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Outline

QPACE is a massively parallel and scalable supercomputer designed to meet the requirements of
applications in Lattice Quantum Chromodynamics. The project was carried out by several academic
institutions in collaboration with IBM Germany and other industrial partners. The project officially
started in 2008, and the final design was completed in 2010. In November 2009 and June 2010
QPACE was the leading architecture on the Green 500 list of the most energy-efficient supercom-
puters in the world.

The first part of my thesis is dedicated to QPACE. This part is structured as follows:

• In the first chapter I give a brief overview on the diversity of supercomputer architectures
recently sighted on the market. I also give an overview on my contributions to the QPACE
supercomputer project.

• In the second chapter I give a general overview on the QPACE architecture. I introduce the
node-card design, discuss the system networks, and explain the cooling concept. The networks
setup is discussed and auxiliary system components are introduced.

• The third chapter is dedicated to the IBM PowerXCell 8i. I give an overview on the most
important architectural highlights of this microprocessor and point out its impact on super-
computing. I introduce an abstraction model for the hardware architecture that allows to
estimate the sustained performance of the Wilson-Dirac Lattice QCD application kernel on
the PowerXCell 8i. I also introduce non-linear models for data exchange amongst the pro-
cessor’s functional units which adequately predict the execution times of elementary DMA
transactions.

• In the fourth chapter I briefly comment on FPGA technology and give an overview on the
recent implementation of the QPACE network processor on the Xilinx Virtex-5 FPGA. After
a short introduction of the relevant entities I discuss in detail the DCR device tree, the high-
speed Inbound Write Controller logic, and the low-speed serial communication UART device
logic.

• In the fifth chapter I comment on the verification of the QPACE design and introduce some
of the software tools designed for administration. I give a brief overview on the diversity
of system tests applied and, as an illustration for the design of the test software, I discuss
the implementation of a simple test case for the node-cards. A software tool designed for
booting of the node-cards is introduced afterward. Finally the QFC software tool is discussed
in some detail. The QFC was designed for elementary support of maintenance operations and
administration of QPACE.

• The project is briefly summarized in chapter nine.

Additional reference to the QPACE hardware and software is provided in Appendix A. In Ap-
pendix A.1 references to the most important source code files for discovery tools, test cases, and

xiii
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VHDL entities are provided. In Appendix A.2 the public DCR memory map is summarized. The
API of the witchlib software library, which provides of a set of high-level functions for root-card
access from the front-end, is provided in Appendix A.3. Full reference to the QFC functionality is
given in Appendix A.4.

In the second part of this thesis applications of random matrix theory in two-colour Quantum
Chromodynamics and fermions in the fundamental representation are studied. Hermitian and non-
Hermitian formulations of chiral random matrix theory of the orthogonal ensemble provide predic-
tions for the microscopic limit of the spectral density of the Dirac operator. The latter formulation
is associated with QCD at non-zero baryon chemical potential. Lattice simulations were carried out
in the quenched approximation at zero and non-zero baryon chemical potential and the spectral
properties of the overlap operator were compared to the results of chiral random matrix theory.

The second part is structured as follows:

• In chapter six I introduce the formalities of non-Abelian gauge theories and give a formal
overview on chiral symmetry breaking in the continuum. As a motivation for Hermitian and
non-Hermitian chiral random matrix theory I introduce pion effective theory associated with
QCD with gauge group SU(2) and fermions in the fundamental representation. I also sketch
the formulation of the effective theory including a baryon chemical potential. Next I present
the essential ideas behind QCD on the lattice in the quenched approximation. I introduce
the Wilson-Dirac and the massless overlap operator as an implementation of fermions on the
lattice. I close the chapter with the implementation of the baryon chemical potential in the
overlap operator.

• Chapter seven is about chiral random matrix theory. First I introduce the essentials of Hermi-
tian chiral random matrix theory and discuss the random matrix model for the Dirac operator.
Then I introduce the non-Hermitian random matrix model which includes a symmetry-breaking
parameter associated with the baryon chemical potential in QCD. The breaking of Hermiticity
renders the spectrum of the Dirac operator complex-valued. For both formulations of chi-
ral random matrix theory I present the microscopic spectral density. The distribution of the
lowest-lying eigenvalue at zero chemical potential is also introduced.

• In chapter eight lattice simulations of two-colour QCD in the quenched approximation are
evaluated. The spectrum of the overlap operator obtained from simulations of 84, 104, and 124

lattices is compared to the microscopic spectral density derived from Hermitian chiral random
matrix theory. The distribution of the lowest-lying eigenvalue is also evaluated. The study is
carried out for several choices of the Wilson mass parameter. Next I evaluate the symmetries
of the spectrum of the overlap operator and its flow at non-zero baryon chemical potential.
Afterward I compare the spectrum of the operator operator at non-zero baryon chemical po-
tential to the microscopic spectral density derived from non-Hermitian chiral random matrix
theory. Simulations at non-zero chemical potential were carried out on 44 and 84 lattices.

• The results are summarized in chapter nine.

Appendix B provides details of the evaluation of the spectrum of the overlap operator. In Ap-
pendix B.1 the Krylov-Ritz method for evaluation of the matrix sign function is described. The
statistical bootstrap method was applied to estimate statistical errors on eigenvalue distributions.
The bootstrap method is summarized in Appendix B.2.
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Chapter 1

Introduction

1.1 Supercomputers

Today’s large-scale supercomputers are giant computer installations providing the processing power
of hundreds of thousands of compute cores tightly interconnected within a single network. According
to the 40th release of the Top 500 Supercomputer Sites [1] the largest installation on earth in the
year 2012 is the Cray XK7 Titan at the Oak Ridge National Laboratory (ORNL) [2], United States,
delivering impressive 18 PetaFlops – 18 quadrillion floating-point calculations per second – on the
Linpack benchmark. The system consists of more than 18000 compute nodes equipped with AMD 16-
core Opteron CPUs and nVidia Tesla K20 GPUs. The largest European supercomputer installations
in the year 2012 are hosted at computing sites in Germany. One is the IBM BlueGene/Q Juqueen at
the Forschungszentrum Jülich (FZJ) [3], and the other one is the SuperMUC cluster, another machine
developed by IBM, installed at the Leibniz Rechenzentrum (LRZ) in Garching [4]. The architectures
achieve up to 4 PetaFlops in the same benchmark and rank positions 5 and 6, respectively, in the
Top 500 list.

Supercomputers are used in various areas of applications. Among the performance-hungry ap-
plications of industrial and financial interest are, e.g., energy and oil exploration, digital content
creation, computer aided design, financial analysis and trading. Numerical simulations have also be-
come the third pillar in sciences besides theoretical and experimental research. Research applications
such as brain simulations, climate research, material sciences, and quantum field theory require huge
amounts of processing power. In a coarse-grained classification two types of supercomputers can be
identified that satisfy this demand for compute performance. Capacity machines, such as Japan’s
flagship K computer [5] and Germany’s powerful SuperMUC, typically provide a huge amount of
processing power, with the nodes interconnected by custom solutions or industry standards such as
InfiniBand and Gigabit Ethernet. Capacity machines are designed to provide the compute power for
a large number of applications. In contrast, capability machines are application-optimized super-
computers satisfying the demands of only a small set of applications. Examples for such machines
are the Cray XMT [6], a shared memory massive multi-threading architecture optimized for data
analysis and data mining, and QPACE, a massively parallel architecture with custom interconnect
especially designed to meet the requirements of applications in lattice quantum chromodynamics.

A variety of compute hardware can be found in the supercomputer landscape. The design of most
supercomputers operated nowadays is homogeneous, i.e., a single processor architecture provides all
the processing power. Off-the-shelf commodity superscalar microprocessors from leading vendors
such as Intel and AMD are common choices. However, in the recent years an increasing wealth
of heterogeneous architectures entered the landscape backing up server processors with graphics
processors, predominantly from the nVidia company. Today graphics cards provide an enormous
amount of compute performance, outranging server processor architectures by an order of magnitude.

3
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For example, in the year 2012 nVidia introduced the Kepler GK110 architecture which supports
for an aggregate compute power of several TeraFlops in single precision delivered by thousands of
cores embedded onto a single chip [7]. The Tesla G20 GPU, one of the implementations of the
GK110 architecture, found its way into the Cray Titan supercomputer. The manifold of upcoming
heterogeneous supercomputer architectures is expected to increase even more with Intel’s powerful
first commercial Many Integrated Core (MIC) architecture, the so-called Xeon Phi coprocessor [8].

The performance of the supercomputer installations is steadily increasing. If one extrapolates
the evolution of technology then the compute performance of large-scale installations reaches the
Exascale, i.e., peak performance on the order of ExaFlops, around the year 2020. However, the
design of such an Exascale architecture is an open question unlikely to be resolved by tomorrow. The
financial support for further developments in supercomputing is tremendous. The US government
has granted financial support for research on supercomputing for the year 2012 on the order of 100
million Dollar [9]. The European Union has doubled its annual investment into supercomputing to
1.2 billion Euro [10] and pursues research on new hardware architectures, e.g., within the DEEP
project [11] which is financially supported by eight million Euro.

The challenges coming with the steady increase of compute performance are manifold. On the
application software level even homogeneous supercomputer architectures are challenging to program
for high performance, e.g., due to the necessity of on-chip and off-chip parallelization on multi-core
processor architectures. Heterogeneous supercomputers introduce even more complexity because of
non-trivial memory hierarchies, asymmetric node interconnect, and also the generic problem of code
portability. Although compiler technology has been steadily improved within the last decades, there
exists no convincing compiler-driven parallelization of arbitrary application for neither homogeneous
nor heterogeneous architectures, and it is highly doubtful whether this huge step towards automated
optimization for any kind of underlying hardware will be performed within the next few years. On
the hardware level one of the most concerning issues is the extreme amount of power consumed even
by today’s installations. Data center operators have to struggle with huge expenses on power and
cooling. Today the world wide costs for power and cooling of IT equipment exceeds 25 billion Dollar
per year and are comparable to the costs for new hardware [12]. For comparison, in the early 90’s the
infrastructure and energy cost for standard server boards accounted only for about 20% of the total
cost of ownership [13]. Supercomputers, however, are on the edge of technology and some of them
do not only exhibit high compute performance but are also very energy-efficient. If one extrapolates
nowadays bleeding-edge technology to larger scales then one can expect a potential Exascale platform
to consume hundreds of MegaWatt. Therefore, energy efficiency and energy-aware system operation
are considered not only main goals, but also main limitations for future supercomputer architectures.
The common consensus is to consider a power consumption around 20 MegaWatt for operation of an
Exascale system to be realistic. Thus the energy efficiency of such a platform should be somewhat
around 100 GigaFlops per Watt. However, such performance is out of scope using the technology
available today. In 2012 the most energy-efficient supercomputers listed in the Green 500 deliver an
energy efficiency of about 2 GigaFlops per Watt in the Linpack benchmark [14].

In the years 2009 and 2010 the world-leading architecture with respect to energy efficiency was
QPACE, an innovative supercomputer designed in joint effort of academia and industry. Its perfor-
mance relies on IBM’s powerful PowerXCell 8i microprocessor tightly coupled to a custom-designed
network coprocessor implemented on FPGA technology. The aggregate compute performance pro-
vided by this supercomputer is about 200 TeraFlops in double precision. The total power con-
sumption is only about 200 kiloWatt, achieved by low-power chip technology, voltage reduction,
highly efficient power supplies, and a water-cooling solution. QPACE achieved a remarkable energy
efficiency of 773 MegaFlops per Watt in the Linpack benchmark [14]. Today QPACE is used for
research in particle physics. The first part of this thesis provides insight into some details of this
supercomputer.
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1.2 Contributions to QPACE

My personal contributions to the QPACE design and development cover a variety of fields. These
include the hardware and software development, system bring-up, as well as extensive system testing
and verification of the system design. The following items provide a brief overview on my contribu-
tions to the supercomputer project. Some are discussed in more detail within this thesis:

• Performance model for the Wilson-Dirac operator on the Cell BE.

• Non-linear models for execution time functions of DMA transactions for data transfer between
the Local Stores, and also between Local Store and main memory.

• VHDL design of the Inbound Write Controller (IWC) logic and initial design of an extension
module, continued by T. Maurer.

• VHDL design of the Universal Asynchronous Receiver Transmitter (UART) logic, which sup-
ports for communication via RS-232.

• Initial design of the DCR slave interface logic in VHDL, both for synchronous and asynchronous
components, continued by T. Maurer.

• VHDL design of the SPI backdoor logic, which essentially consists of a multi-master arbiter
for the DCR device tree, both in synchronous and asynchronous versions.

• Initial version of the MDIO clause 45 logic in VHDL used to control XAUI PHYs in a dual-
FPGA setup designed for tests of the torus network logic.

• VDHL design verification using Mentor Graphics ModelSim, and debugging using Xilinx Chip-
Scope logic analyzer.

• High-level witchlib library for access to the root-card, based on the low-level feenlib library
written by S. Solbrig.

• Finalization of system software libraries for access to the superroot-card and power supplies,
initially designed by D. Hierl and M. Drochner.

• Development of hardware discovery tools for node-cards, root-cards, and superroot-cards.

• Development of a variety of software for node-cards, root-cards, and superroot-cards that
allows to test the design.

• Extensive tests of the system hardware and software in all phases of the design.

• Development of a software tool for booting the node-cards.

• Design of the QPACE Front-end Client, a software tool that provides unified access to the
system components.





Chapter 2

Design Overview

2.1 Architecture

QPACE is a massively parallel and scalable supercomputer designed for applications in lattice quan-
tum chromodynamics. The building block of the QPACE supercomputer is the node-card. Each
node-card hosts one IBM PowerXCell 8i processor, one Xilinx Virtex-5 FPGA, and six PMC Sierra
10 Gigabit Ethernet transceivers. Thirty-two node-cards and two root-cards are connected to a
backplane. Each root-card manages and controls 16 node-cards. The QPACE rack houses eight
backplanes. The number of compute nodes per rack is 256. The compute nodes are cooled by water
cooling. The water-cooling concept allows for high packaging density by populating both the front-
and the backside of a rack with 128 node-cards each. Power is distributed along the backplanes to
node- and root-cards. Three power supply units (PSU) are attached to each backplane, one of them
being redundant. The PSUs are managed and controlled within the rack by one superroot-card.
Node-card, root-card, superroot-card, and backplane are shown in Fig. 2.1.

Each node-card is attached to three communication networks. One high-speed network, the torus
network, connects nearest-neighbour nodes in a 3-dimensional toroidal mesh. The Ethernet network
connects the node-cards, root-cards, and superroot-cards to the front-end system. The global signals
network is a simple two-wire tree network that is used for fast evaluation of global conditions and
distribution of a compute-critical exception signal.

QPACE was entirely built with commodity hardware. A custom I/O fabric that is directly
connected to the PowerXCell 8i processor was implemented on a Xilinx Virtex-5 FPGA. Data is
communicated between nearest-neighbour nodes along six links, each with a peak throughput of
1 GByte/s bi-directional. The nodes are operated by a standard Linux distribution with a few
architecture-specific drivers. The Linux kernel runs on the PPE and supports for the widely used
SPE runtime management library libspe2 [15].

In November 2009 and June 2010 QPACE was the leading architecture on the Green 500 list
of the most energy-efficient supercomputers in the world [14]. The architecture achieved up to 773
MFlops per Watt in the High Performance Linpack benchmark. In the summer of 2009 QPACE has
been deployed at the Jülich Supercomputing Centre and at the University of Wuppertal [16, 17]. The
installations consist of four racks each. The aggregate peak performance of QPACE is 200 TFlops
in double precision and 400 TFlops in single precision. The average power consumption per rack is
on the order of 29 kW. The QPACE installation at the Jülich Supercomputing Centre is shown in
Fig. 2.2.
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Figure 2.1: Main functional units of QPACE. Thirty-two node-cards (bottom left) and two root-
cards (bottom right) are connected to the backplane (top left). Each root-card manages and controls
16 node-cards. One superroot-card (top right) per rack manages and controls the PSUs.

Figure 2.2: The QPACE cluster at the Jülich Supercomputing Centre. In total the 4 racks comprise
1024 IBM PowerXCell 8i processors and deliver an aggregate peak performance of about 100 TFlops
for calculations in double precision.
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Figure 2.3: Node-card top view with important functional devices highlighted. Each node-card
provides one PowerXCell 8i processor and 4 GByte DDR2 memory onboard. The processor is
directly connected to the Xilinx Virtex-5 FPGA which acts as an I/O fabric. Six PMC Sierra XAUI
PHYs connect to nearest-neighbour nodes. Support for Gigabit Ethernet is provided by the Gigabit
Ethernet PHY. The node-card is controlled by the Service Processor and CPLD.

2.2 Node-card

The node-card is the building block of QPACE. It hosts the components necessary for computation of
parallel applications. A photograph of the node-card with important functional devices highlighted
is shown in Fig. 2.3. Among them are

• 1 IBM PowerXCell 8i

• 4 GByte DDR2-800-SDRAM onboard

• 1 Xilinx Virtex-5 FPGA (network processor)

• 6 PMC Sierra XAUI physical transceivers (PHY) for nearest-neighbour interconnect

• 1 Gigabit Ethernet PHY

• 1 Service Processor and 1 CPLD for management and control

• Ethernet magnetics, flash memory, voltage connector and regulators, board connectors etc.

Each node-card is managed and controlled by an onboard microcontroller, the so-called Service
Processor (SP). Node-card-specific information – such as serial number, voltage settings, boot op-
tions, and critical error information – are stored on the Vital Product Data memory (VPD) which
is accessible by the SP. The images for the Cell BE Slimline Open Firmware (SLOF) [18] and the
FPGA bitstream are stored on the onboard flash memory. The firmware boots the node-card via
multicast TFTP netboot into a standard Fedora Linux distribution that was extended to support
for the QPACE proprietary devices.
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The energy efficiency of the node-card was increased by individual voltage tuning. The core
voltage of each individual Cell BE was tuned for operation at low voltage setting (which includes
a safety margin). Additional reduction of the energy consumption was achieved by optimization of
the main memory voltage margins. Voltage tuning improves the power consumption of QPACE by
about 10% and therefore increases the performance per Watt ratio. Details about the voltage tuning
are provided in Ref. [19].

2.3 Cooling

Roughly 115 Watts have to be dissipated from each node-card. The node-cards are cooled by water,
whereas all other system components rely on conventional passive and active cooling by air. Al-
though liquid cooling is not a revolutionary concept in the history of supercomputers, its realization
in QPACE addresses the typical disadvantages. Liquid cooling solutions tend to be expensive, main-
tenance of critical components may become difficult, and electronic devices are seriously damaged
when exposed to water. Innovative strategies were introduced to tackle these drawbacks.

The main producers of heat, the node-cards, are packed in housings made of aluminium. The
heat is conducted from the components – in particular the Cell BE, FPGA, PHYs, memory chips,
and voltage converters – to the surface of the housings. Up to 32 housings are mounted on a flat,
water-cooled coldplate made of aluminium. Water-conducting channels inside the coldplate transfer
the heat from the node-cards to the liquid circuit. Only a small interfacing area of about 40 cm2 is
necessary for heat transfer from each housing to the coldplate. Thermal contact between the housing
and the coldplate is improved by a thin film of synthetical oil. The benefits of the two-component
cooling design are summarized in the following:

• The temperature difference between the water inlet and the processor cores is lower than 40◦C.

• Water inlet temperature on the order of 40◦C is possible (without violation of the chips’
temperature specifications).

• The cooling design allows for high packaging density.

• The housings and electronic components are never exposed to water.

• The water circuit stays closed on maintenance operations.

• The node-cards are easily maintained. Hot-plugging is supported.

• No expensive mechanical parts are required.

The concept of the cooling solution and a photograph of a fully populated coldplate are shown in
Fig. 2.4. Further details on the QPACE cooling mechanism are provided in Refs. [19, 20], and general
aspects of liquid cooling in high-performance computing are discussed in Refs. [21, 22].

2.4 Communication networks

2.4.1 Torus network

2.4.1.1 Characteristics

The torus network was designed for high-speed inter-node communication with low latency. For each
node the torus network provides the connections to six nearest-neighbour nodes in a 3-dimensional
mesh. In contrast to high-speed networks of other supercomputers based on the Cell BE, the
QPACE architecture is optimized for direct communication between the Local Stores (LS) of adjacent
processors. Characteristics of the torus network are:
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Figure 2.4: The figure on the left shows the QPACE cooling concept. Node-cards mounted in
aluminium housings are attached to an aluminium coldplate. Heat is conducted from the housings
to the coldplate at the interfacing area (indicated by the red stripe). The photograph on the right
shows the backplane fully populated with 32 node-cards and two root-cards. Manifolds are mounted
on the left side of the rack and connect the coldplate to the cooling circuit. Three power supply
units per backplane are attached to the right side of the rack.

• High-speed connection based on 10 Gigabit Ethernet physical layer with a peak throughput of
1 GByte/s per link bi-directional.

• Application-optimized link layer with support for slimline datagrams of fixed size of 128 + 4 +
4 bytes (payload + header + CRC).

• Optimization for direct LS-to-LS and LS-to-main memory (MM) communication: Direct mem-
ory access (DMA) from the local LS to the remote LS or MM without additional buffering.
LS-to-LS latency of O(3) µs.

• Runtime support for partitioning.

2.4.1.2 Communication concept

In the following a simplified overview on the communication concept for the torus network is pro-
vided. Detailed reviews of the underlying hardware concepts, their implementation, and the perfor-
mance of the network are provided in Refs. [20, 23, 24, 25].

The QPACE torus network is optimized for direct communication between two SPEs on adjacent
Cell BEs without the need for additional buffering. The data transfer is driven directly by the SPE’s
DMA engine. No copy operations from/to main memory are required. This approach grants the
application access to the full memory bandwidth, because network I/O operations are removed from
this performance-critical data path.

To allow for low-latency communication between adjacent Cell BEs any communication overhead
was removed from the torus data path. The sending device pushes data onto its network proces-
sor, which autonomously passes the message along the 10 Gigabit Ethernet link to one of its six
neighbours. Data is finally pushed by the network processor logic onto the receiving device on the
Cell BE. There is no negotiation between the sender and receiver. Minimal support for flow control
is granted by a credit mechanism: the network processor streams data onto the receiving device only
if a credit is provided to the network processor. After the copy operation a notification is sent to
the receiver.
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Node−card A Node−card B

PowerXCell 8i

NWP

TX TX RXRX

Figure 2.5: The left panel shows the data (blue) and control (red) paths for the torus network.
Each datagram transmitted between adjacent network processors (NWP) is authenticated by a (not)
acknowledge packet ACK (NACK). In case of not-acknowledge (NACK) the packet is re-transmitted.
The right panel shows the time flow of the torus communication process.

Any SPE can be source- and endpoint for communication. This feature requires multiple pairs
of SPEs on neighbouring nodes to share the same physical link for communication along the 3-
dimensional torus. The QPACE torus network supports for eight virtual channels for each link and
direction, which effectively allows for logical separation of up to eight sender and receiver pairs per
link and per direction.

The torus network software stack comprises a set of low-level communication primitives designed
for the SPE. Details about DMA operations and the hardware structure of the network processor are
hidden from the user. The simple but effective torus communication pattern is based on matched
send and receive commands, see Ref. [26] for full reference of the torus API. The low-level interface
requires the following steps to be executed:

1. Initialization of the receive operation by providing for a given link and virtual channel a credit
to the network processor.

2. Data is copied to the network processor by the sender. The largest packet size supported is
2048 bytes.

3. Polling of the notification address, typically in the LS, while waiting for the data to arrive.

After completion of the first two steps the network processor handles the communication au-
tonomously. The time between sending the data and receiving the data can be used by the commu-
nicating devices for other operations, e.g., for computation or other data load and store operations,
including further network transfers. Data, control, and time flow of the torus communication are
shown in Fig. 2.5.

2.4.1.3 Partitioning

The torus network supports for a variety of partitions within the 3-dimensional mesh. On a single
backplane the logical volume of nodes can be as large (x, y, z) = (1, 4, 8). In y-direction the number
of nodes is increased by vertical connections of adjacent backplanes using cables (intra-rack). In a
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similar fashion the x-direction is extended by horizontal connections of adjacent backplanes using
cables (inter-rack). Different partitions are created by switching between two serial interfaces of the
PMC Sierra PHY. Some of the serial interfaces are connected to additional traces on the backplane
that allow for various connections between the nodes. Switching between the primary and redun-
dant interface of the PHYs is performed by software during runtime. The following partitions are
supported by the QPACE architecture:

• 1, 2, 4, 8 nodes in the z-direction.

• 1, 2, 4, 8, or 16 nodes in the y-direction.

• 1, 2, or 2N nodes in the x-direction (here N is the number of interconnected racks).

2.4.2 Ethernet network

The switched Ethernet network connects the node-cards, root-cards, and superroot-cards to the
front-end system. The front-end comprises one master server used for machine control and manage-
ment, one login server which serves as central user access point, and several I/O servers dedicated
to the Lustre parallel file system. The Ethernet network is divided into I/O, machine management,
and control sub-networks. It also provides connection to the outside world. A closer look on the
arrangement of these sub-networks will be taken in Sect. 2.5.2.

Eack QPACE rack provides 24 1-Gigabit Ethernet uplinks for connection of the node-cards to
the front-end system. The external bandwidth is on the order of 2 GByte/s per rack, which is also
supported by the local disk storage systems. The throughput is sufficient to sustain the compute
performance for non-I/O intense applications such as Lattice QCD.

2.4.3 Global signals network

The global signals (GS) network is a simple but effective two-wire tree network with support for
partitioning. Information exchange is based on the state of the global signals network. There is no
(native) support for packet-based communication. The capability of the GS network is limited to
three active states and one idle state. The active states are used to evaluate global conditions and
to distribute an exception signal in the case of a compute-critical error. Global conditions are used,
e.g., to synchronize the nodes by creation of a barrier. Parallel jobs can be terminated by the global
kill signal. Communication along the GS network proceeds in the following steps:

1. Node-cards assigned to the partition propagate the signals NOP, TRUE, FALSE, or KILL to the
so-called root logic.

2. The root logic is coded into programmable devices hosted by the root-cards and superroot-
cards. These cards serve as end-points for local (and global) OR and AND operations within
the GS network hierarchy. The reduced information is propagated up the hierarchy until the
end-point is reached.

3. The result of the global reduction operation is propagated down along the hierarchy to the
node-cards.

The global signals network was designed to support for all partitioning options granted by the torus
network. See Ref. [27] for more information on the global signals tree network.
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2.5 System setup

2.5.1 Front-end system

The front-end system (FES) is the interface between the user and the back-end, i.e., the QPACE
racks. The FES consists of dedicated servers and interconnects. The FES is integrated into a single
rack and serves the following purposes:

• Provide the physical connections between the QPACE racks, front-end servers, and the outside
world by the Gigabit Ethernet switch layer.

• Grant access to the Lustre parallel file-system.

• Support for job scheduling by the batch queueing system.

• Support for maintenance operations and administration.

• Control and monitoring of the system by automated software services.

The master server acts as the portal to the system. The master server runs the batch queueing
system, the front-end service daemon, and system monitoring services. The login server allows the
users to login to the system from the outside world, to schedule and maintain jobs, and access
data stored on the Lustre parallel file-system. Support for the Lustre file-system is provided by
dedicated metadata and object storage servers. More information about the FES aiming at both
administrators and users is provided at the QPACE homepage at DESY, Ref. [28].

2.5.2 Ethernet networks

The Ethernet network is organized as a layered switched network system. It is divided into multiple
virtual sub-networks. Multiple switches per layer are stacked, i.e., several physical switches are
combined and act as one logical switch with the port capacity of the sum of the single switches. The
advantages of the stacked setup are the simplified administration by reduced IP numbers, reduced
cabling, and the high inter-switch throughput provided by the dedicated stacking bus.

The layered Ethernet network and the virtual sub-networks for the QPACE installation at the
University of Wuppertal are shown in Fig. 2.6. The three layers consist of:

1st layer Each QPACE rack consists of stacked switches that connect to the node-cards. Per rack
another dedicated switch connects to the root-cards and the superroot-card.

2nd layer One stacked switch connects the front-end servers, I/O servers, and the racks.

3rd layer Additional switches connect the FES to the outside world and to the administrative
networks.

Four Virtual Local Area Networks (VLAN) are configured on top of the switched network. VLANs
allow for multiple private networks sharing the same hardware resources. The Ethernet network is
subdivided into

• I/O network: Connection between front-end servers and node-cards.

• Control network: Connection between master server, root-cards, and superroot-cards.

• Management network: Connection between the management Ethernet devices in the front-end.

• External network: Connection to the outside world.
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Figure 2.6: Simplified overview of the Ethernet switched network. The external network (EXT)
connects the front-end system to the outside world. The I/O network connects the front-end servers
and node-cards (NC). The control network (CTRL) grants the master server access to the root-cards
(RC) and superroot-cards (SRC).

2.6 Other system components

2.6.1 Root-card

The root-card serves multiple purposes. One of them is the support for administration of the
node-cards. Up to 16 node-cards are controlled by the root-card. Two root-cards handle the thirty-
two node-cards attached to the backplane. In total 16 root-cards control a complete QPACE rack
comprising 256 node-cards. The root-cards are attached to the Ethernet control network described
in Sect. 2.5.2 and are controlled by the master server.

The root-card also provides the logic for handling of the global signals network and distributes
a global clock signal. This clock signal, which is generated by an oscillator on the master root-card
and gets distributed amongst all other root-cards within a tree network, serves as the reference clock
for the torus network logic on the network processor on the node-card. The purpose of the global
clock is to maximize the clock alignment at the torus transmit and receive logic. The torus reference
clock can be switched between the global clock signal and a local clock signal that is generated
individually on each node-card.

The root-card provides connections to the node-cards, the Ethernet control network, and the
global signals network. Relevant data paths are shown in Fig. 2.7. Each root-card hosts one micro-
controller (RCC) and two complex programmable logic devices (CPLD). CPLD 0 acts as switch for
reset lines, UART, and SPI. CPLD 1 hosts the logic that handles the global signals (root logic). In
the following each connection shown in Fig. 2.7 is briefly described:

A 100 Megabit Ethernet connection to the Ethernet control network.
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Figure 2.7: Root-card data paths and connections to the node-cards. Only a single node-card is
shown.

B One connection to the RCC via RS-232 (mode 8N1), serving as failover data path. The
UART of the RCC is accessible by the debug connector.

C Sixteen connections RS-232 (mode 8N1) from CPLD 0 to the node-card network processors
(NWP). This data path allows for monitoring and control of the Cell BE firmware (SLOF)
during the boot process and grants access to the Linux console. Each NWP is accessible
by either the RCC or an external connection by the debug connector. Only one NWP can
be accessed by the RCC at a time.

D Connection to the global signals network. CPLD 1 handles the uplinks and downlinks
within the tree network. The global signals logic performs the reduction and distribution
of the signals along the partition.

E The RS-485 multi-drop bus provides connections between the RCC and 16 Service Proces-
sors (SP). The RCC acts as the master, while the SPs are slaves on the bus. Communication
is limited to one RCC-SP connection at a time. The communication protocol is proprietary.

F The SPI interface of the RCC is multiplexed by CPLD 0 and allows for access to the
flash memory of the node-cards. The flash memory stores the SLOF image and the FPGA
bitstream. Only one flash memory device is accessible at a time.

G Control of CPLD 0 and 1 by the RCC via I2C.

I Sixteen reset lines to the node-cards. Each node-card can be hard-reset individually.

The RCC is operated by an embedded Linux operating system with support for the common Ethernet
software stack [29]. The Linux image is loaded on power-on of the RCC via TFTP netboot. Custom-
designed software libraries provide remote access to the root-card from the master server. The
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Figure 2.8: Superroot-card data paths. Only a single PSU is shown.

feenlib software library1 provides low-level functions for control of the RCC and CPLDs. The
witchlib software library was built on top of the feenlib library. It provides a series of high-level
functions that, e.g., allow for control of the node-cards. The libraries are accessed by several test
and administration tools, see Sect. 5.3 for an example. The API of the witchlib library is provided
in Appendix A.3.

2.6.2 Superroot-card

Each QPACE rack hosts one superroot-card. The superroot-card monitors and controls the power
supply units (PSU). It also handles the global signals at rack top level. The superroot-card connects
to the Ethernet control network by the FMod-TCP device [30]. The FMod-TCP essentially consists
of a microcontroller unit that allows for remote control of its interfaces via the embedded TCP/IP
stack. The controller comes with a variety of standard interfaces, e.g., Ethernet and I2C. The I2C
bus establishes a connection between the FMod-TCP and two CPLDs mounted on the superroot-
card. CPLD 0 provides another 24 I2C connections accessible by the FMod-TCP. Each of them
is dedicated to one of 24 PSUs (with corresponding I2C expansion cards) attached to the rack,
effectively providing support for remote power monitoring and PSU management. CPLD 1 hosts
the global signals root logic and connects to the global signals network. Multiple superroot-cards are
interconnected such that the global signals tree spans all racks. See Ref. [27] for more information on
the global signals tree network. The software libraries for the superroot-card were custom-designed
and allow for control of the superroot-card from the master server.

1feenlib was written by S. Solbrig.





Chapter 3

The IBM Cell Broadband Engine

3.1 The Cell Broadband Engine and the supercomputer league

The Cell Broadband Engine (Cell BE) is a powerful microprocessor developed by Sony, Toshiba,
and IBM – the STI alliance – in the years 2001 to 2005. The initial target platform of the Cell BE
was the consumer electronics market, especially the PlayStation 3 gaming platform. Whilst the
initial version of the processor had limited floating-point performance for calculations in double
precision, the revised variant called PowerXCell 8i removed this barrier in 2008. The high floating-
point performance of the PowerXCell 8i rendered this processor an interesting option for scientific
applications [31]. Besides the outstanding performance in number crunching its superior energy
efficiency, typically measured in Flops per Watt, kicked supercomputers based on the PowerXCell 8i
on top of the Green 500 list from June 2008 to June 2010 [14].

The most prominent supercomputer that comprised Cell BE technology was the RoadRunner
cluster at the Los Alamos National Laboratory [32]. The hybrid architecture hosted more than 6000
AMD Opteron and 12000 IBM PowerXCell 8i processors connected by Infiniband technology. With
more than 100000 processor cores distributed amongst 296 racks the cluster hungered for more than
2 MW of power. In the year 2008 RoadRunner was not only the first supercomputer to break the
PFlops barrier in sustained performance, it was also amongst the top ten supercomputers in terms
of energy efficiency achieving 458 MFlops per Watt [1, 14]. Roadrunner was decommisioned in early
2013.

In the years 2009 and 2010 the success of the Cell BE continued with a new world record.
The QPACE supercomputer at the Jülich Supercomputer Centre and the University of Wuppertal
achieved 773 MFlops per Watt in the Linpack benchmark. The QPACE architecture was almost 60%
more energy efficient than the Chinese Nebulae hybrid CPU/GPU supercomputer at the National
Supercomputing Centre in Shenzhen (NSCS). Nebulae was the second-best system on the Green 500
list in June 2010 and achieved 492 MFlops per Watt [14].

3.2 PowerXCell 8i overview

Due to the complexity of the Cell BE architecture this section focuses only on its most striking
characteristics. Further details on introductory level are presented, e.g., in Ref. [33]. For full
architecture and programming details see Refs. [34, 35].

A schematic diagram for the processor is shown in Fig. 3.1. The PowerXCell 8i is a heterogeneous
microprocessor that contains nine physical processing units, namely one 64-bit PowerPC Processor
Element (PPE) and eight Synergistic Processor Elements (SPE). Each SPE has 256 kByte of local
memory (the Local Store, LS) available, accessible by a dedicated direct memory access (DMA)
engine. The register file comprises 128 general-purpose registers, each of them 128 bits wide. The

19
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Figure 3.1: Schematic diagram for the IBM PowerXCell 8i. The processor consists of one Power
Processor Element (PPE) based on a PowerPC core, eight Synergistic Processor Elements (SPEs),
coherent and non-coherent I/O interface (IOIF), and a memory controller (MIC). All units are
connected by the element interconnect bus (EIB). The bandwidth values are shown for the 3.2 GHz
system clock.

SPE is a single-threaded, dual-issue in-order processor with support for single-instruction multiple-
data (SIMD) operations. SIMD instructions perform up to four single precision (SP) or two double
precision (DP) floating-point operations simultaneously. The Cell BE’s floating-point arithmetic is
compliant to IEEE standard 754.1 At a system clock frequency of 3.2 GHz the outstanding aggregate
SP (DP) peak performance of all eight SPEs is 204.8 (102.4) GFlops.2

The PowerXCell 8i’s on-chip dual-channel DDR2-SDRAM memory interface controller (MIC)
delivers a peak memory bandwidth of 25.6 GByte/s. The Rambus configurable I/O interface (IOIF)
supports a coherent and a non-coherent protocol with a peak bi-directional bandwidth of 25.6
GByte/s. Internally, all twelve units are connected to the coherent element interconnect bus (EIB)
that handles multiple DMA requests simultaneously.

It is worth to mention that the PowerXCell 8i supports for error-correcting code (ECC) of the
Local Stores (LS) and also main memory (MM). Data integrity seriously suffers from spontaneous bit
flips caused by electromagnetic interference and background radiation. ECC-capable memory allows
to mitigate this problem (at the cost of extra storage) and typically supports for either detection
and correction of a single bit error, or detection of a double bit error, per 64-bit word.

3.3 Lattice QCD on the Cell BE

The performance of any application relies on the efficient implementation of relevant compute kernels
on the underlying hardware structure. Performance models serve as guides to the best implementa-
tion of the algorithms and give hints on the optimal data layout and code-optimization strategies. A
hardware abstraction model along the lines of Ref. [40] was developed in the initial phase of QPACE

1A biased comment by Intel with emphasis on the importance of floating-point arithmetics standardization is
provided in Ref. [36]. It is illuminating to continue reading with Ref. [37].

2For comparison, the Intel Xeon E7-8870 Westmere-EX server CPU introduced in the year 2011 achieves an ag-
gregate peak performance of 96 (48) GFlops in SP (DP) executing up to 4 (2) Flop per core per cycle clocking all 10
cores at nominal frequency of 2.4 GHz [38]. The nVidia Tesla M2090 GPU, also introduced in the year 2011, achieves
1331 (665) GFlops peak in SP (DP) running 512 compute cores in parallel at a clock frequency of 1.3 GHz [39].
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Figure 3.2: Data-flow paths and execution times Ti of micro-tasks considered in the performance
model. For simplicity only a single SPE is shown.

that allowed to estimate the performance of the most relevant Lattice QCD kernel for Wilson-type
fermions. The model was published in Refs. [41, 42] and is discussed in the following.

3.3.1 Performance model

The performance model is based on the abstraction of the Cell BE hardware architecture. The
model relies on the abstraction of the hardware into two classes of devices:

(i) Storage devices, storing data and/or instructions (e.g., registers, LS, and MM).

(ii) Processing devices, acting on data or transferring data/instructions from one device to another
(e.g., FP units and data buses).

The operations performed by the Lattice QCD kernel can be decomposed into “micro-tasks” which
are mapped to the hardware devices. It is assumed that all micro-tasks i performed by the processing
devices are running concurrently at maximal throughput βi, and all latencies λi are hidden by suitable
scheduling. Any data dependencies are neglected. The execution time Ti of each task i is estimated
by the linear ansatz

Ti ' Ii/βi +O(λi) , (3.1)

where Ii is the amount of data to be processed. The hardware devices, data-flow paths, and associ-
ated micro-task execution times Ti considered in the performance model for the Lattice QCD kernel
are shown in Fig. 3.2. Among them are

• Execution of floating-point operations (TFP).

• Load of instructions into the instruction look-aside buffer (TILB).

• Load/store operations between the register file and LS (TRF).

• Off-chip memory access (Tmem).

• Internal communications between SPEs (Tint).

• External communications between adjacent Cell BEs (Text).

• Transfers via the EIB (TEIB).
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All devices are running in parallel in this model (at maximal throughput) and the kernel is mapped
to eight SPEs.3 The estimate for the total execution time Texe of the kernel is

Texe ' max
i
Ti , (3.2)

thus the execution time is dominated by the most time-consuming micro-task. The identification of
this task allows to determine the floating-point efficiency εFP. Let Tpeak be the minimal compute
time of the kernel, achieved by an ideal implementation that saturates the floating-point performance
of the Cell BE, then the floating-point efficiency is defined as εFP = Tpeak/Texe.

3.3.2 Lattice QCD kernel

For applications in Lattice QCD with Wilson-type fermions the 4-dimensional hopping term Dh of
the Wilson-Dirac operator is the most performance-relevant kernel. The Wilson-Dirac operator is
discussed in more detail in Sect. 6.6.1. All compute-intensive tasks, e.g., solving a system of linear
equations, involve its repeated application to a quark field ψ,

ψ′x = Dhψx =

4∑
µ=1

{
Ux,µ (1 + γµ)ψx+µ̂ + U †x−µ̂,µ (1− γµ)ψx−µ̂

}
. (3.3)

Here x = (x1, x2, x3, x4) is a 4-tuple of coordinates labelling the lattice sites in a discretized 4-
dimensional Euclidian space-time volume. The quark fields ψ′x and ψx are spin-colour vectors as-
signed to each lattice site x. The vectors consist of twelve complex numbers each. A colour matrix
Ux,µ ∈ SU(3), consisting of nine complex numbers, is assigned to each link from site x in one out of
four space-time directions µ̂. The γµ are 4× 4 Dirac matrices.

The most efficient way to floating-point performance is to exploit the SIMD instruction set of
the SPE. The dual-issue SPE supports for concurrent execution of up to two fused multiply-add
operations that compute a× b+ c with real operands.4 Thus up to four floating-point operations in
double precision can be executed per clock cycle. On a single lattice site the computation of Eq. (3.3)
amounts to 1320 floating-point operations (neglecting sign flips and complex conjugation). Let the
computation perfectly match the instruction set architecture (ISA), i.e., the peak floating-point
throughput is saturated, then the minimal compute time is Tpeak = 330 cycles per site. However,
the multiply and add arithmetics arising in the hopping term are not adequately balanced, and the
implementation of the operator requires at least 840 fused multiply-add operations. The execution
time is TFP ≥ 420 cycles per site due to the imbalance. Therefore any implementation of Eq. (3.3)
cannot exceed 78% of the peak performance of the Cell BE.

3.3.3 Data layout analysis

State-of-the-art simulations of Lattice QCD carry out calculations on global volumes that consist of
643 × 64 or even more lattice sites. Thus massive amounts of data need to be distributed on a large
number of nodes to be efficiently dealt with. The choice for the data layout on the nodes is crucial
for the performance of the Lattice QCD kernel, and the optimal choice for the layout can be found
with the performance model introduced above.

Let the lattice sites be partitioned regularly among the nodes, and the local lattice volume
assigned to each Cell BE be denoted by VCell. According to the definition of the hopping term
Eq. (3.3), data has to be communicated along four dimensions. However, only the information
associated with the surface of the local lattice volume has to be communicated between neighbouring

3The PPE is rather weak in floating-point performance and is not taken into account.
4There is no native support for complex numbers on the Cell BE.
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nodes. The time spent on possible remote communications and on load/store operations of the 9×12
(for the ψ-fields) and 8× 9 (for the U -fields) operands of the hopping term strongly depends on the
data layout. For the following discussion of the data layout it is assumed that all floating-point
numbers are represented in double precision (8 bytes).

The design of the QPACE torus network allows each Cell BE to exchange data with six nearest-
neighbours in the mesh. With the constraint of a 3-dimensional physical network that connects
neighbouring nodes, one space-time direction must be distributed locally within each Cell BE. For
convenience the 4-direction is chosen here. Each Cell BE is assigned the fraction

VCell = L1 × L2 × L3 × L4 (3.4)

of the global lattice volume. The number of sites locally distributed amongst the SPEs is

VSPE = (L1/s1)× (L2/s2)× (L3/s3)× (L4/s4) = VCell/8 , (3.5)

with the SPEs logically arranged as s1×s2×s3×s4 = 8. There are strong limitations to the amount
of application data stored on the SPEs. Besides the application data, the LS must also hold the
program code, intermediate data, and the run-time environment. For the implementation of a solver
one needs access to 8 Dirac spinors and 3× 4 colour matrices per lattice site.

Data stored in on-chip memory

One possibility for the data layout is to keep all data in the LS only. Due to the strong constraints
on storage the local lattice volume is then restricted to VSPE = O(70) lattice sites assigned to each
SPE. Since all data associated with the 4-dimension must be kept within the Cell BE, a reasonable
choice is L4 = 64 and a logical arrangement of the SPEs by 13 × 8. This data layout yields an
asymmetric local lattice with VCell = 23 × 64 and VSPE = 23 × 8.

Data stored in off-chip memory

Another possibility is to store the data in main memory. The implementation of a multiple buffering
scheme allows for concurrent computation and data load/store from/to memory main and SPEs.
The hopping term Eq. (3.3) is computed on a 3-dimensional slice of the local lattice that moves
along the 4-direction. Each SPE stores all sites along the 4-direction, and the SPEs are logically
arranged as a 23× 1 grid. If the U - and ψ-fields associated with all sites of three such slices are kept
in the LS at the same time, then all relevant operands are available in the LS. This optimization
requirement constrains the local lattice to VCell/L4 ≈ 800 sites.

Given the ansatz for the data layout, the execution time of the micro-tasks arising in the computation
of the hopping term Eq. (3.3) were estimated by Eq. (3.1). The throughput for external communica-
tion was assumed to sustain5 βext = 6 GByte/s with a link bandwidth of βlink = 1 GByte/s per link
and direction. Other relevant information about the Cell BE was taken from public sources. The
estimated execution times are shown in Table 3.1 for reasonable sizes of the local lattice. If all data
is stored on-chip the sustained performance is limited by remote communications, and the floating-
point efficiency is about 27%. In contrast, if all data is stored off-chip the memory wall limits the
maximum performance and one can expect to achieve up to 34% efficiency for the implementation
of the kernel. Although the performance estimate for both data layouts does not differ significantly,
data storage in main memory is the favoured choice. The constraints on remote communications are
relaxed, but code optimizations for efficient main memory access become crucial.

5 The design goal for the external throughput was 6 GByte/s. However, in the recent implementation of the QPACE
network processor the external throughput is about 3 GByte/s.
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data in on-chip LS data in off-chip MM

VCell 2× 2× 2× 64 L1 × L2 × L3 8× 8× 8 4× 4× 4 2× 2× 2

Aint 16 Aint/L4 48 12 3
Aext 192 Aext/L4 48 12 3

Tpeak 21 Tpeak/L4 21 2.6 0.33

TFP 27 TFP/L4 27 3.4 0.42
TRF 12 TRF/L4 12 1.5 0.19
Tmem — Tmem/L4 61 7.7 0.96
Tint 2 Tint/L4 5 1.2 0.29
Text 79 Text/L4 20 4.9 1.23
TEIB 20 Tint/L4 40 6.1 1.06

εFP 27% εFP 34% 34% 27%

Table 3.1: Comparison of the execution time estimates Ti in 1000 SPE cycles for the micro-tasks
arising in the computation of the hopping term Eq. (3.3). The left part corresponds to the on-chip
data layout, the right part corresponds to the off-chip data layout. The number of neighbouring sites
within and outside each Cell BE is indicated by Aint and Aext, respectively. Estimated floating-point
efficiencies, εFP = Tpeak/maxi Ti, are shown in the last row. Performance bottlenecks are indicated
in boldface.

As initial steps for code optimizations simple linear algebra and realistic memory access patterns
(neglecting any computation) had been implemented on the Cell BE, see also Ref. [41]. It was found
that the implementation of pure linear algebra is uncritical for the performance, leaving enough
options for optimizations on other compute-relevant tasks. However, main memory access introduced
execution times up to 20% higher than the model predictions for Tmem. Recent implementations of
a scalable solver for a system of linear equations of type Mφ = b and M †Mφ = b, with M being
a huge but sparse complex matrix, achieve a sustained performance of about 20% of peak in single
precision, see Refs. [43, 44] for details.

3.4 DMA transaction models

Efficient data transfer on the Cell BE can only be achieved by direct memory access (DMA). The
responsibility for data load/store is forwarded to the programmer by full control over DMA engines
on the SPEs. One is forced to optimize DMA read and write operations by hand. As discussed
in Sect. 3.3.3, the optimization of data exchange, and thus DMA transactions, is crucial for the
performance of applications in Lattice QCD.

A suitable method to guide optimizations of the application code is to model the DMA data
transfer. However, at the time of investigation the documentation on the DMA mechanisms on the
Cell BE was fairly limited. The only fruitful option was to perform benchmarks on Cell BE-based
systems, i.e., to measure the execution times of DMA transactions in well-defined environments.
The data then served as a template for accurate models.6

On the basis of the performance model Eq.(3.1), the simplest ansatz for an execution time
function modelling a DMA transfer of size s – from the start of the DMA issue to its completion as
defined by the ISA – is

TDMA(s) = λ0 + s/β . (3.6)

Here β corresponds to the limiting bandwidth along the data path. The latency λ0 is associated

6 The Cell BE SDK [45] did not accurately model the execution time of data transfers.
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with a transfer of zero-size and effectively absorbs the hardware and software management overhead
into a single parameter. However, by comparison of measurements on real hardware with the model
function Eq. (3.6), it turned out that the linear ansatz is too simplistic to accurately describe, and
finally predict, the behaviour of the non-trivial DMA mechanism of the Cell BE. For this reason more
accurate models were developed for both transactions between the Local Stores (LS-to-LS) and the
Local Stores and main memory (LS-to-MM). The LS-to-LS model was published in Refs. [41, 42].

3.4.1 Local Store to Local Store

The refined model for LS-to-LS data transfer does not only take into account size, latency, and
bandwidth, but also the buffers’ source and destination addresses As and Ad, respectively. Fur-
thermore the native size of one LS line of 128 bytes, and also the fragmentation of the data on the
Cell BE in chunks of 128 bytes are essential ingredients. The refined model is based on the following
assumptions:

1. Each DMA transfer of size s > 128 bytes is fragmented into 128-byte blocks.

2. For a DMA transfer, or residue, of size s < 128 bytes that starts at arbitrary position within
a single LS line of the source LS, the complete LS line of 128 bytes is copied from the source
LS to the destination LS by the EIB.

3. Each data block (≤ 128 bytes) copied to the destination LS that exceeds the 128-byte boundary
of a single LS line introduces additional latency λa.

According to the assumptions the refined execution time is

TDMA(As, Ad, s) = λ0 + λaNa(As, Ad, s) +Nf (As, s)
128 bytes

β
. (3.7)

The model parameters λ0, λa, and β were determined by fits to measurements performed on IBM
QS20 blade servers. Each LS-to-LS DMA transfer has a latency of λ0 ≈ 200 cycles and data is
copied with approximately the peak bandwidth, β ≈ βpeak = 8 bytes/cycle. Data is fragmented into

Nf (A, s) = ceil
(A mod 128) bytes + s

128 bytes
(3.8)

128-byte blocks aligned at LS lines.7 An additional latency λa ≈ 16 cycles is introduced for each
copied block that exceeds the 128-byte boundary of a LS line if the source and destination addresses
are misaligned, i.e., δA ≡ (As − Ad) 6= 0 (mod 128). The model function for Na, which counts the
number of 128-byte blocks that exceed the LS line boundary, is given by

Na(As, Ad, s) = [Nf (Ad, s)− 1]ϑ0(δA) , (3.9)

where ϑ0 is the Heaviside function and ϑ0(0) = 0. The contributions to the execution time are
visualized in Fig. 3.3 on a transfer of 256 bytes from the source LS to the destination LS for aligned
addresses As = Ad = 0 (mod 128), unaligned addresses As = Ad 6= 0 (mod 128), and misaligned
addresses As 6= Ad 6= 0 (mod 128).

The impact of the buffer addresses on the execution time can be understood in terms of the
effective bandwidth

βeff =
s

TDMA − λ0
. (3.10)

7The ceiling function is defined as ceil(x) ≡ ]x[ = min{n ∈ Z | n ≥ x}, giving the smallest following integer of x.
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Figure 3.3: Visualization of the LS-to-LS DMA model for a data transfer of 256 bytes. Each LS
line consists out of 128 bytes. Contributions to the execution time are indicated by grey lines and
show the data fragmentation and the alignment to the LS line. Top left: buffer addresses are aligned
at LS lines (δA = 0). Two 128-byte blocks are copied from the source LS to the destination LS.
Top right: buffer addresses are not aligned at LS lines (δA = 0). Three 128-byte blocks are copied
from the source LS to the destination LS. Bottom: buffer addresses are not aligned at LS lines and
the address offsets differ (δA 6= 0). Three 128-byte blocks are copied from the source LS to the
destination LS. Due to the misalignment additional latency is introduced.

If the source and destination addresses are identically aligned (with respect to the LS line bound-
ary), i.e. δA = 0, then data is copied with approximately the peak bandwidth, and therefore
βeff ≈ βpeak = 8 bytes/cycle. If the addressed are misaligned (δA 6= 0) then the additional latency
λa reduces the effective bandwidth to approximately half of the peak value, βeff ≈ βpeak/2 = 4
bytes/cycle. This effect is clearly seen in Fig. 3.4. The figure shows the execution times as function
of the transfer size for both aligned and misaligned buffer addresses. Since the performance of the
processor-internal communication strongly depends on the choice for the buffer addresses, misaligned
buffers should be avoided by any implementation of (parallel) algorithms on the Cell BE.

3.4.2 Local Store to main memory

Access to main memory from the SPEs is the limiting factor for the performance of the Lattice QCD
kernel on the Cell BE. However, modelling of main memory access turned out to be complicated.
The main memory subsystem of the Cell BE provides many degrees of freedom to be taken into
account by the model, e.g., the logical partitioning of the memory into memory banks, the setup of
the dual-channel memory interface controller, and also the Cell BE’s resource allocation policy. The
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Figure 3.4: Execution time of LS-to-LS DMA transfers as function of the transfer size. The dashed
blue line corresponds to the linear model Eq. (3.6). The solid red line corresponds to the refined
model Eq. (3.7). Black triangles show measurements on the IBM QS20 blade server. Left panel:
source and destination addresses are aligned (δA = 0). Right panel: source and destination addresses
are misaligned (As = 32, Ad = 16, δA 6= 0). Buffer addresses are relative to the 128-byte boundary
of the LS lines.

setup is not necessarily identical on commercially available Cell BE-based platforms.8

The results presented here are restricted to IBM QS20 blade servers, which are dual-processor
servers with distributed shared memory architecture. As typical for systems that grant for non-
uniform memory access (NUMA), access to the local off-chip memory is faster than access to the
non-local memory. Spoiling of the measurements due to non-local access to off-chip memory was
eliminated by memory allocation and thread binding using a proper NUMA policy supported by
numactl.

A non-trivial model that describes the execution time of a data transfer of size s between the LS
and main memory is given by

TDMA(A, s) = λ0 + λpNp(A, s) +Nf (A, s)
128 bytes

β
. (3.11)

This model does not take into account arbitrary buffer addresses, and therefore is limited in the
description of main memory access. The execution time function is only valid for buffers equally
aligned relative to 128-byte boundaries, As = Ad ≡ A (mod 128). The zero-size latency λ0 collects
the hardware and software overhead and was measured to be on the order of 600 cycles. The band-
width reaches approximately the peak value, β ≈ βpeak = 8 bytes/cycle. Again, data is fragmented
into

Nf (A, s) = ceil
(A mod 128) bytes + s

128 bytes
(3.12)

chunks of 128 bytes size. A feature of main memory access are plateaus with a fixed size of 2048
bytes found in the measurements. Each plateau contributes an additional latency of λp ≈ 300 cycles

8 Benchmarks for Lattice QCD applications were carried out on the IBM QS20 blade server, Mercury CAB and
PlayStation 3. Depending on the system the results for main memory access differ. See Ref. [46] for details.
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Figure 3.5: Execution time of LS-to-MM DMA transfers as function of the transfer size. The
dashed blue line corresponds to the linear model Eq. (3.6). The solid red line corresponds to the
refined model Eq. (3.11). Black triangles and purple diamonds show measurements on the IBM QS20
system. Buffer addresses are relative to 128-byte boundaries. Left panel: source and destination
addresses are aligned (δA = 0). Purple diamonds show the effect of misaligned addresses (As = 0,
Ad = 32, δA 6= 0). Right panel: source and destination addresses are unaligned (As = Ad = 32,
δA = 0). The staircase structure within each plateau is adequately described by the refined model.

to the execution time. The number of plateaus is

Np(A, s) = ceil
(A mod 128) bytes + s

2048 bytes
− 1 , (3.13)

counting from zero for convenience. The refined model Eq. (3.11) is shown in Fig. 3.5. DMA
transactions with both aligned addresses (A = 0) and unaligned addresses (A 6= 0) are accurately
described. Within each plateau the peak bandwidth is almost saturated, but the contributions of the
additional latency λp to the execution time limit the effective bandwidth Eq. (3.10) to approximately
half of peak for the largest supported DMA transfer size on the Cell BE (16 kByte). The effective
bandwidth reaches the peak value only within the zeroth plateau and otherwise decreases as a
function of the transfer size s, βpeak & βeff(s) & βpeak/2. Fig. 3.5 also shows a measurement with
misaligned buffer addresses (δA 6= 0). In this case data transfer is seriously slowed down. The usage
of buffers with misaligned addresses introduces prohibitively expensive execution times for main
memory access.

It is likely that the behaviour of main memory access from a single SPE is related to the resource
allocation and coherency policy of the IBM QS20 dual-processor system. Comparable limitations to
the effective bandwidth were found for multiple DMA requests scheduled concurrently on a single
SPE. However, the peak bandwidth was measured on all test systems if more than one SPE accesses
the MM. A thorough study of main memory-specific parameters and multiple SPEs accessing the
memory is provided in Ref. [46].



Chapter 4

The QPACE Network Processor

4.1 FPGA technology

A necessity for performance in parallel applications is the balancing of computation and commu-
nication. The PowerXCell 8i supports for outstanding floating-point performance. Therefore a
high-speed network with sufficiently low latency and high throughput is required that allows the
parallel algorithms to sustain the floating-point pipelines of the processor. Unfortunately for the
Cell BE there is no suitable southbridge available that enables for scalable parallel architecture. For
this reason an appropriate I/O fabric was custom-designed for QPACE.

In general hardware designs realized with Application-Specific Integrated Circuit (ASIC) tech-
nology are expensive in terms of both finances and development. This approach has been pursued
in other Lattice QCD machines, e.g., QCDOC [47] and apeNEXT [48]. The requirements for the
QPACE network processor are much lower in terms of complexity and resource usage than these
system-on-chip designs. Field-Programmable Gate Arrays (FPGA), pioneered by the Xilinx com-
pany since the mid-eighties, have become powerful competitors to ASICs on the silicon market. The
high logic count and processing capacity render these chips very attractive solutions to a large va-
riety of fields including communications, medical, chip design prototyping, aerospace, military, high
performance computing, and many more.

At the highest level FPGAs are reprogrammable silicon chips. Unlike integrated circuits, FPGAs
do not have any predefined functionality. Instead, these chips allow to implement virtually any kind
of (synchronous) logic circuitry. The logic design is described by a hardware description language
(HDL). Amongst the most prominent languages is VHDL,1 an IEEE standard. VHDL allows to cre-
ate text-based logic design suitable for synthesis as well as simulation programs for the logic itself.
For QPACE almost all application logic is written in VHDL in register-transfer level (RTL) repre-
sentation.2 RTL is a high-level representation of the circuitry defined in terms of logical operations
on signals and their flow between hardware registers.

Typically, complex designs are broken down into smaller blocks of logic called “entities”. Each
entity describes the behaviour of the logic as an interplay between combinational and sequential
logic. HDL code is not comparable to program code developed for microprocessors: code written
for standard microprocessors is generically executed in serial unless parallelized by the hardware,
compiler or programmer. In contrast, HDL design is generically running in parallel unless explicitely
serialized. This inherent parallelism enforces extensive testing cycles for non-trivial implementations
such as the QPACE network processor. One major advantage of FPGA over ASIC technology is the
possibility to verify the design in the field due to reprogrammability. In principle any design can be
tested, debugged, and enhanced in a real-world environment with reasonable effort and especially

1Very high speed integrated circuits HDL
2Few parts of the IBM logic are designed in Verilog, another HDL standardized by IEEE.
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no financial risk – a serious advantage over ASIC design. As a penalty the final FPGA design is
typically slower than a comparable ASIC design, resources are far more limited, and the price per
device is typically higher.

The FPGA that was chosen for QPACE is the Virtex-5 LX110T from Xilinx [49, 50]. This FPGA
is medium-sized with an amount of logic blocks sufficient for the design of the network processor.
Each logic block consists of two “slices” which provide the necessary basis for combinational and
sequential logic: a look-up table, storage elements, and a multiplexer. The logic blocks are intercon-
nected by a switch matrix, see Ref. [50] for the details on the internal structure of this particular
type of FPGA. The Virtex-5 also provides “hard cores” embedded into the silicon that come with
predefined functionality, e.g., block RAM, Ethernet media access controller (MAC), and RocketIO
transceivers. Within some limitations each hard core can be configured according to the needs of
the application. Several of these hard cores are used by the implementation of the QPACE network
processor.

The resource usage of the QPACE network processor is analyzed in Ref. [20]. About 90% of
the available slices are used by the recent logic design. The mapping of the circuitry to the actual
hardware, i.e., the generation of a bitstream image which appropriately configures the FPGA and
satisfies the target constraints, becomes more and more difficult and even impossible as the resource
usage increases. Most of the FPGA’s resources are used by the logic interfacing the network processor
and Cell BE. The high register count and the large number of clocks consumed by this IBM design,
originally not targeting FPGA devices, constrains the resources available for other functional units.
Although the effort on optimizations on the performance-critical parts of the logic circuitry was
high, the target clock frequencies could not be reached for all parts in the recent design.

4.2 Network processor overview

An overview on the internal structure of the QPACE network processor design is given in Fig. 4.1.
Entities depicted in the upper part contain the IBM logic which connects to the Cell BE’s non-
coherent I/O interface. The lower part shows the application logic designed by academic partners
and the connections to the outside world. The following items give a brief overview of the most
important entities and their functionality:

• The PowerXCell 8i and the network processor are connected by the Rambus FlexIO high-speed
interface. Two FlexIO links with eight data lines per direction each are used for communication
between the processors. The Xilinx RocketIO high-speed transceivers are used to interface the
FlexIO. This setup is non-trivial and is described in detail in Ref. [51]. The goal for QPACE was
to operate the FlexIO links at a frequency of 2.5 GHz. However, the frequency recently used
is 2.0 GHz. The resulting gross bandwidth between the FPGA and Cell BE is 32 Gbit/s per
direction. Complex logic is required for handling of the communication between the Cell BE
and the network processor. The logic design was provided by IBM. All communication details
are hidden from the application logic behind the proprietary General Buffer Interface (GBIF).
In the recent implementation of the network processor the GBIF runs at a frequency of 200 MHz
and supports for data rates up to O(3) GByte/s bi-directional.

• The IBM logic provides two Device Register Control bus (DCR) masters. One master is
accessible by the Service Processor, the other one is accessible by the Cell BE. A DCR arbiter
provides access to the DCR device tree from both data paths. The majority of the entities in
the network processor are controlled by DCR. The implementation of the DCR bus is discussed
in detail in Sect. 4.3. The public DCR memory map is provided in Appendix A.2.

• The Inbound Write Controller (IWC) handles inbound write requests, i.e., data transfers from
the Cell BE to the network processor. It acts as a slave to the GBIF. Data written from the
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Figure 4.1: Simplified overview of the architecture of the QPACE network processor as published
in Ref. [20]. Blue boxes refer to entities provided by IBM, yellow boxes refer to entities designed
by academic partners. The recent operating frequency of the IBM high-speed interfaces is slightly
lower than indicated.

SPEs to the network processor are transferred from the GBIF to the IWC to one of six torus
links. As a design convention the size of data packets written by the SPEs is restricted to
multiples of 128 bytes. The IWC logic is discussed in detail in Sect. 4.4.

• The Outbound Write Controller (OWC) is a master on the GBIF. It handles the requests from
the Ethernet and the torus network logic using a round-robin arbitration scheme. Similar to
inbound data transfer via the IWC, the packet size for outbound data transfer is restricted.
The OWC handles data packets in chunks of 128 bytes. Additionally notification packets of 16
bytes size are supported. These packets are dedicated to the communication process along the
torus network: after the transfer of block data of predefined size, i.e., n chunks of 128 bytes, a
notification is sent to the Cell BE. The polling for notification is performed by the target unit,
e.g., the SPE. The OWC design is described in detail in Ref. [52].

• The torus network logic handles the data transfer within the 3-dimensional torus high-speed
network. Data provided by the IWC is stored intermediately in one of six transmit FIFOs. The
data is passed autonomously from the FIFOs to one of six PMC Sierra 10 Gigabit Ethernet
transceiver PHYs along the 32-bit wide 10 Gigabit Media Independent Interface (XGMII). The
PHYs are controlled by the torus logic using the Management Data I/O (MDIO) interface.
Each PHY drives four serial lines that support for a raw throughput of 2.5 Gbit/s each,
transmitting 8b/10b encoded data to the PMC PHY on the neighbouring node in the toroidal
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mesh. Thus the data rate per link and direction is 1 GByte/s. The receiver logic stores
incoming frames in a dedicated receive buffer. Received data is moved to the destination SPE
(or main memory) by the OWC via the GBIF using the credit-based flow control mechanism
described in Sect. 2.4.1.

• The Ethernet core supports for Gigabit Ethernet. The GBIF outbound read data path is used
to fetch frames to be transmitted directly from main memory. Frames received are written to
main memory via the outbound write data path managed by the OWC. The Ethernet logic uses
the embedded Tri-mode Gigabit EMAC hard core to manage the data transfer. The Ethernet
core interfaces the onboard Gigabit Ethernet PHY by the Reduced Gigabit Media Independent
Interface (RGMII). The PHY is controlled by another MDIO interface. The Ethernet logic is
described in detail in Ref. [53].

• The global signals (GS) core connects to the GS tree network. Per direction two differential
lines are used to propagate the information. The core logic decodes and encodes the four signal
states NOP, TRUE, FALSE, and KILL.

• Two Universal Asynchronous Receiver Transmitters (UART) are used for low-speed serial
communication. One UART is dedicated to communication between the Service Processor and
the IBM logic. Communication is necessary during the FlexIO training sequence. The other
UART is dedicated to communication with the root-card. The latter allows for monitoring and
control of the Cell BE during the boot process. It also grants access to the Linux shell during
runtime. The UART logic is discussed in Sect. 4.5. The connections between the node-card
and root-card are shown in Sect. 2.6.1.

• Other entities in the network processor comprise the logic necessary for reset handling, inter-
rupt handling, SPI flash memory access, and also addressing of various registers dedicated to
configuration and status control.

4.3 Device Control Register bus

The Device Control Register bus (DCR) is a standard system bus especially designed for data
exchange between a DCR master controller unit and other logic devices in the system. The DCR
bus specification is provided in Ref. [54]. The original purpose is to move configuration registers
from the IBM PowerPC Processor Local Bus (PLB) to the DCR bus, thereby improving the PLB
bandwidth and reducing the latency introduced by access to configuration registers. Although the
hardware setup is quite different in QPACE, the implementation of the DCR bus pursues the same
objective: decoupling of configuration registers and low-speed I/O devices from the high-speed torus
data path. The DCR bus is also used for passing credits for torus communication from the Cell BE
to the torus logic. The most relevant features of the DCR bus are:

• Separate control bus, address bus, inbound and outbound data bus. In the design of the
QPACE network processor the width of the address bus is 16 bit and the width of the data
buses is 32 bit.

• Master/slave architecture with support for multi-master arbitration.

• Simple but flexible bus interface: four-phase handshake supports for simple interfacing of both
synchronous and asynchronous devices.

• Serial, parallel, or mixed bus topology.



4.3 DEVICE CONTROL REGISTER BUS 33

Two DCR master controllers are provided by the IBM logic. Both grant access to the DCR device
tree. One master (M0) is accessed by the Cell BE. This master is controlled by the Cell BE firmware
during the boot process. After booting into Linux the data path is used by the device drivers
for runtime management, e.g., access to configuration registers and handling of interrupt requests.
Applications use this data path to pass credits to the torus network logic.

Another DCR master is accessible by the Service Processor. This data path is used to monitor
and control the DCR device tree from an external source and therefore serves as a “backdoor entry”
into the FPGA logic. For technical reasons the latter master is directly attached to another master
(M1). Both DCR masters M0 and M1 are attached to a multi-master arbiter that provides unified
access to the DCR device tree.

The DCR bus structure and the public DCR device tree are shown Fig. 4.2. In total nine devices
are directly attached to the public DCR device tree. The devices are listed in Table 4.1. Detailed
description for each device is given in the corresponding reference. The public DCR memory map
is provided in Appendix A.2. Two UART devices support for low-speed I/O and three devices
are dedicated to Ethernet support. Interrupts and resets are handled by the Control Box. Debug
information is accessible by the Extension Modules of the Inbound and Outbound Write Controllers.
The torus network configuration is accessible by the torus DCR sub-device tree. Credits for high-
speed data transfer are passed into the torus logic via this data path.

Device Description Reference

UART 0 UART to Cell BE Sect. 4.5.2
UART 1 UART to Service Processor Sect. 4.5.2
Ethernet EMAC Ethernet EMAC Ref. [53]
Ethernet GBIF Ethernet GBIF Ref. [53]
Ethernet GTX Ethernet GTX Ref. [53]
CB Control Box Ref. [53]
IWCEM Inbound Write Controller Extension Module Ref. [53]
OWCEM Outbound Write Controller Extension Module Ref. [52]
Torus Torus DCR sub-device tree Ref. [55]

Table 4.1: Devices embedded into the public DCR device tree.

4.3.1 Device tree topology

The DCR bus supports for several structural topologies. The bus specification Ref. [54] suggests
two common configurations to meet constraints on the chip physical design and timing closure. One
suggestion is the arrangement of the DCR devices in a daisy-chain topology. The data flows through
a chain network consisting of DCR slave devices. If the slaves are instantiated physically around the
chip, such an approach to the bus topology allows for easier wiring within the network processor’s
complex logic network. The drawback of the daisy-chain topology are the cumulative data path
delays introduced by the chain network. These delays effectively limit the DCR bus clock frequency.
It was not clear whether this approach to the device tree structure offers the best choice of bus
layout for the network processor. Instead, a different topology was chosen from the beginning of the
design cycle. In the “distributed OR” topology each DCR slave device receives all outbound master
signals directly from the DCR master controller. The inbound DCR master signals are reduced by
a logical OR multiplexor in one or more stages based on the geography and wiring constraints of
the physical floorplan before connecting to the DCR master. Fig. 4.2 shows the DCR device tree
with distributed OR topology connected to the multi-master arbiter. Only a single OR reduction
stage is required to meet the timing constraints. The desired multiplexing functionality of the OR
reduction only works if the inbound master signals are deasserted by the DCR slave devices (except
for the slave addressed).
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Figure 4.2: Public DCR device tree with distributed OR topology and multi-master arbiter.

4.3.2 Bus interface and protocol

The DCR bus protocol uses a simple but flexible four-phase handshake sequence to regulate the
data transfer between the master and the slaves. Data is transferred along separate data buses for
read and write transactions. Each transfer is initiated by the DCR master controller and must be
acknowledged by the addressed slave device.

The DCR bus signals used in the QPACE network processor implementation are defined in
Table 4.2.3 Other signals defined by the DCR specification Ref. [54] are not required. The data
bus directions are defined entity-centric by convention, i.e., outbound signals from the DCR master
perspective are inbound from the DCR slave perspective and vice versa. On read transaction data
is transferred from the DCR slave to the DCR master, on write transaction data is transferred from
the DCR master to the DCR slave.

Signal Description

Read Read enable
Write Write enable
ABus 16-bit address bus
DBusOut 32-bit outbound data bus
DBusIn 32-bit inbound data bus
Ack Acknowledge

Table 4.2: DCR bus signals.

3Naming conventions in the recent VHDL implementation slightly differ. The differences are due to changes in the
design along the development phase.
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Figure 4.3: Timing diagram for two subsequent DCR bus cycles. The four-phase handshake
sequence is shown for the first bus cycle explicitely.

Each DCR bus cycle is governed by a four-phase sequence of handshakes between the master con-
troller and the slave device:

1. On read transaction the DCR master asserts Read and deasserts the outbound data bus
DBusOut. On write transaction the DCR master asserts Write and the outbound data bus
DBusOut. On both read and write transaction the address bus ABus is asserted. Data and
address bus are valid from assertion to deassertion of Read and Write. Read and write are
mutually exclusive.

2. The DCR transfer acknowledge signal Ack is asserted by the DCR slave when data is read
from the inbound data bus DBusIn on write transaction. On read transaction the DCR slave
asserts the outbound data bus DBusOut concurrently to Ack.

3. The DCR master samples the Ack signal and terminates the read or write transaction by
deasserting Read or Write, respectively. On read inbound data is registered from the data bus
DBusIn the first cycle Ack is asserted.

4. The DCR slave deasserts Ack when Read or Write are deasserted. Read and Write are not
re-asserted by the DCR master until Ack is deasserted.

The timing diagram for two subsequent DCR bus cycles of master M1 are shown in Fig. 4.3. The
DCR bus cycle time tc is determined by the sum of clock cycles ti associated with each handshake
phase i and addtitional delay cycles td in the data path (not shown in the figure),

tc = td +
4∑
i=1

ti . (4.1)

The minimal DCR bus cycle time is tc = 4 cycles, which can only be achieved by zero delays in the
data path. One DCR clock cycle is required for each handshake phase if the signals are registered in
each phase. However, the minimal bus cycle time was not achieved in the QPACE network processor.
The delay time introduced by the multi-master arbiter is td = 2 cycles due to two additional signal
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registration stages, see also Sect. 4.3.4. The timings of the phases 2 and 4 are determined by the
DCR master implementation. The master M1 introduces fixed timings with t2 = t4 = 1 cycle. The
timings for the phases 1 and 3 depend on the implementation of the slave interface to the DCR bus.

For QPACE unified synchronous and asynchronous DCR slave interfaces were designed that allow
for addressing of the register file of slave devices that are running at different clock frequencies. For
the synchronous slaves the clock can be same as, or must be derived from, the DCR master clock.
If the DCR slave device is driven by the DCR master clock then the DCR bus cycle time in the
recent implementation of the logic is tc = 9 cycles. In the asynchronous case the DCR bus cycle time
depends on the clock ratio. The synchronous DCR slave interface is described in Sect. 4.3.5. The
asynchronous DCR interface supports for clock domain transition (CDT) for arbitrary slave clock
source. The CDT-DCR slave interface is described in Ref. [53].

By convention a strobe signal is generated by the unified slave interfaces on read or write request
that is passed to the slave device logic. Inbound data must be registered on read strobe by the
device, and outbound data must be asserted on write strobe. This convention effectively decouples
the internal logic of the slave device from the DCR bus and omits delays of the handshake phase
1 and 3, therefore minimizing the DCR bus cycle time and thus increasing the throughput of DCR
transactions.

4.3.3 Master implementation

The DCR master M1 shown in Fig. 4.2 is directly controlled by the Service Processor. It is indirectly
accessible via the root-card, cf. Sect. 2.6.1, and therefore allows for external access to the DCR device
tree. The witchlib library described in Appendix A.3 provides a software interface that allows for
access to the DCR device tree from the QPACE master server. The DCR master M1 logic is encoded
in the entity spi backdoor dcr master. The public ports are listed in Table 4.3.

Signal Direction Width Description

Clk in 1 Master clock
Reset in 1 Master reset

DBusIn in 32 Master data bus in
Ack in 1 Master acknowledge
Read out 1 Master read enable
Write out 1 Master write enable
ABus out 16 Master address bus
DBusOut out 32 Master data bus out

Table 4.3: Public ports declaration for the DCR master M1.

The DCR master logic generates DCR-compliant signals (see Fig. 4.3) and is connected to the
DCR arbiter described in the next section. The DCR master uses three registers to define a single
DCR transaction: CTRL[1:0], DATA[31:0] and ADDR[DCR ABUS WIDTH-1:0]. Write data must be
stored in DATA prior to any DCR write transaction. Read data is provided in DATA after any DCR
read transaction. The corresponding DCR address is stored in ADDR. On write the 2-bit control
register CTRL defines the DCR transaction. CTRL[1:0] = ’11’ starts a DCR read transaction, and
CTRL[1:0] = ’01’ starts a DCR write transaction. The control register accepts data only if the
master is not busy, i.e., there is no bus cycle in flight. On read CTRL[0] returns the master state:
’0’ if idle and ’1’ if busy. Internally the control register CTRL is mapped to master ctrl reg which
defines read or write mode. On read of CTRL the state of the signal master busy is returned.

The DCR master state machine implements the states IDLE, READ, and WRITE to generate the
DCR bus protocol described in Sect. 4.3.2 and supports for the minimal DCR bus cycle time of tc = 4
cycles. The state diagram for the Moore-type state machine is shown in Fig. 4.4. The states directly
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Figure 4.4: State diagram for the DCR master M1.

drive the DCR bus transaction signals Read and Write. In state IDLE the signals Read, Write,
and master busy are deasserted. If master ctrl reg = ’11’ then a read transaction is initiated in
state READ. The DCR bus signal Read is asserted until the DCR slave acknowledges the transfer by
asserting Ack. The READ state is followed by IDLE. Inbound data is registered in DATA only if both
Ack is asserted and the state is READ. If master ctrl reg = ’01’ a write transaction is initiated in
state WRITE. The DCR bus signal Write is asserted until the DCR slave acknowledges the transfer
by asserting Ack. The WRITE state is followed by IDLE. After each transaction the control register
master ctrl reg is reset to ’00’. On reset of the DCR master the registers ADDR, DATA and CTRL

are deasserted and the state machine is reset to state IDLE.
The adress register ADDR and the data register DATA are instantaneously mapped to the DCR

master M1 ports ABus and DBusOut, respectively. This violates the DCR bus protocol specified
in Sect. 4.3.2 if the DCR master M1 is the only master on the bus, because by specification the
outbound data bus DBusOut has to be deasserted on read transactions (and otherwise does not
natively support for the distributed OR topology). However, the multi-master arbiter described
in the next section is designed to overcome this violation of the specification. Therefore the DCR
master M1 is compliant to the DCR bus protocol only in combination with the multi-master arbiter.

4.3.4 Arbiter implementation

In the following the logic of the DCR multi-master arbiter dcr arbiter shown in Fig. 4.2 is described.
The arbiter and the DCR masters M0 and M1 must be clocked synchronous in this implementation.
The ports declaration for the arbiter is listed in Table 4.4. Port names are master-centric.

Signal Direction Width Description

Clk in 1 Clock
Reset in 1 Reset

M0 Read in 1 Master 0 read signal
M0 Write in 1 Master 0 write signal
M0 ABus in 16 Master 0 address bus
M0 DBusOut in 32 Master 0 data bus out
M0 DBusIn out 32 Master 0 data bus in
M0 Ack out 1 Master 0 acknowledge

M1 Read in 1 Master 1 read signal
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Signal Direction Width Description

M1 Write in 1 Master 1 write signal
M1 ABus in 16 Master 1 address bus
M1 DBusOut in 32 Master 1 data bus out
M1 DBusIn out 32 Master 1 data bus in
M1 Ack out 1 Master 1 acknowledge

DBusIn in 32 Arbiter data bus in
Ack in 1 Arbiter acknowledge
Read out 1 Arbiter read signal
Write out 1 Arbiter write signal
ABus out 16 Arbiter address bus
DBusOut out 32 Arbiter data bus out

Table 4.4: Ports declaration for the DCR arbiter.

Figure 4.5: Block diagram for the DCR arbiter.

The block diagram for the multi-master arbiter is shown in Fig. 4.5. The arbiter autonomously
switches between the DCR masters M0 and M1. The implementation adds one delay cycle in the
signal path for both inbound and outbound signals due to signal registration. The inbound and
outbound signals are registered on the DCR slave side, therefore minimizing constraints on timing
and routing. No skew is introduced between the DCR bus signals.

The outbound signals Mn Read, Mn Write, Mn DBusOut, and Mn ABus are multiplexed into unified
master registers according to a simple arbitration scheme which prioritizes the DCR master M0
over M1. On read the arbiter outbound data bus is deasserted, DBusOut[31:0] = 0x00000000.
Deassertion is required to support for the distributed OR topology of the DCR device tree described
in Sect. 4.3.1. The registered inbound data bus DBusIn connects to both DCR masters without
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Figure 4.6: State diagram for the DCR arbiter.

further restriction. The DCR acknowledge signal Ack is multiplexed to the active master on the
DCR device tree.

The state diagram for the DCR arbiter is shown in Fig. 4.6. The arbiter implements a Moore-
type state machine. Therefore the outputs are uniquely defined by the actual state. The initial state
is IDLE. If a DCR transaction is initiated by DCR master Mn either the signal Mn Read or Mn Write

is asserted, indicating a read or write transaction, respectively. For each DCR master the signals
are combined into Mn dcr Request by a logical OR reduction. On assertion of M0 dcr Request

the state is switched to M0 regardless of the state of M1 dcr Request, effectively prioritizing DCR
master M0 over M1. DCR master M1 may handle the bus only if M0 dcr Request is deasserted.
The corresponding state is M1.

The outbound master signals M1 * are multiplexed to the registered output ports of the arbiter
only if the state M1 is active, otherwise the outbound signals M0 * are multiplexed to the registered
output ports. The DCR acknowledge signal Ack is registered in DCR Ack q in each clock cycle. In
state M1 the signal DCR Ack q is forwarded to DCR master M1 via the M1 Ack port, otherwise M1 Ack

is deasserted. The acknowledge signal M0 Ack assigned to DCR master M0 is deasserted in state M1.
In all other states the signal DCR Ack q is forwarded to DCR master M0 via the M0 Ack port. The
states M0 and M1 switch to IDLE state once the DCR transaction has finished, i.e., Mn dcr Request

and DCR Ack q are deasserted. On reset the arbiter state is IDLE. Any DCR operation is suppressed
by deasserting Read, Write and DCR Ack q as long as Reset is asserted.

4.3.5 Synchronous DCR interface implementation

One of the advantages of the DCR protocol is its simplicity. Any logic device, referred to as “client”
in the following, is easily coupled to the DCR device tree by a simple logic interface. Two different
types of such interfaces were developed for QPACE. The synchronous interface dcr slave interface

was designed for those client that either use the same clock as the DCR master controller or a
derived clock, supporting for integer fractions of the DCR master frequency. The asynchronous
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interface cdt dcr slave interface described in Ref. [53] supports for arbitrary client clock source
and performs the transition of the clock domain within the interface logic. Both interfaces can be
exchanged without major effort. On a change of the client logic, i.e., a change in the definition of
the clock source, the DCR interface can simply be replaced without major changes in the definition
of the interface. In the following the synchronous DCR interface is described. The ports declaration
is listed in Table 4.5.

Signal Direction Width Description

ONETOONEMODE generic boolean Enable One-To-One mode
DEVICE SELECT WIDTH generic natural Width of upper address bus
DEVICE ADDR generic natural Device address

Clk in 1 Clock
Reset in 1 Reset

Read in 1 Master read signal
Write in 1 Master write signal
ABus in 16 Master address bus
DBusOut in 32 Master data bus out
DBusIn in 32 Master data bus in
Ack out 1 Master acknowledge

Reg DBusIn in 32 Client data bus in
Reg Read out 1 Client read strobe
Reg Write out 1 Client write strobe
Reg ABus out 16− DEVICE SELECT WIDTH Client address bus
Reg DBusOut out 32 Client data bus out

Table 4.5: Ports declaration for the synchronous DCR interface.

The block diagram for the synchronous DCR interface is shown in Fig. 4.7. The master ports
interface with the DCR master (arbiter). The client ports are attached to (or embedded into) the
client device. The logic of the interface is self-regulating, i.e., the DCR transaction signals Read

and Write drive the operational sequence for read and write transactions and also the four-phase
handshake sequence. No state machine is required to operate the interface and the logic count is
very small. The DCR address bus ABus is split into upper block Abus[15:N] and lower block
Abus[N − 1:0] where N = 16 − DEVICE SELECT WIDTH. Here DEVICE SELECT WIDTH defines the
number of bits reserved for the client device address DEVICE ADDR in the DCR device tree. The
address decoder compares the upper address bus block Abus[15:N] with the device address provided
by DEVICE ADDR. Due to the implementation of the address decoder the real client device address
must be right-shifted by N . The lower address bus block Abus[N − 1:0] is provided to the client
device. On address match the master Read (Write) signal is registered into R1r (R1w). The register
R2 is fed by the OR-reduced R1r and R1w, therefore indicating a valid DCR transaction. In the
subsequent clock cycle the register R2 is fed into R3 unconditioned and thereby generating the DCR
acknowledge signal Ack. On reset all registers are deasserted and therefore any DCR transaction is
suppressed.

It was mentioned in Sect. 4.3.2 that the DCR interface generates a client read (write) strobe
signal. The strobe signal indicates a valid read (write) transaction initiated by the DCR master.
The strobe signal is asserted only if R1r (R1w) is asserted, but R2 is still deasserted. Therefore the
strobe signals are active exactly for one clock cycle. The client device is allowed to read from the
inbound client data bus Reg DBusIn only if the client signal Reg Read is asserted. Data must be
registered by the client and passed to the outbound client data bus Reg DBusOut if client Reg Write

is asserted. The client outbound data bus Reg DBusOut is multiplexed to the master inbound data
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Figure 4.7: Block diagram for the synchronous DCR interface.

bus DBusIn only if R2 is asserted. Otherwise the master outbound data bus DBusOut is connected
through. Multiplexing of the inbound master data bus DBusIn is necessary to support for the
distributed OR topology of the DCR device tree. By definition the master outbound data bus
DBusOut is deasserted on read transactions.

The synchronous DCR interface supports for One-To-One mode (ONETOONEMODE), cf. Ref. [54].
In this case the registers R1r and R1w are bypassed, effectively reducing the time t2 within the
handshake sequence Eq. (4.1) by one cycle. However, this feature is not used in the QPACE network
processor. The timing diagram for subsequent write and read transactions from the DCR master
to/from the synchronous DCR interface driven by the DCR master clock is shown in Fig. 4.8. Here
One-To-One mode is disabled. The signal changes of the master inbound data bus DBusIn are
due to the multiplexer that switches between the master outbound data bus DBusOut and the client
outbound data bus Reg DBusOut. On read transaction the DCR master deasserts the outbound data
bus DBusOut. The timings for the handshake sequence are t2 = t4 = 1 cycle, which are determined
by the DCR master. The synchronous DCR interface introduces asymmetric timings t1 = 3 cycles
and t3 = 2 cycles, because the Ack signal is deasserted ahead of schedule. If the DCR client is
clocked by the DCR master clock, then the DCR bus cycle time for the QPACE network processor
is tc = 9 cycles, because of the additional signal registration stages in the multi-master arbiter. If
the DCR client clock is derived from the DCR master clock the bus cycle time varies.

4.4 Inbound Write Controller

The Inbound Write Controller (IWC) shown in Fig. 4.1 is attached to the inbound write GBIF slave
interface. This interface grants access to data sent by the SPEs to the network processor. The
IWC autonomously handles the proprietary GBIF interface and multiplexes data into one of six
torus link transmit buffers, which are organized as FIFOs. As part of the critical data path for
remote communication between adjacent Cell BEs the IWC was designed for low latency and high
throughput. No flow control is required to sustain high data rates. The design goals for the IWC
are summarized in the following:

• GBIF-to-torus transmit buffer latency of O(10) cycles at data rates up to O(6) GByte/s.

• Zero-latency back-to-back transfer of 128-byte fixed-size datagrams to the torus interface.
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Figure 4.8: Timing diagram for subsequent write and read transaction to/from the synchronous
DCR interface. Delays introduced by the DCR arbiter are not shown.

• Support for backpressure handling, in-flight transfer suspendable.

• One-pass address translation.

• Check for critical errors.

In principle the IWC is a simple controller unit that controls the GBIF protocol and passes appli-
cation data to the torus network logic. However, due to the limited storage capacity of the torus
transmit buffers there is no guarantee for sufficient amount of free buffer space for another data-
gram. Software polling for the buffer status before uploading data from the Cell BE to the network
processor introduces prohibitively large latencies and thus is not an option. The IWC is not capable
to maintain data. Therefore the strategy to reduce communication overhead and to avoid data loss
due to buffer overrun is to suspend in-flight data transfer from the GBIF to the transmit buffers. In
this case the inbound write data path is blocked, i.e., no other GBIF transactions can be handled
by the IWC during suspension, until the buffer resources are available again and the datagram is
transmitted to the torus transmit buffer. The blocking of the inbound write data path is uncritical
for the application even if the amount of data uploaded onto the network processor exceeds the
limited buffer space of the GBIF. Then the backpressure reaches the Cell BE and temporarily blocks
the Cell BE-FPGA interface. In the worst-case scenario the backpressure triggers a checkstop due to
timeout (and other limitations imposed by the FlexIO interface). However, such scenario is unlikely
to happen in production runs and would indicate a serious flaw within the design of the high-speed
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torus network data path. In fact, this critical situation was not observed in the recent design of the
QPACE network processor.

4.4.1 Implementation

The IWC consists out of two logic parts. One is the IWC core logic and the other one is the IWC
Extension Module (IWCEM). The IWCEM connects to the DCR device tree. It provides status
information of the IWC, exceptional states, timeout setting, and supports for an optional instance
of a data monitor for inbound write operations. The module is described in detail in Ref. [53]. In
the following the IWC core logic is described. The ports of the torus logic and Extension Module of
the IWC are listed in Table 4.6.

Signal Direction Width Description

TORUS SEGMENT generic 5 Torus segment, inbound address [40:36]
LINK n ADDR generic 6× 3 Torus transmit buffer link n, inbound address [23:21]

Clk in 1 Clock
Reset in 1 Reset

cntTime in 3 Timeout counter
exc out 4 Exception vector

almostFull in 6 Torus transmit buffer status
addr out 42 Torus address
data out 128 Torus data
first out 1 Torus first data line
we out 6 Torus write enable

Table 4.6: Ports declaration for the IWC. Only the ports for the torus and Extension Module
interfaces are shown.

The block diagram for the IWC is shown in Fig. 4.9. The GBIF, IWC, and the interfaces of the
torus network logic are clocked synchronous at 200 MHz in the recent FPGA design. The peak data
rate of the 128-bit wide data port data of the IWC is 3.2 GByte/s. The IWC fragments data passed
from the GBIF into blocks of 128 bytes and assigns a block start address addr. Each block consists
of eight data lines. The first data line of each block is tagged by first. The ports data, addr and
first are shared by the six torus interfaces. The status of each of the torus transmit buffers is
provided by the almostFull vector (assigning link n to the element almostFull[n]). There is one
link assigned to each element of the write enable vector we. On assertion of the write enable signal
we[n] the signals data, addr and first are valid and must be handled by the torus logic of link n.

The high throughput of the IWC is achieved by a pipelined design. Pipelining is an efficient
method to increase the performance of the logic by overlapping processing tasks. This technique
is excessively used in microprocessor architectures to achieve a high level of parallelism, see e.g.
Refs. [56, 57, 58] for detailed discussions on that topic. The design methodology is to divide combi-
national circuits into stages and to insert buffers – in this particular case registers – at proper places.
This adoption of the design does not decrease the overall delay time introduced by the processing
tasks, however, it significantly increases the throughput. The price to pay for the pipelined design
is an increase of resource usage. Pipelined design and coding techniques using VHDL are discussed,
e.g., in Refs. [59, 60]. Seven pipeline stages are introduced into the IWC core logic. The stages are
shown in Fig. 4.9 and the flow of information follows the sequence

R0→ R1→ R2→ C0→ C1→ P1→ P2 .
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Figure 4.9: Block diagram for the IWC.

The transfer attributes and the address are registered in each pipeline stage Si. If necessary data is
processed at the transitions Si → Si+1.

The pipelined design serves two major purposes. One is to achieve high data throughput. The
other one is the adaption of the GBIF protocol according to the specifications of the torus transmit
interface. The torus interface protocol is not compatible to the GBIF protocol. The torus interface
requires the address and data line to be valid at the same clock cycle. This temporal alignment of
the data is not supported by the GBIF interface and there is a delay between data and address. The
delay is compensated for by the IWC logic by data registration in the pipeline stages P1 and P2
exclusively. The address line, however, is propagated along all sevens stages of the IWC pipeline.

The IWC supports for simultaneous handling of outstanding GBIF requests and data transfer.
Outstanding requests are handled by the so-called Request Handler. The Request Handler is realized
as a two-pass process in stages R0 and R1. The Request Handler performs several checks for illegal
attributes passed by the GBIF prior to any data transfer, e.g., check for invalid data size, invalid
address, and invalid control flow. The data size accepted by the Request Handler is restricted to
multiples of 128 bytes. The address bits [40:36] must match the segment defined by TORUS SEGMENT

and the address bits [23:21] must match one of the six torus link addresses LINK n ADDR (n = 0 . . . 5).
Errors detected by the Request Handler are encoded in the exception vector exc which is passed to
the IWCEM. The IWC exceptions are summarized in Table. 4.7. All IWC exceptions are compute-
critical. In case of any exception the IWCEM indicates a critical interrupt to the Cell BE that forces
any computation to stop. The KILL signal is propagated to all compute nodes within the partition
via the global signals network.
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Figure 4.10: The upper panel shows the IWC timing diagram for back-to-back data transfer of
two data blocks subsequently addressing the torus transmit buffers n and n′. The lower panel shows
the IWC timing diagram for a single data block transfer addressing torus transmit buffer n with
backpressure handling (here Nl = 0). Only the IWC torus interface is shown.

The Request Handler furthermore defines an one-hot encoded write enable vector that is as-
sociated with the torus link to be addressed. An initial design requirement on the IWC was the
implementation of a one-pass address translation, supporting for remapping of the torus links during
runtime. The address bits [23:21] define the target link. In order to support for address remapping
the address bits serve as a pointer into a look-up table (LUT) that comprises six entries. The ad-
dress bits are then replaced by the corresponding entry in the LUT, effectively remapping the link
address. However, the recent implementation of the IWC does not support for dynamic address
remapping. Instead, the identity map is implemented. Support for remapping is easily introduced
into the logic by replacement of the LINK n ADDR constant declarations by registers accessible from
the IWC Extension Module.

The size of the outstanding request, i.e., the number of data lines to be transferred to the torus
transmit buffer, the corresponding address, and the write enable vector are permanently registered
in pipeline stage R2 if no error has been detected by the Request Handler and no data transfer is
yet in flight. The information is kept in the pipeline stage R2 until all data lines associated with
the particular request are provided by the GBIF. Each time the pipeline stage R2 is updated a
timeout counter started. The timeout counter runs at full IWC clock speed. The width of the
timeput counter is adjustable to 24 + cntTime bits from the IWC Extension Module. If the timeout
is reached the exception signal rExc[0] is asserted.
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Signal Description

exc[0] Timeout
exc[1] Invalid data size
exc[2] Invalid address
exc[3] GBIF control flow error

Table 4.7: Exceptional states supported by the IWC.

The write enable and address vectors are passed from pipeline stage R2 to C0. For each GBIF
request larger than 128 bytes the address is incremented by 128 each 8 data lines – corresponding to
128 bytes – in pipeline stage C0. The first data line within each 128-byte block is tagged. The tag,
write enable, and address are passed through the pipeline stages C1, P1, and P2 without further
processing. The pipeline stage C1 introduces one delay cycle required for the correct timing of
control information, address, and data. Data is registered exclusively in the pipeline stages P1 and
P2. Data registration is introduced in order to relax routing constraints on the FPGA. The timing
diagram for back-to-back data transfer with subsequently addressed torus transmit buffers n and n′

is shown in the upper half of Fig. 4.10.
The IWC supports for backpressure of the torus transmit buffers. If the addressed transmit buffer

n asserts the associated almostFull[n] signal the IWC suspends the data transfer until the signal
is deasserted. On suspension the write enable vector is deasserted in pipeline stage C0, effectively
de-addressing the torus transmit buffer. Due to the pipelined design of the IWC and the specification
of the GBIF protocol it is not possible to suspend the transfer immediately after the assertion of
almostFull. The number of data lines N transferred to the torus transmit buffer after assertion of
almostFull is N = 2+Nl. Here Nl = O(1) cycle is a constant latency defined by the implementation
of the Request Handler and the proprietary GBIF protocol. The torus transmit buffers were designed
for appropriate assertion of almostFull in case of limited buffer space. The timing diagram for a
data transfer of 128 bytes with backpressure handling and a single torus transmit buffer n addressed
is shown in the lower half of Fig. 4.10.

The pipeline stages R0, C1, P1, and P2 are implemented as free-running stages, i.e., the signals
are registered unconditioned. Thus no data is retained in any of these stages. This implementation
offers a reset strategy for the IWC where only parts of the Request Handler and the pipeline stage
R2 need to be reset, effectively reducing the number of reset lines to be distributed amongst the
registers. Five clock cycles are required to flush the IWC pipeline.

4.4.2 State machine

The IWC is driven by the Mealy-type state machine shown in Fig. 4.11. The outputs of the state
machine are defined by the state transitions. Two states are used: IDLE and TRANS. Data transfer
is handled in state TRANS exclusively, otherwise the state machine remains in the wait state IDLE.
Transitions depend on the signals r1req indicating a valid GBIF request, enable driving the transfer
of a single data line, and on the data line counter count. The enable signal and the data line
counter are registered outputs. The registers are fed by nextEnable and nextCount, respectively.
Registration relaxes timing constraints on combinational logic at the cost of one delay cycle.

The enable signal is driven by the status of the torus transmit buffers. The signal is switched
between two sources: (i) the signal s1Full = almostFull[n] associated with the transmit buffer
n addressed when a new GBIF request is registered in pipeline stage R2, and (ii) the signal s2Full
= almostFull[n′] associated with the transmit buffer n′ for the transfer in flight. It is important
to distinguish between the two sources, because only this implementation allows for backpressure
handling of two link buffers n and n′ addressed back-to-back without the introduction of additional
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Figure 4.11: State diagram for the IWC.

wait states. The pulse signal sStart indicates that a new request from the GBIF is handled. The
signal triggers registration of the new transfer attributes in the pipeline stage R2. The number of
data lines associated with the new request is registered in r2count.

The state is IDLE if no GBIF request is outstanding and no data transfer is in flight. The WAIT
transition resets all outputs of the state machine to zero, disabling any action of the IWC. If the
Request Handler asserts r1req the state switches from IDLE to TRANS via the START transition.
The signal sStart is asserted and the next-line counter nextCount is set to 1. The nextEnable

signal is set to NOT s1Full, driving the enable register with the inverse of almostFull[n].

Data transfer proceeds by the CONTINUE transition. The data line counter is increased by 1 and
NOT s2Full is selected as source of the enable signal. If the line counter count matches r2count and
no further GBIF request has been registered (r1req = ’0’) the state machine is switched to IDLE

state by the TERMINATE transition. If a request is registered (r1req = ’1’) the state machine
continues in state TRANS by the START transition. Similar to the IDLE state the signal sStart is
asserted, the next line counter nextCount initialized, and s1Full is fed into the enable register.

The state machine handles backpressure of the torus transmit buffers by the SUSPEND transition
in state TRANS. On deassertion of enable, data transfer is suspended until s2Full is deasserted. Data
transfer continues by the CONTINUE transition.

4.5 Universal Asynchronous Receiver Transmitter

The Universal Asynchronous Receiver Transmitter (UART) is a standard component in computer
technology used for low-speed serial data transfer. The UART is well established especially in the
sector of microcontrollers because of its low pin count, low logic count, and high reliability. The
UART (de)serializes data transferred along a single line per direction at baud rates typically up to
O(1) MBd. On demand additional handshake signals are used for flow control. The data protocol
is simple and the software stack for handling of the data transfer is minimal. The UART designed
for the QPACE network processor has minimal compliancy to the PC16550D UART by National
Semiconductor Ref. [61]:

• 16-byte receive and transmit buffer each.
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• Preassigned sample rate 115200 Bd full duplex.

• Preassigned serial interface characteristics: 8 data bits, no parity, 1 stop bit (mode 8N1).

• Support for hardware handshake.

• Support for software polling and interrupt on receive.

There are two instances of logically identical UARTs embedded into the DCR device tree, see also
Sect. 2.6.1 and Figs. 4.1 and 4.2:

1. Connection to the Service Processor, mandatory for controlling the FlexIO training during the
boot sequence.

2. Connection to the root-card. Each Cell BE can be addressed either by the root-card micro-
controller or by a RS-232 compliant device attached to the root-card’s debug connector.

During the bring-up phase of QPACE the second UART was the only available connection to the
Cell BE firmware and therefore played an important role before the Ethernet logic and Ethernet
driver were completed. Now this UART can be used for monitoring and debugging.

4.5.1 Implementation

The UART top level entity is uart 16550 dcr top. The top level implements other entities split
amongst several VHDL sources. All entities are listed in Appendix A.1. The hierarchical schematic
overview for the UART is shown in Fig. 4.12. The top level entity uart 16550 dcr top serves as a
wrapper for the synchronous DCR slave interface discussed in Sect. 4.3.5 and the UART core logic
uart 16550 top. The ports of the UART core are listed in Table 4.8.

Signal Direction Width Description

BAUD RATE generic — Baud rate definition
CLK FREQUENCY generic — Input clock frequency in Hertz

Clk in 1 Clock
Reset in 1 Reset

Addr in 4 Input address
DataIn in 8 Input data
Read in 1 Read strobe signal
Write in 1 Write strobe signal
DataOut out 8 Output data

RXD in 1 Received data
nCTS in 1 Clear To Send
TXD out 1 Transmitted data
nRTS out 1 Request To Send
IRQ out 1 Interrupt request

Table 4.8: Ports declaration for the UART.

The basic building blocks of the UART core are the receiver logic rxunit and the transmitter logic
txunit. The input signal of the receiver is RXD. The output signal of the transmitter is TXD. Both
signals are active low. TXD and RXD are connected crosswise for communication between two UART
devices. If no data is transferred the data line is idle, TXD = ’1’. Both the receiver and transmitter
logic are driven by an internal sample rate generator with preassigned frequency BAUD RATE (which
generates so-called ticks). Simple state machines generate the UART data protocol. In addition to
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Figure 4.12: Hierarchical schematic diagram for the UART.

Figure 4.13: UART handshake and serial data transfer protocol in mode 8N1.

the baud rate the UART core clock frequency CLK FREQUENCY must be defined in Hertz. The core
clock also defines the synchronous DCR interface clock. The entity uart buffered rx comprises
the receiver logic rxunit coupled to an 16-byte FIFO receive buffer. The entity uart buffered tx

comprises the transmitter logic txunit coupled to an 16-byte FIFO transmit buffer. Each buffer is
instantiated as block RAM FIFO. The implementation into block RAM shifts the registers required
for character storage from logic blocks to the FPGA’s hard core resources. The modem logic of
the UART core autonomously handles the handshake signals Request To Send nRTS and Clear To
Send nCTS. The handshake signals are active low. The signals nRTS and nCTS have to be connected
crosswise for communication between two UART devices. If the receive buffer is not full nRTS is
asserted (’0’), requesting for data transfer. If nCTS is asserted (’0’) the transmitter is allowed
to send data. Support for hardware handling of the handshake signal nRTS can be turned off on
demand. The interrupt logic is capable of generating an interrupt request on receive asserting the
signal IRQ.

The UART serial data transfer protocol is shown in Fig. 4.13. Data is transmitted in frames.
Each frame is initiated by a leading start bit TXD = ’0’, followed by eight data bits, and a final stop
bit TXD = ’1’. Parity is not supported by the implementation of the UART. Data is transferred
from LSB first to MSB last. The state diagram for the UART transmitter is shown in Fig. 4.14. If
no data is available for transfer the send signal is deasserted, the state is IDLE, and the transmit
data line is TXD = ’1’. If send is asserted the transmit operation starts in state START transmitting
the start bit TXD = ’0’. Data is transmitted in the states Sn. The transmit data line is driven
by TXD = data[n]. The states Sn are successively switched from n = 0 to n = 7, followed by the
state STOP. In the state STOP the stop bit TXD = ’1’ is transmitted on the transmit data line. If
additional data is available a new character is transmitted in state START, otherwise the state is
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IDLE. The receiver logic is comparably simple: if the receive data line RXD asserts (’0’) the start
bit, eight data bits, and the final stop bit are sampled. See also Ref. [59] for a textbook description
of the UART receiver logic.

Figure 4.14: State diagram for the UART transmitter logic operating in mode 8N1.

4.5.2 Register file and modes of operation

The UART register file listed in Table 4.9 mimics the register file of the PC16550D UART Ref. [61].
Upon reset all registers are set to ’0’, except for the Mode Control Register MCR[5] = ’1’ indicating
hardware support for the handshake signal nRTS.

The data ready bit in the Line Status Register LSR[0] is asserted if the 16-byte receive buffer
maintains at least one character. Received data is collected at the Receiver Buffer Register RX[7:0].
If LSR[0] = ’0’ and data is read from RX the data is invalid. Data is lost if the number of bytes
received exceeds the capacity of the receive buffer.

Data is transmitted by a write to the Transmitter Buffer Register TX[7:0] as long as the 16-
byte transmit buffer offers the capacity to store another character. If the transmit buffer is empty
LSR[6] is asserted. If the transmit buffer is full LSR[5] is asserted. Data written to the transmit
buffer if LSR[5] is asserted causes data loss. Data transfer is autonomously handles by the UART
transmitter if the Clear To Send signal nCTS is asserted. The inverse status of the nCTS signal can
be read from the Mode Status Register MSR[4].

The UART supports for interrupt request on receive. If the Interrupt Enable Register is defined
IER[0] = ’1’ an interrupt signal is asserted if the data ready bit LSR[0] toggles from ’0’ to ’1’.
On read the Interrupt Identification Register IID[0] returns ’0’ if no interrupt is pending and ’1’ if
an interrupt is pending. The interrupt is acknowledged by a dummy write operation to the IID.

Software polling of the receive buffer is supported if IER[0] = ’0’. The data ready bit LSR[0]
can be polled for the receive buffer status. Switching between interrupt support IER[0] = ’1’ and
software polling IER[0] = ’0’ can be performed at any time.

The hardware handshake is used if the Mode Control Register MCR[5] = ’1’. In this case the
Ready To Send signal nRTS is automatically handled if the receive buffer has capacity to maintain
another character. In manual mode MCR[5] = ’0’ the nRTS signal is controlled by MCR[1]. Then
’1’ activates and ’0’ deactivates the handshake signal.



4.5 UNIVERSAL ASYNCHRONOUS RECEIVER TRANSMITTER 51

Register name Address Mode Register description

Receiver Buffer Register (RX) 0x0 R RX[7:0]: 1 byte received data

Transmitter Buffer Register (TX) 0x0 W TX[7:0]: 1 byte transmit data

Interrupt Enable Register (IER) 0x1 R/W IER[0]: interrupt mode

Interrupt Identification Register (IID) 0x2 R IID[0]: IRQ pending
W IRQ acknowledge

Mode Control Register (MCR) 0x4 R/W MCR[1]: RTS if MCR[5] = ’0’

R/W MCR[5]: handshake mode

Line Status Register (LSR) 0x5 R LSR[0]: data ready
R LSR[5]: transmit buffer full
R LSR[6]: transmit buffer empty

Mode Status Register (MSR) 0x6 R MSR[4]: CTS

Table 4.9: UART register file.





Chapter 5

System Verification and Software
Tools

5.1 System tests

The development of QPACE followed a tight timeline. The project officially started in January 2008.
First versions of the node-card, root-card, and backplane became available already in the summer
of 2008. A small test system was deployed at the IBM laboratory in Böblingen, Germany, after the
bring-up phase. A photograph of this test setup is shown in Fig. 5.1. Intensive hardware integration
tests started at the end of 2008 with the goal to identify and remove any flaws in the design before
the release for large-scale manufacturing in the first quarter of 2009. With the availability of all
components in the final design, large-scale integration and burn-in tests were carried out in the lab
before deployment at the destination sites, see also Fig. 5.1. In August 2009 the deployment of
QPACE at the Jülich Supercomputing Centre and the University of Wuppertal had been completed
and a test operation phase was started.

The development of the hardware and system-relevant software was accompanied by a series of
functional tests. The following items give a rough overview on the diversity of the tests applied
(without requirement on completeness and no respect to the timeline):

• All components: mechanical and electrical inspections.

• Cooling: temperature monitoring, pressure tests, and check of the water channels inside the
coldplate.

• Power management: PSU and PSU adapter-card tests, functional tests of PSU voltage man-
agement and load balancing, PSU management via superroot-card.

• Superroot-cards: power, clock, FMod-TCP and CPLD tests; management by software libraries.

• Root-cards: booting tests, flash memory, CPLD, reset lines and clock tree tests; tests of the
serial links, including the I2C, SPI, and RS-232 interfaces; management by software libraries.

• Node-cards: power and temperature, booting tests, FlexIO, and flash memory tests; functional
tests of the Ethernet PHY and PMC Sierra PHYs; network processor logic tests; Cell BE and
Service Processor communication tests; stress tests of the Cell BE processor and main memory.

• Tests of Ethernet communication, including switches, filesystem, and front-end system; tests
of the torus network and global signals network.

• Concurrent tests, e.g., Cell BE and main memory stress tests in combination with torus network
and Ethernet network communication.

53
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Figure 5.1: The photograph on the left shows the QPACE test setup at the IBM laboratory in
Böblingen, Germany. The photograph on the right shows a fully populated and cabled rack tested
in the lab.

5.2 Software tests

A tremendous number of software tools were designed for verification of the QPACE design. As a
prerequisite to large-scale testing, management libraries for the root-card and superroot-card were
developed, see also Appendix A.3. Hardware discovery tools were designed on top of these libraries
that allow for monitoring and management of the system status, e.g., voltage control, temperature
measurements, components configuration, and post-mortem analysis. These tools served as tem-
plates for the design of the QPACE Front-end Client (QFC), a software tool that unifies the access
to the machine. The QFC is discussed in more detail in Sect. 5.4.

The diversity of the software tests developed for the system ranges from simple setups such as
automated verification of a ping via Ethernet from the test server to the node-card, up to complex
stress tests required, e.g., for verification of nearest-neighbour communication via the torus network.
The challenge in the design of test software was not only to deploy a stack of specialized programs
that probe for a certain kind of system functionality. The goal was also the automatization of the
verification of a system that consists of hundreds of components. As an example for the strategy
applied consider a simple test setup, e.g., a processor stress test for the Cell BE that is performed
by some executable. In this particular case no communication between the node-cards is required
and execution of the stress test program is trivially parallelized on an arbitrary number of nodes. A
practical approach for test automation in this case is to separate the stress test program and the test
execution. A so-called test wrapper script is a useful piece of software that autonomously sets up the
stress test program on the nodes, executes the stress test with a given set of parameters, analyzes
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the output, and finally summarizes the result. The following items describe the basic structure of
such a software test carried out on a single node-card:

1. Start of the test wrapper script on the test server with exact definition of the test setup, i.e.,
the node-card setup, specific test parameters etc. The wrapper performs a preliminary check
of the sub-system, e.g., a test of the boot status of the node-card.

2. The wrapper script copies the test executable from the test server onto the node-card.

3. The wrapper script logs onto the node-card using secure shell, pre-configures the system and
collects relevant system information. Then the test program is executed. To minimize the risk
of information loss in case of errors the output of the test program is stored locally on the
node-card itself, on the test server, and additionally on the network filesystem.

4. Once the test has finished, system information is collected and the text output (logged locally
on the test server) is analyzed. The test results are compared with the test definitions, i.e.,
the test has passed or failed according to the requirements.

5. The test is considered to be successful only if the node-card passed the test, and has failed
otherwise. A test summary is displayed.

Test execution on a setup comprising hundreds of nodes requires as many steps as possible to be
executed in parallel. For most tests the basic structure of the items stated above were easy to
modify and parallelize. Examples for such tests are simple Cell BE floating-point stress tests and
main memory stress tests. More complicated test setups that essentially rely on the same structure of
the test wrapper are, among many more, test cases designed for verification (and also optimization)
of the Ethernet network and the torus network functionality. The test executables were either custom
designed or provided by IBM. The test wrapper scripts were written in scripting languages such as
Python or Perl. Reference to a subset of tests developed for verification of the node-cards, root-
cards, and superroot-cards is provided in Appendix A.1. A closer look on a software tool especially
designed for booting of the node-cards is taken in the next section.

5.3 Booting the node-cards: ncBoot

A well established command line tool that reliably boots the node-cards into Linux is ncBoot. The
tool was developed during the bring-up phase of QPACE and is capable of booting an arbitrary
number of node-cards into the Linux OS. It was designed primarily for dressing of the nodes prior
to large-scale tests and therefore comes with a series of options for configuration. ncBoot interacts
with the Service Processor of each node-card via the root-card.

5.3.1 Implementation

The ncBoot tool is based on a three-phase sequence that is passed sequentially for each node-card
during the boot process:

1. Retrieve status

Check for node-card presence via SPI; read serial number, MAC address, boot status, status
events, and clock setting.

2. Define setting

Contingent hard-power off; set clock source, Service Processor real-time clock; contingent set
MAC address; optional reset of error states.
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3. Boot into Linux

Hard-power cycle and monitoring of the boot process if requested.

In phase 1 the backplane slot is checked for presence of a node-card using the SPI interface. If a
node-card is present relevant status and settings information is collected. In phase 2 the node-card
is hard-powered off if the clock setting has to be adjusted.1 Subsequently the real-time clock of
the Service Processor is synchronized with the master server. The MAC address is adjusted if a
faulty entry in the VPD is detected. Optionally the error status is reset. The node-card is ready for
booting into Linux if the phases 1 and 2 have been passed successfully. This process is started in
phase 3 and the corresponding state machine is described in Sect. 5.3.3.

ncBoot relies on the front-end libraries feenlib and witchlib (see Appendix A.3) and sets up a
multi-threaded environment that allows for concurrent access to an arbitrary number of root-cards.
One problem that arises in the boot process is the network traffic between the node-cards and the
front-end system, which stores the Linux image for the nodes. Transfer of the Linux image from
the master server to the node-cards relies on multicast TFTP. The number of root-cards accessed
in parallel is limited to 16 in phase 3 exclusively due to the heavy network traffic during the boot
process. If the number of root-cards addressed by ncBoot exceeds this limit the boot process is
partially serialized and blocks of up to 16 root-cards are accessed in parallel.

5.3.2 Command line interface

ncBoot is run via

ncBoot -r <list> -b <list> -n <list>|-m <mask>|-a [-c <C>|-p <P>|-D <D>|-soeft]

Mandatory parameters are the list of racks -r <list> (0–3), backplanes -b <list> (0–7), and the
addressed node-cards -n <list> (0–31). The <list> parameter supports for single assignments
separated by a coma, e.g., 0,1,2, or range indicated by a dash, e.g., 0-4. Both kinds of assignments
can be combined, e.g., 0,1,10-15,20,25-31. Instead of a list of node-cards a hexadecimal mask, e.g.,
0xff00, can be supplied using option -m. Alternatively all node-cards connected to the backplane
are assigned if the option -a is supplied.

Optional parameters are

-c <C> set clock source to onboard clock (<C> = 0) or global clock (<C> = 1)
-p <P> boot into phase <P> = 1, 2, 3 (default <P> = 1)
-D <D> debug output level <D> = 0, 1, 2, 3 (default <C> = 0)
-o enforce power off in phase 2
-e invalidate error states in phase 2
-s use relaxed power cycle passed criteria in phase 3
-f enforce power cycle in phase 3
-t probe node-card Ethernet connection via ssh login after phase 3

ncBoot offers detailed debug information for each of the three phases. Debug level 0 omits any
debugging output. Debug level 1 prints out all interactions with the Service Processor. Debug
level 2 displays the cycling of the state machines and level 3 additionally prints out the state machine
histories.

1Hard-power off only affects the Cell BE and FPGA, but not the Service Processor.
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Figure 5.2: State diagram for the boot process run by ncBoot in phase 3.

5.3.3 State machine

The control flow of the three phases run by ncBoot is defined by state machines associated with
each node-card. The state diagram for the third phase is shown in Fig. 5.2 and is described in the
following.

If the phases 1 and 2 have been passed successfully the initial state is PRE BOOT DONE and
IDLE otherwise. If a prior power cycle is enforced (option -f) the state CLEAR STATES is entered.
Otherwise the state is GET BOOT STATUS. In the state GET BOOT STATUS the node-card boot status is
continuously monitored until a change of the boot status. On success, i.e., boot status “Linux”, the
card has been booted successfully into the OS and the state GET CRITICAL is entered if the option
-s is supplied. Otherwise the state is switched to BOOT DONE. If the node-card is off or a critical
error occured then the next state is CLEAR STATES. In the state CLEAR STATES the error status flag is
invalidated. Invalidation allows for the registration of the error status associated with the subsequent
power cycle. The state CLEAR STATES is followed by the state POWER CYCLE unconditioned. In
the state POWER CYCLE a hard-power cycle is initiated. The following state is GET BOOT STATUS

unconditioned. In the state GET CRITICAL the error status is evaluated. If the status is critical then
CLEAR STATES is entered. If the node-card has been booted into Linux successfully the final state is
BOOT DONE.

The boot process is considered successful only if the state BOOT DONE is reached. If the boot
process fails within five power cycles, or communication with the Service Processor fails subsequently
for five times, then the boot process is stopped and the IDLE state is entered. No further action
is performed if the state is IDLE – the boot process has ultimately failed. The limited number of
retries for power cycles and Service Processor communication prevents deadlocks.

5.4 QPACE Front-end Client

The QPACE supercomputer comprises unique system components that are interconnected non-
trivially. Each component provides its own sub-device structure and data paths, cf. Sect. 2.6.1
and 2.6.2. The addressing of relevant registers and block memory structures is a demanding task,
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even for those who have been working for years on the success of the project. The asymmetry of the
component structures and data paths, and also the large number of registers and memory blocks,
render a unified access to the machine indispensable. The QPACE Front-end Client (QFC) unifies
the most common administrative tasks into one single command line tool. It allows for comfortable
control over hundreds of node-cards and dozens of power supply units (PSU). The QFC reliably
retrieves and manages the machine status without the need for detailed knowledge of the underlying
hardware and software architecture. All the details are hidden from the user. The QFC provides
the following features:

• Unified access to all node-cards, root-cards, and PSUs.

• Reliable machine management with multi-user support.

• User-friendly command line interface.

• Output displayed with unique identifiers and key-value pairs.

The QFC is installed on the master servers in Wuppertal and Jülich. The client requires the Front-
end Utilities for QPACE Daemon (FUQD) to be run in the background.2

5.4.1 Implementation

QPACE is supervised by Nagios automation and monitoring services [62]. One issue that arises in
the administration of QPACE is the partial lack of multi-user support. Race conditions do occur
when multiple users access some of the data paths at the same time. One design goal of the QFC
was to disentangle hardware-specific dependencies such that multiple instances of the QFC can be
operated concurrently.

Most of the issues with respect to multi-user support are overcome by the design of the utilities
daemon FUQD. The utilities daemon is stateless and provides a proprietary interface with support
for remote procedure calls (RPC). The RPC functionality includes a set of low-level atomic functions
that allow for remote actions on the root- and superroot-cards exclusively. Multi-user support relies
on a locking mechanism. Access is granted only if no lock has been acquired yet for the components
to be addressed. User-defined operations are performed only if the lock is granted. The lock is
released at the end of the operation, which may consist of multiple RPC requests. Deadlocks of the
locking mechanism are prevented by a timeout mechanism.

The QFC implements a set of high-level functions called “actions” that are requested to the QFC
by the user. Examples for such actions are generic status requests, FPGA bitstream updates, and
power management. The QFC breaks down the action into stacks of low-level atomic operations
supported by the FUQD. Each stack is guaranteed to avoid read-after-write and write-after-write
dependencies. The stacks are communicated sequentially to the FUQD via the RPC interface. Al-
most all actions supported by the QFC initially lock the components, then perform all the necessary
operations and finally unlock the components. However, this procedure is inadequate for flash pro-
cesses of the node-card via the root-card. The update of the node-card’s flash memory is a rather
slow operation that potentially annules concurrent requests to other node-cards attached to the same
root-card. Therefore the QFC relies on a dedicated flash engine that avoids this issue. The root-card
is locked only to perform an update of a single sector in the flash memory (64 kB). After each up-
date the root-card is unlocked. The procedure is repeated until all sectors have been updated. This
method allows other instances of the QFC, e.g., scheduled by the automation software, to access the
root-card during the flash process.

2FUQD was written by S. Solbrig.
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By far not all the functionality necessary for administration of QPACE is provided by the utilities
daemon, e.g., several actions require access to the Linux shell on the node-card. Support for such
operations is integrated into the QFC by a dedicated multi-threading engine. The QFC actions
based on this engine do not support the locking mechanism provided by the daemon. There was,
however, no flaw observed in this choice for the design of the QFC.

5.4.2 Command line interface

All QFC actions are performed via the command line interface using

qc [options] [<mode>] <target> <action> [parameters]

Each action is defined by the 3-tuple mode, target and action. The command line interface of the
QFC supports for command completion, i.e., any action uniquely identified by target and action

does not require the mode identifier. Nevertheless it is accepted. Depending on the action to be
performed additional parameters are required.

The QFC supports for the following options:

-h, --help displays the QFC quick reference
-g, --grep the output is optimized for regular expressions parsing
-s, --short the output is shortened at the cost of readability, implies option --grep

The mode identifier defines the mode of operation and accepts the following key words:

get retrieve (status) information from the node-cards and PSUs
set write data to the node-cards
power all power-related actions on the node-cards and PSUs
clear clear error states on the node-cards
flash flash actions performed on the node-cards

The target identifier defines the target device of the action. Allowed targets are node and psu,
addressing node-cards and PSUs, respectively. The target identifier has to be followed by a <list>

parameter which determines the components to be selected. The format of the list supports for
backplane-centric, rack-centric and combined assignments of the targets. In the backplane-centric
metric each component of the 4-rack installation is addressed relative to one of 32 backplanes (BP),
labeled 0–31. In the rack-centric metric each component is addressed by the rack number (0–3)
and the backplane in the rack (0–7). In both metrics there are 32 node-cards (0–31) and three
PSUs (0–2) assigned to each backplane. The <list> parameter supports for the following forms of
addressing:

• Backplane-centric assignment (2 forms):

1. <list> = [list of BPs]

2. <list> = [list of BPs]:[list of nodes/PSUs]

Form 1 addresses all nodes/PSUs assigned to the backplanes. Specific backplanes are selected
by separation of the backplane label by a coma, e.g., 0,1,5,30, or as a range defined by a
dash, e.g., 0-4. Both variants can be combined, e.g., 0,1,10-15,20,25-31. Form 2 allows to
address specific nodes/PSUs attached to the backplanes, e.g., 5-7:0,1 selects the nodes/PSUs
0 and 1 assigned to backplanes 5, 6 and 7.

• Rack-centric assignment of targets (3 forms):
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1. <list> = r[list of racks]

2. <list> = r[list of racks]:[list of BPs]

3. <list> = r[list of racks]:[list of BPs]:[list of nodes/PSUs]

Form 1 addresses all backplanes and nodes/PSUs assigned to the racks, e.g., r0,2-3 addresses
all components of the racks 0, 2 and 3. Form 2 allows for selection of all components attached
to the backplanes in the racks, while the third form furthermore allows to address specific
nodes/PSUs.

• Combined assignment of targets: <list> = [list]+[list]+. . .

Multiple backplane- and rack-centric assignments are combined into a single list using + as a
list separator, e.g., r0,1:0-3,7:0-2+8+r3.

Table 5.1 provides a quick reference to all actions supported by the QFC. The number of mandatory
parameters is indicated in the column P: (–) no parameters, (n) n parameters and (n+) at least n
parameters. The full reference to the QFC is provided in Appendix A.4.

Note: The QFC is not aware of any partitioning of the system amongst the users. Mal-operation
or mal-addressing of nodes within partitions of different users will not be recognized.

5.4.3 Error handling

By design the QFC does not quietly terminate if operations fail to succeed. Such failures include,
e.g., runtime errors and specific errors propagated by the utilities daemon. Two kinds of errors are
being intercepted:

1. Global errors, e.g., errors that prevent the startup of any operation of the engines, no connection
to FUQD, file errors and unknown actions.

2. Local errors, e.g., no connection to node-card, root-card, superroot-card or PSU; error during
execution of some stack of low-level commands.

All errors are displayed with a message string. Error messages are displayed with a leading identifier
GLOBAL ERRORS if a global error was detected. Global errors are critical and force the QFC to
terminate operation. On local errors the QFC action is continued exclusively on those targets not
affected by the error. Local errors are displayed with a leading identifier LOCAL ERRORS.

The QFC allows for access to an arbitrary number of system components, in the QFC nomen-
clature referred to as “targets”. After completion of any QFC action the following output displayed:

success> [N/M] action completed on N out of M targets
succlist> <list> action completed on list of targets (only if N > 0)
failures> [N/M] action failed on N out of M targets
faillist> <list> action failed on list of targets (only if N > 0)

The targets are summarized in the lists succlist (success) and faillist (failure). The list format
allows for direct reuse of the string by a new instance of the QFC.
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<mode> <target> <action> P Description

get node <list> status – retrieve status
config – retrieve configuration
version – retrieve version of images
serial – retrieve serial number
temp – retrieve temperature
mac – retrieve MAC address
dump – retrieve FIR dump
vpd 2 read from VPD

psu <list> status – retrieve status

set node <list> clock 1 set local or global clock
vpd 2+ write to VPD
mac –/6 set MAC address

power node <list> off – hard-power off via Service Processor
on – hard-power on via Service Processor
cycle – hard-power cycle via Service Processor
sp – hard-power cycle the Service Processor
noboot – hard-power on w/o booting via Service Proc.
reboot – soft-power cycle via Linux reboot

halt – soft-power down via Linux halt

reset – hard-reset node-card via reset lines
probe – test login via secure shell
magic – try to boot into Linux automatically
woof – like magic, but do a link stress, too

psu <list> off – power off
on – power on

clear node <list> states – clear error states

flash node <list> linux 1 flash FPGA/SLOF image via secure copy
fpga 1 flash FPGA image via root-card
slof 1 flash SLOF image via root-card
sp 1 flash Service Processor image via root-card

Table 5.1: QFC quick reference.
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Chapter 6

Quantum Chromodynamics

6.1 Introduction

Quantum Chromodynamics (QCD) is the theory of the strong interaction. QCD pictures the world
of six massive particles, the quarks, interacting with each other by the mediators of the strong force,
the gluons. Quarks and gluons carry so-called colour charge, and the picture drawn by ordinary
QCD is composed of three colours. However, due to confinement isolated quarks have never been
observed in nature, and all snapshots of strongly interacting particles taken in experiments appear
colour-neutral. In low-energy reactions quarks and gluons interact strongly, and the QCD coupling
constant becomes large at small momentum transfer. Therefore perturbative methods cannot be
applied in this domain. However, non-perturbative phenomena of QCD have become accessible by
computer simulations of the theory on a space-time lattice. Recently the mass spectrum of light
hadrons has been successfully predicted by ab-initio simulations of QCD on the lattice [63].

Pions are the lightest particles of the hadron spectrum. These particles are the pseudo-Goldstone
bosons of the theory of the strong interaction which arise from the spontaneous breaking of chiral
symmetry. Chiral symmetry is only an approximate symmetry of QCD because the lightest quarks
have non-zero mass, and therefore the pions are massive. The dynamics of these particles is described
by a low-energy effective theory. In a specific finite-volume regime, the so-called ε-regime, a precise
mapping can be made between observables calculated on the lattice, the partition function of pion
effective theory, and chiral random matrix theory (chRMT).

Chiral random matrix theory was formulated in the 90’s. In the Hermitian formulation of chRMT
the matrix elements of the (anti-)Hermitian Dirac operator are modelled by independently dis-
tributed random variables and only global symmetries of QCD are taken into account. The random
matrix approach predicts universal correlations in the eigenvalues within the deep infrared spectrum
of the Dirac operator in the phase of broken chiral symmetry. Moreover, chRMT gives an exact
expression for the microscopic limit of the spectral density of the Dirac operator. The microscopic
spectral density is a universal function that allows to determine the order parameter of chiral sym-
metry breaking, the chiral condensate, from simulations of QCD on the lattice. The applicability
of chRMT is not limited to ordinary QCD with gauge group SU(3). In fact, three random matrix
ensembles exist which apply to different formulations of QCD [64]: the chiral orthogonal ensemble
applies to QCD with gauge group SU(2) and fermions in the fundamental representation [65], the
chiral unitary ensemble applies to gauge groups SU(Nc) with Nc ≥ 3 colours and fermions in the
fundamental representation [66], and the chiral symplectic ensemble applies to gauge groups for all
Nc in the adjoint representation [67]. The applicability of Hermitian chRMT has been successfully
verified by various studies of QCD and QCD-like theories on the lattice, e.g., [68, 69, 70].

In this study the focus is on chiral random matrix theory and its applications in QCD with
gauge group SU(2) and fermions in the fundamental representation. Recently the non-Hermitian
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extension to the chiral orthogonal ensemble has been solved, and an expression for the associated
microscopic spectral density has been derived [71, 72]. A single symmetry-breaking parameter is
introduced into the random matrix model that reflects the “strength” of the breaking of Hermiticity.
The non-Hermitian chiral random matrix model can be mapped to the partition function of pion
effective theory associated with two-colour QCD and non-zero baryon chemical potential in the
ε-regime [73]. If the microscopic spectral density correctly reproduces the eigenvalue correlations
of the Dirac operator in the deep infrared, then both the chiral condensate and the pion decay
constant can be obtained from simulations of two-colour QCD on the lattice. The baryon chemical
potential renders the Dirac operator non-Hermitian and its spectrum complex-valued. By a formal
symmetry analysis it can be shown that the spectrum of the Dirac operator at non-zero baryon
chemical potential exhibits pairs of purely imaginary eigenvalues (as in the Hermitian case), pairs
of real eigenvalues, and also quadruplets of complex eigenvalues. The microscopic spectral density
derived from non-Hermitian chRMT gives a prediction of how the eigenvalues of the Dirac operator
near zero are distributed in the complex plane.

In this study lattice simulations are carried for the gauge group SU(2) in the quenched approxi-
mation. The spectral properties of the lowest-lying eigenvalues of the overlap operator are analyzed
and compared to predictions of Hermitian and non-Hermitian chRMT of the orthogonal ensemble.
The study is structured as follows. In this chapter the formalities of QCD, chiral symmetry breaking,
and pion effective theory associated with gauge group SU(2) are introduced. The essential ingredi-
ents for simulations of QCD on the lattice and the properties of the overlap operator are reviewed.
The baryon chemical potential is introduced into the overlap operator along the lines of Ref. [74].
In Chap. 7 the basic ideas of chiral random matrix theory are sketched and the microscopic spectral
densities derived from the Hermitian and non-Hermitian formulations of chRMT are introduced.
For the Hermitian case also the distribution of the lowest-lying eigenvalue is available. In Chap. 8
the results of the lattice simulations are discussed. The low-lying spectrum of the overlap operator
obtained from simulations of 84, 104, and 124 lattices with different choices for the Wilson mass pa-
rameter is analyzed and the spectral density compared to the microscopic spectral density provided
by Hermitian chRMT. The flow of the lowest-lying eigenvalues of the overlap operator with the
chemical potential is evaluated on a 44 lattice. The spectral density of the overlap operator is eval-
uated on a 84 lattice for several strength of the chemical potential and compared to the microscopic
spectral density provided by non-Hermitian chRMT. The results are summarized in Chap. 9.

6.2 Non-Abelian gauge theory

The QCD action is defined by the 4-dimensional integral over the QCD Lagrangian density L[ψ,ψ,A],
which is a functional of the fermion fields ψ,ψ and the gauge field A, over all space-time. In Euclidian
space-time one has

SQCD[ψ,ψ,A] =

∫
d4x L[ψ,ψ,A] = SF [ψ,ψ,A] + SG[A] . (6.1)

For a single quark flavour with mass mf the fermion part of the QCD action has the form

SF [ψ,ψ,A] =

∫
d4x ψ(x) [γµDµ +mf ]ψ(x) . (6.2)
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In Euclidian representation the traceless Dirac matrices γµ are Hermitian and fulfill the following
relations

{γµ, γν} = 2δµν , (6.3)

{γ5, γµ} = 0 , (6.4)

γ5 = γ1γ2γ3γ4 . (6.5)

In the chiral representation γ5 is diagonal and one has

γ1,2,3 =

(
0 −iσ1,2,3

iσ1,2,3 0

)
, γ4 =

(
0 1
1 0

)
, γ5 =

(
1 0
0 −1

)
, (6.6)

with Pauli matrices σi defined below. The covariant derivative at space-time x in direction µ =
1, 2, 3, 4 is

Dµ(x) = ∂µ + igAµ(x) . (6.7)

Here Aµ(x) is the gauge field, connected to the theory by the coupling constant g. One can identify

Aµ(x) =

N2
c−1∑
a=1

Aaµ(x)
λa

2
(6.8)

with real-valued colour components Aaµ(x). The N2
c − 1 matrices λa/2 are the generators of the

gauge group SU(Nc), with Nc being the number of colours described by the theory. The generators
are chosen traceless, complex and Hermitian Nc × Nc matrices. Ordinary QCD corresponds to
gauge group SU(3), and the standard representation of the generators are the Gell-Mann matrices.
However, in this study the focus is on gauge group SU(2), and the standard representation of its
generators σa/2 are the Pauli matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (6.9)

For any number of colours the gauge action part of the QCD action reads

SG[A] =
1

2

∫
d4x TrC [Fµν(x)Fµν(x)] =

1

4

N2
c−1∑
a=1

∫
d4x F aµν(x)F aµν(x) , (6.10)

with the trace taken over the colour index. Here Fµν is the field strength tensor for non-Abelian
gauge theories, defined as

Fµν(x) = − i

g
[Dµ(x), Dν(x)] = ∂µAν(x)− ∂νAµ(x) + ig[Aν(x), Aµ(x)] , (6.11)

F aµν(x) = ∂µA
a
ν(x)− ∂νAaµ(x)− gfabcAbµ(x)Acν(x) , (6.12)

with structure constants fabc. Some observable Ω can be determined by evaluation of the Euclidian
path integral, given by

〈Ω〉 =
1

Z

∫
DADψDψ e−SQCD[ψ,ψ,A] Ω[ψ,ψ,A] . (6.13)
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Here the integration measures of the integral are defined by the degrees of freedom of the system,

Dψ ≡
∏
x,α,c

dψα,c(x) , (6.14)

Dψ ≡
∏
x,α,c

dψα,c(x) , (6.15)

DA ≡
∏
x,a,µ

dAaµ(x) , (6.16)

with Dirac index α and colour index c. The path integral Eq. (6.13) is normalized by the QCD
partition function

Z =

∫
DADψDψ e−SQCD[ψ,ψ,A] =

∫
DADψDψ e−SF [ψ,ψ,A]−SG[A] . (6.17)

The fermion fields ψ and ψ are independent Grassmann numbers and, according to the Matthews-
Salam formula, the fermion part of the partition function can be rewritten in terms of a fermion
determinant [75]. Finally one has

Z =

∫
DA e−SG[A] det(D +mf ) , (6.18)

with the Dirac operator D = γµDµ being a functional of the gauge fields.

In practice the integration over an infinite number of degrees of freedom turns out to be impos-
sible. However, the definition of the path integral invites to use methods of statistical mechanics.
If the QCD action Eq. (6.1) is real then the exponential of the action can be interpreted as a
Boltzmann weight, suitable for computer simulations of QCD applying the techniques developed for
Monte-Carlo simulations.

6.3 Chiral symmetry

6.3.1 Introduction

Chiral symmetry and its spontaneous breaking are central aspects of the theory of the strong inter-
action and will be briefly touched in the following. Consider the Lagrangian with Nf × Nf mass
matrix M = diag(mu,md, . . .) associated with Nf flavours of quarks,

L[ψ,ψ,A] = ψ(x)(D +M)ψ(x) = ψ(x) [γµ(∂µ + igAµ) +M ]ψ(x) (6.19)

under chiral rotation

ψ(x)→ ψ′(x) = e
iαγ51Nf ψ(x) , ψ(x)→ ψ

′
(x) = ψ(x)e

iαγ51Nf . (6.20)

In the chiral limit, i.e, at zero quark mass, the Lagrangian is invariant under chiral rotations, and
thus L[ψ′, ψ

′
, A] = L[ψ,ψ,A]. However, if one introduces any mass term the invariance is explicitely

broken and one has

Mψ(x)ψ(x)→Mψ
′
(x)ψ′(x) = Mψ(x)e

i2αγ51Nf ψ(x) . (6.21)
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Upon introduction of chiral projection operators PR/L = (1 ± γ5)/2, each Dirac spinor can be

decomposed into right-handed and left-handed fields ψR/L and ψR/L,

ψ(x) = PRψ(x) + PLψ(x) ≡ ψR(x) + ψL(x) (6.22)

ψ(x) = ψ(x)PL + ψ(x)PR ≡ ψR(x) + ψL(x) . (6.23)

The Lagrangian Eq. (6.19) can be rewritten with respect to the handedness of the fermion fields.
Then one has

L[ψ,ψ,A] = ψR(x)DψR(x) + ψL(x)DψL(x) +M
[
ψR(x)ψL(x) + ψL(x)ψR(x)

]
. (6.24)

The mass term mixes right- and left-handed fermions explicitely. In the chiral limit there is no
mixing of the spinor components and thus right- und left-handed particles coexist independently.
This description is valid for QCD with arbitrary number of colours. However, the symmetry breaking
pattern of the gauge groups SU(3) and SU(2) is different and exhibit different phenomena, as will
be sketched in the next sections.

6.3.2 Gauge group SU(3)

In the massless theory with gauge group SU(3) the symmetries of the classical QCD action are given
by [75, 76]

SU(Nf )L × SU(Nf )R ×U(1)B ×U(1)A , (6.25)

where the SU(Nf )L/R symmetries originate from the invariance of the action under independent
flavour transformations of the Nf left- and right-handed fields. The U(1)B ≡ U(1)L=R symmetry
represents baryon charge conservation. The U(1)A axial symmetry comes from the invariance of the
action under chiral rotations Eq. (6.20). However, in the quantized theory the fermion integration
measure is not invariant under chiral rotations and the U(1)A axial symmetry is broken anomalously.
Taking into account this so-called axial anomaly the remaining symmetries of the massless theory
are

SU(Nf )L × SU(Nf )R ×U(1)B . (6.26)

Introduction of a mass term M = diag(m,m, . . .) with Nf degenerate masses further reduces the
symmetries to

SU(Nf )V ×U(1)B , (6.27)

and the action is invariant under simultaneous transformations SU(Nf )V ≡ SU(Nf )L=R of the left-
and right-fields. If the mass degeneracy is lifted the flavour symmetry is broken down even further.

For the gauge group SU(3), the physical theory of the strong interaction, one can expect the
remaining symmetries (6.27) to be a very good approximation to nature in the case Nf = 2, because
of the small masses of the lightest generation of quarks – the up and down quarks with corresponding
masses mu ≈ md ≈ 5 MeV – compared to the QCD scale ΛQCD ≈ 1 GeV. A consequence of the
broken chiral symmetry are N2

f−1 almost massless bosonic excitations, the pseudo-Goldstone modes.
The lightest Goldstone modes in QCD are the pions. Due to the small quark masses the flavour
symmetry (6.27) is only approximate and the pions acquire a mass mπ ≈ 140 MeV that is small
compared to the QCD scale. Chiral symmetry is also broken in the massless formulation of QCD.
The QCD ground state is not invariant under chiral rotations, giving rise to massless pions.

6.3.3 Gauge group SU(2)

In quantized QCD with two-colours, i.e., with gauge group SU(2), the U(1)A axial symmetry is
also broken anomalously, while the U(1)B symmetry remains and thus baryon charge is conserved.
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However, the flavour symmetry breaking pattern is different from gauge group SU(3) and will be
discussed in the following.

The massless QCD Lagrangian that describes Nf fermion flavours in the fundamental represen-
tation of gauge group SU(2) is [77]

L = ψγνDνψ = i

(
ψ∗L
ψ∗R

)T (
σνDν 0

0 −σ†νDν

)(
ψL
ψR

)
, (6.28)

with ψ = ψ†γ4. In this notation the flavour index and the space-time dependency are suppressed.
The matrices σ1,2,3 are the Pauli matrices defined in Eq. (6.9), and the anti-Hermitian matrix
σ4 = diag(−i,−i) is introduced for convenience. The covariant derivative is Dν = ∂ν + igAaντa/2.
The Pauli matrices τa are the generators of the gauge group SU(2). One can define a conjugate
quark field

ψ̃R ≡ σ2τ2ψ
∗
R , (6.29)

introduce new spinors of dimension 2Nf ,

Ψ ≡
(
ψL
ψ̃R

)
and Ψ† ≡

(
ψ∗L
ψ̃∗R

)T
, (6.30)

and rearrange the massless Lagrangian Eq. (6.28) into

L = i

(
ψ∗L
ψ̃∗R

)T (
σνDν 0

0 σνDν

)(
ψL
ψ̃R

)
= iΨ†σνDνΨ . (6.31)

Apparently the Lagrangian is invariant under flavour transformations

Ψ→ VΨ , Ψ† → Ψ†V † , (6.32)

with V ∈ SU(2Nf ). Thus the remaining symmetries of the quantized and massless theory with
gauge group SU(2) are

SU(2Nf )×U(1)B . (6.33)

Note the difference to QCD with gauge group SU(3), which exhibits invariance under flavour trans-
formations SU(Nf )L×SU(Nf )R in the massless case. In the following the symmetry breaking pattern
of QCD with gauge group SU(2) is further characterized.

6.3.4 Chiral condensate

The breaking of chiral symmetry is characterized by the order parameter

〈ψψ〉 = 〈ψRψL + ψLψR〉 , (6.34)

known as the chiral condensate. The condensate is non-zero if the system is in the broken phase,
and vanishes if chiral symmetry is restored. For the two-colour theory one has

ψψ = ψ†γ4ψ =

(
ψ∗L
ψ∗R

)T (
0 1
1 0

)(
ψL
ψR

)
=

1

2
ΨTσ2τ2

(
0 −1
1 0

)
Ψ + h.c. . (6.35)

Here the Pauli matrices σ2 and τ2 ensure anti-symmetrization in spin and colour indices, respectively,
and a colour singlet is produced. The notation can be simplified by introduction of the 2Nf × 2Nf
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matrix

M =

(
0 1
−1 0

)
. (6.36)

Then the notation becomes

ψψ = −1

2
ΨTσ2τ2MΨ + h.c. . (6.37)

Note that the condensate is not invariant under transformations of flavour group SU(2Nf ). The
subgroup which leaves Eq. (6.37) invariant is the symplectic group Sp(2Nf ). Thus the symmetry
breaking pattern for the gauge group SU(2) and fermions in the fundamental representation is1

SU(2Nf )→ Sp(2Nf ) . (6.38)

The massless Lagrangian Eq. (6.31) of the two-colour theory is invariant under transformations
of flavour group SU(2Nf ). This group is parameterized by (2Nf )2 − 1 generators. However, the
condensate is only invariant under transformations of flavour group Sp(2Nf ), which is parameterized
by Nf (2Nf +1) generators. Thus the Goldstone manifold is the coset space SU(2Nf )/Sp(2Nf ). The
manifold is parameterized by Nf (2Nf − 1)− 1 generators. The (pseudo-)Goldstone particles of the
two-colour theory are not only represented by pseudo-scalar mesons, but also by diquark states that
come with non-zero baryon number.

6.4 Low-energy effective theory

6.4.1 Motivation

The dynamics of the Goldstone modes is governed by the deep infrared spectrum of the Dirac
operator. A low-energy effective Lagrangian that applies to the phase of broken chiral symmetry
can be constructed based on symmetry considerations. To lowest order in momentum expansion the
effective theory comes with two low-energy constants. One is the chiral condensate and the other
one is the pion decay constant. Both constants can be determined by simulation of the two-colour
QCD partition function on the lattice.

In the so-called ε-regime the zero-momentum modes of the Goldstone fields dominate the par-
tition function. Other hadronic excitations are suppressed. This is the case at length scales
mπ � 1/L � ΛQCD, where the box length L of the simulated finite four-volume V = L4 is much
smaller than the pion correlation length 1/mπ, but still larger than other non-Goldstone excitations
that occur at some scale ΛQCD. A correspondence between the partition function associated with
this static limit of the effective Lagrangian and chiral random matrix theory allows to determine
the chiral condensate from the spectra of a lattice Dirac operator that respects chiral symmetry.
Extraction of the pion decay constant from lattice simulations is also possible, but somewhat more
elaborate. It requires the introduction of a baryon chemical potential into the effective theory, into
the lattice simulations, and also into the chiral random matrix models.

In the next two sections the low-energy effective theory for two-colour QCD is introduced. Al-
though in this study the limiting case Nf → 0 is of interest, one has to start from a description of
a system with Nf quark flavours (with masses). Afterwards the basic ingredients for simulations of
quenched QCD on the lattice are introduced. The random matrix models that map to the static
limit of the partition functions associated with the effective theory are sketched in Chap. 7 and
finally compared to the lattice simulations in Chap. 8.

1The symmetry breaking pattern in SU(3) gauge theory is SU(Nf )× SU(Nf )→ SU(Nf ).
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6.4.2 Lagrangian of the effective theory

The two-colour QCD Lagrangian for Nf fermions with degenerate masses m ≡ mf is [77]

L = ψγνDνψ +mψψ = iΨ†σνDνΨ +

(
−1

2
ΨTσ2mMΨ + h.c.

)
. (6.39)

Here mM is the mass matrix, with M already defined by Eq. (6.36). Similar to the chiral conden-
sate, the mass term is only invariant under the subgroup Sp(2Nf ). However, the invariance of the
Lagrangian under any group element V ∈ SU(2Nf ) is restored by introduction of the transformations

Ψ→ VΨ , Ψ† → Ψ†V † , M → V ∗MV † . (6.40)

The symmetry is also imposed on the effective theory. At lowest order in momentum expansion the
low-energy effective Lagrangian reads

Leff =
F 2

2
Tr(∂ν U∂ν U†)−mGRe Tr(MU) . (6.41)

The effective Lagrangian comes with two low-energy constants. One is the pion decay constant F .
The other coefficient G = Σ/2Nf is the derivative of the vacuum energy with respect to the quark
mass. It is proportional to the chiral condensate Σ ≡ 〈ψψ(m → 0)〉. The Goldstone manifold is
described by the matrix U ∈ SU(2Nf )/Sp(2Nf ). The matrix is unitary and anti-symmetric, and
is defined by Nf (2Nf − 1) − 1 independent components, thus reflecting the phase of broken chiral
symmetry. This matrix transforms as

U → V UV T . (6.42)

The Goldstone modes fluctuate around some equilibrium orientation chosen to minimize the effective
Lagrangian. One can decompose U into

U = UIUT , U = exp

(
iΠ

2F

)
. (6.43)

Here Π is an 2Nf × 2Nf matrix that picks up the Goldstone modes living in the coset space
SU(2Nf )/Sp(2Nf ), see Ref. [77] for its explicit definition. The matrix I denotes the equilibrium
orientation. The natural choice for the orientation is I = M−1 = M †. Then the effective Lagrangian
Eq. (6.41) is minimized.

One obtains the partition function associated with pion effective theory by integration over the
effective Lagrangian Eq. (6.41),

Z ∼
∫

dU exp

[
−
∫

d4xLeff

]
. (6.44)

In this study the interesting case is when the effective Lagrangian is squeezed into a finite space-time
volume V = L4. On the length scale much smaller than the pion correlation length, L� 1/mπ, but
still larger than other hadronic excitations that occur at some scale ΛQCD, only the zero-momentum
mode U0 of the field U(x) is relevant [78]. The constant mode U0 is independent of the space-
time coordinate and one can show that in the sector of topological charge ν the partition function
reads [73]

Zν ∼
∫

dθ eiνθ

∫
SU(2Nf )

dU0 exp
[
mGV Re Tr

(
eiθ/NfMU0IU

T
0

)]
. (6.45)

The chiral random matrix model that maps to this static limit is introduced in Sect. 7.2.
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6.4.3 Non-zero baryon chemical potential

The two-colour QCD Lagrangian Eq. (6.39) can be extended to non-zero baryon density. Inclusion
of the baryon chemical potential µ ∈ R yields [77]

L = ψγνDνψ − µψγ4ψ +mψψ

= iΨ†σνDνΨ− µΨ†BΨ +

(
−1

2
ΨTσ2mMΨ + h.c.

)
= iΨ†(σνDν − δν4µB)Ψ +

(
−1

2
ΨTσ2mMΨ + h.c.

)
. (6.46)

Here the 2Nf × 2Nf baryon charge matrix

B =

(
+1 0
0 −1

)
(6.47)

was introduced. Its entries are the baryon charges associated with the Nf quarks ψL and the

Nf conjugate quarks ψ̃R. The chemical potential introduces an asymmetry between the number of
quarks and anti-quarks and violates the SU(2Nf ) flavour symmetry. For sufficiently small strength of
the chemical potential the baryon charge is conserved by the U(1)B symmetry, but flavour symmetry
is broken down to SU(Nf )L × SU(Nf )R in the massless case. In the massive case only the vector
symmetry SU(Nf )V remains. However, the full SU(2Nf ) flavour symmetry can be restored if one
introduces the transformations

Ψ→ VΨ , Ψ† → ΨV † , M → V ∗MV † , B → V BV † , (6.48)

with V ∈ SU(2Nf ). This extended symmetry is also imposed on the effective theory. To lowest
order in momentum expansion and with lowest order non-derivative terms in the baryon chemical
potential µ the effective Lagrangian reads

Leff =
F 2

2
Tr(∂ν U∂ν U†) + 2µF 2 Tr(BU†∂4 U)

− µ2F 2 Tr(UBTU†B +BB)−mGRe Tr(MU) . (6.49)

Only the static part of the effective Lagrangian is of interest, and one has

Lst = −µ2F 2 Tr(UBTU†B +BB)−mGRe Tr(MU)

= −µ2F 2 Tr(UIUTBT (UIUT )†B +BB)−mGRe Tr(MUIUT ) . (6.50)

Note that in this limit there is a competition for the equilibrium orientation of U . One can apply
the Gell-Mann-Oakes-Renner relation and trade the coefficient G against F 2m2

π/m. Here mπ is the
mass of the lightest baryon (which in two-colour QCD is a diquark). One observes that the static
limit of the effective Lagrangian is dominated by the mass term as long as µ < mπ/2. In this case
the equilibrium orientation of U that minimizes the Lagrangian is I = M †. However, the minimum
shifts away from M † non-trivially if µ > mπ/2, with the effect of diquark condensation and violation
of baryon number conservation as discussed in more detail in Ref. [77].

In this study the domain of interest is µ < mπ/2. The finite-volume partition function associated
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with the ε-regime in the sector of topological charge ν can be formulated as [73]

Zν ∼
∫

dθ eiνθ

∫
SU(2Nf )

dU0 exp
[
µ2F 2V Tr(U0IU

T
0 B

T (U0IU
T
0 )†B +BB)

+mGV Re Tr
(

eiθ/NfMU0IU
T
0

) ]
. (6.51)

The partition function is valid in the domain mπ, µ � 1/L � ΛQCD, with V = L4 the space-time
volume. The chiral random matrix model that maps to this static limit is introduced in Sect. 7.3.

6.5 Lattice QCD

A computer-friendly version of QCD is obtained by discretization of space-time on a 4-dimensional
toroidal lattice [75]

Λ = {n = (n1, n2, n3, n4)|n1, n2, n3 = 0, . . . , NS − 1 ; n4 = 0, . . . , NT − 1} . (6.52)

The vectors n represent points in space-time separated by the lattice spacing a, and some space-
time vector x in the continuum is therefore replaced by the vector n = x/a on the lattice. The
number of lattice points in the spatial direction is labeled NS , and the number of lattice points
in the Euclidian time direction is NT . The physical volume described by the space-time lattice is
V a4, with V = N3

S ×NT the 4-dimensional lattice volume. In this study only isotropic lattices were
evaluated. In this case one has NS = NT .

Fermions on the lattice are described by their continuum analogues

ψ(x)→ ψ(n) , ψ(x)→ ψ(n) , (6.53)

however they live exclusively on the lattice sites n ∈ Λ. For the free case the massless continuum
Dirac operator is replaced by a central difference term that mirrors the granularity of space-time on
the lattice in a naive approach to discretization. One has

γµ∂µψ(x)→
4∑

µ=1

γµ
ψ(n+ µ̂)− ψ(n− µ̂)

2a
, (6.54)

with µ̂ being the unit vector in the µ-direction. The fermion action that represents a single quark
flavour with mass mf reads

SF [ψ,ψ] = a4
∑
n∈Λ

ψ(n)

 4∑
µ=1

(
γµ
ψ(n+ µ̂)− ψ(n− µ̂)

2a

)
+mfψ(n)

 . (6.55)

The fermion action has the correct behaviour in the continuum limit a→ 0, but by definition suffers
from dependency of the gauge, i.e., SF is not yet invariant under local rotations Ω(n) ∈ SU(Nc) in
colour space,

ψ(n)→ ψ′(n) = Ω(n)ψ(n) , (6.56)

ψ(n)→ ψ
′
(n) = ψ(n)Ω(n)† , (6.57)

ψ(n)ψ(n± µ̂)→ ψ
′
(n)ψ′(n± µ̂) = ψ(n)Ω(n)Ω(n± µ̂)†ψ(n± µ̂) . (6.58)

The mass term of the fermion action is invariant under local rotations of the gauge group, but the
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displacement introduced by the partial derivative explicitely prohibits gauge invariance. However,
this issue can be fixed by introduction of new directed fields Uµ(n) that are associated with the links
between two adjacent lattice sites n and n + µ̂. The so-called link variables Uµ(n) are elements of
the gauge group SU(Nc). If one introduces the transformation rule

U±µ(n)→ U ′±µ(n) = Ω(n)U±µ(n)Ω(n± µ̂)† , (6.59)

and furthermore defines U−µ(n) ≡ Uµ(n− µ̂)†, then

ψ(n)U±µ(n)ψ(n)→ ψ
′
(n)U ′±µ(n)ψ′(n) (6.60)

is invariant under local rotations in colour space. The massless Dirac operator then becomes

γµ∂µψ(x)→
4∑

µ=1

γµ
Uµ(n)ψ(n+ µ̂)− U−µ(n)ψ(n− µ̂)

2a
, (6.61)

and the fermion action now is a functional of both the fermion fields and gauge fields on the lattice,

SF [ψ,ψ, U ] = a4
∑
n∈Λ

ψ(n)

 4∑
µ=1

(
γµ
Uµ(n)ψ(n+ µ̂)− U−µ(n)ψ(n− µ̂)

2a

)
+mfψ(n)

 . (6.62)

Each link variable Uµ(n) acts as gauge transporter between two adjacent lattice sites n and n + µ̂.
In the continuum theory the gauge transporter that connects two points x and y in space-time along
the path C is defined by

G(x, y) = P exp

(
ig

∫
C

dsµAµ

)
, (6.63)

where the operator P ensures path ordering. On the lattice the smallest path C is between two
adjacent lattice sites, and the corresponding gauge transporter is defined as

Uµ(n) = exp [iagAµ(n)] . (6.64)

On the lattice the gauge action can be constructed from the shortest non-trivial closed loops of link
variables, so-called plaquettes, that are defined as

Uµν(n) = Uµ(n)Uν(n+ µ̂)U−µ(n+ µ̂+ ν̂)U−ν(n+ ν̂)

= Uµ(n)Uν(n+ µ̂)Uµ(n+ µ̂)†Uν(n)† , (6.65)

where in the second line the identity U−µ(n) = Uµ(n− µ̂)† is applied. The gluon gauge action [79]

SG[U ] =
β

Nc

∑
n∈Λ

∑
µ<ν

Re Tr [1− Uµν(n)] , (6.66)

is called the Wilson action. The trace over the plaquettes ensures gauge invariance and one can
show that in the limit a → 0 the Wilson action approaches the correct continuum limit, i.e., the
continuum gauge action Eq. (6.10) is recovered. The parameter β = 2Nc/g

2 defines the coupling
strength.

Observables are evaluated on the lattice by the path integral approach. The equivalent formula-
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tion of Eq. (6.13) for the evaluation of some observable Ω on the lattice is

〈Ω〉 =
1

Z

∫
DUDψDψ e−SQCD[ψ,ψ,U ] Ω[ψ,ψ, U ] (6.67)

=
1

Z

∫
DUDψDψ e−SF [ψ,ψ,U ]−SG[U ] Ω[ψ,ψ, U ] . (6.68)

Here the lattice action SQCD is the equivalent to the continuum action Eq. (6.1) with lattice Dirac
spinors ψ,ψ and link variables Uµ. The QCD partition function on the lattice is

Z =

∫
DUDψDψ e−SF [ψ,ψ,U ]−SG[U ] =

∫
DU det(D +mf )e−SG[U ] , (6.69)

where D is some lattice Dirac operator. The integration measures are given by

Dψ ≡
∏
n∈Λ

∏
α,c

dψα,c(n) , (6.70)

Dψ ≡
∏
n∈Λ

∏
α,c

dψα,c(n) , (6.71)

DU ≡
∏
n∈Λ

∏
µ

dUµ(n) . (6.72)

Here DU defines the product measure which integrates the link variables over the whole group
manifold of SU(Nc) [75].

In simulations of Lattice QCD the exponential of the lattice gauge action is interpreted as Boltz-
mann weight and allows to apply methods developed for Monte-Carlo simulations. In practice the
generation of gauge field configurations is necessary for the determination of some observable. The
evaluation of the fermion determinant det(D + mf ) is quite a compute-intensive task. A compu-
tationally milder approach to simulations of quantum field theories on the lattice is to neglect the
contributions of the sea quarks. In the quenched approximation, which corresponds to lattice sim-
ulations in the limit Nf → 0, the fermion determinant is set to unity. Then the evaluation of some
observable Ω simplifies to

〈Ω〉G =
1

Z

∫
DU e−SG[U ] Ω[U ] =

∫
DU e−SG[U ] Ω[U ]∫
DU e−SG[U ]

. (6.73)

6.6 Fermions on the lattice

6.6.1 Wilson-Dirac operator

The lattice Dirac operator with naive discretization Eq. (6.61) does not come without a price. Instead
of a single fermion species the discretized Dirac operator describes 16, the so-called fermion doublers.
To see this, one can use the quark propagator in momentum space on the lattice. This propagator is
obtained by the discrete Fourier-transform of the Dirac operator in coordinate space and subsequent
inversion.

Consider the lattice Dirac operator Eq. (6.61) for a single fermion flavour with mass mf . In the
free case the link variables are replaced by the identity, Uµ(n) ≡ 1 ∀ n, µ. The matrix elements of
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this operator can be compactly quoted by

D(n|m) = mf +

4∑
µ=1

γµ
δn+µ̂,m − δn−µ̂,m

2a
. (6.74)

The Fourier-transform of this operator is [75]

D̃(p|q) =
1

V

∑
n,m∈Λ

e−ipµnµaD(n|m)eiqµmµa (6.75)

=
1

V

∑
n∈Λ

e−i(pµ−qµ)nµa

mf +

4∑
µ=1

γµ
eiqµa − e−iqµa

2a

 (6.76)

The strong locality of the operator in coordinate space cancels the sum over m and projects out the
µ-component of the momentum vector q,∑

m∈Λ

δn±µ̂,meiqµmµa = eiqµ(nµ±µ̂)a = eiqµnµae±iqµa . (6.77)

The exponentials in Eq. (6.76) can be rewritten in terms of the sine function and one obtains the
lattice Dirac operator in momentum space

D̃(q) = mf +
i

a

4∑
µ=1

γµ sin(qµa) . (6.78)

The lattice propagator is the inverse of the operator. One finds

D̃(q)−1 =
mf − i

a

∑
µ γµ sin(qµa)

m2
f + 1

a2
∑

µ sin2(qµa)
. (6.79)

Expansion of the sine function around the lattice spacing at small momentum, sin(qµa) = qµa+O(a2),
and taking the continuum limit a→ 0 yields the free fermion propagator in the continuum,

lim
a→0

D̃(q)−1 =
mf − i

∑
µ γµqµ

m2
f +

∑
µ q

2
µ

. (6.80)

However, not only the momentum vector q = (0, 0, 0, 0) contributes in the continuum limit, but also
those momenta with at least one component at the corner of the first Brillouin zone, i.e., qµ = π/a.
In total there are fifteen such contributions to the fermion propagator and therefore in the continuum
limit the Dirac operator with naive discretization describes sixteen fermion species instead of just a
single one.

A modification of the lattice Dirac operator in momentum space operator Eq. (6.78) gives un-
wanted fermion species a higher mass. The modification does not remove the doubler modes com-
pletely, however, they decouple from the theory in the continuum limit. The proposed modification
is

D̃(q)→ D̃W(q) = mf +
i

a

4∑
µ=1

γµ sin(qµa) +
1

a

4∑
µ=1

[1− cos(qµa)] . (6.81)

A fermion with zero momentum is not affected by the additional term. But fermions with momentum
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components qµ = π/a acquire an additional mass term

mf +
2l

a
, (6.82)

where l is the number of components with qµ = π/a. The additional mass obviously diverges in the
limit a→ 0. In coordinate space the additional term acts like a Laplacian extension to the operator
that vanishes in the continuum limit. The modified lattice Dirac operator (with non-trivial link
variables) is known as the Wilson-Dirac operator. In coordinate space it reads

DW(n|m) = mf +
4∑

µ=1

γµ
Uµ(n)δn+µ̂,m − U−µ(n)δn−µ̂,m

2a

− a
4∑

µ=1

Uµ(n)δn+µ̂,m + U−µ(n)δn−µ̂,m − 2δn,m
2a2

(6.83)

= mf +
4

a
− 1

2a

4∑
µ=1

(
Uµ(n)(1 + γµ)δn+µ̂,m + U−µ(n)(1− γµ)δn−µ̂,m

)
, (6.84)

again with U−µ(n) = Uµ(n− µ̂)†. A slightly more compact notation is2

DW = 1− κ
4∑

µ=1

(T+
µ + T−µ ) . (6.85)

Here
T±µ (n|m) ≡ (1± γµ)U±µ(n)δn±µ̂,m , (6.86)

and the mass term has been absorbed into the so-called hopping parameter κ = 1/(8 + 2mfa).

6.6.2 Lattice chiral symmetry

In the massless limit the continuum Dirac operator anti-commutes with γ5,

{D, γ5} = Dγ5 + γ5D = 0 . (6.87)

The massless Dirac operator is anti-Hermitian, and due to chiral symmetry the non-zero eigenvalues
occur in complex conjugate pairs. The Dirac operator also exhibits exact zero modes Dφ0 = 0, which
can be chosen as eigenstates of γ5. The zero modes of the Dirac operator D = γµ(∂µ + igAµ) are
intimately related to the topological structure of the gauge field A. A winding number, also called
the topological charge, can be associated with each gauge field. This number has integer value and
is defined by [75]

Q(A) =
1

32π2

∫
d4x εµνδρF

a
µν(x)F aδρ(x) ∈ Z , (6.88)

where F aµν(x) is a colour component of the field strength tensor defined in Eq. (6.12). The Atiyah-
Singer index theorem [80] relates the topological charge to the index of the continuum Dirac operator,

indexD[A] = n− − n+ = Q(A) . (6.89)

2In this notation an irrelevant constant prefactor is dropped which can be absorbed into a redefinition of the quark
fields.
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Here n+ (n−) is the number of eigenmodes of the Dirac operator which come with definite positive
(negative) chirality.

The lattice Dirac operator with naive discretization introduced in Sect. 6.5 also respects chiral
symmetry in the massless limit. Unfortunately the operator suffers from unphysical fermion doubler
modes. These modes can be given some additional mass diverging in the continuum limit. However,
at finite lattice spacing the Wilson-Dirac operator introduced in Sect. 6.6.1 violates chiral symmetry
even in the massless case, and generically one has {DW, γ5} 6= 0. The eigenvalues occur in complex
conjugate pairs, however, the Wilson-Dirac operator is not anti-Hermitian [81]. In fact, according
to the Nielsen-Ninomiya theorem [82], it is not possible at all to construct a lattice version of the
Dirac operator that at the same time fulfills the following requirements:

(i) Restoration of chiral symmetry such that {D, γ5} = 0, in analogy to Eq. (6.87).

(ii) Locality of the eigenmodes.

(iii) The operator has the correct continuum limit.

(iv) No fermion doubler modes.

Satisfaction of the criteria (ii) and (iii) is a necessity for the lattice simulations to describe physics,
however, criterium (iv) is acceptable if the doubler modes do not give a contribution in the continuum
limit. The Ginsparg-Wilson relation [83]

Dγ5 + γ5D = aDγ5D (6.90)

also proposes a cure to criterium (i). The Ginsparg-Wilson relation represents the lattice analogue
to chiral symmetry in the continuum. The lattice Dirac operator D analyzed in this study will be
defined explicitely in the next section.

The Ginsparg-Wilson relation has important consequences for the properties of the (approx-
imately) chiral lattice Dirac operator. These are briefly discussed in the following. The lattice
spacing a is set to unity from now on. By multiplication of the Ginsparg-Wilson relation Eq. (6.90)
with γ5 once from the left and once from the right, and furthermore imposing the condition of
γ5-Hermiticity on the operator such that D = γ5D

†γ5, then one has

D† +D = D†D , (6.91)

D +D† = DD† , (6.92)

and thus DD† = D†D. If the operator is γ5-Hermitian then it is automatically normal. Normality
guarantees that D is diagonalizable by some unitary transformation D = UΛU † with unitary
matrix U and diagonal matrix Λ = diag(λ1, . . . , λN ), N = dim(U). The characteristic polynomial
P (λ) of the operator is

P (λ) = det[D − λ] = det[D† − λ] = det[D − λ∗]∗ = P (λ∗)∗ , (6.93)

where the second step follows from γ5-Hermiticity. Consequently the eigenvalues λi of D are ei-
ther real or come in complex conjugate pairs if the operator is γ5-Hermitian. Now consider the
eigensystem

Dφλ = λφλ (6.94)

with φλ being normalized eigenvectors of D with corresponding eigenvalue λ = x + iy. If one
sandwiches Eq. (6.91) with (normalized) eigenvectors φ†λ from the left and φλ from the right, then
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one finds that the eigenvalues of D are restricted to lie on a unit circle in the complex plane centered
on the real axis at 1,

λ∗ + λ = λ∗λ ⇔ (λ− 1) (λ∗ − 1) = 0 ⇔ (x− 1)2 − y2 = 1 . (6.95)

The circle is known as the Ginsparg-Wilson circle. The real eigenvalues are thus restricted to
λ ∈ {0, 2}, while each complex eigenvalue is accompanied by a partner λ∗ = λ/(λ − 1). Exploiting
the γ5-Hermiticity once more allows to investigate chirality. One has

φ†λγ5Dφλ = φ†λD
†γ5φλ ⇒ λφ†λγ5φλ = λ∗φ†λγ5φλ ⇒ (Imλ)φ†λγ5φλ = 0 . (6.96)

The equation on the right implies that each eigenvector φλ has vanishing chirality, φ†λγ5φλ = 0, if
the imaginary part of the corresponding eigenvalue λ ∈ C does not vanish, Imλ 6= 0. Only those
eigenvectors with corresponding real eigenvalues λ ∈ R may have non-vanishing chirality, and thus
φ†λγ5φλ 6= 0.

In fact, on the subspace of zero modes φ0, the operator D commutes with γ5. These states
can be chosen as eigenstates of γ5. The same applies to the non-zero modes φ2 with corresponding
eigenvalues λ = 2. Let’s consider all states φ0 and φ2 to be chosen as eigenstates of γ5. Since γ2

5 = 1

it follows that φ†λγ5φλ = ±1 if λ ∈ {0, 2}. Exact chirality allows to evaluate the topological charge
associated with the gauge field background from the zero modes. One has [75, 84, 85]

1

2
Tr[γ5D] = −1

2
Tr[γ5(2−D)]

= −1

2

∑
λ

(2− λ)φ†λγ5φλ

= −
∑
λ=0

φ†λγ5φλ

= n− − n+ ≡ indexD ∈ Z . (6.97)

All eigenstates with complex eigenvalues have vanishing chirality and therefore only the sum over
the states φ0 and φ2 remain. The latter get cancelled by sneaking in the extra term Tr(2γ5) = 0.
Here n+ (n−) is the number of zero modes which come with definite positive (negative) chirality.
Alternatively the definite chirality of the eigenmodes φ2 can be used to evaluate the topological
charge. One finds

1

2
Tr[γ5D] =

1

2

∑
λ

λφ†λγ5φλ =
∑
λ=2

φ†λγ5φλ = n′+ − n′− = indexD ∈ Z , (6.98)

where n′+ (n′−) is the number of eigenstates φ2 with positive (negative) chirality. Both assignments
Eq. (6.97) and Eq. (6.98) yield the same result, and therefore it follows that

n+ − n− = −(n′+ − n′−) . (6.99)

It is stated in Ref. [75] that in the absence of fine-tuning one only finds eigenstates of either chirality,
i.e., either n+ 6= 0 or n− 6= 0 (or n+ = n− = 0). This behaviour was also observed in this study
without any exception. One furthermore expects that for sufficiently smooth lattice gauge field
configurations U the continuum index theorem Eq. (6.89) is also applicable to lattice simulations.
Then one has indexD[U ] = Q(U). However, in simulations of Lattice QCD violations do occur.
In the following two sections an explicit definition for the lattice Dirac operator that respects the
lattice chiral symmetry will be given.
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6.6.3 Overlap operator

An explicit definition of a Dirac operator that respects chiral symmetry on the lattice was found
by Neuberger and Narayanan [86, 87]. The so-called overlap operator satisfies the Ginsparg-Wilson
relation Eq. (6.90) and describes (massive) quarks on the lattice. In this study the massless overlap
operator is of interest, which can be written as

Dov = 1 + γ5ε(H) . (6.100)

Here ε(H) is the matrix sign function and the kernel H is an Hermitian lattice Dirac operator.
The overlap operator has the correct continuum limit, is free of doubler modes, and obeys a lattice
version of chiral symmetry.

Before introducing the kernel operator let’s stick to the matrix sign function. A convenient
expression for this function is obtained if its kernel is diagonalizable [88]. Then one can apply the
transformation H = UΛU−1. Here U ∈ Gl(N,C), N = dim(H), and Λ = diag(λ1, . . . , λN ) is the
diagonal matrix of eigenvalues. For any diagonalizable kernel the matrix sign function can then be
defined by

ε(H) = U sgn(Re Λ)U−1 . (6.101)

This definition is valid both for Hermitian kernel (in this case λi ∈ R) and also non-Hermitian
kernel (then λi ∈ C). The numerical computation of the overlap operator is quite demanding and
an efficient algorithm that diagonalizes the operator is introduced in Appendix B.1.

Given the definition of the matrix sign function it is straight forward to show that the overlap
operator indeed satisfies the Ginsparg-Wilson relation. Exploiting γ2

5 = 1 and ε(H)2 = 1 one has
(here for simplicity ε ≡ ε(H))

γ5Dov +Dovγ5 = γ5(1 + γ5ε) + (1 + γ5ε)γ5

= γ5 + ε+ γ5εγ5 + γ5ε
2

= (1 + γ5ε)γ5(1 + γ5ε)

= Dovγ5Dov . (6.102)

The matrix sign function inherits the Hermiticity property of the kernel lattice Dirac operator. If
the kernel is Hermitian then ε(H) = ε(H)†. Note that Hermiticity is not a necessity for satisfaction
of the Ginsparg-Wilson relation, because in either case one has ε(H)2 = 1. However, if the kernel is
an γ5-Hermitian operator, then the overlap operator is also γ5-Hermitian,

Dov = γ5D
†
ovγ5 . (6.103)

As derived in the last section, γ5-Hermiticity implies that Dov is normal, thus DovD
†
ov = D†ovDov.

Its eigenvalues are either real or come in complex conjugate pairs and are restricted to the Ginsparg-
Wilson circle Eq. (6.95). The overlap operator also exhibits exact zero modes (and also modes with
corresponding eigenvalues λ = 2). These modes can be chosen as eigenstates of γ5.

The common choice for the kernel lattice Dirac operator is the Hermitian Wilson-Dirac operator
Eq. (6.85),

H ≡ γ5DW(mW ≡ −mf ) , (6.104)

which is also used in this study. The overlap operator acts as a projection of the non-chiral lattice
Wilson-Dirac operator onto the solution of the Ginsparg-Wilson relation. The operator describes
exactly massless quarks and is free of doubler modes if the so-called Wilson mass mW ≡ −mf

is chosen in the range mW ∈ (0, 2) [89]. The Wilson mass also has some impact on the locality
properties of the overlap operator as discussed in [90].
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The eigenvalues of the overlap operator are pinned to the Ginsparg-Wilson circle. However,
the continuum Dirac operator is anti-Hermitian, thus its non-zero eigenvalues are purely imaginary.
Another lattice Dirac operator obeys this symmetry property of the continuum operator. The
projected overlap operator is defined as [91]

Dp =
2Dov

2−Dov
= 2

1 + ε(H)

1− ε(H)
. (6.105)

Its spectrum has the desired properties, i.e., the non-zero eigenvalues λp of Dp lie on the imaginary
axis (and come in complex conjugate pairs). Given the eigenvalues λov of the (original) overlap
operator Eq. (6.100) the spectrum of the projected overlap operator is obtained by application of
the stereographic projection

λov → λp =
2λov

2− λov
. (6.106)

The stereographic projection leaves the eigenvalues λov = 0 unchanged (those eigenvalues living on
the opposite side of the Ginsparg-Wilson circle are mapped to infinity), whereas pairs of complex
eigenvalues λov and λov/(λov−1) on the Ginsparg-Wilson circle are mapped to pairs λp and λ∗p on the
imaginary axis. For the comparison between the lattice data and random matrix theory performed
in this study especially the projected spectrum of the overlap operator is of interest.

6.7 Chemical potential on the lattice

In the continuum theory the Dirac operator with baryon chemical potential µ ∈ R reads

D(µ) = γν(∂ν + igAν) + µγ4 . (6.107)

This operator is imbalanced with respect to the number of quarks and anti-quarks and therefore
introduces a non-zero baryon density into the field theory. The combination µγ4 renders the op-
erator non-Hermitian and one has D(µ) = −D(−µ)†. The breaking of Hermiticity is discussed
in more detail in Chap. 7 especially for the gauge group SU(2) and fermions in the fundamental
representation.

The chemical potential is introduced on the lattice by a modification of the 4-direction of the
Wilson-Dirac operator Eq. (6.85) [92],

DW → DW(µ) = 1− κ
3∑

ν=1

(T+
ν + T−ν )− κ(e+µT+

4 + e−µT−4 ) . (6.108)

Here again
T±ν (n|m) ≡ (1± γν)U±ν(n)δn±ν̂,m (6.109)

and κ = 1/(8 + 2mf ) is the hopping parameter. For real chemical potential µ ∈ R the exponential
weight factor e±µ favours propagation in positive Euclidian time direction (+) and disfavours prop-
agation in the negative time direction (−). In the limit µ → 0 the Wilson-Dirac operator at zero
chemical potential Eq. (6.85) is recovered. However, at non-zero µ the Wilson-Dirac operator is no
longer γ5-Hermitian. From

γ5e±µT±4 = e±µT∓4 γ5 (6.110)

it follows that
DW(µ) = γ5DW(−µ)†γ5 . (6.111)
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An intuitive proposal for the overlap operator with chemical potential is [74, 93]

Dov → Dov(µ) = 1 + γ5ε[H(µ)] (6.112)

with the Wilson-Dirac kernel Eq. (6.108) at non-zero chemical potential µ,

H(µ) ≡ γ5DW(µ;mW ≡ −mf ) . (6.113)

As mentioned above, this kernel is not Hermitian. Thus the sign function, readily defined by
Eq. (6.101), is also non-Hermitian and generically one has ε(H) 6= ε(H)† in the case µ 6= 0. How-
ever, in any case ε(H)2 = 1 holds true, and thus the overlap operator satisfies the Ginsparg-Wilson
relation Eq. (6.102) also in the case µ 6= 0. Therefore a lattice chiral symmetry is respected and
the operator exhibits exact zero modes (which can be chosen as eigenstates of γ5). The index of the
operator is readily defined by Eq. (6.97) and thus can be determined from the chirality of the zero
modes, completely analogous to the case µ = 0.

The chemical potential renders the matrix sign function non-Hermitian. Therefore the overlap
operator is also non-Hermitian and one finds

Dov(µ) = γ5Dov(−µ)†γ5 . (6.114)

Consequently the operator is not normal,

Dov(µ)Dov(µ)† 6= Dov(µ)†Dov(µ) . (6.115)

With the loss of Hermiticity the spectrum of the overlap operator at non-zero chemical potential
has different properties compared to the zero case. The lattice chiral symmetry forces the non-zero
eigenvalues to appear in pairs, however, non-trivially distorted from the Ginsparg-Wilson circle.
Lattice simulations of the overlap operator at non-zero chemical potential are discussed in Chap. 8.





Chapter 7

Random Matrix Theory

7.1 Introduction

Since its first application to nuclear spectra by Wigner, random matrix theory (RMT) has found a lot
of applications in, e.g., nuclear, atomic, molecular physics, disordered mesoscopic systems, and also
QCD, see Ref. [94] for a review. In the theory of the strong interaction RMT especially applies to
pion effective field theory, cf. Sect. 6.4. At length scales 1/mπ � L� 1/ΛQCD hadronic excitations
are exponentially suppressed and the QCD partition function is governed by the fluctuations of the
zero momentum modes of Goldstone bosons. The partition function of this system can be modelled
by random matrices. The random matrix approach allows to determine universal quantities of the
physical system analytically, typically in terms of correlation functions. Of particular interest in
this study are the so-called microscopic spectral densities. These densities correspond to 1-point
correlation functions that describe the lower edge of the spectrum of the Dirac operator. On the
scale of the average level spacing the correlations in the spectrum of the Dirac operator near zero
are considered to be universal, i.e., they do not change despite substantial variations of the average
spectral density [95]. Universality was also found in the spectra of chiral lattice Dirac operators such
as the overlap operator. A match of the Dirac spectrum obtained from lattice simulations to the
RMT predictions allows to determine low-energy constants of QCD. In the following the essential
ingredients for a model of the QCD partition function are introduced.

In the continuum the massless Dirac operator respects chiral symmetry,

{D, γ5} = 0 . (7.1)

Furthermore the Dirac operator is anti-Hermitian. Its non-zero eigenvalues come in complex conju-
gate pairs,

Dψn = iλnψn , (7.2)

with corresponding eigenvectors ψn and γ5ψn which can be chosen with exact chirality. In this case
one has γ5ψ

R
n = +ψRn and γ5ψ

L
n = −ψLn . With these properties the matrix representation of the

massless Dirac operator in the chiral basis reads

D =

(
0 iW

iW † 0

)
(7.3)

with matrix elements Wmn = 〈ψRm|D[A]|ψLn 〉 and A the gauge field. Note that the matrix W
is quadratic only if the spectrum of the Dirac operator is free of zero modes. Otherwise W is
rectangular. Besides chiral symmetry the continuum Dirac operator can also obey additional anti-
unitary symmetries. There are three symmetry classes which impose additional constraints on the

85
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matrix elements of the operator. One has [64]:

• For the gauge group SU(Nc) with Nc ≥ 3 and fermions in the fundamental representation the
continuum Dirac operator D = γµ(∂µ + igλaAaµ/2), with λa the generators of the gauge group,
obeys no additional symmetry. The matrix elements Wmn are complex.

• For the gauge group SU(2) and fermions in the fundamental representation the continuum
Dirac operator D = γµ(∂µ + igσaAaµ/2), with Pauli matrices σa as the generators of the gauge
group, obeys the additional symmetry [D,Cσ2K] = 0. Here C = γ4γ2 is charge conjugation
and K denotes complex conjugation. One has (Cσ2K)2 = 1, and the matrix elements Wmn

can be chosen real.

• For the gauge group SU(Nc) with Nc ≥ 2 and fermions in the adjoint representation the
continuum Dirac operator D(b|c) = γµ(∂µ+gfabcAaµ), with structure constants fabc, obeys the
additional symmetry [D,CK] = 0. Here (CK)2 = −1, and the matrix elements Aij can be
represented by real quaternions.

For all symmetry classes and Nf quarks with masses mf the QCD partition function reads [64, 95]

Z =

∫
DA e−SG[A]

Nf∏
f=1

det(D +mf ) =

∫
DA e−SG[A]

Nf∏
f=1

det

(
mf iW
iW † mf

)
. (7.4)

Here SG[A] is the gauge action and the integral is carried out over all gauge field configurations A.
This partition function serves as a template for Hermitian chiral gaussian random matrix theory
introduced in the next section.

7.2 Hermitian chiral random matrix theory

Pioneering work was done in the 90’s by Verbaarschot who introduced chiral extensions to the
gaussian random matrix models, opening the door to applications of random matrix theory in non-
Abelian field theory [64, 65, 96]. In random matrix theory the matrix elements of the Dirac operator
are replaced by independent and identically distributed random variables. The gauge action is
replaced by a gaussian distribution of the matrix elements. For each symmetry class of the Dirac
operator there exists an associated random matrix model, typically classified by the Dyson index β.
The three random matrix ensembles are: the chiral gaussian orthogonal ensemble (chGOE) for real
matrices (β = 1), the chiral gaussian unitary ensemble (chGUE) for Hermitian complex matrices
(β = 2) and the chiral gaussian symplectic ensemble (chGSE) for quaternion matrices (β = 4). The
random matrix model derived from the QCD partition function Eq. (7.4) is

Zν =

∫
DA exp

(
−Nβ

4
TrA†A

) Nf∏
f=1

det

(
mf iA
iA† mf

)
. (7.5)

In this model A is a N × (N + ν) quadratic (ν = 0) or rectangular (ν > 0) matrix of the same
symmetry class as the Dirac operator but chosen with random entries. The integral is over all
matrix elements. The (massless) random matrix model reproduces the following properties of QCD
in the continuum [95]:

• The eigenvalue spectrum of the random matrix Dirac operator exhibits pairs of purely imagi-
nary eigenvalues ±ixn and exhibits exactly ν zero modes.
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• The fermion determinant is invariant under the same flavour transformations as in the contin-
uum. In the case β = 1 the determinant is invariant under flavour SU(2Nf ), cf. Sect. 6.3.

• The flavour symmetry breaking pattern is the same as in the continuum theory. In the case
β = 1 the flavour symmetry is broken down to Sp(2Nf ).

The random matrix model of the QCD partition function can be mapped to the partition function
Eq. (6.45) of the static limit of the chiral Lagrangian Eq. (6.41) in the sector of topological charge ν.
Thus, in principle, correlation functions derived from the random matrix model also apply to pion
effective theory in the ε-regime (up to rescaling factors). In the following the basic ingredients
for the 1-point correlation function of eigenvalues derived from the random matrix model are re-
viewed. Finally the microscopic spectral density is introduced. This universal function describes the
fluctuations of the eigenvalues around the average spectral density at the spectrum near zero.

The initial step towards the microscopic spectral density is a transformation of variables. In-
stead of integration over matrix elements of the random matrix A the partition function Eq.(7.5) is
integrated over the N + ν eigenvalues ixn (xn ≥ 0) of the model Dirac operator. The Jacobian of
the transformation is [95]

J = |∆(x2)|β
N∏
k=1

x
β|ν|+β−1
k (7.6)

with the Vandermonde determinant

∆(x2) =
∏

1≤k<l≤N
(x2
k − x2

l ) . (7.7)

Up to a normalization constant the partition function reads

Zν ∼
∫
|∆(x2)|β

N∏
k=1

dxk x
β|ν|+β−1
k exp

(
−Nβ

4
x2
k

) Nf∏
f=1

(x2
k +m2

f )m
|ν|
f . (7.8)

One can immediately derive the joint probability density function (jpdf) from the partition function.
The jpdf contains all the information about the correlations in the spectrum. For the limiting case
mf → 0 one finds

ρ(x1, . . . , xN ) ∼
∏

1≤k<l≤N
|x2
k − x2

l |β
N∏
k=1

x
2Nf+β|ν|+β−1
k exp

(
−Nβ

4
x2
k

)
, (7.9)

which is valid for all three chiral random matrix ensembles.

At this stage it is interesting to take a closer look at the jpdf. In the limit xi → 0 the density
is suppressed. This property holds true for any combination of the Dyson index β, the number of
quark flavours Nf and the number of zero modes ν, except for the case β = 1, Nf = ν = 0. Only
for this combination of parameters the jpdf does not vanish if one of the eigenvalues is near zero.
The spectral density, which is the 1-point correlation function derived from the jpdf, inherits this
property. One arrives at the spectral density by integrating out N − 1 degrees of freedom,

ρ(x) ∼
∫ N∏

k=2

dxk ρ(x, x2, . . . , xN ) . (7.10)
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The microscopic spectral density is then obtained by rescaling of the eigenvalues to z = x/N and
taking the thermodynamic limit N →∞,

ρS(z) = lim
N→∞

1

N
ρ
( z
N

)
. (7.11)

The microscopic spectral density describes the fluctuations of the eigenvalues around the average
spectral density at the spectrum near zero. An explicit expression for this density is evaluated in
Ref. [65] for the orthogonal ensemble (but symmetric Dirac operator). In the case Nf = 0 it is given
by

ρS(z) =
1

2

∫ z

0
du

∫ 1

0
ds s2

[
zJν+1 (sz) Jν (su)− uJν+1 (su) Jν (sz)

]
+

1

2
Jν (z) . (7.12)

Here the Jν denote Bessel functions of the first kind of integer order ν. There is, however, no analytic
expression for the density available and the function has to be evaluated numerically. In the case
Nf = 0 additional information is available in terms of the distribution of the lowest-lying eigenvalue
in the microscopic limit. The predictions are however restricted to ν = 0 and 1. The distribution of
the lowest-lying eigenvalue is [97]

ρmin(z) =


2 + z

4
exp

(
− z

2
− z2

8

)
, ν = 0

z

4
exp

(
−z

2

8

)
, ν = 1 .

(7.13)

The distribution of the lowest-lying eigenvalue ρmin(z) and the microscopic spectral density ρS(z) are
shown in Fig. 7.1.1 Note that both the microscopic spectral density Eq. (7.12) and the distribution of
the lowest-lying eigenvalue Eq. (7.13) take real arguments and apply to a symmetric Dirac operator
(with real eigenvalues). The (projected) overlap operator introduced in Sect. 6.6.3 obeys the same
symmetry class as the Dirac operator in the continuum [68, 69, 101, 102]. However, the (projected)
spectrum of the overlap operator obtained from lattice simulations is purely imaginary. Therefore, a
comparison between the lattice results and RMT requires the eigenvalues of the overlap operator to
be rotated onto the real axis. The projection and the rotation are implicity assumed in the following.

Yet another step has to be made for the comparison. The Banks-Casher relation connects the
chiral condensate with the spectral density ρ(λ) of the Dirac operator in the infinite volume limit.
One has [103]

Σ = lim
λ→0

lim
mf→0

lim
V→∞

πρ(λ) . (7.14)

In a finite volume V the spectrum of the Dirac operator is discrete and the lowest-lying eigenvalues
are inversely proportional to the volume, λi ∼ 1/V [104]. The mean level spacing at the lower edge
of the spectrum is ∆λ ' 1/V ρ(λ→ 0) = π/ΣV , and the distribution of the eigenvalues is sensitive
to the topological charge ν associated with the gauge field background. The microscopic spectral
density ρS(z) derived from RMT corresponds to a “magnification” of ρ(λ → 0) by a factor ΣV
and performing the infinite volume limit (the same applies to the distribution of the lowest-lying
eigenvalue ρmin),

ρS/min,ν(z) = lim
V→∞

1

ΣV
ρν

( z

ΣV

)
. (7.15)

On the lattice one is restricted to simulations of a finite volume V . If one introduces the dimensionless
rescaled variable z = λΣV then a fit of the density ρov(λ) of the (few) lowest-lying eigenvalue(s) of

1All functions were evaluated numerically using Scientific Python SCIPY [98], the GNU Scientific Library GSL [99],
and CUBA [100] for multi-dimensional integration based on the Cuhre algorithm.
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Figure 7.1: Distribution of the lowest-lying eigenvalue and microscopic spectral density associated
with the orthogonal ensemble (β = 1). The left panel shows the distribution of the lowest-lying
eigenvalue Eq. (7.13) for the number of zero modes ν = 0 and 1 in the spectrum of the Dirac
operator. The right panel shows the microscopic spectral density Eq. (7.12) for ν = 0, 1, 2, and 3.
In the limit z → 0 the density is non-vanishing if ν = 0 and suppressed otherwise.

the overlap operator to RMT subject to

ρS/min,ν(z) =
1

ΣV
ρov,ν

( z

ΣV

)
(7.16)

allows for (i) test of universality in the spectrum of the overlap operator and (ii) determination of the
chiral condensate obtained from simulations of the ε-regime at finite lattice spacing. The (rescaled)
eigenvalue density of the overlap operator should be described by chiral random matrix theory up to
some maximal scale zmax ∼

√
V where the non-zero momentum modes of the pion fields contribute

to the QCD partition function [95]. Lattice simulations of the overlap operator were carried out for
several simulation parameters in this study. The results are presented in Chap. 8.

7.3 Non-Hermitian chiral random matrix theory

In the continuum theory the massless Dirac operator with baryon chemical potential µphys reads

D(µphys) = γν(∂ν + igAν) + µphysγ4 . (7.17)

In the chiral representation, cf. Eq. (7.3), the operator reads

D =

(
0 iW + µphys

iW † + µphys 0

)
(7.18)

with matrix elements Wmn. In the limit µphys → 0 this operator is anti-Hermitian. However, the
combination µphysγ4 is Hermitian for real chemical potential µphys ∈ R. The chemical potential
renders the Dirac operator non-Hermitian, one has D(µphys) = −D(−µphys)

† 6= −D(µphys)
†, and

therefore its spectrum gets non-trivially distorted into the complex plane.
The non-Hermitian random matrix model associated with SU(2) gauge theory and fermions in

the fundamental representation and baryon chemical potential has been solved in Refs. [71, 72] (for
an even number of quark flavours). The proposed random matrix formulation for the massless Dirac
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operator in the chiral representation is2

D =

(
0 P + µQ

−P T + µQT 0

)
=

(
0 P + µQ

−(P T − µQT ) 0

)
≡
(

0 A
−BT 0

)
, (7.19)

where P,Q ∈ RN×(N+ν) are independent rectangular real-valued matrices without further symme-
try restrictions. Here the symmetry breaking parameter µ is associated with the baryon chemical
potential in QCD. Note that this model for the Dirac operator is anti-symmetric (anti-Hermitian)
in the limit µ→ 0. Otherwise one has D(µ) = −D(−µ)†, which mimics the symmetry of the Dirac
operator in the continuum.

The eigenvalues Λ of the matrix D are determined by the characteristic equation

0 = det(Λ12N+ν −D) = Λν det[Λ21N +ABT ] = Λν
N∏
i=1

(Λ2 + Λ2
i ) . (7.20)

The matrix elements of the N ×N matrix ABT are real. The eigenvalues Λ2 of ABT are either real
or come in complex conjugate pairs [71]. The matrix D itself has ν zero-valued eigenvalues Λi = 0
and 2N eigenvalues coming in pairs Λ = ±iΛi. Thus three categories of eigenvalues are classified:

(i) Real pairs Λ = ±iΛi ∈ R for Λ2
i < 0.

(ii) Imaginary pairs Λ = ±iΛi ∈ iR for Λ2
i > 0.

(iii) Complex quadruplets Λ = ±iΛi,±iΛ∗i ∈ C\{R ∪ iR} for pairs Λ2
i ,Λ

∗2
i .

Given the model for the Dirac operator with chemical potential, the partition function associated
with the non-Hermitian random matrix model and Nf quark flavours is

Zν ∼
∫

dP

∫
dQ exp

[
−N

2
Tr(PP T +QQT )

] Nf∏
f=1

det

(
mf P + µfQ

−P T + µfQ
T mf

)
, (7.21)

with the integration performed over all matrix elements. For each quark flavour the parameter µf
denotes the associated quark chemical potential and mf is the quark mass. In the limit µf → 0 the
matrix Q decouples and the Hermitian random matrix model introduced in Sect. 7.2 is obtained.

In the following all quark chemical potentials are set equal, µ ≡ µf . In the thermodynamic limit
N →∞ the chemical potential µ and the quark masses mf are taken to zero such that the products
Nµ2 and Nmf remain finite. If one introduces the transformations

µ̂2 ≡ 2Nµ2 = 4µ2
physF

2V (7.22)

m̂f ≡ 2Nmf = 2mf,physGV , (7.23)

then the non-trivial partition function Eq. (7.21) indeed maps to the static part of the chiral La-
grangian Eq. (6.50), see Ref. [73]. The parameters µphys and mf,phys refer to the physical values of
the chemical potential and the quark masses, respectively. The physical volume is denoted by V ,
while F and G are low-energy constants.

It is possible to derive expressions for the microscopic spectral density from the partition function
Eq. (7.21). The eigenvalues of the model Dirac operator with chemical potential Eq. (7.20) scatter
non-trivially on the real and imaginary axis, and also in the complex plane. Consequently, for each
category of eigenvalues a spectral density is associated. In the thermodynamic limit the eigenvalues Λ

2Note that the model for the Dirac operator provided in Refs. [71, 72] is chosen symmetric.
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of the model Dirac operator are rescaled by ξ ≡ 2NΛ. The microscopic spectral densities associated
with the real and imaginary eigenvalues ξ ∈ (i)R in the case Nf = 0 are given by [72]

ρ
(i)R
S (ξ) = −2|ξ|Gw(−ξ2,−ξ2) , (7.24)

with the non-analytic expression

Gw(x, x′) =− ĥw(x′)

[sgn(x′)]ν/2

{(
(−i)ν

∫ 0

−∞
dy +

2

[sgn(x′)]ν/2

∫ x′

0
dy

)
Kw(x, y)ĥw(y) (7.25)

− 1

32
√
π

[
− e−µ̂

2

µ̂
Jν
(√
x
)

+
2µ̂ν

Γ
(
ν+1

2

) ∫ 1

0
ds e−µ̂

2s2sν+2

×
(√

x

2
E 1−ν

2
(µ̂2s2)Jν+1

(
s
√
x
)
− µ̂2s

(
E−1−ν

2
(µ̂2s2)− E 1−ν

2
(µ̂2s2)

)
Jν
(
s
√
x
))]}

.

Here the kernel is given by

Kw(x, y) =
1

256πµ̂2

∫ 1

0
ds s2e−2µ̂2s2

[√
xJν+1

(
s
√
x
)
Jν (s

√
y)−√yJν+1 (s

√
y) Jν

(
s
√
x
)]

, (7.26)

with Bessel functions Jν of the first kind of integer order. The weight function

ĥw(x) = ex/8µ̂
2
2K ν

2

(
|x|
8µ̂2

)
(7.27)

comes with Basset function K ν
2

of half-integer order and

En(x) =

∫ ∞
1

dt t−ne−xt (7.28)

denotes the exponential integral. The densities associated with the real and imaginary Dirac eigen-
values differ, one has ρRS (ξ) 6= ρiR

S (iξ). Due to the pairing of real and imaginary eigenvalues the
densities are symmetric, i.e., ρRS (ξ) = ρRS (−ξ) and ρiR

S (iξ) = ρiR
S (−iξ).3 The microscopic spectral

density is shown for ν = 0 and 1 zero modes of the Dirac operator in Fig. 7.2 as function of the
rescaled symmetry breaking parameter µ̂. Note that in the limit µ̂ → 0 all Dirac eigenvalues are
purely imaginary and the spectrum is described by Hermitian RMT introduced in Sect. 7.3.

The microscopic spectral density associated with the complex Dirac eigenvalues ξ ∈ C\{R ∪ iR}
is given by [71, 72]

ρCS (ξ) = 4|ξ|2ĝw(−ξ∗2,−ξ2)Kw(−ξ2,−ξ∗2) , (7.29)

with the kernel Kw defined in Eq. (7.26) and weight function

ĝw(z, z∗) =− 4i sgn(Im z) exp

(
Re z

4µ̂2

)
×
∫ ∞

0

dt

t
exp

[
− t(z

2 + z∗2)

64µ̂2
− 1

4t

]
K ν

2

(
t|z|2

32µ̂4

)
erfc

(√
t| Im z|
4µ̂2

)
. (7.30)

The microscopic spectral density describes the distribution of the eigenvalues in the complex plane
and is indeed symmetric for the arguments ±ξ, ±ξ∗. Plots of the density for ν = 0 and 1 zero

3It is pointed out here that Eq. (7.25) may be cast into a representation with Bessel functions Jν and K ν
2

for real
arguments only. This representation is well suited for numerical integration.
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Figure 7.2: Microscopic spectral density associated with real and imaginary eigenvalues. The
symmetry-breaking parameter is chosen µ̂ = 0.0, 0.25, 0.5, 0.75, and 1.0. The left column shows
the microscopic spectral density Eq. (7.24) for purely imaginary eigenvalues on top and for real
eigenvalues on bottom for ν = 0 zero modes of the Dirac operator. The right column shows the
densities for ν = 1.

modes of the Dirac operator as function of the rescaled symmetry-breaking parameter µ̂ are shown
in Fig. 7.3.4

The effect of the parameter µ̂ on the spectrum is clearly visible in Figs. 7.2 and 7.3. At µ̂ = 0 the
Dirac operator is anti-Hermitian and its paired eigenvalues are purely imaginary. If µ̂ is switched on,
the eigenvalues scatter (as pairs) onto the real axis and (as quadruplets) into the complex plane. This
effect is continuous and increases with µ̂, such that an increasing number of eigenvalues accumulate
on the real axis and in the complex plane. The (projected) overlap operator with chemical potential
µphys introduced in Sect. 6.7 obeys the same symmetry class as the continuum Dirac operator and is
therefore associated with the orthogonal emsemble [102]. For lattice simulations within the domain
mπ, µ� 1/L� ΛQCD, the spectrum of the chiral lattice Dirac operator near zero is expected to be
adequately described by the non-Hermitian random matrix model. A fit subject to

ρ
(i)R
S,ν (ξ) =

1

ΣV
ρ(i)R

ov,ν

(
ξ

ΣV

)
, ρCS,ν(ξ) =

1

(ΣV )2
ρCov,ν

(
ξ

ΣV

)
, (7.31)

4 Bessel functions with complex arguments were evaluated with the SLATEC Fortran library [105].
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where µ̂ = 2µphysF
√
V , allows for (i) test of universality in the spectrum of the overlap operator and

(ii) determination of the chiral condensate and the pion decay constant obtained from simulations
of the ε-regime at finite lattice spacing. The lattice simulations are presented in the next chapter.
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Figure 7.3: Microscopic spectral density associated with complex eigenvalues. The symmetry-
breaking parameter is chosen µ̂ = 0.25, 0.5, 0.75, and 1.0. The left column shows the microscopic
spectral density Eq. (7.29) for ν = 0 zero modes of the Dirac operator. The right column shows the
density for ν = 1.



Chapter 8

Evaluation and Results

8.1 Two-colour QCD at zero chemical potential

In this section the spectrum of the overlap operator at zero chemical potential is discussed. The spec-
tral densities obtained from lattice simulations are compared to the universal predictions provided
by Hermitian random matrix theory introduced in Sect 7.2. Simulations of quenched two-colour
QCD were carried out on lattice volumes V = 84, 104, and 124. The coupling strength β of the
gauge fields, cf. Eq. (6.66), was chosen such that the associated physical volume Vphys = V a4 (here
a is the lattice spacing) is approximately the same for all lattice volumes. Estimates for the values
of β were obtained by polynomial interpolation of the string tension σa2 as function of the coupling
strength. The data was taken from Ref. [106] and is shown in Fig. 8.1. For each lattice volume
the gauge field configurations were computed only once using CHROMA [107], and then (re-)used for
evaluation of the spectrum of the overlap operator with different choices for the Wilson mass. The
simulation parameters are summarized in Table 8.1. Only the lowest-lying eigenvalues of the overlap
operator were of interest for this study. The spectra were evaluated using the Krylov-Ritz method
described in Appendix B.1.

8.1.1 Choice of the Wilson mass

With the choice for the lattice volume V and the coupling strength β no other simulation parameters
are required for creation of the gauge fields in the quenched approximation. However, for the
evaluation of the spectrum of the overlap operator

Dov = 1 + γ5ε[γ5DW(mW)] (8.1)

with Hermitian Wilson-Dirac kernel a choice for the Wilson mass mW has to be made. There is no
a-priori best choice for this mass parameter. As will be shown in the following, the choice for the
mass has some impact on the spectra of the lattice Dirac operators.

The impact of the Wilson mass on the spectrum of the Hermitian Wilson-Dirac operator Eq. (6.85)
and the overlap operator Eq. (8.1) is illustrated in Fig. 8.2. The plots shows the flow of the eigen-
values of the operators as function of the mass. The spectra were evaluated on a sample gauge
field configuration on the 84 lattice. The eigenvalues of the overlap operator are mapped from
the Ginsparg-Wilson circle to the imaginary axis by application of the stereographic projection
Eq. (6.106). Below some critical value of the Wilson mass both operators exhibit a spectral gap near
zero. As the Wilson mass is increased, the magnitude of the lowest-lying eigenvalues of the Wilson-
Dirac operator continuously decrease and the eigenvalues start to fluctuate around the real axis.
Whilst the magnitude of the eigenvalues of the Hermitian Wilson-Dirac operator change smoothly
as function of the mass, this does not apply to the eigenvalues of the overlap operator. In fact, each

95
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Figure 8.1: String tension σa2 as function of the coupling strength β (here a is the lattice spacing).
The solid line corresponds to a fit of the data points taken from Ref. [106] to a low-order polynomial.

time one of the eigenvalues of the Hermitian Wilson-Dirac operator crosses the real axis, the index
of the overlap operator changes by ±1 and its spectrum gets rearranged.1 However, the index is
intimately related to the number of eigenvalues of the kernel operator with negative sign (nW

− ) and
positive sign (nW

+ ). One has

Tr(γ5Dov) = Tr [γ5 + ε(γ5DW)] = Tr [ε(γ5DW)] = nW
+ − nW

− = 2 indexDov , (8.2)

where the matrix sign function ε(γ5DW) only takes the values ±1, and is ill-defined if one or more of
the eigenvalues are exactly zero (the latter situation was not observed in this study). A sign change
of one of the eigenvalues of the kernel operator results in a net change nW

+ −nW
− = ±2. This explains

the changes in the index of the overlap operator by exactly ±1 as the Wilson mass is increased.
Table 8.1 summarizes the ensemble average of the relative frequency P (ν) of the number ν of zero
modes of the overlap operator obtained for different choices of the Wilson mass and different lattice
volumes. Roughly 90% of the spectra of the overlap operator exhibit 0 or 1 zero mode on the 84

lattice for mW = 1.2. The frequency of zero modes increases as the mass is increased and the
corresponding distribution freezes out in the limit mW → 2.2 One furthermore observes that the
variations in P (ν) tend to be milder for larger lattice volumes (and thus smaller lattice spacings).
This hints for the variations to be an artifact on the lattice that disappears in the continuum limit.

The Wilson mass also influences the distribution of the eigenvalues of the lattice Dirac operators.
Formally the normalized distribution of the i-th eigenvalue λi is given as ensemble average over the
gauge field configurations by

ρ(i)(λ) = 〈δ(λ− λi)〉G ,

∫
dλ ρ(i)(λ) = 1 . (8.3)

1 The index of the overlap operator was obtained by evaluation of the zero modes, as discussed in Sect. 6.6.3.
2 An analogous observation has been made in simulations of quenched QCD with gauge group SU(3), see Ref. [108].

There it was observed that the topological susceptibility χtop = 〈ν2〉G/V is approximately constant in this mass limit.
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V β No. config. mW P (ν = 0) P (ν = 1) P (ν = 2) P (ν = 3) P (ν ≥ 4)

84 2.2 3072 1.2 0.405 0.458 0.117 0.018 0.001
8976 1.4 0.217 0.373 0.241 0.111 0.059
8192 1.5 0.191 0.326 0.249 0.135 0.100
8192 1.6 0.169 0.307 0.241 0.149 0.134
9216 1.7 0.155 0.295 0.233 0.153 0.163
8444 1.8 0.153 0.283 0.225 0.163 0.175
6144 1.9 0.142 0.287 0.223 0.163 0.185
6961 2.0 0.145 0.283 0.224 0.163 0.185

104 2.266 2048 1.4 0.146 0.281 0.220 0.161 0.193
2048 1.6 0.134 0.229 0.206 0.167 0.265
2048 1.8 0.113 0.236 0.196 0.163 0.292
1918 2.0 0.112 0.230 0.198 0.164 0.296

124 2.318 2048 1.4 0.117 0.227 0.188 0.155 0.314
2048 1.6 0.116 0.204 0.179 0.157 0.345
799 1.8 0.106 0.189 0.163 0.171 0.370

Table 8.1: Parameters for the simulations of quenched two-colour QCD at zero chemical potential:
lattice volume V , coupling strength β and number of gauge field configurations evaluated at fixed
Wilson mass mW. Here P (ν) is the relative frequency of the number ν of zero modes found in the
spectra of the overlap operator.

The normalized spectral density is given by

ρ(λ) = 〈
∑
k

δ(λ− λk)〉G ,

∫
dλ ρ(λ) = 4NcV , (8.4)

with lattice volume V and the number of colours Nc = 2 in this study. These (continuous) dis-
tributions were approximated by binning of the lattice data in form of a histogram (and proper
normalization). The unnormalized statistical error on the i-th bin is O(

√
Ni). Here Ni is the num-

ber of eigenvalues that fall into bin number i. Minimization of statistical fluctuations requires the
evaluation of a large number of spectra, as the relative error on the i-th bin is O(1/

√
Ni).

The spectral densities derived from RMT, cf. Sect. 7.2, are valid for the Dirac operator being
Hermitian. Therefore the densities apply to real eigenvalues. However, the spectrum of the overlap
operator is purely imaginary after stereographic projection. To avoid any confusion with the choice
for the Dirac operator being Hermitian or anti-Hermitian in the following it is implicitely assumed
that the eigenvalues of the overlap operator are rotated onto the real axis. In Fig. 8.3 the lower edge
of the spectral density and the distributions of the few lowest-lying eigenvalues of both the Hermitian
Wilson-Dirac kernel and the overlap operator are shown. The spectra are selected by the number of
zero modes of the overlap operator. Note that the non-zero eigenvalues of the overlap operator occur
in (originally complex conjugate) pairs, thus the spectrum is symmetric. The Hermitian Wilson-
Dirac operator does not obey a lattice chiral symmetry, and its eigenvalues do not occur in pairs.
With increasing Wilson mass the average magnitude of the eigenvalues of both operators decrease.
However, the spectral density of the overlap operator evolves from a non-uniform distribution to
a uniform one where the spectral density (and thus the level density) near zero is approximately
constant. Although at mW = 1.2 the spectral density does not vanish near zero, the spectrum does
not mimic the predictions of random matrix theory introduced in Sect. 7.2. However, if the Wilson
mass is chosen in the range 1.4 ≤ mW ≤ 2 the spectrum of the overlap operator near zero is uniform
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Figure 8.2: Spectral flow of the four lowest-lying eigenvalues of the Hermitian Wilson-Dirac and
overlap operator as function of the Wilson mass mW evaluated on a sample gauge field configuration
on the 84 lattice. The left panel shows the flow of the (real) eigenvalues λW of the Hermitian Wilson-
Dirac operator. The discontinuities in the plot only arise from the interchange of the magnitude of
the eigenvalues. In fact the flow is continuous. The right panel shows the corresponding flow of the
(purely imaginary) eigenvalues λov of the overlap operator after stereographic projection. Each time
one eigenvalue of the Wilson-Dirac operator crosses the real axis the index of the overlap operator
changes by ±1, which furthermore results in a discontinuous change of the spectrum. The change of
the index is indicated by vertical bars labeled with the number of zero modes of the overlap operator.

and does match with RMT.

8.1.2 Analysis of the distribution of the lowest-lying eigenvalue

The distribution of the (projected and rotated) lowest-lying non-zero eigenvalue λmin of the overlap
operator is expected to be a universal quantity described by RMT (cf. Sect. 7.2). In this study
universality was found in the spectra for the choices of the Wilson mass 1.4 ≤ mW ≤ 2. A fit
of the distribution of the lowest-lying eigenvalue to the prediction allowed to determine the chiral
condensate Σ from the lattice simulations. The chiral condensate was obtained by a fit subject to
(limited to ν = 0, 1)

ρmin(z) =
1

ΣV
ρmin,ov

( z

ΣV

)
. (8.5)

Here V is the lattice volume, ρmin is the continuous eigenvalue distribution Eq. (7.13) predicted
by RMT, and ρmin,ov is the distribution obtained by binning of the lattice data as described in
Sect. 8.1.1.

The results of the fits are summarized in Table 8.2 and shown in Figs. 8.4 and 8.5 for all lattice
volumes investigated. The Wilson mass was chosen in the range 1.4 ≤ mW ≤ 2. The chiral
condensate was determined by a simultaneous fit to both the distributions for ν = 0, 1 using a single
fit parameter. Discretization errors introduced by binning of the lattice data were compensated for
by fitting of the densities integrated over the bin size.3 The statistical errors on the chiral condensate
were estimated by the bootstrap method sketched in Appendix B.2. In general, the lattice data is
well described by the universal RMT results, although minor deviations from the predictions do

3 It turned out that the results of the fits are stable against variations in the number of bins chosen if O(300)
eigenvalues are available.
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V mW ν Σ χ2/dof

84 1.4 0 + 1 0.00543(5) 1.0(6)
1.5 0 + 1 0.00876(9) 2.1(7)
1.6 0 + 1 0.01307(15) 3.5(8)
1.7 0 + 1 0.01786(21) 3.3(8)
1.8 0 + 1 0.02292(29) 2.8(8)
1.9 0 + 1 0.0283(4) 2.8(8)
2.0 0 + 1 0.0340(5) 1.6(7)

104 1.4 0 + 1 0.00655(16) 2.0(1.0)
1.6 0 + 1 0.0129(4) 4.0(1.7)
1.8 0 + 1 0.0218(6) 1.5(8)
2.0 0 + 1 0.0306(9) 1.2(7)

124 1.4 0 + 1 0.00694(20) 1.5(2.0)
1.6 0 + 1 0.0127(5) 2.5(1.0)
1.8 0 + 1 0.0210(17) 4.5(2.2)

Table 8.2: Results for the chiral condensate Σ obtained from simultaneous fits to the distribution of
the lowest-lying eigenvalue Eq. (7.13) for ν = 0, 1. Here V is the lattice volume and mW is the Wilson
mass. The statistical errors were estimated by the bootstrap method sketched in Appendix B.2.

occur (for some particular values of the Wilson mass). These deviations are also reflected in the
values of χ2/dof. Note that the statistics of only 79 (151) eigenvalues in the case ν = 0 (1) obtained
on the 124 lattice and the mass chosen mW = 1.8 is clearly insufficient to approximate the eigenvalue
distribution.

At first glance it is intriguing that the chiral condensate shows such a strong dependence on the
Wilson mass. Clearly the dependence gets milder for simulations towards the continuum limit. On a
qualitative level the variations in the chiral condensate originate from the average magnitude of the
lowest-lying eigenvalue, which decreases as the mass is increased. However, the variations become
milder for smaller lattice spacings and therefore are considered to be some lattice artefact.

8.1.3 Analysis of the spectral density

For this study a large number of (projected) spectra of the overlap operator were analyzed. The
statistics was sufficient to compare those spectra which exhibit ν = 0 . . . 3 zero modes to the mi-
croscopic spectral density, which is another universal quantity derived from RMT (cf. Sect. 7.2).
Again, universality was found in the spectra for the choices of the Wilson mass 1.4 ≤ mW ≤ 2 and
allowed to determine the chiral condensate by a fit subject to (for a given ν)

ρS(z) =
1

ΣV
ρov

( z

ΣV

)
. (8.6)

Here ρS is the microscopic spectral density Eq. (7.12) and ρov is the lattice data binned into a
histogram according to Sect. 8.1.1.4 Multiple densities (with different ν) were fitted simultaneously
using a single fit parameter. Discretization errors were compensated for by integration over the bin
width. The upper limit of the fit, zmax = λmaxΣV , was chosen such that χ2/dof ≈ 1. However, this
choice is not unique and other methods can lead to different results. A somewhat related quantity is
the expectation value of the number of eigenvalues of the overlap operator that support the universal

4The argument of the microscopic spectral density is real and thus the (purely imaginary) eigenvalues iλ of the
overlap operator need to be rotated in the complex plane for the comparison.
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V mW ν Σ χ2/dof zmax Nev

84 1.4 0 – 3 0.00550(4) 1.2(4) 4.76 1.74
1.5 0 – 3 0.00904(6) 1.2(3) 7.64 2.67
1.6 0 – 3 0.01298(7) 1.1(3) 10.3 3.52
1.7 0 – 3 0.01814(17) 1.2(4) 3.86 1.45
1.8 0 – 3 0.02303(19) 1.2(3) 5.34 1.93
1.9 0 – 3 0.0290(3) 1.3(4) 4.21 1.56
2.0 0 – 3 0.0344(3) 1.1(4) 4.77 1.75

104 1.4 0 – 3 0.00651(4) 1.3(4) 18.6 6.18
1.6 0 – 3 0.01242(15) 1.3(4) 9.78 3.35
1.8 0 – 3 0.02060(28) 1.3(4) 7.72 2.69
2.0 0 – 3 0.0287(4) 1.3(5) 7.54 2.63

124 1.4 0 – 3 0.00639(8) 1.3(4) 9.00 3.10
1.6 0 – 3 0.01170(18) 1.4(4) 7.37 2.58
1.8 0 – 1 0.0173(7) 1.8(1.0) 7.65 2.67

Table 8.3: Results for the chiral condensate Σ obtained from simultaneous fits to the microscopic
spectral density Eq. (7.12) for various ν. Here V is the lattice volume and mW is the Wilson mass.
The rescaled variable zmax = λmaxΣV indicates the fit interval, and Nev is the expectation value of
the number of eigenvalues that contribute to the fit for ν = 0. The statistical errors were estimated
by the bootstrap method (cf. Appendix B.2).

distributions. One can estimate5

Nev =

zmax∫
0

dz ρS;ν=0(z) . (8.7)

The results of the fits to the data obtained from the lattice simulations are summarized in Table 8.3
and plots are shown in Figs. 8.6 and 8.7. The limit zmax was determined independently for each
choice of simulation parameters. The fit results are in reasonable agreement with the results obtained
from fits to the distribution of the lowest-lying eigenvalues, cf. Table 8.2. As observed in the previous
section, the chiral condensate shows a strong dependence on the choice of the Wilson mass. However,
as shown in Fig. 8.8, the differences in the fitted values of the condensate diminish as one approaches
the continuum limit. There is also some impact of the simulation parameters on the limit zmax (or,
equivalently, Nev). One observation is that the limit tends to increase with the lattice volume. This
scaling with the volume is somewhat subtle, because the impact of the choice for the Wilson mass
on zmax is drastic. At least on a qualitative level the explanation for this impact is rather simple:
RMT predicts the fluctuations of the eigenvalues of the chiral lattice Dirac operator around the
average spectral density. It applies if the spectral density near zero is uniform, i.e., the level spacing
is constant. Obviously the spectral support for this portion of the density is sensitive to the choice
of simulation parameters.

5Here ν = 0 was chosen for convenience. However, this choice is not unique and one could think about other choices
for this quantity.
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Figure 8.3: Spectral density and distribution of the eight lowest-lying eigenvalues λW of the Her-
mitian Wilson-Dirac kernel and the corresponding four lowest-lying non-zero eigenvalues λov of the
overlap operator obtained from simulations of the 84 lattice (after stereographic projection and ro-
tation onto the real axis). The Wilson mass mW is increased from 1.2 in the first row up to 2.0 in
the last row in steps ∆mW = 0.2. The left two columns show the densities for ν = 0, the right two
columns show the densities for ν = 1 zero modes of the overlap operator.
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V β No. config. mW µ P (ν = 0) P (ν = 1) P (ν = 2) P (ν = 3) P (ν ≥ 4)

84 2.2 8976 1.4 0.0 0.217 0.373 0.241 0.111 0.059
60000 1.4 0.05 0.216 0.371 0.239 0.117 0.057
30000 1.4 0.1 0.214 0.372 0.241 0.115 0.059
20000 1.4 0.2 0.212 0.374 0.240 0.114 0.060
20000 1.4 0.3 0.210 0.372 0.240 0.117 0.061

Table 8.4: Parameters for the simulations of quenched two-colour QCD at non-zero chemical po-
tential µ: lattice volume V , coupling strength β, and number of gauge field configurations evaluated
at fixed Wilson mass mW. Here P (ν) is the relative frequency of the number ν of zero modes found
in the spectra of the overlap operator. For comparison the results of the simulation at zero chemical
potential are also shown.

8.2 Two-colour QCD at non-zero chemical potential

Introduction of a real-valued chemical potential renders the kernel Wilson-Dirac operator non-
Hermitian and (after stereographic projection) results in a complex-valued eigenvalue spectrum of
the overlap operator that is distorted non-trivially from the imaginary axis. The distortion, however,
is dictated by the underlying symmetries of the operator and one expects the eigenvalues to appear
in pairs on the real and imaginary axes and in quadruplets in the complex plane. The spectral den-
sities associated with the eigenvalues near zero are considered to be described by universal functions
derived from the non-Hermitian random matrix model introduced in Sect. 7.3. Due to the computa-
tional costs simulations of quenched two-colour QCD with chemical potential were only carried out
on the 84 lattice with coupling strength β = 2.2 and Wilson mass mW = 1.4, and a few simulations
were carried out on a 44 lattice. The gauge field configurations obtained from simulations of the
84 lattice at zero chemical were reused for evaluation of the spectra. Additional configurations had
to be generated in order to obtain the statistics required for comparison of the densities associated
with the complex eigenvalues of the overlap operator and RMT. The lowest-lying eigenvalues of
O(104) spectra were evaluated applying the Krylov-Ritz method described in Appendix B.1 for sev-
eral choices for the chemical potential. The simulation parameters are summarized in Table 8.4. In
the following the spectrum of the overlap operator with chemical potential is investigated and the
spectral densities obtained from simulations of the 84 lattice are compared to the predictions given
by RMT.

8.2.1 Spectrum of the overlap operator

As introduced in Sect. 6.7, the overlap operator with chemical potential µ is given by

Dov(µ) = 1 + γ5ε[γ5DW(µ)] . (8.8)

The real-valued chemical potential renders the Wilson-Dirac kernel γ5DW(µ) non-Hermitian, see
Eq. (6.111). As a result of the breaking of Hermiticity the (unprojected) eigenvalues of the overlap
operators get non-trivially distorted from the Ginsparg-Wilson circle. However, as proposed in
Sect. 7.3, the underlying symmetries of the operator restrict its projected eigenvalues to come in
purely imaginary pairs, real pairs, and complex quadruplets if the chemical potential is turned on.
These restrictions on the spectra of the chiral lattice Dirac operator were indeed observed in the
simulations carried out for this study and are briefly discussed in the following. Note that no further
rotation of the eigenvalues is required after stereographic projection.

At zero chemical potential the unprojected eigenvalues λov,u of the overlap operator are pinned



108 8 EVALUATION AND RESULTS

-0.008

-0.006

-0.004

-0.002

 0

 0.002

 0.004

 0.006

 0.008

-0.2 -0.15 -0.1 -0.05  0  0.05  0.1  0.15  0.2

0.0
0.1
0.2

Im
λ

W

ReλW

µ

-0.5

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0  0.1 0.2

Im
λ

o
v
,u

Reλov,u

-0.5

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

-0.1 -0.08-0.06-0.04-0.02  0  0.02  0.04  0.06  0.08  0.1

Im
λ

o
v

Reλov

Figure 8.9: Spectrum of the kernel Wilson-Dirac operator, unprojected and projected spectrum of
the overlap operator for chemical potential µ = 0.0, 0.1, and 0.2 obtained from a sample configuration
on the 84 lattice. The left plot shows the spectrum of the Wilson-Dirac operator γ5DW(µ). As the
chemical potential is turned on Hermiticity is broken and complex conjugate pairs (λW, λ

∗
W) of

eigenvalues occur. The middle plot shows the corresponding unprojected spectrum of the overlap
operator with eigenvalues λov,u that deviate from the Ginsparg-Wilson circle. The right plot shows
the same spectrum but projected eigenvalues λov. The spectrum exhibits one complex quadruplet.
The colouring scheme is identical for all plots.

to the Ginsparg-Wilson circle Eq. (6.95). If the chemical potential µ is turned on, real eigenvalues
and complex eigenvalues located outside the Ginsparg-Wilson circle do occur. The stereographic
projection Eq. (6.106) maps

• eigenvalues on the circle to the imaginary axis,

• real eigenvalues to the real axis, and

• those eigenvalues lying neither on the circle nor being real into the complex plane.

The spectrum of the kernel Wilson-Dirac operator, the corresponding unprojected, and the projected
spectrum of the overlap operator evaluated on a sample configuration on the 84 lattice are shown in
Fig. 8.9. Deviations from the Ginsparg-Wilson circle do occur, and the projected spectrum exhibits
one complex quadruplet as the chemical potential is turned on.

The spectral flow of the projected eigenvalues of the overlap operator with the chemical potential
is shown in Fig. 8.10.6 The spectra were evaluated on a sample gauge field configuration on a
44 lattice with coupling strength β = 1.8 and Wilson mass mW = 2.3. The simulation parameters
were adopted from Ref. [68]. At zero chemical potential the eigenvalues are purely imaginary (and
come in complex conjugate pairs). Some of the neighbouring eigenvalues on the imaginary axis
attract each other as the chemical potential is increased. The first pair of degenerate imaginary
eigenvalues forms around µ ≈ 0.111 (there is one such pair on each half of the imaginary axis due to
chiral symmetry), and form the first quadruplet of eigenvalues which propagates into the complex
plane as the chemical potential is increased. Even more quadruplets form at µ ≈ 0.135, 0.154, and
0.178. The depletion of the eigenvalues along the imaginary axis is clearly visible. The formation of
real pairs of eigenvalues essentially follows the same pattern, however, the sample configuration does
not exhibit such a pair. A real pair forms when a complex conjugate pair of imaginary eigenvalues
propagates along the imaginary axis, meets at the origin at a certain strength of the chemical
potential, and then starts propagation along the real axis. Alternatively a quadruplet hits the real

6 See also Ref. [102] for the movie animation.
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axis and forms two pairs of real eigenvalues. It was also observed on sample configurations that
the formation of pairs and quadruplets is reversible, e.g., a pair of imaginary eigenvalues forms a
quadruplet which again forms a pair of imaginary eigenvalues. In any case, the symmetries of the
spectrum of the overlap operator at non-zero chemical are dictated by the breaking of Hermiticity
as described in Sect. 7.3, and no violation was observed in the lattice studies.

Another observation made in the study of two-colour QCD with chemical potential are variations
in the index of the overlap operator. The overlap operator still exhibits exact zero modes and the
corresponding eigenvectors come with exact chirality. However, the relative frequencies P (ν) of the
number ν of zero modes varies with the chemical potential on the 84 lattice. The frequencies are
summarized in Table. 8.4. The variations in P (ν) are mild compared to the variations with the
Wilson mass observed at zero chemical potential, cf. Table. 8.1, however they are clearly visible.

The connection between the index of the overlap operator and the eigenvalues of the Wilson-Dirac
kernel is again

Tr(γ5Dov) = Tr [γ5 + ε(γ5DW)] = Tr [ε(γ5DW)] = nW
+ − nW

− = 2 indexDov , (8.9)

where nW
+ (nW

− ) is the number of eigenvalues of the kernel operator with positive (negative) sign of
the real part. At zero chemical potential the kernel operator is Hermitian and its eigenvalues are
real. The change of the sign of one of its eigenvalues results in a change of the index of the overlap
operator by ±1, cf. Sect. 8.1.1. This holds true also in the non-Hermitian case, with the matrix sign
function defined by Eq. (6.101). If a real eigenvalue of the non-Hermitian Wilson-Dirac operator
γ5DW(µ) changes the sign (as function of the chemical potential), the index of the overlap operator
changes by ±1. However, as shown in Fig. 8.9, the spectrum of the non-Hermitian Wilson-Dirac
operator also exhibits pairs of complex eigenvalues. If such a pair of complex eigenvalues changes
the sign, then nW

+ − nW
− changes by ±4 and the index of the overlap operator changes by ±2. This

behaviour of the index was indeed observed on sample configurations by fine-tuning of the chemical
potential. Variations of the index were also observed in a study of quenched three-colour QCD with
chemical potential [74], and it is assumed that the variations are a lattice artefact that disappears
in the continuum limit.

8.2.2 Analysis of the spectral density

Formally the normalized spectral density of the overlap operator is defined by

ρov(λ) = 〈
∑
k

δ(λ− λk)〉G (8.10)

as ensemble average over gauge field configurations. It was shown in the previous section that the
projected spectrum of the overlap operator at non-zero chemical potential exhibits purely imaginary,
real, and also complex eigenvalues. Normalization of the spectral density therefore implies∫

C
d2λ ρov(λ) =

∫
iR

dλ ρiR
ov(λ) +

∫
R

dλ ρRov(λ) +

∫
C\(R∪iR)

d2λ ρCov(λ) = 4NcV , (8.11)

again withNc = 2 in this study. The densities associated with the imaginary, real, and complex eigen-
values are predicted by non-Hermitian RMT, cf. Sect. 7.3. A two-parameter fit to non-Hermitian
RMT, Eqs. (7.24) and (7.29), subject to (for a given ν)

ρ
(i)R
S (ξ) =

1

ΣV
ρ(i)R

ov

(
ξ

ΣV

)
, ρCS (ξ) =

1

(ΣV )2
ρCov

(
ξ

ΣV

)
, (8.12)
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allows to determine the chiral condensate Σ and also the Hermiticity breaking parameter µ̂ =
2µF
√
V , from which the pion decay constant F can be determined. Analogous to the Hermitian

case the eigenvalues of the overlap operator need to be rescaled to ξ = λovΣV to match RMT.
The study of quenched two-colour QCD was carried out for the chemical potentials µ = 0.05,

0.1, 0.2, and 0.3. Densities associated with the purely imaginary and real eigenvalues were obtained
by binning of the lattice data into a histogram according to Sect. 8.1.1. The low statistics of the
complex eigenvalues prohibited a 2-dimensional binning of the lattice data. Therefore, the real part
of the complex eigenvalues was integrated out and the resulting data binned along the imaginary
axis. Fits of the lattice data to RMT were performed simultaneously to the densities associated with
the three classes of eigenvalues using only two fit parameters. The results of the fits are summarized
in Table 8.5 and plots for the simultaneous fits to ν = 0, 1 are shown in Figs. 8.11 – 8.14 for each
choice of the chemical potential. The fits were performed individually to those spectra of the overlap
operator which exhibit 0 or 1 zero mode, and also simultaneously to the densities associated with
ν = 0 and 1. Discretization errors were compensated for by fitting of the densities integrated over
the bin size. The upper limits of the fit, ξmax = λmaxΣV , were individually guided by the eye for
each density and fit. In analogy to the Hermitian case the spectral support for the fit was estimated
by integration over the microscopic spectral densities Eqs. (7.24) and (7.29),

Nev =

ξiRmax∫
0

dξ ρiR
S (iξ) +

ξRmax∫
0

dξ ρRS (ξ) + 2

ξRmax+iξCmax∫
0

d2ξ ρCS (ξ) , (8.13)

taking into account only eigenvalues in the positive complex plane and on half the real axis. The
factor of 2 for the complex eigenvalues mimics the symmetry of the density. The density associated
with the complex eigenvalues was integrated up to ξRmax + iξCmax.

The fitted parameter Σ shows variations with ν and µ on the order of 5%. However, the pion
decay constant F obtained from individual fits are almost constant in µ, but the results obtained
from fits to different ν systematically differ by about 4%. The values of the pion decay constant
obtained from simultaneous fits to ν = 0 and 1 settle in between the results obtained from the
individual fits. An interesting observation is the validity of the fit intervals. The interval ξiR

max for
the purely imaginary eigenvalues scales with the chemical potential, whereas the interval ξCmax for
the complex eigenvalues along the imaginary axis is basically independent of µ. The real eigenvalues
were fitted along the positive half-axis, taking into account all positive real eigenvalues obtained from
the lattice simulations. Nevertheless, the spectral support in terms of the number of eigenvalues Nev

that contribute is O(1). This number is, however, slightly lower than the estimate obtained from
simulations at zero chemical potential. Note that the fit intervals were independently guided by the
eye. Other methods can lead to different estimates.

Universality in the spectra of the overlap operator turns out to be dependent on the parameter ν
and the choice for µ. In the case ν = 1 the lattice data is almost perfectly described by the RMT
model for two-colour QCD with real chemical potential µ = 0.05. However, with increasing strength
of the chemical potential deviations from the predictions occur. This is reflected in the goodness-
of-fit parameter χ2/dof, which increases with the chemical potential. The RMT model describes
the lattice simulations (with this particular choice for the simulation parameters) only in the regime
where the finite-volume partition function of QCD is dominated by the zero momentum modes of
the pion fields, i.e., in the ε-regime where µL � 1 (L is the lattice extension). The case ν = 0 is
somewhat different. The lattice data is adequately described by the univeral functions and RMT is
valid even for simulations up to µL = O(1).
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µ ν µ̂ Σ F χ2/dof ξiR
max ξRmax ξCmax Nev

0.0 0 – 3 0.0 0.00550(4) — 1.2(4) 4.76 — — 1.74

0.05 0 0.242(4) 0.00538(4) 0.03773(29) 0.8(4) 2.86 1.65 2.86 1.13
0.1 0 0.480(8) 0.00522(6) 0.03753(29) 1.0(5) 2.78 3.21 2.78 1.12
0.2 0 0.956(13) 0.00514(8) 0.03734(26) 1.4(5) 3.79 8.21 2.74 1.41
0.3 0 1.455(16) 0.00524(8) 0.03789(21) 1.4(4) 4.29 12.88 2.79 1.34

0.05 1 0.230(4) 0.00535(2) 0.0390(3) 1.1(5) 2.85 1.64 2.85 0.68
0.1 1 0.499(5) 0.00525(5) 0.03900(21) 1.7(5) 2.79 3.22 2.79 0.68
0.2 1 0.9830(10) 0.00534(6) 0.03838(19) 2.0(6) 3.93 8.52 2.84 1.01
0.3 1 1.493(11) 0.00544(5) 0.03887(15) 4.3(7) 4.46 13.38 2.90 (∗)
0.05 0 + 1 0.2438(29) 0.00536(2) 0.0381(5) 1.0(3) 2.85 1.65 2.85 1.13
0.1 0 + 1 0.491(4) 0.00524(4) 0.03839(29) 1.4(4) 2.79 3.22 2.79 1.13
0.2 0 + 1 0.974(8) 0.00527(4) 0.0380(3) 1.7(4) 3.89 8.42 2.81 1.44
0.3 0 + 1 1.480(9) 0.00537(5) 0.03854(24) 2.9(4) 4.40 13.21 2.86 1.39

Table 8.5: Results for the chiral condensate Σ and the pion decay constant F from individual
and simultaneous fits to the microscopic spectral densities Eqs. (7.24) and (7.29) for ν = 0 and 1.
Here µ is the chemical potential and µ̂ is the symmetry breaking parameter. The rescaled variables
ξmax = λmaxΣV indicate the fit interval as described in the text. The spectral support is provided by
Nev eigenvalues (for the simultaneous fit ν = 0 was chosen). The results of the fit to the microscopic
spectral density at zero chemical potential Eq. (7.12) are shown for comparison. The statistical
errors were estimated by the bootstrap method (cf. Appendix B.2). For µ = 0.3 and ν = 1 the
evaluation of the parameter Nev was spoiled by instabilities in the numerical integration, indicated
by the asterisk.
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Figure 8.10: Snapshots of the spectral flow of the lowest-lying eigenvalues λ of the overlap operator
with the chemical potential µ after stereographic projection. The spectrum was evaluated on a 44

lattice with coupling strength β = 1.8 and Wilson mass mW = 2.3. The chemical potential is
increased from 0.0 up to 0.185 in irregular steps. The spectrum is symmetric with respect to the
real axis, exhibits one zero mode and shows the formation of complex quadruplets. See Ref. [102]
for the movie animation.
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Figure 8.11: Density of the lowest-lying eigenvalues λ of the overlap operator obtained from
simulations with chemical potential µ = 0.05 on the 84 lattice. The eigenvalues of the overlap
operator are rescaled to ξ = λΣV to match the RMT prediction Eqs. (7.24) and (7.29), indicated by
solid lines. The left column shows the densities for ν = 0, the right column shows the densities for
ν = 1. The top row shows the density associated with the purely imaginary eigenvalues, the middle
row shows the density associated with the real eigenvalues and the bottom row shows the density
associated with the complex eigenvalues with the real part integrated out. Vertical lines indicate
the limit ξmax.
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Figure 8.12: Density of the lowest-lying eigenvalues λ of the overlap operator obtained from
simulations with chemical potential µ = 0.1 on the 84 lattice. The eigenvalues of the overlap
operator are rescaled to ξ = λΣV to match the RMT prediction Eqs. (7.24) and (7.29), indicated by
solid lines. The left column shows the densities for ν = 0, the right column shows the densities for
ν = 1. The top row shows the density associated with the purely imaginary eigenvalues, the middle
row shows the density associated with the real eigenvalues and the bottom row shows the density
associated with the complex eigenvalues with the real part integrated out. Vertical lines indicate
the limit ξmax.
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Figure 8.13: Density of the lowest-lying eigenvalues λ of the overlap operator obtained from
simulations with chemical potential µ = 0.2 on the 84 lattice. The eigenvalues of the overlap
operator are rescaled to ξ = λΣV to match the RMT prediction Eqs. (7.24) and (7.29), indicated by
solid lines. The left column shows the densities for ν = 0, the right column shows the densities for
ν = 1. The top row shows the density associated with the purely imaginary eigenvalues, the middle
row shows the density associated with the real eigenvalues and the bottom row shows the density
associated with the complex eigenvalues with the real part integrated out. Vertical lines indicate
the limit ξmax.



116 8 EVALUATION AND RESULTS

 0

 0.05

 0.1

 0.15

 0.2

 0  1  2  3  4  5  6  7  8

ρiR
S (iξ)

ξ

ν = 0

µ = 0.3

 0

 0.05

 0.1

 0.15

 0.2

 0  1  2  3  4  5  6  7  8

ρiR
S (iξ)

ξ

ν = 1

µ = 0.3

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0  2  4  6  8  10  12  14  16

ρRS (ξ)

ξ

ν = 0

µ = 0.3

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0  2  4  6  8  10  12  14  16

ρRS (ξ)

ξ

ν = 1

µ = 0.3

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0  0.5  1  1.5  2  2.5  3  3.5  4

ρCS (ξ)

Im ξ

ν = 0

µ = 0.3

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0  0.5  1  1.5  2  2.5  3  3.5  4

ρCS (ξ)

Im ξ

ν = 1

µ = 0.3

Figure 8.14: Density of the lowest-lying eigenvalues λ of the overlap operator obtained from
simulations with chemical potential µ = 0.3 on the 84 lattice. The eigenvalues of the overlap
operator are rescaled to ξ = λΣV to match the RMT prediction Eqs. (7.24) and (7.29), indicated by
solid lines. The left column shows the densities for ν = 0, the right column shows the densities for
ν = 1. The top row shows the density associated with the purely imaginary eigenvalues, the middle
row shows the density associated with the real eigenvalues and the bottom row shows the density
associated with the complex eigenvalues with the real part integrated out. Vertical lines indicate
the limit ξmax.



Chapter 9

Summary

9.1 QPACE

In the first part of this thesis some details of the QPACE supercomputer were revealed. QPACE is a
research project carried out by several academic institutions in collaboration with the IBM Research
and Development Laboratory in Böblingen, Germany, and other industrial partners. The main goal
was the design of an application-optimized scalable architecture especially designed for applications
in Lattice QCD. QPACE relies on the IBM PowerXCell 8i microprocessor directly connected to a
custom-designed network processor that is implemented on a Xilinx Virtex-5 FPGA.

The project officially started in 2008. Two installations were deployed in the summer of 2009 and
the final design was completed in early 2010. The aggregate compute performance of the architec-
ture is 200 TFlops in double precision. QPACE turned out to be a huge success. In November 2009
QPACE was the leading architecture on the Green 500 list of the most energy-efficient supercom-
puters in the world. The title was defended in June 2010, when the architecture achieved an energy
signature of 773 MFLOPS per Watt in the Linpack benchmark. In the Top 500 list of most powerful
supercomputers, QPACE ranked #110, #111, #112 in November 2009, and #131, #132, #133 in
June 2010. The innovative water-cooling solution also influenced other supercomputer designs such
as SuperMUC.

9.2 Lattice simulations of two-colour QCD

In the second part of this thesis the spectral properties of a Dirac operator that respects a lattice
chiral symmetry, the overlap operator with Wilson-Dirac kernel, were studied on the lattice in the
quenched approximation of QCD with gauge group SU(2). The dynamics of the Goldstone modes
that arise in the phase of broken chiral symmetry is governed by the deep infrared spectrum of the
Dirac operator. In the ε-regime the finite-volume partition function of pion effective theory associated
with two-colour QCD is equivalent to the partition function of chiral random matrix theory of the
orthogonal ensemble. Both Hermitian and non-Hermitian formulations of chiral random matrix
theory exist. The latter can be applied to the formulation of QCD at non-zero baryon chemical
potential. The microscopic spectral densities derived from random matrix models are universal
functions, and one expects them to describe the correlations in the few lowest-lying eigenvalues of
the overlap operator for simulations of the ε-regime on the lattice.

As a test for Hermitian chiral random matrix theory, lattice simulations were carried out on 84,
104, and 124 lattices and several choices for the Wilson mass parameter. The spectral density asso-
ciated with the lowest-lying eigenvalue(s) of the overlap operator were compared to the predictions
of random matrix theory. Due to the large statistics it was possible to investigate the spectra asso-
ciated with non-trivial sectors of topological charge. It was found that, with the proper choice for
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the Wilson mass parameter, the distribution of the lowest-lying eigenvalue(s) is indeed universal and
described by random matrix theory. The chiral condensate was evaluated by a fit of the spectrum of
the overlap operator to the predictions. The condensate shows a strong dependence on the Wilson
mass. However, the variations in the fit values diminish towards the continuum limit.

Recently the non-Hermitian extension to chiral random matrix theory of the orthogonal ensemble
was solved. This extension is equivalent to pion effective theory associated with two-colour QCD
and non-zero baryon chemical potential in the ε-regime. Therefore, the spectral correlation functions
derived from the non-Hermitian random matrix model should be applicable to simulations of Lattice
QCD with baryon chemical potential. The real-valued chemical potential renders the Dirac operator
non-Hermitian, and the non-trivial distortion of its spectrum into the complex plane is dictated by
the underlying symmetries of the operator. As a test for the random matrix model a baryon chemical
potential µ was introduced into the overlap operator along the lines of Ref. [74]. By simulation of
quenched two-colour QCD on 44 and 84 lattices it was found that the spectrum of the non-Hermitian
chiral lattice Dirac operator indeed exhibits pairs of purely imaginary and real eigenvalues, and also
complex quadruplets, as predicted by the formal symmetry analysis. The spectral density of the
overlap operator near zero also turned out to be universal. It was shown by simulations of the 84

lattice at fixed Wilson mass that the spectral density of the few lowest-lying eigenvalues obtained
from the lattice simulations in the regime µL� 1 are indeed described by the microscopic spectral
density derived from non-Hermitian random matrix theory. For the trivial sector of topological
charge the predictions of random matrix theory are even valid in the regime µL = O(1).

In the end a few open questions remain to be answered:

• At zero chemical potential the fit value of the chiral condensate shows a strong dependence
on the choice of the Wilson mass for the simulation parameters investigated. However, due to
the computational costs of the simulations, the effect of the Wilson mass on the pion decay
constant was not investigated in this study.

• The regime µL where random matrix theory applies to lattice simulations depends on the
sector of topological charge.

• It was shown that Hermitian chiral random matrix theory applies to non-trivial sectors of
topological charge. However, due to limited statistics only the sectors ν = 0 and 1 were
investigated in the non-Hermitian regime.

• The fit values of the pion decay depend on the sector of topological charge. In contrast, the
fit values of the chiral condensate are rather insensitive to the number of zero modes in the
spectra of the overlap operator.

• At non-zero baryon chemical potential the spectral support for the fit of the complex eigenval-
ues was chosen with rectangular shape in the complex plane. Other choices such as circular or
elliptic shapes could be also used to resolve the applicability of non-Hermitian random matrix
theory.



Appendix A

QPACE Addendum

A.1 Sources

The following table provides an overview on the most important administrative tools and test cases
written in C. Dependencies on other QPACE-specific libraries are not shown. All programs have to
be executed on the master server and perform remote access to the root-card and node-card using
the witchlib library. An exception is ncDcr, which has to be executed directly on the node-card.
The sources are located in the sub-directories of trunk/hsit/ of the QPACE repository.

File Description

witchlib.c Root-card high-level functions library
witchlib.h witchlib header

ncBoot.c Node-card boot tool
xparse.c Command line parser
asciitable.c Ascii art tables
asciitable.h asciitable header

ncVpd.c Node-card VPD integrity test

ncDcr.c Node-card DCR integrity test
dcr slaves.h DCR slaves description

ncScan.c Node-card scan test

ncGetInfo.c Node-card information tool

rcGetInfo.c Root-card information tool

srcGetInfo.c Superroot-card information tool

psuScan.c Power supply information tool

rcSpiRd.c Node-card SPI integrity test

rcSpiBackdoor.c Node-card SPI backdoor integrity test

rcI2c.c Root-card I2C test

rcRs485.c Node-card RS-485 integrity test

The following table provides an overview on the most important administrative tools and test cases
written in Python, compliant to Python version 2.4. All scripts have to be executed on the master
server. Wrapper scripts copy the test case executable onto the node-card. The test case executables
are not listed. The sources are located in the sub-directories of trunk/integration/ of the QPACE
repository. The QPACE Front-end Client (QFC) is located in trunk/front/qfc/.
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File Description

iothd.py Multithreading engine, required by several test cases

ethint.py Ethernet stress test wrapper
switchmapping.py Ethernet stress test switch mapping

rcSpiRd1M.py SPI integrity check wrapper

iwcstress.py IWC stress test wrapper

fft2d.py FFT stress test wrapper

epc.py EPC stress test wrapper

qc QPACE Front-end Client
qfoil.py QFC helper functions
qfengine.py QFC multithreading, flash and fuqd engine
qfchelp.py QFC help

The VHDL sources of the FPGA entities introduced in chapter 4 are listed below. The sources are
located in the sub-directories of trunk/node-card/FPGA/ of the QPACE repository.

Unit Entity File Description

DCR master spi backdoor top spi backdoor top.vhd Top level
spi backdoor dcr master sync backdoor.vhd DCR master
dcr arbiter dcr master switch.vhd DCR arbiter

DCR slave dcr slave interface generic dcr slave.vhd Sync. DCR slave interface
cdt dcr slave interface cdt dcr slave.vhd Async. DCR slave interface

cdt dcr slave.ucf Async. DCR slave UCF template

IWC iwc iwc-simple.vhd IWC core logic
iwc em iwcem.vhd IWC Extension Module

UART uart 16550 dcr top alternative uart 16550 dcr top.vhd Top level w/ sync. DCR interface
uart 16550 top uart 16550 top.vhd Top level
uart buffered tx uart buffered tx.vhd Wrapper FIFO and transmitter
txunit uarttx.vhd Transmitter logic
uart buffered rx uart buffered rx.vhd Wrapper FIFO and receiver
rxunit uartrx.vhd Receiver logic

uart 16550 const.vhd Constant declarations

A.2 DCR memory map

The DCR device tree is mapped into the Cell BE I/O real address space at base address

DCR BASE BE = 0x18000000000

with a size of

DCR SIZE BE = 0x00000037000

corresponding to 220 kByte of DCR address space. The base addresses DCR BASE DEVICE of the
public DCR device register files are summarized with corresponding reference in Table A.1.

Device DCR BASE DEVICE Description Reference

UART 0 0x0000 UART to Cell BE Sect. 4.5.2
UART 1 0x0010 UART to Service Processor Sect. 4.5.2
Ethernet EMAC 0x0020 Ethernet EMAC Ref. [53]
Ethernet GBIF 0x0030 Ethernet GBIF Ref. [53]
Ethernet GTX 0x0040 Ethernet GTX Ref. [53]
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Device DCR BASE DEVICE Description Reference

CB 0x0080 Control Box Ref. [53]
IWCEM 0x0210 Inbound Write Controller Extension Module Ref. [53]
OWCEM 0x0220 Outbound Write Controller Extension Module Ref. [52]
Torus RX 0 0x3000 Torus Receive link 0 Ref. [55]
Torus RX 1 0x3100 Torus Receive link 1 Ref. [55]
Torus RX 2 0x3200 Torus Receive link 2 Ref. [55]
Torus RX 3 0x3300 Torus Receive link 3 Ref. [55]
Torus RX 4 0x3400 Torus Receive link 4 Ref. [55]
Torus RX 5 0x3500 Torus Receive link 5 Ref. [55]
Torus TX 0x3600 Torus Transmit Ref. [55]

Table A.1: Public DCR memory map.

Any register with I/O address addr in the Cell BE I/O address space and device-specific register ad-
dress reg has to be addressed from the Cell BE relative to the base device address DCR BASE DEVICE.
The target address has to be multiplied by 16, thus

addr = DCR BASE BE + (DCR BASE DEVICE + reg) << 4 .

The best practise to access the real address space from the Cell BE is to map the I/O DCR address
space into the Cell BE’s virtual address space, see Ref. [109] for technicalities. The C–code listed in
Fig. A.1 returns the base pointer to DCR BASE BE in virtual memory.

All public DCR devices are also accessible via the Service Processor at base address DCR BASE SP

= 0x0. No additional multiplication is required to address a device register,

addr = DCR BASE DEVICE + reg .

Note: The DCR device tree should not be modified without detailed knowledge about the device
register files. Read or write access to any address outside the register files may cause DCR bus
deadlock, node-card instability or checkstop.

1 /∗ map I /O DCR in to v i r t u a l address space ∗/
2 u i n t 3 2 t ∗ g e t d c r b a s e (void )
3 {
4 /∗ open memory dev i c e ∗/
5 int fd dev mem = open ( ”/dev/mem” , ORDWR) ;
6 i f ( fd dev mem < 0) d i e ( ”open /dev/mem f a i l e d !\n” ) ;
7
8 /∗ mmap ∗/
9 u i n t 6 4 t ∗ addr base = DCR BASE BE;

10 unsigned page s i z e = g e t p a g e s i z e ( ) ;
11 s i z e t s i z e = (DCR SIZE BE/ page s i z e )∗ page s i z e ;
12 i f (DCR SIZE BE % page s i z e ) s i z e += page s i z e ;
13
14 void∗ mm = (unsigned char∗)mmap64( ( void ∗ )0 , s i z e ,
15 PROT READ | PROT WRITE, MAP SHARED, fd dev mem , addr base ) ;
16 i f ( er rno ) d i e ( ”mmap f a i l e d !\n” ) ;
17
18 return ( u i n t 3 2 t ∗)mm;
19 }

Figure A.1: C–code for mapping the I/O DCR real address space into virtual address space.
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A.3 witchlib API

The witchlib library provides high-level access to the root-card from the master server via TCP/IP.
The library is built on top of the low-level functions provided by the feenlib library written by S.
Solbrig. Each access requires a valid connection to the root-card of the type feenRC t. If not quoted
otherwise, a function returns 0 if the execution has been successful. In case of any error the code
−1 is returned. A corresponding error message is also provided.

The witchlib supports for error statistics on SPI, I2C, Service Processor, flash memory and
Ethernet operations. The statistics are supported if the library is compiled with the flags STATS and
STATS OUT. Only the public functions are listed below.

void witchStatFeenRestart(feenRC t)

Print statistics for feen restarts.

void witchStatInit(int retry , int mwait)

Initialize statistics counters. Restarts of the root-card connection are delayed by mwait milliseconds.

void witchStatOut(void)

Print statistics.

ssize t witchPushFile(feenRC t rc, const char∗ filename, int append, const uint8 t∗ data,
size t length, char∗∗ const message)

Copy file filename from the master server to the root-card. Returns the number of copied bytes.

ssize t witchPullFile (feenRC t rc, const char∗ filename, uint8 t∗ data, size t length,
char∗∗ const message)

Copy file from the root-card to filename on the master server. Returns the number of copied bytes.

int witchRCcpld0Reset(feenRC t rc, uint8 t addr, char∗∗ const message)

Reset CPLD 0 register defined by addr.

int witchRCcpld0Read(feenRC t rc, uint8 t∗ data, char∗∗ const message)

Read 1 byte from CPLD 0 into data.

int witchRCcpld0Addr(feenRC t rc, uint8 t addr, char∗∗ const message)

Set CPLD 0 address addr.
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int witchRCcpld0Data(feenRC t rc, int data, char∗∗ const message)

Set CPLD 0 data (4 bytes).

int witchRCcpld0Comm(feenRC t rc, uint8 t comm, char∗∗ const message)

Set CPLD 0 command comm.

int witchRCSpiMux(feenRC t rc, uint8 t mux, char∗∗ const message)

Set CPLD 0 SPI multiplexer to mux.

int witchRCcpld1Reset(feenRC t rc, uint8 t addr, char∗∗ const message)

Reset CPLD 1 logic block defined by addr.

int witchRCcpld1Read(feenRC t rc, uint8 t∗ data, char∗∗ const message)

Read 1 byte from CPLD 1 into data.

int witchRCcpld1Addr(feenRC t rc, uint8 t addr, char∗∗ const message)

Set CPLD 1 address addr.

int witchRCcpld1Data(feenRC t rc, int data, char∗∗ const message)

Set CPLD 1 data (4 bytes).

int witchRCcpld1Comm(feenRC t rc, uint8 t comm, char∗∗ const message)

Set CPLD 1 command comm.

int witchNCSpiBackdoorWrite(feenRC t rc, uint8 t nc, int dcr addr, int dcr data,
char∗∗ const message)

Write 4-byte data dcr data to address dcr addr via SPI backdoor on node-card nc.

int witchNCSpiBackdoorRead(feenRC t rc, uint8 t nc, int dcr addr, int∗ const dcr data,
char∗∗ const message)

Read 4-byte data dcr data from address dcr addr via SPI backdoor on node-card nc.
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int witchNCvpdRead(feenRC t rc, uint8 t nc, int vpd addr, uint8 t∗ vpd data, uint8 t length,
char∗∗ const message)

Read length bytes from node-card nc VPD at address vpd addr into vpd data.

int witchNCvpdWrite(feenRC t rc, uint8 t nc, int vpd addr, uint8 t∗ vpd data, uint8 t length,
char∗∗ const message)

Write length bytes starting at *vpd data to node-card nc VPD at address vpd addr.

int witchNCCheckFlashRS485(feenRC t rc, uint8 t nc, uint8 t∗ discovery,
char∗∗ const message)

Check node-card nc presence via Service Processor call. If a node-card is discovered discovery

returns 1 and 0 otherwise.

int witchNCCheckFlash(feenRC t rc, uint8 t nc, uint8 t∗ discovery,
char∗∗ const message)

Check node-card nc presence via SPI flash memory read. If a node-card is discovered discovery

returns 1 and 0 otherwise.

int witchNCIdentifyBitStream(feenRC t rc, uint8 t nc, int offset , char∗ const nwpRev,
char∗∗ const message)

Get FPGA bitstream revision nwpRev via SPI flash memory at offset offset from node-card nc.

int witchNCIdentifySlof(feenRC t rc, uint8 t nc, char∗ const slofRev,
char∗∗ const message)

Get SLOF revision slofRev via SPI flash memory from node-card nc.

A.4 QFC full reference

The QFC provides unique access to the QPACE hardware. It is executed via the command line
using

qc [options] [<mode>] <target> <action> [parameters]

In the following the full reference to all actions supported by the QFC is provided.

A.4.1 PSU specific actions

Only the modes get and power are supported for the PSUs as target. Each action is listed with a
short description.
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qc get psu <list> status

Retrieve status information including error status, input/output voltages, input/output currents,
power consumption, temperatures and fan speeds.

qc power psu <list> off

Power off PSU.

qc power psu <list> on

Power on PSU.

A.4.2 Node-card specific actions

The modes get, set, power, clear and flash are supported for the node-cards as target. Each
action is listed with a short description.

A.4.2.1 Get mode

The following items give an overview on the actions for the get mode on node-cards specified by the
<list> parameter.

qc get node <list> status

Retrieve status information including boot status, power status and status changes.

qc get node <list> config

Retrieve node-card configuration information including boot configuration and clock settings.

qc get node <list> version

Retrieve version information for FPGA bitstream, SLOF and Service Processor firmware.

qc get node <list> serial

Retrieve the node-card’s serial number.

qc get node <list> temp

Retrieve the temperatures in ◦C.

qc get node <list> mac

Retrieve the MAC address.

qc get node <list> dump

Retrieve the Cell BE FIRs from the VPD. Information includes the register dump, preliminary error
decoding, timestamp and validity flag.



126 A QPACE ADDENDUM

qc get node <list> vpd <address> <length>

Block-read <length> bytes of data starting at <address> from the VPD. The address must be spec-
ified by 4 hexadecimal digits without separator. Output is shown in rows of 16 bytes in hexadecimal
representation.

A.4.2.2 Set mode

The following items give an overview on the actions for the set mode on node-cards specified by the
<list> parameter.

qc set node <list> clock <setting>

Set the clock source to onboard clock (<setting> = 0) or global clock (<setting> = 1).

qc set node <list> vpd <address> <hex0> [<hex1> ...]

Block-write data to the VPD starting at <address>. Each data block <hexN> represents a data
byte in hexadecimal representation. The start address is specified by 4 hexadecimal digits without
separator.

qc set node <list> mac [<hex5> ... <hex0>]

Set MAC address. If no parameters are defined the MAC address associated with the node-card
position is set. The MAC address can be set manually providing 6 data bytes in hexadecimal
representation. In this case only a single node-card may be addressed.

A.4.2.3 Power mode

The following items give an overview on the actions for the power mode on node-cards specified by
the <list> parameter.

qc power node <list> off

Hard-power off Cell BE and FPGA via Service Processor.

qc power node <list> on

Hard-power on Cell BE and FPGA via Service Processor. The node boots automatically into Linux
if no error occures.

qc power node <list> cycle

Hard-power cycle Cell BE and FPGA via Service Processor. The node boots automatically into
Linux if no error occures.
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qc power node <list> sp

Hard-power cycle Service Processor. This does not affect the Cell and FPGA. The node boots
automatically into Linux if no error occures.

qc power node <list> noboot

Hard-power on Cell BE and FPGA without booting into Linux.

qc power node <list> reboot

Soft-power cycle Cell BE logging into the Linux shell via secure shell and execute Linux command
reboot. This requires the Cell BE to be bootet into Linux.

qc power node <list> halt

Soft-power down the Cell via the Linux command halt. This requires the Cell to be bootet into
Linux.

qc power node <list> reset

Hard-reset the node-card by the external reset lines. This command hard-resets all devices on the
node-card.

qc power node <list> probe

Perform a test login onto the node-card using secure shell. The probe command can be used to test
successful boot into Linux.

qc power node <list> magic

Probe the node-card state using login via secure shell. If the probe fails a hard-power cycle via the
Service Processor is initiated. Both steps are repeated up to five times with a delay time of ninety
seconds between power cycling and probing.

qc power node <list> woof

Identical to magic but performs and evaluates a FlexIO link stress if probing Linux was successful.

A.4.2.4 Clear mode

The following items give an overview on the actions for the clear mode on node-cards specified by
the <list> parameter.

qc clear node <list> states

Invalidate error status.
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A.4.2.5 Flash mode

The following items give an overview on the actions for the flash mode on node-cards specified by
the <list> parameter.

qc flash node <list> linux <file>

Copy FPGA bitstream and/or SLOF image <file> onto the node-card using secure copy. This
flash mode requires the Cell BE to be bootet into Linux. Subsequently the Cell BE has to
be power-cycled using the Linux reboot command. Update of the images fails for any other
mode of power cycle.

qc flash node <list> fpga <file>

Copy FPGA bitstream image <file> onto the node-card via root-card. Before the flash operation
the Cell BE is hard-powered off. The image is copied in chunks. This splitting allows other instances
of qc to access the node-card during flash operation. Flashing via root-card is not atomic.

qc flash node <list> slof <file>

Copy SLOF image <file> onto the node-card via root-card. Before the flash operation the Cell BE
is hard-powered off. The image is copied in chunks. The splitting allows other instances of qc to
access the node-card during flash operation. Flashing via root-card is not atomic.

qc flash node <list> sp <file>

Copy Service Processor firmware image onto the node-card via root-card. Before the flash operation
the Service Processor is power-cycled. Booting the updated image requires an additional power cycle
of the Service Processor after successful flash operation.
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Numerical Simulation

B.1 Krylov-Ritz method

Comparison of spectral properties of the overlap operator with random matrix theory requires the
evaluation of the eigenvalues of the matrix

Dov(µ) = 1 + γ5 sgn[γ5DW(µ)] . (B.1)

The Wilson-Dirac kernel DW is a sparse matrix with dimensions 4NcV × 4NcV , defined by Eq. (6.85)
for zero chemical potential µ and Eq. (6.108) for the non-zero case. At zero chemical potential the
Wilson-Dirac kernel is γ5-Hermitian and the eigenvalues of γ5DW are real. Hermiticity is lost if
a real-valued chemical potential is turned on and the spectrum of γ5DW is complex. In contrast,
the overlap operator is a dense matrix of the same dimension as the Wilson-Dirac operator, and
does, besides the lattice chiral symmetry, not exhibit further symmetries. Its (paired) eigenvalues
are restricted to lie on the Ginsparg-Wilson circle if the Wilson-Dirac kernel is Hermitian and are
distorted from the circle if the chemical potential is turned on.

In this study QCD with gauge group SU(2) was analyzed. The volumes investigated comprise
V = 84, 104, and 124 lattice points, thus the dimension of the overlap operator is up to O(105). Full
matrix diagonalization scales cubic with the dimension of the matrix. Full diagonalization of the
overlap operator is prohibitively expensive if the number of spectra desired is rather high, which is
the case in this study. However, only a few of the lowest-lying eigenvalues are needed to compare
the spectral properties of the overlap operator with random matrix theory.

An efficient algorithm that significantly reduces the compute time of the eigenvalue problem is
given by the (restarted) Arnoldi method. This method allows for evaluation of only a portion of the
full spectrum and is readily supported by the software package ARPACK [110]. The Arnoldi method
is based on power iteration, in this particular case defining the Krylov subspace

Kj(Dov, x) ≡ span(x,Dovx,D
2
ovx, . . . ,D

j−1
ov x) (B.2)

of Cn with j � dim(Dov) and some randomly chosen source vector x. ARPACK computes an orthog-
onal basis Q = (q1, . . . , qj) of Kj(Dov, x), which is then used for approximation of a portion of the
spectrum, i.e., the approximation of the eigenvectors and eigenvalues of Dov. However, the software
only provides the source vector x. The matrix-vector product Dovx has to be performed explicitely.
Its evaluation is described in the following.

Computation of the matrix-vector product Dov(µ)x requires the evaluation of the matrix sign
function sgn(γ5DW(µ)). In the case of vanishing chemical potential µ the kernel is Hermitian, and
its spectrum is real. This is not the case for µ 6= 0, where the spectrum is complex. However, for
both cases a proper definition of the matrix sign function is required. In general, some function f

129
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of a diagonalizable matrix A = UΛU−1, with diagonal eigenvalue matrix Λ = diag(λ1, . . . , λn),
U ∈ Gl(n,C) and n = dim(A), can be expressed by the spectral form

f(A) = Uf(Λ)U−1 , (B.3)

with
f(Λ) = diag

(
f(λ1), . . . , f(λn)

)
. (B.4)

For some complex number z ∈ C the sign can be defined as

sgn(z) =
z√
z2

= sgn(Re(z)) , (B.5)

with the cut of the square root chosen along the negative real axis. An equivalent definition of the
matrix sign function for both Hermitian and non-Hermitian kernel A is given by

sgn(A) = U sgn(Λ)U−1 = U diag
(

sgn(Re(λ1)), . . . , sgn(Re(λn))
)
U−1 . (B.6)

The numerical approach to the matrix sign function is not to compute f(A) directly, but to evaluate
its action on the source vector x, i.e., to compute y = f(A)x. An efficient approximative method to
compute the matrix sign function is the nested Krylov-Ritz method described in Ref. [88]. Roughly
speaking, the approximation to the matrix-vector product f(A)x ≡ sgn(A)x consists of a dimensional
reduction of the matrix A and the evaluation of the matrix sign function on the source vector x in
the reduced space, which is then lifted back to the full space.

In the Hermitian case the (large) matrix A is projected onto the Krylov subspace Kk(A, x) of
size k by the projection

Ak = PAP = VkV
†
kAVkV

†
k = VkHkV

†
k . (B.7)

Here the orthogonal projection matrix is given by P = VkV
†
k . The projected matrix Ak has the

dimension of the original matrix A, dim(Ak) = dim(A), but at most rank k. The k-dimensional

image of Ak is the Ritz matrix Hk ≡ V †kAVk. The components of Hk are the projection coefficients
of Ak in the orthonormal basis Vk = (v1, . . . , vk). For Hermitian A the one-sided Lanczos algorithm,
see Ref. [88], provides a fast method to determine both the basis Vk of the Krylov subspace and
the Ritz matrix Hk, the latter being tridiagonal and symmetric. Given Vk and Hk the Krylov-Ritz
approximation to f(A) consists of the evaluation of the matrix function only on the Ritz matrix,
and the back-projection to the full space. One has

f(A) ≈ Vkf(Hk)V
†
k . (B.8)

The full matrix-vector product y = f(A)x is then approximated by

y ≈ Vkf(Hk)V
†
k x = |x|Vkf(Hk)e

(k)
1 , (B.9)

where the first basis vector v1 of the Krylov subspace Kk(A, x) is chosen to be collinear with the

vector x, i.e., v1 = Vke
(k)
1 ≡ x/|x|. Here e

(k)
1 is the first unit vector of Ck. If the matrix function

f(Hk) is known then the approximation to y is proportional to the linear combination of the basis
vectors vi with coefficients determined by the first column of f(Hk),

y ≈ |x|
k∑
i=1

f(Hk)i1vi . (B.10)

In the non-Hermitian case the matrix function f(A) can be approximated using the right Krylov
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subspace Kk(A, x) with basis Vk = (v1, . . . , vk), and the left Krylov subspace Kk(A†, x) with basis
Wk = (w1, . . . , wk). The bases Vk and Wk can be constructed using the two-sided Lanczos algorithm,
see [88], which also provides the Ritz matrix Hk. Again the Ritz matrix is tridiagonal, but in this

case not symmetric. The bases Vk and Wk are biorthogonal, i.e., v†iwj = δij . The projector of the

full matrix A on the right Krylov subspace is given by P = VkW
†
k , and the projection of A on the

Krylov subspace is
Ak = PAP = VkW

†
kAVkW

†
k = VkHkW

†
k (B.11)

with the Ritz matrix Hk ≡W †kAVk. The full matrix-vector product y = f(A)x is thus approximated
by

y ≈ Vkf(Hk)W
†
kx = |x|Vkf(Hk)e

(k)
1 , (B.12)

again with v1 = Vk e
(k)
1 ≡ x/|x| and e

(k)
1 being the first unit vector of Ck. The approximation

to y is given by Eq. (B.10) by the linear combination of the basis vectors vi multiplied by |x|.
The size k of the Krylov-subspace has significant impact on the performance of the algorithm.

The parameter k, and thus the compute time, can be kept small if an initial left/right deflation step
is performed. In this step a small portion of the lowest-lying left/right eigenvalues and corresponding
eigenvectors of A are evaluated. Then one has

y = f(A)x ≈
Nd∑
i=1

sgn(λi)(φ
†
l,i · x)φr,i + |x′|Vkf(Hk)e

(k)
1 , (B.13)

where the φr,i (φl,i) are the Nd right (left) eigenvectors of A with corresponding eigenvalues λi.
In the Hermitian case only the right eigenvectors are needed and thus φl,i = φr,i. The vector x′

represents the source vector x with all components along the eigenvectors removed. Deflation allows
for efficient evaluation of f(Hk) ≡ sgn(Hk) by the matrix-iterative Roberts-Higham method. One
iterates

H
(n+1)
k =

1

2

(
H

(n)
k + (H

(n)
k )−1

)
, (B.14)

and chooses H
(0)
k ≡ Hk, which is the original Ritz matrix. The Roberts-Higham method converges

to the matrix sign function within a few iterations.

The compute time of the matrix-vector product can be reduced further by evaluation of sgn(Hk)e
(k)
1

on a nested Krylov subspace of size l� k. Nesting reduces the computational effort from O(k3) to
O(l3) +O(kl). The approximation is

sgn(Hk)e
(k)
1 ≈ Vl sgn(Hl)e

(l)
1 , (B.15)

where Vl collects the basis vectors of the nested Krylov subspace. This basis can also be constructed

by the one- or two-sided Lanczos algorithm. Here Hl is the resulting Ritz matrix and e
(l)
1 is the first

unit vector of Cl. Evaluation proceeds on the Krylov subspace Kl(H ′k, e
(k)
1 ) with preconditioned Ritz

matrix

H ′k =
1

2

(
pHk + (pHk)

−1
)
. (B.16)

Here p ∈ R+ is a preconditioning factor that leaves sgn(Hk) unchanged and is chosen such that the
condition number of the (original) matrix A is minimized. For the (non-)Hermitian Wilson-Dirac
kernel a good choice is p = (5.3 · |λNd |)−1/2, with λNd being the largest eigenvalue of γ5DW (in
absolute value) obtained from deflation.

In the following the basic steps of the algorithm are summarized. The first step is deflation and
has to be evaluated only once. The steps 2–6 have to be evaluated for each source vector x provided
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by ARPACK.

1. The Nd right eigenvectors φr and eigenvalues λ of the matrix A are evaluated using the Arnoldi
method provided by ARPACK [110]. If A is non-Hermitian then additionally the Nd left eigen-
vectors φl are evaluated.

2. The components of the source vector x along the eigenvectors are removed,

x′ = x−
Nd∑
i=1

(φ†l,i · x)φr,i . (B.17)

If A is Hermitian then φl,i = φr,i.

3. The one- or two-sided Lanczos algorithm is run with A and x′. One obtains the tridiagonal
Ritz matrix Hk and the orthogonal basis Vk of Kk(A, x′). Here k � dim(A).

4. The Lanczos algorithm is run with the preconditioned Ritz matrix H ′k defined in Eq. (B.16)

and source vector e
(k)
1 . One obtains the Ritz matrix Hl and the orthogonal basis Vl of the

nested Krylov subspace Kl(H ′k, e
(k)
1 ). Here l � k. The Roberts-Higham iteration on H ′k can

be computed efficiently by application of a prior LU decomposition of pHk and application of
optimized linear algebra routines from the BLAS and LAPACK software libraries, see Ref. [88] for
details.

5. The Roberts-Higham iteration Eq. (B.14) is run on Hl. One obtains an estimate for the matrix
sign function sgn(Hl).

6. Computation of

y = sgn(A)x ≈
Nd∑
i=1

sgn(λi)(φ
†
l,i · x)φr,i + |x′|VkVl sgn(Hl)e

(l)
1 , (B.18)

where φl,i = φr,i if A is Hermitian.

On the order of 106 spectra of the overlap operator, each with Nev = 20 . . . 40 eigenvalues, were
evaluated for this study. For deflation (step 1) the accuracy of the residuals was chosen εd =
O(10−12). The relative accuracy of the matrix-vector product Eq. (B.18) is determined by the
deflation gap and by the sizes k and l of the Krylov subspaces. An accuracy εs = O(10−8) was
achieved with even k = 350 . . . 400, l ≈ k/8, and Nd = 60 . . . 80 deflated eigenvalues. The accuracy
of the residuals for the calculation of the eigenvalues of the overlap operator was εev = O(10−6).

The Wilson-Dirac operator was evaluated using CHROMA [107]. Linear algebra was performed
using routines from BLAS and LAPACK optimized for local computer installations. All calculations
were carried out on the Athene HPC cluster, the iDataCool HPC cluster, and the server cluster of
the physics department at the University of Regensburg.

B.2 Statistical bootstrap

Dealing with some unknown distribution function X the bootstrap method provides a simple and
efficient way to obtain non-parametric characteristics θ of the distribution X. Given only a sample
distribution X̂n = (x1, . . . , xn) of X of size n and some sample statistic θ̂n derived from X̂n, one can
give an estimate for the uncertainty in θ̂n using the bootstrap method, see Ref. [75]. This method
is based on B-fold resampling of the items xi of the sample distribution X̂n of X. Each bootstrap
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resample Xi is an independent and identically distributed random sequence from X̂n, i.e., a random
sample of size n of the items xi drawn with replacement. Let θ∗i be the corresponding statistics of
the bootstrap resample Xi, then one calculates

σ2
B =

1

B

B∑
i=1

(θ∗i − θ
∗
)2 , (B.19)

with the mean of the bootstrap samples

θ
∗

=
1

B

B∑
i=1

θ∗i . (B.20)

The estimate for the unknown statistic θ of X is then given by

θ = θ̂n ± σB . (B.21)

The actual choice for the number B of bootstrap resamples differs widely in literature. In this study
the bootstrap method was applied to estimate the error on the best-fit for the chiral condensate,
the pion decay constant and the goodness-of-fit χ2/dof. The spectral densities were constructed by
resampling of sets of eigenvalues of the overlap operator (the sets correspond to the items xi). The
number of resamples was restricted to B = 1000 for all such estimates in this study. This choice
for B was motivated by (i) the scaling of the error on σB by O(1/

√
B), and (ii) the intense compute

time required for fitting the densities. All compute-intensive calculations were carried out on the
server cluster of the physics department at the University of Regensburg.
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Ich möchte mich auch bei allen Beteiligten von QPACE für die sehr gute Zusammenarbeit be-
danken, insbesondere aber bei Prof. Dr. Andreas Schäfer, Prof. Dr. Dirk Pleiter, Dr. Stefan
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