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Decomposition rates of surface and buried forest-floor material
Cindy E. Prescott, Anya Reid, Shu Yao Wu, and Marie-Charlotte Nilsson

Abstract: Mechanical site preparation is assumed to reduce soil C stocks by increasing the rate at which the displaced organic
material decomposes, but the evidence is equivocal. We measured rates of C loss of forest-floor material in mesh bags either
placed on the surface or buried in the mineral soil at four sites in different regional climates in British Columbia. During the
3-year incubation, buried forest-floor material lost between 5% and 15% more C mass than material on the surface, with the
greatest difference occurring at the site with the lowest annual precipitation. Studies of the long-term fate of buried and surface
humus are needed to understand the net effects of site preparation on soil C stocks.

Key words: humus, decomposition, soil, carbon, site preparation.

Résumé : On assume que la préparation mécanique de terrain réduit les réserves de C dans le sol en augmentant le taux
de décomposition de la matière organique qui a été déplacée mais les indices sont équivoques. Nous avons mesuré le taux de
perte de C dans les matériaux de la couverture morte à l’aide de sacs-filets placés en surface ou enfouis dans le sol minéral, à
quatre endroits sous différents climats en Colombie-Britannique. Durant les trois années d’incubation, les matériaux de la
couverture morte qui avaient été enfouis ont subi des pertes 5 à 15 % plus élevées que les matériaux placés en surface; la plus
grande différence a été observée à l’endroit où la précipitation annuelle était la plus faible. Des études sur le destin à long terme
de l’humus enfoui et en surface sont nécessaires pour comprendre les effets nets de la préparation de terrain sur les réserves de
C dans le sol. [Traduit par la Rédaction]

Mots-clés : humus, décomposition, sol, carbone, préparation de terrain.

Introduction
Mechanical site preparation such as scarification, mounding, or

harrowing is commonly practiced following clearcut harvesting
of northern forests; for example, in 2016, soil scarification was
carried out on 155 000 ha of forest land in Sweden (https://www.
skogsstyrelsen.se/en/statistics/subject-areas/silvicultural-activities/).
These modifications of the soil have been shown to improve es-
tablishment and early growth of tree seedlings (Örlander et al.
1996), which has been attributed to improvements in soil temper-
ature, moisture, drainage, and aeration conditions (Wilson and
Pyatt 1984), faster root penetration and growth (Nadeau and Pluth
1997), and disruption of competing vegetation (Örlander et al.
1996). Site preparation also increases the availability of mineral-
soil planting spots, which may promote seedling survival by re-
ducing incidence of frosts (Örlander and Nilsson 1999), insect
pests (Nordlander et al. 2011), and pathogenic fungi (Zhong and
van der Kamp 1999). It has also been suggested that site prepara-
tion increases nutrient supply for seedlings as a consequence of
faster decomposition of the organic matter that becomes mixed
with or buried in mineral soil during site preparation (Örlander
et al. 1998), and several review papers have concluded that site
preparation generally causes a decline in soil C stocks (Jandl et al.
2007; Hyvönen et al. 2007). Faster decomposition of buried or-
ganic matter could also lead to increased CO2 release from soil and
reductions in soil C stocks, with attendant implications for cli-
mate change (Nordborg et al. 2006).

Some indications of stimulated organic matter decomposition
associated with site preparation practices have come from mea-
surements of higher rates of CO2 evolution (Mallik and Hu 1997;
Pumpanen et al. 2004) on site-prepared plots relative to control
plots. However, inferences about organic matter decomposition
rates based on measurements of CO2 efflux from site-prepared
and control soils must take into account the greater spatial vari-
ability of organic matter following site preparation. For example,
Pumpanen et al. (2004) recorded higher CO2 efflux from mounds
than from unscarified areas but lower flux from the exposed min-
eral soil in the adjacent pits, so the difference may be indicative of
greater amounts of organic matter in the mounds rather than
faster decomposition. Likewise, Strömgren and Mjöfors (2012)
measured lower CO2 efflux from exposed mineral soil, while
fluxes from the mounds were not elevated relative to unmounded
control plots. Quantifying the areas of each type of surface
(mounded, exposed, and undisturbed) led Strömgren and Mjöfors
(2012) to conclude that site preparation had actually reduced CO2

evolution relative to unprepared plots. The higher rates of CO2

evolution from site-prepared plots measured by Mallik and Hu
(1997) could be related to higher rates of gas diffusion following
site preparation, rather than faster decomposition, given that the
soils in the site-prepared plots were also rototilled.

Lower soil C stocks in site-prepared soils have also been re-
ported (Örlander et al. 1996; Schmidt et al. 1996; Hope 2007). How-
ever, inferences about organic matter decomposition rates based
on changes in soil C stocks are also problematic, as displacement
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of organic matter both horizontally and vertically during the soil
preparation treatments needs to be taken into account. For exam-
ple, significant reductions in total soil C contents were reported
60–70 years after mechanical site preparation (Örlander et al.
1996), but the data indicate small changes at sites where soil C was
measured to a depth of 1 m and so would have included the buried
organic matter. Schmidt et al. (1996) found lower C contents of soil
in site-prepared plots relative to control plots, but the difference
was significant only in microsites such as the trench bottom from
which the organic layer had been displaced. Likewise, Hope (2007)
measured lower C content (kg·ha−1) of forest-floor material (but
not in 0–20 cm mineral soil) 10 years after scarification, but a
similar proportional reduction in forest-floor mass was measured
one year after treatment, probably reflecting displacement of the
forest floor rather than decomposition.

The most direct evidence of effects of site preparation on de-
composition has come from Swedish studies showing more rapid
mass loss from needle litter in site-prepared and unprepared lo-
cations. Johansson (1994) reported faster decomposition and nu-
trient release from green Scots pine (Pinus sylvestris L.) and Norway
spruce (Picea abies (L.) Karst.) needles in scarified sites (mounded,
ploughed, or trenched) than in control plots. Likewise, Norway
spruce needle litter buried in the ridges of disc trenches lost mass
about 20% faster than needles on the surface of a plot that was not
site-prepared (Lundmark-Thelin and Johansson 1997). Similarly,
Scots pine needle litter placed within the double humus layer in
inverted mounds lost mass faster than litter on undisturbed sur-
face humus (Mjöfors 2015). However, most of the organic matter
buried during site preparation is more decomposed or humified,
i.e., in forest-floor F and H layers. Humified organic material de-
composes more slowly than fresh litter (Prescott et al. 2000),
which may make it less responsive than fresh litter to the changes
in conditions associated with site preparation. Another unknown
is the degree to which the effects are context-dependent and if the
findings from boreal forests in Sweden can be extrapolated to
other forest types and climates. Here we present the results of a
field experiment established to test the hypothesis that buried
forest-floor material decomposes faster than surface material by
measuring rates of mass loss of forest-floor material in adjacent
bags either placed on the surface or buried in the mineral soil. We
further test if the effect varies according to regional climate by
conducting the experiment at four sites that differ in regional
climate. We anticipated that rates of mass loss would be higher in
buried material and that the effect would be most significant at
sites with dry climates.

Study sites
The province of British Columbia (B.C.) has a large variation in

climates due to its size, mountainous topography, and maritime
influence. We selected four sites representing a spectrum of re-
gional climates using the Biogeoclimatic Ecosystem Classification
system (Meidinger and Pojar 1991) as a guide. One coastal zone
(Coastal Western Hemlock; CWH) was included that has a maritime
climate (wet–mild). The other sites were in interior B.C. and so had
continental climates; here we selected the interior wet-belt zone
(Interior Cedar Hemlock; ICH), a high-elevation zone (Engelmann
Spruce – Subalpine Fir; ESSF), and a dry zone (Interior Douglas Fir;
IDF) to provide a range of climatic conditions for the experiment.
All sites were associated with an existing silvicultural research
trial.

Coastal Western Hemlock
The study site was located near the town of Port McNeill, B.C.,

on northern Vancouver Island (50°60=N, 127°35=W) in the very wet
maritime subzone of the Coastal Western Hemlock biogeocli-
matic zone (CWHvm). The site is similar to the cedar–hemlock
(CH) cutovers studied in the Salal Cedar Hemlock Integrated Re-
search Program (SCHIRP; Prescott et al. 2013; Sajedi et al. 2013).

Topography is gently undulating, and the site is at an elevation of
about 50 m. Prior to harvest, the forest was an old-growth stand
(>250 years old) of western red cedar (Thuja plicata Donn ex D. Don)
and western hemlock (Tsuga heterophylla Raf. Sarge). Soils are well
to poorly drained Ferro-Humic Podzols on unconsolidated mo-
rainal and fluvial outwash materials and mor humus. The forest
had been clearcut harvested and slashburned in 1996.

Interior Cedar Hemlock
The Ice Road site (49°58=N, 118°43=W) was located about 50 km

south of the town of Nakusp, B.C., in the moist warm subzone of
the Interior Cedar Hemlock biogeoclimatic zone (ICHmw2) and
was part of the Mount Seven Silvicultural Systems Trial (Braumandl
and Curran 1992). The site is north-facing with slopes ranging from
25% to 35% at an elevation of 910 m. The preharvest stand was
made up of 125-year-old, even-aged western red cedar, with minor
amounts of Douglas-fir (Pseudotsuga menziesii [Mirb.] Franco) and
western larch (Larix occidentalis Nutt.) (DeLong et al. 2005). Surface
soils are predominantly Brunisols with silt loam or fine sandy
loam texture with noncalcareous parent materials and mor hu-
mus. The site was clearcut harvested over the winter of 1995–1996
(DeLong et al. 2005).

Engelmann Spruce – Subalpine Fir
The Sicamous Creek Silvicultural Systems Trial (50°49=N, 119°54=W)

is located near the town of Sicamous, B.C., in the wet–cold sub-
zone of the Engelmann Spruce – Subalpine Fir biogeoclimatic
zone (ESSFwc2) (Vyse 1999). The study site was located at an eleva-
tion of about 1800 m. Before harvest, the forest was a 300-year-old
stand composed of �65% subalpine fir (Abies lasiocarpa (Hook.) Nutt.)
and 35% Engelmann spruce (Picea engelmannii Parry ex Engelm.) by
volume. Soils are sandy loam Orthic Humo-Ferric Podzols with
mor humus. Following harvest, the site was spot site-prepared
(mounded) in 1995 using excavators and planted in 1996 with
Engelmann spruce seedlings.

Interior Douglas Fir
Three replicate sites (Dairy Creek, 50°51=N, 120°25=W; Black

Pines, 50°56=N, 120°17=W; O’Connor Lake, 50°53=N, 120°21=W)
were located between 25 and 50 km northwest of Kamloops, B.C.,
in the dry cool subzone of the Interior Douglas Fir biogeoclimatic
zone (IDFdk) (Meidinger and Pojar 1991). The sites were installa-
tions of the Long-Term Soil Productivity (LTSP) study (Berch et al.
2010). Elevation ranges from 1060 to 1180 m, and sites are flat or
very gently sloping (<5%). Before harvest the dominant tree spe-
cies on all sites was Douglas-fir, with lesser amounts of lodgepole
pine (Pinus contorta Loud.), hybrid spruce (P. engelmannii × Picea
glauca (Moench) Voss glauca), and subalpine fir. Canopy trees varied
in age from 100 to 220 years, with a few veteran trees > 250 years old.
Soils on all three sites are moderately well drained and derived
from morainal blankets, with a thin capping (<10 cm) of aeolian
material at the soil surface. Soils are classified as Brunisolic Gray
Luvisols, with mor humus. Harvesting took place in the winters of
1998, 1999, and 2000 at Dairy Creek, Black Pines, and O’Connor
plots, respectively (Berch et al. 2010).

Methods
Forest-floor material consisting of a mixture of F and H material

(representative of residual forest-floor material immediately after
harvest) was collected from old-growth or mature stands near
each incubation site in the fall of 1998 (1999 at IDF sites) and
air-dried in the laboratory. Forest-floor material from each of the
four sites was put into 90 mesh bags with pore size of �0.5 mm
(2.0 g dry mass equivalent per bag). Bags were placed in envelopes
(to collect spillage) and returned to the site from which the forest-
floor material had been collected. At the ESSF, ICH, and CWH
sites, three plots were established at least 100 m from one another.
At each of the three IDF sites, one plot was established at each site.
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In each plot, 30 locations were selected at which residual forest-
floor material was present on the surface; at each location, one
bag was buried horizontally 5–10 cm deep in the mineral horizon
and a second bag was pinned onto the surface of the forest floor
about 10 cm away from the location of the buried bag. Bags were
installed at the ESSF, ICH, and CWH sites in September 1999 and at
the three IDF sites in September 2000. Ten bags of each type
(surface and buried) were collected from each of the three plots
per site annually for three years. In some cases, all 10 bags could
not be located, so the number of bags collected ranged from 6 to
10. The contents of each bag were dried at 65 °C to a constant mass,
and the mass of material remaining was measured.

To avoid overestimating the mass remaining in buried bags due
to contamination with mineral soil, the data are expressed as
mass of carbon remaining. For each sampling time, the material
remaining in the 10 bags per plot was composited into a single
sample, ground in a coffee mill, and dried at 70 °C overnight.
Carbon (C) concentration was measured at the Pacific Forestry
Center in Victoria, B.C., using an elemental carbon and sulphur
analyzer (CS-580A Helios by ELTRA©), which measures the
amount of generated CO2 after combustion. Original (time 0) sam-
ples could not be found, so the C concentration of the forest floor
at time 0 was assumed to be the same as that of the first-year
surface samples. The remaining C mass of each sample was calcu-
lated by multiplying the remaining dry mass of each sample by
the average C concentration for that plot at each collection time.

To generate climate data for each study site, latitude, longitude,
and elevation for each site were submitted to the ClimateWNA
model (Wang et al. 2012). Ten-year climate normals were calcu-
lated for the period 2001–2010, and annual climate data were gen-
erated for the years that the samples were decomposing at each
site. Climate data were generated for all three IDF sites, as the
three sites were distant from one another, and then averaged for
the three IDF sites. Climate variables included mean annual tem-
perature (°C), mean annual precipitation (mm), Hargreaves refer-
ence evaporation (mm), Hargreaves climate moisture deficit (mm),
and the heat–moisture index. The later three variables were cal-
culated annually and for the summer months (1 May to 31 August)
to provide a measure of soil dryness (annual averages) and sum-
mer drought (summer averages). The annual heat–moisture index
is calculated as (mean annual temperature + 10)/(mean annual
precipitation/1000). The summer heat–moisture index (an index
of summer drought) is calculated as (mean warmest month
temperature)/(mean summer precipitation/1000). Climate data for
each site are shown in Table 1.

Statistical analyses
Effects of treatment (surface or buried), time, and BEC zone on

C mass loss (%) were tested using a generalized linear model (GLM).
This test considered all of the data collectively and included inter-
action terms of treatment with time, BEC zone, and the combina-
tion. Normal distribution with identity link function was used in
this model. When significant differences were detected, post-hoc
two-way ANOVAs were conducted to determine which treatments
differed from each other. Although the three IDF sites were more

distant from one another than were the plots at the other sites,
the variability among these sites was no greater than at the other
sites (see SE bars in Figs. 1–2), so these data were included in the
GLM. The difference between the C mass (g) remaining in surface
and buried bags was used as an index of response to burial (surface –
buried). Linear regression analyses were used to explore relation-
ships between response to burial and climate variables at the four
sites. All analyses were conducted in JMP 12 (2015; SAS Institute
Inc., Cary, North Carolina).

Results and discussion
The forest-floor material lost 25%–50% of its original C mass

during the 3-year incubation (Fig. 1). The most C was lost at the IDF
sites and the least at the CWH site (Fig. 1). A significantly greater
proportion of the original C mass was lost over the 3 years in buried
bags compared with surface bags, except in the first year at the ESSF
site (Fig. 1). The difference in percent C mass remaining after
3 years ranged from 4.8% (±1.05%) at the ICH site to 14.65% (±2.22%)
at the IDF site (Table 2). Finér et al. (2016) reported 32%–35% more
mass lost over 5 years from wood stakes buried in mineral soil
than on the surface in clearcuts. In a 420-day mesocosm study,
aspen wood buried in soil lost about five times as much mass as
wood on the surface (Fissore et al. 2016).

There were significant time × treatment and site × treatment
interactions (Table 2), suggesting that the differences between
surface and buried bags differed over time and among sites. At the
CWH and ESSF sites, the difference between surface and buried
bags in C mass remaining was small during the first year and
increased over time (Fig. 2). In contrast, at the IDF site, the differ-
ence in C mass remaining between surface and buried bags was
greatest during the first year and this difference was maintained
over the three years. Treatment, time, and site also significantly
influenced C mass loss (%) independently according to the GLM
model (Table 2).

The larger difference between surface and buried material at
the IDF sites, which had the lowest annual precipitation (Table 1),
is consistent with our hypothesis that the effect of burial would be
greater at the driest site. More rapid drying of litter on the ex-
posed surface of clearcuts during summer, when temperatures
become suitable for decomposition, has been blamed for the lack
of stimulation of litter decomposition in clearcuts relative to ad-
jacent forests (Prescott et al. 2000). Thus, a positive effect of burial
on decomposition of forest-floor material would be anticipated at
sites where precipitation, especially during summer, is low.
Smyth et al. (2016) reported faster decomposition of wood blocks
that were buried relative to surface blocks, except in wetlands and
in a few upland sites that had high annual precipitation (greater
than �1325 mm), where the surface blocks decomposed faster.

The significant interaction between treatment and site (Table 2)
further suggested that the effect of burial on decomposition was
influenced by regional climate. However, linear regression analy-
ses uncovered no significant relationships between response to
burial and climate variables (both annual and 10-year normal) at
the four sites. A much larger number of sites across a climate

Table 1. Climate variables at the four sites during the study period (2001–2010 normals): average
mean annual temperature (MAT), mean annual precipitation (MAP), Hargreaves reference evaporation
(EVAP), Hargreaves climate moisture deficit (CMD), and the heat–moisture index (HMI) calculated
annually and for the summer months.

Site MAT (°C) MAP (mm)

EVAP (mm) CMD (mm) HMI

Annual Summer Annual Summer Annual Summer

CWH 8.9 2140 557 267 64 64 8.83 63.17
ICH 5.8 642 698 392 402 283 24.61 98.45
ESSF 2.3 629 472 280 164 147 19.55 172.08
IDF 3.7 440 555 325 301 217 31.14 116.63
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gradient would be needed to adequately test the climate depen-
dency of the response to burial.

Although mass loss was used to indicate decomposition, it can-
not be assumed that all of the mass lost was completely decom-
posed and mineralized. Although the 0.5 mm pore size of the bags
would have prevented access by soil macrofauna, fragmentation
of the forest-floor material in the bags and spillage of fragments
from the bags is possible, as is leaching of some portion of the

material in dissolved form. This could account for the larger mass
loss during the first year after installation, before the material in
the bags settled and became matted with fungus. Losses of dissolved
material via meltwater and rainfall would be expected to be largest
from material in surface bags, thus decomposition of forest-floor
material in surface bags could have been overestimated.

In addition to regional climate, the rate of mass loss from bur-
ied material could be influenced by properties of the mineral soils
at the sites, particularly properties such as texture and organic
matter content that influence moisture holding capacity. Such
information was not collected at the sites used in the present
study but should be included in future studies to elucidate potential
modifying influences of soil properties on relationships between cli-
mate and decomposition rates of buried materials. Likewise, the dif-
ferences in responses to burial could be influenced by properties of
the forest-floor material — in this study, material from adjacent
forests was used, which differed among the sites and may have
contributed to between-site differences in response to burial.
Transplanting forest-floor material among sites would assist in
teasing apart influences of regional climate versus effects of char-
acteristics of the forest-floor materials at different sites.

Fig. 1. Carbon mass remaining (% of original C mass) of forest-floor material on the surface (dashed lines) and buried (solid lines) during 3-year
incubations at the four sites. Means and standard errors are shown.

Fig. 2. Difference in C mass remaining (%) of forest-floor material between surface and buried bags during 3-year incubations at the four sites.
Means and standard errors are shown.

Table 2. GLM results testing the effects of treatment (surface
– buried), time since treatment initiation (years), site, and
their interactions on C mass loss (%).

Source df �2 p value

Treatment 1 28.23 <0.0001
Time since initiation 2 276.02 <0.0001
Site 3 905.83 <0.0001
Time × treatment 2 26.03 <0.0001
Site × treatment 3 13.39 0.0039
Site × time × treatment 6 4.01 0.6748

Note: Influences were considered significant when p < 0.05 and are
indicated in bold font; df, degrees of freedom.
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In conclusion, the results of this experiment and review of the
existing literature suggest that burial of forest-floor organic mat-
ter hastens its decomposition relative to organic matter on the
soil surface, at least during the first few years. This could lead to
declines in soil C stocks for a few years following site preparation,
but the proportion that is buried versus the proportion that re-
mains intact on the surface (or perhaps turned over and made
more exposed on the surface) needs to be estimated to relate this
finding to actual site preparation practices. Longer studies are
needed to determine if the effect of burial is maintained through
the decomposition process and if burial alters the proportion of
organic material that is transformed into stable organic matter.
Given that interactions with mineral soil, particularly clay miner-
als, can stabilize organic matter, burial of forest-floor material
could cause some portion of the material to become more resis-
tant to decay, thereby increasing its persistence. Finally, as faster
mass loss from buried organic material should stimulate nutrient
release in the rooting zone of regenerating trees, which could
stimulate their rates of C fixation and biomass production, en-
hanced rates of C sequestration in tree biomass may offset any
increases in C release from organic matter following site prepara-
tion (Egnell et al. 2015). Measurements of C pools in above- and
below-ground biomass and in the various stability classes of soil in
long-term field trials are necessary to establish the net effects of
site preparation practices on ecosystem C pools.
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