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Abstract: 24 

Stereo matching can provide complete and dense 3D reconstruction to study plant 25 

growth. Recently, high-quality stereo matching results were achieved combining semi-26 

global matching with deep learning. However, due to a lack of suitable training data, this 27 

technique is not readily applicable for plant reconstruction. We propose a self-supervised 28 

MC-CNN scheme to calculate matching cost and test it for plant reconstruction. The MC-29 

CNN network is re-trained using the initial matching results obtained from the standard 30 

MC-CNN weights. For the experiment, close-range photogrammetric imagery of an in-31 

house plant is used. The results show that the performance of self-supervised MC-CNN is 32 

superior to the Census algorithm and comparable to MC-CNN trained by a LiDAR point 33 

cloud. Another experiment is performed using stereo imagery of a field beech tree. The 34 

proposed self-training strategy is tested and has proved capable of identifying the drought 35 

condition of trees from the reconstructed leaves. 36 

1 Introduction 37 

Forest management is an interdisciplinary topic involved in numerous fields such as 38 

environment, politics, economics, climate and ecology (Strigul, 2012). Remote sensing, 39 

as a technique to take measurements from a distance, is appropriate to assist forest 40 

management because it can observe the target with no need to approach it and provide 41 

time series data sets for constant monitoring. Spaceborne and airborne remote sensing 42 

instruments offer broad observation of trees to estimate the biomass, monitor the living 43 

condition, measure the forest canopy cover, etc. (Ahmed et al., 2014; Freeman et al., 44 
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2016; Wu et al., 2016). Some high-resolution stereo imaging sensors are capable of 45 

deriving detailed digital surface models to acquire geometric parameters of the forest, 46 

however, only some large scale properties such as forest canopy height can actually be 47 

estimated (Tian et al., 2017). 48 

In order to obtain detailed information about the forest, single tree growth patterns should 49 

be observed. The size, shape, color and leaf distribution of individual trees are all 50 

important factors and worth measuring in detail so that the health situation of the tree and 51 

even the whole ecosystem can be better understood (Levin, 1999; Gatziolis et al., 2015). 52 

The terrestrial Light Detection and Ranging (LiDAR) technique can provide accurate and 53 

dense point clouds of trees to support the geometric survey for tree-level parameters 54 

estimation (Kankare et al., 2013; Tao et al., 2015). Nevertheless, the data acquisition can 55 

require considerable manpower and material resources and can even be dangerous in 56 

extreme terrain. In the past decade, dense matching using optical stereo images has been 57 

widely used for 3D reconstruction. Among the different techniques, Semi-Global 58 

Matching (SGM) has outperformed most existing approaches in accuracy and efficiency 59 

(especially in remote sensing), and is used in many applications, for example building 60 

reconstruction, digital surface model generation, robot navigation and driver assistance 61 

(Hirschmüller, 2011; Kuschk et al., 2014; Qin et al., 2015). However, the performance 62 

varies when different matching cost calculation approaches are adopted. Many local 63 

features (e.g. Census, Mutual Information) have been used for the matching cost 64 

calculation (Hirschmüller, 2008; Hirschmüller and Scharstein, 2009). But, tree leaf 65 
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matching remains very difficult due to the lack of unique features, many occlusions and 66 

repetitive structure.  67 

Convolutional Neural Networks (CNN) (LeCun et al., 1998) are a popular topic in 68 

computer vision and have been used to solve many vision problems. Recently, an 69 

algorithm computing Matching Cost based on CNN (MC-CNN) was proposed (Zbontar 70 

and LeCun, 2016) in which a net is trained with supervised learning based on pairs of 71 

small image patches with known true disparity. Combined with SGM, MC-CNN has 72 

proved to outperform most previous algorithms thanks to a good extraction of the local 73 

image features and a trained similarity measure to compare the extracted feature 74 

descriptors. However, the ground truth collection is always a bottleneck for deep neural 75 

network based algorithms, which require huge amount of labeled data to train the net 76 

(Krizhevsky et al., 2012; Knöbelreiter et al., 2018). Ground truth acquisition for tree 77 

reconstruction via LiDAR sensors is complicated by the long scanning time required for 78 

capturing a dense point cloud. Any tiny movement of the leaf or branch during the laser 79 

scanning will cause the scanned point cloud to be inconsistent with the images, which 80 

limits its use for further training and evaluation. Hence, in this paper we follow the work 81 

of (Knöbelreiter et al., 2018) and propose a dense matching strategy combining SGM and 82 

a self-trained MC-CNN for plant reconstruction.  83 

This paper is organized as follows: The MC-CNN based dense matching and the 84 

proposed training schemes are described in Section 2. Section 3 describes an indoor and 85 

an outdoor experiment, which demonstrate the feasibility of the proposed self-training 86 
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strategy. Conclusions are drawn and an outlook for future research is provided in Section 87 

4. 88 

2 Methodology 89 

2.1 Dense Matching 90 

Dense matching attempts at establishing correspondences between every pixel in the 91 

image pair (Scharstein and Szeliski, 2002). Together with the known camera orientations, 92 

a dense point cloud can be obtained. Most dense stereo matching algorithms consist of 93 

the following four steps: Firstly, a similarity measure between two potentially matching 94 

pixels is computed to evaluate the matching cost. Then as the matching cost can be 95 

ambiguous, costs are usually aggregated in a local neighborhood. Global stereo methods 96 

then apply regularization to the aggregated costs, while local methods simply select the 97 

correspondence with the lowest matching cost. SGM combines local and global methods 98 

by regularizing the aggregated costs before determining each correspondence. Afterwards 99 

for rectified stereo pairs, a disparity map containing the horizontal shifts between the 100 

images is obtained (Bolles et al., 1987; Okutomi and Kanade, 1993). Finally, subpixel 101 

interpolation, left-right consistency check and outlier filtering are applied by most stereo 102 

algorithms. 103 

2.2 CNN 104 

CNNs (LeCun et al., 1998) have been used to solve several vision problems such as 105 

classification (Krizhevsky et al., 2012), recognition (Lawrence et al., 1997), etc. It is 106 
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basically a feed-forward artificial neural network constructed by a sequence of layers 107 

with learnable weights and biases. A volume of activations are transformed into another 108 

when going through the layers, and finally certain scores are obtained as output at the end 109 

of the network, e.g. class scores for classification. Four types of layers are frequently 110 

used: (a) convolutional layers, in which each neuron is related to a local region of the 111 

input; (b) pooling layers, used to downsample the previous volume; (c) rectified linear 112 

units applying an elementwise activation function; and (d) fully-connected layers, which 113 

calculate the output by connecting each neuron to all the neurons of the previous volume 114 

for high-level reasoning. The network can be trained to reach its best performance with a 115 

sufficient amount of training samples. 116 

2.3 MC-CNN 117 

CNNs provide a new possibility in dense matching (Luo et al., 2016; Zbontar and LeCun, 118 

2016). Zbontar and LeCun (2016) proposed a dense stereo algorithm using a CNN based 119 

matching cost combined with SGM and additional post-processing steps, which 120 

outperformed most previous stereo matching algorithms. Therefore this algorithm is 121 

utilized as the main framework in this paper. 122 

2.3.1 Data Term 123 

A binary classification data set is constructed for training the net, based on either the 124 

KITTI (Geiger et al., 2013; Menze and Geiger, 2015) or the Middlebury (Scharstein and 125 

Szeliski, 2002, 2003; Scharstein and Pal, 2007; Hirschmüller and Scharstein, 2009; 126 

Scharstein et al., 2014) stereo data sets with available ground truth disparity maps. At 127 
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each image location, a positive and a negative training example are extracted. The 128 

positive example is a pair of patches from the left and right image respectively with the 129 

central pixels projected from the same object point, while the negative example is from a 130 

pair of patches where this geometric condition is not satisfied. 131 

Two network architectures are designed and trained on the extracted training examples. 132 

Both of them are siamese networks with two sub-networks sharing the same weights 133 

(Bromley et al., 1993). The first two sub-networks transform a pair of image patches into 134 

two feature vectors describing the structure of each patch. The siamese network consists 135 

of several convolutional layers, each of which is followed by a rectified linear unit. The 136 

second part of the network computes the similarity measure using the two feature vectors. 137 

The first architecture uses the dot product of the normalized feature vectors as similarity 138 

measure. Therefore, it has a lower runtime and is called fast architecture. The second 139 

architecture, shown in Figure 1 and named accurate architecture, learns the similarity 140 

measure during training. The outputs of the two subnets are concatenated and passed 141 

through a number of fully-connected layers with a rectified linear unit following each of 142 

them. At the end, there is one more fully-connected layer which uses the sigmoid 143 

nonlinearity to produce the similarity score. In this paper, the accurate architecture is 144 

adopted due to the high-quality demand of plant reconstruction. 145 
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 146 

Figure 1. The accurate architecture computes the similarity score using fully connected 147 

network layers. 148 

The binary cross-entropy loss used for training is defined as 149 

𝑙 = 𝑡 ∙ log 𝑠 + (1 − 𝑡) ∙ log(1 − 𝑠),                  (1) 150 

in which 𝑙 is the binary cross-entropy loss. 𝑠, the similarity score, represents the output of 151 

the net. The value of 𝑡 depends on the category of the training example being used, which 152 

is equal to 1 for positive examples and 0 for negative examples. The hyperparameters 153 

include the number of convolutional layers in each subnet (5), the number of feature 154 

maps in each layer (112), the convolutional kernel size (3), the number of fully-connected 155 

layers (3), the corresponding number of units in each full-connected layer (384), and the 156 

input patch size (11×11). Zbontar and LeCun (2016) acquire the hyperparameters based 157 

on manual search and simple scripts to help automate the process, which are also applied 158 

in this paper. 159 



9 
 

2.3.2 Smoothness Term 160 

SGM is used to regularize the disparity estimation using a piecewise constant smoothness 161 

term. SGM is a combination of local and global stereo matching methods (Hirschmüller, 162 

2008), and approximates a global 2D smoothness term by summation of 1 dimensional 163 

smoothness constraints on 8 or 16 directions. For each direction, assuming the target 164 

pixel is at location 𝑝, the cost is computed as: 165 

𝐿𝑟(𝑝, 𝑑) = 𝐶(𝑝, 𝑑) +𝑚𝑖𝑛⁡(𝐿𝑟(𝑝 − 𝑟, 𝑑), 𝐿𝑟(𝑝 − 𝑟, 𝑑 − 1) + 𝑃1, 

𝐿𝑟(𝑝 − 𝑟, 𝑑 + 1) + 𝑃1, 𝑚𝑖𝑛𝑖𝐿𝑟(𝑝 − 𝑟, 𝑖) + 𝑃2),          (2) 166 

where 𝐿𝑟(𝑝, 𝑑)  is the cost along the path traversed in direction ⁡𝑟  for the pixel 𝑝  at 167 

disparity 𝑑 and 𝐶(𝑝, 𝑑) is the matching cost. 𝑃1 represents a penalty when the previous 168 

pixel has a disparity difference of 1. 𝑃2 penalizes larger disparity differences. For each 169 

pixel 𝑝 ,  𝑆(𝑝, 𝑑) = ∑ 𝐿𝑟(𝑝, 𝑑)𝑟  is computed and the disparity with the minimum 𝑆  is 170 

selected. 171 

SGM is selected as smoothness term due to its good performance and efficiency, its 172 

runtime is proportional to the reconstructed volume (d’Angelo and Reinartz, 2011; 173 

d’Angelo, 2016). 𝐶(𝑝, 𝑑) is calculated using MC-CNN and then aggregated based on 174 

Cross-Based Cost Aggregation (CBCA) (Mei et al., 2011; Zbontar and LeCun, 2016). It 175 

should be noticed that 𝑆(𝑝, 𝑑) undergoes CBCA once more before the final disparity 176 

determination. 177 

2.3.3 Disparity Computation and Refinement 178 
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The disparity for each pixel is determined using the winner-takes-all strategy to generate 179 

a disparity map. Referring to Zbontar and LeCun (2016) and Mei et al. (2011), some 180 

post-processing steps are implemented to refine the quality of the disparity map, 181 

including interpolation, subpixel enhancement, a median filter, and a bilateral filter. 182 

2.4 Training Details 183 

As for the training, two schemes are designed, of which one utilizes the ground truth 184 

from a LiDAR scanner to construct training data, while the self-training scheme directly 185 

uses the dense matching results of MC-CNN, pre-trained on the Middlebury data sets, to 186 

re-train the network. The reason for the two schemes is to test how the performance of 187 

MC-CNN can be improved by self-training and training with ground truth, respectively. 188 

2.4.1 LiDAR Training Scheme 189 

Zbontar and LeCun (2016) provide several nets pre-trained on the KITTI 2012, KITTI 190 

2015 and Middlebury data sets, respectively. The KITTI data sets focus on street views 191 

which do not fully match with our application. However, the Middlebury data focuses on 192 

static objects and the scenes exhibit a similar structure as our plant images, e.g. both 193 

concentrate on a certain target. Therefore, as one option we start from the pre-trained net 194 

on the Middlebury data sets and further train the net using the ground truth from LiDAR. 195 

In other words, we re-use the net pre-trained on the Middlebury data, and refine the 196 

network for plant reconstruction by further training. Thus the learning ability of the net 197 

for objects from a different category could also be tested. 198 
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As for the LiDAR scanning, a point cloud of the plant is generated to obtain the ground 199 

truth disparity map. As the image orientation and the LiDAR point cloud use different 200 

coordinate systems, a co-registration step is needed before the point cloud can be used.  201 

Besides, the main target is to test the performance of MC-CNN trained with different 202 

strategies for plant reconstruction and compare with a classic Census algorithm to 203 

demonstrate the effectiveness of MC-CNN. Hence as shown in Figure 2, we first generate 204 

two disparity maps based on SGM with Census and MC-CNN pre-trained on the 205 

Middlebury data sets. A pixel-wise average of both maps is computed and projected into 206 

3D space to obtain a point cloud. Then, the point cloud from the laser scanner is 207 

registered to this newly generated point cloud. The ground truth disparity map is obtained 208 

by projecting the registered laser scanning point cloud onto the epipolar image planes. 209 

We use CloudCompare (Girardeau-Montaut et al., 2005) to roughly align the two point 210 

clouds first, by scale matching, rotation, translation and manual point pair picking 211 

alignment. After the rough alignment, some objects (in our case, leaves), which are 212 

reconstructed well by both dense matching and LiDAR, and aligned close to each other 213 

already, are selected for a further fine registration based on the Generalized Iterative 214 

Closest Point (GICP) method (Segal et al., 2009). GICP is more robust and performs 215 

better than the standard ICP without loss of efficiency. Afterwards, only well registered 216 

leaves are kept to generate the ground truth as described in detail by section 3.1.3. 217 
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 218 

Figure 2. Flow chart for ground truth generation. 219 

2.4.2 Self-Training Scheme 220 

Huge amounts of data are available to meet the need of CNN for training. However in 221 

most cases, high performance is accomplished at the cost of substantial pre-processing 222 

workloads to label the training examples. Therefore, many self-supervised concepts have 223 

been proposed to avoid the time-consuming manual annotation (Joung et al., 2017; Zhou 224 

et al., 2017; Knöbelreiter et al., 2018). Joung et al. (2017) exploited the correspondence 225 

consistency between stereo images to pick samples during the training and guide the 226 

network to compute matching cost. Zhou et al. (2017) randomly initialized a network and 227 

adopted left-right consistency check to select suitable matching to train the net. 228 

Knöbelreiter et al. (2018) constructed the training data using a pre-trained version of their 229 

hybrid CNN-CRF model followed by a conservative consistency check to reject most 230 
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outliers. Based on that, their self-supervised network is able to improve the completeness 231 

and accuracy of the stereo reconstruction results on aerial imagery. 232 

Very high resolution LiDAR point clouds are very difficult and expensive to capture 233 

especially in an outdoor environment. In addition, it is almost impossible to obtain 234 

perfectly matching image and LiDAR data due to the long scanning time and changes in 235 

the plant shape due to wind and other effects. Therefore, instead of using LiDAR data, a 236 

self-training procedure is applicable even to scenarios where ground truth acquisition is 237 

difficult or impossible. We use the MC-CNN as described in section 2.3, pre-trained on 238 

Middlebury, to generate disparity maps used for self-training. A left-right consistency 239 

check with a threshold of 1 pixel is used to filter most outliers: 240 

|𝑑𝑝
𝐿 + 𝑑𝑞

𝑅| ≤ 1⁡⁡⁡⁡⁡𝑞 = 𝑝 − 𝑑𝑝
𝐿 ,               (3) 241 

where 𝑑𝑝
𝐿  is the disparity for pixel at location 𝑝 in the disparity map regarding the left 242 

epipolar image as the master epipolar plane, while similarly 𝑑𝑞
𝑅 is calculated via dense 243 

matching regarding the right epipolar image as the master epipolar plane. Only pixels 244 

where left-right matching differs by less than 1 pixel are used as ground truth to further 245 

train MC-CNN. 246 

3 Experiments 247 

Two experiments demonstrate the feasibility of self-trained MC-CNN for plant 248 

reconstruction. The first experiment was carried out in an indoor laboratory environment. 249 

In this experiment, an 8-meter high tree standing in the atrium of a building was 250 
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photographed from above. At the same time, a LiDAR point cloud was captured from a 251 

similar position. The second experiment investigated stereoscopic images from the crown 252 

of a beech tree growing in a typical European forest. 253 

3.1 Experiment I 254 

3.1.1 Data Set 255 

The main objective of this work is the three-dimensional reconstruction of trees and their 256 

leaves in the forest. In order to minimize the influence of environmental conditions, the 257 

first experiment investigates an 8-meter high deciduous tree inside a building. A digital 258 

high-resolution handheld camera (NIKON D5500) equipped with an 18 mm lens is used 259 

to acquire images from a bridge over the crown of the tree. An exposure time of 1/20 260 

seconds and an ISO speed rating of 400 was used. The acquired images are 4000 pixels in 261 

height and 6000 pixels in width. A stereo image pair with a baseline length of 262 

approximately 0.1 meters is taken from a distance of approximately 1 meter from the tree. 263 

Details about the image acquisition are available in Table 1. A Leica HDS7000 laser 264 

scanner is used to obtain a point cloud of the plant from a similar position. Capturing the 265 

point cloud with a point distance of 6.3 mm and a depth error of 0.4 mm RMS at a 266 

distance of 10 meters took about 10 minutes. 267 

Table 1. The image acquisition parameters. 268 

Camera model NIKON D5500 

Height 4000 pixels 

Width 6000 pixels 

Exposure time 1/20 sec 

ISO speed rating 400 
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Focal length 18.0 mm 

Object distance ≈ 1 m 

GSD 0.02 cm/pixel 

Baseline length ≈ 0.1 m 

 269 

3.1.2 3D Reconstruction 270 

The proposed dense matching approach requires epipolar images, where corresponding 271 

pixels are located on the same image row. MicMac (Rosu et al., 2015) was utilized for 272 

camera calibration, relative orientation and epipolar image rectification. The epipolar 273 

images generated based on the stereo pair mentioned above are shown in Figure 3. 274 

   275 

Figure 3. The epipolar image pair for dense matching. 276 

Disparity maps have been calculated using the method described in sections 2.2 and 2.3 277 

using 4 different matching costs:  278 

Census: Using only Census as matching cost; 279 

MC-CNN-Pre: Using MC-CNN matching cost pre-trained on the Middlebury data sets; 280 

MC-CNN-LiDAR: Using MC-CNN further trained on the LiDAR ground truth for 281 

matching cost, as described in section 2.4.1; 282 
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MC-CNN-SelfT: Using MC-CNN further trained using the disparity maps of MC-CNN-283 

Pre, as described in section 2.4.2. 284 

After the processing as described in section 2.3 and applying the left-right consistency 285 

check as described in section 2.4.2, the generated disparity maps for the epipolar image 286 

pair in Figure 3 are shown in Figure 4. For pixels with valid matching, the calculated 287 

disparity values from -91 to +42 are represented by the color from blue to yellow 288 

accordingly. 289 

    290 

     (a) Census                             (b) MC-CNN-Pre 291 

    292 

                   (c) MC-CNN-LiDAR                  (d) MC-CNN-SelfT 293 

 294 
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Figure 4. The disparity maps generated based on SGM with different strategies for 295 

matching cost. Inconsistent matching (IM) is represented by the color white. 296 

3.1.3 Evaluation and Discussion 297 

Training and evaluation of the different methods is hampered by systematic differences 298 

between LiDAR and stereo pairs. Due to the automatic air conditioning of the building 299 

there were small movements of the branches and leaves during LiDAR recording which 300 

took around 10 minutes. These led to slightly different leaf positions between LiDAR and 301 

stereo images. During the generation of the ground truth disparity map, some errors are 302 

included unavoidably when picking up point pairs to align the point clouds initially. The 303 

fine registration with GICP can improve the co-registration but errors still exist. Due to 304 

these problems, the point cloud registration is not perfect which influences the use of the 305 

ground truth disparity map generated from the LiDAR data. This is also the reason that 306 

we determine to only focus on some selected leaves after rough alignment to do GICP, as 307 

mentioned in section 2.4.1. Afterwards the relatively well registered leaves by GICP, that 308 

visually show merely small shift between the point clouds, are utilized for training and 309 

evaluation of the methods, which alleviates the problem mentioned above. This is in 310 

accordance with our application, as the shape of the leaves is the major indicator of plant 311 

health. Compared with images from the Middlebury data sets with sizes of around 312 

300×200 to 3000×2000 pixels, our images are larger (6000×4000 pixels), and the 313 

masked leaves can still provide a good amount of application specific training data. Thus, 314 

we use 13 well registered leaves together with Jadeplant and Sword1 data (containing a 315 
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plant, belonging to the Middlebury data sets 2014) as training data. The reason for adding 316 

the Middlebury data into the newly generated data sets is to increase the amount of 317 

training data from limited selected leaves.  318 

A visual comparison of the results in Figure 4 shows that the tree was well reconstructed 319 

by all matching schemes. The results of five independent leaves not used during training 320 

on the LiDAR ground truth are shown in Figure 5. While most parts of the leaves are well 321 

reconstructed, some differences in completeness and amount of outliers are visible. 322 

 323 

          Leaf (a)  324 



19 
 

 325 

          Leaf (b)  326 

 327 

          Leaf (c)   328 
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 329 

          Leaf (d)   330 

 331 

          Leaf (e) 332 

Figure 5. The reconstruction details of several selected leaves. From left to right in each 333 

subset: the first row includes the master epipolar image and dense matching results for 334 
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Census and MC-CNN-Pre. The second row includes the ground truth and dense matching 335 

results for MC-CNN-LiDAR and MC-CNN-SelfT. In order to enhance the contrast of the 336 

disparity within each single leaf, we have used a different colorbar for each leaf. Pixels 337 

invalidated by the left-right check are shown in white. 338 

From a visual inspection, it is found that the disparity values obtained by all four 339 

strategies match with the ground truth. With Census as matching cost, the main shape of 340 

the leaf is reconstructed but with considerable noise and low completeness. MC-CNN-Pre 341 

results in low completeness, cf. leaf (e), but shows less noise. However when fed with 342 

specific data for further training, MC-CNN-LiDAR and MC-CNN-SelfT achieve higher 343 

reconstruction completeness. MC-CNN-SelfT results in a slightly better leaf 344 

reconstruction than MC-CNN-LiDAR and fewer gaps. We would like to point out two 345 

reasons for this behavior: Firstly, in self-training more training samples are available for 346 

the net to develop the ability to learn new feature and calculate the similarity score. In 347 

Figure 4, it can be seen that all leaves are reconstructed or partially reconstructed in MC-348 

CNN-Pre. Hence, the further trained MC-CNN can learn from each single leaf during the 349 

training and recover more area. Besides the rigid left-right consistency check, applied to 350 

the dense matching results of MC-CNN-Pre to construct training samples, guarantees a 351 

reasonable training procedure for MC-CNN-SelfT. 352 

A quantitative evaluation is performed by comparing the generated disparity maps with 353 

the disparity maps obtained from LiDAR. The leaves (a) – (e) shown above are used for 354 

comparison. Firstly, the disparity difference 𝐷𝑝 is calculated as below in units of pixels: 355 



22 
 

     𝐷𝑝 = 𝑑𝑝 − 𝑑𝑝
𝐺 ⁡⁡⁡⁡⁡𝑝 ∈ 𝑁𝑝,         (4) 356 

where 𝑑𝑝 denotes the disparity value of a pixel at location 𝑝 calculated using one of the 357 

four dense matching schemes. 𝑑𝑝
𝐺  is the corresponding ground truth disparity value. 𝑁𝑝 is 358 

the set of pixels where both dense matching and ground truth provide disparity values. 359 

The mean (𝐷𝑚𝑒𝑎𝑛), median (𝐷𝑚𝑒𝑑𝑖𝑎𝑛), standard deviation (𝐷𝑆𝑇𝐷) and median absolute 360 

deviation (𝐷𝑀𝐴𝐷) of the disparity differences are computed for comparison. 361 

𝐷𝑚𝑒𝑎𝑛 = 𝑚𝑒𝑎𝑛(𝐷𝑝)              (5) 362 

𝐷𝑚𝑒𝑑𝑖𝑎𝑛 = 𝑚𝑒𝑑𝑖𝑎𝑛(𝐷𝑝)                (6) 363 

𝐷𝑆𝑇𝐷 = √𝑚𝑒𝑎𝑛(⁡(𝐷𝑝 − 𝐷𝑚𝑒𝑎𝑛)2⁡)        (7) 364 

𝐷𝑀𝐴𝐷 = 𝑚𝑒𝑑𝑖𝑎𝑛(|𝐷𝑝 − 𝐷𝑚𝑒𝑑𝑖𝑎𝑛|).        (8) 365 

The results are reported in Tables 2 to 5. 366 

Table 2. Mean of the disparity difference between dense matching and ground truth. 367 

 𝐷𝑚𝑒𝑎𝑛 (pixels) 

leaf Census MC-CNN-Pre MC-CNN-LiDAR MC-CNN-SelfT 
(a) 0.28 -0.23 0.05 0.17 

(b) -6.78 -4.96 -2.32 -1.88 

(c) -13.88 -14.32 -3.73 -3.13 

(d) 0.35 0.72 0.50 0.64 

(e) -0.15 0.14 0.30 0.46 

 368 

Table 3. Median of the disparity difference between dense matching and ground truth. 369 
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 𝐷𝑚𝑒𝑑𝑖𝑎𝑛 (pixels) 

leaf Census MC-CNN-Pre MC-CNN-LiDAR MC-CNN-SelfT 
(a) 0.11 -0.11 -0.10 -0.00 

(b) -1.78 -1.72 -2.02 -1.57 

(c) -3.91 -3.30 -3.54 -3.12 

(d) 0.32 0.48 0.40 0.57 
(e) 0.06 0.29 0.28 0.40 

 

 

 

 370 

Table 4. STD of the disparity difference between dense matching and ground truth. 371 

 

 

 

𝐷𝑆𝑇𝐷 (pixels) 

leaf Census MC-CNN-Pre MC-CNN-LiDAR MC-CNN-SelfT 
(a) 4.49 4.48 2.37 2.76 

(b) 19.61 15.02 1.29 1.28 

(c) 25.53 30.65 7.86 6.38 

(d) 2.73 3.16 1.06 1.13 

(e) 5.35 2.84 0.70 0.86 

 372 

Table 5. MAD of the disparity difference between dense matching and ground truth. 373 

 𝐷𝑀𝐴𝐷 (pixels) 

leaf Census MC-CNN-Pre MC-CNN-LiDAR MC-CNN-SelfT 
(a) 0.76 0.57 0.57 0.63 
(b) 3.03 0.51 0.42 0.40 

(c) 3.49 0.64 0.63 0.63 

(d) 0.73 0.67 0.60 0.65 

(e) 0.50 0.46 0.43 0.51 

 374 

By comparing the results in Table 2 and Table 3, it can be observed that the median is as 375 

expected more robust to outliers than the mean (e.g. for leaf (c), all the 𝐷𝑚𝑒𝑑𝑖𝑎𝑛  are 376 

around 3 pixels). Leaf (b) and (c) show a relatively large systematic disparity difference. 377 

This can be attributed to the systematic error caused by the shape change and imperfect 378 

point cloud registration of the ground truth disparity map. 379 
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The 𝐷𝑆𝑇𝐷  values in Table 4 show the robustness of MC-CNN-LiDAR and MC-CNN-380 

SelfT, as they exhibit much lower 𝐷𝑆𝑇𝐷  than Census and MC-CNN-Pre. 381 

𝐷𝑀𝐴𝐷 has been widely used for depth map evaluation, as it is more robust to outliers than 382 

𝐷𝑆𝑇𝐷. The disparity map generated from Census has a relatively high 𝐷𝑀𝐴𝐷 for the leaves 383 

(b) and (c). This is due to the large amount of noise in the Census results, as visible in 384 

Figure 5. 385 

In addition to the pixel-based direct comparison, the reconstruction completeness and the 386 

percentage of the accurately measured pixels are calculated. The reconstruction 387 

completeness is calculated using the formula (9). 388 

𝐶𝑝𝑙 =
𝑛𝐷𝑀/𝐺

𝑛𝐺
× 100%,           (9) 389 

where 𝑛𝐺  denotes the number of pixels with a valid disparity value provided by the 390 

ground truth in each leaf. 𝑛𝐷𝑀/𝐺 denotes the number of pixels where both dense matching 391 

and ground truth provide disparity values. Thus the completeness 𝐶𝑝𝑙  will be the 392 

percentage of pixels in ground truth which are reconstructed by the dense matching as 393 

well. 394 

However due to the systematic error, the disparity difference 𝐷𝑝 between dense matching 395 

and ground truth cannot be directly utilized for evaluation. Therefore, we remove the 396 

systematic disparity shift for each leaf before computing the percentage of accurate 397 

pixels.  398 
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𝐴𝑐𝑐 =
𝑛𝑝𝑎𝑠𝑠

𝑛𝐺
× 100%         (10) 399 

𝑛𝑝𝑎𝑠𝑠 = 𝑡ℎ𝑒⁡#⁡𝑜𝑓⁡𝑝𝑖𝑥𝑒𝑙𝑠⁡⁡⁡⁡⁡𝑖𝑓:⁡|𝐷𝑝 −𝐷𝑚𝑒𝑑𝑖𝑎𝑛𝑚𝑒𝑎𝑛
| ≤ 𝜀       (11) 400 

𝐷𝑚𝑒𝑑𝑖𝑎𝑛𝑚𝑒𝑎𝑛
= 𝑚𝑒𝑎𝑛(𝐷𝑚𝑒𝑑𝑖𝑎𝑛𝑠𝑐ℎ𝑒𝑚𝑒⁡𝑖

)⁡⁡⁡𝑖 ∈ {1, 2, 3, 4},      (12) 401 

where 𝐷𝑚𝑒𝑑𝑖𝑎𝑛𝑚𝑒𝑎𝑛
 is the mean of 𝐷𝑚𝑒𝑑𝑖𝑎𝑛 calculated using each of the four matching 402 

schemes for each leaf. 𝑛𝑝𝑎𝑠𝑠 counts the number of pixels with the deviation below 𝜀, a 403 

pre-defined threshold to evaluate the corresponding accuracy. In this paper, 𝜀 is set as 0.5 404 

and 1 pixel respectively for the test. The results are shown in Table 6. 405 

Table 6. Evaluation of reconstruction completeness and accuracy for each dense 406 

matching scheme. 407 

Algorithm 

(a) (b) (c) (d) (e) 

Cpl 
Acc 

Cpl 
Acc 

Cpl 
Acc 

Cpl 
Acc 

Cpl 
Acc 

0.5 p 1 p 0.5 p 1 p 0.5 p 1 p 0.5 p 1 p 0.5 p 1 p 

Census 92.0 31.8 57.0 63.0 14.8 23.9 49.7 7.6 14.0 92.0 36.4 56.9 89.7 43.3 71.0 

MC-CNN-Pre 91.1 42.1 67.3 82.0 39.0 62.5 59.8 23.6 37.0 91.5 37.6 63.3 85.0 45.6 72.9 

MC-CNN-LiDAR 96.9 43.8 72.1 89.2 51.9 70.7 86.4 34.5 60.5 99.4 44.3 69.4 97.1 55.6 82.5 

MC-CNN-SelfT 97.9 41.0 67.0 98.6 51.0 81.4 95.7 39.7 62.2 99.4 41.9 67.8 99.5 47.9 77.4 

 408 

MC-CNN-SelfT consistently obtains a slightly higher completeness than MC-CNN-409 

LiDAR, while MC-CNN-LiDAR obtains slightly higher accuracy values for most leaves, 410 

except for leaves (b) and (c), where MC-CNN-SelfT shows significantly better 411 

completeness and 1 pixel accuracy values. Both re-trained methods consistently 412 
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outperform Census and MC-CNN-Pre. This shows that especially MC-CNN-SelfT, 413 

which does not require additional LiDAR ground truth data, is a good approach for 414 

significantly improving the leaf reconstruction. 415 

In this experiment, MC-CNN-LiDAR is handicapped due to imperfect ground truth, 416 

leading to disadvantages compared to the MC-CNN-SelfT method.  We therefore assume 417 

that the scores for MC-CNN-LiDAR could be improved slightly by using a perfectly 418 

registered ground truth. However due to different registration errors for each leaf (cf. 419 

Table 3), the LiDAR trained network is not able to learn and correct for a systematic 420 

error between the LiDAR point cloud and the image data. We thus believe that the 421 

evaluation does not favor a specific method. 422 

3.2 Experiment II 423 

This work was performed as part of a project aiming at detecting the physiological and 424 

morphological status of trees under drought stress and studying the adaptation of forest 425 

areas to climate change. A major part of the project focuses on constructing a detailed 426 

and accurate 3D model of tree leaves in order to monitor the shape change when facing 427 

drought. 428 

For this purpose, two nadir-viewing cameras are mounted on a crane system for stereo 429 

measurement. When the system is lifted above the trees, a stereo image pair of the tree 430 

crowns can be obtained. In order to test the feasibility of the stereo method described in 431 

this paper, a stereo image pair above a beech tree subject to slightly artificial drought 432 
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stress is collected. Some information about the images and the camera setting is shown in 433 

Table 7. 434 

Table 7. Details about the image acquisition. 435 

Camera model SONY ILCE-5100 

Height 4000 pixels 

Width 6000 pixels 

Exposure time 1/60 sec 

ISO speed rating 125 

Focal length 19.0 mm 

Object distance ≈ 3 m 

GSD 0.06 cm/pixel 

Baseline length ≈ 0.25 m 

Acquisition date June 19th, 2018 

 436 

The corresponding epipolar image pair is shown in Figure 6. In this experiment, no 437 

LiDAR data is available, thus only Census, MC-CNN-Pre and MC-CNN-SelfT can be 438 

applied. The disparity map computed using MC-CNN-SelfT is shown in Figure 7. 439 

  440 

Figure 6. An epipolar image pair from the test region of our project. 441 
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 442 

 443 

Figure 7. The disparity map generated using self-trained MC-CNN. Inconsistent 444 

matching is represented by the color white. 445 

Figure 6 shows that the large beech tree crown is much more complex, and has much 446 

smaller leaves than the indoor tree used in the first experiment. The slight drought stress 447 

leads to multiple different leaf shapes. Under the hypothesis that curved leaves are an 448 

indicator for drought stress, the stereo method should enable a clear separation of planar 449 

and curved leaves. The generated disparity map provides a dense reconstruction of the 450 

tree crown, and individual leaves are separable. The reconstruction completeness for MC-451 

CNN-Pre and MC-CNN-SelfT, are 76.0% and 78.7%, respectively. Due to the lack of 452 

ground truth, the value is computed as the ratio of pixel passing the left-right check to the 453 

number of valid pixels in the rectified image. Some leaves under drought stress are 454 

selected for visual comparison. As shown in Figure 8, the curled shape of the leaves is 455 

clearly visible in the disparity image and the profile plot. 456 
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 457 

(1) 458 

 459 

(2) 460 

 461 

(3) 462 



30 
 

Figure 8. Leaves under drought stress. From left to right in each subset: the master 463 

epipolar image, the disparity map of the self-trained MC-CNN matching scheme, and the 464 

disparity profile along the red line. The color represents the disparity. From blue to 465 

yellow, the targets get closer to the camera. Pixels with inconsistent matching are shown 466 

in white color. 467 

 It can be found that all the profiles are roughly U shaped, similar to the true shape of the 468 

leaves. 469 

4 Conclusion 470 

Plant reconstruction from stereo imagery is difficult due to the complexity of leaves 471 

which exhibit similar shape and intensity information. Hence the matching cost 472 

computation should be accurate to adequately represent the similarity between patches as 473 

the basis for the final disparity computation. SGM combined with MC-CNN has proved 474 

to outperform most previous algorithms; however, in practice it is extremely difficult to 475 

capture a large amount of high-quality training data. In this paper, a self-trained MC-476 

CNN without the use of ground truth is tested to reconstruct the plant. Based on the dense 477 

matching results of MC-CNN pre-trained on the Middlebury data sets, a rigid left-right 478 

consistency check is applied to limit the outliers and the filtered results are utilized to 479 

further train the net. The reconstructed plant shows superior performance for the self-480 

trained version than for the pre-trained one and the classic Census algorithm. Compared 481 

with MC-CNN further trained using the ground truth from LiDAR, the self-trained net 482 

behaves slightly worse in accuracy but better in reconstruction completeness. The self-483 
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training strategy of MC-CNN is also applied to the stereo imagery of a natural forest tree 484 

under drought condition. The resultant disparity map is capable of showing the 485 

deformation of leaves, which highlights the possibility of the self-trained MC-CNN to 486 

monitor the tree health situation. 487 

In future research, more approaches will be tested to capture the ground truth for outdoor 488 

experiments, for instance the structured light technique (Scharstein and Szeliski, 2003). 489 

Also the reconstruction of other more stable objects like buildings could be attempted. 490 

Furthermore, multi-viewed dense matching can be used to improve the self-training. 491 

Multiple images can in fact provide denser reconstruction results; meanwhile a 492 

consistency check among more than two images is able to further remove outliers which 493 

guarantees more reasonable training data. The self-training strategy of MC-CNN 494 

provides the possibility of detailed plant reconstruction and avoids the complexity of 495 

collecting ground truth especially in extreme situations. 496 
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