
RESEARCH ARTICLE

BatchMap: A parallel implementation of the

OneMap R package for fast computation of F1

linkage maps in outcrossing species

Bastian Schiffthaler1*, Carolina Bernhardsson2, Pär K. Ingvarsson3, Nathaniel R. Street1

1 Umeå Plant Science Centre (UPSC), Department of Plant Physiology, UmeåUniversity, Umeå, Sweden,

2 Department of Ecology and Environmental Science, UmeåUniversity, Umeå, Sweden, 3 Department of

Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Uppsala, Sweden

* bastian.schiffthaler@umu.se

Abstract

With the rapid advancement of high throughput sequencing, large numbers of genetic mark-

ers can be readily and cheaply acquired, but most current software packages for genetic

map construction cannot handle such dense input. Modern computer architectures and

server farms represent untapped resources that can be used to enable higher marker densi-

ties to be processed in tractable time. Here we present a pipeline using a modified version of

OneMap that parallelizes over bottleneck functions and achieves substantial speedups for

producing a high density linkage map (N = 20,000). Using simulated data we show that the

outcome is as accurate as the traditional pipeline. We further demonstrate that there is a

direct relationship between the number of markers used and the level of deviation between

true and estimated order, which in turn impacts the final size of a genetic map.

Introduction

Genetic linkage maps are constructed to determine the relative order and distance between

loci on a chromosome. These maps can, among other things, be used for association genetics

and marker assisted breeding by linking phenotypic traits to regions and genes in the map

(QTL mapping), to improve fragmented genome assemblies by ordering and orienting scaf-

folds along chromosomes [1, 2], or to analyze genome synteny between related species [2].

However, constructing a genetic map is often a great challenge due to the computational

effort involved and, until recently, the developmental cost and time investment required to

identify reliable markers. Next generation sequencing approaches have removed the barriers

to identifying and subsequently assaying large number of markers with genome-wide cover-

age, enabling most, if not all, genes to be placed on a genetic map. Creating reliable, high

density linkage maps is therefore rapidly becoming an even greater computational challenge

as marker density has rapidly increased. The computational challenge arises from bottle-

necks involved in determining the order of markers (a traveling salesman problem) and the

optimization of recombination frequencies and phasing (using the EM-algorithm, [3]). An

exhaustive search for the true order requires n!/2 comparisons (n = number of markers on
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the LG) and with anything more than 10 markers this calculation rapidly becomes computa-

tionally prohibitive.

In order to deal with these computational problems, several heuristic approaches for

marker ordering have been developed. One of the most broadly employed programs (that

implements a regression- and a maximum likelihood mapping algorithm) for constructing

linkage maps is JoinMap [4], a commercial, proprietary license based, Microsoft Windows-

only software. However, during the last decade a number of open source software implementa-

tions, including OneMap [5], have been developed (e.g. [6], [7], [8], [9], 10], see also [1] for a

summary table). All of these have implemented both different ordering algorithms and map-

ping functions. All softwares have their unique benefits and drawbacks, but unfortunately they

are often computationally slow as they do not utilize parallel processing, are often written in

such a way that it is hard to follow the process and confirm the results, are available as online

softwares only, or are designed to work with only a limited range of the most common pedi-

gree designs (e.g. RILs, F2s). For researchers working with organisms with long generation

time (e.g. forest trees or large mammals with generation times of 15 to 20 years), it may be

demanding to create an F1 and infeasible to create an F2 or backcross. When working with F1

crosses, where no linkage information between markers is availible from the parents and sev-

eral different phases per marker pair need to be considered, the double pseudo-testcross

approach [11] has proven effective: separate maps are created for the two parents, with mark-

ers that are heterozygous in both parents providing links between the two maps. As two maps

are created, this approach requires twice the number of LGs to be analyzed compared to RILs,

backcrosses or F2s. However, the availability of large server clusters, either within research

groups, through national- or international infrastructures or commercial cloud computing

services, could be utilized to decrease real-world computational time by implementing paralle-

lization of several of the time consuming steps in linkage map construction.

OneMap is an open source package for the R programming language [12] that implements

all ordering algorithms and mapping functions available in the proprietary JoinMap program.

It is well documented, with extensive guidelines for users on map creation and is also under

active development via GitHub (https://github.com/augusto-garcia/onemap). However, it has

not currently implemented an option for parallelization of the analyses and is therefore pro-

hibitively slow when working with large numbers of markers. Here, we describe our extended

OneMap implementation, BatchMap, which comprises faster versions of three ordering and

mapping function algorithms:

1. record.parallel(): RECORD [13] is a popular heuristic approach to approximate

the true order of markers. Both the RECORD algorithm and Wu et al.’s EM optimization

for phasing and recombination fraction (RF) computation have previously been shown to

perform exceptionally well in full-sib outcrossing mapping populations with relatively

noisy datasets containing up to 20% missing genotypes per marker [14].

2. map.overlapping.batches(): A mapping algorithm that splits a pre-ordered LG

into batches containing a predefined number of overlapping markers between neighboring

batches. Here, batches are analyzed in sequential order, with overlapping markers fixed in

phase from the previous batch.

3. ripple.ord(): An algorithm inspired by the OneMap ripple.seq() function,

which leverages the high speed of the batch mapping approach in addition to multiple

CPUs to consider alternative marker orders in parallel to improve the order and reduce

errors (hereinafter called ‘ripple’).
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By using these approaches we can create a high density linkage map within tractable time

scales (days) as opposed to months or years, depending on the computational power available

for the project and the number of markers used in the map. Our OneMap fork ‘BatchMap’, the

example data and user manual is freely available for download from: https://github.com/

bschiffthaler/BatchMap.

Methods

Simulated data

In order to evaluate the performance of the BatchMap algorithms, we created four simulated

F1-crosses using QMSim (QTL and Marker Simulator) version 1.10 [15]. Each cross was repli-

cated once with an historical population size of 1000 individuals per generation for 1000 gen-

erations before the cross was made. Each of the genomes was set to have five chromosomes

with a chromosome length (chrlen) of 200 cM and 1500, 2000, 3000 and 4000 markers per

chromosome (nmloci) for the four crosses, respectively. This resulted in four datasets contain-

ing 7500, 10000, 15000 and 20000 markers, all with a total genome size of 1000 cM (200cM per

linkage group for each of the datasets). QMSim uses the chrlen in Morgans as the mean for the

Poisson distribution when calculating cross-over during meiosis, resulting in the final maps

calculated from the simulated crosses being half the size of the pre-set value (in our case *100

cM per chromosome). All data sets were set to include only biallelic markers (nma) positioned

randomly in the genome (mpos) and with marker allele frequencies (maf) of 0.5, but with a

rate of missing data per genotype (rmmg) of 0.2. Due to the simulated nature of the data, it

was not filtered for segregation distortion. We advise using a χ2 test to filter distorted markers

in real datasets. A random mating design (md) and a litter size (ls) of 800 with a 50/50 ratio of

female and male progeny was then set to create each of the F1 crosses. The simulated data sets

were thereafter filtered so that only informative markers were kept (markers for which none of

the parents had missing data and where at least one of the parents was heterozygous), and

transformed into OneMap input format for either of the cross types “B3.7” (ab x ab), “D1.10”

(ab x aa), “D2.15” (aa x ab) or “-” according to the encoding scheme in [3]. This resulted in

final data sets containing 2368, 3042, 4714 and 6182 markers, respectively (Table 1 and Supple-

mentary Files inside S1 Simulated Data).

BatchMap pipeline

Data input and preparation. Fig 1 shows a flowchart of the important steps described in

this section. An example R script is available as BatchMap.R inside S1 R Scripts. The simulated

data (see Supplementary Files inside S1 Simulated Data) was read into BatchMap using the

function read.outcross2(), which was added as the original function in OneMap was

not suited for large datasets. The next steps follow the default OneMap workflow in creating

the two-point tables of recombination fractions and likelihoods (rf.2pts()) and assigning

Table 1. Summary of the simulated data sets. Data set: The name of the data set; Markers/chr: Number of markers simulated on each chromosome; Total

markers: The total number of markers; Genetic map: Number of markers in the genetic map after filtering for informative markers (and the corresponding per-

centage of all simulated markers); Markers/LG: The average number of markers on each LG (and the marker density range).

Data set Markers / chr Total markers Genetic map Markers / LG

Sim7.5k 1 500 7 500 2 368 (31.6%) 471 (451-489)

Sim10k 2 000 10 000 3 042 (30.4%) 608 (580-627)

Sim15k 3 000 15 000 4 714 (31.4%) 943 (916-967)

Sim20k 4 000 20 000 6 182 (30.4%) 1 236 (1 196-1 280)

https://doi.org/10.1371/journal.pone.0189256.t001
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Fig 1. An overview of the BatchMap pipeline. A) Input data file is read into BatchMap using the function read.outcross2(). B) A two-point table of

recombination fractions is created and likelihoods calculated per phase using the function rf.2pts(). C) Markers are assigned to linkage groups (LGs)

using the function group(), sequence objects created using make.seq() and LGs are split into parental maps using marker segregation type. D) Marker

order is determined using RECORD, with the number of iterations and threads set using the function record.parallel(). E-F) The genetic map is

calculated in centiMorgans by first using the function pick.batch.sizes() to split the LG into even groups and then using function map.
overlapping.batches()with the predefined batch size. All pairwise marker phases are set within each batch and overlapping markers are fixed in

phase from the previous batch. When all marker pairs are fixed in phase the original OneMap function map() is called to calculate the distance between

markers in cM using either the Kosambi or Haldane mapping function. G-H) An optional ripple function, ripple.ord(), can be set in map.
overlapping.batches() to consider all single pairwise swaps between markers in a sliding window of predefined size along the LG. When the best

order (based on likelihoods) within each window is set, map calculation will be carried out as in E-F).

https://doi.org/10.1371/journal.pone.0189256.g001
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the markers to linkage groups (group()) using LOD = 8 and max.rf = 0.35. Sequence objects

were created for each linkage group (make.seq()), which were then split into parents by the

marker segregation type. The segregation type D2.15 and B3.7 were assigned to parent one,

whereas segregation type D1.10 and B3.7 were assigned to parent two.

Marker ordering. RECORD (recombination count and ordering) works by adding one

random marker at a time and orders markers by minimizing the number of recombination

events in the map. This is replicated x number of times and the order with the lowest

COUNT criterion, which minimizes the number of recombination events needed to explain

the marker order, (see eq. 1 in Van Os et al. 2005) is accepted as the true order of markers. We

implemented a parallelized version of the RECORD algorithm that utilizes multithreaded

computing to calculate the marker order using RECORD N times in parallel (record.
parallel()). As each iteration is an independent calculation, this is trivial to parallelize.

We opted to perform ten iterations, as increasing the number beyond that did not appreciably

improve marker order (see Fig B in S1 Appendix).

Batch map. OneMap utilizes an expectation maximization (EM) algorithm to estimate

phases and true recombination frequencies in constructing the linkage map (map()). It starts

by calculating the likelihood for each possible phase of the first marker pair in a sequence of

markers, then iteratively adds the next marker pair and calculates the likelihood of their phase

and recombination fraction. For each added pair, all previous data is considered in the model.

While this yields the best possible model, long sequences can become virtually impossible to

compute. We therefore implemented a new function to calculate the linkage map in overlap-

ping batches, such that enough data for sensible estimation of phases and recombination frac-

tions via the EM model is available in each batch, while also keeping the data from previously

evaluated pairs limited. Important parameters for the pipeline are number of markers in a

batch (“batch size”) and the number of markers overlapping between adjacent batches (“over-

lap size”). The EM algorithm will run N − 1 times for N markers in a batch, and it will consider

the result of previous pairs in each iteration. This information is necessary for accurate calcula-

tion of phase likelihoods, but the return saturates quickly, compliating the model while offer-

ing no additional accuracy. BatchMap divides the markers into batches and only carries a set

amount of phase information over to subsequent batches, circumventing this issue. For a

given target batch and overlap size, the function pick.batch.sizes() selects a batch size

that splits the data into even groups. The function map.overlapping.batches() then

considers the batches, but estimates likelihoods for all phases in parallel. Once finished, it will

call the original OneMap function map()with predefined phases and order. This approach

enables us to reduce the time required to calculate an un-phased map. By dividing the calcula-

tion into several sequential sub-problems we achieve comparable accuracy in substantially less

time while also providing nearly linear scaling (see section 1 of S1 Appendix), rendering the

approach feasible for extremely high-density maps. The simulated data was run with a batch

size of 50 markers and an overlap of 30 markers using four CPU threads to consider phases in

parallel (see BatchMap.R inside S1 R Scripts).

Batch map with adaptive re-ordering via ripple. All ordering algorithms for genetic

linkage maps are heuristic approximations since the mathematical problem is NP-complete.

This leads to errors in the marker orders generated from these. In order to improve the marker

order as much as possible, the function map.overlapping.batches() can be supplied

with an ordering algorithm, which makes it possible to consider alternative orders in the calcu-

lation of the map. We implemented the function ripple.ord() to provide an algorithm

that creates windows of a specified window-size along the markers of a batch and swaps mark-

ers according to a set of rules. By default (ruleset ‘one’), all single pairwise swaps between

markers are considered. For a given window, all permutations are also calculated in parallel.

BatchMap: Fast calculation of linkage maps
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For any batch besides the first, the part that overlaps the previous batch is exempt from this

consideration as not enough information is available to confidently select good alternative

orders. The simulated data was run with a window size of five markers, using ruleset ‘one’, and

utilizing eight threads to calculate marker permutations in parallel (see BatchMap.R inside S1

R Scripts).

Currently available OneMap versions

As a comparison we used the current stable version (2.0-4) of OneMap available on CRAN

(https://cran.r-project.org/web/packages/onemap/index.html) and the development version

(SHA: 53352d13) available on GitHub (https://github.com/augusto-garcia/onemap) on the

same data with the same settings for all functions that are available in these versions (see

CRAN.R and GitHub.R inside S1 R Scripts).

Performance evaluation

Both time and accuracy were considered as important factors in evaluating the performance of

each run of OneMap. To obtain a reliable estimate for high density maps, we used the first

three chromosomes (6 LGs), without binning, from the sim20k dataset for the analyses. Each

of these LGs contained between 725 and 794 markers.

The biggest bottleneck for the analysis is the time required to calculate the linkage map

phases and recombination fractions, which was therefore selected as the representative time

for each run. Further, the number of markers in a sequence impacts the total time required for

linkage map construction. The time was therefore compared as the mean time of five replicate

runs divided by the number of markers. As map accuracy is dependent on a number of factors,

such as the two-point table, linkage group members and the order supplied by RECORD, these

were controlled by generating linkage groups and an initial order for the dataset and loading

those, such that all runs had an equal entry point into map() or map.overlapping.
batches(). The map size in centiMorgans and the overall likelihood reported by OneMap

were both considered in the accuracy analysis.

To evaluate whether the ripple algorithm improves order we tested runs for all versions

from raw data as well as from a controlled start point (RECORD order). Three measures of

order were computed: First, an overall error rate as the rate of markers that were not at their

true position. Second, a weighted error rate as the sum of absolute distances of markers from

their true position normalized by the length of the sequence (See section 2 of S1 Appendix).

Thirdly, Kendall’s tau of the ordered sequence versus the true order.

Order accuracy vs marker density

In order to evaluate how the number of markers on an LG affected the order accuracy from

RECORD and, in turn, to estimate the window size needed for ripple to correct the errors, all

five pseudo-testcross chromosomes (10 LGs) from each of the four simulated data sets, after

binning, were analyzed. Each map was ordered using 33 iterations of RECORD using

record.parallel()using 11 CPU cores and calculated with map.overlapping.
batches(), where batch size was set from the pick.overlapping.batches() func-

tion with a batch size of 40-60 and 30 overlapping markers. Ordering was carried out before it

was determined that running RECORD > 10 times yields no significant benefit, but it was

deemed unnecessary to re-do the order as no significant differences are to be expected. Order

accuracies were obtained as previously stated by calculating distance from true position for

each marker and the total number and distance of mispositioned markers in the maps. Corre-

lations between estimated order and true order were calculated with Kendall’s tau. Map size
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inflations were also analyzed between the true order maps and the estimated maps from Batch-

Map record.parallel()and map.overlapping.batches() and the correlation

between size inflation and marker density was calculated with Pearson’s product-moment

correlation.

Results

BatchMap is significantly faster than OneMap

By using a simulated dataset containing over 1,000 markers per chromosome and over 700

markers for each pseudo-testcross we show that the BatchMap is as accurate as the original

version of OneMap but substantially faster for high-density maps. We further show that adap-

tive re-ordering of markers within batches improves map accuracy while still being faster than

the original implementations. Calculating full linkage maps for three linkage groups in each

of two parents (six maps) with all versions of OneMap yielded a mean processing time per

marker of 964.55s for the stable version of OneMap available on the Comprehensive R Archive

Network (CRAN), 237.97s for the development version on GitHub (commit 53352d1, June

23rd 2016), 13.19s for our parallel implementation at 16 parallel CPUs and 105.12s for the par-

allel ripple method when considering all pairwise marker swaps in a sliding window of size 5

(see Fig 2b). Mean total runtimes were 206.06h, 50.92h, 2.82h and 22.42h respectively. Testing

was performed on an HP ProLiant DL585 G7 server with four AMD Opteron 6386 SE CPUs

and 512 GiB RAM running Ubuntu 16.04 server edition.

The new implementations perform as well or better than the original

Due to the controlled entry point (marker order derived from 10 iterations of RECORD)

for accurate comparison of map() and map.overlapping.batches() between One-

Map and BatchMap versions, CRAN, GitHub and BatchMap all showed equal error rates,

weighted error rates and Kendall’s tau (Figs C, D and E in S1 Appendix). BatchMap_ripple,

with a five marker window size, reduced the mean error rate from 0.76 to 0.71, the weighted

mean error rate from 0.016 to 0.015, the median distance to true marker position from 2

to 1 (Fig 2D). Both GitHub and BatchMap resulted in equal final map sizes (118.62cM to

135.37cM) and map likelihoods (-14375.56 to -12931.60) for all six LGs, while performance

of the CRAN version was worse (map size 126.48cM to 143.76cM and map likelihood

-14461.11 to -13012.67). BatchMap_ripple outperformed the other methods by reducing the

size inflation (map size 112.06cM to 129.10cM) and having higher likelihoods (-13349.51 to

-12194.68) (Fig 2A and 2C).

Marker density of a map defines the window size needed for ripple

To estimate the effect of marker density on order accuracy, all five chromosomes (10 LG) from

each of the four simulated datasets (40 LGs in total) were analyzed with record.parallel
(times = 33, . . .). While the LGs showed a threefold difference in marker density

between low and high density LGs (266—777 markers/LG), the number of incorrectly posi-

tioned markers increased by 4.5 times (134—608) and the error rate increased from 0.48 to

0.78 (Table A in S1 Appendix). The total distance from true positions showed an almost nine-

fold increase between low- and high density maps (260—2310). This resulted in an average dis-

tance from the true positions of 1-3 markers when calculated over all markers in the LG, and

1.5-4 markers when calculated over only the mis-positioned markers (Table A in S1 Appendix,

Fig 3). All LGs showed a correlation of 0.986-0.993 between true and estimated marker

order, which was not dependent on marker density (t = -0.431, df = 38, p-value = 0.669). Size
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inflation (cM) of the estimated maps was highly correlated with marker density (ρ = 0.717,

t = 6.333, p-value = 1.992e-07).

Discussion

BatchMap performs the ordering and map calculations at a substantially increased speed com-

pared to both the CRAN (73 times faster) and GitHub (18 times faster) versions of OneMap

without lowering the accuracy of the final map. Even when utilizing the ripple function, Batch-

Map is nine and two times faster than CRAN and GitHub, respectively, but increases the accu-

racy of marker order within the predefined window size. In order to correct as many marker

ordering errors as possible, the window size needs to be larger than the maximum distance

to true position that exists in the LG. This distance varied considerably between different

RECORD runs regardless of marker density, but no marker in the 40 analyzed LGs had a max-

imum distance greater than 25 positions away from its true location (Table A in S1 Appendix).

Fig 2. Summary statistics of all evaluation runs for OneMap and BatchMap. In order to control for random effects during ordering and grouping, those

factors were estimated once using RECORD and supplied to all runs. A) Boxplots (N = 6) of linkage map sizes in centiMorgans for all evaluations. B) Hours

elapsed per calculation for each pseudo-testcross of three linkage groups between 724 and 794 markers in density. C) Boxplots (N = 6) of linkage map

likelihoods for all evaluations. D) Frequency polygons for all evaluations summarizing the distance of each marker to its true position. All versions except

BatchMap_ripple are identical and hence overlap. BatchMap_ripple was run with a window size of five, which is indicated by the vertical dashed bars.

https://doi.org/10.1371/journal.pone.0189256.g002
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However, with increasing map density, a greater portion of the mispositioned markers will be

further away from their true location (Fig 3). This means that as map density increases, corre-

spondingly larger window sizes are needed in order for ripple to correct the same proportion

of the markers.

The pipeline is mainly controlled by the “batch size” and “overlap size” parameters, which

respectively set the number of markers in a batch and the number of shared markers between

adjacent batches. If the batch size were set too high, there would be less gain in execution time.

If the overlap size would be too small, phases would be incorrectly estimated and large gaps

would appear in the map, inflating its size. In practise, these values will depend on many fac-

tors such as population size, marker quality and species. It is therefore recommended to try

several configurations on a subset of the data and select the best performing one (e.g. best like-

lihood, smallest size).

Due to the way marker order and phases are locked in the overlapping part of neighboring

batches when running map.overlapping.batches(),ripple.ord()will not be

able to swap marker order in the area joining the previous batch. To overcome this issue, two

or more runs of BatchMap could be performed with different batch sizes in each run. The

batch size in the second run should be a ripple window size shorter than the first run in order

to release the last fixed markers for swapping. This approach could also be utilized for itera-

tively decreasing the maximum distance of markers to their true location and thereby fitting

them into the ripple window and fixing the errors. The datasets analyzed in this study were

simulated with 20% missing data to mimic natural crosses that will always, to some extent, suf-

fer from missing data and genotyping errors. It is important to keep in mind that the cleaner a

dataset is, the more accurate the resulting map will be (garbage in, garbage out). Both missing

data and genotype errors may falsely link markers together due to missed or extra erroneously

Fig 3. Accuracy of estimated marker order (using 33 iterations of RECORD) for the four data sets.

Distribution of distance from true position summed over 10 LGs each for sim7.5k, sim10k, sim 15k and

sim20k.

https://doi.org/10.1371/journal.pone.0189256.g003
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inferred recombination events [16]. Fundamentally, the resolution of the genetic map is

defined by the number of individuals that comprise the mapping population. Using more

markers than the resolution of the mapping population will yield groups of markers with iden-

tical information content. A binning step—i.e. using only one representative marker from a

group—was omitted in the performance evaluation in order to maximize the number of mark-

ers which were input into the algorithms, but should almost always be applied in an experi-

mental setting. This is especially important in smaller mapping populations, where the

number of individuals used might not offer a high enough resolution for the marker density

that was obtained for the linkage map. OneMap offers the functions find.bins() and

create.data.bins() for this purpose.

Marker quality is a crucial factor, which determines map accuracy, but high throughput

techniques are often noisy. Low quality markers will increase the run-time for little to no accu-

racy gain at best, and a higher error rate at worst. In addition to filtering the data for markers

with much missing data in the offspring or any missing data in the parents, it is advisable to fil-

ter for segregation distortion.

The time required to order markers on an LG with RECORD is determined by the num-

ber of runs defined and the number of markers on the LG. Our parallel implementation

splits runs into parallel sessions so that they can be performed simultaneously, with runtime

depending on the number of cores assigned. Ten runs split over five cores will provide a the-

oretical five fold speedup in comparison to the CRAN and GitHub versions, while 10 cores

will give a theoretical 10 fold speed up. The real advantage of the new parallel implementa-

tion is, however, in the map batches approach. While the CRAN and GitHub versions of

OneMap show a triangular increase in the time required to calculate the map (see section 1

of S1 Appendix), BatchMap increases quasi linearly with marker density (Fig A in S1 Appen-

dix). If one were to create a full linkage map of a dataset with similar density than the simu-

lated 20k data (*1300 markers per chromosome, *750 markers per pseudo-testcross) for an

organism with 10 chromosomes, the CRAN version would take 171.7 days, the GitHub ver-

sion 42.4 days and BatchMap 2.4 days.
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