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Abstract

In this paper we introduce a new formulation for shape optimization problems in fluids
in a diffuse interface setting that can in particular handle topological changes. By
adding the Ginzburg-Landau energy as a regularization to the objective functional
and relaxing the non-permeability outside the fluid region by introducing a porous
medium approach we hence obtain a phase field problem where the existence of a
minimizer can be guaranteed. This problem is additionally related to a sharp interface
problem, where the permeability of the non-fluid region is zero. In both the sharp and
the diffuse interface setting we can derive necessary optimality conditions using only
the natural regularity of the minimizers. We also pass to the limit in the first order
conditions.

Key words. Shape and topology optimization, phase field method, diffuse interfaces,
Stokes flow, fictitious domain.

AMS subject classification. 35R35, 35Q35, 49Q10, 49Q20, 76D07.

1 Introduction

Shape optimization is the problem of minimizing some functional depending on the shape
or geometry of certain regions. If the topology is part of the optimization process one refers
to this also as shape and topology optimization. Here we work on the specific branch of
shape optimization in fluids. This means, that the objective functional depends not only
explicitly on certain quantities related to the shape but also implicitly by including physical
values describing the motion of some fluid which is located inside the unknown optimal
region. Hence the objective functional may depend for instance on the velocity or the
pressure of the fluid. In this work we assume that the fluid obeys the Stokes equations.
Thus the general problem to be considered here can be written as

(rgin) /;;f (z,u,Du,p) dz subject to —pAu+Vp=f,divu=0, inFE. (1)
U

Here, u denotes the velocity, p the pressure, p > 0 the viscosity of the fluid and f is some
general external force.

Due to the broad application fields of shape optimization in fluid mechanics, quite elabo-
rated practical methods have been developed in industry. But advanced numerical meth-
ods, like gradient or Newton’s method, require gradients of the cost functional. One
approach to formulate a gradient in an appropriate Hilbert space setting is the shape
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sensitivity analysis. Several authors derived formulas for the shape derivative in a fluid
dynamical setting. But either the calculations are formal, [35], or there are restrictions
in terms of geometric or regularity constraints on the reference domain and hence on the
minimizing set, compare for instance [3, 32, 33, 37]. In this work we will present a for-
mula for shape derivatives that is verified for very general sets as a reference domain, see
Section 5.

Furthermore, it has turned out that most shape optimization problems lack existence of
a minimizer and finding well-posed formulations of (1) is not trivial. The right space for
the admissible shapes has to be characterized and suitable regularizations or constraints
may be necessary. The main contribution here is due to Sverdk, [44], who was able to
show an existence result in space dimension two. This was then extended to more space
dimensions by Bucur and Zolésio, see [11], and applied to a fluid dynamical setting in [5].
But their result needs a restriction on the admissible shapes in terms of not yet charac-
terized geometric constraints. Apart from that, there are also contributions considering
compressible fluids, like [34], but again geometric constraints on the admissible shapes are
necessary. As indicated in [31, 41], it may not be expected that a minimizer exists for
the general problem (1) without any restrictions or regularizations. One idea to overcome
this problem was established in the field of finding optimal material configurations by [1].
There, a multiple of the perimeter of the shape is added to the objective functional and
the problem is formulated in a setting of Caccioppoli sets. This additional perimeter term
gives rise to better compactness properties and prevents oscillations and the occurrence
of microstructures, compare also [4]. In addition, by minimizing over all Caccioppoli sets
there are almost no restrictions in geometric, regularity or topological terms on the ad-
missible shapes. Anyhow, most problems in shape optimization that have been shown to
be well-posed, even by using a perimeter penalization, have special structure, i.e. they
can be reformulated to a problem without state equations, see for example [1, 9]. This
corresponds in our case to the case of minimizing the total potential power and is already
discussed in [24]. For minimizing a general objective functional, the idea of a so called
fictitious material approach has been developed in the field of structural optimization,
see [1, 9], where the void region is replaced by a very weak material. This idea has been
transferred to fluid mechanical setting by [8], where the region outside the fluid is replaced
by a porous medium. Anyhow, only applying the porous medium approach gives only a
well-posed problem in case of having the above-mentioned special structure, i.e. here min-
imizing the total potential power in a Stokes flow. As discussed in [21], it is not expected
that one can generalize this to general objective functionals or different state equations.
But coupling this porous medium approach to a Ginzburg-Landau penalization, which is
the diffuse interface analogue of the perimeter penalization, one can show well-posedness
with a general objective functional and also apply different state equations. The resulting
problem is then given in a phase field setting. Additionally, we can consider a sharp inter-
face limit and show that under suitable assumptions the obtained minimizers approximate
a black-and-white solution of a perimeter penalized sharp interface problem.

The porous medium — phase field formulation of the shape optimization problem (1) with
a general objective functional including the velocity of the fluid and its derivative can be
roughly outlined as

1 1
min [ Soe (@) o+ [ f(.uDu)desy [ T96P+ 0 () do

subject to /S;as(go)u-v+uVu-Vde=fo-'uda: Vo,
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where ¢ is the phase field function. For details we refer to Section 2.
In this paper we will

e show existence of a minimizer for the resulting phase field problem (see Theorem 1
in Section 2);

e discuss the corresponding perimeter penalized sharp interface problem (see Sec-
tion 3), which is in a simplified form given as

min f f(xz,u,Du) do +yeoPo({p =1})
(psu) JQ

subject to / Vu-V'vda::f -vdx Vg
! {=1}H { 1}f

e consider convergence of solutions of the phase field problem to a solution of the sharp
interface problem as the interfacial thickness and the permeability of the medium
outside the fluid converge to zero (see Section 4);

e derive first order optimality conditions for the phase field and sharp interface shape
optimization problems by geometric variations. In the case of the sharp interface
problem we can derive the first order conditions under assumptions which are much
weaker than conditions which appeared in the literature previously (see Section 5);

¢ relate the obtained optimality conditions to existing criteria, hence to a variational
inequality in the diffuse interface setting, compare Remark 8, and to shape deriva-
tives in the well-known Hadamard form in the sharp interface setting, see Remark 9;

e consider the sharp interface limit in the obtained optimality systems (see Theorem 5
in Section 5);

e discuss the same questions if the objective functional depends additionally on the
pressure of the fluid (see Section 6).

A comparable sharp interface limit in the first variation formula has been carried out
for instance in [23], where geometric variations of the elastic Ginzburg-Landau energy are
considered. We also mention the work [6] where a sharp interface limit in the structural
optimization has been carried out by formal asymptotics. But for a setting with state
equations, which even depend on the phase field parameter, the rigorous considerations in
this paper are new. The generalization to the stationary Navier—Stokes equations will be
the subject of a forthcoming paper but is already discussed in [27].

2 Problem formulation

In the following we will minimize a certain objective functional depending on the behaviour
of some fluid by varying the shape, geometry and topology of the region wherein the fluid
is located. The fluid region is to be chosen inside a fixed container Q ¢ R%, which is
assumed to fulfill

(A1) QcRY, de{2,3},is a bounded Lipschitz domain with outer unit normal .
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The velocity of the fluid has prescribed Dirichlet boundary data on 92, hence we may
impose for instance certain in-or outflow profiles. Additionally we can assume a body force
acting on the whole of 2. And so we fix for the subsequent considerations the following
functions:

(A2) Let f e L*(Q) denote the applied body force and g € H> (092) the given boundary
function such that [, g-ndx=0.

We remark, that throughout this work R%valued functions or function spaces of R%valued
functions are denoted by boldface letters.

The general functional to be minimized is for the time being given as [, f (z,u,Du) dx
and hence depends on the velocity w € U := {v € H(Q) | dive = 0,v|sq = g} of the fluid
and its derivative. The treatment of the pressure in the objective functional is studied in
Section 6. The objective functional is chosen according to the following assumptions:

(A3) We choose f: QxR xR > R as a Carathéodory function, thus fulfilling
o f(-,v,A):Q >R is measurable for each v e R?, A ¢ R, and

e f(z,,) : R¥xR¥¥ 5 R is continuous for almost every z € Q.

Let p>2 for d =2 and 2 < p < 2d/a-2 for d = 3 and assume that there are a € L' (12),
b1,be € L () such that for almost every z € {2 it holds

If (2,0, A)| < a(x) + b (z) P + by(z) |A]*, VoeR?EAe R (2)

Additionally, assume that the functional

F:H Q) >R, F(u) :=fo(x,u(:v),Du(x))dx (3)

is weakly lower semicontinuous, F|y is bounded from below, and F' is radially un-
bounded in U, which means

khm Huk“Hl(Q) =+00 —— k}im F(uk) = +00 (4)
for any sequence (uy ). SU.

Remark 1. Remark that condition (2) implies that H'(2) > u = [, f (v,u,Du()) dz
is continuous, see [36].

The shape to be optimized is here the region filled with fluid and is described by a
design function ¢ € L' (). The fluid region then corresponds to {z € Q | ¢(x) = 1} and the
non-fluid region is described by {z € Q| ¢(z) = -1}. We will formulate a diffuse interface
problem, hence ¢ is also allowed to take values in (-1,1), which yields then an interfacial
region. The thickness of the interface is dependent on the so-called phase field parameter
£>0. We impose an additional volume constraint for the fluid region, i.e. [, ¢dz < B]Q],
where 8 € (-1,1) is an arbitrary but fixed constant. Hence, the design space for the
optimization problem is given by

B,y = {<p ') |lpl<1ae i@, [ pdrs 5|Q|}. (5)
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In order to obtain a well-posed problem, we use the idea of perimeter penalization, see
for instance [1]. Thus we add a multiple of the diffuse interface analogue of the perimeter
functional, which is the Ginzburg-Landau energy, to the objective functional. To be precise

we add 1
€ 2
- - d
*nyQIWI +5w(<p) T

where ¢ : R - R := R U {+00}, given by

s(1-¢%), if o<1,
+00, otherwise,

Y(p) =={

is the potential and v > 0 a fixed weighting parameter for this regularization. As already
discussed in the introduction, we will use the porous medium approach introduced by [8]
for the optimization problem. Thus the region outside the fluid obeys the equations of
flow through porous material with small permeability (as)‘l <« 1. Notice that we couple
the parameter for the porous medium approach to the phase fiel parameter € > 0. In the
interfacial region we interpolate between the Stokes equations and the porous medium
equations by using an interpolation function «. : [-1,1] — [0, @] fulfilling the following
assumptions:

(A4) Let a.:[-1,1] = [0,a.] be decreasing, surjective and continuous for every e > 0.
It is required that a. > 0 is chosen such that lim.\ga. = +00 and a. converges
pointwise to some function ag : [-1,1] - [0, +o0]. Additionally, we impose as(x) >
az(x)if § <eforall x e [-1,1], limeyoa:(0) < oo and a growth condition of the form
Q: =0 (5_% )

Remark 2. For space dimension d =2 we can even choose @. = 0(e™") for any k € (0,1),
compare also Remark 5.

Thus the overall optimization problem is given as

1 1
(Ifollun)‘] (p,u) :=§fﬂag () [uf dx+fo(w,u,Du) dx+vf9§|V<P|2+gw(so) dz  (6)

subject to (p,u) € g x U and

fQOée(SO)U'Udﬂﬁ+u[QVu~Vvdx=fﬂf-vdsv YoeV (7)

where V := {v € H}(Q) | divv = 0}. The first term which includes the interpolation
function . appearing in the objective functional (6) penalizes too large values for |u]
outside the fluid region (hence if ¢ = —1). This is a result of the choice of a.(-1) =@ > 1.
The penalization of too large values for the velocity in the porous medium is in particular
important because we want in the limit € N\ 0 the velocity u to vanish outside the fluid
region, see Section 3. By this we ensure to arrive in the desired black-and-white solutions.

Concerning the state equations (7) we directly find the following solvability result:

Lemma 1. For every ¢ € LY(Q) with |p(x)| <1 a.e. in Q there exists a unique u € U
such that (7) is fulfilled. This defines a solution operator for the constraints, which will be
denoted by S. : ®oq - U. Here, we define Sc (@) :=u if u solves (7).
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Proof. This follows by an application of Lax-Milgram’s theorem. For details we refer to
[27, Lemma 5.1]. O

Using this existence result for the state equations we can rewrite (6) — (7) into an
unconstrained optimization problem by introducing the reduced objective functional j. :
LY(Q) - R, which is given as

(8)

. o Je (Qpa Se (90)) if p € Dyq,
Je () = .
+00 otherwise.

Then (6) — (7) is equivalent to

min j . 9

min () ©)

Due to the regularization by the Ginzburg-Landau energy and the porous medium

formulation we obtain, in contrast to most formulations in shape optimization, that the

problem (6) — (7) admits a minimizer, even with a general objective functional, as the
following theorem shows:

Theorem 1. There exists at least one minimizer o € Puq of jo, and hence there exists
also a minimizer of (6) — (7).

Proof. We use the direct method in the calculus of variations. From the boundedness
assumption in Assumption (A3) we deduce that J; : ®,4xU — R is bounded from below by
a constant. Thus we can choose an admissible minimizing sequence (g, Uk)ren € Pad x U,
which gives in particular that uy = S. () for all k£ € N. The coercivity of the objective
functional, see (4), yields a uniform bound on |ug| g1 ().

Moreover, the uniform bound in (J: (¢k, Uk)) ey implies that supgen | Veor[ p2¢q) < oo.
Besides, ¢y, € ®,q for all k € N, and so |pg HLOO(Q) <1 VkeN. Thus we find a subsequence
of (uk, ¥k )ren, denoted by the same, such that u, — ug in H'(Q) and ¢, —~ ¢g in H' (Q)
for some element (ug, @p) € U x ®,4. Here we used that ¢, and U are closed and convex
and thus weakly closed subspaces of H'(Q) and H'(Q), respectively.

Next we show, that ug = S: (¢g). Therefore we use Lebesgue’s dominated convergence
theorem and the pointwise convergence of the sequences (uy)ren and (¢g)ken, which
follows after choosing subsequences. From this we find quite easily

klim /Qozs(gpk)ukmda::/S;as(cp)umda: VvoeV.

Then we can take the limit k¥ — oo in the weak formulation of the state equation (7) and
see that wug fulfills (7) with ¢ replaced by ¢g. In particular, this gives ug = Sc (o) and
thus (¢o,u0) is admissible for (6) — (7).

Similar as above we obtain by using Lebesgue’s dominated convergence theorem

li / 2d :/ 2d .
Jlim Qae(‘Pk)|uk| T Qaa(900)|“0| r

This gives us in view of the lower semicontinuity of the objective functional stated in
Assumption (A3) the estimate

Je (‘POaUO) Sh]gninfjs (ka’vuk) = Je (Qpau)

inf
(Sovu)eq:'adXUvu:SS(SD)

which implies that (¢g,®o) minimizes J.
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Thus we have shown that the phase field model, which is given by (6) — (7), is well-
defined in the sense that we have a well-defined solution operator for the constraints and
have guaranteed existence of a minimizer for the overall optimization problem.

3 Sharp interface problem

In Section 4 we will consider the limit £ \ 0, the so-called sharp interface limit. Hence
we want to send both the interface thickness and the permeability of the medium outside
the fluid to zero in order to arrive in a sharp interface problem whose solutions can be
considered as black-and-white solutions. This means that only pure fluid and pure non-
fluid phases exist, and the permeability of the material outside the fluid is zero (thus “real
walls”, according to [20], can appear). The problem appearing in the limit ¢ \ 0 will be
introduced in this section. This turns out to be a sharp interface problem in a setting of
Caccioppoli sets with perimeter penalization. In order to formulate this we will briefly
introduce some notation. For a detailed introduction into the theory of Caccioppoli sets
and functions of bounded variations we refer to [2, 19]. We call a function ¢ € L'(Q2) a
function of bounded variation if its distributional derivative is a vector-valued finite Radon
measure. The space of functions of bounded variation in € is denoted by BV (), and
by BV (€,{+1}) we denote functions in BV (Q2) having only the values 1 a.e. in 2. We
then call a measurable set E c £ Caccioppoli set if xg € BV (). For any Caccioppoli set
E, one can hence define the total variation |[Dxg|(Q2) of Dxg, as Dxg is a finite measure.
This value is then called the perimeter of F in €2 and is denoted by Py (E) := |Dxg| ().

In the sharp interface problem we still define the velocity of the fluid on the whole
of €2, even though there is only a part of it filled with fluid. This is realized by defining
the velocity to be zero in the non-fluid region. Hence, the velocity corresponding to
some design variable ¢ € L'(Q) is to be chosen in the space U¥ := {u € U | Ulfpe1y =
0 a.e. in Q}, where we recall that the fluid regions is given by {¢ =1} and the non-fluid
region by {¢ = -1}. Correspondingly we define V¥ := {u € V' | uf(,-_1y = 0 a.e. in Q}.
The space U¥ may be empty if the conditions u|(,-_1; = 0 and u|sn = g are conflicting.
Thus we only allow design variables ¢ where U¥ # @. The design space for the sharp
interface problem is given as

B0 i {cpeBV(Q,{il}) | [ edz<piol, Uu@}.

We can then write the the sharp interface problem as

min Jy (i, ) = £ (@, Du) da+yeoPo ({0 = 1)) (10)

subject to (¢, u) € %, x U? and
,LL[QV'wVvdx:fo-vdx VoeV?. (11)

Here, ¢ := f}l 2(s)ds = 5 is a constant appearing due to technical reasons in the limit
€ N\ 0, compare Section 4. Recall, that v > 0 was an arbitrary weighting parameter for the
perimeter penalization. Let us start by considering the state equations.

Lemma 2. For every p € L*(Q) such that U? # & there exists a unique u € U? such that
(11) s fulfilled. This defines a solution operator denoted by S| : <I>2d — U where we define
So(p) :==uweU? if u fulfills (11).
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Proof. This can be shown by an application of Lax-Milgram’s theorem, compare [27,
Lemma 6.1] for details. O

Using this solution operator we can define the reduced objective functional jo : L*(2) -
R by

. Jo (9,80 () if g e Py,
Jo(¥) = { o (12)
+00 otherwise.
Hence we see that (10) — (11) is equivalent to
min jo (). (13)

el (Q)

Remark 3. The existence of a minimizer for this problem may not be guaranteed in
general. There are several examples for the Laplace equation, see for instance [12, 15] and
included references, indicating this. But we will obtain as a consequence from our sharp
interface considerations in Section 4 and the fact that the porous medium — phase field
problem introduced in the previous section always admits a minimizer for each € >0, that
under suitable assumptions also the sharp interface problem (13) has a minimizer.

4 Sharp interface limit

We will show in this section, that the sharp interface problem (13), which was introduced
in the previous section, appears in some sense as limit problem of the phase field problems
(9) introduced in Section 2 as the phase field parameter ¢ tends to zero. We directly state
the main result of this section:

Theorem 2. Let (¢c)..q be minimizers of (jc)... Then there ezists a subsequence of
(p2)osg, which is denoted by the same, and an element @ € L' () such that

lim g = o[ £1(q) = 0. (14)
If it holds
[0e = %ol L1 ((weqivo(@)=1,0(2)<0p) = O () (15)
then we obtain moreover
lim j. (906) =Jo (‘PO) (16)
eNo0

and @q is a minimizer of jo.

Remark 4. In particular, Theorem 2 implies that if (15) is fulfilled, then the sharp inter-
face problem is well-posed in the sense, that there exists a least one minimizer of (10)-(11).
This has not been shown so far and is still an open problem for the gemeral shape opti-
mization problem in fluid dynamics, compare also discussion in the introduction and in
Remark 3. And so proving a convergence result without any condition as in (15) would
mmply a much stronger result concerning well-posedness of the shape optimization problem
that is not expected. In this sense, the result at hand seems currently optimal.
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Before proving this theorem, we start with a preparatory lemma.

c LY(Q) with u. = S, (¢:) be such that for e \ 0

e>0 =

Lemma 3. Let (p.)
li\l‘% I = w0 ”Ll(Q) =0, Jee- (’00||L1({4.00=1,<,05<0}) =0 (¢e) (17)

with pg € BV (Q,{x1}), U?° # @ and |p:| <1 pointwise almost everywhere in 2. Then
there exists a subsequence of (u:).. (denoted by the same) such that

. _ . 2 _
lim . ~wol gy =0, lim [ e (o) fuf® do =0

where ug = So (o).
Proof. We split the proof into several steps:

o Ist step: First of all we choose a subsequence of (¢.),,, that converges pointwise
almost everywhere in §2 to ¢g. Then we take some § > 0, such that € < § for € small
enough and notice that due to Assumption (A4) it holds a5 < a. pointwise, and
therefore we arrive in the pointwise estimate

as (wo () =limag (v (x)) < liminf a; (@ (2)) . (18)
eNo0 eNO0
This gives, as § \ 0,

ao (o (2)) = limas (o (2)) = lim (ggéoqs (e (w))) < lim (ligl\iglf ae (e (:v))) =

=liminf ae (¢e ()
eN0

(19)

for almost every x € ). On the other hand we deduce from a, < ag pointwise almost
everywhere

limsup (ce (e (2))) < limsup (ao (e (2))) = a0 (po () -
eNo0 eNo
We sum up the estimates to obtain
ao (o (#)) < liminf e (¢ (2)) < limsup o (¢ (%)) < a0 (po (2))
EN
which holds for almost every z € €2 and implies
liH(l) ae (e () = ap (po (x))  for a.e. x €. (20)
€N
This will be used later.
o 2nd step: Now we show, that for all v e H'(Q) such that V|{po=-1} = 0 it holds
. 2 B
ilgéﬁzag (¢e) [v]” dx = 0.
To this end, we notice first for almost every x € 2 that due to (20),

lim . (¢-(2)) [o(@)]” = 0. 1)
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To apply Lebesgue’s convergence theorem and deduce the convergence in L'(2) we
estimate in several steps. Since o, is decreasing we find

2 2 2
e (e (2)) [v(2)[” < ae (0) [v(2)]” < ao(0) [v(2)]
for almost every z € {¢. > 0} where we used lim.\ e (0) = ap(0) < oo, see Assump-
tion (A4). From this bound and the pointwise convergence (21) we obtain thanks
to Lebesgue’s convergence theorem

lim f e (¢2) Jvf* dz = 0. (22)
{pe>0}

exo0

To consider the part of 2 where ¢ is non-positive, we deduce from v|(,,-_1} = 0 that
{xeQlv(z)+0}c{xeQ|po(xr)=1} and thus we get for almost every z € {p. <0}
the estimate

az (pe(2)) [o(@) <@ () = po(@)] [0 (@) X (=1 (2)- (23)
>1

Due to the pointwise estimate |¢-| < 1,]po| < 1 we have

_ 2 — 2 2
Qe /Q X{po=1}n{p-<0} e = ol [v]” dz < Cae o - e ||1311({<p0:1}m{%<0}) ”U”LG(Q) .

(24)
We combine
lpe =0l L1 (po=1)n{p.<0y) = O (€) (25)
and a; =0 (5_2/ 3), see Assumption (A4), to get therefrom
. _ 2
}:1\{% [2 X{po=1}n{p:<0}Xe | = ol [v]” dz = 0. (26)

And so, in view of (23)

. 2 _
il\I‘% —/{%d)} a: (pe)|v["dz=0

which gi\/es combined with (22) ﬁnally
lim / Qe (P v 2 dxz =0.
51\0 Q € ( E) | | 0

We notice that for every € > 0 the velocity field u. € U is the unique solution of

1
min FL (v) = [ (Saz (e ol + & [0 —f-v) do

since the state equation (7) is the first order optimality condition for this optimization
problem, which is necessary and sufficient for the convex optimization problem of mini-
mizing the functional F; over U.

We proceed by defining

Fo()s= [ (500 o) o+ £ 1vef? - £ -0) da

and notice, that the unique minimizer of Fy in U is So(po), since again the state
equations are the necessary and sufficient first order optimality conditions for the convex
optimization problem min, Fo(v). We use the functionals (F.)_,, to show that (u.)
is uniformly bounded:

e>0
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e 3rd step: From U¥° # @ we know that can choose some ug € U¥° c U and obtain,
because u. are minimizers of Fy, the estimate

1
L (g |VU€|2 + 5055 (‘Ps) |'u'z-:|2 - fus) dr = Fs(us) < FE(U’O) =

1
= [ (B 1vuol + Sa. (e ol - £ o ) da < (o1)

1
< [Q (g [Vauof* - £ uo) dz + (ﬁﬂsﬂ\sélp o 30 (92 [ug[* dar + C)

for some constant ¢ > 0 and € > 0 small enough.

To see that limsup,.q [ o (¢c) lug|? dz < oo we can use the second step of this
proof. And so from (27), the inequalities of Poincaré and Young and the boundary
condition on u. we find a constant C' > 0 independent of € such that

e g1 () < C-

The result of the previous step implies in particular the existence of a subsequence
of (u:)_.q, which will be denoted by the same, that converges weakly in H'(Q) to some
limit element ug € U. To see that ug = So(p0), we next claim that (F.)_., I'-converges in
U with respect to the weak H'(Q) topology to Fy as € N 0.

e>0

e 4th step: We will see, that the constant sequence defines a recovery sequence for
(F:).so- Choosing v € U we can assume that F(v) < oo, otherwise it would hold
trivially

limsup F: (v) < Fy(v).
eNo

Therefore, we can assume [, o (o) lv|* dz < oo and so v € U¥°. Due to the second
step of this proof this yields

li 2 dz = 0.
61£%fgae(%)lvl dz =0

As the remaining terms of (F.)_,, are independent of ¢ this already implies

limsup F; (v) < Fy (v) .

eNo0

o 5th step: Let (ve)..o € U be an arbitrary sequence that converges weakly in H L)
to some v € U. Due to the compact imbedding of H'(Q) into L*(Q) we certainly
have a subsequence of (v.)..,, which will be denoted by the same, that converges
pointwise almost everywhere in {2 to v. From this convergence, the pointwise con-
vergence of a. (¢:) that was proven in (20) and Fatou’s lemma we see

2 e .. 2
= <
/Q ap (¢o) [v|” dx /Q (hIEIl\lélf Q. (gpg)) (hrgl\lonf v ) dz <
o 2 o 2
< <
< thIgl\%lf (e (¢e) [ve]”) da < llIEIl\lglf fﬂaa (e) Jve|” dx

which yields
Fy(v) < limiglf F. (v.)
€N

since the remaining terms are weakly lower semicontinuous in H(Q).
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This proves that (F.)., I'-converges to Fy as ¢ N 0 in U with respect to the weak
H'(Q) topology. In view of standard results for I'-convergence, see for instance [14], we
see therefrom that the limit point of (u.),_,, is the unique minimizer of Fy, and thus wug
minimizes Fy in U. We find that the first order optimality conditions for the convex
optimization problem min,cy Fy(u) are exactly given by the state equations (11). Thus,
the minimizer ug € U of Fy fulfills (11) and hence ug = So (o).

Due to the I'-convergence result we have additionally lim.o F: (u:) = Fy(up) and so

. | 1
hm[fQ o (gog)]ug\2+gWu€|2 dx] _ /S;iao (<p0)]u0]2+%|Vu0\2 de.

eNo0

=0

This gives us in view of (28) and by using Lemma 4 the convergences

. 1 2 . M 2 [ W 2
1 Z = 1 Lad S
lim ae (pe) lue|” dz =0, lim [ |[Vu.|” dz |Vuo|” dz

and finally proves the statement of the lemma.
O

In the proof we used the following lemma that can be verified by direct calculations:

Lemma 4. Let (ar)pen(bk)gen S R be sequences that are bounded from below with
limg oo (ar + bx) = (a +b) where a,b € R, such that a < liminfy_, . ap and b < liminfy_, o by.
Then it holds limy_, o ai = a and limy,_, ., by, = b.

Remark 5. If we are in space dimension d = 2 we can use that H'(Q) is imbedded in
LP (Q) for any 1 <p’' < 0o. Hence we can replace (24) for some 1 < p < oo by

1/p’

_ 2 — y 2
Qe [Q X{po=1}n{p-<0} [¥e = @ol [v|" dz < Cac |po - (pEHLf({@O=1}m{¢E<O}) H‘”| HLP’(Q)

where p’ = 1%. Thus to conclude (26) from (25) it is sufficient to assume @ = 0(6_1/”)

for any p e (1,+00). And so the condition &, = 0(5_2/3) claimed in Assumption (A4) can
be weakened if d =2, see also Remark 2.

Lemma 3 and the I'-convergence results of [29], where it is shown that a multiple of
the perimeter is the L'(Q)-I-limit of the Ginzburg-Landau energy, give us all essential
tools to prove Theorem 2.

Proof of Theorem 2. We split the proof into several steps:

e Ist step: Assume we have an arbitrary ¢ € L'(Q) chosen such that jo(¢) < co. We
will show that there exists a sequence (¢:)..q ¢ L'(€2) converging to ¢ in L'(Q) as
€ N 0 such that

limsup je (¢e) < jo(¢)-
eN0

We start by approximating EY¥ := {¢ = 1} by smooth sets. For this purpose we
use the result of [29, Lemma 1], which gives a sequence (E} ), of open subsets of
Q such that 0B, nQ € C?, |Ey| = |E¥| for k » 1, limg_o Po (Er) = Po (E¥) and
limy o0 [0k = @ 11(0) = 0 with the convergence rate

lx - ‘PHLl(Q) =0 (k_l) : (29)
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Here we denoted ¢y, := 2xg, — 1. The convergence rate (29) is not explicitly stated
in [29, Lemma 1] but follows easily from the explicit construction in the proof.
We now construct for every k large enough a recovery sequence (cplg)ao c LY Q)

converging to ¢, in L'(€) as € N\ 0 such that

' € 2
lim sup 0 (% |Vg0§‘ + gw (805)) dz < ~yeoPo (Ex) (30)

eN0

analog as it is done for example in [40, p. 222 ff], [29, Proposition 2] or [7, Proposition
3.11]. To this end we define for £ > 0 small enough the function g. : R - R by

7T
—1, S<_€ﬁ
ge (8) = sin(ﬁ) |s] < 8% .
s
1 S>6ﬁ

To fulfill the integral constraint, it may be necessary to shift the profile by a constant
7: > 0. Here we choose 7 := 5% = O (¢) to ensure ¢¥(z) = -1 if p(x) <0. Thus we
define

L () = ge (di(x) = ne) -
with dj being the signed distance function to I'y := 0E n 0 (2 \ Ey), which means
di(z) = d(x,Ty) for x € Ey, and di(z) = —=d(x,T';) otherwise. Due to our construc-
tion, T, defines a C2-submanifold and thus the signed distance function dj, to I'j, is
a C?-function. Then we get pointwise g.(dg(z) —1.) < i () and so in particular
Jo @t (z)dz < [, pr(z)dz = [, pdz < 3|Q| which means, that the integral constraint
is fulfilled for ©¥.
Now we use calculations that can be found in more detail in [29, 40, 7] to obtain

?i% H%c B (’OkHLl(Q) =0, H‘Pf - @kHLl(Q) =0 (e) (31)

and that (30) holds.
Then we choose a diagonal sequence (cplgk)
fulfills per construction

e that converges to ¢ in LY(Q) and

. Yk k12,7 k
hgisololp o (7 |V<p8k| + a@/} ((pak)) dx < yeoPo (E¥)

which follows from (30) and limy_,. Po (E)) = Po (E¥). Besides, we conclude from
(29) and (31) the following convergence rate Hdgk - (pHLl(Q) =0 (k™). We continue

with defining uy, := S, (nplgk) and see that U¥ # @ since jo(¢) < co. From Lemma 3
we thus get, after possibly choosing a subsequence, that (uy).. converges strongly
in H'(Q) to u := So(p) and it holds limseo [, o, (©F)) lug|? dz = 0. Using the
continuity of the objective functional we end up with

hinsup]gk(@gk) < jo(e).

e 2nd step: Next we will show that for any sequence (¢c).,q S LY(Q) converging to
an arbitrary element ¢ € L'(2) such that

”906 - SOHLl({:ceQ|<p(x):1,<pg(ac)<0}) =0 (6) (32)
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it holds
Jo(p) <liminf j. (p:).
eNo0

Without loss of generality we assume liminf. ¢ j-(¢:) < oo and can therefore assume
€ BV (Q,{£1}) and [, ¢ < B|Q|. Moreover we denote u. = S-(¢e).
From Assumption (A3) and liminf.\ ¢ je(¢:) < o0 we know that there exists a sub-

sequence, denoted by the same, such that (Hus I H1(Q)) 0 is bounded uniformly in
£>

e > 0. So we obtain for a subsequence, which is still indexed by ¢ > 0, that (u.)..q
converges weakly in H'(2) to some element u € H'(Q). Furthermore, we see that

liminf j. () < 1"ff 2 4z < oo
iminf je (pe) < oo = liminf | ae(pe) |uel” dz < oo

At the same time we can assume that (after choosing a subsequence) (¢¢).., and
(ue)..( converge pointwise almost everywhere in 2, and as a consequence we get
similar to (28) with Fatou’s Lemma

/Q a0 (@) |ul? da < lirg{‘iglffg e (@) [uel? dz < o

and thus in particular w = 0 a.e. in {p = -1} where we used limg oo (¢: (2)) =
ap (¢ (x)) a.e. in €2, which follows as in (19)-(20).

We have u. = S¢ (), which gives us u. € U, and as a consequence u € U. Alto-
gether this implies w € U¥, and thus U¥ # @ together with jg (¢) < co.

According to [29, Proposition 1] we have, after rescaling in ¢,
. €
raPa (e = 1) < inf [ (196 + 2o ()] da.
ex0 Ja\ 2 €

After those preparation, we choose a subsequence (jz, (¢e,)) gy Such that
kh—glo Jer (Per,) = hg{}glfjs (e) -

We will now apply Lemma 3 to deduce the convergence of a subsequence of (u., ),
in H'(Q). For this purpose, we use in particular the convergence rate of (¢, ) kel
stated in (32). Thus, we obtain the existence of a subsequence (usk(l)) JeN such that

ll_iglo Hugk(l) - uHHl(Q) = 0’ lim Q aEk(l) (90%(1)) ‘u€k(1)‘2 dz =0

|—o0

where u = Sy(p).
Plugging these results together we end up with

Jo () < lilrgglfjek(l) (Wsk(l)) = klggo Jei, (ey,) = hIsn\iélij (ip2)

and finish the second step.
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e 3rd step: We use the results of the previous steps to finally prove the statement.
First of all we see, that the existence of minimizers (¢.)..q € Paq Of (Jc)ooo With
Je (pe) < oo follows from Theorem 1.

Let now 3. ¢ L'(Q) be the sequence constructed in the first step corresponding to
some arbitrary @ e CIDg 4+ Then, as we have shown, there exists a constant C' > 0
independent of ¢ such that

e>0

Je (pe) < C.
Since ¢, is a minimizer of j. for every € > 0 we deduce
Je (pe) < Je (P=) < C

and so we can conclude
€
[ (B 1w+ 2o (o) do<c (33)
o\ 2 €

Using the arguments of [29, Proposition 3, case a)|, compare also [40, Proposition 3,
Remark (1.35)], we get from this uniform estimate that (¢:).., has a subsequence
that converges in L'(Q) to an element ¢q € L'(Q).

e>0

For the next step we assume that the sequence of minimizers (¢.)_., fulfills addi-

tionally (15). Then we see by the second step of this proof, that

e>0

Jo (o) < liminf je (¢¢) . (34)
eNO0

Taking another arbitrary admissible ¢ € L'(£2), jo(¢) < oo, we find again by the first
step of this proof, that there exists a sequence ($.).., ¢ L'(Q) converging in L'(Q)
to ¢ as € \ 0 such that

e>0
limsup je (P:) < jo (¥) -

eN0
And thus, by the minimizing property of ¢. and (34), we end up with

Jo (SDO) < liminf j. (‘Pe) < limsup je (@a) < Jo (30) (35)
eNo0 N0

which implies
jo (o) <jo(p) VeeL'(9),

And thus ¢ minimizes jo. It remains to prove (16). But for this purpose we choose
¢ = o in the previous considerations and obtain then from (35) that

Jo (o) < liminf je (¢c) < limsup je (2:) < jo (o) (36)
eNo0 eNo

and thus limg 0 je (¢e) = jo (¢o) - This finally proves the statement of the theorem.

O
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5 Optimality conditions

In this section we will derive first order necessary optimality conditions for both the phase
field problem (9) and the sharp interface problem (13) by geometric variations of the op-
timal shape. To be precise, we vary the fluid regions in direction of certain vector fields
and calculate the first variation with respect to those geometric transformations. This
means that we apply the ideas of shape sensitivity analysis to a setting where the refer-
ence domain are only Caccioppoli sets in general. In Theorem 5 we will then show that
we can also derive the optimality system for the sharp interface problem as a limit from
the corresponding diffuse interface system.

For this purpose, we have to impose additional differentiability assumptions on the
data, which have to be assumed throughout this section:

(A5) Assume that a. € C?([-1,1]) for all e >0 and f € H'(Q).
Assume that =+ f(z,v,4) € R is in WHH(Q) for all (v, 4) € R? x R and the
partial derivatives Daf (z,-, A), D3f (x,v,-) exist for all v € R?, A e R™? and a.e.
x e Let p>2ford=2and 2<p<2d42 for d =3 and assume that there are
a e L'(Q), by, by € L= () such that for almost every z € Q it holds

Doy f (2,0, A) <a(x) + by (2) [o' " +ba(z) 4] VoeRLAeR™. (37
Remark 6. If the objective functional fulfills Assumption (A7), we find that
F:HY(Q)s3uw~ —/Qf(x,u,Du) dz

1s continuously Fréchet differentiable and that its directional derivative is given in the
following form:

DF(u)(v) = /{;D(m)f (z,u,Du) (v,Dv) dz  Yu,ve H'(Q).

For details concerning Nemytskii operators we refer to [36].

As we will derive first order optimality conditions by varying the domain 2 with
transformations, we introduce here the admissible transformations and its corresponding
velocity fields:

Definition 1 (Vuq, 7;d)._The space V,q of admissible velocity fields is defined as the set
of all Ve C ([—7’, 7] ;C’(Q,Rd)), where 7 > 0 is some fixed, small constant, such that it
holds:

(V1) (V1a) V(t,-) e C%(Q,RY),

(VIb) 305 0: [V () =V ()l oqoreyney < Clo ol Y,y €6
(V2) V(t,z) n(zx)=0 on 09,
(V3) V(t,z) =0 for a.e. x €0 with g(x) # 0.

We will often use the notation V' (t) = V(¢,-).
Then the space 7,4 of admissible transformations for the domain is defined as solutions of
the ordinary differential equation

OTi(x) =V (t, Ty (x)), To(x) =x (38a)

for V € V,q, which gives some T': (-=7,7) x Q - Q, with 0 < 7 small enough.



SHAPE OPTIMIZATION FOR STOKES FLOW 17

Remark 7. Let V € V,q and T €V, be the transformation associated to V' by (38). Then
T admits the following properties:

o T(,z)eC! ([—%,7’] ,Rd) for all z € Q,

e 3c>0,V,y e Q, [T (,2) =T (,y) o1 ((or77,me <l =],

Vte[-7,7], x> Ti(z) = T(t,z) : Q - Q is bijective,

Vo eQ, T7'(-,z) e C ([-7,7],RY),

EIC>0,V:U,y€§,

T (,z) - T (.’y)HC([—%,fF],]Rd) <clz -yl
This is shown in [16, 17].
We start with stating optimality conditions for the phase field problem (9):

Theorem 3. For any minimizer (pe,u:) € Poq x U of (6) — (7) there exists a Lagrange
multiplier A\e > 0 for the integral constraint such that the following necessary optimality
system is fulfilled:

Ol (%OT;I):-Agfg%divvm)dgg, AE([Q@de-mm):o (39)

for all T € Toq with velocity V € Vy,q. The derivative is given by the following formula:

oo (e 0T = [ et (o) (e vae [V] S div V(©)) s
+ [ [Df (@ e, Due) (V(0), e [V],Dise [V] - Du. DV (0)) +

+ f(x,ue,Du,) divV(0)] dz+

¢ [ (1wl + Lo (02)) divV(0) = 1eve. - WV (0) Vi d

where e [V] := Otli=o (SE (4,05 o Tt_l) OTt) € H(IJ(Q) is given as the unique solution of

fQ ac(pe)ue [V] 2+ pVie [V]-Vzde =
= fQ,uDV(O)TVuE : Vzdw+LuVua:DV(0)TVzdx+
; fﬂ uVa. : v (div V(0)z - DV(0)z) da— (41)
- fQ,uVua vz divV(0)ds + fQ (VF-V(0) zda+ /Qf-DV(O)zdx—
- [ ac () ue DV (0)zda
which has to hold for every z € V', together with
diva [V] = Vu. : DV(0). (42)

Proof. We start with proving that R 2 I 3t + u.(t) o Ty ¢ H*(Q) is differentiable at t = 0
if I is a suitably small interval around 0 and wu.(t) := S.(p. o T;!). We also obtain that
Ue[ V'] := Otft=0 (ue(t) o T}) solves the equation stated in the assumption. To this end, we
apply the implicit function theorem and start by defining the function

F= (P, Fy):Ix{ve H(Q)| von = g} - V' x L(Q)
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by
Fi(t,u)(z):= /Q e (=) u- (det DT, 'DT;2) det DT, dz+
. /Q uDT; " : DI;TY (det DT} 'DT;2 ) det DT, da— (43)
- fQ £oT,-(det DT 'DT,z) det DT} d
and

By(t,u) = (DI : vu) det DT,

The function F, is motivated by the identity (DT{1 : Vv) o Ty = div (v oT{l). This
function is well-defined, since for any v € H'(Q) such that v|sq = g we have due to Gaufl’
theorem

/Q (DT[1 : Vv)det DIidx = /Q div (’U OTt_l) oTydet DT dx = fﬂ div (v OTt_l) dx =

_ T nd =[ T ndz =0
/szot ndr= [ goli -ndz

where we used, that Ty(z) =z if g(x) # 0 and [y, g -ndz =0, see Assumption (A2).
Fixing some G € H'(Q) with G|yq = g we define
(G1,G2) =G : IxH}(Q) - V' x L(Q), G(t,v):=F(t,v+G).

Direct calculations then show that
G(t,us(t)oT} - G) = F(t,us(t)) =0, Vtel.
Using additionally
D,G1(0,u. - G) (v) (2) = /Q e (pe) vz dac+/Q uvo-vzdr, D,G2(0,u.-G)v=divv

for all v € Hy(Q),z € V, we find by Lax-Milgram’s theorem and [38, Lemma I1.2.1.1]
that D,G(0,u. + G) : H}(Q) - V' x L3(Q) is an isomorphism. Hence, we can apply the
implicit function theorem to obtain differentiability of t = (u-(t)oTi - G) € H'(Q) at
t =0, and thus of t » u.(t) o T} at t = 0, together with

8t|t=0 (us(t) ] Tt) = 8t|t=0 (’Ulg(t) o Tt — G) = —DuG (0, Ues — G)71 atG (0, U — G) =

1 (44)
= DG (0,u: — G) " 9, F (0,u.) .

This means, that w.[V] e H}(Q) is the unique solution of (41) - (42).

Hence we can derive the differentiability of ¢ + j.(¢. o T;1) at t = 0 together with (40)
by using standard calculation rules that can be found in books introducing in the field of
shape sensitivity analysis, compare for instance [16, 39].

It remains to show the existence of a Lagrange multiplier for the integral constraint
such that (39) is fulfilled. Therefore, we distinguish between two cases.
First we assume that [, ¢.dz < §]Q|. Then we find for ¢ small enough and any transfor-
mation T € Toq that [, . 0T, da < B|Q, and so ¢, o T; ' € 4. Thus,

e (e 0 T7Y) 2 je () V[t < 1
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and so
8t’t:0j€ (SOE ° Tt_l) =0.

Hence, (39) is fulfilled for A. = 0. Therefore, so we can assume for the following consider-
ations that [, p.dz = 3|9

We follow now a similar idea as in [13, Proof of Proposition 1.17]. Since [, ¢ dz = 8],
we may find some W € V.4 with associated transformation S € 7,4 such that

_fﬂ%divW(o)dx: 1.
We define g := [~tg,t0] x [~50, 50] = R by

g(t,s) ==—stoaoT{1°5§1dw+ﬂIQ|

for tg,s9 > 0 small enough. We want to use the implicit function theorem to find a
function ¢ — s(t) such that g(¢,s(t)) = 0. To this end, we notice that by assumption it
holds ¢(0,0) = 0 and besides

Bsl5-09(0, ) = ~Dssm0 ]Q . det DS, da = — fQ oo divIV(0)de = 1 0. (45)

Moreover, since V, W € V,4 and thus V(¢), W (s) € C? (Q,R?) for all || « 1 and |s| < 1,
we see directly that g is continuously differentiable. And so the implicit function theorem
yields the existence of some 7y > 0 and a continuously differentiable function s : [-7, 7] —
R such that

g(t7 S(t)) = 07 Vit e (_7-07 TU) ) SI(O) == Sg(oa 0)718159(07 0)
The last identity can in view of (45) be rewritten as
s'(0) = -0:g(0,0). (46)

In particular, we obtain that ¢, o T{l o S;(lt) € ®,y for all t € (—79,79) and so

Je (806 ° Tt_1 °© s_(lt)) > je (e)
holds for all £ small enough. From this, we see
. - - . -1
0 = O¢lt=0Je (‘105 o T to 3(1t)) = Otlt=0Je (‘105 °© (Ss(t) °© T;f) ) . (47)

Introducing the notation T} := Sty © Tt, we find from S, T € Tyq that T € T4 with
dtle=0Ty = W(0)s'(0) + V(0). Now we notice, that by (40) and (41)-(42) the expression
Otlt=07e (gog o Tt_l) only depends on 0y|s=oT; and that C1(Q) 3 O4|s=0T} = Otlt=0je (= o T; 1)
is linear. Thus, (47) reads as

Oss=0J= (= ©951) 8'(0) + Dtls=0je (we 0 T, ) = 0.
Defining
Ae = Oylsz0je (= 0 95 1) € R (48)
we thus have

Otlt=07e (c,oE o Tt_l) =-A:5"(0) = A9’ (0) = =Ac fQ wedivV(0)dx
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where we made use of (46). This shows, that (39) is fulfilled for A, if A. is defined by
(48). As [ ¢ dx = 3|9, the complementarity condition of (39) holds trivially. And so it
remains to show that A > 0. To this end, we recall that [, p. = 3|Q| and by the particular
choice of W € V,4 we have

85\8=0(fﬂ @e 0571 dac) = [ﬂ(pedivW(O) =-1<0.

Thus, any s > 0 small enough fulfills [Q Ve oS;l dz < 8|9, which yields that ¢, o SS_1 €D,y
Hence,
je(‘PEOSs_l) >j:(pe) VO0<s<1

and thus we obtain
Ae = 8s|s:0j€ (SDE o Ss_l) > 0.

So we have shown, that A\; >0 is a Lagrange multiplier for the integral constraint.

We finally remark that A. > 0 does not depend on the choice of the transformation 7" € T4
or on its velocity field V' € V,4. This can be seen in the definition of A, see (48), since the
transformation S € T4 is chosen independently of T and V.

For some more detailed calculations we refer to [27, Section 7.2]. O

Remark 8. We want to remark, that one can also consider the phase field problem (6) —
(7) as an optimal control problem and then derive a variational inequality by parametric
variations as in standard optimal control problems, see [43]. This optimality condition is
then given by

ng(%)(@—%)mgfg(gp—%) dr>0 VYoeHYQ),lp|<1 ae in Q. (49)

This criteria can also be rewritten in a more convenient adjoint formulation.

Assuming more reqularity on §2, the boundary data g and the objective functional one
can then show, that the optimality conditions derived in Theorem 3 are necessary for the
variational inequality. To be precise, if the variational inequality is fulfilled, also (39) is
fulfilled. Roughly speaking, one can insert ¢ = pe 0Ty into (49), divide by t, and use some
rearrangements. For details, we refer to [27, Section 7].

In the next theorem, we want to state optimality conditions for the sharp interface
problem that can be obtained by geometric variations. We point out, that in contrast to
existing works [3, 10, 30, 37] no constraints on the reference domain, thus the minimizer,
are necessary despite it being only measurable.

As a preparation we prove the following lemmas:
Lemma 5. Assume T € Toq. Let v e H(Q) with dive =0 and define
vy = (det DT, ') (DT}) wo T, .
Then it holds divv, = (det DT ') (divw) o Tyt = 0.
Lemma 6. Let u e HY(Q) with divu =0. Then
div (divV(0)u + DuV (0) =DV (0)u) =0 VYV € Vg,

where this tdentity has to be understood in the distributional sense.
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Both lemmas can be shown by direct calculations, see [27, Lemma 3.6, Lemma 3.7].

Now we can state necessary optimality conditions for the sharp interface optimization
problem (10) - (11):

Theorem 4. For every minimizer (¢o,uo) € Y, xU? of (10)-(11) there exists a Lagrange
multiplier Ao > 0 for the integral constraint such that the following necessary optimality
system is fulfilled:

at|t:0j0 (QOO o Tt_l) = —)\0 [Q ®o div V(O) dZL‘, )\0 (‘[Q ®o dx - 5 |Q|) =0 (50)
for all T € Toq with velocity V € Vy,q. The derivative is given by the following formula:

Oi-0jo (0o T7") = [ DS (w0, Dug) (V(0), o [V], Disg [VV] - DugDV (0)) +
+ f(x,ug,Dug) divV(0)] dz+ (51)
+fyc0f9(divV(O)—1/-vV(0)z/)d]DXEO\

DxEgq
DX £ |
compare [2].
Moreover g [V'] = 9tfi—o (So (w0 o Ty ) o Ty) € HY(Q) with iy [V] =0 ace. in QN Ey is
given as the unique solution of

with v = being the generalised unit normal on the Caccioppoli set Ey := {@g =1},

uVig [V]:vzde = f uDV (0) Vug: Vzda + f pVug : DV (0)! vzdo+
FEo Ey Eo
+ fE uVug:V (divV (0) z-DV (0) z) dz - fE uVug : VzdivV (0) de+ (52)
0 0

v [ (9F V) -zder [ fDV(0)zdr

which has to hold for all z € VE0, together with
divay [V] = Vug : DV(0). (53)

Proof. Let us first notice that U?°® % g where ¢o(t) := ¢p o T;', and hence wug(t) :=
So(po(t)) is due to Lemma 2 well-defined. Indeed (det DT} ') (DT})ug o Ty is due to
Lemma 5 and Definition 1 an element in U?*®) since ug € U0,

Our proof starts with considering the mapping R 2 I3t~ ug(t) o Ty € HY(Q), where I is
assumed to by a suitably small interval around 0. The procedure to show differentiability
of this mapping at ¢ = 0 is to apply some implicit function argument. But the mapping
{ve H{(Q) | v|aug, =0} 3 v+ divw is not surjective onto L3(Q) or L3(Ey), as we don’t
have enough regularity of Ey := {¢p = 1} (see the counterexample in [22]). Instead, we
apply [37, Theorem 6], which is a result for differentiating implicit equation solutions in a
linear setting. For this purpose, we define F : I x V¥° - (V%) x L2(Q) such that F(t,-)
give the weak from of the state equations on {pg(¢) = 1} pulled back onto {9 =1} = Ey
and transformed to a homogeneous problem where. Some additional terms have to be
added because we will insert the divergence free pullback (det DT}) (DT ') wuo(t) o Ty of
ug(t) onto {po(t) =1}. To be precise, we define
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F(t,v)z:= /};0 pvu: DT Ty (det DT{lDth) dx—
- [ v (det DT,DT; ) -w: DTV (det DT} ' DT2) - det DT, dar =
Eop
- fE pudet DT;'DT; - DI} - v : DIT TV (det DI} DTy 2) - det DT dar—
0

- [ u9(4et DL,DT;) - u: DI TV (det DI} 'DTz) - det DTy doda Yz e V.
0

Then we observe with Lemma 5 that due to wug(t) € U*® and T ¢ T,y it fol-
lows (det DT3) (DTt_l)uo(t) oTy € U¥". Moreover, for z € V¥ arbitrary we get z; :=
(det DTy ') (DT) 20 Ty € V%) and thus we find

[E M(VUO(t))(ﬂ)-(Vzt)(ﬂ)-detDﬂdx—fE FoTy 20T, det DT, dz =
0 0

= Vug(t) -Vz dx—[ -z¢dz =0.
th(E())“ ot) - vz ey ¥

Next we choose some G € U?°. Then we see by direct calculation that it holds

F(t,(detDTt)(DT;l)uo(t)oTt—G)z:[E foT, zoT-det DT,dz - F (t,G) = =
0
:fE foTy- (det DIy 'DT;z) - det DT} du — F (t, G) z = F(t)2

0

which defines _
F(t) e (V¥0)'.
Summarizing, we have

F(t,)eL(VP,(V¥)) Vtel

and
F(t,(detDT,) (DT; N uo(t) o T, - G) = F(t) Vtel.

Due to the differentiability assumptions on the transformation 1" € 7,4 we observe that
It F(t,) e L(V#,(V#))
as well as I 3t~ F(t) € (V¥°) are differentiable at t = 0. We see that it holds for all
v,z € V¥
F(0,v)z = /Eo puvVo - Vzdr. (54)
Thus for fixed v € V¥° we can estimate, using Poincaré’s inequality,

2
F(0,v) =z IMHVU”LQQ
IFO,0) ey = sup L OE ) o(2) ol g
zeV¥0.{0} ||Z||H1(Q) H'U”Hl(g)

And so we can apply [37, Theorem 6] to get differentiability of

I>tw ((detDT}) (DT; ') uo(t) o T - G) e H' ()
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and thus of t = ug(t)oT; € H'(Q) at t = 0. Besides, we obtain that 4o [V] := 0¢|s=0 (uo(t) o Tt)
is the unique solution of

F(0,(divV(0))ug—DV(0)ug + i [V]) = F'(0) = dy|s=0F (t,uo - G)

which yields after some calculation (52).
We now proceed by deriving (51). Therefore, we first note that by [26, 10.2] it holds
B4lieo Pa (T (o)) = fQ(divV(O) -9V (0)r) dDxzl.

The remaining terms of d¢t0jo (goo o T{l) can be calculated directly and hence we arrive
in (51).
Finally, the existence of a Lagrange multiplier A\g > 0 for the integral constraint can be
deduced by the same method as in Theorem 3.

O]

Remark 9. Assume that Ey :=int ({¢g = 1}) is a well-defined open subset of Q0 such that
OEonQ € C?, Ey has finitely many connected components, g € H> (092) and (D2 f (-, up, Dug)—
divDsf (-,ug, Dug)) € L*(Ey) for wg € H*(Ey). Then one can also derive the “classical”
shape derivatives which can for a large class of possible objective functionals be rewritten in
the well-known Hadamard form, compare for instance [16, 39]. In this case, the optimality
conditions derived in Theorem 3 can be shown to be equivalent to the following system,
which can be obtained by classical calculus:

] D (f (x,up,Dug)) V(0)dx + f f (x,up,Dug) divV(0) dz+

FEy Q

+ / (novqq - dvug — (D3 f) (x,ug, Dug) v - dyug + yeok + 2X00) V(0) - vdzx = 0,
anﬁQ

which holds for all' V € Vyq. Here, ug € U¥° solves the state equations (11) corresponding
to o and qq € Hy(Eo) with qolor, =0 is the solution of the adjoint equation

/;; uvqy - Vodzr = fE D23y f (2,10, Dug) (v,Dv) dz Vve Hé(EO), dive = 0.
0 0

For details, we refer to [27, Section §].

So far, we have derived necessary optimality conditions by geometric variations for

the phase field problem, see Theorem 3, and also for the sharp interface problem, see
Theorem 4. Additionally, we know, that in the diffuse interface setting, where the problem
inherits the structure of an optimal control problem, the geometric optimality conditions
are fulfilled if the variational inequality, which is obtained by parametric variations, is
fulfilled, compare Remark 8. Additionally, we can also show equivalence of the optimality
system in the sharp interface to shape derivatives in Hadamard form, compare Remark 9.
Thus, the optimality conditions are all consistent with existing approaches towards these
problems.
In Section 4 we have connected the phase field problems to the sharp interface problems by
showing that as the thickness of the interface tends to zero, also minimizers converge under
suitable assumptions. We now complete this picture by showing that also the optimality
conditions of the phase field problem can be shown to be an approximation of the derived
necessary optimality system in the sharp interface setting. This is the content of the
following theorem:



SHAPE OPTIMIZATION FOR STOKES FLOW 24

Theorem 5. Let (¢:).. be the sequence of minimizers of (je)..q converging to g € L*(£2)
given by Theorem 2. Assume moreover that

0= = ol 21 ({aeqipo@)-1,0- ()<0p) = O (€) - (55)

Then the limit element @q is a minimizer of jo. Moreover it holds
lim Orls=oje (= 0I5 ') = Otle=ojo (w0 o ;) VT € Tau. (56)

If {@o = 1}| > 0 then we have additionally the following convergence results:

e 3 0 in L'(Q), (57a)

we S ug, e [V] 2D i [V] in H'(Q), (57b)
0 . 0 . .

Ae =5 Ny Jele) = Go(o) in R, (57c)

where u. = Sc(@e), wo = So(¥0), (Ae).o € RT are Lagrange multipliers for the integral
constraint defined due to Lemma 3, Ao > 0 is a Lagrange multiplier such that it holds
(50), and thus is a Lagrange multiplier for the integral constraint in the sharp interface
according to Theorem 4.

Remark 10. We remark that the condition |{@o=1}| > 0 is only necessary to prove
convergence of the Lagrange multipliers (\:)..q, whereas the other statements would hold
true even if this condition is not fulfilled. But as |{¢o = 1}| =0 means that there is no fluid
present at all (up to sets of measure zero) this is not a restrictive assumption. For instance
in the case of non-homogeneous boundary data, thus if H"' ({z € 0Q| g(z) #0}) > 0, we
find that |{xz € Q| po(x) =1} >0.

Proof. We assume for the following considerations that (55) is fulfilled. The existence of
a subsequence of (:)_., that converges to a minimizer g of jo in L'(£2) follows from
Theorem 2. In fact, we even obtain therefrom directly the convergence of the objective
functionals, see (57c). Moreover, by using (55) we can apply Lemma 3 to obtain, after
possibly choosing a subsequence

. 2 B . 3 _
lim [ (o) fucl’ dz =0, lim Ju = wol| g1 = 0 (58)

which shows the first convergence of (57b).
From the second step in the proof of Lemma 3 we even find

lim | oz (¢2) P dz=0 VoveHY(Q),v]|o g0 =0. (59)

eNO0

This result will be used later on in this proof. We proceed by defining the auxiliary
functions w; := (-div V' (0) + DV(0)) u. for all € >0 and obtain from the regularity of V'
and the already proven convergence of (u. )., directly that (w.)_,, converges strongly in
H'(Q) to wg := (~div V' (0) + DV (0)) uy.

We recall, that 4. [V] € H(Q) is due Lemma 3 given as the unique solution of
(41) - (42). The main idea of the proof is to use the approach of Lemma 3, i.e. we
show that (1. [V]),,, are the unique minimizers of functionals which I'-converge as € » 0
in the weak H'(Q)-topology. To this end, we define for v e H'(Q):

F.(v) = fQ (%ozE () |vf + % |V'v|2) dz - R.(v)+

+ ‘[Q Qe (‘Ps) U - DV(O)U dx - De(ws)(v)

e>0
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where R, ¢ H™*(Q) is given by
R.(2z) := [Q;LDV(O)TVUE :Vzdx + fQ,uVug :DV(0)Tvzda+
+p fQ Vu. : V (divV(0)z-DV(0)z) dz-
- fﬂwug . V2 divV(0) dz + fﬂ (VF-V(0))-2+ f-DV(0)zda
and D.(w.) € H () is defined by
Daw2)(2) = [ aclpw. -2+ pvw. - vzda.

Additionally, we define

Fo(v) == [Q(%ao(%w%ngﬁ) dz - Ro(v) - Do(wo)(v)

where
Ro(z) := [QMDV(O)TVUO :Vzdr + fQuVuo :DV(0)vzde+
+ [ fQ Vug : V (divV(0)z -DV(0)z) de—
- fﬂwuo - VzdivV(0)dz + fﬂ (VF-V(0))-zda+ [Qf-DV(O)zda:
and

Do(wo)(2) = [ aolo)wo-z + pvwo - vz da.

We remark that (R.)_, € H1(Q) and Ry € H™*(Q2). From the already proven con-

e>0 =

vergence of (u:).. to ug we find that (R.).., converges to Ry (strongly) in H ().
Next we see, that due to Lemma 6 it holds
div (divV(0)us + Du.V(0) =DV (0)u:) =0
and so
divw, = div (-divV (0)u. + DV (0)u.) = div (Du.V(0)) = Du. : VV(0)

where we used for the last step divu. = 0. This implies div (4. [V ] - w:) =0. And so we
can conclude from 4. [V]|gn = we|on = 0 that (4. [V]-w.) € V. In particular, we can
insert (tt: [V]-w:) € V as a test function into (41) and end up with

Joc (o) i VIF da+ [ ul9ie [VIP de = R (i [V] - w2) -
- /g; e (¢e) ue - DV(0) (e [V] - we) do = De (ue [V]) (we) <

< Bl -1 @y (e [V a y + I0el prr y) +

+C(—/Qa£ (%)|ua|2); ((fgaa (p2) |t [V]|2); +('/S;Oéa (@5)|’wa|2);)+

co( fas (o) ([ e (o e [VIE) 00 gy 191V -

=
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By observing

fgas (o) [we]? dz = anE(cpe)K—divV(O)+DV(0))u5|2 dz <

(61)
<C /Qaa (¢e) |u5|2 dz.
we find thanks to Young’s inequality from (60)
Jas (el VIP da+ [ Blva (V)P da <
< Reloey | Ve VLo + ey |+ € (o (ool tuel?)+
| S — —_———
<C <C <C
+ | Vw, ”L2(Q) |V [V]||L2(Q) :
| S ——
<C

And so, by using again Young’s inequality together with Poincaré’s inequality we end up
having a uniform bound on [t [V]| z1(q) and

sup | ac (pc) lise [V]P dz < . (63)

e>0

This directly implies the existence of a subsequence of (. [V]) denoted by the same,

that converges weakly in H'(Q) as € \ 0.

e>0

After these preparatory steps we notice that (u. [V] - w.)_,, are the unique minimizers
in V' of the convex functionals (F:)_,,, and similarly (o [V]-wo) is the unique mini-
mizer of Fy in V. This follows by observing that the linearized state equations (41) — (42)
and (52) — (53) are the necessary and sufficient optimality conditions for these convex op-
timization problems, see also discussion in Lemma 3.

We continue by proving that (F;)_,, I'-converges to Fy in V' with respect to the weak
H'(Q) topology as € \ 0. For this purpose, we will follow closely the arguments of
Lemma 3 and only point out the steps which differ from the corresponding parts in the
proof of Lemma 3. We conclude in several steps:

Claim: For any v € V' it holds limsup, . o F:(v) < Fy(v).

Proof: Without loss of generality we can assume Fy(v) < oo, which gives [, ao(p0) v)? <
co. As we know ag (¢p) € {0,00} a.e. in Q this already implies v = 0 in {¢g = —-1}.
Using (59) we deduce therefrom

. 1
lim o 5045 (ve) |’U|2 dx = _[Q ag (o) |’v|2 dz =0

eNO0

and applying Holder’s inequality we get moreover

<o [ teotu?) (foc k) 220

‘fﬂae (pe)ue -DV(0)vdx
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Similarly, we get due to (61) that

<0 fatetular) ([ ate ol o)’ =50

Combining these results with the convergence of (w.)_., to wo in H*(Q) we deduce
the claim.

€ € E'd
’[Qa(cp)'w vdz

Claim: Let (v.)_., < V be such that (v.)_,, converges weakly in H'(Q) to v as & \ 0.
Then:
Fy(v) < liminf F(ve).
eNo

Proof: We assume liminf.\ o F.(v.) < oo, otherwise the claim would be trivial. Following
the arguments of Lemma 3, in particular the calculation in (28), we can deduce

2 o 2
dz < liminf f dz.
[ aoteo) ol do <timint [ a.(eo) ool do
Next we choose a subsequence such that
. 2 P 2
lim [ e (9o oo, do=timinf [ o (0)odl? da.
By Holder’s inequality we find for this subsequence

’fﬂ ae, (¢e,,) U, - DV (0)v,, dz| <

1 1
2 2
<0 [ an (el tualde) ([ as (o) ol de)

<C

which gives in view of (58),

klim ‘fQ ae, (pe,) ue, - DV (0)v,, dx‘ =0.

Thus, we obtain

hrgr&glf < khﬁnglo ’fﬂ ag, (pe, ) U, - DV (0)v,, dz|=0

fQ ae (pe) ue - DV (0)v. dz

and therefrom
lim inf [ as(pe)ue - DV (0)ve dx = 0.
eNO0 Q

Similarly, we find by means of (61)
0= _/an(npo)wo code = lilgn\iélf '[Qag (pe) we - v-dx.

Now we can use the strong convergence of (R.)_., to Ry in H™*(Q2) and the weakly
lower semicontinuity of the remaining terms to deduce the claim.

Combining the previous two claims, we can conclude that (F;)_,, I'-converges to Fj in V'
with respect to the weak H 1(Q) topology. And so standard results for I'-convergence, see
for instance [14], imply:
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Claim: If v, € V minimizes F; for every € >0 and the sequence (v.).,,, converges weakly
in H'(Q) to vg, then vy minimizes Fy and lim. o F.(v.) = Fo(vo).

We will use this result to show the remaining statements of the theorem. To this end,
we recall that (1. [V]-w.)_, converges weakly in H'(Q) to some element in H'(Q),
which has to be a minimizer of Fy due to the claim above. But since Fj is a strictly convex
function, the minimizer o [V ]-wy is the only one, and thus (u. [V'])_,, converges weakly
in H'(Q) to 4o [V] and

li\{%Fs('us [V]-we) = Fo (4o [V]-wo). (64)

By

Do [ ool ds) ( [[oc el VP as)’ (69

| [ o (e we e [V] do

(58) (63)
——0 <

C

we also have

lim 0 ae () we - [V] dx = 0.

eNo0

Thanks to the convergence of (R.)_., to Ro in H'(Q), the strong convergence of
(W) in H'(Q) this yields in view of (64)

| [ s (o) e [VIE + & 9ae [V do+ [ ac (o) e DV ()i [V] dz| -

eN0

1
- [ 3000 o [VIP + £ vio [V]P da.

Applying again (63) and (58) we find similar to (65)

lim o O (pe)ue-DV(0)u. [V]dz=0

eNO0

wherefrom we arrive in

eN0

ti [ [ 2o (o) e VI + & i VIE] = [ S0 (ool (VI + & (v [V do.

Thus, using Lemma 4, we can deduce the strong convergence of (. [V])_,, in H*(Q)
and

. 1 . 1 .
tim [ Sae (@) [VIP do= [ ao(eo) i [V]P do =0,

We continue this proof by considering the terms in the optimality system arising from
the Ginzburg-Landau energy. To this end we observe that

. . . . 2 _
lim j. () = doeo), lim [ ac (o) el da =0
together with (57b) imply

. ve 2 ~ ~
lim Q( 5 [Vipe|” + gww)) dz =veoPo ({0 =1}).
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Using the same calculations as in [23, Proof of Theorem 4.2] we can deduce therefrom

) € 1 . .
timy [ (S190:+ 20 (0)) divV () do =00 [ divV(0)d[Dy
ex0 Q\2 € Q

and

lim'y&t/ Vgog-VV(O)Vgoadw=’YCofV'VV(O)Vd|DXEo|
eNo Q Q

where v is as usual the generalised unit normal on Ej := {¢g = 1}. The proof in [23] uses
ideas of [28] and is based on the Reshetnyak continuity theorem, see [2, Theorem 2.39].
For more details we refer the reader to [23, Proof of Theorem 4.2].

To finish the proof of (56) we deduce from (58) and (63)

<( [octe ) ([ oot VIE) 220

At the same time, (56) and the regularity of V € V.4 imply

[ ac e ue - [V] da

. 1 2 1
ll{‘% 3% (ve) Jue|” divV(0) dz = 0.

Due to the proven convergence results of (u.),,, and (. [V]).,, we thus obtain
g% Otli=oge (pe o Ty ) = Otlezodo (wo o T ). (66)

It remains to consider the Lagrange multipliers (A;) In view of (39), we see that the

left-hand side of

e>0"

6t|t:0js (805 ° T;f_l) ==X [Q e div V(O) dz

converges for every T € T,q with velocity field V € V4 as € N\ 0. We choose a specific
velocity field V' € V4 such that it holds [, ¢odivV(0)dz > 0. This is possible, since
w0 € Pog and thus {pp=1} ¢ Q, and due to the assumption |[{¢y = 1}| > 0 it holds
{po=-1} € Q. Then we deduce from (66) that

lim — i =i o ) = Oyli=0j ).
lim - fg%dlvV(O)dx lim Oli-03z (e © Ty ') = Atlr=ojo (w0 0 Ty ')

But since
Iimf %diVV(o)dx:fgaodivV(O)dmo
enx0JQ Q

it follows therefrom that (\;).,, converges in R, and we call the limit element Ay > 0.
Additionally, we know then that Ao > 0 fulfills (50). This finally finishes the proof. O

6 Pressure terms in the objective functional

6.1 Phase field problem

As already mentioned in the introduction, we can also include the pressure of the fluid
in the objective functional. There are several applications where this is desirable. But in
contrast the the velocity of the fluid, we cannot give a meaning to the pressure in the whole
of 2 in the sharp interface setting, as we do not know if the pressure vanishes outside the
fluid region or how it behaves. And so it only makes sense to consider the pressure in a
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part where fluid is present. Mathematically, this condition is implemented by including
an additional constraint in the admissible regions. To be precise, we prescribe the design
variable to have the value one, which corresponds to presence of fluid, at certain given
region M;, i = 1,...,m. Those regions M; are given as the parts where the pressure is
included in the objective functional.

(A6) Assume to have finitely many fixed disjoint Lipschitz domains (M;);",, M; c Q. Let
hyr : R™ — R be a Carathéodory function, that means here hy; is assumed to be
continuous, such that |k (v)] < C'|v|* holds for all v € R™ for some constant C > 0.
Additionally, assume that

H: 1) q7 [ Mo axr, ) da (67)

is weakly lower semicontinuous and bounded from below. We use the following the
notation:

fgh(p)da: = thM (PXMys-- -, PXM,) dz Vpe L*(Q).

Moreover, we have to assume some compatibility condition such that the admissible
set is not empty: Y% |M;| < 8]9).

The admissible design functions ¢ for the phase field problem are then chosen in
D= {pePoaleln, =1, Vi=1,...,m}

and the pressure is chosen in

L3(Q) = {qeLZ(Q) | vaqu =0, ¥i=1,...,m, dlowm :0}_

The choice of the pressure to be zero outside the regions M; is arbitrary and does not
influence the problem, as the objective functional only takes the pressure inside M; into
account. The overall optimization problem in the phase field setting is given as

win JF (,00)i= 3 [z (@)l de+ [ (o, Du) + hip) des
(p,u.p) 2 Ja Q (68)

g 2 1
£ 20 () d
+7f92|w| +€¢(<P) z
subject to (p,u,p) € @, x U x L?\/I(Q)a

[Qoés(SO)U'vdﬂﬁ+M/QVu~Vvdx:fﬂf-vdx VoeV (69)

and
]Qag(go)u-vdx+[QuVu-Vv—pdivvda:=fﬂf-vdm V’UEH%(MZ'), (70)
i=1,...,m. (71)

Remark 11. Of course, one could also replace the objective functzonal Jo f(z,u,Du) +
h(p)dzx by fo(x w,Du, p)dz for an appropriate chosen function f. But to simplify the
considerations and notation we focus here on the form specified above.
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Remark 12. By standard results, compare for instance [22, 42], we obtain for an arbitrary
bounded Lipschitz domain U c R? the following result: If F e H Y (U) with F(u) =0 for
all w e HY(U) with divu =0, then there exists some p € L*(U), which is unique up to a
constant, such that Vp=F in H ' (U).

This result ensures for any F e H™'(Q) such that F(u) = 0 for allu € HY(U) with divu =
0 the existence and uniqueness of p; € L2(M;) with fMi pidx =0 such that Vp; = F|H(1)(Mi)
in H'(M;). Then we can define p = ¥ p; € L2,(Q) and see that Vp = F|H(1)(Mi) in
HY(M,;) foralli=1,...,m.

We directly establish the following existence results:

Lemma 7. For every o € LY(Q) with |o(x)| < 1 a.e. in Q there exists a unique w e U and
p e L2,(Q) such that (69) — (70) is fulfilled. This defines a solution operator SL : &, —
U x 13,(9), 87 (9) = (u,p) if (u,p) solve (69) ~ (70).

Proof. By Lemma 1 we obtain for every ¢ € L'(Q) with || < 1 a.e. in © a unique solution
u e U of (69). The pressure p € L2,() can then be obtained as outlined in Remark 12. [

Remark 13. We obtain by standard results, compare for instance [42, Proposition 1.2],
in particular that for any p € L3,(Q) fulfilling (70) for some w € U and ¢ € L'(Q) with
lo| <1 a.e. in it holds

Ipl 220y < () (2 Jac()u - pdu - f||H-1(Mi>) . (72)
i=1
This estimate is important for the following considerations.

We can hence define the reduced objective functional j©: L'(Q) - R by

: IE (.80 (9) if pe®y,
it (@) =:{ ( ) g (73)
+00 otherwise
and obtain that (68)-(70) is equivalent to
min (). (74)

el (Q)
Additionally we obtain well-posedness of the optimization problem:

Theorem 6. There exists at least one minimizer ¢, € @, of iE, and hence there exists
also a minimizer of (68)-(70).

Proof. This can be established by the direct method in the calculus of variations by using
in particular the pressure estimate (72) and the arguments of Theorem 1, see also [27,
Lemma 19.2]. O

6.2 Sharp interface problem

Corresponding to Section 3 we can introduce a corresponding sharp interface problem in
a setting of Caccioppoli sets including a perimeter constraint. But before introducing the
problem formulation we study the general existence of the pressure in measurable sets.
Standard results, compare [42, 22], only ensure the existence of a pressure in a Lipschitz
domain. But in our setting we can define some pressure in a measurable set, as the
following lemma shows:
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Lemma 8. Let E c Q) be a measurable set and u € U with ulo.g =0 a.e. such that
,u/QVu‘Vvdx:[Qf-'vdx Vv eV, v|gg =0. (75)
Then there exists some p € L (E) such that
ufgvu-vvdx— prdivvdx - [Qf-'vdx Vo e HY(Q), vjour=0.  (76)

Proof. We denote by ¢ :=2xp—1¢€ L' (Q, {£1}) the function associated to the measurable
set E. For € > 0 we define u. € U as a solution to

_[Qas(@)us'vdﬂH,u[QVug'V'vdxz[Ef-'vdx YvoeV (77)

which exists for example due to Lemma 1 and means that u. = S (¢). Defining ¢, := ¢
for all £ > 0 we see as in the proof of Lemma 3 that (after possibly choosing a subsequence)
(ue),.5o converges to u in H'(Q) as € N 0 and lim. o Jo ae (¥) ]u€|2 dr = 0. Now from
(77) and using the convergence of (u.)., to u in H'(Q) we see that (ae (¢)uc)_q is
bounded in V' and thus there exists some A € V' such that

lim o % (p)ue-vder=A(v) VveV

eN0

and so passing to the limit in (77) gives
A(v)waVu-wdx:fEf.vdx Vo e HL(Q), dive = 0.
For some v € H)(Q) with v|g.g = 0 we obtain

wdr= [ v dos [ wde=0. (78
Jyoe@uevar= [ ac(@)uc v dre [ ac(p)uevda (78)

——
- =0

So we know that we can extend A to a linear, continuous functional on
(V+{we H(Q) |wlo.p = 0}).

Since V+{'w e HY(Q) |wlog = 0} is a linear and closed subspace of H{(£2) we can extend
A to a linear and continuous functional on H} () by defining

A(w) =0 Yve(V+{weHYQ) | wlop=0})"

where (V + {'w e HY(Q) |w|o.g = O})l denotes the orthogonal complement of
V+{weH{(Q) | wlo.p =0} in H)(Q).

Using standard results concerning solvability of the gradient equation, compare for in-
stance [22, 42] or Remark 12, we can thus conclude that there exists some p € L2(2) such
that

A('v)+quVu'V'vdx—/deivvdx:/Qf"vda: Vo e HE(Q). (79)

Since due to (78) it holds A(v) =0 for all v e H}(2) such that v|g.z = 0, this implies in
particular

quVu'Vvdx—/deivvdx:/S;f-vdx Vo e Hy(Q), vz =0

and so p|g is a pressure associated to w fulfilling (76).
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One question that arises during these considerations is, if the set {'v e HY(Q) | v|owg = 0}
can be identified with H{}(int(E)), because then Lemma 8 would define a pressure p €
L?(int(E)) associated to the Stokes equations that are fulfilled in int(E), whereas int(E)
is not a Lipschitz set as it is necessary for the classical results. In those results the lack
of boundary regularity implies that the pressure can only be found in Ll2oc of the corre-
sponding subset.

But due to the considerations in [18], see also [27], we find one representative E. of the
equivalence class of F, a so-called “crack-free” representative, such that

{ve H{(Q) |v=0ae. in O E.}= H}(intE,) = H}(intE.).

Now fixing this representative E., we can solve the Stokes equations in intE. in the sense
of (75) and obtain due to Lemma 8 an associated pressure p € L? (intE..).

But even though we could define one pressure in the usual way for the sharp interface
equation this is not the situation we want to consider because it is not clear which con-
ditions to state to get uniqueness of this pressure, since the Caccioppoli sets in the shape
optimization problem may have varying, or even infinitely many, connected components.
In particular, we cannot fix the connected components, since topological changes are al-
lowed during the optimization process. Instead, we define the pressure only in the fixed
domains M;, as already done in the previous subsection. Thus the overall optimization
problem in the sharp interface formulation is given as

i I (pup) = [ F G Du) des [ @) desreoPo(fe=11) (80

with
(¢,u,p) € ®) xU¥ x Ly, (Q)

such that

,LL[QV'wV'vdx:fo-vdx VoeV?, (81)

quVu-Vvdx—[deiV'vdx=Af-vdx Voe HY(M;),i=1,...,m. (82)
The design space @2 is given as
)= {pedy| el =1, Vi=1,...,m}.
We directly obtain:

Lemma 9. For every p € L'(Q) such that U¥ # @ there exists a unique w € U¥ and p €
L2,(Q) such that it holds (81)-(82). This defines a solution operator St :62 - UxL2,(Q),
where 8§ () = (u,p) if (u,p) fulfill (81) - (82).

Proof. Existence and uniqueness of u € U¥ follow from Lemma 2, and the existence and
uniqueness of p in L3,(9) follows then as indicated in Remark 12. O

And so we end up in defining the reduced objective functional for the sharp interface
problem by

T5 (0,85 (9)), if pe®,
+00, otherwise.

Jo LM >R, g (v) =={ (83)
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6.3 Sharp interface limit

We want to show a sharp interface limit result corresponding to Theorem 2 and directly
state the main result:

Theorem 7. Let (¢:).. 0"
(p2) o0, Which is denoted by the same, and an element pg € L' (Q) such thatlim. <o |¢: - ¢o I 1) =

be minimizers of (jf)E Then there exists a subsequence of

0. If it holds = = ol 11 ({meqipo (2)=1,0. (x)<0}) = O (€) then we obtain moreover limewo 38 (¢e) =
jé) (v0) and @q is a minimizer of jéj .

We can follow the arguments of Theorem 2 by making in particular use of Lemma 3.
The only point that has to be treated more carefully is the construction of the recovery
sequence, since we have to ensure that the condition ¢.|y;, = 1 is not violated. And so we
will need the following adapted version of [29, Lemma 1]:

Lemma 10. Let E be a measurable subset of Q. If (E N~ U, M;) and Q~ E both contain a
non-empty open ball and U[%y M; c E, then there exists a sequence (Ey,), g of open subset
of  such that 0E, nQ € C?, lim,, 0 |[E,AE| =0, lim, o Po (E,) = Po (E), |Ey| = |E| for
n large enough, and

m
UM, cE,, d(OM;nQ,0E, nQ)>0 Vn>1,i=1,....,m.
i=1

Moreover, we get the convergence rate |E,AE|= O (n7!).

Proof. We adapt the construction of [29, proof of Lemma 1] and roughly sketch the mod-
ifications of this proof. We distinguish between two cases:

e Ist case: Assume that d (OM; nQ,0ENQ)>0foralli=1,...,m.

We define ¢ := x g, choose standard mollifiers ¢. € C¢°(R?), supp ¢. € B-(0), ¢- >0,
Jra¢eda = 1 and define ¢, = ¢ * p.. We then choose the sequence (€,)nen and
(tn)new € (0,1) as in [29, Lemma 1] and define E,, := {zx € Q| ¢, () > t,}, F, = {x €
R? | ¢.. () > t,}. Remark, that we may alter E,, by in-or excluding, respectively,
balls of certain radii in order to obtain |E,| = |E| for n > 1, see [29]. Denoting
M = U", M; we obtain that for almost every x € M there exists some n(z) such
that z € intF), for all n > n(z) and so M ¢ U_ 57 intF, ;). Since M is compact, we
can choose finitely many {F,,) | z; € M,i=1,...,N} such that M c UY, ity (g,)-
Defining 7 := max;-1 . nn(z;) we see that M c intF, for all n > @m. Then the
statement follows from the fact E,, = F;, N and the corresponding parts in the proof
of [29, Lemma 1].

e 2nd case: Now assume we have a general E fulfilling the assumptions of the lemma.
Then we choose some & > 0 such that B.(E)nQ c Q, E ¢ B.(E)nQ and define
F. := B.(E) n Q. Using that d(OM; n Q,0F.nQ) >0 for all i = 1,...,m we find
from the first case of the proof that there exists a sequence (E; )nen such that the
statements of the lemma are fulfilled for F replaced by F.. But we do not want
the volume of E; to equal F, but merely this of E, which is smaller, and hence
we define ES := ES \ B,_(x1) with 7. such that |B,_ (x1)| = |[ES| - |E| = O(¢) and
x1 € ENU M; such that Bs,(z1) ¢ E~UY, M; for some 6 > 0. One then obtains
by direct calculations and the results of [29] that a diagonal sequence (E,is )5>0 fulfills
the statements of the lemma.

For more details we refer to [27, Lemma 21.1]. O
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Proof of Theorem 7. We can follow the arguments of the proof of Theorem 2. We only give
some details on the construction of the recovery sequence in the first step of this proof. We
approximate for some ¢ € L*(Q) with jo(¢) < oo the set E¥ := {¢ = 1} by the sets (E,)nen
given by Lemma 10. This ensure in particular that d,, := d(U*; OM; nQ,0E, n Q) >0
for n > 1. An analogous construction as in Theorem 2 gives for every n > 1 sequence
() os0 € HY() such that

. € 1
timsup [ (96l 4 Zu(en) ) do < coPo (B).
eN0 a\2 €

We observe from this construction in particular that
{el =1} c E,, dl:=d({psn=1},0E,nQ)=0(¢e).

And so if we choose 62 > 0 such that d?g < dy, which implies d” < d,, for all € < eg, we find
Mic{pt=1}foralle<el and alli=1,...,m.

We then choose the diagonal sequence (gp?n )ndN such that &, < 2. This diagonal sequence
is hence admissible for the diffuse interface problem and we can proceed as in the proof of
Theorem 2.

In particular we can always deduce the convergence of the pressure in L?(Q) from the
convergence of the velocity fields in H'(2) by using pressure estimates as in Remark 13
and the fact that ¢.|p;, = 1 implies az(¢:) =0 in M;. d

6.4 Optimality conditions

As in the previous sections, we can derive optimality conditions by geometric variations
in the setting including pressure terms in the objective functional, too. For this purpose
we have to assume the differentiability assumptions (A7) of Section 5 together with

(A7) Assume that hps : R™ — R is differentiable and that there is some constant C' > 0
such that [Dhps(v)| < C|v| for all v e R™.

Remark 14. If Assumption (A7) is fulfilled, we find that H : L*>(Q) - R, defined in
(67), is differentiable with DH(p)(q) = [o Dh(p)qdz for all p,q € L*(Y), compare [36].

For the geometric variations we use transformations T € 7';3 which are to be defined
by the ordinary differential equation (38) associated to some velocity fields V' € V¥ . The
set Vs 4 18 given as

VP ={V € Ve | V(t,x) = 0 for every x € M;,i=1,...,m}.

Thus we do not vary the domains M;, which are assumed to be part of the fluid region
and hence do not have to be changed. Then we find:

Theorem 8. For any minimizer (¢z,ue,pe) € ®, x U x L2 (Q) of (68)-(70) the following
necessary optimality conditions are fulfilled:

ool (o T7) ==X [ pedivV(0)da, Ae( fg%dx—mm):o (84)

for all T € 7::1 with velocity V € ng, where A\e >0 is a Lagrange multiplier for the integral
constraint and the derivative is given by the following formula:

at|t:0jéD (st ° Tt_l) = at|t:0js (906 ° T;j_l) + fQ Dh (pz-:)ps [V] +h (ps) diVV(O) dz. (85)
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Here u. [V] € HY(Q) is given as the solution of (41)-(42) and p. [V] e L*(Q) with p.[V] =
0 in Q\U", M; is the pressure associated to u. [V'] by (41)—(42) as described in Remark 12
where the mean value is here chosen according to

fmpf[v] dx=—[Mip€diVV(())d:c Vi=1,...,m. (86)

Proof. To prove that R 2 I 5 t = (p.(t)oT;) € L*(Q) is differentiable at t = 0, if
(uc(t),pe(t)) = 8F (cpE o T{l)7 we can apply the differentiability result for implicit func-
tion equations [37, Theorem 6] to

F:Ix{peL*(Q)|plowm n, =0} > X H'(M;)xR™
=1

F(t,p)(z) = ((/Qp(Dzi : DTt_l)det DT; dac)Zl , (/Mipdet DT; dw)jjl) .

We then see that F(t,p-(t) oT;) = f(t) for ¢t small enough and some appropriate chosen
function f. The remaining requirements for [37, Theorem 6] can be verified quite easily,
compare [27, Theorem 19.2].

For the rest of the proof we can follow the arguments of Theorem 3, where in particular
also a formula for d¢|¢=oJe ((pe o T{l) is given. O

Correspondingly, we also obtain optimality conditions for the sharp interface problem
by geometric variations:

Theorem 9. For any minimizer (o, o, po) € ®,xU x L2 ,(Q) of (80) - (82) the following
necessary optimality conditions are fulfilled:

Ale=0j (pooT; ) :_)\OfﬂcpodiVV(O) dz, )\0(/Q<p0dx—ﬁ|9|) =0 (87)

for all T € '7;2 with velocity V € Vfd, where Ao > 0 is a Lagrange multiplier for the integral
constraint and the derivative is given by the following formula:

Otle=03d (9= 0 T ") = Bhlecogo (o o Ty ) + fQ Dh (po) po [V]+h(po) divV(0)dz.  (88)

Moreover o [V] € HE () with uy[V] = 0 a.e. in Q~ Ey fulfills (52)-(53)and po[V] €
L2(Q) with po [V] =0 in Q \ U M; is the pressure associated to o [V] by (52) - (53) as
described in Remark 12 where the mean value is here chosen according to

fMipO[V] d:)::—fMipodiVV(O)d:r Vi=1,....m. (89)

Proof. Let’s use the notation (uq(t),po(t)) = S& (wo(t)) for ¢ small enough. We know
from Theorem 4 that R > 13t~ (ug(t) oT;) € H*(Q) is differentiable at t = 0, if I is a
suitable small interval around ¢ = 0. Applying the idea of the proof of Theorem 8 to the
setting of Theorem 4 we can deduce that I 3t (po(t) o T}) € L?(M;) is differentiable at
t=0foralli=1,...,m. Then we get by direct calculations and by using the arguments
of Theorem 4 the result.

O

Finally, we also obtain the we can pass to the limit € N 0 in this geometric first
variations and obtain a result corresponding to Theorem b5:
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Theorem 10. Let (¢:).. be the sequence of minimizers of (jf)E converging to @q €

>0
LY(Q) given by Theorem 7 and assume that l¢2 = ol L1 (eqipo (2)=1,0. (2)<0p) = O (€)-
Then the limit element @y is a minimizer of jéD and it holds limg,o O¢lt=07e (cpg oTt_l) =
Atli=0jo (wo o T Y) for all T e TE,. If {0 =1} > 0 then we have additionally the conver-
gence results (57), with j. and jo replaced by jf and jéD, respectively. Additionally, it holds
limevo |pe = pollr2 (@) = 0 and limeo [pe [V] = o [V] [ 12() = 0 where (uc,pe) = ST (¢c)
for all e > 0.

Proof. This can be shown as in Theorem 10, where the pressure terms can all be handled
as in the proof of Theorem 7. Le., we deduce the convergence of (p:).., and (P [V])..
in L?(Q) from the convergence of the corresponding velocity fields in H'(€) by using
pressure estimates as in Remark 13 and the fact that ¢.|p;, = 1 implies a-(¢-) =0 in M;.
See [27, Theorem 21.2] for more details. O

7 Conclusion and outlook

Summarizing we have found a very general formulation for shape and topology optimiza-
tion in a Stokes flow. Due to the phase field structure and the porous medium approach
this problem can be shown to be well-posed and we arrive in a structure that can be
handled with well-known techniques, both mathematically and numerically. In contrast
to different formulations we can even use general objective functionals. Additionally, this
approach is also applicable to nonlinear state equations like the stationary Navier-Stokes
equations, compare [27]. First numerical examples show that this problem is also prac-
ticable and the results are comparable to those in literature, see [25]. In addition to the
sharp interface limit, we also derived necessary optimality conditions that can be related
to classical optimality conditions under suitable regularity assumptions. As also the op-
timality system can be shown to converge as the phase field parameter tends to zero, we
have hence found a consistent approximation of the difficult problem of shape and topol-
ogy optimization in fluid dynamics which can be used for further investigations in this
field.
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