there is a universal tensor product, that is an object c together
with an operation t 2 P.c1;:::;cnIc/ such that for all objects a1;:::;ap;b1;:::;bq;c0

and operations t 0 2 P.a1;:::;ap;c1;:::;cn;b1;:::;bqIc0/ there is a unique element
s 2 P.a1;:::;ap;c;b1;:::;bqIc

0/ such that the partial composition of s and t in P is
equal to t 0. A sequence c1;:::;cn of objects of P determines a map from �c1t���t�cn
toNd .P /. SinceNd .P / is fully Kan we can fill the horn �c1t���t�cn !�ŒCn� and
obtain a morphism �ŒCn�!Nd .P /. The root colour of this morphism provides an
object c in P and the corolla provides an operation t 2 P.c1;:::;cnIc/. Assume we
have another operation t 0 2 P.a1;:::;ap;c1;:::;cn;b1;:::;bqIc0/. Then we consider the
tree T which is given by

:::

�vc1

c2

cn

::: ap b1 :::

�
a1

c

bq

c0

The operations t and t 0 provide a morphism ƒvŒT � ! NdP , where ƒvŒT � is the
outer horn of �ŒT � at v. Since D is strictly fully Kan we obtain a unique filler
�ŒT � ! Nd .P /, i.e. a unique s 2 P.a1;:::;ap;c;b1;:::;bqIc0/ with the sought
condition. This shows that c is the desired universal tensor product and that P
comes from a symmetric monoidal category.

The last thing to show is that C is group-like. For a and c in C we obtain
an object b together with a morphism t 2 P.a;bIc/ by filling the root horn
�a t �c ! �ŒC2�. But this is the same as a morphism a ˝ b ! c which is an
isomorphism since C is a groupoid. If we let c be the tensor unit in C then b is the
necessary inverse for a.

Now assume conversely that C is a Picard groupoid. Then the associated
dendroidal set Nd .C / admits lifts for corolla horns since tensor products and
inverses exist (the proof is essentially the same as above). It remains to show that
all higher horns admit unique fillers. To see this let T be a tree with more than one
vertex andƒaŒT � be any horn. A morphism�ŒT �!Nd .C / is given by labeling the
edges of T with objects of C and the vertices with operations in C of higher arity,
i.e. morphisms out of the tensor product of the ingoing objects into the outgoing
object of the vertex. The same applies for a morphism ƒaŒT �! Nd .C / where the
faces in the horn are labeled in the same manner and consistently.

The first observation is that for any labeling of the horn ƒaŒT � already all edges
of the tree T are labeled, since the horn contains all colours of T (for T with more
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than one vertex). If the horn is inner then also all vertices of T are already labeled
if we label ƒaŒT � and thus there is a unique filler. If a is an outer vertex and T has
more then two vertices then the same applies as one easily checks. Thus the horn
can be uniquely filled. Therefore we only have to deal with outer horns of trees with
exactly two vertices. Such trees can all be obtained by grafting an n-corolla Cn for
n� 0 on top of a k-corolla for k � 1. We call this tree Cn;k .

a1 a2 ��� an

Cn;k D bk�1 �

�b1

b2 ���

bk

c

A morphism from the non-root horn ƒvŒCn;k� ! Nd .C / is then given by a pair
consisting of a morphism f W a1 ˝ :::˝ an �! bk and a morphism g W b1 ˝ :::˝

bk�1˝ a1˝ :::˝ an �! c in C . Now we find a unique morphism g ı .id ˝ f �1/ W

b1˝ :::˝ bk ! c which renders the relevant diagram commutative, i.e. provides a
filler �ŒCn;k�! Nd .C /. A similar argument works for the case of the root horn of
Cn;k . This finishes the proof.

Corollary 3.4 The functor Nd W Sym! dSet induces an equivalence between the
full subcategory of Picard groupoids on the left and the full subcategory of strictly
fully Kan dendroidal sets on the right.

Proof: The functor Nd is fully faithful since both functors Sym ! Oper and
Oper ! dSet are. The restriction is essentially surjective by the last proposition.

One of the main results of this paper shows that a similar statement is valid for fully
Kan dendroidal sets that are not strict. They form a model for Picard1-groupoids,
as we will show in the next sections.

Finally we want to give a characterization of strictly fully Kan dendroidal sets
for which the corolla horns also admit unique fillers. Let A be an abelian group,
then we can associate to A a symmetric monoidal category Adis which has A as
objects and only identity morphisms. The tensor product is given by the group
multiplication of A and is symmetric since A is abelian. This construction provides
a fully faithful functor from the category AbGr of abelian groups to the category
Sym. Composing with the functor Sym! dSet constructed above we obtain a fully
faithful functor

i W AbGr! dSet:
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Now we can characterize the essential image of i .

Proposition 3.5 For a dendroidal setD the following two statements are equivalent

� D is fully Kan with all fillers unique.

� D Š i.A/ for an abelian group A.

Proof: We already know by Proposition 3.3 that strictly fully Kan dendroidal sets
are of the form Nd .C / for C a Picard groupoid. We consider the underlying space
i�D D NC . This is now a strict Kan complex in the sense that all horn fillers are
unique. In particular fillers for the horn ƒ0Œ1�!�Œ1� are unique which shows that
there are no non-degenerated 1-simplices in NC , hence no non-identity morphisms
in C . Thus C is a discrete category. But a discrete category which is a Picard
groupoid is clearly of the form Adis for an abelian group A. This shows one
direction of the claim. The other is easier and left to the reader.

4. The stable model structure

So far we have mentioned two model structures on dendroidal sets. In this section
we want to describe another model structure on the category of dendroidal sets
which we call the stable model structure. We construct it as a left Bousfield
localization of the covariant model structure. Note that the covariant model structure
is combinatorial and hence admits a left Bousfield localiztion with respect to any
set of maps. We will further explore the stable model structure to give a simple
characterization of fibrant objects and weak equivalences.

The idea is to localize at a root horn of the 2-corolla

C2 D �
a b

c

The relevant horn is given by the inclusion of the colours a and c, i.e. by the map

s WƒbŒC2�D �a t �c �!�ŒC2�: (1)

Note that there is also the inclusion of the colours b and c but this is essentially the
same map since we deal with symmetric operads.

Definition 4.1 The stable model structure on dendroidal sets is the left Bousfield
localization of the covariant model structure at the map s. Hence the stable
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cofibrations are normal monomorphisms between dendroidal sets and the stably
fibrant objects are those dendroidal Kan complexes D for which the map

s� W sHom.�ŒC2�;D/! sHom.�a t �c;D/

is a weak equivalence of simplicial sets.

The general theory of left Bousfield localization yields the following:

Theorem 4.2 1. The category of dendroidal sets together with the stable model
structure is a left proper, combinatorial, simplicial model category.

2. The adjoint pair
iŠ W sSet dSet W i�

is a Quillen adjunction (for the stable model structure on dendroidal sets and
the Kan-Quillen model structure on simplicial sets).

3. The functor i� is homotopy right conservative, that is a morphism f W D !

D0 between stably fibrant dendroidal sets D and D0 is a stable equivalence if
and only if the underlying map i�f W i�D! i�D0 is a homotopy equivalence
of Kan complexes.

Proof: The first part follows from the general theory of Bousfield localizations (see
e.g. [Lur09, A.3]). For the second statement, note that the corresponding fact for the
covariant model structure is true. Since the stable model structure is a left Bousfield
localization of the covariant model structure, the claim follows by composition with
the identity functor. The last assertion is true since a morphism between stably
fibrant objects is a stable equivalence if and only if it is a covariant equivalence
and covariant equivalences between fibrant objects can be tested on the underlying
spaces (see [Heu11b, Proposition 2.2.]).

Corollary 4.3 Let f W X ! Y be a map of dendroidal sets. Then f is a stable
equivalence exactly if i�.fK/ is a weak equivalence where fK W XK ! YK is the
corresponding map between fully Kan (fibrant) replacements of X and Y .

Remark 4.4 We could as well have localized at bigger collections of maps:

� all corolla root horns,

� all outer horns.

These localizations would yield the same model structure as we will see below. We
decided to use only the 2-corolla in order to keep the localization (and the proofs)
as simple as possible.

396

terms of use, available at http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/is014005003jkt265
Downloaded from http:/www.cambridge.org/core. Universitaetsbibliothek Regensburg, on 30 Sep 2016 at 08:17:26, subject to the Cambridge Core

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/is014005003jkt265
http:/www.cambridge.org/core


Dendroidal sets as models for connective spectra

As a next step we want to identify the fibrant objects in the stable model
structure as the fully Kan dendroidal sets. First we need some terminology:

Definition 4.5 An extended corolla is a tree of the form

�
a0

�
a1

ECn;k D :::

�
an�1

:::

�

b1

an

bk

c

In particular we have EC0;k D CkC1. The trees ECn;1 are called binary extended
corollas. The root horn of the extended corolla is the union of all faces except the
face obtained by chopping off the root vertex.

Theorem 4.6 For a dendroidal set D the following statement are equivalent.

1. D is fibrant in the stable model structure.

2. D is dendroidal Kan and admits fillers for all root horns of extended corollas
ECn;1.

3. D is dendroidal Kan and admits fillers for all root horns of extended corollas
ECn;k .

4. D is fully Kan.

We will prove Theorem 4.6 at the end of the paper. More precisely the
equivalence of (1) and (2) is Proposition 6.2. The equivalence of (2) and (3) is
Proposition 7.1 and the equivalence of (3) and (4) is in Proposition 8.2.

5. Equivalence to connective spectra

Let E1 2 dSet be a cofibrant resolution of the terminal object in dSet. We
furthermore assume that E1 has the property that the underlying space i�E1 is
equal to the terminal object �Œ0� 2 sSet. The existence of such an object can be
easily seen, e.g. using the small object argument (note that the cofibrant objects are
the same in all three model structures on dSet that we consider). In the following
we denote E1 WD hc�d .E1/ which is an operad enriched over simplicial sets. Here

hc�d W dSet! sOper
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M. BAŠIĆ & T. NIKOLAUS

is the left adjoint to the homotopy coherent nerve functor, see [CM13b]. This
is the functor that implements the aforementioned Quillen equivalence between
dendroidal sets (with the Cisinski-Moerdijk model structure) and topological
operads. The operad E1 is then cofibrant, has one colour and the property that each
space of operations is contractible. Thus it is indeed an E1-operad in the classical
terminology. Therefore for each E1-algebra X in sSet, the set �0.X/ inherits the
structure of an abelian monoid. Such an algebra X is called group-like if �0.X/ is
an abelian group, i.e. there exist inverses for each element.

Now denote by E1-spaces the category of E1-algebras in simplicial sets.
Recall from [Heu11b, Section 3] that there is an adjoint pair

St W dSet=E1 E1-spaces W Un

where dSet=E1 denotes the category of dendroidal sets over E1. We do not repeat
the definition of St here since we need the formula only for a few particular simple
cases and for these cases we give the result explicitly.

Example 5.1 � The E1-algebra St.�! E1/ is the free E1-algebra on one
generator, which we denote by F r.a/ where a is the generator.

� An object in dSet=E1 of the form p W�ŒC2�! E1 encodes a binary operation
� �p � in the operad E1. Then St.p/ is the E1-algebra freely generated
by two generators a,b and the square �Œ1���Œ1� subject to the relation that
a �p b � .1;1/ 2�Œ1���Œ1�. We write this as

St.�ŒC2�! E1/D
F r.a;b;�Œ1�2/

a �p b � .1;1/
:

� The three inclusions � ! �ŒC2� induce maps St.� ! E1/ ! St.p/. As
usual we let a;b be the leaves of the tree C2 and c the root. The first two maps
are simply given by

F r.a/! F r.a;b;�Œ1�2/=� a 7! a

and F r.b/! F r.a;b;�Œ1�2/=� b 7! b:

The third map F r.c/ ! F r.a;b;�Œ1�2/=� is given by sending c to .0;0/ 2
�Œ1�2. Note that this third map is obviously homotopic to the map sending c
to .1;1/D a �p b.

The functor P.D/ WD D � E1 induces a further adjoint pair
P W dSet dSet=E1 W � . Composing the two pairs .St;Un/ and .P;�/ we

obtain an adjunction

St�E1 W dSet E1-spaces W Un� : (2)
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Dendroidal sets as models for connective spectra

Moreover E1-spaces carries a left proper, simplicial model structure where
weak equivalences and fibrations are just weak equivalences and fibrations of the
underlying space of an E1-algebra, see [Spi01, Theorem 4.3. and Proposition 5.3]
or [BM03]. For this model structure and the covariant model structure on dendroidal
sets the above adjunction (2) is in fact a Quillen equivalence as shown by Heuts
[Heu11b] 2.

Lemma 5.2 Let X be a fibrant E1-space. Then X is group-like if and only if
Un�.X/ 2 dSet is fully Kan.

Proof: The condition that Un�.X/ is fully Kan is by Theorem 4.6 equivalent to
the map

s� W sHom.�ŒC2�;Un�.X//! sHom.�a t �c;Un�.X//

being a weak equivalence of simplicial sets. By the Quillen equivalence (2) and the
fact that�ŒC2� is cofibrant the space sHom.�ŒC2�;Un�.X// is homotopy equivalent
to the space sHom.St.�ŒC2� � E1 ! E1/;X/. We can choose a morphism
p W �ŒC2�! E1 (and this choice is essentially unique) because �ŒC2� is cofibrant
and E1! 	 is a trivial fibration. In the covariant model structure on dSet=E1 (see
[Heu11b, Section 2]) the objects �ŒC2��E1! E1 and �ŒC2�! E1 are cofibrant
and equivalent. Cofibrancy is immediate and the fact that they are equivalent
follows since the forgetful functor to dendroidal sets is a left Quillen equivalence
and �ŒC2� ' �ŒC2� � E1 in dSet. Therefore St.�ŒC2� � E1 ! E1/ is weakly
equivalent to St.�ŒC2� ! E1/ in E1-spaces. Together we have the following
weak equivalence of spaces

sHom.�ŒC2�;Un�.X//'sHom.St.�ŒC2�! E1/;X/:

The same reasoning yields a weak equivalence

sHom.�a t �c;Un�.X//'sHom.St.�a t �c! E1/;X/

such that the diagram

sHom.�ŒC2�;Un�.X//
s�

�

sHom.�a t �c ;Un�.X//

�

sHom.St.�ŒC2�! E1/;X/ s� sHom.St.�a t �c! E1/;X/

(3)

2 Note that Heuts in fact uses a slightly different variant where P is a right Quillen functor (instead
of left Quillen). But if a right Quillen equivalence happens to be a left Quillen functor as well, then
this left Quillen functor is also an equivalence. Thus Heuts’ results immediately imply the claimed
fact.
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commutes.
Finally we use the fact that in the covariant model structure over E1 the leaf

inclusion i W �a t �b ! �ŒC2� is a weak equivalence. This implies that there is a
further weak equivalence St.�a t �b ! E1/

�
�! St.�ŒC2� ! E1/. As remarked

above, the straightening of �! E1 is equal to F r.	/, the free E1-algebra on one
generator. Thus St.�a t �b ! E1/ is the coproduct of F r.a/ and F r.b/ which is
isomorphic to F r.a;b/ (here we used a and b instead of 	 to label the generators).
Then the above equivalence reads F r.a;b/

�
�! St.�ŒC2�! E1/. The root inclusion

r W �c ! �ŒC2� induces a further map r� W F r.c/ D St.�c ! E1/! St.�ŒC2�!

E1/ and using the explicit description of St.p/ given above we see that there is a
homotopy commutative diagram

St.�ŒC2�! E1/ F r.c/
St.r/

f

F r.a;b/

St.i/

where f is defined as the map sending c to the product a �p b. Thus the horn
s W �a t �c! C2 fits in a homotopy commutative diagram

St.�ŒC2�! E1/ F r.a;c/
St.s/

sh

F r.a;b/

St.i/

with the map sh that sends c to the binary product of a and b and a to itself.
Putting the induced diagram together with diagram (3) we obtain the big

diagram

sHom.�ŒC2�;Un�.X//
s�

�

sHom.�a t �c ;Un�.X//

�

sHom.St.�ŒC2�! E1/;X/ s�

�

sHom.F r.a;c/;X/

sHom.F r.a;b/;X/

sh�

(4)

in which all the vertical arrows are weak equivalences. This shows that Un�.X/ is
fully Kan if and only if sh� W sHom.F r.a;b/;X/! sHom.F r.a;c/;X/ is a weak
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Dendroidal sets as models for connective spectra

equivalence. But we clearly have that the domain and codomain of this map are
given by X �X . Thus the map in question is given by the shear map

Sh WX �X !X �X .x;y/ 7! .x;x �p y/

where x �p y is the composition of x and y using the binary operation given by
hc�d .p/ W�.C2/!E1

It remains to show that a fibrant E1-space X is group-like precisely when the
shear map Sh W X � X ! X � X is a weak homotopy equivalence. This is well
known [Whi95, chapter III.4], but we include it for completeness. Assume first that
the shear map is a weak equivalence. Then the induced shear map �0.X/��0.X/!
�0.X/ � �0.X/ is an isomorphism. This shows that �0.X/ is a group, thus X is
group-like. Assume conversely thatX is group-like and y 2X is a point inX . Then
there is an inverse y0 2X together with a path connecting y0 �p y to the point 1. This
induces a homotopy inverse for the map Ry W X ! X given by right multiplication
with y (for the fixed binary operation). Now the shear map is a map of fibre bundles

X �X
Sh

pr1

X �X

pr1

X :

Thus the fact that it is over each point y 2 X a weak equivalence as shown above
already implies that the shear map is a weak equivalence.

Lemma 5.2 shows that fully Kan dendroidal sets correspond to group-like E1-
spaces. We want to turn this into a statement about model structures. Therefore
we need a model structure on E1-spaces where the fibrant objects are precisely the
group-like E1-spaces.

Proposition 5.3 There is a left proper, combinatorial model structure onE1-spaces
where the fibrant objects are precisely the fibrant, group-like E1-spaces and which
is a left Bousfield localization of the standard model structure on E1-spaces. We
call it the group-completion model structure.

Proof: Since the model category of E1-spaces is left proper, simplicial and
combinatorial the existence follows from general existence results provided that
we can characterize the property of being group-like as a lifting property against a
set of morphisms. The proof of Lemma 5.2 already contains the argument, namely
let the set consist of one map from the free E1-algebra on two generators to itself
given by the shear map (actually there is one shear map for each binary operation in
E1, but we simply pick one out).

401

terms of use, available at http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/is014005003jkt265
Downloaded from http:/www.cambridge.org/core. Universitaetsbibliothek Regensburg, on 30 Sep 2016 at 08:17:26, subject to the Cambridge Core

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/is014005003jkt265
http:/www.cambridge.org/core


M. BAŠIĆ & T. NIKOLAUS

It is well known that group-like E1-spaces model all connective spectra by the
use of a delooping machine, see [May74]. More precisely the1-category of group-
like E1-spaces obtained from the group-completion model structure is equivalent
as an1-category to the1-category of connective spectra, see e.g. [Lur11, Remark
5.1.3.17].

Theorem 5.4 The stable model structure on dendroidal sets is Quillen equivalent
to the group-completion model structure on E1-spaces by the adjunction (2). Thus
the stable model structure on dendroidal sets is a model for connective spectra in
the sense that there is an equivalence of1-categories.

The theorem follows from Lemma 5.2 and the following more general statement
about left Bousfield localizations and Quillen equivalences. Recall from [Bar07,
Definition 1.3.] that a combinatorial model category is called tractable if it admits
a set of generating cofibrations and generating trivial cofibrations with cofibrant
domains and codomains. It turns out that it suffices to check this for generating
cofibrations [Bar07, Corollary 1.12.]. Thus all model structures on dendroidal sets
are clearly tractable.

Lemma 5.5 Let C and D be simplicial model categories with C tractable and a
(not necessarily simplicial) Quillen equivalence

L W C D WR:

Moreover let C 0 and D0 be left Bousfield localizations of C and D repectively.
Assume R has the property that a fibrant object d 2D is fibrant in D0 if and only if
R.d/ is fibrant in C 0.

Then .L aR/ is a Quillen equivalence between C 0 and D0.

Proof: For simplicity we will refer to the model structures on C and D as the
global model structures and to the model structures corresponding to C 0 and D0

as the local model structures. First we have to show that the pair .L;R/ induces
a Quillen adjunction in the local model structures. We will show that L preserves
local cofibrations and trivial cofibrations. Since local and global cofibrations are the
same, this is true for cofibrations. Thus we need to show it for trivial cofibrations and
it follows by standard arguments if we can show it for generating trivial cofibrations.
Thus let i W a ! b be a generating locally trivial cofibration in C . Now we can
assume that a and b are cofibrant since C is tractable. Then the induced morphism
sHom.b;c/ ! sHom.a;c/ on mapping spaces is a weak equivalence for every
locally fibrant object c 2 C . In particular for c D R.d/ with d 2D locally fibrant.
Now we use that there are weak equivalences sHom.b;R.d// Š sHom.Lb;d/ and
sHom.a;R.d//Š sHom.La;d/ of simplicial sets which stem from the fact that the
pair .L;R/ induces an adjunction of 1-categories. This shows that the induced
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Dendroidal sets as models for connective spectra

morphism sHom.Lb;d/ ! sHom.La;d/ is a weak equivalence for every locally
fibrant object d 2D. This shows that La! Lb is a local weak equivalence.

It remains to show that .L;R/ is a Quillen equivalence in the local model
structures. Therefore it suffices to show that the right derived functor

R0 WHo.D0/!Ho.C 0/

is an equivalence of categories. SinceD0 and C 0 are Bousfield localizationsHo.C 0/
is a full reflective subcategory of Ho.C/ and correspondingly for D and D0.
Moreover, there is a commuting square

Ho.D0/
R0

Ho.C 0/

Ho.D/
R

Ho.C/:

Since R is an equivalence it follows that R0 is fully faithful. In order to show that
R0 is essentially surjective pick an object c in Ho.C 0/ represented by a locally
fibrant object c of C . Since R is essentially surjective we find an element d 2 D
which is globally fibrant such that R.d/ is equivalent to c in Ho.C/. But this
implies that R.d/ is also locally fibrant (i.e. lies in Ho.C 0/) since this is a property
that is invariant under weak equivalences in Bousfield localizations. Therefore we
conclude that d is locally fibrant from the assumption on R. This shows that R0 is
essentially surjective, hence an equivalence of categories.
The fact that the stable model structure is equivalent to connective spectra has the
important consequence that a cofibre sequence in this model structure is also a fibre
sequence, which is well-known for connective spectra (note that the converse is not
true in connective spectra, but in spectra).

Corollary 5.6 Let X ! Y ! Z be a cofibre sequence of dendroidal sets in any of
the considered model structures. Then

i�XK ! i�YK ! i�ZK

is a fibre sequence of simplicial sets. Here .�/K denotes a fully Kan (fibrant)
replacement.

Proof: Since the stable model structure on dendroidal sets is a Bousfield local-
ization of the other model structures we see that a cofibre sequence in any model
structure is also a cofibre sequence in the stable model structure. But then it is
also a fibre sequence as remarked above. The functor i� is right Quillen, as shown
in Theorem 4.2. Thus it sends fibre sequences in dSet to fibre sequences in sSet,
which concludes the proof.
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6. Proof of Theorem 4.6, part I

Recall from Definition 4.5 the notion of binary extended corollas. Also recall from
[Heu11a] that the weakly saturated class generated by non-root horns of arbitrary
trees is called the class of left anodynes. The weakly saturated class generated
by inner horn inclusions of arbitrary trees is called the class of inner anodynes.
Analogously we set:

Definition 6.1 The weakly saturated class generated by non-root horns of all trees
and root horns of binary extended corollas is called the class of binary extended left
anodynes.

Proposition 6.2 A dendroidal setD is stably fibrant if and only ifD is a dendroidal
Kan complex and it admits fillers for all root horns of binary extended corollas
ECn;1.

Proof: We will show in Lemma 6.3 that a stably fibrant dendroidal set D admits
lifts against the root horn inclusion of ECn;1.

Conversely, assume thatD is a dendroidal Kan complex and admits lifts against
the root horn inclusions of ECn;1. Then D clearly admits lifts against all binary
extended left anodyne morphisms. In Lemma 6.4 we show that the inclusion

�
ƒbŒC2�˝�ŒLn�

�
[
�
�ŒC2�˝ @�ŒLn�

�
�!�ŒC2�˝�ŒLn�/

is binary extended left anodyne. This implies that D is stably fibrant.

In the rest of the paper we prove some technical lemmas and for this we fix some
terminology. We denote the leaves of the corolla C2 by a and b and its root edge by
c. We denote the edges of the linear tree Ln by 0;1;:::;n as indicated in the picture

�
0

1

Ln D :::

�
n�1

n

We denote the edges in the tensor product �ŒC2�˝�ŒLn� by ai ;bi ;ci instead of
.a;i/;.b;i/;.c;i/ and we let Tk for k D 0;1;:::;n be the unique shuffle of �ŒC2�˝
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�ŒLn� that has the edges ak;bk and ck:

�
a0

�
b0

:::
a1

:::
b1

�ak bk
ck

Tk D :::

�
cn�1

cn

We also use the notation

DiTj D

�
@ai@biTj ; i < j;

@ciTj ; i > j:

We denote the subtrees of a shuffle as sequences of its edges with indices in the
ascending order (since there is no danger of ambiguity). For example we denote the
following tree

�
a0

�
b2

�
a1

�
b3

�a5 b4

�
c5

c6

(5)

by .a0;a1;a5;b2;b3;b4;c5;c6/.
We denote

� by �i the unique dendrex of �ŒTn� represented by a subtree with edges bn;cn
and aj for all j ¤ i , for i D 0;:::;n� 1;

� by �n the unique dendrex represented by .a0;:::;an�1;bn�1;cn�1/ of�ŒTn�1�;

� by ˛n the unique dendrex represented by .a0;:::;an�1;bn�1;bn;cn/ of �ŒTn�;

� by 	j˛n the degeneracy of ˛ with respect to aj , for j D 0;1;:::;n� 1;

� by ˇn the unique dendrex represented by .a0;:::;an�1;bn�1;cn�1;cn/ of
�ŒTn�1�;
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� by 
n the unique dendrex represented by .a0;:::;an;bn;cn/ of �ŒTn�.

We denote the edges of the binary extended corolla as in the following picture:

�
a0

�
a1

ECn;1 D :::

�
an�1

�u ban

c

The colours of the tensor product �ŒECn;1� ˝ �ŒL1� will be denoted by
a0;:::;an,b,c, a00;:::;a

0
n,b0,c0 and the operations are denoted accordingly. There are

nC 1 shuffles E0;E1;:::;En where Ei is the unique shuffle that has ai and a0i for
i D 0;:::;n and one more shuffle F which has c and c0. For example we have the
following shuffles

�
a0

�
a00

�
a01

E0 D :::

�
a0n�1

�
b

�u0 b
0a0n

c0

�
a0

�
a1

:::

F D �
an�1

�u0 b
an

�
c

c0

Lemma 6.3 A stably fibrant dendroidal set D admits lifts against the root horn
inclusion i W ƒuŒECn;1�!�ŒECn;1� of the binary extended corolla.

Proof: Let D be a stably fibrant dendroidal set. By definition D is a dendroidal
Kan complex and admits lifts against the maps�

ƒbŒC2�˝�ŒLn�
�
[
�
�ŒC2�˝ @�ŒLn�

�
�!�ŒC2�˝�ŒLn�

for all n� 0. Note that the inclusionƒaŒC2�!�ŒC2� is isomorphic to the inclusion
ƒbŒC2�!�ŒC2�. Hence D also admits lifts against the maps�

ƒaŒC2�˝�ŒLn�
�
[
�
�ŒC2�˝ @�ŒLn�

�
�!�ŒC2�˝�ŒLn�
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for all n� 0. Consider the following pushout square

�
ƒaŒC2�˝�ŒLn�

�
[
�
�ŒC2�˝ @�ŒLn�

�
ƒuŒECn;1�

k

�ŒC2�˝�ŒLn�
l

P

where the left vertical map is the inclusion and the top horizontal map is the unique
map which maps ai to ai , bi to b and ci to c for i D 0;1;:::;n. It follows that D also
admits a lift against the map u W ƒuŒECn;1�! P . We can factor k as a composition
k D pj of the inclusion

j W ƒuECn;1 Šƒ
uECn;1˝f1g !

�
ƒuECn;1˝�ŒL1�

�
[
�
ECn;1˝f0g

�
and the map

p W
�
ƒuECn;1˝�ŒL1�

�
[
�
ECn;1˝f0g

�
! P

which we now describe explicitly.
The colours of P can be identified with a0;:::;an;b and c. The map p is

determined by the image of ECn;1˝ f0g and compatibly chosen images of all the
shuffles of ƒuECn;1 ˝ �ŒL1�, i.e. of @aiF;i D 0;1:::;n, @aiEj ;i D 0;:::;j and
@a0
i
Ej ;i D j;:::;n for all j D 0;1;:::;n.
Concretely, we send

� ECn;1˝f0g to l.
n/,

� @anF to l.ˇn/,

� @a0nEj to l.	j˛n/ for j D 0;1;:::;n� 1,

� and all other shuffles to the corresponding degeneracy of �i .

One can easily verify that these conditions are compatible in P and hence p is well-
defined. Now we can prove the statement of the lemma. So let us assume a map
f W ƒuECn;1 ! D is given. We want to prove that there is a lift Nf W ECn;1 ! D

such that f D Nf i . By the above considerations we know that D admits a lift
g W P ! D such that f D gk and hence f factors also through

�
ƒuECn;1 ˝

�ŒL1�
�
[
�
ECn;1 ˝ f0g

�
as a composition of j and gp. We get the following
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M. BAŠIĆ & T. NIKOLAUS

commutative diagram

ƒuECn;1˝f1g

i

�
ƒuECn;1˝�ŒL1�

�
[
�
ECn;1˝f0g

�
D

ECn;1˝f1g ECn;1˝�ŒL1�

where the top horizontal maps are j and gp respectively and all other maps are
obvious inclusions. SinceD is a dendroidal Kan complex it admits a lift against left
anodynes and the right vertical inclusion

�
ƒuECn;1˝�ŒL1�

�
[
�
ECn;1˝f0g

�
!

ECn;1˝�ŒL1� is left anodyne because the covariant model structure is simplicial.
Hence there is a lift ECn;1 ˝ �ŒL1� ! D which, when precomposed with the
inclusion ECn;1˝f1g !ECn;1˝�ŒL1�, gives the desired lift Nf . This finishes the
proof.

Lemma 6.4 The pushout product of the map s W ƒbŒC2� ! �ŒC2� with a simplex
boundary inclusion�

ƒbŒC2�˝�ŒLn�
�
[
�
�ŒC2�˝ @�ŒLn�

�
�!�ŒC2�˝�ŒLn�

is a binary extended left anodyne map.

Proof: The case nD 0 is just the case of the inclusion ƒbŒC2�!�ŒC2�.

Fix n� 1. We set A0 WDƒbŒC2�˝�ŒLn�
`
ƒbŒC2�˝@�ŒLn�

�ŒC2�˝@�ŒLn�. Note
that A0 is the union of all �ŒDiTj � and of the chains �a˝�ŒLn� and �c ˝�ŒLn�.
We define dendroidal sets Ak D Ak�1 [�ŒTk�1� for k D 1;:::;nC 1. So we have
decomposed the map from the lemma into a composition of inclusions

A0 � A1 � :::� An�1 � An � AnC1:

We will show that Ak ! AkC1 is inner anodyne for k D 0;:::;n � 1 and binary
extended left anodyne for k D n. Note that AnC1 D�ŒC2�˝�ŒLn�, so the inclusion
A0 ! �ŒC2�˝ �ŒLn� is binary extended left anodyne as a composition of such
maps.

Case k D 0. The faces @ci�ŒT0� of T0 are equal to �ŒDiT0� for all i > 0. The
outer leaf face of T0 is equal to �c ˝�ŒLn�. The remaining face @c0�ŒT0� is in A1,
but not in A0 so we have a pushout diagram

ƒc0 ŒT0� A0

�ŒT0� A1:
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Dendroidal sets as models for connective spectra

Since inner anodyne extensions are closed under pushouts it follows that A0! A1
is inner anodyne.

Case 0 < k < n. We now construct a further filtration

Ak D B
k
0 � B

k
1 � ��� � B

k
kC2 D AkC1

as follows. Informally speaking, we add representables of subtrees of Tk by the
number of vertices starting from the minimal ones which are not contained in Ak .
More precisely, set Bk0 WD Ak and for l D 1;:::;kC2 let Bk

l
be the union of Bk

l�1
and

all the representables of trees .aj1 ;:::;ajq ;bi1 ;:::;bip ;ck;:::;cn/ with q C p D l C k

and fj1;:::;jq;i1;:::;ipg D f0;1;:::;kg. An an example of such a tree for k D 5;l D
1;p D q D 3 and nD 6 is given page 15.

For pCq D kC1 and the tree U D .aj1 ;:::;ajq ;bi1 ;:::;bip ;ck;:::;cn/ we have an
inclusion ƒck ŒU � � A0 D Bk0 because @ci�ŒU � � �ŒDiTk� for i > k, @aj�ŒU � �
�ŒDjTk� for j 2 fj1;:::;jqg and @bi�ŒU � � �ŒDiTk� for i 2 fi1;:::;ipg. Also note
that @ck�ŒU � is not contained in A0.

For pC q D kC l;l � 2 and the tree U D .aj1 ;:::;ajq ;bi1 ;:::;bip ;ck;:::;cn/ we
have an inclusion ƒck ŒU � � Bk

l�1
. Indeed, for j 2 fj1;:::;jqg, @aj�ŒU � � B

k
l�1

by
definition if j 2 fi1;:::;ipg and @aj�ŒU �� Ak�1 � B

k
l�1

if j 62 fi1;:::;ipg. Similarly,
@bi�ŒU � � B

k
l�1

for i 2 fi1;:::;ipg and @ci�ŒU � � �ŒDiTk� � A0 for i > k. The
remaining face @ck�ŒU � is not contained Bk

l�1
.

We conclude that the map Bk
l�1
! Bk

l
is inner anodyne for l D 1;:::;k C 2

because it is the pushout of the inner anodyne maa
qCpDkCl

ƒck ŒU �!
a

qCpDkCl

�ŒU �

where the coproduct is taken over all subtreesU D .aj1 ;aj2 ;:::;ajq ;bi1 ;:::;bip ;ck;:::;cn/
of Tk such that qCp D kC l and fj1;:::;jq;i1;:::;ipg D f0;1;:::;kg.

Case k D n. Note that faces of the shuffle Tn are

� @biTn D .a0;:::;an;b0;:::;
bbi ;:::;bn;cn/, i D 0;:::;n;

� @ajTn D .a0;:::;baj ;:::;an;b0;:::;bn;cn/, j D 0;:::;n.

Our strategy goes as follows. First, we form the union ofAn�1 with all @bi�ŒTn�;i D
0;:::n� 1. Second, we consider the union with all proper subsets of @bn�ŒTn� that
contain edges a0 and an. Third, we consider the union with @aj�ŒTn�;j D 1;:::n

and then with @a0�ŒTn�. In the last step we use the horn inclusionƒbn ŒTn���ŒTn�.
Thus we start with a filtration

An D P0 � ��� � Pp�1 � Pp � ��� � Pn;
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where Pp is the union of Pp�1 with the representables of the trees of the form
.a0;:::;an; bi1 ;:::;bip ;cn/ for p D 1;:::;n � 1. Also, we define Pn as the union of
Pn�1 with @bi�ŒTn� for all i D 1;2;:::;n�1 (but not for i D n). Let us show that the
maps Pp�1! Pp are left anodyne for p D 1;2;:::;n.

� Case p D 1. For i 2 f0;1;:::;ng and Vi D .a0;:::;an;bi ;cn/ all the faces of
�ŒVi �, except @ai�ŒVi �, are in P0 D An. The map P0! P1 is left anodyne as
a pushout of the map

`n
iD0ƒ

ai ŒVi �!
`n
iD0�ŒVi �.

�
a0

Vi D :::
a1

�
an�1

�an bi
cn

� Case p 
 n� 1. We give a further filtration

Pp�1 DQ
p
0 �Q

p
1 � ��� �Q

p
m � ��� �Q

p
p D Pp:

Let Qp
m be the union of Qp

m�1 with �ŒU � for all the trees of the form

U D .aj1 ;:::;ajq ;bi1 ;:::;bip ;cn/; qCp D nCm

such that there is a subset I � fi1;:::;ip�1g with fj1;:::;jqg D f0;1;:::;ng n I .
Note that ip 2 fj1;:::;jqg. We show that the inclusions Qp

m�1!Q
p
m are left

anodyne for allmD 1;2;:::;p�1. For a fixedm and such a tree U the faces of
�ŒU � are all inQp

m�1 except for @aip�ŒU �. More precisely, the faces @bi�ŒU �
are all in Pp�1, the faces @aj�ŒU � are in A0 if j 62 fi1;:::;ipg and in Qp

m�1 by
definition if j 2 fi1;:::;ipg.

We conclude that Qp
m�1 ! Q

p
m is left anodyne as a pushout of the left

anodyne map
`
ƒaip ŒU �!

`
�ŒU �, where the coproduct is taken over trees

U described above. We have Pp DQ
p
p , so Pp�1! Pp is also left anodyne.

� Case p D n. Here we do a slight modification of the previous argument. Let
Qn
0 WD Pn�1 and for mD 1;:::;n�1 let Qn

m be the union of Qn
m�1 with �ŒUi �

for the trees of the form

Ui D .ai1 ;:::;aim ;an;b0;:::;
Obi ;:::;bn;cn/;i ¤ n
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Dendroidal sets as models for connective spectra

or of the form

Un D .a0;ai1 ;:::;aim�1 ;an;b0;:::;bn�1;cn/:

Let Qn
n be the union of Qn

n�1 with @bi�ŒTn� for all i D 1;2;:::;n� 1 (but not
for i D n).

A similar argument to the one given above (using horns ƒan ŒUi �;i ¤ n and
ƒa0 ŒUn�) shows that the maps Qn

m�1 ! Qn
m are left anodyne for all m D

1;:::;n. Since Pn DQn
n we have proven that Pn�1! Pn is left anodyne and

hence An! Pn is left anodyne.

Next, we add @ai�ŒTn� for i D 1;2;:::;n to the union. Let us denote the only
binary vertex of the treeW D .a0;b0;:::;bn;cn/ by v. Let PnC1 D Pn[�ŒW �. Then
the map Pn ! PnC1 is binary extended left anodyne because it is a pushout of the
map ƒvŒW �!�ŒW �.

�
b0

W D :::
b1

�
bn�1

�va0 bn
cn

For each q D 2;:::;n we define PnCq as the union of PnCq�1 and the
representables of the trees of the form Zq D .a0;ai1 ;:::;aiq ;b0;:::;bn;cn/. The
inclusionPnCq�1! PnCq is left anodyne as the pushout of

`
ƒa0 ŒZq�!

`
�ŒZq�.

The dendroidal set P2n contains @ai�ŒTn�;i D 1;:::;n. Furthermore, all faces of
@a0�ŒTn� except for @bn@a0�ŒTn� are in P2n. Let P2nC1 D P2n [ @a0�ŒTn�. Then
P2n ! P2nC1 is inner anodyne as the pushout of ƒbn@a0 ŒTn�! @a0�ŒTn�. From
this we conclude that An ! P2nC1 is binary extended left anodyne. All the faces
of �ŒTn� except @bn�ŒTn� are in P2nC1, so P2nC1 ! AnC1 is left anodyne as the
pushout of the map ƒbn ŒTn�! �ŒTn�. Hence An ! AnC1 is binary extended left
anodyne, which finishes the proof.

7. Proof of Theorem 4.6, part II

In this section we compare lifts against binary extended corollas and all extended
corollas.
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Proposition 7.1 Let D 2 dSet be a dendroidal Kan complex. Then D admits fillers
for all root horns of binary extended corollas ECn;1 if and only if D admits fillers
for all root horns of arbitrary extended corollas ECn;k .

Proof: One direction is a special case and thus trivial. Hence assume D admits
fillers for all root horns of extended corollas ECn;1. Then D admits lifts against
all binary extended left anodynes (see Definition 6.1). We need to show that
D admits lifts against the root horn inclusion ƒuŒECn;k� ! �ŒECn;k�. By
Lemma 7.2 we find a tree T and a morphism �ŒECn;k� ! �ŒT � such that the
composition ƒuŒECn;k� ! �ŒT � is binary extended left anodyne. Thus given a
morphism ƒuŒECn;k� ! D we can find a filler �ŒT � ! D. But the composition
�ŒECn;k�!�ŒT �!D is then the desired lift.

Lemma 7.2 Consider the inclusion of the root horn of the extended corolla
ƒuŒECn;k� ! �ŒECn;k�. There is a tree T and a morphism �ŒECn;k� ! �ŒT �

such that the composition ƒuŒECn;k� ! �ŒT � is a binary extended left anodyne
map.

Proof: We use the labels for edges of the extended corolla ECn;k as given in the
Definition 4.5 and in addition we denote its root vertex by u. Now consider the tree
T

�
a0

�
a1

::

T D ::: �v

b1 bk

�
an�1

�u

d

an

c

There is an obvious morphism �ŒECn;k� ! �ŒT �. We will show that the
composition ƒuŒECn;k�!�ŒT � is binary extended left anodyne.

We set E0 WDƒuŒECn;k�. Let Ck be a corolla with root d and leaves b1;:::;bk

Ck D �

b2

b1

bk

d

SetE1 WDE0[�ŒCk�which is a subobject of�ŒT �. The mapE0!E1 is a pushout
of the map

`k
iD1�bi !�ŒCk�, so it is left anodyne by definition.
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Dendroidal sets as models for connective spectra

As a next step consider subtrees of T which are of the form

�
ai0

�
ai1

:::

Ti0;:::;il D ::: �v

b1 bk

�
ail�1

�u

d

ail
c

for fi0;:::ilg � f0;1;:::;ng and l 
 n � 1. We define dendroidal sets ElC2 as the
union of ElC1 and all representables �ŒTi0;:::;il � for fi0;:::ilg � f0;1;:::;ng and 0 

l 
 n� 1. Thus we get a filtration

ƒuŒECn;k�DE0 �E1 �E2 � :::�EnC1 ��ŒT �: (6)

For a fixed l 
 n�1 and a subset fi0;:::;ilg the inner face @d�ŒTi0;:::;il � is contained
in E0 and the faces @aj�ŒTi0;:::;il � are contained in ElC1 for every j 2 fi0;:::;ing
(and for l D 0 the face @u�ŒTi0 � is in E1).

Since @v�ŒTi0;:::;il � is not in ElC1 we have the following pushout diagram`
ƒvŒTi0;:::;il � ElC1

`
�ŒTi0;:::;il � ElC2

where the coproduct varies over all possible .i0;:::;il/. This shows that ElC1 !
ElC2 is left anodyne. From this we conclude that all maps in the above filtration (6)
except for the last inclusion are left anodyne and therefore also the mapE0!EnC1
is left anodyne.

We proceed by observing that for the tree

�
a0

V D :::
a1

�
an�1

�uan d

c
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all faces of �ŒV � are in EnC1 except @u�ŒV �. Notice that EnC1 [�ŒV � D ƒd ŒT �.
The map EnC1 ! ƒd ŒT � is the pushout of the binary extended left anodyne map
ƒuŒV � ! �ŒV �, so it is binary extended left anodyne. Finally, since ƒd�ŒT � !
�ŒT � is inner anodyne, we conclude that E0 ! �ŒT � is binary extended left
anodyne.

8. Proof of Theorem 4.6, part III

Similarly to Definition 6.1 of binary extended left anodynes we define two more
classes.

Definition 8.1 The weakly saturated class generated by non-root horns of all trees
and root horns of extended corollas is called the class of extended left anodynes.
The weakly saturated class generated by all horn inclusions of trees is called the
class of outer anodynes.

It would be more natural to call outer anodynes simply anodynes since it also
includes the inner anodynes. But, in order to make the distinction clearer, we use
the term outer anodynes here. By definition we have inclusions

finner anodynesg � fleft anodynesg � fbinary ext. left anodynesg

� fext. left anodynesg � fouter anodynesg:

All of these inclusions are proper, except for the last one. In the following
proposition we show that the last inclusion is actually an equality.

Proposition 8.2 The class of extended left anodynes and the class of outer anodynes
coincide. In particular, a dendroidal set D admits lifts against all non-root horns
and root horns of extended corollas if and only if it is fully Kan.

Proof: By the above inclusion of saturated classes it suffices to show that every
root horn inclusion is contained in the class of extended left anodynes. A root horn
for a tree exists only if this tree is obtained by grafting a smaller tree on a corolla.
We give the proof of this technical statement in Lemma 8.6.

Before we can prove the crucial lemma we need to introduce some terminology.
Recall from [MW09] that a top face map is an outer face map with respect to a
top vertex and an initial segment of a tree is a subtree obtained by composition of
top face maps. For example, the tree V is an initial segment of the tree T in the
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following picture.

g1 g2 g3

V D a3 �
t2

�v
a1

a2
a4

a

f1 f2

�t1 g1 g2 g3

T D �
e

a3 �
t2

�v
a1

a2

a4

a

Definition 8.3 A subtree which is a composition of an initial segment followed by
exactly k inner face maps is called an initial subtree of codimension k.

By definition, every initial segment is an initial subtree of codimension zero. An
example of an initial subtree of codimension 2 of the above tree T is

f1 f2

� a3 g1 g2 g3

�v
a1

a

Lemma 8.4 (Codimension argument) Let T be a tree and v a vertex of T . Let V be
the maximal initial segment of T for which the input edges d1;:::;dp of v are leaves.
Let XT be a subobject of �ŒT � defined in the following way: If V has at least two
vertices, then XT is the union of the following dendroidal sets

� the representable �ŒV �,

� the inner faces @e�ŒT � for all inner edges e of V ,

� the outer faces @u�ŒT � for vertices u of V , u¤ v.

If V has exactly one vertex, then XT is the union of the following dendroidal sets

� the representable �ŒV �,

� the representable of the maximal subtree of T having di as root for i D 1;::;p.

Then the inclusion XT !�ŒT � is inner anodyne.

Proof: Let jV j and jT j denote the number of vertices of V and T , respectively.
Let N D jT j � jV j C 1. We say that an initial subtree S of codimension k of T
containing V is an .n;k/-subtree if it has exactly jV j � 1C n vertices. Note that V
is a .1;0/-subtree.
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Denote X1;0 WD XT . The strategy is to form an inner anodyne filtration
consisting of dendroidal sets X.n;k/ by considering unions of X1;0 with some .n;k/-
subtrees of T for all n;1
 n
N and k;0
 k 
N �n.

Before constructing this filtration, we form a set Fn;k of chosen .n;k/-subtrees
which we do not include in Xn;k for each pair .n;k/. We start with the tree T which
is an .N;0/-subtree and we choose @diT for i being minimal such that di is an inner
edge of T . The set FN�1;1 has only one element @diT and FN�1;0 is empty. We
proceed inductively by decreasing n from N to 1. Each .nC 1;k � 1/-subtree S
which is not in FnC1;k�1 contains at least one inner edge dj , j 2 f1;:::;pg and we
choose @diS for minimal such i and put this .n;k/-subtree @diS in Fn;k .

Note that for n D 2;k � 1 such a subtree S has exactly jV j C 1 vertices and
only one inner face @diS and that face belongs to F1;k . Hence X1;0 D XT . We
define X1 D XT and for 2 
 n 
 N we inductively define Xn;0 as the union of
Xn�1 and the representables of all .n;0/-subtrees, Xn;k as the union of Xn;k�1 and
the representables of all .n;k/-subtrees that are not in Fn;k and dendroidal sets Xn

as the union
N�n[
kD0

Xn;k .

The inclusions Xn�1 ! Xn;0 are all inner anodyne because each of them is
a pushout of the coproduct of inner horn inclusions. More precisely, each .n;0/-
subtree S has faces which are in X by definition, outer faces that are .n � 1;0/-
subtrees and hence are all in Xn�1, inner faces which are .n� 1;1/-subtrees and by
definition exactly one of them was chosen to be in Fn�1;1, so is not inXn�1. Denote
this inner face by @sS . We have the pushout diagram (where the coproduct is taken
over all .n;0/-subtrees) `

ƒsŒS� Xn�1

`
�ŒS� Xn;0:

Note that the union of representables of .nC 1;k � 1/-subtrees and XnC1;k�1 will
also contain the representables of elements of Fn;k (since the elements of Fn;k will
be faces of the .nC 1;k � 1/-subtrees). So XnC1;k�1 will contain representables
of all .n;k/-subtrees. The inclusions XnC1;k�1 ! XnC1;k are similarly shown to
be inner anodyne. Faces of an .nC 1;k/-subtree are in X or .n;k/-subtrees (and
hence all in XnC1;k�1 by the previous sentence) or .n;k C 1/-subtrees (and hence
all but one in Xn;kC1 � Xn � XnC1;k�1 by construction). We again have a horn
inclusion with respect to the excluded face, and XnC1;k�1!XnC1;k is the pushout
of the coproduct of these horn inclusions. Finally, we have shown that the inclusion
XT DX1 �X2 � :::�XN D�ŒT � is left anodyne.
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Definition 8.5 For a non-linear tree T the maximal subtree having non-unary root
is unique and we call it the tree top of T . For a linear tree we say that its tree top is
given by its unique leaf (i.e. it is isomorphic to �). The maximal initial segment of
T which is a linear tree is also unique and we call it the stem of T . Note that T is
obtained by grafting the tree top of T to the stem of T and conversely the tree top is
obtained from T by chopping off the stem.

For a fixed tree T with root r we define the tree UT;q obtained by grafting T to the
.qC1/-corolla with leaves r;b1;:::;bq , the root c and the root vertex u. Let T 0 be the
tree that has one edge more than T such that this edge, called a0, is the leaf of the
stem of T 0 (and the root of the tree top of T 0). Let W D WT;q be the tree obtained
by grafting T 0 to the .qC 1/-corolla with leaves r;b1;:::;bq , the root c and the root
vertex u.

We will usually denote by v the root vertex of the tree top of T and the input
edges of v by d1;:::;dp. We will denote by v0 the vertex in W having the output
a0. The edges of the stem of T will be denoted a0;:::;al with ai and aiC1 being the
input and the output of the same vertex for all i D 0;:::;l�1 (so al is the root). Here
is one example.

� � d3

v�d1

d2

d4

�
a0

T D �
a1

a2

� � d3

v�d1

d2

d4

�
a0

UT;2 D �
a1

b1 b2

u�

a2

c

� � d3

v0�d1

d2

d4

�
a0

WT;2 D �
a0

�

a1

b1 b2

�u

a2

c

For a subset J � f0;1;:::;lg we denote by

� U 0J the unique subtree of W containing the edges d1;:::;dp;a0;b1;:::;bq;c and
aj ;j 2 J .

� U 0J the maximal subtree of W not containing the edges aj ;j 2 f0;1;:::;lgnJ .

� T 0J and T 0J the root face of U 0J and U 0J , respectively.

Note that T 0J contains the whole tree top of T , while T 0J only the non-unary root
vertex of the tree top of T .

Lemma 8.6 Let U be a tree whose root vertex u is attached to exactly one inner
edge. The inclusion ƒuŒU �!�ŒU � is extended left anodyne.
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Proof: There is a tree T and a natural number q � 0 such that U D UT;q . Let N be
the number of vertices of the tree top S of T and let l be the number of vertices of
the stem of T . We show the claim by induction on N .

If N D 0 the tree T is linear and the claim holds by definition of extended left
anodynes.

Fix a tree top S with N vertices, N � 1, and assume that the claim holds for
every tree such that the corresponding tree top has less than N vertices. We will
prove that for fixed S and for every l , the inclusion ƒuŒU �!�ŒU � is extended left
anodyne. SinceƒuŒU �!�ŒU � is a retract ofƒuŒU �!�ŒW �, it is enough to show
that ƒuŒU �!�ŒW � is extended left anodyne. We divide the proof into four parts.

Step 1. We show that the inclusion ƒuŒU �![ljD0�Œ@ajW � is left anodyne.
We denote B0 WDƒuŒU �. Inductively, for all 1
 k 
 l C 1, we define

A0k�1 WD Bk�1[
[

jJ jDk�1

�ŒT 0J �; Ak WD A
0
k�1[

[
jJ jDk�1

�ŒT 0J �;

B 0k�1 WD Ak [
[

jJ jDk�1

�ŒU 0J �; Bk WD B
0
k�1[

[
jJ jDk�1

�ŒU 0J �:

Since A00 D A0 [�ŒT
0
; � and T 0; is the p-corolla with inputs d1;:::;dp and root a0,

the inclusion A0 ! A00 is the pushout of �d1 [ ::: [ �dp ! �ŒT 0; � and hence left
anodyne.
Let k be such that 1 
 k 
 l . The inclusion Ak ! B 0

k�1
is left anodyne

because it is the pushout of the coproduct of leaf horn inclusions
`
jJ jDkƒ

v0 ŒU 0J �!`
jJ jDk�ŒU

0
J �. The inclusion Bk ! A0

k
is left anodyne because it is the pushout of

the coproduct of leaf horn inclusions
`
jJ jDkƒ

v0 ŒT 0J �!
`
jJ jDk�ŒT

0
J �.

For all trees T 0J ;jJ j D k � 1, and vertex v0 the codimension argument gives an
inner anodyne XT 0J ! �ŒT 0J �. Since XT 0J is exactly the intersection of A0

k�1
and

�ŒT 0J �, the inclusion A0
k�1
! Ak is inner anodyne as the pushout of the coproduct`

jJ jDk�1XT 0J !
`
jJ jDk�1�ŒT

0
J �. Similarly, we use the codimension argument to

show that XU 0J !�ŒU 0J � is inner anodyne. As XU 0J is the intersection of�ŒU 0J � and
B 0
k�1

the inclusion B 0
k�1
! Bk is inner anodyne as the pushout of the coproduct`

jJ jDk�1XU 0J !
`
jJ jDk�1�ŒU

0
J �. Note that BlC1 D

Sl
jD0�Œ@ajW �, so this

completes the first step.

Step 2. Let V0 be the unique initial segment of W for which a0 is a leaf. We define
D0 WD �ŒV0� [

Sl
jD0�Œ@ajW �. The map

Sl
jD0�Œ@ajW � ! D0 is extended left

anodyne because it is the pushout of outer root inclusion of �ŒV0�.
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Step 3. For 1 
 n 
 N � 1, we define the set Vn of all the initial segments of
W with exactly nC l C 2 vertices. Furthermore we inductively define dendroidal
sets Dn D Dn�1 [

S
V 2Vn�ŒV �. Note that all such subtrees V 2 Vn contain

a0;a0;:::;al ;b1;:::;bq;c since they are initial and they have exactly n vertices more
than V0. The outer root horn inclusion for V 2 Vn is extended left anodyne by the
inductive hypothesis. The intersection of�ŒV � andDn�1 is the hornƒuŒV � because
the faces @aj�ŒV �;j D 0;1;:::;l are in BlC1 � D0 by the previous arguments, the
face @a0V is in A0, and other inner and outer leaf faces are in Dn�1 by definition.
We conclude that the inclusion Dn�1 ! Dn is also extended left anodyne because
it is the pushout of

S
V 2Vnƒ

u.V /!
S
V 2Vn�ŒV �.

Note that DN�1 contains all the faces of W except the outer root face T 0 and
@a0W D U . We have so far proven that ƒuŒU �!DN�1 is extended left anodyne.

Step 4. We show that DN�1!�ŒW � is inner anodyne. The intersection of �ŒT 0�
andDn�1 is the inner hornƒa

0

ŒT 0� because the inner face @a0T 0 D T is not inDN�1
and

� @ajT
0 is already in Al ;

� @eT
0 for inner edges e of the tree top S are in DN�1 because DN�1 contains

@eW ;

� @tT
0 for top vertices t of the tree top S are in DN�1 because DN�1 contains

@tW .

So the map DN�1 ! DN�1 [�ŒT
0� D ƒa

0

ŒW � is inner anodyne because it is a
pushout of an inner horn inclusion. Finally, ƒa

0

ŒW �!�ŒW � is inner anodyne and
we have shown that the inclusion A0!�ŒW � is extended left anodyne.
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