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Transient inactivation of the infralimbic
cortex induces antidepressant-like effects
in the rat

David A Slattery1,2, Inga D Neumann2 and John F Cryan1,3

Abstract
Affective disorders are among the main causes of disability worldwide, yet the underlying pathophysiology remains poorly understood. Recently,

landmark neuroimaging studies have shown increased metabolic activity in Brodmann Area 25 (BA25) in depressed patients. Moreover, functional

inactivation of this region using deep brain stimulation alleviated depressive symptoms in severely depressed patients. Thus, we examined the effect of

a similar manipulation, pharmacological inactivation of the infralimbic cortex, the rodent correlate of BA25, in an animal model of antidepressant

activity: the modified rat forced swim test. Transient inactivation of the infralimbic cortex using muscimol reduced immobility, an antidepressant-like

effect in the test. Importantly, this activity was not the result of a general increase in locomotor activity. Activation of the infralimbic cortex using

bicuculline did not alter behaviour. Finally, we examined the effect of muscimol in animals bred for high anxiety-related behaviour, which also display

elevated depression-related behaviour. Transient inactivation of the infralimbic cortex decreased the high inborn depression-like behaviour of these

rats. These results show that it is possible to replicate findings from a clinical trial in a rodent model. Further, they support the use of the forced swim

test to gain greater understanding of the neurocircuitry involved in depression and antidepressant-action.
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Introduction

Affective disorders are amongst the main causes of disability

worldwide. Recent advances in neuroimaging technology
have enabled insights into the neurocircuitry underlying
depression. These studies have shown that a number of cor-

tical and limbic regions have alterations in both volume and
metabolism, such as the hippocampus, amygdala, anterior
cingulate cortex and caudate nucleus (Bremner, 2002;
Davidson et al., 2002; Dougherty et al., 2003; Drevets,

2001; Mayberg et al., 1999; Seminowicz et al., 2004; Sheline
et al., 2002). A number of studies have demonstrated that
activity of the subgenual cingulate cortex (Brodmann Area

[BA] 25) is decreased by antidepressant administration, elec-
troconvulsive therapy and ablative surgery (Goldapple et al.,
2004; Mayberg et al., 1999; Seminowicz et al., 2004). Further,

deep brain stimulation (DBS) of BA25, which normalized the
metabolic hyperfunctioning observed in this region in treat-
ment-resistant depressed patients, resulted in an antidepres-
sant effect (Mayberg et al., 2005). DBS is believed to mediate

these effects by activating inhibitory GABAergic afferents in
BA25, which in turn results in altered metabolism in down-
stream limbic sites (Mayberg et al., 2005).

One of the major predisposing factors to major depression
is exposure to stress, and the disease is often viewed as
a manifestation of an inability to cope with stress

(Anisman and Zacharko, 1990; Cryan and Holmes, 2005;

Kessler, 1997; Sullivan et al., 2000). Thus many models and
tests for assessing depression-related behaviour in rodents

involve exposure to stressful situations. Of these, the forced
swim test (FST) is probably the most widely and frequently
used, in which antidepressant administration increases active

escape-directed behaviours (Cryan et al., 2002, 2005;
Petit-Demouliere et al., 2005; Porsolt et al., 1977). Research
efforts have also attempted to utilize differences in stress-
coping behaviour to generate selectively bred animal lines,

which differ based on a specific endophenotype (Cryan and
Slattery, 2007). One of the most established of such
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models is high anxiety-related behaviour (HAB) and low
anxiety-related behaviour (LAB) rats, which are Wistar rats
that have been selectively bred for anxiety-related behaviour

on the elevated plus-maze (EPM; Landgraf et al., 2007).
These breeding lines also have distinct differences in stress-
coping style (Keck et al., 2003) and HAB rats have been
shown to display a depressive-like phenotype in the FST

under basal conditions compared with both LAB and
Wistar rats (Keck et al., 2003; Slattery and Neumann,
2010). Therefore, HAB rats represent an established animal

model to study the underlying aetiology of affective disorders
and may more closely mimic the situation observed in
patients suffering from depression.

The rodent correlate of the human BA25 is believed to be
the infralimbic cortex (Barbas et al., 2003; Ongur and Price,
2000; Quirk and Beer, 2006; Uylings et al., 2003), which forms

part of the prefrontal cortex (PFC) together with the prelimbic
and anterior cingulate cortices. The infralimbic cortex projects
to numerous regions involved in the emotional and neuroen-
docrine control of stress responses (Ongur and Price, 2000),

and a number of studies have linked the infralimbic cortex with
stress regulation. A recent study in rhesus monkeys found a
positive correlation between subgenual PFC activity and

increasing plasma corticosterone levels across a range of stim-
uli (Jahn et al., 2009). Amat et al. (2005) demonstrated that,
together with the prelimbic cortex, the infralimbic cortex in

rats inhibits stress-induced activation of the dorsal raphé
nucleus when a stressor is controllable; when an operant
response (wheel turn) enables escape from a footshock.
Furthermore, both acute (10min exposure to swim stress in

mice) and chronic (restraint in rats) stress result in dendritic
retraction in the infralimbic cortex (Goldwater et al., 2009;
Izquierdo et al., 2006; Perez-Cruz et al., 2009). This retraction

was shown to be behaviourally relevant as inhibition of protein
kinase C signalling in the PFC prevented both the retraction
and cognitive deficits induced by chronic stress (Hains et al.,

2009). Additionally, chronic stress-induced PFC reorganiza-
tion has been shown to result in a shift to habitual strategies
and a lack of behavioural flexibility (Dias-Ferreira et al., 2009).

Taken together, these results, combined with the human
DBS study, suggest that the infralimbic cortex may be an
important locus for the modulation of depression-related
behaviours. Therefore, the aim of the present study was to

determine whether inactivation of the infralimbic cortex
would alter depression-like behaviour in the rat FST in an
analogous manner to that shown in humans. In order to do so

we used the GABAA receptor agonist (muscimol) to inacti-
vate, and the GABAA receptor antagonist (bicuculline) to
activate the infralimbic cortex. GABAA receptor ligands

were chosen for a number of reasons: (1) it is hypothesized
that GABAergic effects within BA25 are mediating the
actions of DBS to lower metabolic activity in this region
and induce an antidepressant effect in patients (Mayberg

et al., 2005); (2) the use of ligands to activate and inactivate
the same neurobiological system enables direct comparison of
these opposing states; (3) localization of GABAA receptor

subunits have been extensively described in the PFC; (4)
there is an expansive literature using muscimol to inactivate
various brain regions (Corcoran et al., 2005; Maren et al.,

2001; Pothuizen et al., 2005; Zhang et al., 2002).

Thus, we determined whether inactivation of the infralim-
bic cortex could modulate depression-related behaviour in
normal laboratory animals. Our second aim was to determine

whether it could reduce high inborn levels of depression-
related behaviour in HAB rats in an analogous fashion to
that observed following DBS in treatment-resistant patients.
Thus, these experiments were designed to provide insight into

whether it is feasible to take a direct finding from a human
study and verify it in animal models of stress-induced coping
behaviour.

Materials and methods

Animals

Male Sprague-Dawley rats (Charles River, France) or male

HAB rats (from our breeding colony at the University of
Regensburg) (Landgraf and Wigger, 2002; Neumann, 2009)
weighing between 270 and 300 g at the time of surgery were
used in these studies. The animals were housed in groups of

2–4 and maintained on a 12-h light:dark cycle (lights on
06:00) in a temperature controlled colony (22–24�C). The ani-
mals had free access to food and water. Animals were allowed

to habituate for at least 7 days before surgery. After surgery
all animals were singly housed. All experimental procedures
were subject to institutional review and conducted in accor-

dance with the Veterinary Authority of Basel-Stadt,
Switzerland and the local government of the Oberpfalz.

Activation/inactivation experiments

These experiments were carried out as previously described for
the anterior cingulate cortex (Bissiere et al., 2006). In order to

activate or inactivate the infralimbic cortex, bilateral infusion
of, respectively, the GABAA receptor agonist muscimol
(200 pmoles per hemisphere, Sigma Aldrich Biochemicals) or

the GABAA receptor antagonist bicuculline (50 pmoles per
hemisphere, Sigma Aldrich Biochemicals) were performed
prior to the behavioural task via bilateral guide cannulae.

Drug concentrations and the time-frame from point of infu-
sion were chosen from previous intracranial studies (Bissiere
et al., 2006; Dickinson-Anson and McGaugh, 1997;
McDougall et al., 2004).

Drug infusion

The cannulae (28 gauge) used for infusion into the infralimbic
cortex were cut 4.5mm longer than the guide cannula (i.e.
12.5mm) and were connected to 10-ml Hamilton syringes

(Hamilton, USA) placed inside a syringe driver (CMA,
Sweden) via 0.28mm ID polyethelene tubing. The needles
were carefully inserted into the guide cannula and drugs were
simultaneously infused into each hemisphere in a final volume

of 1 ml over 1min. The cannulae were left in place for 1min
following the infusion in order to allow diffusion of the drug.

Cannula implantation

Bilateral guide cannula implantation was performed

under isoflurane anaesthesia (1.5–3% isoflurane, oxygen
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flow rate 450–500 ccm). Pre-operative analgesia (buprenor-
phine 0.1mg/kg; s.c.) was administered 30min before surgery.
After induction of anaesthesia the rat was placed into a ste-

reotaxic frame with the incisor bar set to þ5mm and
implanted with bilateral guide cannulae to the surface of
the dura (8mm in length) located above the infralimbic
cortex (AP þ4.5mm from bregma; ML� 0.75mm; V

4.5mm). The cannulae were fixed with two stainless steel
skull screws using dental acrylic. The wound was then sutured
and animals returned to their home cage and allowed to

recover for 7 or 8 days before the experiment began. A
dummy cannula (8mm) was inserted inside the guide cannula
and removed daily and reinserted to ensure that the cannulae

remained viable. Additionally, this reduced stress associated
with the infusion on the behavioural testing days.

Modified forced swim test

Sprague-Dawley. The FST was conducted using an adapted
protocol from that described previously (Cryan and Lucki,

2000a; 2000b; Cryan et al., 2005; Slattery et al., 2005).
Briefly, rats were individually placed into a plexiglass cylinder
(21 cm� 46 cm) filled with 25�C water to a depth of 30 cm.

The rats were removed after 15min, dried, and returned to
their home cage. Water was changed between each test.
Twenty-four hours after this first exposure, the rats were

replaced in the swim cylinder (under the same conditions)
for 5min. Both sessions were recorded using a video camera
placed above the cylinder for subsequent analysis. Rats were
simultaneously infused bilaterally 10min prior to each

swim session. The rater of the sessions was blind to the
treatment group being scored. Using a time sampling tech-
nique, the predominant behaviours, climbing, swimming or

immobility, in each 5-s period of the first 300 s of the pre-test
swim test and the full 300 s of the swim exposure were
recorded (providing an overall total of 60 scores). Climbing

behaviour consisted of upward-directed movement of the
forepaws usually along the side of the swim cylinder.
Swimming behaviour consisted of horizontal movement

throughout the swim chamber, which also included crossing
into another quadrant. Immobility was defined as the animal
floating in water without struggling and only making move-
ments necessary to maintain its head above the water (see

Cryan et al., 2002 for pictorial representations of observed
behaviours).

In the traditional rat FST the initial exposure to the test

apparatus (often referred to as the pre-test) has been reported
to reliably induce immobility upon re-exposure (Borsini et al.,
1989). Although this pre-test swim is thought not to be as

essential in the modified FST (see Cryan et al., 2005) it has
been used systematically to enhance reliability. Therefore, it
was important to see whether the infralimbic cortex had a
selective role in modulating the initial behavioural responses

to the stressful situation, which could potentially affect inter-
pretation of an altered behavioural response in the subse-
quent test session. This necessitated the infusion of drugs

prior to both the pre-swim and the swim test, thus the inclu-
sion of the groups muscimol/vehicle and bicuculline/vehicle.
Furthermore, given the role of the infralimbic cortex in work-

ing and spatial memory (see Discussion), infusion of these

drugs prior to the pre-test swim served as specificity controls
for antidepressant-like behaviour.

In this manner, and following histological verification (see

below), the effect of vehicle infusion (n¼ 38), muscimol
(n¼ 22) or bicucculine (n¼ 21) on pre-test swim behaviour
was assessed. These animals were then re-exposed the follow-
ing day to the swim test and given a second infusion, giving

the following groups: vehicle/vehicle (n¼ 14), vehicle/musci-
mol (n¼ 13), vehicle/bicuculline (n¼ 11), muscimol/vehicle
(n¼ 10), muscimol/muscimol (n¼ 12), bicuculline/vehicle

(n¼ 10) or bicuculline/bicuculline (n¼ 11).

HAB rats. The modified FST was performed in HAB rats as
described above with the exception of the size of the cylinder
(29 cm� 50 cm). As muscimol and bicucculine infusions were

found not to alter behaviour during the pre-swim test in the
previous experiment performed in Sprague-Dawley rats, all
animals were injected with vehicle (n¼ 18) before the pre-swim
and vehicle (n¼ 8) or muscimol (n¼ 10) prior to the swim test.

Effect of infusions on locomotor activity

Once the data from the FST experiments were available, it
was important to assess whether any of the effects of musci-
mol could be ascribed to a general increase in locomotor

activity. In a separate group of Sprague-Dawley rats,
implanted with guide cannulae and infused as described
above, the effect of drug infusion on locomotor activity was
assessed during a 60-min trial in a novel environment, as

previously described (Slattery et al., 2005). Briefly, 10min
after drug infusion rats were placed in the centre of an enclo-
sure (60 cm� 40 cm� 50 cm) whereby a cage (55 cm�

33 cm� 19 cm) was positioned in the enclosure. An activity
monitor, consisting of a black and white video camera, was
mounted in the top centre of the enclosure and each second a

video frame was acquired and assessed with in-house devel-
oped software to calculate distance travelled. The animals
received bilateral infralimbic infusions of vehicle, muscimol

(200 pmoles per hemisphere) or bicuculline (50 pmoles) 10min
prior to activity testing. Twenty-four hours later, infusions
were performed again 10min before assessing locomotor
activity. In this manner, following histological verification,

the following groups were assessed: day 1, vehicle (n¼ 18),
muscimol (n¼ 8), bicuculline (n¼ 8); day 2, vehicle/vehicle
(n¼ 9), vehicle/muscimol (n¼ 9) or bicuculline/bicuculline

(n¼ 8).

Histological verification of cannula placements

Following behavioural testing rats were killed and approxi-
mately 1ml of haematoxylin dye was infused into each can-
nula to assist verification of the infusion sites. The brain was

rapidly dissected and snap frozen in isopentane cooled on dry
ice. Brains were then stored at �80�C until used for histolog-
ical verification. Brain sections of 30 mm were cryostat-cut and

visual verification of the cannula placement was performed
with the aid of a brain atlas (Paxinos and Watson, 1986).
Only rats with correct bilateral cannulae were used in the

statistical and behavioural analyses.
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Data analysis

For the analysis of the pre-test swim exposure a one-way

analysis of variance (ANOVA) was performed. Two-way
ANOVA was carried out on all variables in the swim expo-
sure (factors: Day 1 Drug and Day 2 Drug). Repeated mea-
sures (RM) ANOVA were performed for the effect of infusion

on locomotor activity. For the HAB study, Student’s t-tests
were performed on all behaviours assessed during the swim
session. Any overall statistical differences, which were set at

p< 0.05, were further analysed using Fisher’s LSD post hoc
where appropriate.

Cannula placement

Nine animals were removed from the FST experiments for

incorrect cannula placement (vehicle/vehicle¼ 1; vehicle/
bicuculline¼ 1; muscimol/vehicle¼ 3; bicuculline/vehicle¼ 2;
bicuculline/bicuculline¼ 1; muscimol/muscimol¼ 1), while
four animals were removed from the locomotor activity

experiments for incorrect cannula placement (vehicle/
muscimol¼ 1; muscimol/vehicle¼ 2; vehicle/vehicle¼ 1). No
animals were removed from the HAB study.

Effect of infralimbic infusions of muscimol or

bicuculline on pre-test swim exposure-induced

behavioural changes

Bilateral infusion of muscimol (200 pmoles per hemisphere) or

bicuculline (50 pmoles per hemisphere) into the infralimbic
cortex 10min before the pre-test swim exposure did not
alter any behaviour compared with the vehicle infusion

group, that is, immobility time (F[2, 80]¼ 1.23; p¼ 0.30),
swim duration (F[2, 80]¼ 1.85; p¼ 0.16) and climbing behav-
iour (F[2, 80]¼ 1.95; p¼ 0.15). There were no significant dif-

ferences in pre-test swim activity within each of the
subsequent treatment groups on Day 2 (when taking into
account rats which received different treatments prior to the

swim exposure, that is, between vehicle/vehicle, vehicle/mus-
cimol or vehicle/bicuculline groups in the pre-test swim.

Effect of infralimbic infusions of muscimol or

bicuculline on swim exposure-induced

behavioural changes

ANOVA revealed effects of the bilateral infusion 10min prior to
the swimexposure on immobility time (F[2, 80]¼ 5.66; p¼ 0.005)

and climbing behaviour (F[2, 80]¼ 3.30; p¼ 0.042) but not swim-
ming behaviour (F[2, 80]¼ 0.32; p¼ 0.73) (for clarity, the results
of muscimol and bicuculline groups are represented on separate
graphs in Figure 1 despite the statistical analyses being per-

formed on all groups simultaneously). Further analyses revealed
a trend for an interaction between pre-test swim� swim infusion
on the duration of swimming (F[2, 80]¼ 3.099; p¼ 0.051). Post-

hoc analyses revealed that vehicle/muscimol and muscimol/
muscimol infusion decreased immobility time (p< 0.01) while
increasing climbing duration (p< 0.05) compared with vehicle/

vehicle infusion animals (Figure 1B).
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Figure 1. The effect of inactivation/activation of the infralimbic

cortex on behaviour in the pre-test (A) and test swim (B, C) exposures.

(A) Muscimol (MUSC; 200 pmoles per hemisphere) or

bicuculline (BIC; 50 pmoles per hemisphere) 10 min before the test did

not alter any behaviour analysed during the first 5 min of the pre-test

swim exposure compared with vehicle (VEH). (B) Muscimol infusion

10 min prior to the swim exposure on day 2 resulted in a decrease in

immobility time mediated via an increase in climbing behaviour compared

with vehicle infusion. (C) Infusion of bicuculline prior to the pre-test

swim only resulted in a decrease in swimming behaviour during the

swim exposure compared with vehicle infusion. Data represent

mean� SEM of animals with verified bilateral cannula sites. ANOVA was

performed followed by Fisher’s LSD

post-hoc analyses *p< 0.05; **p< 0.01 compared with

relevant pre-test swim group; $p< 0.05 compared with pre-test swim

and swim group.
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Effect of infralimbic infusion of muscimol on swim

behaviour in HAB rats

Student’s t-test revealed that bilateral muscimol infusion
10min prior to the swim exposure decreased immobility beha-
viour (p< 0.05) and increased climbing behaviour (p< 0.05)
but did not affect swimming behaviour (p> 0.05) (Figure 2).

Effect of infralimbic infusion of muscimol or bicuculline

on locomotor activity

In order to determine whether the antidepressant-like effects

of muscimol may be the result of a general increase in activity,
locomotor activity was assessed following the same infusion
protocol. Further, the potential for hangover effects of mus-

cimol on locomotor activity was assessed by injecting a group
of animals with muscimol prior to the initial test and with
vehicle prior to the second test session. Given that bicuculline
treatments failed to alter FST behaviour, just one group of

animals was used in locomotor studies whereby bicuculline
was administered both before the first and second test
sessions.

ANOVA revealed no significant effects of infusion
(F[2, 28]¼ 0.13; p¼ 0.88) or infusion� time interaction
(F[10, 240]¼ 0.74; p¼ 0.69) during the first locomotor activ-

ity exposure (Figure 3A). Separate analysis revealed that there
were also no statistical differences between the two subsets of
the vehicle infused group when taking into account the second
infusion (data not shown).

Interestingly, during the second exposure to the locomotor
chamber 24 h later, a significant effect of infusion group
(F[3, 30]¼ 6.56; p¼ 0.002) and a significant infusion group-

� time interaction (F[3, 30]¼ 4.53; p¼ 0.01) was observed.
Post-hoc analyses revealed that bicuculline infusion resulted
in a pronounced hyperactivity, which lasted for the initial

30min of the locomotor activity testing (Figure 3B).

Discussion

The recent landmark finding that inactivation of BA25 using

DBS could alleviate depressive symptoms in treatment-resis-
tant patients (Mayberg et al., 2005) gave rise to the possibility
of examining the effects of a similar treatment in an animal
model of antidepressant-activity. Here we demonstrate in

Sprague-Dawley rats that, analogous to the clinical study of
Mayberg and colleagues (2005), inactivation of the infralim-
bic cortex, the rodent correlate of the BA25 (Quirk and Beer,

2006) results in antidepressant-like behaviour in the rat mod-
ified FST. Furthermore, this behavioural response was not
the result of a general increase in locomotor activity, as infu-

sion of muscimol had no effect on this parameter over either
of the two days of testing. Interestingly, activation of the
region, via the GABAA receptor antagonist bicuculline, did

not result in any alteration of behaviour in the FST but
caused a pronounced hyperactivity. More pertinently, in
HAB rats, inactivation of the infralimbic cortex attenuated
their high inborn level of depression-related behaviour, anal-

ogous to the findings in treatment-resistant patients. These
results show that it is possible to replicate findings from a
clinical trial in rodents and support the use of the FST to

gain greater understanding of the neurocircuitry involved in
depression and antidepressant-action.

The infralimbic cortex has been implicated from preclini-

cal studies in stressor response, working memory and also in
reward-related behaviour (Cerqueira et al., 2005; Chudasama
and Robbins, 2006; Coutureau and Killcross, 2003; Gisquet-
Verrier and Delatour, 2006; Izquierdo et al., 2006). Given the

role of the PFC in working and spatial memory, groups
involving infusion of muscimol or bicuculline prior to the
pre-test swim followed by vehicle prior to the swim test

were included. These groups enabled the assessment of
whether inactivation or activation during the initial stress
exposure (i.e. the pre-test swim) affected the behavioural

response following re-exposure. Neither acute manipulation
in the current study altered behaviour in the pre-test swim
exposure (Figure 1A). As previously demonstrated there

was no significant difference in the pattern of active and pas-
sive behaviour between the pre-test swim and swim tests in
control animals in the modified FST (Bissiere et al., 2006).
However, previous studies demonstrated that pro-depressant-

like effects manifested following repeated exposure to the test
(Cryan et al., 2003). Further, alterations in activity of the
infralimbic cortex prior to pre-test swim alone also failed to

alter response in the test session (Figures 1B and 1C).
Therefore, the infralimbic cortex had a selective role in mod-
ulating behavioural coping responses upon re-exposure to a

stressful situation. These findings are supported from the lit-
erature involving conditioned fear, which show that extinc-
tion is facilitated by increased infralimbic cortex activity and
impaired by stress (Gourley et al., 2009; Quirk and Mueller,

2008). Importantly, alterations in infralimbic cortex activity,
by drug manipulation or previous stress exposure, have been
shown not to alter acquisition of fear suggesting a specific role

of this region in modulating the recall of a stressful event
(Gourley et al., 2009; Hefner et al., 2008; Quirk and
Mueller, 2008). Recently, we have shown that excitotoxic

lesions of the anterior cingulate cortex prior to behavioural
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Figure 2. The effect of inactivation of the infralimbic cortex on HAB rat

behaviour in the swim exposure. Muscimol (MUSC; 200 pmoles per hemi-

sphere) prior to the swim exposure resulted in a decrease in immobility

time mediated via an increase in climbing behaviour compared with

vehicle infusion. Student’s t-tests for each behaviour were performed

*p< 0.05 compared with VEH/VEH treatment.
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testing resulted in a pro-depressant-like effect (increased

immobility) in the swim test but not the pre-swim test
(Bissiere et al., 2006). Since the anterior cingulate cortex is
spatially close (�2mm posterior) to the pre- and infralimbic

cortices, this suggests that the antidepressant effect of musci-
mol in the present study is specific to the infralimbic cortex,
although we cannot fully discount diffusion to the ventral
prelimbic cortex. Moreover, misplaced cannulae suggested

that muscimol infusion did not alter activity in either the
pre-test or the swim test, although the low number of animals
occludes rigorous statistical analysis.

Stress exposure also activates the hypothalamic–pituitary–
adrenal (HPA) axis and lesions of the medial PFC (mPFC)
have been shown to elevate HPA factors, including adrenocor-

ticotropic hormone (ACTH) in a manner that is dependent on
the quality of the stressor (be it restraint stress, cold restraint
stress, white noise exposure, IL-1b administration or exposure
to ether fumes) and its strength (Crane et al., 2003; McDougall

et al., 2004; Sullivan and Gratton, 1999). This is further exem-
plified by the fact that mPFC lesions increase baseline HPA
function and increased ACTH concentrations and c-Fos

expression in the hypothalamic paraventricular nucleus
(PVN) following 20min restraint stress (Sullivan and
Gratton, 1999; but see Crane et al., 2003) but not follow-

ing exposure to ether stress (Figueiredo et al., 2003).

Our data concur with these previous studies in indicating

that mPFC regulates stress-responses but take them further
by utilizing an animal model of stress-induced coping, which
is predictive of antidepressant activity and using more region-

ally selective and transient disruption of neuronal activity.
The hypothesis that the infralimbic cortex modulates swim
stress-induced behaviours is strengthened by recent data
demonstrating that repeated swim stress exposure resulted in

dendritic shrinkage in the infralimbic cortex but not the pre-
limbic cortex and resulted in deficits in the extinction of learned
fear (Izquierdo et al., 2006). The authors suggest that this

retraction would lead to a decreased excitability of the infra-
limbic neurones, which in turn would impair its inhibitory
modulation of the amygdala. Furthermore, muscimol infusion

into the medial prefrontal cortex resulted in anxiolytic effects
in both the elevated plus-maze and shock-probe burying tests
(Shah et al., 2004). Given the substantial co-morbidity between
depression and anxiety disorders (Moller, 2002) and the anxi-

olytic effects of chronic antidepressant administration
(Borsini et al., 2002), this provides a further indication that
this region plays a significant role in the pathophysiology of

mood disorders. Previous studies have also demonstrated that
activation of the mPFC leads to activation of c-Fos in inter-
calated cells of the amygdala (Berretta et al., 2005; Rosenkranz

and Grace, 2002). It is believed that the infralimbic cortex
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Figure 3. The effect of pharmacological inactivation/activation of the infralimbic cortex on locomotor activity. A) Neither muscimol (200 pmoles per

hemisphere) nor bicuculline (50 pmoles per hemisphere) altered locomotor activity in a novel environment compared with vehicle infusion (VEH).

B) Infusion of bicuculline (BIC) prior to both exposures to the locomotor test chamber resulted in a pronounced hyperactivity compared with vehicle

infusion. Data represent mean� SEM of animals with verified bilateral cannula sites. Repeated measures ANOVA was performed followed by Fisher’s

post-hoc analyses where appropriate. **p< 0.01 and ***p< 0.001 compared with vehicle/vehicle group.
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projects to these cells, as well as the central-lateral amygdala,
which are both inhibitory (Quirk and Beer, 2006; Vertes, 2004).
In contrast, the more dorsal prelimbic cortex projects to the

basal amygdala (Likhtik et al., 2005; Quirk and Beer, 2006).
Further, human neuroimaging studies have shown that depres-
sion severity is correlated to amygdala activity (Drevets et al.,
1992), which suggests that the antidepressant-like response of

muscimol could be related to prevention of the stress-induced
alterations in infralimbic cortex by swim exposure, resulting in
increased active coping behaviour. In support of this hypoth-

esis a recent study from Sairanen and co-workers (Sairanen
et al., 2007) demonstrated that chronic antidepressant treat-
ment selectively increased plasticity-related proteins, including

a polysialylated form of nerve cell adhesion molecule, phos-
phorylated cyclic-AMP response element binding protein and
growth-associated protein 43 in the mPFC.

Interestingly, a number of rat lines/strains implicated in
depressive-related behaviour have also been shown to have
dysregulation of the infralimbic cortex. Congenitally learned
helpless rats, a line selectively bred for a specific trait relevant

to depression, display lower metabolic activity in the infralim-
bic cortex at birth but this switches to hyperactivity in adult-
hood (Shumake et al., 2000, 2004). Moreover, destruction of

astrocytes in the PFC has been shown to result in depressive-
like behaviour in rodents (Banasr and Duman, 2008) and the
Wistar–Kyoto strain, which exhibits high levels of anxiety and

depression-related behaviour, has been shown to exhibit a
reduced number of glial cells in the infralimbic cortex
(Gosselin et al., 2009). The present study examined HAB
rats, which have a high inborn level of depression-like behav-

iour and have previously been shown to have altered neuronal
activity in the infralimbic cortex in response to anxiogenic or
anxiolytic administration (Kalisch et al., 2004; Singewald,

2006). Polymorphisms in the promoter region of the arginine
vasopressin (AVP) gene have been shown to result in high and
low expression and intrahypothalamic release of AVP in HAB

and LAB rats, respectively (Landgraf et al., 2007; Murgatroyd
et al., 2004). Moreover, these differences related to the AVP
system have been causally linked to the difference in inborn

anxiety between the lines (see Landgraf et al., 2007 for a
review). Previously, chronic treatment with paroxetine over 8
weeks (Keck et al., 2003) or direct infusion of an AVP-receptor
antagonist into the PVN (Wigger et al., 2004) have been shown

to decrease the high depression-related behaviour in HAB rats.
However, no other treatment, including chronic infusion of
oxytocin, a neuropeptide related to AVP with anxiolytic and

partly anti-depressive effects (Slattery and Neumann, 2010),
has been shown to alter depression-related behaviour in
these rats to date. Therefore, the fact that transient inactiva-

tion of the infralimbic cortex resulted in an attenuation of this
high depression-related behaviour suggests a strong role of the
region in the behavioural phenotype of HAB rats (Figure 2).
This may possibly be mediated via infralimbic control of the

HPA axis response to stress exposure, which is elevated in
HAB rats (Landgraf et al., 2007; Murgatroyd et al., 2004).
However, further experiments are required to verify this.

Importantly, the results in HAB rats strengthen the possibility
that altered activity of infralimbic cortex in rodent or the BA25
in humans results in the increased likelihood of depression-

related behaviour.

The antidepressant-like effect of inactivation of the infra-
limbic cortex was reflected by a selective increase in climbing
behaviour in both Sprague-Dawley and HAB rats, which is

known to be mediated by increased catecholamine transmis-
sion (Cryan et al., 2002; Slattery et al., 2005). Interestingly,
chronic stress has been shown to cause a down-regulation of
dopamine D1 receptors in the infralimbic cortex (Goldwater

et al., 2009) and early-life stress has been shown to alter nor-
adrenergic-, but not serotonergic-, axon density in this region
(Kuramochi and Nakamura, 2009). Therefore, it is possible

that acute stress also predominantly affects dopaminergic and
noradrenergic transmission, and inactivation of the region
restores the balance.

Although originally designed as a screening tool for anti-
depressants (Porsolt et al., 1977), FST behaviour has been
shown to be regulated by various pharmacological and non-

pharmacological factors that also alter depression-related
behaviours in humans. These are as diverse as genetic predis-
position, prior exposure to stress, diabetes, alterations in sleep
architecture, and drug-withdrawal-induced anhedonia (Cryan

and Holmes, 2005; Cryan et al., 2003, 2005). Although the
FST has been in use for over three decades, the brain regions
and neural circuitry underlying behaviours in this paradigm

remain rather elusive. Previous studies have described a role
of different regions such as the lateral septum (Price et al.,
2002), the amygdala (Ebner et al., 2002), the bed nucleus of

stria terminalis (Schulz and Canbeyli, 2000) and the rostral
anterior cingulate cortex (Bissiere et al., 2006). Moreover,
recent data correlates stress-sensitive hippocampal activity
with immobility in the FST (Airan et al., 2007). Our present

data demonstrate that the modulation of infralimbic cortex
activity, the rodent correlate of BA 25, alters FST behaviour
in an analogous fashion to that shown by DBS in humans.

This further strengthens the face validity of the FST and sug-
gests that it may be a valuable tool to probe the underlying
mechanisms of disorders of stress-induced coping, such as

depression.
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