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Abstract
With the introduction of high‐resolution digital elevation models, it is possible to use digital ter-

rain analysis to extract small streams. In order to map streams correctly, it is necessary to remove

errors and artificial sinks in the digital elevation models. This step is known as preprocessing and

will allow water to move across a digital landscape. However, new challenges are introduced with

increasing resolution because the effect of anthropogenic artefacts such as road embankments

and bridges increases with increased resolution. These are problematic during the preprocessing

step because they are elevated above the surrounding landscape and act as artificial dams. The

aims of this study were to evaluate the effect of different preprocessing methods such as

breaching and filling on digital elevation models with different resolutions (2, 4, 8, and 16 m)

and to evaluate which preprocessing methods most accurately route water across road impound-

ments at actual culvert locations. A unique dataset with over 30,000 field‐mapped road culverts

was used to assess the accuracy of stream networks derived from digital elevation models using

different preprocessing methods. Our results showed that the accuracy of stream networks

increases with increasing resolution. Breaching created the most accurate stream networks on

all resolutions, whereas filling was the least accurate. Burning streams from the topographic

map across roads from the topographic map increased the accuracy for all methods and resolu-

tions. In addition, the impact in terms of change in area and absolute volume between original

and preprocessed digital elevation models was smaller for breaching than for filling. With the

appropriate methods, it is possible to extract accurate stream networks from high‐resolution dig-

ital elevation models with extensive road networks, thus providing forest managers with stream

networks that can be used when planning operations in wet areas or areas near streams to pre-

vent rutting, sediment transport, and mercury export.
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1 | INTRODUCTION

In order to facilitate protection of surface waters, the first step is to

map streams and lakes so protection can be incorporated in everyday

land‐use planning and management. Today's maps are often created

from aerial photos; therefore, only streams distinguishable from aerial

photos are displayed on current maps, which generate a bias towards

larger streams. Also, because of canopy cover in forested landscapes,
- - - - - - - - - - - - - - - - - - - - - - - - - - -
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small forest streams are especially poorly mapped (Bishop et al.,

2008; Kuglerová, Ågren, Jansson, & Laudon, 2014; Montgomery &

Foufoula‐Georgiou, 1993). In addition, streams that are present on cur-

rent maps do not always form an integrated drainage network and do

not change with seasons (Ågren, Lidberg, & Ring, 2015). Unless a

stream is network based, it is not possible to trace water from each

stream segment to the outlet of a catchment, and thus, managers are

faced with a puzzle of different stream segments. Seasonal variations
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are also important because the length of stream networks changes

dynamically between high and low flows (Ågren et al., 2015; Blyth &

Rodda, 1973; Jones, 2000).

Recent advances in remote sensing and digital terrain analysis

have paved the way for new techniques and better understanding of

forest hydrology (Creed, Sass, Wolniewicz, & Devito, 2008; Murphy,

Ogilvie, Castonguay et al., 2008; Ågren, Lidberg, Strömgren, Ogilvie,

& Arp, 2014; Laudon et al., 2016). The better understanding of forest

hydrology is partly due to the availability of better hydrological maps

derived from high‐resolution digital elevation models (DEMs) gener-

ated from Light Detection And Ranging (LiDAR; Murphy, Ogilvie,

Castonguay et al., 2008). Early DEMs were created from photogram-

metry, whereas modern DEMs are often derived from LiDAR point

clouds and can have resolutions of less than 0.5 m × 0.5 m (a grid res-

olution of 0.5 m × 0.5 m will, from now on, be written as 0.5 m;

Reutebuch, McGaughey, Andersen, & Carson, 2003). The amount of

country‐wide LiDAR datasets is rapidly increasing, and some examples

of countries with a national DEM created from LiDAR are as follows:

Denmark (Danish Geodata Agency), Finland (National Land Survey of

Finland), and Sweden (Swedish Mapping, Cadastral and Land Registra-

tion Authority). These new DEMs are increasing in popularity amongst

managers and are often used to map hydrological features such as

stream networks (Vaze & Teng, 2007). Streams extracted from DEMs

have three main advantages: First, they form an integrated drainage

network (O'Callaghan & Mark, 1984); second, they are highly accurate

(Goulden, Hopkinson, Jamieson, & Sterling, 2014) and follow actual

channel depression in the DEM (Murphy, Ogilvie, Meng, & Arp,

2008); and third, they can easily be adjusted for seasonal variations

and also display where ephemeral streams appear (Ågren et al., 2015).

Before any hydrological modelling can be applied to a DEM, it

needs to be adjusted in order to be hydrologically correct (Jenson &

Domingue, 1988; O'Callaghan & Mark, 1984). Water can only move

downhill in a DEM, which means that sinks need to be removed to

allow water to continue towards the outlet. Sinks are defined as areas

surrounded by cells with higher elevations, which prevent water from

moving further (Jenson & Domingue, 1988; Lindsay, 2015; Martz &

Garbrecht, 1998; O'Callaghan & Mark, 1984; Zhang & Montgomery,

1994). They can be real depressions in the landscape or artefacts from

urban features such as bridges. Thus, preprocessing of DEMs is impor-

tant, especially because any errors in the input data will be amplified

with each subsequent calculation (Kenward, Lettenmaier, Wood, &

Fielding, 2000; Wise, 2000). There are two commonly used methods

to handle sinks: filling (O'Callaghan & Mark, 1984; Wang & Liu, 2006)

and breaching (Martz & Garbrecht, 1998; Martz & Garbrecht, 1999;

Rieger, 1993). A fill algorithm examines the cells surrounding a sink

and increases the elevation of the sink cells to match the lowest outlet

cell (Planchon & Darboux, 2002; Wang & Liu, 2006). A breaching algo-

rithm instead lowers the elevation of cells along a path between the low-

est cell in the sink and the outlet of the sink (Martz & Garbrecht, 1998).

There are a number of studies that show how different prepro-

cessing methods affect a DEM. Lindsay and Creed (2005) analysed

the impact of the removal of artefact sinks from a 5‐m DEM and found

that methods combining filling and breaching had the least impact on

the spatial and statistical distribution of terrain attributes. Poggio and

Soille (2012) analysed the effect of preprocessing methods on stream
networks and concluded that a combination of breaching and filling

produced the most accurate stream network on a 30‐m DEM. Lindsay

(2015) demonstrated a flexible hybrid breaching–filling sink removal

method on six large DEMs with resolutions of 30 and 90 m and con-

cluded that the hybrid method performed similar to the highly efficient fill

algorithm by (Wang & Liu, 2006) in terms of processing time. Preprocess-

ing of high‐resolution (<2 m) DEM introduces new challenges. There are

mainly two problems associated with increasing the resolution of DEMs.

The first problem is processing time, which increases drastically when the

resolution increases and thus the number of data points increases

(Barnes, Lehman, &Mulla, 2014; Qin & Zhan, 2012). The second problem

is that features such as road–stream intersections become detectable,

and, because roads are slightly elevated above surrounding terrain, they

often appear to block the streams they cross. In reality, water may be

draining underneath the road in a culvert or bridge (Shortridge, 2005).

Higher resolution also produces more detailed hydrographic features

such as stream networks (Dehvari & Heck, 2013; Goulden et al., 2014;

Vaze & Teng, 2007; Yang et al., 2014) but does not improve the detec-

tion of large features such as wetlands (Creed, Sanford, Beall, Molot, &

Dillon, 2003) or topographic wetness index (Ågren et al., 2014). LiDAR

is also sensitive to noise from low‐lying vegetation and saturated soil sur-

faces, which need to be dealt with during the preprocessing (Goulden

et al., 2014; Gyasi‐Agyei, Willgoose, & Troch, 1995). An important

advantage of high‐resolution data is that it may contain information of

forest ditching and similar small‐scale features that impact drainage.

In the small country of Sweden, more than 210,000 km are forest

roads built to extract timber from 227,000 km2 of forested land. That

equals roughly to 1 km of roads for every square kilometre of forest land-

scape. Ågren et al. (2015) mapped stream networks from a high‐resolution

DEM and found 2–5 km of streams per square kilometre of forested land,

depending on season. This highlights the importance of handling sinks

caused by road embankments correctly during the preprocessing stage;

otherwise, the resulting hydrologically modelled maps will contain

misplaced streams. The location of culverts needs to be incorporated into

DEMs to prevent this error (Goulden et al., 2014; Shortridge, 2005). It can

be done by breaching a path across roads if their locations are known, but

this is rarely the case, and mapping culverts in the field is both time‐con-

suming and costly. Much previous work has focused on coarser resolution

DEM without small‐scale anthropogenic features such as roads (Lindsay,

2015; Poggio & Soille, 2012); however, recent studies have addressed this

problem (Lindsay & Dhun, 2015; Schwanghart, Groom, Kuhn, & Heckrath,

2013) using high‐resolution data on small geographical areas.

In this study, we focus on digital terrain analysis to extract streams

from DEMs with a range of different resolutions, in watersheds contain-

ing a large number of small‐scale anthropogenic artefacts, which are

mostly roads. The first research question in this study is, “Which prepro-

cessingmethodsmost accurately route water across road impoundments

at actual culvert locations?” For this purpose, a large field inventory has

been conducted in northern and central Sweden, where over 30,000

road culverts in 10 watersheds have been located and mapped manually.

This is a unique dataset and a rare opportunity to evaluate the perfor-

mance of preprocessing methods with focus on road impoundments.

We assume that one wants to enforce continuous flow to the out-

let without losing important information from the original DEM. The

second research question in this study is therefore, “How much of
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the landscape is affected by the different preprocessing methods?”

Here, we evaluate area changed and the difference in absolute volume

between original DEMs and preprocessed DEMs.
2 | MATERIALS AND METHODS

2.1 | Study sites

This study consists of nine large catchments in central Sweden

(Gävleån, 2,458 km2; Delångersån, 1,993 km2; Harmångersån,

1,196 km2; Testeboån, 1,111 km2; Hamrångeån, 518 km2; Skarjaån,

329 km2; Norrlanån, 319 km2; Gnarpsån, 229 km2; and Ninån,

197 km2) and one intermediate‐sized catchment in northern Sweden

(Krycklan, 68 km2). When combined, the catchments cover

8,350 km2, of which 82.3% are forested land, 8.7% are lakes and rivers,

6% are open land, 3.8% are agricultural land, and 0.3% are urban areas.

The quaternary deposits in the catchments are dominated by till. All

the large catchments have their outlets in the Baltic Sea, whereas

Krycklan is a subcatchment to Vindeln River (Figure 1).

A culvert survey was conducted in Krycklan during June 29 to 25

July 25, 2013, where culvert locations were mapped using a handheld

GPS with a horizontal accuracy < 10 m. These culverts were manually

adjusted using a 0.5‐mDEM and a 17‐cmOrto photo in order to increase

the precision. The culvert surveys of the larger catchments were con-

ducted in collaboration with the Swedish Forest Agency during the
FIGURE 1 The nine large catchments are located along the coast of cent
Sweden. (A) Krycklan, (B) Gnarpsån, (C) Harmångersån, (D) Delångersån, (E
and (J) Gåvleån
snow‐free periods of 2014–2015 using a handheld GPSwith a horizontal

accuracy of 0.3 m. A total of 30,883 culverts were mapped during the

field surveys. Densely populated urban areas with underground drainage

systems were excluded from the survey (0.3% of the combined area).

This study uses the Swedish National DEM generated by the Swedish

Mapping, Cadastral and Land Registration Authority using LiDAR. This

DEM has a cell resolution of 2 m and was generated from a point cloud

with a point density of 0.5–1 points/m2 with horizontal and vertical

errors of 0.1 and 0.3 m, respectively. This DEM was resampled using

nearest‐neighbour interpolation to 4‐, 8‐, and 16‐m DEMs.

The preprocessing methods that have been evaluated can be

sorted into three categories: algorithms that fill sinks, algorithms that

breach sinks, and algorithms that utilize a combination of both filling

and breaching to remove sinks. In this study, we focus on efficient

algorithms capable of handling large DEMs (~1,000 km2 at 2‐m resolu-

tion). The following is a short introduction to the evaluated algorithms.

Each method is given a short name in this study (in italics), and all

methods are summarized in Table 1.
2.2 | Fill algorithms (also known as incremental
methods)

Wang and Liu (2006) introduced the priority flood algorithm, which exam-

ines each cell on the basis of its spill elevation, starting from the edge cells,

and visiting cells from lowest order using a priority queue. This algorithm

was modified to work with larger LiDAR DEMs and implemented in SAGA
ral Sweden, whereas the small catchment is 60 km inland in northern
) Nianån, (F) Norralanån, (G) Skårjån, (H) Hamrångeån, (I) Testeboån,



TABLE 1 The evaluated methods are summarized on the left, using the same name as the main text

Name Description Program

Fill Fill with flat incrementa Whitebox GAT

BR fill BRb + Fill with flat incrementa Whitebox GAT

LCAT breach Least cost auxiliary topography TopoToolbox

BR LCAT breach BRb + Least cost auxiliary topography TopoToolbox

Complete breach Complete breaching modec GoSpatial

BR complete breach BRb + Complete breaching modec GoSpatial

Constrained breach Constrained breaching moded GoSpatial

BR constrained breach BRb + Constrained breaching moded GoSpatial

Selective breach Selective breaching modee GoSpatial

BR selective breach BRb + Selective breaching modee GoSpatial

Note. The descriptions show how each method was run and is further explained below. The programs used to run each method are displayed on the right.
aFlat increment = Flats were given the arbitrary slope of 0.001°.
bBR = Streams were burned across roads with a maximum length of 50 m.
cComplete breaching mode = All sinks were resolved by breaching.
dConstrained breaching mode = 2 m max depth, 50 grid cells length followed by internal breaching and fill.
eSelective breaching mode = 2 m max depth, 50 grid cells length followed by fill.
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GIS 2.2 and Whitebox GAT 3.4 and can be set to add a small elevation

increment to flat area cells to impose a flow direction. An increment of

0.001° was chosen for this study and will be referred to as fill.
2.3 | Breaching algorithms (also known as
decremental methods)

The first breaching methods were introduced by Martz and Garbrecht

(1998) and Rieger (1993, 1998) and worked by identifying and

breaching the lowest outflow in a sink if specific criteria of depth and

breach length were meet. Studies by Soille (2004), Schwanghart and

Kuhn (2010), and Schwanghart et al. (2013) propose breach algorithms

based on the least cost auxiliary topography. This algorithm is included

in MATLAB TopoToolbox R2013b and will be referred to as LCAT

breach. An even more efficient breaching algorithm was introduced

by Lindsay (2015) and is available in a small program called GoSpatial.

This method will be referred to as complete breach.
2.4 | Hybrid algorithms (incremental and
decremental combined)

GoSpatial also offers the possibility to combine breaching and filling

into a hybrid solution using a priority flood algorithm where sinks can

be resolved by selective or constrained breaching. Constrained breach

and selective breach was run with a maximum breach length of 50 grid

cells and maximum breach depth of 2 m. This means that sinks that

would require a breaching path of more than 50 grid cells or sinks

deeper than 2 m will be filled instead of breached. The main difference

between constrained and selective breach is that selective breaching

does not breach sinks that do not meet the criteria above, whereas

constrained breaching creates a partial breach up to the above‐defined

criteria in order to reduce the interior sink size (Lindsay, 2015). For

example, constrained breaching will breach a channel of 50 m before

applying fill, whereas selective breaching will stop and fill without

breaching that specific sink.
There is also an option to burn a known stream network into a DEM.

Unfortunately, forest hydrology is often poorly mapped, and only

streams distinguishable from aerial photos are displayed on current maps,

which makes stream burning questionable (Lindsay & Dhun, 2015). Even

so, it is still reasonable to assume that the location of a stream–road

crossing would be easier to distinguish from aerial photos because of

the opening in the canopy along roads, making these locations more reli-

able. Therefore, streams from existing maps were burned into the DEM

where they crossed a road, and only a short distance (maximum 50 m)

that would correspond to the distance necessary to burn across the larg-

est road embankments in the catchments. This step was done using the

tool “burn streams at roads” in Whitebox GAT and will be referred to

as “BR.”Herewe applied (fill, complete breach, selective breach, constrained

breach, and LCAT) separately to the stream–road‐burned DEM. Methods

where the stream–road intersections were burned into the DEM have

“BR” added to the name to clarify this (BR fill, BR complete breach, BR

constrained breach, BR selective breach, and BR LCAT).
2.5 | Evaluation

Field mapping an entire stream network is not an easy task, and stream

networks are tricky to compare in a reliable way (Molloy & Stepinski,

2007). Instead of comparing the entire stream network, we focus on

locations where streams intersect roads. Our unique dataset of field‐

mapped culvert locations allows us to investigate if the modelled

stream network crosses the road at the correct locations, that is, where

the stream drains underneath the road in a culvert. For this assess-

ment, stream networks were extracted from each preprocessed DEM

using the flow routing algorithm Deterministic‐8 (O'Callaghan & Mark,

1984) and a flow initiation threshold or accumulated area (Tarboton,

Bras, & Rodriguez‐Iturbe, 1991) of 0.02 km2 (2 ha), which represents

spring flood on the basis of field observations of stream initiation in

the northernmost study catchment (the Krycklan catchment; Ågren

et al., 2015). This means that culverts located in areas near a water

divide, before a stream has been initiated, will not be intersected by
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this stream network. A lower flow initiation threshold would produce a

more extensive stream network and intersect more of the field‐

mapped culverts, but we decided that it would be more relevant to

use a realistic flow initiation. A stream–road intersection was only con-

sidered to be accurate if a stream passed within 10 m of both ends of a

culvert. The 10‐m search radius was chosen to avoid nearby culverts at

road intersections and similar locations.
2.6 | Effects of preprocessing methods on DEMs

Preprocessed DEMs were compared to original DEMs in order to analyse

how preprocessing methods changed the DEM. This comparison included

area changed and absolute volume changed, which are commonly used to

assess the impact of preprocessing methods (Lindsay & Creed, 2005;

Poggio & Soille, 2012). Absolute volume change is the sum of the abso-

lute height difference for all cells in the catchment before and after the

preprocessing multiplied by the total number of cells (Equation 1).
FIGURE 2 The accuracy of topographically derived stream networks
Preprocessing methods that prioritize breaching over filling lead to more a
Abs volumeð Þ ¼ a ∑
N

i¼1
zi;orig−zi;proc
� �

: (1)

a is the area of a raster cell, zi,orig is the elevation for raster cell i in the

original DEM, zi,proc is the elevation for raster cell i in the preprocessed

DEM, and N is the number of raster cells in the DEM.

LiDAR is absorbed by water, so elevation data in these surfaces were

interpolated from surrounding terrain during the DEM creation. They were

also flattened using lake and river polygons from a topographical map and

given an arbitrary slope towards the coast. These areas were excluded

from the evaluation of preprocessing methods impact on the DEMs.
3 | RESULT

3.1 | Correct stream–road crossings

Stream networks from all preprocessed DEMs were intersected with

over 30,000 field‐mapped road culverts, and the number of correct
increases with increasing digital elevation model (DEM) resolution.
ccurate stream networks on all DEM resolutions
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stream–road crossings was used to evaluate accuracy of each method.

The accuracy of topographically derived stream networks increased

with increasing DEM resolution. Stream networks from the 2‐m DEM

intersected roughly twice the number of culverts as stream networks

from the 16‐m DEM. Further, preprocessing methods that prioritized

breaching over filling lead to more accurate stream networks on all

DEM resolutions (Figure 2). The difference between breaching and fill-

ing increased with increasing resolution. Burning streams from the

topographic map across roads from the topographic map (BR), before

applying a complete preprocessing method, increased the number of

correct stream–road crossings for all methods, especially for filling.

This step was sensitive to scale, and the effect increased with increas-

ing DEM resolution. The least cost auxiliary topography breaching

method (BR LCAT) intersected most culverts on all DEM resolutions,

which means that stream networks extracted from the 2‐m DEM

preprocessed by BR LCAT were most accurate in this study. BR com-

plete breach, BR constrained breach, and BR selective breach also per-

formed well, whereas fill had the least amount of correct stream–

road crossings on all resolutions.
FIGURE 3 Change in absolute volume of the digital elevation models in M
LCAT, (c) BR complete breach, (d) complete breach, (e) BR constrained, (f)
3.2 | Preprocessing effects on DEMs

The impact of each method was defined by changes in DEM area and

absolute volume between the original DEMs and the preprocessed

DEMs.Methods that prioritized breach over fill made the least changes,

to both area and absolute volume (Figure 3). Thiswas the case for all res-

olutions. All methods changed larger areas on higher resolution DEMs,

especially fill. The difference in area changed betweenmethods that pri-

oritize breaching and methods that prioritize filling also increased with

increasing DEM resolution. Burning streams from the topographic

map across roads from the topographic map (BR), before applying

another preprocess method, reduced the change in area for all methods

on the 2‐ and 4‐mDEMs but had little effect on the 8‐ and 16‐mDEMs.

Changes to absolute volume decreased with increasing resolution for

pure breaching methods, whereas hybrid and filling methods made the

most changes to absolute volume on the 2‐m DEM. BR LCAT and LCAT

made the least changes on DEM area, whereas BR complete breach and

complete breach made the least changes to absolute volume regardless

of DEM resolution. Fill and BR fill had the biggest impact on both area

and absolute volume on all resolutions.
illion M3 against changed area in percent of total area. (a) BR LCAT, (b)
constrained, (g) BR selective, (h) selective breach (i) BR fill, and (j) fill
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4 | DISCUSSION

In this study, we assessed different methods to preprocess DEMs of

varying resolutions by analysing the number of field‐mapped culverts

intersected by extracted stream networks. The effect of each prepro-

cessing method was assessed by area changed, and absolute volume

changed, from the original DEMs. Our results showed that the least

cost auxiliary topography method proposed by Schwanghart and Kuhn

(2010) and Schwanghart et al. (2013) (LCAT) was the most accurate in

terms of number of culverts intersected, regardless of DEM resolution.

We also found that the accuracy increased when streams from the

topographic map were burned across roads from the topographical

map, before applying a complete preprocessing method. In this study,

a stream–road intersection was only considered to be accurate if a

stream passed within 10 m of both ends of a culvert. Using a 10‐m

search radius for all resolutions allows for a more direct comparison

between resolutions, but it can potentially cause some issues with

the 8‐ and 16‐mDEMs because the nodes of the extracted stream net-

work are located in the centre of the resampled grid cells.

Increasing resolution also increased the accuracy in terms of num-

ber of correct stream–road crossings. This is consistent with a study in

Canada where Goulden et al. (2014) evaluated stream networks delin-

eated from 1‐, 5‐, 10‐, 15‐, and 50‐mDEMs and concluded that stream

networks from the 1‐m DEM produced the highest spatial accuracy.

Dehvari and Heck (2013) did a similar study in Canada and observed

large differences between 1 m and 10 m DEMs on all topographical

and hydrological attributes, suggesting that 10 m might be to course

to extract streams in that landscape.

Increasing DEM resolution increased the area affected by prepro-

cessing, especially for methods that prioritize fill. This is likely due to

sinks caused by small‐scale features, which become visible at higher
FIGURE 4 One of the most important differences between filling and bre
upstream flow paths. (a) The road embankment in the bottom right corner
visible in the original digital elevation model. (b) Filling creates a flat area o
parallel and unrealistic stream segments. (c) Breach, on the other hand, ma
road embankment
resolutions. Features such as road embankments could explain increas-

ing differences in area changed, and number of correct stream–road

crossings, between breaching and filling at higher resolutions. BR LCAT

created the most accurate stream network, and it changed 52% less of

the study area compared to the classic fill method on the 2‐m DEM.

This is also consistent with recent findings. Lindsay and Dhun (2015)

evaluated preprocessing algorithms on a 1‐mDEM in a landscape dom-

inated by agriculture and found that breaching changed an area 86.5%

smaller than filling. This is consistent with results from a study on a 30‐

m DEM by Poggio and Soille (2012). Some of the difference in impact

between filling and breaching can be attributed to flat areas in our

catchments. If a road crosses the outlet of a flat area, the fill algorithms

will fill up the whole area in order to remove the sink, whereas breach

algorithms will breach a channel across the road. Burning streams from

the topographic map, across roads from the topographic map, reduced

the impact on the DEMs and improved the accuracy for all methods

but especially for filling methods. This shows just how sensitive filling

is to road embankments.

Previous studies have shown that methods that change the DEM

less produces more accurate stream networks (Lindsay & Creed,

2005; Poggio & Soille, 2012). This is consistent with our results, but

there is no reason why minimizing the impact should be a goal by itself.

The aim of any preprocessing method is to create accurate flow direc-

tions and by extension accurate stream networks. One of the most

important advantages with breaching instead of the filling used here

is the behaviour of flow paths upstream of a road embankment.

Streams from both methods might cross the road in a correct location,

but fill will produce straight parallel streams across the filled area,

whereas breach uses the flow path information of the unfilled DEM

to the beaching point. This means that filling fails to utilize information

about flow directions in the filled areas (Figure 4).
aching is not where they cross a road but rather how they affect the
is creating a sink at the stream–road intersection. A stream channel is
f arbitrary values upstream of the road embankment, which results in
nages to utilize the flow path information of the area upstream of the
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However, there are other filling methods such as the one

described by Martz and Garbrecht (1998) that impose convergent flow

paths away from a higher elevation towards a lower elevation. Selec-

tive filling and constrained breaching give the user the option to

choose which sinks to fill or breach. Optimally, very deep sinks, such

as quarries, should be filled, whereas road embankments and bridges

should be breached (Lindsay, 2015). This was especially important on

the high‐resolution DEMs in this study because our catchments

contained a large number of road embankments, which means that

there were many sinks that should be solved by breaching. If most

sinks were caused by artificial sinks from open mines and quarries,

instead of artificial embankments, it is likely that filling would be a pre-

ferred method. Selective filling or constrained breaching might be pref-

erable if the DEM contains both deep sinks and road embankments.

Selecting appropriate thresholds for maximum breach depth and

length can be difficult and will vary with resolution because the origin

of sinks changes with resolution.

Road embankments, bridges, and culverts are some of the biggest

issue to address in order to create reliable stream networks from high‐

resolution LiDAR DEMs (Schwanghart et al., 2013). One advantage

with high‐resolution LiDAR DEMs is that they might contain informa-

tion about small‐scale anthropogenic features such as ditches that

can be incorporated in the hydrological models in order to improve

the accuracy of stream networks. This would allow us to shed some

light on the unknown headwaters described by Bishop et al. (2008).

Forest managers could use these stream networks to better plan oper-

ations in wet areas near streams in order to prevent rutting (Ågren

et al., 2015) and subsequent sediment transport (Kreutzweiser &

Capell, 2001) and mercury export (Munthe & Hultberg, 2004).
5 | CONCLUSIONS

The accuracy of stream networks, in terms of correct culvert intersec-

tions, increased with increasing DEM resolution. Stream networks

extracted from DEMs that had been breached instead of filled created

more accurate stream networks on all resolutions and had less impact

in terms of change to area and absolute volume. The difference in

accuracy between breaching and filling increased with increasing reso-

lution. The accuracy also increased when streams from the topo-

graphic map were burned across roads from the topographical map,

for all methods and resolutions.
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