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Periodic ab initio estimates of the dispersive interaction between

molecular nitrogen and a monolayer of hexagonal BN
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The ab initio determination of the leading long-range term of pairwise additive dispersive

interactions, based on the independent analysis of the response properties of the interacting

objects, is here considered in the case where these are part of a periodic system. The interaction

of a nitrogen molecule with a thin film of hexagonal BN has been chosen as a case study for

identifying some of the problems involved, and for proposing techniques for their solution. In

order to validate the results so obtained, the interaction energy between N2 and a BN monolayer

at different distances has been estimated following a totally different approach, namely by

performing post-Hartree–Fock (MP2) supercell calculations using the CRYSTAL+CRYSCOR suite of

programs. The results obtained with the two approaches closely agree over a long range, while the

limit of validity of the purely dispersive regime can be clearly assessed.

I. Introduction

In many areas of solid state physics and surface science a lot of

attention is being devoted to dispersive interactions. They not

only play an essential role in determining the conformation

and stability of molecular crystals, but they can contribute a

non negligible portion of the cohesive energy of many ionic

systems and may control the kinetics of adsorption pheno-

mena. Standard one-electron approximations as are

customary in solid-state simulations, such as Hartree–Fock

(HF), or Kohn–Sham (KS) formulations of density functional

theory (DFT), or hybrid-exchange schemes, are known to be

unable to account for them. A number of semi-empirical

schemes have been devised therefore in order to estimate a

posteriori such interactions.1–5 Essentially, after subdividing

the whole system into subunits (A1,A2,. . .), usually coinciding

with the individual atoms, the dispersive energy is evaluated as

a sum over all Ai,Aj pairs of attraction terms of the form

�f(R)Cn/R
n (n = 6, 8, 10,. . .).w Here R is the distance between

the two subunits and f(R) a damping function which prevents

the term from acting at close distances, but becomes rapidly

a unity with increasing R. Both f(R) and the dispersion

coefficients Cn depend on the ‘‘type’’ of the two interacting

subunits. The use of such expressions, suitably parameterized,

has met with remarkable success in the description of mole-

cular crystals.7 Then, in the case of uncharged, apolar inter-

acting subunits, the only important contribution at large

distances is given by the van der Waals (vdW) �C6/R
6 term.

It would be desirable that, at least for this term, ab initio

determinations were available for use in solid-state simula-

tions, based on an appropriate partition of the electron

distribution and on the a priori estimate of the corresponding

vdW C6 coefficients.

In the present work we are concerned with one such

problem, namely the evaluation of dispersive interactions

which take place when a molecule, M, interacts with a slab,

S, periodic in two dimensions (x and y). Two completely

different ab initio periodic approaches are adopted. The former

obtains the attractive part of the interaction potential based on

an independent analysis of the response properties of the

interacting systems in terms of their frequency-dependent

polarizabilities. These quantities are obtained via a general-

ization to periodic structures of sum-over-states (SOS) techni-

ques developed in molecular quantum physics8 and will

therefore be referred to in the following as ‘‘SOS’’. The other

approach consists in the explicit evaluation of the total energy

of the M+S system as a function of distance by means of a

post-Hartree–Fock periodic technique: the vdW coefficient is

here obtained from the analysis of the long-range part of the

interaction potential. We use for this purpose our recently

implemented CRYSCOR code,9,10 which computes the

Møller–Plesset perturbative correction at second order

(MP2) to the HF solution provided by the CRYSTAL code;11

this technique will be designed as ‘‘HF+MP2’’.
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The special case of a nitrogen molecule interacting with

a monolayer of hexagonal boron nitride (h-BN) will be

considered here. As already stated in previous work,8 the

reason for choosing N2 as an adsorbate resides in the impor-

tance of this gas for routine quality control and for the

characterization of new porous materials. The choice of the

substrate is less straightforward: considering the numerous

applications of physisorption on activated carbon, a micro-

porous form of graphite, an interesting candidate could have

been graphite. However, the semi-metal character of this

system prevents its use in both methods: in the SOS technique

because the static polarizability component parallel to the slab

would result infinite, in the HF+MP2 approach because this

method is suitable only for non-conducting systems. There-

fore, hexagonal BN, where the different electronegativities of

boron and nitrogen result in an experimental band gap of

5.8 eV,12 seems a reasonable compromise between the interest

towards aromatic systems in the context of dispersion and

adsorption phenomena and the limitations of our methods.

Though not aromatic in the graphene sense, h-BN is

isoelectronic to graphite and has the same layered structure,

but with different stacking. Besides, h-BN has recently gained

interest due to the synthesis of BN nanotubes.13–15

When the SOS technique is applied, an additive ansatz will

be adopted, namely, we shall assume that each unit cell of S
interacts with M as in an independent-particle model. We also

suppose that the slab thickness t, the size of the unit cell and

that of the molecule are small as compared to the distance R

between surface and molecule. The global interaction can then

be expressed as a sum of two-body vdW terms involving the

general unit cell of the surface and the molecule; the corres-

ponding C6 coefficient is obtained by means of the Casimir-

Polder relation,16 which involves the dynamic polarizabilities

with respect to an imaginary frequency of the two subunits.

While the dynamic polarizability of M can be evaluated using

standard techniques of molecular quantum chemistry, the real

problem is to have an estimate of the same quantity for each

unit cell of the ‘‘isolated’’ surface; in section II, the formulae

and algorithms here adopted for this purpose are presented

and discussed. They essentially rely on the periodic program

CRYSTAL,11 which provides the quantum-mechanical

description of S with respect to a variety of one-electron

Hamiltonians in a basis set of local Gaussian type functions

(GTF) centered in the atoms conventionally designed as

atomic orbitals (AO).

In the HF+MP2 approach, the whole system is described as

a periodic 2D structure by using a supercell (SC) model of S,
and by setting a layer of N2 molecules above it, resulting in one

M per SC. CRYSTAL provides the HF solution, while CRYSCOR

estimates the MP2 correction to the energy using a

local-correlation approach.17–19 Note that CRYSCOR is the only

quantum-chemistry tool currently available for studying

infinite periodic systems in the local-correlation approach. In

spite of its limitations, the method presents several distinctive

advantages for the present application. First of all, MP2 is

known to provide an essentially correct estimate of the corre-

lation correction to the energy, and in particular of dispersive

interactions; secondly, its size-consistent character is essential

for the application to periodic systems; finally, the local-MP2

variant implemented in CRYSCOR permits the linear scaling of

computational costs with respect to the system dimensions.

A concise account of the techniques adopted for the present

HF+MP2 calculations is provided in section III.

The two methods are actually so different that the respective

computational parameters are largely independent (see section IV);

we have however tried to adjust them so as to obtain similar

standards of quality in the two cases.

The results (to be presented in section V) will allow us to

analyze the effect of the various computational devices

(basis set, truncations, corrections, etc.) adopted in the two

cases, but also to appreciate the convergence of the interaction

energies over a long range calculated with the two models.

From this comparison, the limit of applicability of the purely

dispersive regime can also be assessed.

II. The SOS technique

When two uncharged, apolar, isotropic and essentially dimen-

sionless systems, A and B, are considered, C6 can be obtained

by means of the Casimir-Polder relation,16 which involves the

dynamic polarizabilities with respect to an imaginary

frequency of the two isolated systems, aA(io) and aB(io):

C6 ¼
3

p

Z 1
0

aAð{oÞ aBð{oÞ do ð1Þ

This formula is easily generalized to the case of non isotropic

systems where the tensorial character of the polarizability

must be taken into account (see below). It can be shown that

this formula is equivalent to the London expression which

describes the interaction in terms of induced instantaneous

dipoles via second order perturbation theory:20

C6 ¼
2

3

X
i;j

m!
2

Ai m
!2
Bj

DEAi þ DEBj
ð2Þ

For either system X (X = A,B), DEXi is the excitation energy

from the ground to the i-th state, and ~mXi = hX0|~r|Xii the
corresponding transition moment. In principle, the double

sum is extended to all excited states of A and B. Here and in

the following we assume that in the absence of interaction

terms the two systems are in a non-degenerate ground state.

The same transition moments and energies appear in the

second energy derivative of each system with respect to an

electric field with imaginary frequency:

aXð{oÞ ¼
X
i

ð2=3ÞDEXi m
!2
Xi

DE2
Xi þ o2

�
X
i

fXi

DE2
Xi þ o2

ð3Þ

where fXi are the so-called oscillator strengths. Eqn (3) can be

referred to as the ‘‘sum-over-states’’ (SOS) expression. It is

seen that aX(ıo) decreases with o and depends essentially on

the low-lying excited states of X at small o. A reasonable

description of those states for both isolated systems allows

then the value of C6 to be estimated via the Casimir-Polder

relation.

For atoms and molecules, the expressions just provided can

be worked out using accurate post-HF techniques. For those

systems, some of us have programmed a time-dependent

gauge-invariant (TDGI) method21 which is a variational
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perturbation technique taking into account electron correla-

tion effects to describe the low-lying excited states, and in

which real or imaginary frequencies can be included. Inter-

action at long distance between atoms or molecules in their

ground (or even excited) state can thus be studied.22 Another

well-known technique to study intermolecular interactions

(including dispersion) is the symmetry-adapted perturbation

theory: for the DFT-based versions see ref. 23 and 24.

In order to extend these techniques to the case of interest

here, where periodic systems are involved, the critical point of

the (accurate) estimation of polarizability for the 2-D periodic

substrate needs to be taken into account. In the following this

issue is discussed, in particular it is shown how the SOS

estimate of the dynamic polarizability of S, based on the use

of its one-electron eigenfunctions and eigenvalues (eqn (3)),

can be corrected by making reference to its static polarizability

calculated independently and more reliably by means of a self-

consistent calculation.

In previous work some of us have programmed the SOS

calculation of static and dynamic polarizability of periodic

systems25 using the approximate solution provided by the code

CRYSTAL.
11 With reference to an effective Hamiltonian Ĥeff, the

general one-electron eigenstate is a crystalline orbital (CO)

which can be labelled by a wavevector index ~k (corresponding

to a point of the Brillouin zone and specifying its translational

symmetry properties), and by a band index: if the system is an

insulator, bands can be classified into occupied, with indices

i,j,k,. . . and virtual ones, with indices a,b,c,. . .. In summary,

the general occupied (and virtual) COs and the associated

eigenvalues can be written as |i~ki (|a~ki) and ei~k (ea~k),
respectively. Within the one-electron model, the ground state

is given by the single determinant (detor) constructed with

all occupied COs (C0R||. . .i~k. . .a~k0 0. . .||), while the

excited states are detors obtained by substituting in C0 one

or more of the occupied COs with virtual ones, that is:

C...ak
!00 ...

...j k
!0 ...
� jj . . . ik

!
. . . ak

!00 . . . jj; the corresponding excitation

energy is simply given by:

DE...ak
!00 :::

...j k
!0:::

¼ . . .þ e
ak
!00 þ . . .� ð. . .þ e

j k
!0 þ . . .Þ:

When introducing these results in the SOS expression, eqn (3),

advantage can be taken of the fact that the matrix elements of

the one-electron dipole operator which defines the transition

moments are zero except when the excited state differs from

the ground one by just one CO; furthermore, it can be proved

that the two COs must belong to the same ~k. We then have:

að{oÞ ¼
X
k

wk

X
i;a

f
iak
!

DE2

iak
! þ o2

ð4Þ

where fia~k are oscillator strengths between occupied (|i~ki) and
virtual (|a~ki) COs for each ~k-point of the Brillouin zone with a

geometric weight wk, and DEij~k = ea~k � ei~k are the correspond-
ing vertical transition energies. In the dipole approximation,

valid when the wavelength of the electric field is much larger

than the size of the unit cell, the oscillator strength is equal to:

f
iak
! ¼ 2

3
DE

ijk
!jhik

!
jO
!
k jak

!
ij2 ð5Þ

where O
!
k is the field perturbation operator appropriate for

periodic systems.26 Different expressions can be adopted

for O
!
k. Two of them are considered in the following, to be

referred to as the ‘‘length’’ (l) or ‘‘velocity’’ (v) formula,

respectively:

hik
!
jO
!
k jak

!
i ¼ {hik

!
je{k
!
� r! r

!
k e
�{k
!
� r!jak

!
i ð‘Þ

¼ hik
!
jr
!
r jak

!
i

DE
iak
!

ðvÞ
ð6Þ

It has been shown27 that the v formula, which is computa-

tionally more convenient, is equivalent to the l one if the basis

set is essentially complete and if the potential part of the

Hamiltonian commutes with the position operator (which

does not happen with HF or hybrid Hamiltonians containing

a non-local exchange term).

This formulation of the SOS technique for calculating the

C6 coefficient between a molecule and a surface from their

respective imaginary frequency polarizabilities has been

applied in previous work to describe the adsorption of N2

on the h-BN surface.8 In fact, since the molecule and the slab

are anisotropic, for each of them two independent polarizabil-

ities must be calculated: azzM(o), and axxM(o) along the mole-

cular axis and perpendicular to it, respectively; azzS (o), and
axxS (o) normal to the slab and parallel to it, respectively.

However, as just stated, the SOS formula is based on the

assumption that the one-electron description of ground and

excited eigenstates and eigenvalues of the periodic system is

acceptable. It is well known that this is generally not true. In

particular, the main gap Egap between valence and conduction

bands in insulators, which defines the lowest excitation energy,

largely depends on the one-electron Hamiltonian adopted:

with HF it is usually too large by a factor of two or more

with respect to the experiment, while it is often underestimated

in KS-DFT schemes.

An important check of the reliability of the approximations

adopted for the calculation of the frequency-dependent polar-

izabilities, is based on the comparison of the a(0) value so

obtained with the corresponding static polarizability a. Two
techniques have been implemented in CRYSTAL for calculating

the latter quantity;11 they are both based on the self-consistent

evaluation of the second derivative of energy per cell with

respect to an applied time-independent electric field. The

former consists in the introduction of the static finite field

(FF) perturbation in the SCF process as a ‘‘sawtooth electric

potential’’,28 which allows the system to be treated as periodic

by using a supercell in the direction of the field;29,30 precisely

because of this supercell trick, calculations are rather lengthy.

More accurate and less time-consuming results can be

obtained using the analytical coupled-perturbed HF or KS

(CPHF or CPKS) method for periodic systems, recently

implemented and validated.31,32 In the following, only CPKS

will be considered since DFT Hamiltonians are used to

describe the surface. With respect to the SOS method, the

response of the system to the external perturbation is here

taken into account: interestingly, the SOS estimate of the static

polarizability turns out to be the zero step of the iterative

CPKS process.
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In the case of nanotubes, Benedict et al.33 have shown that

the transverse polarizability value calculated when orbital

relaxation effects are taken into account as in CPKS (or in

the finite field FF method) is very different from the unrelaxed

(SOS) one. The authors show that this important relaxation

effect can be modeled by the Clausius-Mossotti formula

relating the SOS and CPKS polarizability values with the

depolarization factor equal to 2p when the field is transverse

to the tube.34 On the contrary, when the field is parallel to the

cylinder, the effect is much weaker leading to SOS and CPKS

values very similar to each other, as has also been found by

Brothers et al.35 (the depolarization factor is zero in that

direction of the field).

In this work, where the 2-D BN system is studied, the

relaxation effect has also been found to be very large when

the field direction is perpendicular to the slab, while SOS and

CPKS values of the parallel component of the polarizability

are similar. Then, the use of SOS for calculating axxS (io) is well
justified provided that the gap is well described. This is not

true with azzS (o), where the depolarization factor due to the

medium is 4p,34 leading to an important relaxation effect of

the crystalline orbitals. Corrections to the SOS method are

needed in this case. Following the model of Benedict et al.,33

we have used the Clausius-Mossotti relation with the depolar-

ization factor equal to 4p (2-D system) instead of 2p (1-D) in

order to retrieve the ‘‘corrected’’ value of the normal polariz-

ability of the slab from the SOS estimate:

azzS ð{o; corrÞ ¼ azzS ð{o; SOSÞ
1þ 4p azzS ð{o; SOSÞ=V ð7Þ

However, the volume V is not defined for the slab, and we have

to determine it independently. For this purpose, the azzS (0;corr)
value in the previous equation is fitted to the static azzS ½CPKS�
value: it turns out that the region in which the electron

cloud is polarized corresponds to assigning to each unit

cell a thickness approximately equal to the c-parameter of

h-BN bulk.

In summary, the following sequence of steps is adopted in

order to estimate the molecule-slab vdW interaction:

1. Select a suitable one-electron KS Hamiltonian and calcu-

late excitation energies and oscillator strengths for the slab.

2. Calculate the corresponding azzS (io;SOS) and axxS (io;SOS)

using the SOS formula.

3. Calculate the static polarizability azzS ½CPKS� of the slab in

the normal direction by means of the CPKS technique using

either the l or the v formula (eqn (6)).

4. Determine the effective volume V in eqn (7) by imposing

the equality: azzS ð0; corrÞ ¼ azzS ½CPKS�.
5. Calculate azzM(io;TDGI) and axxM(io;TDGI) using the

TDGI method.

6. Obtain the four mixed CUT
6 values (withU,T= zz,xx, and

the first two indices referring to the molecule, the last two to

the slab): see section IV-B for details.

7. For a given distance R between the molecule and the

surface, integrate the C6/(R
2+r2)3 terms over the r component

parallel to the surface, resulting in an interaction energy

E(R) = �C4/R
4, with a C4 coefficient depending on the

orientation of the molecule, either perpendicular (>) or

parallel (J) to the surface (A being the area of the 2-D

unit cell):

C?4 ¼
3p
4A
ðCxxxx

6 þ Cxxzz
6 þ Czzxx

6 þ Czzzz
6 Þ

C
k
4 ¼

3p
8A
ðCxxxx

6 þ Cxxzz
6 þ 3Czzxx

6 þ 3Czzzz
6 Þ

ð8Þ

In addition to the case of the BN monolayer, some data on the

static polarizability of BN slabs of different thickness and on

BN bulk have also been obtained in order to get more insight

into the influence of computational parameters, and will be

reported in section V. The dispersion coefficients concerning

the interaction of the BN slabs with the nitrogen molecule

have also been estimated with the technique just described, by

supposing again that the slab thickness is very small as

compared to the distance between the molecule and the

surface.

III. HF+MP2 estimate of interaction energies

The HF+MP2 approach implemented in the CRYSTAL+CRYSCOR

suite of programs and adopted in the present work provides

both the attractive and the repulsive contribution to the

interaction energy and is valid for all adsorbate–substrate

distances. In fact, the system is here considered as a whole,

and treated as a periodic 2-D structure. For this reason, SC

calculations are needed in order to avoid intermolecular

interactions which are absent in the SOS model. It can be

noted incidentally that the MP2 estimate of the interaction

energy provided by CRYSCOR is conceptually similar to that

implied in London’s formula, eqn (2), since in both cases use is

made of second order perturbation theory. However, in the

former case reference is made to the exact ground state of the

two non interacting systems while, in the latter, the reference

state is the HF wavefunction of the compound system.

Besides, the MP2 method treats dispersion at the uncoupled-

HF level, since orbital relaxation effects are not present in the

formalism. This can lead in some cases to noticeable

overestimation of dispersion, especially pronounced for p–p
interaction. Another basic difference is due to the fact that in

the SOS model only the orientation of the molecule with

respect to the surface needs to be specified, whereas we must

provide in our case the exact relative position of the two

subsystems. The case of the molecule oriented perpendicular

to the BN monolayer and pointing towards the center of the

hexagon (which has been recognized as the preferred

adsorption site for non-polar molecules36) is the only one to

be considered in the following.

The parameters used for the present CRYSTAL+CRYSCOR

calculations will be reported in section IV; here we just recall

the main concepts and quantities involved in the local-MP2

(LMP2) approach adopted in CRYSCOR,9,10 as are needed to

follow the discussion in the next sections.

The basic ingredients of the LMP2 approach are (i) Wannier

functions (WFs, labelled i,j,. . .), a set of well-localized,

symmetry-adapted, mutually orthogonal, translationally

equivalent functions, which span altogether the valence HF

manifold and are provided by the CRYSTAL code and (ii),

projected atomic orbitals (PAOs, labelled a,b,. . .), a set of
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non-orthogonal functions spanning the virtual space,

obtained in CRYSCOR from the individual AOs of the basis

set by projecting out their component in the occupied HF

manifold.

To each WF a domain is associated, consisting in a certain

number of atoms whose AOs contribute significantly to its

Mulliken population: for each pair of WFs (i,j) involved in a

biexcitation, a pair-domain D(ij) is then defined which is simply

the union of the corresponding domains. Owing to the locality

ansatz, only those [(ij)mm(ab)] biexcitations for which both

PAOs a and b belong to atoms in D(ij) are retained.

The second consequence of the locality ansatz is that the

distance between the centers of the two WFs involved in

retained biexcitations can be imposed to be less than a given

cut-off radius D. Note that, due to translational periodicity, it

can always be assumed that the first WF in the pair is located

in the reference zero cell.

A third computational parameter must be defined in order

to get rid of infinite summations: since each WF (PAO) is

expressed as a linear combination of AOs, fi =
P

mcmiwm, sums

over AOs extend in principle to the whole periodic system. A

tail-truncation parameter t, allows us to truncate these sums,

by setting to zero those coefficients for which |cmi| o t.

An important advantage of the local approach is the

possibility to select a subset of biexcitations according to the

WFs (and as a consequence the PAOs) involved. In the present

case, we actually have two separate subsystems, the molecule

and the slab, and are interested in the correlation interactions

between rather than inside them. Therefore, the biexcitations,

for which one WF (and the respective domain) belongs to the

slab, the other (with its domain) to the molecule, are

representing the dispersion37 and are the most important for

our purposes. However, the intramolecular and intra-slab

biexcitations cannot simply be neglected, since this would lead

to significant overestimation of the interaction energy, espe-

cially at short molecule–surface distances. Indeed, when the

molecule and the slab come close to each other, the respective

electron distributions are modified in order to minimize the

Pauli repulsion, which makes the densities of the interacting

monomers more ‘‘compact’’ relative to the free ones. In the

compact densities the electrons possess less freedom to avoid

each other, and the intramolecular and intra-slab correlation

energies go up (or decrease in the absolute value). This

repulsive contribution to the interaction energy is not big,

but on the scale of the weak interactions can be noticeable and

should thus be evaluated. At the same time, the convergence of

the intramolecular and intra-slab contribution to the correla-

tion energy is relatively fast, and in most cases it is sufficient to

include only close-by intra-pairs. Such a technique allows for

considerable savings in the computational resources and is

used throughout our LMP2 study.

The slab–molecule interaction energy at a given distance R

will be finally evaluated by subtracting from the total energy at

that distance the one obtained with the same computational

settings at a very large distance (RN). The result so obtained is

corrected for the basis set superposition error (BSSE), follow-

ing the standard counterpoise (CP) technique.38 As is shown in

section V-B, the BSSE correction is small in all cases, but more

important for the HF than for the MP2 contribution and

becomes smaller, as expected, with increasing R and with

improvement of the BS.

IV. Computational settings

A. General issues

Since our final aim is to compare SOS and HF+MP2 results

for the long-range portion of the interaction curve, we have

tried to adopt as far as possible the same computational

settings in the two cases, which is a non trivial task due to

the fundamental diversity of the two methods. Here we report

on some general computational issues, especially as concerns

the use of CRYSTAL, leaving the more specific aspects to the

following subsections.

Geometry. For both subsystems, the geometry was frozen at

the experimental values, that is: a = 2.504 Å for the h-BN

monolayer, and l = 1.0943 Å for the triple bond in the N2

molecule. For the HF+MP2 calculations a 4 � 4 SC was used

resulting in a distance of 10.016 Å between neighbouring

molecules. The corresponding intermolecular interaction is

very small, and remains constant while varying the molecule/

slab distance, so it cancels out when performing differences. As

a matter of fact, many of the calculations were repeated with a

2 � 2 SC and were seen to provide very similar results.

Hamiltonians. The CRYSTAL calculations providing informa-

tion on the BN system as needed for the SOS approach were

performed using the one-electron BLYP Hamiltonian.39,40

There are two main reasons for this choice: (i) the v formula

for the calculation of the static polarizability (see eqn (6))

requires a local exchange–correlation potential to be used; (ii)

among the KS-DFT Hamiltonians which satisfy this require-

ment, BLYP was found to provide a reasonable estimate of the

fundamental gap (see section IV-B).

In the other approach, the use of the HF solution from

CRYSTAL is mandatory for evaluating in CRYSCOR the MP2

correction.

Basis sets. The choice of the GTF-AO basis set (BS) is a

delicate issue and has different aspects for the two approaches.

In SOS, the two systems are independent, while in the

HF+MP2 approach we must describe the composite system;

furthermore, the MP2 calculation requires a better description

of the virtual HF manifold than is the case with the other

technique. The BSs tested in this study will be indicated with

the notation X/Y/Z, where X and Y refer, respectively, to the

BS of the B and N atoms in the slab and Z to that of molecular

nitrogen, and will be assigned a conventional name.

BSA and BSB will design two BSs to be used for both

techniques. The former, 6-31G*/7-31G*/cc-pVTZ, adopts

double-zeta plus polarization (pDZ) sets for the slab atoms

as used and partially reoptimized in previous work,8 while for

the molecular atoms a correlation-consistent (cc) triple-zeta

(TZ) quality set taken from Dunning is used;41 in the latter,

Hess(d)/Hess(d)/cc-pVTZ, a richer set is used for the slab

atoms, which is of pVTZ type, and was proposed by Hess

specifically for bulk h-BN, providing solutions close to the HF

limit.42 In addition, a number of other BSs have been tried in

the HF+MP2 case, to be described in section IV-C.
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Truncation tolerances in CRYSTAL. The TOLINTEG parameters

which control the truncation of the Coulomb and exchange

lattice series in CRYSTAL
11 have been set to very tight

values (8,8,8,16,32) in order to achieve convergence with the

BSs adopted. For the rest, the standard default settings

are used.

B. Details on the SOS technique

The polarizabilities of the isolated N2 molecule have been

obtained at the configuration interaction level of theory,43,44

using the TDGI method21 with a specific triple-zeta BS

proposed by Sadlej.45–47 Computational details can be found

in the previous work of Baraille et al.8

The issue of the KS-DFT Hamiltonian to be adopted for the

calculation of the polarizability of S is now briefly addressed.

Reference is made to the properties of bulk h-BN, as no

experimental information is available in this respect, to our

knowledge, for the thin films we are here interested in. The

subject has recently been reviewed by Museur et al. in a study

of the defect-related photoluminescence of h-BN (see ref. 48

and references therein). Without going into details, the analysis

of the experimental data performed in that paper supports the

results obtained theoretically by Arnaud et al. using an

all-electron GW approximation,49 and predicting an indirect

bandgap of 5.95 eV between the bottom of the conduction

band at the M point and the top of the valence band near

the K point, and a lowest direct interband transition of

6.47 eV located at the H point. The BLYP method provides

qualitative agreement with that band structure, although the

gaps are underestimated, as is customary with DFT

approximations: with BSB, it gives an indirect gap of

4.48 eV and a direct gap at H of 4.65 eV. Quite similar results

are obtained with BSA. These values are larger than those

obtained with local-density DFT approximations by about

5%, but still below their best estimates by almost 30%. This

may result into too large calculated polarizabilities: note

however that the error should be much smaller than that

figure, because bandwidths (both in the virtual and in the

occupied manifold) are reasonably well described. As

expected, the BSB/HF interband transitions are largely over-

estimated with an indirect gap of 13.58 eV and the lowest

direct vertical transition energy of 14.03 eV. A hybrid-

exchange Hamiltonian would probably be a better choice than

BLYP but, as stated above, this is not feasible with our tools

presently available.

For the CPKS determination of the static polarizability of

the slab, we have used both the l and v techniques (eqn (6)),

but only the latter one in the SOS expressions providing the

dependence of polarizabilities from imaginary frequencies

(eqn (4)).

After applying the correction of eqn (7) to the normal

polarizability of the slab, two methods are used to evaluate

the C6 coefficients (step 6 in the procedure outlined in section II).

The first one (truncated integration, or briefly ‘‘int’’) is the

numerical integration of the product of the dynamic polariz-

abilities, PUT
MS(o) R aUM(o)aTS(o), following eqn (1) up to

o = 2 a.u. Since the product decreases quite slowly with

respect to o, the C6 value obtained is underestimated. The

second technique (‘‘fit’’) consists in fitting PUT
MS(o), in the

explored o range, with a parametric expression of the form:

X3
i¼1

2eMiðmU
MiÞ

2

e2Mi þ o2

" #
�
X3
j¼1

2eSjðmT
SjÞ

2

e2Sj þ o2

" #
ð9Þ

The best fit parameters {eMi,m
U
Mi}, {eSj,m

T
Sj} are then inter-

preted, by comparison with eqn (3), as ‘‘effective’’ transition

energies and moments and used for obtaining the vdW coeffi-

cients owing to a London-like expression (see eqn (2) for the

mean value):

CUT ;fit
6 ¼ 6

X
i;j

ðmU
MiÞ

2ðmT
SjÞ

2

eMi þ eSj
ð10Þ

The values so obtained are slightly larger (and more reliable, in

our opinion) than with the other technique.

C. Details on the HF+MP2 technique

As mentioned in section III, in order to gain in efficiency we

use different pair cut-off distances for the inter- and

intra-system pairs, the latter being considerably reduced. The

contribution to the interaction energy from the inter-system

excitations within a cut-off radius of 15 Å was explicitly

accounted for; for those beyond, a ‘‘Lennard-Jones’’ extra-

polation was used9,10 which however turned out to be almost

negligible and nearly independent of the distance. Within each

subsystem, instead, only biexcitations up to a distance of 3 Å

are retained: this corresponds to including all excitations

within the molecule, but only short-range ones within the slab

with an important reduction of computational cost.

The domains of the WFs of the slab, which are essentially

centered on nitrogens, consist of 10 atoms, the reference N

atom plus its 3 B and 6 N first neighbors; for WFs in the

molecule, they consist of both molecular atoms. The cut-off

threshold t for WF and PAO tails is set to the tight 0.0001

value. The 2-electron repulsion integrals (ERIs) are evaluated

by means of the density fitting technique extended to periodic

systems50 up to a distance of 5 Å between the involved WF,

and with a multipolar technique beyond.

The domain size and pair-lists for the density-fitting- and

multipole-expansion-treated integrals once obtained with the

above parameters within the N2-slab distance of 2.5 Å have

been fixed and used further without modification for all the

considered geometries. Besides, in order to avoid bumps in the

potential curves the ‘‘freezing of indices’’ procedure has been

also applied for the HF calculations (where the number of

integrals was kept constant) and WF localization and symme-

trization (where the WFs of the previous geometry were used

as the starting guess for those of the next geometry, thus

maintaining their order and symmetry classification).

A careful study of the influence on MP2 interaction energies

of the BS assigned to the atoms in the slab has been carried out

by improving their description beyond the level provided by

the high quality BSB (see section IV-A). In particular, a

further series of d and f functions has been added to BSB,

giving rise to BSC [or Hess(dd)/Hess(dd)/cc-pVTZ], which

contains two d single-Gaussian GTFs with exponents

a0d ¼ 1:2, a00d ¼ 0:4 a.u. (instead of the original d with exponent
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ad = 0.8 a.u.) and BSD [or Hess(ddf)/Hess(ddf)/cc-pVTZ],

containing in addition an f-type GTF with exponent af =

1.4 a.u. An additional series of augmented BSs has also been

tried for a 2 � 2 SC slab, which is far less costly from a

computational point of view; these correspond to an aug-cc-

pVTZ basis for the molecule, as proposed by Dunning,41 and a

partially augmented BS for the slab, where only the d and f

augmented functions51 of the standard aug-cc-pVTZ are

added to the previously listed bases, by means of the dual

basis set technique.52 The performance of these bases is

discussed in section V-B.

V. Results and discussion

A. Van der Waals coefficients in the SOS approach

Tables 1 and 2 report values of the static polarizability parallel

and perpendicular to the BN layers, for slabs of different

thickness and for bulk BN. The results provide indications

on the adequacy of the computational techniques adopted.

The following can be noted.

The axx values reported in Table 1 are similar in all cases

(E35 a0
3 per formula unit). Convergence with increasing slab

thickness to the bulk result is rapidly reached. The SOS and

CPKS estimates are also very close to each other. As concerns

the use of the l or v transition moment expression (eqn (6)) in

the oscillator strength (eqn (5)), and then in the polarizabilty

(eqn (4)), which should coincide with complete BSs, it is seen

that the results are in closer agreement with the basis set BSB

than BSA for the parallel component of the polarizability. The

relative difference between the length and velocity values is less

than 10% with BSB and more than 20% with BSA.

The azz values in Table 2 present two striking differences:

the very large discrepancy between the SOS and CPKS

estimates, and the non-convergence of the CPKS results to

the bulk value with increasing slab thickness. The former effect

has already been commented on when introducing eqn (7); it is

worthwhile to briefly discuss the latter.

Polarizability is the second derivative of the energy with

respect to the displacement (external) field for the slabs, and to

the macroscopic (internal) field for the bulk. These fields are

essentially equal in the parallel direction, but not in the z one,

along which the slabs are finite (the operator Ok reduces in this

case to the usual operator r), and relaxation effects are

important. These effects are correctly taken into account by

the CPKS technique. As a matter of fact, the ratio between the

BSB/CPKS azz estimates for the bulk and S13 (13.37/5.58 =

2.40) is similar to the perpendicular component of the

dielectric constant of the bulk (the experimental high-

frequency value of ezz, as provided by Rumyantsev et al.,53

is 2.2), which is precisely the ratio between the displacement

and the macroscopic field. This value can be retrieved by the

formula relating the dielectric constant to the polarizability of

bulk h-BN in the c (z) direction: ezz ¼ 1þ 4p azzbulk =V ¼ 2:38,

the volume being equal to V= 122 bohr3, or the polarizability

of the slab but with the relation: ezz ¼ 1=ð1� 4p azzS13 =VÞ ¼
2:35 (see reference CPHF). Not surprisingly, the SOS techni-

que, which ignores relaxation effects, provides essentially the

same azz values for the thick slabs and the bulk.

Fig. 1 reports the polarizabilities of the N2 molecule and of

the BNmonolayer as a function of the imaginary frequency, as

obtained with the different techniques here described. From

these functions, the C6 values for the four possible relative

orientations have been obtained using one of the two techni-

ques, ‘‘int’’ or ‘‘fit’’, described in section IV-B.

After substitution in eqn (8), we finally obtain the C4 values

reported in Table 3, relative to the interaction of the molecule,

in either of the two orientations, with S1 or S2. It can be

noticed that the large differences between the SOS and CPKS

estimates of the perpendicular polarizability of the slab (see

Table 2) are smoothed out after performing the integration.

B. Interaction energies: critical comparison between the SOS

and HF+MP2 methods

Fig. 2 compares the M/S interaction energies between the BN

monolayer and a nitrogen molecule perpendicularly adsorbed

above it, obtained with the two approaches. All HF and

HF+MP2 data here reported are corrected for BSSE

(see below), and they correspond to adsorption above the

center of the hexagon, at a distance R measured from the

surface plane to the center of the molecule. For the �C>
4 /R4

curve, our ‘‘best’’ estimate of the vdW coefficient has been

used, namely 7.01 a.u. (see Table 3). Let us comment on

these data.

The HF curve is seen to be repulsive at all distances; the BSB

data are reported here, but very similar results are obtained

with all BSs. All HF+MP2 curves present instead a clear

minimum at RE 4.0 Å, corresponding to a N-surface distance

ofE3.5 Å. Results for BSC are not reported in the plot for the

sake of clarity but they are in between BSB and BSD ones. The

‘‘physisorption-like’’ behaviour of these curves is noteworthy:

a very steep repulsive regime due to the Pauli repulsions

described by the HF term, is followed by the comparatively

much smoother regime beyond the minimum, where dispersive

forces are dominating.

The adsorption energy Ead increases with increasing BS

quality, namely from 1.7 to 2.1 mEh while passing from BSA

to BSD.

As already mentioned, a series of augmented BS has been

tried in the 2 � 2 SC case, far less costly from a computational

point of view, the results of which are in great part transferable

to the 4 � 4 SC, as shown by the proximity of the two curves

for BSB in Fig. 2 (but similar results are obtained for the other

Table 1 Parallel component of the static polarizability, axx, per BN
unit formula (in a0

3), for several slabs Sn (n indicating the number of
layers in the slab) and for bulk BN. Different computational condi-
tions have been used, as indicated: basis set (BSA or BSB); SOS or
CPKS technique, with the l or v expression for the O

!
k operator

(eqn (6))

Basis set Technique S1 S2 S5 S13 Bulk

BSA SOS (v) 31.32 31.28 31.20 31.17 31.15
CPKS (v) 30.69 30.64 30.57 30.54 30.53
SOS (l) 38.70 37.80 37.27 37.04 36.90
CPKS (l) 37.88 37.00 36.47 36.21 36.12

BSB SOS (v) 32.63 32.52 32.45 32.42 32.40
CPKS (v) 32.03 31.93 31.86 31.83 31.81
SOS (l) 35.14 34.92 34.78 34.73 34.70
CPKS (l) 35.14 34.20 34.08 34.03 34.00
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bases as well). A significant increase of the interaction energy

is seen around the minimum, which rises up to 3.3 mEh and

undergoes a corresponding shift towards closer distances

between molecule and slab, at E3.8 Å (corresponding to a

N-surface distance of E3.3 Å). This shows that we have not

yet reached the MP2 basis completeness; a more complete

study would be required in order to fully understand the effects

of augmented function on the short-range portion of the

interaction energy curve, which is outside the scope of the

present paper and will be matter of future work.

The adsorption energy value we obtain with our best basis

set seems in reasonable agreement with literature data

concerning similar systems. Curthoys and Elkington,36 using

semi-empirical values for the atom-atom vdW coefficients,

estimated that argon (the polarizability of which is very close

to that of N2) adsorbs on BN at the center of the hexagon at a

distance of 3.3 Å, with an interaction energy of 3.90 mEh.

Ead = 3.55 mEh was estimated for N2 on graphite from heat of

adsorption measurements at low coverage.54

At long range, BS effects are much less important. This is in

fact not surprising: the two-electron excitations which

contribute to the correlation energy are far more complex when

the two systems are in close proximity, and require for their

faithful description a rich variational freedom of the virtual

space, which becomes less essential when the mutual interaction

takes place at larger distances. After fitting the long-range part

(6.5 Å o R o 10.5 Å) of the present HF+MP2 data with an

�aR�4 curve, the following values (a.u.) are obtained for the

best-fit a parameters for the different BSs: BSA: 7.24; BSB: 6.89;

BSC: 7.54; BSD: 8.16 a.u. These are reasonably similar among

themselves, slightly increasing when high angular momentum

polarization functions (which are essential for a better descrip-

tion of the polarizability) are included in the basis.

Table 2 Perpendicular component of the static polarizability, azz, in
the same units, for the cases, and with the computational techniques as
in Table 1

Basis set Technique S1 S2 S5 S13 Bulk

BSA SOS (v) 8.57 10.34 11.57 12.07 12.39
CPKS (v) 3.70 4.14 4.40 4.51 10.07
SOS (l) 10.35 12.63 14.22 14.86 15.27
CPKS (l) 4.23 4.84 5.21 5.36 12.45

BSB SOS (v) 9.21 10.96 12.14 12.63 12.94
CPKS (v) 3.73 4.19 4.47 4.59 10.91
SOS (l) 12.56 14.16 15.23 15.67 15.94
CPKS (l) 5.07 5.35 5.51 5.58 13.37

Fig. 1 Polarizability of the N2 molecule (top panels) and of the BN

monolayer (bottom panels) as a function of the imaginary frequency,

both expressed in a.u. On the left, the direction is that of the molecular

axis and of the normal to the slab, respectively, conventionally

indicated as z; on the right, the perpendicular one (x). In the BN

plots, the dashed and continuous curves refer to the use of BSA or

BSB. In the bottom left plot, the azzS (io;SOS) functions and the

Clausius-Mossotti correction (CM, eqn (7)) are both reported.

Table 3 Van der Waals C4 coefficients (a.u) for S1 and S2 (the latter
divided by two, to make comparisons easier), computed with two BSs,
and using the int or fit techniques. In all cases, (SOS) indicates that the
azzS (o;SOS) function has been used for the slab, while (corr) indicates
that azz(o;corr) has been used instead, owing to eqn (7)

Basis set Technique

S1 S2

C>
4 CJ

4 C>
4 CJ

4

BSA int (SOS) 7.17 6.43 7.43 6.67
fit (SOS) 7.91 7.16 8.19 7.41
int (corr) 6.15 5.52 6.25 5.61
fit (corr) 6.82 6.18 6.94 6.28

BSB int (SOS) 7.44 6.67 7.66 6.88
fit (SOS) 8.20 7.45 8.40 7.60
int (corr) 6.35 5.70 6.44 5.78
fit (corr) 7.01 6.35 7.11 6.44

Fig. 2 Interaction energy between nitrogen and the BN monolayer at

different levels of theory: HF/BSB (crosses); HF+MP2/BSA (circles), /BSB

(squares), /BSD (triangles); the HF+MP2/BSC data are not

reported, but they are intermediate between the BSB and BSD ones.

The HF+MP2/BSB data for the 2 � 2 SC (open squares) are also

reported for the sake of comparison. The thin curves are interpolations

between the calculated points; the thick curve (�C>
4 /R4) is the C6

estimate of the vdW interaction energy. Beyond R = 6.5 Å, all data

have been multiplied by a factor of 10: in this region, most results for

the various BSs are overlapping on the scale of the plot. The dashed

curve is the estimated ‘‘C6+C8’’ interaction energy (see text for

details).
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Furthermore, these results are close to the C>
4 values

obtained via explicit evaluation of the polarizabilities (see

Table 3). Important to note that, since the MP2 method treats

dispersion at the uncoupled HF level, the LMP2 results should

be closer to the orbital-unrelaxed SOS technique. This is

indeed reproduced in our calculations. At the same time,

inclusion of the orbital relaxation, vital for the zz-component

of the static polarizability in this system (see Table 2), becomes

substantially less important for the C4 coefficients, which

makes the SOS results just slightly surpass those of CPKS

(see Table 3). This supports our observation of the relatively

high accuracy of the LMP2 method in obtaining the C4

coefficients for this system. Besides, on this basis we generally

expect the MP2 description of molecular adsorption on the

BN surface to be reasonably good.

The SOS curve reported in Fig. 2 is in fact in excellent

agreement with the HF+MP2 (BSA,BSB) data at long range;

this may be partly due to compensation of errors, because the

polarizabilities used for the slab should be slightly overesti-

mated due to the ‘‘gap problem’’ (see section IV-B). For

R o 4 Å, the SOS curve is always below the HF+MP2 data

since it doesn’t include any repulsive term. In an intermediate

region (4 Åo Ro 6.5 Å), however, the HF+MP2 data reveal

an additional attractive contribution, not accounted for by the

C6 term. It is natural to interpret this fact as due to the

non-negligible importance, at these distances, of other disper-

sive interactions: dipole–quadrupole (C8), quadrupole–

quadrupole (C10), etc. Since our techniques do not yet allow

us to calculate the corresponding coefficients, we have

obtained an estimate of the ‘‘C8’’ contribution by assuming

that the C8/C6 ratio in the present case is the same as the one

semi-empirically evaluated for the argon/BN interaction.36

The dashed curve in Fig. 2, which corresponds to adding to

the C6 term the C8 one so obtained, shows that our inter-

pretation is tenable.

A few words on the BSSE correction: as already pointed

out, all results are BSSE corrected through the classical

counterpoise (CP) technique. As expected, the HF BSSE is

quite large for BSA and rather small for BSB; at the MP2

level, instead, the BSSE is always small, which is a common

feature of the local correlation methods.55 Fig. 3 reports the

separate BSSE contributions to the HF+MP2 interaction

energy obtained and shows how important this correction is

for poor basis sets.

VI. Conclusions

In this paper we have addressed the problem of obtaining

ab initio estimates of the coefficients which describe dispersive

interactions between subunits which may be part of extended

periodic systems. This is an important issue, because otherwise

one should adopt for this purpose a semi-empirical approach,

or use high-level theoretical schemes which are extremely

costly or totally unfeasible in those cases.

The interaction of a nitrogen molecule with a thin film of

hexagonal BN has been chosen as a case study for identifying

some of the problems involved in the determination of the

leading long-range term (C6), based on the independent

analysis of the response properties of the two interacting

systems (one of which two-dimensionally periodic), and for

proposing techniques for their solution. Compared to the

previous van der Waals results obtained between N2 and

hexagonal BN in ref. 8, the transverse polarizability of h-BN

surface has been here improved by CPKS calculations taking

into account very large relaxation effects, which results in

slightly lower C4 values.

The simplicity of this problem has also permitted us to apply

to it an ab initio post-HF (MP2) approach which adequately

describes dispersive interactions; the newly implemented

periodic code CRYSCOR has been used for this purpose, along

with a supercell model. The results so obtained nicely confirm

the accuracy of the estimate of the C6 term owing to the other

approach.

Prospective work includes the use in the techniques here

described of one-electron Hamiltonians containing a non-local

exchange term, and their application to other systems, in order

to validate them more generally. We also envisage their

extension to the determination of other dispersive terms which

become important at intermediate range, such as the

dipole–quadrupole (C8) one.
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