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We measure the quantum capacitance and probe thus directly the electronic density of states of the high
mobility, Dirac type two-dimensional electron system, which forms on the surface of strained HgTe. Here
we show that observed magnetocapacitance oscillations probe—in contrast to magnetotransport—
primarily the top surface. Capacitance measurements constitute thus a powerful tool to probe only one
topological surface and to reconstruct its Landau level spectrum for different positions of the Fermi energy.
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Three-dimensional topological insulators (3D TI)
represent a new class of materials with insulating bulk
and conducting two-dimensional surface states [1–4].
The properties of these surface states are of particular
interest as they have a spin degenerate, linear Dirac-like
dispersion with spins locked to their electrons’ k vectors
[4,5]. Strained HgTe, examined here, constitutes a 3D TI
with high electron mobilities allowing the observation
of Landau quantization and quantum Hall steps down to
low magnetic fields [6,7]. While unstrained HgTe is a zero
gap semiconductor with inverted band structure [8,9], the
degenerate Γ8 states split and a gap opens at the Fermi
energy EF if strained. This system is a strong topological
insulator [10], explored by transport [6,7,11], angle-
resolved photoemission spectroscopy [12], photoconduc-
tivity, and magneto-optical experiments [13–16]; also, the
proximity effect has been investigated [17]. Since these
two-dimensional electron states (2DES) have high elec-
tron mobilities of several 105 cm2=V s, pronounced
Shubnikov–de Haas (SdH) oscillations of the resistivity
and quantized Hall plateaus commence in quantizing
magnetic fields [6,7,11], stemming from both top and
bottom 2DES. The oscillations stem from Landau
quantization which strongly modifies the density
of states (DOS). Capacitance spectroscopy allows us
to directly probe the thermodynamic DOS dn=dμ
(n ¼ carrier density, μ ¼ electrochemical potential),
denoted as D, of a 3D TI. The total capacitance measured
between a metallic top gate and a 2DES depends, besides
the geometric capacitance, on the quantum capacitance
e2D, connected in series and reflecting the finite density
of states D of the 2DES [18–22]; e is the elementary
charge. Below, the quantum capacitance of the top surface
is denoted as e2Dt, the one of the bottom layer by e2Db.
We show that capacitance measures, in contrast to trans-
port, the properties of a single Dirac cone in a 3D TI.
The experiments are carried out on strained 80 nm

thick HgTe films, grown by molecular beam epitaxy on

CdTe (013). For details, see [16]. The Dirac surface
electrons have high electron mobilities of order
4 × 105 cm2=Vs. The cross section of the structure is
sketched in Fig. 1(a). For transport and capacitance
measurements, carried out on one and the same device,
the films were patterned into Hall bars with metallic top
gates. Several devices from the same wafer have been
studied. The measurements were performed at temperature
T ¼ 1.5 K and in magnetic fields B up to 13 T. For
magnetotransport measurements the standard lock-in tech-
nique has been applied. For the capacitance measurements
we superimpose the dc bias Vg with a small ac voltage and
measure the ac current flowing across our device phase
sensitively. The absence of both leakage currents and

FIG. 1. (a) Cross section of the heterostructures studied. The
Dirac surface states (red) enclose the strained HgTe layer.
(b) Schematics of the “three plate capacitor” formed by the
metallic top gate and top and bottom layer (red) with density of
states Dt and Db, respectively. The electric field (black arrows) is
partially screened by the top surface layer. (c) Corresponding
equivalent circuit with the quantum capacitances Ae2Dt and
Ae2Db in series with the respective geometrical capacitances. The
equivalent circuit is the one introduced in [22], but extended by
the quantum capacitance of the bottom surface, Ae2Db. A similar
equivalent circuit was recently introduced in [23].
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resistive effects were controlled by the real part of the
measured ac current.
When the Fermi level (electrochemical potential) is

located in the bulk gap the system can be viewed as a
“three-plate” capacitor where the top and bottom surfaces
form the two lower plates [see Fig. 1(b) and the corre-
sponding equivalent circuit in Fig. 1(c)]. From this equiv-
alent circuit it follows that, as long as Db does not vanish,
the measured total capacitance is more sensitive to changes
of Dt than of Db; the explicit connection between Dt, Db
and total capacitance C is given in the Supplemental
Material [24]. The ratio of ðdC=dDtÞ=ðdC=dDbÞ ¼
ðADbe2 þ CtbÞ2=C2

tb is significantly larger than unity since
ADbe2 þ Ctb is (at B ¼ 0) at least a factor of 2 larger than
Ctb. Here, Ctb is the geometric capacitance Ctb ¼
εHgTeε0A=dHgTe between top and bottom surface, with
εHgTe ≈ 21, the dielectric constant of HgTe [25], dHgTe is
the thickness of the HgTe film, A is the gated TI area, and ε0
the dielectric constant of vacuum. Therefore, the measured
capacitance reflects primarily the top surface’s DOS,Dt. In
the limit Ctb → 0 or e2Db → 0 the total capacitance C is
given by the expression usually used for conventional
2DES: 1=C ¼ 1=Cgt þ 1=Ae2D with the geometric capaci-
tance Cgt ¼ εgtε0A=dgt, where εgt is the dielectric constant
of the layers between gate and top 2DES, dgt is the
corresponding thickness [20,21]. Note that Cgt ≪ e2Dt;
therefore, variations of the DOS cause only small changes
of C. First quantum capacitance measurements have been
reported for Bi2Se3, but the experiments were carried out at
high frequencies at which resistive effects prevail [26].
Typical ρxx and ρxy traces as function of Vg are shown in

Fig. 2(a). ρxx displays a maximum near Vg ¼ 1.5 V,
whereas ρxy changes sign; this occurs in the immediate
vicinity of the charge neutrality point (CNP) [7]. The
corresponding capacitance CðVgÞ at B ¼ 0 in Fig. 2(b)
exhibits a broad minimum between 2.2 and 4.5 V and
echoes the reduced DOS Dt and Db of the Dirac 2DES
when the Fermi energy EF is in the gap of HgTe. For
Vg > 4.5 V, EF moves into the conduction band where
surface electrons coexist with the bulk ones. There, the
capacitance (and thus the DOS) is increased and grows only
weakly with increasing Vg. The weak increase of C with
jVgj, is ascribed to an increase ofCgt at higher jVgj since the
carriers’ wave function is “pressed” towards the interface,
an effect neglected in our description [20,21]. Reducing Vg
below 2.2 V shifts EF below the valence band edge so that
surface electrons and bulk holes coexist. A strong positive
magnetoresistance, a nonlinear Hall voltage, and a strong
temperature dependence of ρxx provide independent con-
firmation that EF is in the valence band [7]. Because of the
valley degeneracy of holes in HgTe and the higher effective
mass, the DOS, and therefore the measured capacitance C
is highest in the valence band.
For B well below 1 T both CðVgÞ and ρxxðVgÞ start to

oscillate and herald the formation of Landau levels (LLs).

The CðVgÞ trace oscillates around the B ¼ 0 capacitance,
shown for B ¼ 2 T in Fig. 2(b). These oscillations, reflect-
ing DOS oscillations, are more pronounced on the electron
side (right of the CNP). This electron-hole asymmetry stems
mainly from the larger hole mass, leading to reduced LL
separation for the holes. At higher fields Hall conductivity
σxy and resistivity ρxy (not shown) become fully quantized.
σxyðVgÞ, shown for B ¼ 4, 7, and 10 T in Fig. 2(c), shows
quantized steps of height e2=h (h ¼ Planck’s constant), as
expected for spin-polarized 2DES.
Transport and capacitance data in the whole Vg and B

space are presented in Figs. 2(d) and 2(e) as 2D color maps
(see Supplemental Material [24] for additional informa-
tion). We start with discussing σxx ¼ ρxx=ðρ2xx þ ρ2xyÞ data
in Fig. 2(d) first. The sequence of σxx extrema is almost
symmetrical to the CNP where electron and hole densities
match. At fixed B the distance ΔVg between neighboring
σxx minima corresponds to a change of density Δn ¼ eB=h
from which we calculate the filling rate dn=dVg ¼ αtotal ¼
7.6 × 1010 cm−2=V at 10 T. The filling rate αtotal describes
the change of the total carrier density n with Vg.
Comparison of electron densities extracted in the classical
Drude regime with densities taken from the periodicity of

FIG. 2. (a) Typical ρxxðVgÞ and ρxyðVgÞ traces measured at B ¼
0 and B ¼ 4 T. ρxx displays a maximum and ρxy changes sign
around the CNP. (b) Capacitance measured at B ¼ 0 and
B ¼ 2 T. The pronounced minimum of the B ¼ 0 capacitance
corresponds to the reduced DOS when EF is in the gap. Hence,
the band edges are at Ev ≈ 2.2 V and Ec ≈ 4.4 V. The quantum
oscillations of the capacitance reflect the oscillations of the DOS.
(c) Hall conductivity σxyðVgÞ measured for B ¼ 4 T (black), 7 T
(red), and 10 T (green). Quantized steps occur on the hole and
electron side. (d) 2D color map of normalized σxxðVg; BÞ data.
The red color stands for σxx maxima while the blue color displays
minima. From the distance between the σxx minima we extract a
filling rate of αtotal ¼ 7.6 × 1010 cm−2=V (see text). This allows
constructing a LL fan chart (dashed yellow lines) which describes
the low filling factors ν well. (e) 2D color map of δCðBÞ ¼
CðBÞ − Cð0Þ as function of B and Vg. As in (d), the blue color
displays gaps between LLs (DOS minima). The LL fan chart is
the same as in (d). CNP, Ec, and Ev are marked on the x axis.
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SdH oscillations have shown that σxx oscillations at high B
reflect the total carrier density in the TI, i.e., charge carrier
densities in the bulk plus in top and bottom surfaces [7].
αtotal is directly proportional to C=A ¼ edn=dVg and
corresponds to C=A ¼ eαtotal ¼ 1.22 × 10−4 F=m2, a value
close to the calculated capacitance Ccalc

gt =A ¼ 1.45 ×
10−4 F=m2 using thickness and dielectric constant of the
layers [see Figs. 1(a) and 1(c) and the Supplemental
Material [24] ]. Using this αtotal, the Landau level fan,
i.e., the calculated positions of the σxx minima as a function
of Vg and B, fits the data for low filling factors ν quite well.
For ν larger than 2 on the electron side the fan chart
significantly deviates from experiment and is discussed
using higher resolution data below. On the hole side where
SdH oscillations stem from bulk holes, fan chart and
experimental data match almost over the whole ðVg; BÞ
range. We now turn to the magnetocapacitance data δC ¼
CðVg; BÞ − CðVg; B ¼ 0Þ shown in Fig. 2(e). The data are
compared to the same fan chart derived from transport. On
the electron side, measured δC minima display a reduced
slope compared to the transport fan chart, pointing to a
reduced filling rate. This is a first indication that capaci-
tance does not reflect the total carrier density in the system
but predominantly the one of the top 2DES only. On the
hole side the LL fan chart fits the data quite well but in
contrast to transport, LL features are less well resolved
there. This asymmetry is related with the different effective
masses; the enhanced visibility in transport is due to that
fact that SdH oscillations depend on D2 while the capaci-
tance depends on D only.
Previous transport experiments have shown that the

periodicity of the SdH oscillations is changed at small
B, corresponding to a reduced carrier density [7]. While at
high fields the SdH oscillations reflect the total carrier
density they echo the carrier density of the top surface at
sufficiently low B. This is due to the fact that SdH
oscillations get, with increasing B, first resolved in the
layer with the higher density and mobility, i.e., higher
partial conductivity and lower LL level broadening [7].
We now compare data taken at B up to 4 T, displayed in

Figs. 3(a) and 3(b), which show marked differences
between transport and capacitance. We start with discus-
sing the capacitance data first. The capacitance [Fig. 3(b)]
shows uniform oscillations of δC with maxima positions,
corresponding to different LLs, which are perfectly fitted
by two fan charts featuring a distinct crossover at about
Vg ¼ 4.4 V. The crossover stems from EF entering the
conduction band causing a reduced filling rate for
Vg > 4.4 V. From the distance of δC minima (or maxima)
at constant B we can extract the filling rate αgaptop in the
gap (2.2 V < Vg < 4.4 V) and for EF in the conduction
band, αbulktop . From Fig. 3(b) we obtain αgaptop ¼ 5.25 ×
1010 cm−2=V and αbulktop ¼ 3.3 × 1010 cm−2=V. This means
that in the gap αgaptop =αtotal ¼ 70% of the total filling rate
apply to the top surface while the remaining 30% can be

ascribed to the bottom surface. The reduced αbulktop for EF
in the conduction band is 0.44αtotal and hence the remaining
filling rate of 56% is shared between bulk and back surface
filling. We note that we obtain reasonable values for
the filling rates only when we assume spin-resolved
LLs. Since there is no signature of spin splitting down
to 0.6 T, where the oscillations fade, the quantum oscil-
lations stem from nondegenerate LLs, proving the topo-
logical nature of the charge carriers. The extrapolation of
the two fan charts towards B → 0 defines two points on the
Vg axis, denoted as V0

g ¼ 1.25 V and V1
g ¼ −0.5 V. These

points correspond to vanishing electron density ntop on the
top surface in case the respective filling rates αgaptop and αbulktop
would stay constant over the entire Vg range. This is not the
case as αbulktop ¼ constant only applies for EF in the con-
duction band and αgaptop ¼ constant for EF in the gap.
Moving EF into the valence band greatly reduces this
filling rate. Therefore, V0

g and V1
g correspond only to virtual

zeros of the electron density while the real one is much
deeper in the valence band.
We now turn to the transport data in Fig. 3(a). To get a

better resolution of the low field SdH oscillations we plot
d2σxx=dV2

g in Fig. 3(a); as before, red regions indicate σxx

FIG. 3. (a) 2D color map of d2σxx=dV2
g between 0 and 4 T.

The red color indicates σxx maxima, the blue color LL’s gaps. The
yellow fan chart, here marking in contrast to Fig. 2 LLs, is the one
taken from (b). Already in the gap the LLs branch out, marked by
the dotted window and for Vg > 4.5 V the data can no longer be
described by a simple fan; the pattern is entangled in a
complicated way, suggesting that electrons of top and bottom
surface and the bulk contribute. (b) Capacitance data correspond-
ing to (a) show a quite regular Landau fan chart. The experimental
data can be fitted by two fan charts originating at V0

g and V1
g. The

different slope of the two fan charts resembles the different filling
rates αgaptop and αbulktop (see text). (c) δC minima for Vg ¼ 2;…; 6 V
and ρxx minima for Vg ¼ 6 V positions on a 1=B scale. (d) Phase
of the δC oscillations as a function of Vg. The gap is marked by
vertical dashed lines.
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maxima. While the same LL fan fits the low B-field data (a
close-up of the data is shown and discussed in the
Supplemental Material [24]) striking deviations occur at
higher B. (i) Transport data for EF in the gap show splitting
of the LLs and for Vg > 4.4 V; i.e., for EF in the
conduction band, a very complex structure with crossing
LLs evolves. (ii) The filling factors given on top of Fig. 3(b)
are the ones of the electrons in the top surface only, while
the filling factors given in Fig. 3(a) are the ones of the total
carrier density. (iii) Extra splitting of the maxima occurs
also in the gap region, most pronounced in the marked
region. We thus conclude that in transport the three
available transport channels (top, bottom surface electrons,
bulk electrons) contribute to the signal and lead to a
complicated pattern of the quantum oscillations as a
function of B and Vg, involving transport via side facets.
The oscillations of δC, in contrast, stem preferentially from
the top surface and allow probing the LL spectrum of a
single Dirac surface. Corrections to that likely occur at
high B and Vg; a level splitting at (Vg ≈ 7 V, B ≈ 3 T) in
Fig. 3(b) suggests that signals from bulk or back surface
can affect also δC at higher B, although to a far lesser
degree when compared to transport.
The fact that the data are best described by spin-resolved

LL degeneracy indicates the surface states’ topological
nature. The phase of the quantum oscillations δ defined by
ð1=Bmin;nÞ=Δ1=B ¼ nþ δ is another indicator of topologi-
cal surface states [27]. Here, Bmin;n is the magnetic field
position of the nth oscillation minimum and Δ1=B is the
period of the oscillations on the 1=B scale. The phase
can be obtained by plotting the integer oscillation index n
vs 1=Bmin;n. This is shown in Fig. 3(c) both for δC
(Vg ¼ 2;…; 6 V) and transport oscillations (for
Vg ¼ 6 V). While the δC minima lie on straight lines with
intercepts δ shown in Fig. 3(d), the corresponding transport
minima display two slopes. At low fields, where the
oscillations stem from the top surface only, the phase
factor is δ ¼ 0.72� 0.04 showing the same value as
extracted from capacitance ¼ 0.7� 0.04, but for high field
SdH oscillations, stemming from both layers, δ ∼ 0, as for
conventional 2DES. In Fig. 3(d) we show the evolution of δ
as a function of Vg. For EF in the gap δ is close to 0.5
expected for ideal Dirac fermions of a single surface. δ
vanishes quickly for EF entering the valence band and
gradually for increasing Vg. The latter we ascribe to
increasing hybridization of the surface and bulk states
deep in the conduction band. Our experiments prove that a
finite phase δ which is a direct fingerprint of the Berry
phase acquired by electrons in B fields, can only be
observed if the oscillations stem from a single topological
surface.
In summary, we present measurements of the quantum

capacitance of a TI which directly reflects the DOS of Dirac
surface states. The magneto-oscillations of the quantum
capacitance allow tracing the LL structure of a single Dirac

surface. The complimentary information provided by trans-
port and capacitance experiments is promising in getting a
better understanding of the electronic structure of TIs, the
latter being particularly important for potential applications
of this new class of materials.
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