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THE SPINORIAL ENERGY FUNCTIONAL ON SURFACES

BERND AMMANN, HARTMUT WEISS, AND FREDERIK WITT

Abstract. This is a companion paper to [1] where we introduced the spino-

rial energy functional and studied its main properties in dimensions equal or
greater than three. In this article we focus on the surface case. A salient fea-

ture here is the scale invariance of the functional which leads to a plenitude of

critical points. Moreover, via the spinorial Weierstraß representation it relates
to the Willmore energy of periodic immersions of surfaces into R3.

1. Introduction

Let Mn be a closed spin manifold of dimension n with a fixed spin structure σ. If
g is a Riemannian metric on M , we denote by ΣgM → M the associated spinor
bundle. The spinor bundles for all possible choices of g may be assembled into a
single fiber bundle ΣM →M , the so-called universal spinor bundle. A section Φ ∈
Γ(ΣM) determines a Riemannian metric g = gΦ and a g-spinor ϕ = ϕΦ ∈ Γ(ΣgM)
and vice versa. In particular, one can split the tangent space of ΣM at (gx, ϕx)
into a “horizontal part” ⊙2T ∗xM and a “vertical” part (ΣgM)x (see [1] for further
explanation). Furthermore, let S(ΣM) denote the universal bundle of unit spinors,
i.e. S(ΣM) = {Φ ∈ ΣM ∣ ∣Φ∣ = 1}, and N = Γ(S(ΣM)) its space of sections. If we
identify Φ with the pair (g,ϕ) we can consider the spinorial energy functional

E ∶ N → R≥0, (g,ϕ) ↦ 1
2 ∫

M
∣∇gϕ∣2g dvg

introduced in [1]. Here, ∇g denotes the Levi-Civita connection, ∣ ⋅ ∣g the pointwise
norm on spinors in ΣgM , and integration is performed with respect to the associated
Riemannian volume form dvg. The functional is invariant under the Z2-extension
of the spin diffeomorphism group and rescales as

E(c2g,ϕ) = cn−2E(g,ϕ) (1)

under homothetic change of the metric by c > 0. The negative gradient of E can be
viewed as a map

Q ∶ N → TN , Φ ∈ N ↦ (Q1(Φ),Q2(Φ)) ∈ Γ(⊙2T ∗M) × Γ(ϕ⊥g) (2)

(for a curve ϕt with ∣ϕt∣ = 1, ϕ̇ must be pointwise perpendicular to ϕ). In [1] we
showed the following

Theorem. For Φ = (g,ϕ) ∈ N we have

Q1(Φ) = − 1
4
∣∇gϕ∣2gg − 1

4
divg Tg,ϕ + 1

2
⟨∇gϕ⊗∇gϕ⟩,

Q2(Φ) = −∇g∗∇gϕ + ∣∇gϕ∣2gϕ,
(3)

where Tg,ϕ ∈ Γ(T ∗M ⊗⊙2T ∗M) is the symmetrisation in the second and third com-
ponent of the (3,0)-tensor defined by ⟨(X∧Y )⋅ϕ,∇gZϕ⟩ for X, Y and Z in Γ(TM).

1
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Further, ⟨∇gϕ ⊗ ∇gϕ⟩ is the symmetric 2-tensor defined by ⟨∇gϕ ⊗ ∇gϕ⟩(X,Y ) =
⟨∇gXϕ,∇

g
Y ϕ⟩.

As a corollary, the critical points for n ≥ 3 are precisely the pairs (g,ϕ) satisfying
∇gϕ = 0, i.e. the parallel (unit) spinors. In particular, g must be Ricci-flat and
(g,ϕ) is an absolute minimiser.

The present work investigates the spinorial energy functional on spin surfaces
(Mγ , σ) where Mγ is a connected, closed 2-dimensional surface of genus γ endowed
with a fixed spin structure σ. This differs from the general case of dimension n ≥ 3 in
several aspects. First, the functional is invariant under rescaling by Eq. (1), which
leads to a potentially richer critical point structure in two dimensions. Indeed, we
will construct in Section 5.2 certain flat 2-tori with non-minimising critical points
which are saddle points in the sense that the Hessian of the functional is indefinite.
In particular, these exist for spin structures which do not admit any non-trivial
harmonic spinor. Despite the fact that E does not enjoy any natural convexity
property, we note that the existence of the negative gradient flow as shown in [1]
still holds in two dimensions. Second, if Kg denotes the Gauß curvature of g, the
Lichnerowicz-Weitzenböck formula implies

E(g,ϕ) = 1
2 ∫

M
∣Dgϕ∣2 dvg − 1

4 ∫
M
Kg dv

g, (4)

where Dg is the Dirac operator associated with the spinor bundle ΣgM . Since the
second term in Eq. (4) is topological by Gauss-Bonnet, we obtain immediately the
topological lower bound

inf E ≥ π∣γ − 1∣.
We will show in Theorem 3.9 that we actually have equality. For the infimum we
find a trichotomy of well-known spinor field equations. Namely, if Pg is the twistor
operator associated with ΣgM (see Section 4.1 for its definition), then (g,ϕ) attains
the infimum if and only if

Pgϕ = 0, γ = 0
∇gϕ = 0, γ = 1
Dgϕ = 0, γ ≥ 2,

which matches the usual trichotomy for Riemann surfaces of positive, vanishing and
(non-)negative Euler characteristic (Corollary 3.25, Theorem 4.6). Of course, any
parallel spinor ϕ is also harmonic, i.e.Dgϕ = 0. On the other hand, harmonic spinors

on Mγ are related to minimal immersions of the universal cover M̃γ into R3 via the
spinorial Weierstraß representation (see for instance [7]). As a result we will be able
to construct a plenitude of examples for various spin structures (Theorem 3.19).
In particular, with the notable exception of γ = 2, there exist critical points which
are in fact absolute minimiser for any genus. Finally, we completely classify the
critical points on the sphere (Theorem 4.6) and the flat critical points on the torus
(Theorem 5.2).

General conventions. In this article, Mγ will denote the up to diffeomorphism
unique closed oriented surface of genus γ. Further, g will always be a Riemannian
metric. Rotation on each tangent space by π/2 in the counterclockwise direction
induces a complex structure J which in particular is a g-isometry. More con-
cretely, a local positively oriented g-orthonormal basis (e1, e2) satisfies Je1 = e2

and Je2 = −e1. Conversely, any complex structure determines a conformal class
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[g] of Riemannian metrics. We will often tacitly identify (e1, e2) with the dual
basis (e1, e2) via the musical isomorphisms ♯ and ♭. The Riemannian volume
form ωg is then locally given by e1 ∧ e2. Further, the dual complex structure
J∗ acting on 1-forms is simply −⋆, where ⋆ is the usual Hodge operator send-
ing e1 to e2 and e2 to −e1. The Levi-Civita connection associated with g will be
written as ∇g. The Gauß curvature Kg is just half the scalar curvature sg, i.e.
2Kg = sg = −2Rg(e1, e2, e1, e2), where Rg denotes the Riemannian (4,0)-curvature
tensor defined by R(e1, e2, e1, e2) = g([∇ge1 ,∇

g
e2]e1 − ∇g[e1,e2]e1, e2). In the sequel

we shall often drop any reference to g if the underlying metric is clear from the
context. The divergence of a tensor T is given by

divgT = −
n

∑
k=1

(∇gekT )(ek, ⋅ ). (5)

Finally, we use the convention v ⊙w ∶= (v ⊗w +w ⊗ v)/2 for the symmetrisation of
a (2,0)-tensor.

2. Spin geometry

2.1. Spinors on surfaces. We recall some spin geometric features of surfaces.
Suitable general references are [8, 12].

Every oriented surface admits a spin structure, i.e. a twofold covering of PGL+(2),
the bundle of positively oriented frames which restricted to a fibre induces the
connected 2-fold covering of GL+(2). In particular, spin structures on Mγ are
classified by elements ofH1(PGL+(2),Z2) whose restriction to the fibre gives the non-
trivial covering. From the exact sequence associated with the fibration GL+(2) →
PGL+(2) → Mγ it follows that spin structures are in 1 − 1 correspondence with

elements in H1(Mγ ,Z2). Hence there exist 22γ = #H1(Mγ ,Z2) isomorphism classes
of spin structures on Mγ .

A pair (Mγ , σ) consisting of a genus γ surface and a fixed spin structure σ will
be called a spin surface. If, in addition, we also fix a metric, we can consider
ΣgM → M , the complex bundle of Dirac spinors associated with the complex
unitary representation (∆, h) of Spin(2). Note that the action of ωg splits ∆ into
the irreducible ∓i eigenspaces ∆± ≅ C. This gives rise to a global decomposition

Σg = Σg+ ⊕Σg−

into positive and negative (Weyl) spinors. Further, since ∆− ≅ ∆̄+, ∆ ≅ C ⊕ C̄
carries a quaternionic structure. Equivalently, there exists a Spin(2)-equivariant
map α ∶ ∆ → ∆ which interchanges ∆+ and ∆− and squares to minus the identity.
Hence we can think of ∆ as the quaternions H with real inner product ⟨⋅ , ⋅⟩ ∶= Reh.
Locally, we can represent spinors in terms of a local orthonormal basis of the form
(ϕ, e1 ⋅ϕ, e2 ⋅ϕ,ω ⋅ϕ), where ϕ is a unit spinor and (e1, e2) a local positively oriented
orthonormal basis. In particular,

∇Xϕ = A(X) ⋅ ϕ + β(X)ω ⋅ ϕ (6)

for a uniquely determined endomorphism field A ∈ Γ(End(TM)) and a 1-form
β ∈ Ω1(M). We also say that the pair (A,β) is associated with (g,ϕ). Note that A
and β determine the spinor field ϕ up to a global constant in the following sense.
If ϕ1 and ϕ2 are unit spinor fields, and if they both solve Eq. (6) for ϕ = ϕi, then
there is a unit quaternion c such that ϕ1 = ϕ2c. Hence an orbit of the action of
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the unit quaternions Sp(1) on unit spinor fields is determined by a pair (A,β) for
which a solution to Eq. (6) exists. The question of determining the pairs which can
actually arise will be addressed in Section 3.3.

As pointed out above, the choice of a Riemann metric induces a complex and in
fact a Kähler structure on Mγ . In particular, we can make use of the holomorphic
picture of spinors on Riemann surfaces [2, 11]. Here, spin structures on (Mγ , [g])
are in 1–1 correspondence with holomorphic square roots λ of the canonical line
bundle κγ = T ∗M1,0, i.e. λ⊗λ ≅ κγ as holomorphic line bundles. The corresponding
spinor bundle is given by

Σg = Λ∗TM1,0 ⊗ λ ≅ λ⊕ λ∗

where we used the identification TM1,0 ≅ T ∗M0,1 as complex line bundles. Clifford
multiplication is then given by v ⋅ ϕ =

√
2(v ∧ ϕ − ι(v∗)ϕ) where v ∈ T ∗M0,1 and

ι(v∗) denotes contraction with the hermitian adjoint of v. The resulting even/odd-
decomposition Σg = λ ⊕ λ∗ is just the decomposition into positive and negative
spinors.

2.2. Dirac operators. Associated with any spin structure is the Dirac operator

Dg ∶ Γ(ΣgM) → Γ(ΣgM)
which is locally given by Dgϕ = e1 ⋅ ∇ge1ϕ + e2 ⋅ ∇ge2ϕ. We have the useful formulæ

ω ⋅Dϕ = −D(ω ⋅ ϕ) and ⟨ω ⋅Dϕ,Dϕ⟩ + ⟨Dϕ,ω ⋅Dϕ⟩ = 0.

In particular, for a, b ∈ R with a2 + b2 = 1 we obtain

∣D(aϕ + bω ⋅ ϕ)∣2 = a2∣Dϕ∣2 + b2∣ωDϕ∣2 = ∣Dϕ∣2. (7)

In terms of the pair (A,β) determined by ϕ we have

Dϕ =
2

∑
k=1

ek ⋅A(ek) ⋅ ϕ + β(ek)ek ⋅ ω ⋅ ϕ = TrAϕ +Tr(A ○ J)ω ⋅ ϕ − (β ○ J)♯ ⋅ ϕ. (8)

Moreover, restriction of Dg to Σg± gives rise to the operatorsD±
g ∶ Γ(Σg±) → Γ(Σg∓).

A remarkable fact we shall use repeatedly is the conformal equivariance of D in the
following sense [11]. If for u ∈ C∞(M) we consider the metric g̃ = e2ug conformally
equivalent to g, we have a natural bundle isometry Σg → Σg̃ sending ϕ to ϕ̃.
Furthermore,

D̃ϕ̃ = e−3u/2D̃eu/2ϕ (9)

where we let D̃ = Dg̃. Note that for a vector field X we have X̃ ⋅ ϕ = X̃ ⋅ ϕ̃ if

X̃ = e−uX [4, (1.15)]. In particular, the dimension of the space of harmonic spinors,
kerD, as well as the spaces of (complex) positive and negative harmonic spinors,
kerD+ and kerD+, are conformal invariants. This is also manifest in terms of the
holomorphic description above. Namely, after choosing a complex structure, i.e. a
conformal class on Mγ , and a holomorphic square root λ of κγ , we have

Dϕ =
√

2(∂̄λ + ∂̄∗λ)ϕ
where ∂̄λ ∶ Γ(λ) → Γ(T ∗M0,1 ⊗ λ) is the induced Cauchy-Riemann operator on λ
whose formal adjoint is ∂̄∗λ. In particular, a positive Weyl spinor ϕ is harmonic if and
only if the corresponding section of λ is holomorphic. Note that cokerD+ ≅ kerD−

so that dim kerD+ = dim kerD− by the Atiyah-Singer index theorem. An explicit
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isomorphism is provided by the quaternionic structure from Section 2.1 which maps
positive harmonic spinors to negative ones and vice versa.

2.3. Bounding and non-bounding spin structures. The orientation-preserving
diffeomorphism group Diff+(Mγ) acts on the bundle of oriented frames and there-
fore permutes the possible spin structures on Mγ by its action on H1(PGL+(2),Z2)
resp. H1(Mγ ,Z2). There are precisely two orbits, namely the orbits of bounding and
non-bounding spin structures. They contain 2γ−1(2γ + 1) respectively 2γ−1(2γ − 1)
elements [2]. In particular, on the 2-torus where γ = 1, there is a unique non-
bounding spin structure and three bounding ones. These two orbits correspond to
the two spin cobordisms classes of Mγ [13]. Recall that in general, a spin manifold
(M,σ) is spin cobordant to zero if there exists an orientation preserving diffeomor-
phism to the boundary of some compact manifold so that the naturally induced spin
structure on the boundary (see for instance [12, Proposition II.2.15]) is identified
with σ under this diffeomorphism. Numerically, we can distinguish these two orbits
as follows. Fix a complex structure on Mγ and identify the set of spin structures
with the holomorphic square roots S(Mγ) of the resulting canonical line bundle κγ .
Let d+(g) ∶= dimC kerD+ = dimCH

0(Mγ , λ). Then

ϕ ∶ S(Mγ) → Z2, ϕ(λ) ≡ d+(g)mod 2

is a quadratic function whose associated bilinear form corresponds to the cup prod-
uct on H1(Mγ ,Z2). Moreover, ϕ(λ) = 0 if and only if λ corresponds to a bounding
spin structure [2]. For instance, it is well-known that on a torus, d+(g) is either
0 or 1 [11]. Therefore, the three bounding spin structures do not admit positive
harmonic spinors (regardless of the conformal structure), while the non-bounding
one (the generator of the spin cobordism class) admits a harmonic spinor. As a
further application, we note that d(g) = dimC kerD = 2d+(g) is divisible by 4 if and
only if Σ is a bounding spin structure.

2.4. The spinorial Weierstraß representation. More generally, one can con-
sider unit length spinors which are (generalised) eigenspinors of D in the sense
that

Dϕ =Hϕ (10)

for a smooth function H ∈ C∞(Mγ). To interpret this condition geometrically,
first recall that the Weierstraß representation of a Riemann surface yields a con-
formal minimal immersion of (Mγ , g) in terms of a holomorphic function f and a
holomorphic 1-form µ. Up to the choice of a holomorphic square root, i.e. a spin
structure, these data precisely define a spinor ϕ over Mγ . As we have seen above,
the holomorphicity of f and µ essentially translate into the condition Dϕ = 0. In
general, if a unit length spinor over a spin surface (Mγ , σ) satisfies Eq. (10), then
∇gXϕ = A(X) ⋅ϕ for some symmetric endomorphism A ∈ End(TM) with H = −TrA.

Furthermore, there exists an isometric immersion of the universal covering M̃γ into
Euclidean 3-space such that 2A is its Weingarten map [7, Theorem 13]. Up to the
SU(2) action on unit length spinors, and up to translations and rotations on R3

this is a 1–1 relation, where generalised eigenspinors associated with different spin
structures correspond to regular homotopy classes of immersions.
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3. Critical points

3.1. The Euler-Lagrange equation. First we express the negative gradient of E
in Eq. (3) in terms of A and β as defined by Eq. (6). We write ∣A∣ for the induced
g-norm of A, i.e. ∣A∣2 = TrAtA. Further, for a symmetric 2-tensor h we denote by
h0 = h − 1

2
Trh ⋅ g its traceless part.

Proposition 3.1. The negative gradient of E is given by

Q1(g,ϕ) = − 1
4
(∇J( ⋅ )β)sym + 1

2
(AtA + β ⊗ β)0

Q2(g,ϕ) = −(divA) ⋅ ϕ − (divβ)ω ⋅ ϕ.

Proof. First, with A(ei) = ∑kAkiek for a g-orthonormal basis (e1, e2),
⟨∇ϕ⊗∇ϕ⟩ = ∑

i,j

⟨∇eiϕ,∇ejϕ⟩ei ⊗ ej

= ∑
i,j

⟨A(ei) ⋅ ϕ + β(ei)ω ⋅ ϕ,A(ej) ⋅ ϕ + β(ej)ω ⋅ ϕ⟩ei ⊗ ej

= ∑
i,j

(⟨A(ei) ⋅ ϕ,A(ej) ⋅ ϕ⟩ + β(ei)β(ej))ei ⊗ ej

= ∑
i,j

(∑
k

AkiAkj + β(ei)β(ej))ei ⊗ ej

= AtA + β ⊗ β
and

∣∇ϕ∣2 = Tr⟨∇ϕ⊗∇ϕ⟩ = Tr(AtA) +Tr(β ⊗ β) = ∣A∣2 + ∣β∣2.
On the other hand, ⟨X ∧ Y ⋅ϕ,A(Z) ⋅ϕ⟩ = 0 and ⟨X ∧ Y ⋅ϕ,ω ⋅ϕ⟩ = ω(X,Y ), using
the convention e1 ∧ e2 = e1 ⊗ e2 − e2 ⊗ e1. This implies

Tg,ϕ(X,Y,Z) = 1
2
ω(X,Y )β(Z) + 1

2
ω(X,Z)β(Y )

and therefore

divTg,ϕ = − 1
2 ∑
i,k,l

(ω(ei, ek)(∇eiβ)(el) + ω(ei, el)(∇eiβ)(ek))ek ⊗ el

=(∇e2β)(e1)e1 ⊗ e1 − (∇e1β)(e2)e2 ⊗ e2 + ((∇e2β)(e2) − (∇e1β)(e1))e1 ⊙ e2

=(∇J( ⋅ )β)sym. (11)

Next we work pointwise with a synchronous frame. Since vector fields anticommute
with ω,

∇∗∇ϕ = −
2

∑
i=1

(∇ei∇eiϕ −∇∇eieiϕ)

= −
2

∑
i=1

(A(ei) ⋅A(ei) ⋅ ϕ + β(ei)(A(ei) ⋅ ω + ω ⋅A(ei)) ⋅ ϕ + β(ei)2ω ⋅ ω ⋅ ϕ

+∇ei(A(ei)) ⋅ ϕ +∇ei(β(ei))ω ⋅ ϕ)

=(∣A∣2 + ∣β∣2)ϕ + (divA) ⋅ ϕ + (divβ)ω ⋅ ϕ.
Since Q2(g,ϕ) is orthogonal to ϕ we must have

Q2(g,ϕ) = −(divA) ⋅ ϕ − (divβ)ω ⋅ ϕ,
whence the assertion. �
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In terms of the pair (A,β) we can now characterise a critical point as follows.

Corollary 3.2. A pair (g,ϕ) is a critical point of E if and only if

divβ = 0, divA = 0, (∇J( ⋅ )β)sym = 2(AtA + β ⊗ β)0. (12)

In particular, if (g,ϕ) is critical, then

(i) TrQ1(g,ϕ) = ⋆dβ/4 = 0, hence β is a harmonic 1-form.
(ii) ∇J( ⋅ )β is traceless symmetric, i.e. (∇J( ⋅ )β)0 = 0 and (∇J( ⋅ )β)sym = ∇J( ⋅ )β.

(iii) ∇J(X)β(Y ) = ∇Xβ(J(Y )).
(iv) div(β ⊗ β)0 = 0

Proof. Eq. (12) follows directly from Proposition 3.1. For (i), we note that

Tr divTg,ϕ = (∇e2β)(e1) − (∇e1β)(e2) = − ⋆ dβ, (13)

whence 4TrQ1 = ⋆dβ from Eq. (3). For (ii) and (iii) we note that in an orthonormal
frame the anti-symmetric part of ∇J( ⋅ )β is given by

(∇J(e2)β)(e1) − (∇J(e1)β)(e2) = −(∇e1β)(e1) − (∇e2β)(e2) = divβ.

Hence ∇J( ⋅ )β is symmetric if and only if divβ = 0. Since ∇β is symmetric if and
only if dβ = 0,

∇J(X)β(Y ) = ∇J(Y )β(X) = ∇Xβ(J(Y ))
if (g,ϕ) is critical. To prove (iv) we observe Trβ ⊗ β = ∣β∣2 so that (β ⊗ β)0 =
β ⊗ β − 1

2
∣β∣2g. Now in a synchronous frame

divβ ⊗ β = −(∇e1β)(e1)β − β(e1)∇e1β − (∇e2β)(e2)β − β(e2)∇e2β
= (divβ)β −∇β♯β,

whence divβ ⊗ β = −∇β♯β if divβ = 0. Moreover,

div ∣β∣2g = −d∣β∣2 = −2g(∇β,β)
= −2∑

i,j

(∇eiβ)(ej)β(ej)ei

= −2∑
i,j

((∇ejβ)(ei) + dβ(ei, ej))β(ej)ei

= −2∇β♯β + 2ιβ♯dβ.

Consequently, div ∣β∣2g = −2∇β♯β if dβ = 0, whence the assertion. �

Remark 3.3.

(i) The proof of properties (ii) to (iv) solely uses the harmonicity of β.
(ii) The identity (7) induces a circle action which preserves the functional E .

Together with the quaternionic action on ∆ we see that there is a U(2) =
S1 ×Z2 SU(2)-action which preserves the functional and therefore acts on the
critical points (cf. also [1, Section 4.1.3, Table 2]).

The condition that Q1(g,ϕ) is trace-free or equivalently, that the associated 1-form
β is closed, can be interpreted as follows. As pointed out in Section 2.1, there
is a natural bundle isometry C ∶ Σg → Σg̃ between conformally equivalent metrics
g̃ = e2ug, u ∈ C∞(M). Hence, for (g,ϕ) ∈ N we can consider the associated spinor
conformal class [g,ϕ] ∶= {(g̃, ϕ̃) ∣ g̃ = e2ug, ϕ̃ = Cϕ}.

Proposition 3.4. The following statements are equivalent:
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(i) (g,ϕ) ∈ N is an absolute minimiser in its spinor conformal class.
(ii) dβ = 0.

(iii) TrQ1(g,ϕ) = 0.

Furthermore, in any spinor conformal class there exists an absolute minimiser which
is unique up to homothety. In particular, any spinor conformal class contains a
unique absolute minimiser of total volume one.

Proof. The equivalence between (ii) and (iii) is just Proposition 3.1. For (ii) ⇒ (i)
assume that β associated with (g,ϕ) satisfies dβ = 0. For any (g̃, ϕ̃) ∈ [g,ϕ] we find

∣D̃ϕ̃∣2 = e−3u∣Deu/2ϕ∣2 = e−2u∣Dϕ + 1
2
gradu ⋅ ϕ∣2

by Eq. (9). For all u ∈ C∞(M) this and Eq. (8) gives

∫
M

∣D̃ϕ∣2dṽ = ∫
M

∣Dϕ∣2 + 1
4
∣du∣2 + ⟨Dϕ,gradu ⋅ ϕ⟩dv

= ∫
M

∣Dϕ∣2 + 1
4
∣du∣2 − ⟨(β ○ J)♯ ⋅ ϕ,gradu ⋅ ϕ⟩dv

= ∫
M

∣Dϕ∣2 + 1
4
∣du∣2 + (⋆β, du)dv

= ∫
M

∣Dϕ∣2 + 1
4
∣du∣2 + (⋆dβ, u)dv

= ∫
M

∣Dϕ∣2 + 1
4
∣du∣2dv

≥ ∫
M

∣Dϕ∣2dv. (14)

Further, this yields that ∫M ∣du∣2/4 + (⋆dβ, u)dv ≥ 0 for an absolute minimiser.
Taking u = − ⋆ dβ shows that β associated with an absolute minimiser must be
closed, hence (i) ⇒ (ii). Finally, equality holds in (14) if and only if u is constant.

To prove existence of an absolute minimiser we first note that for the 1-form β̃
associated with (g̃, ϕ̃) ∈ [g,ϕ] we have β̃(X̃) = e−uβ̃(X) = ⟨∇̃X̃ ϕ̃, ω̃ ⋅ ϕ̃⟩. On the
other hand,

⟨∇̃X̃ ϕ̃, ω̃ ⋅ ϕ̃⟩ = e
−uβ(X) + 1

2
⟨X ⋅ grad e−u ⋅ ϕ,ω ⋅ ϕ⟩

by [4, (1.15)]. The latter term equals J(X)(e−u)/2 = de−u(J(X))/2 which implies

β̃ = β − 1
2
⋆ du.

If β =H(β)⊕d[β]⊕ δ{β} is the Hodge decomposition of β for a function [β] and a

2-form {β}, then dβ̃ = d(δ{β}− 1
2
⋆du). Taking u = −2⋆{β} yields that dβ̃ = 0. �

3.2. Curvature. Next we investigate the relationship between A, β and the Gauss
curvature K of g. The basic link between curvature, spinors and 1-forms are the
formulæ of Weitzenböck type

D2ϕ = ∇∗∇ϕ + 1

2
K ⋅ ϕ and ∆β = ∇∗∇β +K ⋅ β. (15)

In particular, if (g,ϕ) is a critical and g is flat, β is necessarily parallel. We shall
need a technical lemma first.

Lemma 3.5. Let Φ = (g,ϕ) ∈ N . Then ⟨D2ϕ,ϕ⟩ = ∣Dϕ∣2 − ⋆dβ.
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Proof. A pointwise computation with a synchronous frame implies

Tr divTg,ϕ = −
n

∑
j,k=1

(∇ejTϕ)(ej , ek, ek)

= −
n

∑
k,j=1

ej⟨ej ⋅ ek ⋅ ϕ,∇ekϕ⟩ −
n

∑
k=1

ek.⟨ϕ,∇ekϕ⟩

= −
n

∑
k,j=1

⟨ej ⋅ ek ⋅ ∇ejϕ,∇ekϕ⟩ −
n

∑
k=1

⟨ej ⋅ ek ⋅ ϕ,∇ej∇ekϕ⟩

− ∣∇ϕ∣2 + ⟨ϕ,∇∗∇ϕ⟩
=⟨D2ϕ,ϕ⟩ − ∣Dϕ∣2.

On the other hand, as already observed in Eq. (13), Tr divTg,ϕ = − ⋆ dβ, whence
the result in view of Proposition 3.1. �

In terms of the associated pair (A,β), the equations in (15) read as follows.

Proposition 3.6. Let (g,ϕ) ∈ N . Then

(i) K = 4 detA − 2 ⋆ dβ
(ii) K ⋆ β = div∇J( ⋅ )β.

Proof. (i) Since we always have ⟨∇∗∇ϕ,ϕ⟩ = ∣∇ϕ∣2 for a unit spinor we get

K
2
= ∣Dϕ∣2 − ∣∇ϕ∣2 − ⋆dβ

from Lemma 3.5 and the Lichnerowicz-Weitzenböck formula. Locally,

∣Dϕ∣2 = ∣∑
i

ei ⋅ ∇eiϕ∣2 = ∑
i,j

⟨ei ⋅ ∇eiϕ, ej ⋅ ∇ejϕ⟩

= ∣∇ϕ∣2 +∑
i≠j

⟨ei ⋅ ∇eiϕ, ej ⋅ ∇ejϕ⟩

and therefore

K + 2 ⋆ dβ = 4⟨e1 ⋅ ∇e1ϕ, e2 ⋅ ∇e2ϕ⟩
= 4⟨e1 ⋅A(e1) ⋅ ϕ + e1 ⋅ β(e1)ω ⋅ ϕ, e2 ⋅A(e2) ⋅ ϕ + e2 ⋅ β(e2)ω ⋅ ϕ⟩
= 4⟨e1 ⋅A(e1) ⋅ ϕ − β(e1)e2 ⋅ ϕ, e2 ⋅A(e2) ⋅ ϕ + β(e2)e1 ⋅ ϕ⟩
= 4⟨e1 ⋅A(e1) ⋅ ϕ, e2 ⋅A(e2) ⋅ ϕ⟩
= 4⟨−A11ϕ +A21e1 ⋅ e2 ⋅ ϕ,−A12e1 ⋅ e2 ⋅ ϕ −A22ϕ⟩
= 4(A11A22 −A21A12) = 4 detA,

where (Aij) is the matrix of A with respect to the basis {e1, e2}.

(ii) Computing in a synchronous frame yields

div∇J( ⋅ )β = −∇e1∇J(e1)β −∇e2∇J(e2)β
= −∇e1∇e2β +∇e2∇e1β = −R(e1, e2)β.

Since R(e1, e2)β = −K ⋆ β, (ii) follows. �

Corollary 3.7. If (g,ϕ) ∈ N is a critical point of E, then

(i) K = 4 detA.
(ii) K ⋆ β = 2 div(AtA)0.
(iii) 2∣∇ϕ∣2 ≥ ∣K ∣.
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Proof. The first two statements are immediate consequences of Corollary 3.2. Fur-
ther,

∣Dϕ∣2 = ∣A∣2 + ∣β∣2 + K
2
≥ 0

and

∣Dϕ∣2 = ∣
2

∑
i=1

ei ⋅ ∇eiϕ∣2 ≤ (
2

∑
i=1

1 ⋅ ∣∇eiϕ∣)
2 ≤ 2∣∇ϕ∣2, (16)

whence (iii). �

3.3. Integrability of (A,β). Next we address the question for which pairs (A,β)
a solution to Eq. (6) exists. Towards that end we introduce the Clifford algebra
valued 1-form Γ(X) ∶= A(X) + β(X)ω and define the connection

∇̃Xϕ ∶= ∇Xϕ −A(X) ⋅ ϕ − β(X)ω ⋅ ϕ = ∇Xϕ − Γ(X) ⋅ ϕ.
A solution to Eq. (6) exists if and only if if we have a non-trivial ∇̃-parallel spinor
field. In fact this is equivalent to the triviality of the spinor bundle in the sense of
flat bundles for we may regard ΣM as a “quaternionic” line bundle. This in turn is

equivalent to the vanishing of the curvature R∇̃ and the triviality of the associated
holonomy map π1(M,p) → Aut(ΣpM). We have

R∇̃(X,Y )ϕ = (∇̃X∇̃Y − ∇̃Y ∇̃X − ∇̃[X,Y ])ϕ
=∇̃X(∇Y ϕ − Γ(Y ) ⋅ ϕ) − ∇̃Y (∇Xϕ − Γ(X) ⋅ ϕ) − ∇[X,Y ]ϕ + Γ([X,Y ]) ⋅ ϕ
=R∇(X,Y )ϕ −∇X(Γ(Y ) ⋅ ϕ) + ∇Y (Γ(X) ⋅ ϕ) − Γ(X)(∇Y ϕ − Γ(Y ) ⋅ ϕ)
+ Γ(Y )(∇Xϕ − Γ(X) ⋅ ϕ) + Γ(∇XY ) ⋅ ϕ − Γ(∇YX) ⋅ ϕ

=R∇(X,Y )ϕ − (∇XΓ)(Y ) ⋅ ϕ + (∇Y Γ)(X) ⋅ ϕ + Γ(X)Γ(Y ) ⋅ ϕ − Γ(Y )Γ(X) ⋅ ϕ
=R∇(X,Y )ϕ − dΓ(X,Y ) ⋅ ϕ + [Γ(X),Γ(Y )]ϕ,

where dΓ denotes the skew-symmetric part of the covariant derivative ∇Γ, i.e.

dΓ(X,Y ) ∶= (∇XΓ)(Y )− (∇Y Γ)(X) = (∇XA)(Y )− (∇YA)(X)+dβ(X,Y )ω. (17)

Similarly, we define dA(X,Y ) ∶= (∇XA)(Y ) − (∇YA)(X). Now for an oriented
orthonormal basis (e1, e2) we find

[Γ(e1),Γ(e2)] =[A(e1),A(e2)] + 2β(e2)A(e1)ω − 2β(e1)A(e2)ω
=2(detA)ω − 2β(e2)J(A(e1)) + 2β(e1)J(A(e2)).

Since 2R∇(e1, e2)ϕ =Kω ⋅ ϕ we finally get

R∇̃(e1, e2)ϕ = − 1

2
Kω ⋅ ϕ − dA(e1, e2)ϕ − dβ(e1, e2)ω ⋅ ϕ

+ 2(detA)ω ⋅ ϕ − 2β(e2)J(A(e1))ϕ + 2β(e1)J(A(e2))ϕ.
Since K = 4 detA − 2 ⋆ dβ by Proposition 3.6, this vanishes for all ϕ if and only if
dA(e1, e2) = −2β(e2)J(A(e1))+2β(e1)J(A(e2)). Since M is Kähler, ∇J = 0, hence
∇X(A ○ J)(Y ) = (∇XA)(JY ). Writing the previous expression invariantly yields
the following

Proposition 3.8. If the pair (A,β) arises from a spinor field as in (6), then

div(A ○ J) = −2(J ○A ○ J)(β♯).
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Conversely, if the integrability condition of Proposition 3.8 is satisfied, then there
exists a local solution ϕ to Eq. (6). Moreover, ϕ is uniquely determined up to
multiplication by a unit quaternion from the right.

3.4. Absolute minimisers. In dimension n ≥ 3 the only critical points of the
spinorial energy functional E are absolute minimisers with E(g,ϕ) = 0 [1]. This
stands in sharp contrast to the surface case.

Theorem 3.9. On a spin surface (Mγ , σ) we have

inf E = π∣γ − 1∣.

Proof. The lower bound inf E ≥ π∣γ − 1∣ follows directly from the Lichnerowicz-
Weitzenböck and Gauß-Bonnet formulæ, for

1
2 ∫

Mγ

∣∇ϕ∣2 ≥ − 1
4 ∫

Mγ

K = π(γ − 1) (18)

which gives the estimate for γ ≥ 1. For the sphere, we use (iii) of Corollary 3.7 to
obtain

2π = 1

2
∫
S2
K ≤ ∫

S2
∣∇ϕ∣2. (19)

Further, the results of Section 4 show that this lower bound is actually attained
on the sphere. For genus γ ≥ 1 we show the existence of “almost-minimisers”,
i.e. for every ε > 0 there is a unit spinor (g,ϕ) such that E(g,ϕ) ≤ π∣γ − 1∣ + ε.
There is a standard strategy for their construction by gluing together 2-tori with
small Willmore energy in a flat 3-torus (T 3, g0) and restricting the parallel spinors
of T 3 to the resulting surface, see also [9] and [14] (which we discuss further in
Example 3.15) for related constructions.
To start with we define the Willmore energy of a piecewise smoothly embedded
surface F ∶M → T 3 by

W(F ) ∶= 1

2
∫
F (M)

H2dvg.

Here, H is the mean curvature of F (M) in (T 3, g0) and integration is performed
with respect to the volume element dvg associated to the restriction of the Euclidean
metric to F (M). For sake of concreteness, consider a square fundamental domain
of the torus in R3, fix ρ > 0 and consider two flat disks of radius ρ inside that domain
which are parallel to the (x1, x3)-plane and are at small distance from each other.
We want two replace the disjoint union of the disks of radius ρ/2 by a catenoidal
neck and retain the vertical annular pieces. The result of this process will be called
a handle of radius ρ.

Lemma 3.10. For all ε > 0 there exists a handle of radius ρ which has Willmore
energy less than ε.

Proof. Since the Willmore energy is scaling invariant it suffices to construct a
model handle with Willmore energy less than ε for some radius ρ(ε) > 0. The
solution for the given radius ρ is then simply obtained by rescaling. We construct
a model handle as a surface of revolution. It will be composed of a catenoidal part,
a spherical part and a flat annular part. More precisely, let L > 0 and consider the
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curve γ = (γ1, γ2) ∶ [0,∞) → R × (0,∞) defined by

γ(u) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(arsinh(u),
√

1 + u2) , 0 ≤ u ≤ L
(a, b) +R( cos(u−L

R
− α), sin(u−L

R
− α)) , L ≤ u ≤ L + αR

(a +R, b + u − (L + αR)) , L + αR ≤ u < ∞

where we have set (a, b) = (arsinh(L) − L
√

1 +L2,2
√

1 +L2), R = 1 + L2 and α =
arcsin(1/

√
1 +L2). Consider the surface of revolution around the x1-axis defined

by
F (u, v) = (γ1(u), cos(v)γ2(u), sin(v)γ2(u))

where u ∈ [0,∞), v ∈ [0,2π). This surface is a piecewise smooth C1-surface with
Willmore energy

W(F ) = π√
1 +L2

which is precisely the Willmore energy of the spherical piece, the catenoid and the
flat piece being minimal. We double this surface along the boundary {x1 = 0} and
intersect with the region {x2

2 + x2
3 ≤ 4b2} to get a handle of radius ρ(L) = 2b with

Willmore energy 2π/
√

1 +L2 < ε for L big enough. This piecewise smooth handle
may be approximated by smooth handles with respect to the W 2,2-topology to yield
the desired smooth handle.

Remark 3.11. Fix ρ > 0 and consider the handle of radius ρ with Willmore energy

ε = 4π/
√

1 +L2 which we obtain by rescaling the handle constructed above by 2b.
Then the distance between the flat annular pieces is given by

2
a +R

2b
= 1

2
(arsinh(L)√

1 +L2
+
√

1 +L2 −L)

which goes to zero as ε→ 0 (i.e. L→∞).

Lemma 3.12. For a compact connected surface Mγ of genus γ ≥ 1 with a fixed
spin structure σ, there is a flat torus (T 3, g0) and an embedding F ∶Mγ → T 3 such
that W(F ) ≤ ε and such that the spin structure on Mγ induced by this embedding
is the given spin structure σ.

Proof. Since orientation preserving diffeomorphisms act transitively on both bound-
ing and non-bounding spin structures, it is enough to show the lemma for only one
bounding or non-bounding spin structure.
We deal with the case γ = 1 first. For the non-bounding spin structure we may
simply take Tn to be any totally geodesic 2-torus in a flat torus (T 3, g0). This
embedding has zero Willmore energy and the induced spin structure on Tn is the
non-bounding one. For a bounding spin structure we choose an embedding D2 ⊂ T 2

and let S1 = ∂D2. Let S1
δ denote the circle of length δ > 0 and set Tb ∶= S1 × S1

δ ⊂
T 2 × S1

δ . Then Tb has arbitrarily small Willmore energy for δ small enough, and
the induced spin structure on Tb is bounding. Note that we may slightly flatten the
circle S1 ⊂ T 2 in order to make it contain a line segment. Then Tb contains a flat
disk which will be useful later for gluing in a handle.
In the higher genus case we use the tori Tb and Tn constructed above as building
blocks which we connect by handles with small Willmore energy. The construction
is illustrated in Fig. 1. If σ is a non-bounding spin structure, we align a copy of Tn
and a copy of Tb in such a way that Tn is parallel and at small distance to a flat
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Figure 1. Surfaces with almost minimisers. The left-hand picture
shows a torus with a non-bounding spin structure, drawn in green,
and a torus with a bounding spin structure, drawn in blue. These
surfaces are connected by necks drawn in red. The right-hand
picture shows two tori with a non-bounding spin structure, drawn
in green, connected by necks drawn in red.

disk inside Tb. Then we connect Tn and Tb by γ − 1 handles. If σ is a bounding
spin structure, we take two parallel copies of Tn at small distance, and call them T ′n
and T ′′n . Then we connect T ′n and T ′′n by γ − 1 handles. According to Lemma 3.10
this can be done without introducing more than an arbitrarily small amount of
Willmore energy. The resulting surface has genus γ and carries a non-bounding
spin-structure in the first, and a bounding spin structure in the second case.

We return to the proof of Theorem 3.9. With the notations of the lemma and the
proposition we set g ∶= F ∗(g0). Further, we restrict a parallel spinor of unit length
on T 3 to F (Mγ) and pull it back to a spinor ϕ on (Mγ , σ, g). As in [7] it follows
that Dϕ =Hϕ, whence

1

2
∫
Mγ

∣Dϕ∣2dvg = 1

2
∫
Mγ

H2dvg = W(F ) ≤ ε

and thus

E(g,ϕ) = 1

2
∫
Mγ

∣Dϕ∣2 − 1

4
∫
Mγ

K ≤ ε − π
2
χ(M) = ε + π∣γ − 1∣

as claimed. �

From (18), the Lichnerowicz-Weitzenböck formula and the results from Section 2.4
we immediately deduce the

Corollary 3.13. If γ ≥ 1, then E(g,ϕ) = π∣γ − 1∣ if and only if Dgϕ = 0, that is, ϕ
is a harmonic spinor of unit length. In particular, absolute minimisers of E over
Mγ correspond to minimal isometric immersions of the universal covering of Mγ .

Remark 3.14. In the case of the sphere (γ = 0) equality holds if and only if ϕ
is a so-called twistor spinor, see Section 4. Furthermore, as a consequence of the
Lichnerowicz-Weitzenböck and Gauss-Bonnet formula, a unit spinor on the torus
(γ = 1) is harmonic if and only if it is parallel.
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Example 3.15. For any γ ≥ 3 there exists a triply periodic orientable minimal
surface M in R3 such that if Γ denotes the lattice generated by its three periods, the
projection of M to the flat torus T 3 = R3/Γ is Mγ [14, Theorem 1]. Since the normal
bundle of Mγ in T 3 is trivial there exists a natural induced spin structure which
we claim to be a bounding one. To see this we need to analyse the construction
in [14] which is a refinement of the construction used in Lemma 3.12. In a first
step one starts with two flat minimal 2-dimensional tori T1 and T2 inside the flat
3-dimensional torus T 3. One can assume that T1 and T2 are parallel. The trivial
spin structure on T 3 admits parallel spinors which we can restrict to parallel spinors
on T1 and T2. In particular, both T1 and T2 carry the non-bounding spin structure
so that the disjoint union T1∐T2 carries a bounding spin structure. Namely, T1∐T2

is the boundary of any connected component of T 3 ∖ (T1 ∐T2), and this even holds
in the sense of spin manifolds, cf. also the discussion in [12, Remark II.2.17]. In a
second step, small catenoidal necks are glued in between T1 and T2 but this does
not affect the nature of the spin structure which thus remains a bounding one.

Using the conformal equivariance (9) of the Dirac operator gives a further corollary.
Namely, E(g,ϕ) = π(γ−1) for (g,ϕ) ∈ N if and only if there is metric g̃ with nowhere
vanishing spinor ϕ̃ with Dg̃ϕ̃ = 0. Indeed, for g = ∣ϕ̃∣4g̃ g̃ the rescaled spinor ϕ = ϕ̃/∣ϕ̃∣g
is in the kernel of Dg and of unit norm.

Corollary 3.16. For γ ≥ 1 absolute minimisers on a spin surface correspond to
nowhere vanishing harmonic spinors on Riemann surfaces.

Example 3.17. Concrete examples can be constructed from the holomorphic de-
scription of harmonic spinors in Section 2.1. Consider a surface of genus γ ≥ 2
with a hyperelliptic complex structure. These are precisely the complex structures
for which the Riemann surface arises as a two-sheeted branched coverings of the
complex projective line (see for instance [10, Paragraph §7 and §10]). There are
exactly 2(γ −1) branch points w1, . . . ,w2(γ+1), the so-called Weierstraß points. For
any Weierstraß point w, the divisor 2(γ − 1)w defines the canonical line bundle
κ of Mγ , and λ defined by (γ − 1)w is a holomorphic square root. In particu-
lar, there exists a holomorphic section ϕ0 ∈ H0(Mγ ,O(λ)) – a positive harmonic
spinor – whose divisor of zeroes is precisely (γ − 1)w, that is, ϕ0 has a unique zero
of order γ − 1 at w. Furthermore, on hyperelliptic Riemann surfaces there exists
a meromorphic function f on M with a pole of order 2 at w and a double zero
elsewhere, say at p ∈ M . Hence, if the genus of M is odd, then ϕ1 = f (γ−1)/2ϕ0

is a holomorphic section which has a unique zero at p. Regarding ϕ1 as a nega-
tive harmonic spinor via the quaternionic structure therefore gives a non-vanishing
harmonic spinor ϕ0 ⊕ ϕ1 ∈ Γ(Σg). Rescaling by its norm gives finally the desired
absolute minimiser. Note that dimCH

0(Mγ ,O(λ)) = (γ + 1)/2 (see for instance
[10, Theorem 14]) so that λ corresponds to a non-bounding spin structure if γ ≡ 1
mod 4, and to a bounding spin structure if γ ≡ 3 mod 4.

On the other hand, there are also obstructions against attaining the infimum.

Lemma 3.18. If (g,ϕ) is an absolute minimiser over Mγ with γ ≥ 2, then d(g) =
dimC kerDg ≥ 4.

Proof. As noted in Section 2.3, d(g) is even, so it remains to rule out the case
d(g) = 2. Viewing ΣM →M as a quaternionic line bundle with scalar multiplication
from the right, kerDg inherits a natural quaternionic vector space structure. In
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particular, it is a 1-dimensional quaternionic subspace if d(g) = 2. SinceD(1+iω)ϕ =
Dϕ− iωDϕ = 0 there is a quaternion q with (1+ iω)ϕ = ϕq. If q ≠ 0, then (1+ iω)ϕ
is a nowhere vanishing section of the complex line bundle Σ+ and thus yields a
holomorphic trivialisation of the holomorphic tangent bundle via the holomorphic
description of harmonic spinors in Section 2.1. In particular, γ = 1. If q = 0, then ϕ
is a nowhere vanishing section of Σ− ≅ Σ+ and a similar argument applies. �

Summarising, we obtain the following theorem concerning existence respectively
non-existence of absolute minimisers.

Theorem 3.19. On (Mγ , σ) the infimum of E
(i) is attained in the cases

(a) γ = 1 and σ is the non-bounding spin structure.
(b) γ ≥ 3 and σ is a bounding spin structure.
(c) γ ≥ 5 with γ ≡ 1 mod 4 and σ is a non-bounding spin structure.

(ii) is not attained in the cases
(a) γ = 1 and σ is a bounding spin structure.
(b) γ = 2
(c) γ = 3, 4 and σ is a non-bounding spin structure.

Remark 3.20.

(i) It remains unclear whether the infimum is attained for a non-bounding spin
structure on surfaces of genus γ ≥ 6 and γ /≡ 1 mod 4.

(ii) In the case of the sphere (γ = 0) the infimum of E is always attained. This
will be discussed in Section 4.

Proof of Theorem 3.19. (i) The non-bounding spin structure on T 2 is the one which
admits parallel spinors, while (b) and (c) follow from Example 3.15 and Exam-
ple 3.17 respectively.

(ii) From Section 2.3 we know that d(g) must be divisible by 4 if σ is bounding while
from Hitchin’s bound d(g) ≤ γ + 1 [11]. Therefore, under the conditions stated in
(a) or (b), d(g) ≤ 3 for any metric g on Mγ so that for a bounding σ we necessarily
have d(g) = 0. If γ ≥ 2 we have d(g) ≥ 4 by Section 2.3 and moreover, d(g) ≡ 2
mod 4 if σ is non-bounding. Hence d(g) ≥ 6 which is impossible if γ ≤ 4. �

Finally, we characterise the absolute minimisers in terms of A and β. First we note
that J induces a natural complex structure on T ∗M ⊗ TM defined by

i(α⊗ v) = iα⊗ v = α⊗ iv ∶= α⊗ Jv.
Equipped with this complex structure, T ∗M ⊗ TM becomes a complex rank 2
bundle, and we have the complex linear bundle isomorphism

T ∗M ⊗ TM ≅ TM1,0 ⊗C (T ∗M ⊗C), α⊗ v ↦ α⊗ 1
2
(v − iJv). (20)

In this way, considering A as a TM -valued 1-form, the decomposition Ω1(TM) ≅
Ω1,0(TM1,0) ⊕Ω0,1(TM1,0) gives a decomposition

A = A1,0 +A0,1.

Since T ∗M1,0 ⊗C TM
1,0 is trivial we may identify A1,0 with a smooth function

f ∶M → C. Further, on any Kähler manifold TM0,1 ≅ T ∗M1,0 so we may identify
A0,1 with a quadratic differential q ∈ Γ(κ2

γ). Finally, ∂̄f ∈ Ω0,1(Mγ) ≅ Γ(TM1,0
γ )

and ∂̄q ∈ Ω0,1(κ2
γ) ≅ Γ(TM0,1

γ ).
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Lemma 3.21. Modulo these isomorphisms we have

− 1

2
divA1,0 = ∂̄f and − 1

2
divA0,1 = ∂̄q.

In particular, divA1,0 = 0 if and only if ∂̄f = 0 and divA0,1 = 0 if and only if ∂̄q = 0.

Proof. If we write

A = (a c
b d

)

in terms of a positively oriented local orthonormal frame {ei}, then

A1,0 = (α −β
β α

) = 1
2
(a + d −b + c
b − c a + d ) , A0,1 = (γ δ

δ −γ) = 1
2
(a − d b + c
b + c −a + d) . (21)

Hence A1,0 is the sum of the trace and skew-symmetric part of A, while A0,1 is the
traceless symmetric part of A. Now fix a local holomorphic coordinate z = x + iy
and assume that {ei} is synchronous at z = 0, i.e. e1(0) = ∂x(0) and e2(0) = ∂y(0).
In particular, ∂z = (∂x − i∂y)/2 corresponds to e1 under the identification (20).
From (21)

A1,0 = (α + iβ)dz ⊗ ∂z and A0,1 = (γ − iδ)dz ⊗ ∂z̄,
whence f = α + iβ and q = (γ − iδ)dz2. Then at z = 0,

divA1,0 = (−e1(α) + e2(β))e1 − (e2(α) + e1(β))e2

and
divA0,1 = −(e1(γ) + e2(δ))e1 + (e2(γ) − e1(δ))e2.

Computing ∂̄f = ∂z̄(α + iβ)dz̄ and ∂̄q = ∂z̄(γ − iδ)dz̄ ⊗ dz2 gives immediately the
desired result. �

Remark 3.22. In particular, for a critical point (g,ϕ) the symmetric (2,0)-tensor
associated with A0,1 is a tt-tensor, that is, traceless and transverse (divergence-
free). For γ ≥ 2, the previous lemma therefore recovers the standard identification
of the space of tt-tensors with the tangent space of Teichmüller space given by
holomorphic quadratic differentials.

We are now in a position to give an alternative characterisation of absolute min-
imisers if γ ≥ 1. The case of the sphere will be handled in Theorem 4.6.

Proposition 3.23. Let γ ≥ 1. The following statements are equivalent:

(i) (g,ϕ) is an absolute minimiser.
(ii) ∇Xϕ = A(X) ⋅ ϕ for a traceless symmetric endomorphism A.

(iii) (g,ϕ) is critical and β = 0.

Remark 3.24. In particular, we recover the equivalence (ii)⇔(iii) of [7, Theorem
13] for the case H = 0.

Proof. By Theorem 3.9, (g,ϕ) is an absolute minimiser if and only if Dϕ = 0.
From (8) this is tantamount to TrA = 0, Tr(A ○ J) = 0 and β = 0. The trace
conditions are equivalent toA being symmetric and traceless whence the equivalence
between (i) and (ii). Furthermore, (ii) immediately forces β = 0. Conversely, (iii)
together with the critical point equation in Proposition 3.1 implies 2AtA = ∣A∣2Id,
whence 2∣A∣2 = ∣K ∣ by Corollary 3.7 (i). In particular, 2∣A∣2 = −K on the open set
U = {x ∈ Mγ ∶ K(x) < 0}. Assume that U is non-empty and not dense in Mγ , i.e.
Ū ⊂ Mγ ∖ {p} for some p ∈ Mγ . Without loss of generality we may also assume
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U to be connected. On its boundary the curvature vanishes so that in particular,
∣A∣ = 0 on ∂U . Further, ∣Dϕ∣2 = ∣A∣2 +K/2 = 0 on U as a simple computation in
an orthonormal frame using Eq. (8) reveals. As before, Dϕ = 0 implies that A is
traceless symmetric and divergence-free over U . In particular, A corresponds to a
holomorphic quadratic differential by Lemma 3.21. Since every holomorphic line
bundle on the non-compact Riemann surface Mγ ∖ {p} is holomorphically trivial
(see for instance [5, Theorem 30.3]), over U the coefficients of A arise as the real and
imaginary part of a holomorphic function and are therefore harmonic. However,
they are continuous on Ū and vanish on the boundary, hence A = 0 by the maximum
principle. In particular, K = 0 on U , a contradiction. This leaves us with two
possibilities. Either U is dense in Mγ or U is empty. By Gauss-Bonnet the second
case can only happen for genus 1 and g must be necessarily flat. In any case, ϕ is
harmonic and therefore defines an absolute minimiser. �

Corollary 3.25. Let γ ≥ 1. If (g,ϕ) is an absolute minimiser, then A is a tt-
tensor. Furthermore, K ≡ 0 if γ = 1 and K ≤ 0 with only finitely many zeroes if
γ ≥ 2.

Remark 3.26.

(i) As we will see in Section 5 there exist flat critical points which are not absolute
minimisers.

(ii) If γ ≥ 2 in Proposition 3.23 (iii), it suffices to assume that ∣β∣ = const. Indeed,
(β⊗β)0 induces a holomorphic section of κ2

γ and has therefore at least one zero.
At such a zero, (β ⊗ β)0 = 0, hence β = 0 in this point and thus everywhere.

(iii) If β = 0, then Proposition 3.8 implies div(A ○ J) = 0. However, this does not
yield an extra constraint as div(A ○ J) = divA for A symmetric.

4. Critical points on the sphere

In this section we completely classify the critical points in the genus 0 case where
Mγ is diffeomorphic to the sphere. In particular, up to isomorphism there is only
one spin structure for S2 is simply-connected.

4.1. Twistor spinors. For a general Riemannian spin manifold (Mn, σ, g) with
spinor bundle ΣgM

n →Mn, a Killing spinor ϕ ∈ Γ(ΣgMn) satisfies

∇Xψ = λX ⋅ ψ
for any vector field X ∈ Γ(TM) and some fixed λ ∈ C, the so-called Killing constant.
In particular, the underlying Riemannian manifold is Einstein with Ric = 4λ2g so
that λ is either real or purely imaginary. If M is compact and connected, only
Killing spinors of real type, where λ ∈ R, can occur [4, Theorem 9 in Section 1.5].
More generally we can consider twistor spinors. By definition, these are elements
of the kernel of the twistor operator Tg = prkerµ ○ ∇, where prkerµ ∶ Γ(T ∗M ⊗Σ) →
Γ(kerµ) is projection on the kernel of the Clifford multiplication µ ∶ T ∗M ⊗ΣM →
ΣM . Equivalently, a twistor spinor satisfies

∇Xϕ = − 1
n
X ⋅Dϕ

for all X ∈ Γ(TM). The subsequent alternative characterisation will be useful for
our purposes.
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Proposition 4.1. [4, Theorem 2 in Section 1.4] On a Riemannian spin manifold
Mn the following conditions are equivalent:

(i) ϕ is a twistor spinor.
(ii) X ⋅ ∇Xϕ does not depend on the unit vector field X.

Example 4.2. (cf. [4, Example 2 in Section 1.5]) On the round sphere Sn there
are Killing spinors ψ± ≠ 0 with λ± = ± 1

2
. Furthermore, ϕab = aψ++bψ− for constants

a, b ∈ R are twistor spinors which are not Killing for ab ≠ 0. Indeed, Killing spinors
must have constant length, while ϕab will have zeroes in general. If n is even, then
a spinor ψ+ is a Killing spinor for the Killing constant 1

2
if and only if ψ− ∶= ω ⋅ ψ+

is a Killing spinor for − 1
2
. Moreover, if n ≡ 2 mod 4, then these ψ± are pointwise

orthogonal. In this particular case ϕab = aψ+ + bψ− is a twistor spinor of constant
length.

Going back to two dimensions we obtain:

Lemma 4.3. Let (Mγ , σ) be a spin surface and (g,ϕ) ∈ N . Then the following
conditions are equivalent.

(i) ϕ is a twistor spinor.
(ii) There exist a, b ∈ R such that ∇Xϕ = aX ⋅ ϕ + bJ(X) ⋅ ϕ for all X ∈ Γ(TM).

(iii) There exist α ∈ R and a unit Killing spinor ψ such that

ϕ = cosα ψ + sinα ω ⋅ ψ.

Furthermore, the Killing constant λ of ψ is given by λ =
√
a2 + b2.

Remark 4.4. Note that for (iii), ω ⋅ψ is a Killing spinor with Killing constant −λ.

Proof. Let ϕ be a twistor spinor of unit length. According to Proposition 4.1 we
have e1 ⋅ ∇e1ϕ = e2 ⋅ ∇e2ϕ for a local orthonormal frame {e1, e2}. Hence

0 = ⟨∇e1ϕ,ϕ⟩ = ⟨e1 ⋅ ∇e1ϕ, e1 ⋅ ϕ⟩ = ⟨e2 ⋅ ∇e2ϕ, e1 ⋅ ϕ⟩ = ⟨∇e2ϕ,ω ⋅ ϕ⟩
and

0 = ⟨∇e2ϕ,ϕ⟩ = ⟨e2 ⋅ ∇e2ϕ, e2 ⋅ ϕ⟩ = ⟨e1 ⋅ ∇e1ϕ, e2 ⋅ ϕ⟩ = −⟨∇e1ϕ,ω ⋅ ϕ⟩.
It follows that ∇e1ϕ and ∇e2ϕ are both orthogonal to ϕ and ω ⋅ ϕ. Further,

⟨∇e1ϕ, e1 ⋅ ϕ⟩ = −⟨e1 ⋅ ∇e1ϕ,ϕ⟩ = −⟨e2 ⋅ ∇e2ϕ,ϕ⟩ = ⟨∇e2ϕ, e2 ⋅ ϕ⟩
and

⟨∇e1ϕ, e2 ⋅ ϕ⟩ = ⟨e1 ⋅ ∇e1ϕ, e1 ⋅ e2 ⋅ ϕ⟩ = ⟨e2 ⋅ ∇e2ϕ, e1 ⋅ e2 ⋅ ϕ⟩ = −⟨∇e2ϕ, e1 ⋅ ϕ⟩.
Therefore, if we put a = ⟨∇e1ϕ, e1 ⋅ ϕ⟩ and b = ⟨∇e1ϕ, e2 ⋅ ϕ⟩, we get

∇Xϕ = aX ⋅ ϕ + bJ(X) ⋅ ϕ (22)

for all X ∈ Γ(TM). It remains to prove that a and b are constant. According to [4,
Theorem 4 in Section 2.3] for a twistor spinor ϕ the quantities

Cϕ ∶= ⟨Dϕ,ϕ⟩ and Qϕ ∶= ∣Dϕ∣2 − ⟨Dϕ,ϕ)2 −
2

∑
i=1

⟨Dϕ, ei ⋅ ϕ⟩2

are constant if the underlying manifold is connected. Since for a twistor spinor
Dϕ = 2e1 ⋅ ∇e1ϕ = 2e2 ⋅ ∇e2ϕ, Eq. (22) gives Cϕ = −2a and Qϕ = 4b2.
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Next assume that (ii) holds. We set λ ∶=
√
a2 + b2 and choose α ∈ R such that

a = λ cos(2α), b = λ sin(2α). For

ψ ∶= cosα ϕ − sinα ω ⋅ ϕ (23)

an elementary calculation using ω ⋅X = J(X)⋅ϕ yields ∇Xψ = λX ⋅ϕ. From Eq. (23)
we deduce ϕ = cosα ψ + sinα ω ⋅ ψ.
Finally, (iii) implies (i). We compute directly that X ⋅ ∇Xϕ = λ(− cosα + sinα ω)ψ
does not depend on the unit spinor X, hence (i) by virtue of Proposition 4.1 �

In terms of the associated pair (A,β) we have A = aId + bJ and β = 0 for a twistor
spinor. Hence Lemma 4.3 together with Proposition 3.6 immediately implies:

Corollary 4.5. Let ϕ be a g-twistor spinor of unit length. Then g has non-negative
constant Gauß curvature K = 4(a2 + b2). In particular, K = 0 if and only if ϕ is a
parallel spinor.

4.2. Critical points on the sphere. Next we completely describe the set of
critical points on the sphere.

Theorem 4.6. On M0 = S2, the following statements are equivalent:

(i) (g,ϕ) is a critical point of E.
(ii) E(g,ϕ) = π, i.e. (g,ϕ) is an absolute minimiser.

(iii) ϕ is a twistor spinor, i.e.

∇Xϕ = aX ⋅ ϕ + bJ(X) ⋅ ϕ (24)

for constants a, b ∈ R.
(iv) There is a unit-length Killing spinor ψ on (S2, g) and α ∈ R such that

ϕ = cosα ψ + sinα ω ⋅ ψ (25)

Moreover, any of these conditions implies that the Gauß curvature of g is a positive
constant.

Proof. Assume (g,ϕ) is a critical point. Since H1(S2,R) = 0, Proposition 3.1 and
Corollary 3.2 imply

β = 0, AtA = 1
2
∣A∣2Id, divA = 0,

whence 2∣A∣2 = ∣K ∣. Since the set of points where K < 0 cannot be dense on S2 by
Gauss-Bonnet, it must be empty (cf. the proof of Proposition 3.23). In particular,
2∣A∣2 =K. Since ∣∇ϕ∣2 = ∣A∣2, Gauss-Bonnet again implies

E(g,ϕ) = 1
2 ∫

M
∣∇ϕ∣2 = 1

2 ∫
M

∣A∣2 = 1
4 ∫

M
K = 1

4
⋅ 4π = π

Conversely, this implies that (g,ϕ) is critical by Theorem 3.9.
Next assume that (ii) holds. The equality 2π = ∫M ∣∇ϕ∣2 gives the pointwise equality

∣Dϕ∣2 = 2∣∇ϕ∣2, cf. (16) and (19). On the other hand, equality in (16) arises if and
only if e1 ⋅ ∇e1ϕ = e2 ⋅ ∇e2ϕ. Multiplying with ω = e1 ⋅ e2 from the left yields the
equation e1 ⋅ ∇e2ϕ = −e2 ⋅ ∇e1ϕ. Hence for X = ae1 + be2 with a2 + b2 = 1 we obtain

X ⋅ ∇Xϕ = a2e1 ⋅ ∇e1ϕ + b2e2 ⋅ ∇e2ϕ + ab(e1 ⋅ ∇e2ϕ + e2 ⋅ ∇e2e1)
= e1 ⋅ ∇e1ϕ = e2 ⋅ ∇e2ϕ.

According to Proposition 4.1, ϕ is a twistor spinor .
The equivalence between (iii) and (iv) follows directly from Lemma 4.3.
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Finally, Eq. (25) states that ϕ is in the S1-orbit of a Killing spinor which is clearly
a critical point - its associated pair is A = λId and β = 0. Hence (ii) follows. �

Corollary 4.7. Up to rescaling there is exactly one U(2) = S1 ×Z2 SU(2) orbit of
critical points on S2.

5. Critical points on the torus

5.1. Spin structures on tori. Finally we investigate the genus 1 case, that is
we consider a torus T 2

Γ = R2/Γ for a given lattice Γ ⊂ R2. Here, we have four
inequivalent spin structures, three of which are bounding. In the case of a flat
metric these can be described uniformly through homomorphisms χ ∶ Γ → Z2 =
{−1,1} = ker θ ⊂ Spin(2) giving rise to an associated bundle Pχ ∶= R2 ×ζ Spin(2).
Here, θ is the connected double covering Spin(2) ≅ S1 → SO(2) ≅ S1. The quotient
map R2 → T 2

Γ and the covering θ induce a map ηχ ∶ Pχ → PSO(2)(T 2
Γ) which defines

a spin structure. In fact, there is a bijection between Hom(Γ,Z2) ≅ H1(T 2
Γ ;Z2)

and isomorphism classes of spin structures on T 2
Γ such that the non-bounding spin

structure corresponds to the trivial homomorphism χ ≡ 1 (see [6] or [3, Section 2.5.1]
for further details). For example, the non-bounding spin structure is the trivial spin
structure given by Id×θ ∶ T 2×Spin(2) → T 2×SO(2). Its associated spinor bundle is
trivialised by parallel sections in contrast to the spinor bundles associated with the
three bounding spin structures which do not admit non-trivial parallel spinors [11].
(Note that for flat metrics a parallel spinor is the same as a harmonic spinor in
virtue of the Lichnerowicz-Weitzenböck formula.) For an example of a bounding
spin structure, consider the Clifford torus inside S3. If we equip the resulting solid
torus with the spin structure induced from its ambient S3, then the induced spin
structure on its boundary, i.e. the Clifford torus, is a bounding spin structure.

5.2. Non-minimising critical points on tori. We are going to show that on cer-
tain flat tori, critical points which are not absolute minimisers do exist. Examples,
which are in fact saddle points, are provided by the following construction.

We begin with two parallel unit spinors ψ1 and ψ2 on the Euclidean space (R2, g0)
satisfying ψ1 ⊥ ψ2 and ψ1 ⊥ ω ⋅ψ2. Then an orthonormal basis of the spinor module
∆ is given by {ψ1, ω ⋅ ψ1, ψ2, ω ⋅ ψ2}. Thinking of ω as an imaginary unit, we set

etω ∶= cos(t) + sin(t)ω
for t ∈ R. In particular, the usual formulæ such as e(s+t)ω = esωetω or ∇etω = ωetω
hold. Furthermore, let α1, α2 ∈ R2∗. For θ ∈ R consider the unit spinor

ϕ(x) = cos(θ)eα1(x)ωψ1 + sin(θ)eα2(x)ωψ2 (26)

for which

∇(⋅)ϕ(x) = cos(θ)α1(⋅)(x) ⊗ eα1(x)ωω ⋅ ψ1 + sin(θ)α2(⋅)(x) ⊗ eα2(x)ωω ⋅ ψ2. (27)

As both {e1 ⋅ψ1, e2 ⋅ψ1} and {ψ2, ω ⋅ψ2} span the space orthogonal to ψ1 and ω ⋅ψ1,
there is a unit vector field V such that ψ2 = V ⋅ ψ1. Parallelity of ψ1 and ψ2 imply
parallelity of V . The pair (A,β) corresponding to ϕ in the decomposition (6) is
given by the (1,1)-tensor

Ax = cos(θ) sin(θ)(α2 − α1) ⊗ e(α1(x)+α2(x)+π/2)ωV (28)

and the parallel 1-form
β = cos2(θ)α1 + sin2(θ)α2. (29)
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In particular, we find detA = 0 in accordance with Proposition 3.6 (i). Indeed,
ω ⋅ V = −V ⋅ ω and V etω = e−tωV for t ∈ R so that

ϕ(x) = (cos(θ)eα1(x)ω + sin(θ)eα2(x)ωV )ψ1

and
∇Xϕ(x) = (cos(θ)α1(X)eα1(x)ω − sin(θ)α2(X)eα2(x)ωV )ω ⋅ ψ1. (30)

On the other hand,

(cos(θ)e−α1(x)ω − sin(θ)eα2(x)ωV )(cos(θ)eα1(x)ω + sin(θ)eα2(x)ωV ) = 1,

and therefore
ψ1 = (cos(θ)e−α1(x)ω − sin(θ)eα2(x)ωV )ϕ.

After substitution into (30) this gives

∇Xϕ =(cos2(θ)α1(X) + sin2(θ)α2(X)
+ cos(θ) sin(θ)(α1(X) − α2(X))e(α1(x)+α2(x))ωV )ω ⋅ ϕ

= cos(θ) sin(θ)(α2(X) − α1(X))e(α1(x)+α2(x)+π/2)ωV ⋅ ϕ
+ ( cos2(θ)α1(X) + sin2(θ)α2(X))ω ⋅ ϕ.

Next we compute the negative gradient of E in (g,ϕ). This is most easily done by
considering the identities in (3) from which 4Q1(g,ϕ) = −∣∇ϕ∣2g −divTg,ϕ +2⟨∇ϕ⊗
∇ϕ⟩. Using (27) we compute

⟨∇ϕ⊗∇ϕ⟩ = cos2(θ)α1 ⊗ α1 + sin2(θ)α2 ⊗ α2.

Since
∣∇ϕ∣2 = Tr⟨∇ϕ⊗∇ϕ⟩ = cos2(θ)∣α1∣2 + sin2(θ)∣α2∣2

we obtain
1
2
⟨∇ϕ⊗∇ϕ⟩ − 1

4
∣∇ϕ∣2g = 1

2
⟨∇ϕ,∇ϕ⟩0 = 1

2
cos2(θ)(α1 ⊗ α1)0 + 1

2
sin2(θ)(α2 ⊗ α2)0.

Finally, if {e1, e2} is the standard basis of R2, then as in (11)

divTg,ϕ(e1, e1) = e2(ωϕ,∇e1ϕ⟩ = e2(β(e1)) = 0

since β is parallel. Next Q2(g,ϕ) = −∇∗∇ϕ + ∣∇ϕ∣2ϕ by (3). Again using Eq. (27)
we compute

∇∗∇ϕ = ∣α1∣2 cos(θ)eα1(x)ωψ1 + ∣α2∣2 sin(θ)eα2(x)ωψ2.

Altogether we get for the spinor ϕ defined by (26) that

Q1(g,ϕ) = 1
2

cos2(θ)(α1 ⊗ α1)0 + 1
2

sin2(θ)(α2 ⊗ α2)0,

Q2(g,ϕ) = − ∣α1∣2 cos(θ)eα1(x)ωψ1 − ∣α2∣2 sin(θ)eα2(x)ωψ2

+ ( cos2(θ)∣α1∣2 + sin2(θ)∣α2∣2)ϕ.
For a critical point we need Q1 and Q2 to vanish. Now Q1(g,ϕ) vanishes if and
only if cos2(θ)α1⊗α1+sin2(θ)α2⊗α2 is a constant multiple of the Euclidean metric
g. This in turn is the case if and only if α1 ⊥ α2 and ∣ cos(θ)∣ ∣α1∣ = ∣ sin(θ)∣ ∣α2∣.
Furthermore, Q2(g,ϕ) = 0 if and only if ∇∗∇ϕ = fϕ for some function f ∶ R2 → R,
i.e. if

∣α1∣2 cos(θ)eα1(x)ωψ1 + ∣α2∣2 sin(θ)eα2(x)ωψ2

=f(x)( cos(θ)eα1(x)ωψ1 + sin(θ)eα2(x)ωψ2).
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Again this holds if and only if ∣α1∣2 = f(x) = ∣α2∣2.

Summarising, the spinor ϕ in (26) is a critical point if and only if

α1 ⊥ α2, ∣α1∣ = ∣α2∣, (θ − π/4) ∈ (π/2)Z (31)

are satisfied. When does then ϕ descend to a well-defined spinor on a torus? For
` ∶= π/∣α1∣ consider first the square torus T` ∶= R2/Γ` whose lattice is spanned by

γ1 = `(
1
1
) and γ2 = `(

1
−1

) . (32)

Possibly after an additional rotation we may assume without loss of generality that
αi = ∣α1∣ei for the standard basis (e1, e2) of R2∗. If σχ is the (necessarily bounding)
spin structure defined by the group morphism χ` ∶ Γ` → Z2, χ`(γ1) = χ`(γ2) = −1,
then

eα1(γ)ω = eα2(γ)ω = χ`(γ) (33)

so that ϕ descends to (T 2
` , σ`) and gives rise to a critical point there. More gen-

erally, ϕ descends to any covering TΓ = R2/Γ of T`, where the spin structure on
TΓ is induced by χ = χ`∣Γ. For instance, the double covering T2` → T 2

` yields a
square torus for which ϕ descends to a spinor with respect to the non-bounding
spin structure defined by χ ≡ 1. Conversely, any torus TΓ to which ϕ descends is
necessarily a covering of T 2

` . Indeed, assume (33) holds for the spin structure σχ
on T 2

Γ instead of σ` on T 2
` , and let Γ0 = kerχ. In particular, Γ0 ⊂ 2`Z2. If σχ is the

non-bounding structure, then χ ≡ 1 and therefore Γ0 = Γ. Otherwise, there exists
γ0 ∈ Γ with χ(γ0) = −1 so that (33) implies

γ0 −
`

2
(1

1
) ∈ `Z2.

In particular, Γ is contained in Γ`.

Remark 5.1. From Eq. (28) and Eq. (29) it follows immediately that for a flat
critical point on the torus, β♯ ∈ kerA. Conversely, any critical point satisfying this
condition is necessarily flat, cf. Proposition 5.4.

In conclusion we established the existence of critical points (g0, ϕ0) on any torus
TΓ covering T`. Its spin structure determined by the restriction of χ` to Γ. Finally,
we will show the existence of saddle points. First of all, if ϕ satisfies (33), then

E(g,ϕ) = cos2(θ)∣α1∣2 + sin2(θ)∣α2∣2
2

area(T 2
` ).

Now area(T 2
` ) = 2`2, and if (g0, ϕ0) is critical, cos2(θ0) = sin2(θ0) = 1

2
and ∣α1∣ =

∣α2∣ = π/`, whence E(g0, ϕ0) = π2. Next we construct special curves (gt, ϕt) through
(g0, ϕ0). The metric gt is obtained through an area-preserving deformation of T 2

`

by taking the lattice Γt spanned by

γ1(t) =
`

2
(1

1
)(1 + t) and γ2(t) =

`

2
( 1
−1

) 1

(1 + t) .

The spinor will be modified through θ = θ(t) = ct + θ0. Then E(gt, ϕt) = f(t)π2 for

f(t) = cos2(θ(t)) 1

(1 + t)2
+ sin2(θ(t))(1 + t)2.
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Since f ′′(0) = 8θ′(0) + 4, the second derivative takes any real value by suitably
choosing the slope c in θ(t). The non-minimising critical point on T 2

0 is therefore
a saddle point, and so are the critical points obtained by taking covers.

5.3. Classification of flat critical points on the torus. We are now in a po-
sition to classify the flat critical points on the torus. Recall the decomposition
A = A1,0 +A0,1, where A1,0 is the trace and skew-symmetric part of A, while A0,1

is the symmetric part of A. If A is associated with a critical point, these com-
ponents correspond to a holomorphic function f and a quadratic differential q,
cf. Lemma 3.21. From the coordinate description of (21) one easily verifies the
identities

detA = detA1,0 + detA0,1

and

(A1,0)tA1,0 = detA1,0 ⋅ Id, (A0,1)2 = −detA0,1 ⋅ Id,
A0,1A1,0 = (A1,0)tA0,1, A1,0A0,1 = A0,1(A1,0)t.

In particular, these identities imply

(AtA)0 = 2(A1,0)tA0,1 = 2A0,1A1,0,

so that (AtA)0 corresponds to the quadratic differential 2fq.

Theorem 5.2. A flat critical point on the torus is either an absolute minimiser,
i.e. a parallel spinor, or a non-minimising critical point as in Section 5.2.

Proof. Let (g,ϕ) be a critical point on M = T 2 with vanishing Gauß curvature and
associated pair (A,β). The Euler-Lagrange equation implies

dβ = divβ = 0

divA = divA1,0 + divA0,1 = 0.

Furthermore, together with K = 0 and Corollary 3.7,

div(AtA)0 = 0.

On M = T 2 we may trivialize T ∗M1,0 and write q = hdz2 for h = c−id globally. Then
divA = 0 yields the equation ∂z̄f +∂zh̄ = 0. The traceless symmetric endomorphism
(AtA)0 corresponds to the quadratic differential fq = fhdz2 and div(AtA)0 = 0
yields the holomorphicity of fh. In particular we get fh = c for some constant
c ∈ C. Moreover, by Corollary 3.7 again, K = 0 also yields

detA = detA1,0 + detA0,1 = 0.

Consequently, ∣f ∣2 = ∣h∣2 = ∣c∣, for detA1,0 = ∣f ∣2 and detA0,1 = −∣h∣2. Rotating
the coordinate system if necessary we may assume that c is a non-negative real
number. If c = 0, then A = β = 0 and we have an absolute minimiser, so assume
from now on that c > 0. We want to show that (g,ϕ) is of the form of the critical
points in Section 5.2. Scaling the metric on the spinor bundle appropriately we
may assume that c = 1/4. Writing f(x, y) = eiτ(x,y)/2 for τ ∶ T 2 → R, we have h = f̄
and ∂z̄f +∂zh̄ = 0 if and only if ∂z̄τ +∂zτ = ∂xτ = 0, whence τ ≡ τ(y). It follows that

A = (cos τ(y) 0
sin τ(y) 0

) .
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Further, β is parallel since K = 0 and β is harmonic. Since

(AtA + β ⊗ β)0 = 0

we obtain β = dy. The integrability condition of Proposition 3.8 now reads

∇∂yA(∂x) = 2β(∂y)J(A(∂x))
which implies θ′(y) = 2β(∂y) = 2. Hence A and β are as in Eq. (28) and Eq. (29)
for V = ∂y, θ = π/4, α1 = dx + dy and α2 = dy − dx. �

Remark 5.3. As we have remarked in Section 5.1, non-trivial parallel spinors only
exist for the non-bounding spin structure. However, by the previous proposition,
flat critical points can also exist for the bounding spin-structures.

It remains an open question if a critical point on the torus is necessarily flat, but
at least we can give a number of equivalent conditions.

Proposition 5.4. For a critical point (g,ϕ) on the torus which is associated with
(A,β), the following conditions are equivalent.

(i) g is flat.
(ii) ∣β∣ = const.

(iii) β♯ ∈ kerA.

Moreover, any of these conditions implies

∣A∣2 = ∣β∣2. (34)

Proof. If (g,ϕ) is a flat critical point, then β is parallel and hence has constant
length. Conversely, if (g,ϕ) is critical with ∣β∣ = const, then the Weitzenböck for-
mula on 1-forms (15) and Gauß-Bonnet immediately imply that ∇β = 0. Therefore,
(AtA + β ⊗ β)0 = 0, whence div(AtA)0 = 0 by Corollary 3.2 (iv). But either β ≡ 0
so that ∇ϕ = 0 by Proposition 3.23, or β has no zeroes at all and we can apply
Corollary 3.7. In both cases it follows K = 0.
On the other hand, for a flat critical point (g,ϕ), β♯ ∈ kerA follows from Remark 5.1.
Conversely, let β♯ ∈ kerA. If β(x) = 0, then (15) implies ∇∗∇β(x) = 0. Otherwise,
β(x) is a non-trivial element in the kernel of A so that detA(x) = K(x) = 0 by
Corollary 3.7 (i). Again, we find ∇∗∇β(x) = 0 so that β is actually parallel. Then
either β ≡ 0 and g is flat (for in this case (g,ϕ) is an absolute minimiser), or β is
nowhere vanishing so that K = detA ≡ 0.
If any of these equivalent conditions hold, then (AtA + β ⊗ β)0 = 0 and β♯ ∈ kerA,
whence

0 = ⟨β♯, (AtA + β ⊗ β)0β
♯⟩ = ∣A(β♯)∣2 + ∣β∣4 − 1

2
Tr(AtA)∣β∣2 − 1

2
∣β∣4

= 1
2
∣β∣2(∣β∣2 − ∣A∣2).

This implies ∣A∣ = ∣β∣ or β = 0. In the latter case Proposition 3.23 implies A = 0. �
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