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Thesis abstract 

 
The present dissertation presents the doctoral work developed during the last three years at the 

University of Regensburg (UR, Regensburg, Germany) and at the Istituto Italiano di Tecnologia (IIT, 

Genoa, Italy). The work was focused on the development and characterization of magnetic 

nanoparticles for different applications, resulting in three main projects discussed herein. The first two 

were developed at the UR whereas the last one was carried out at the IIT. 

The first chapter deals with the stabilization of carbon-coated cobalt nanoparticles (Co/C, 1) via 

surface engineering in order to avoid their agglomeration in solution. In particular, different types of 

surface coatings were applied to these magnetic nanoparticles (MNPs) and their effect on the magnetic 

properties of the materials was evaluated. Silica-coated Co/C nanoparticles (Co/C@SiO2, 4) were 

successfully synthesized, revealing good dispersion in different solvents without compromising the 

high saturation magnetization (MS) which was kept at 140 emu·g-1. The inorganic silica shell offers a 

new platform for further functionalization or incorporation of other molecules of interest e.g. metal 

catalysts. In addition, polyethyleneimine (PEI) grafting on the nanoparticles by direct polymerization 

of aziridine resulted in remarkably stable nanoparticles (Co/C-PEI, 14), which showed good 

dispersibility in aqueous solutions even over months of incubation. This fact is attributed to the 

significantly high loading of hydrophilic amino moieties which results in a MS decrease to 39 emu.g-1. 

Nevertheless, the MNPs could still be collected by an external magnet in less than a minute. The 

combined functionalization of Co/C nanoparticles using silica and PEI was also studied. For this 

purpose, a silica shell was first developed and then functionalized by aziridine polymerization. The 

resulting MNPs (Co/C@SiO2-PEI, 15) showed quite good dispersion in both aqueous and organic 

solutions, revealing a MS comparable to Co/C-PEI. Having a multitude of surface coatings available 

enlarges the number potential applications given to Co/C nanoparticles e.g. as supports for catalysis, 

reagent scavengers and for bioremediation. Moreover, the surprising stability of Co/C-PEI dispersions 

in water might as well allow their application on the biotechnological field. 

In the second chapter the ability of Co/C nanoparticles to remove mercury ions from water was 

explored. Especially Co/C-PEI (14) nanoparticles showed high efficiency to remove Hg2+ from 

contaminated water samples, even in the presence of competitive metal ions. These magnetic 

nanoparticles showed a high extraction capacity compared to other reported studies, accompanied by a 

selectivity character that favors the extraction of toxic mercury over other ions at relevant 

concentrations. Furthermore, no cobalt leaching could be observed and when using Co/C-PEI and the 

MNPs could be reused for at least six consecutive cycles. Moreover, the scale up of the process was 

effectively proved by the decontamination (≤ 2 µg.L-1 Hg2+) of 20 L of drinking water, containing 

30 µg.L-1 Hg2+, using just 60 mg of Co/C-PEI nanoparticles. 
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The third chapter discusses the preparation of suitable magnetic nanocarriers for small interfering 

RNA (siRNA) delivery into living cells. It elucidates the functionalization of water soluble magnetic 

nanocubes (NCs) with positively charged polymers for subsequent electrostatic binding of negatively-

charged siRNA molecules and their in vitro evaluation. Two different approaches were followed. The 

first one consisted on the development of a polymer coating on the surface of manganese ferrite 

nanocubes, followed by functionalization of the polymeric shell with N’N’-dimethylethylenediamine 

(DMEDA) and polyethylene glycol molecules (cationic Mn-cubes, 22). In the second approach iron 

oxide nanocubes were functionalized with a copolymer of (dimethlyamino)ethyl methacrylate 

(DMAEMA) and oligoethylene glycol methyl ether methacrylate (OEGMEMA) (cationic IONCs, 25), 

which revealed even higher surface charge. Therefore, cationic IONCs (25) proved to be more 

efficient for loading, protecting and delivering the siRNA while limiting the non-specific protein 

adsorption. In addition, no cytotoxic effects were detected, proving the potential of this nanocarrier for 

their usage in biological systems. At the latest stage of this work the efficiency of the nanocarriers to 

deliver the siRNA into living cells was assessed by measuring the expression of green fluorescent 

protein (GFP). Cationic IONCs (25) carrying anti-GFP siRNA revealed promising results, with an 

overall 40% downregulation on protein expression.  
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Zusammenfassung 

 
Die vorliegende Dissertation gibt die Arbeit der letzten drei Jahre an der Universität Regensburg (UR, 

Regensburg, Deutschland) und dem Istituto Italiano di Tecnologia (IIT, Genua, Italien) wieder. Die 

Arbeit war fokussiert auf die Entwicklung und Charakterisierung von magnetischen Nanopartikeln für 

verschiedene Anwendungen, von denen die drei Hauptprojekte hier diskutiert werden. Die ersten Zwei 

wurden hierbei an der UR entwickelt, das Dritte am IIT durchgeführt. 

Das erste Kapitel behandelt die Stabilisierung von kohlenstoffbeschichteten Cobaltnanopartikeln 

(Co/C, 1) in Lösung mittels Oberflächenmodifikation. Hierfür wurden verschiedene 

Oberflächenbeschichtungen auf den magnetischen Nanopartikeln (MNPs) angebracht und deren Effekt 

auf die magnetischen Eigenschaften der Materialien untersucht. Silicabeschichtete Cobaltnanopartikel 

(Co/C@SiO2, 4) wurden erfolgreich synthetisiert und zeigten gute Dispergierbarkeit in verschiedenen 

Lösungsmitteln, ohne dabei die hohe Sättigungsmagnetisierung (Ms) der unbehandelten Nanopartikeln 

zu beeinträchtigen, welche bei 140 emu·g-1 liegt. Die anorganische Silicahülle stellt eine neue 

Plattform für die weitere Funktionalisierung oder die Einlagerung anderer interessanter Moleküle wie 

z.B. Metallkatalysatoren dar. Auch durch das Anbringen von Polyethylenimin (PEI) durch direkte 

Polymerisation von Aziridin konnten erstaunlich stabile Nanopartikel (Co/C@PEI, 14) gewonnen 

werden, welche selbst über Monate hinweg gute Dispergierbarkeit in wässrigen Lösungen zeigten. 

Dies wird der hohen Beladung an hydrophilen Aminogruppen zugeschrieben, welche zu einer 

Reduktion der MS auf 39 emu·g-1 führen. Nichtsdestotrotz können die MNPs mit Hilfe eines externen 

Magneten in weniger als einer Minute gesammelt werden. Die kombinierte Funktionalisierung der 

Co/C-Nanopartikel mit Silica und PEI wurde ebenfalls untersucht. Hierfür wurde zuerst eine 

Silicahülle aufgetragen und anschließend durch Aziridinpolymerisation funktionalisiert. Die so 

erhaltenen MNPs (Co/C@SiO2-PEI, 15) zeigten verhältnismäßig gute Dispergierbarkeit in sowohl 

wässrigen als auch organischen Lösungen, mit einer MS vergleichbar zu Co/C-PEI. Die Verfügbarkeit 

einer Vielzahl an Oberflächenbeschichtungen vergrößert die Anzahl an potentiellen 

Anwendungsmöglichkeiten für Co/C-Nanopartikel, z.B.: als Trägermaterial für Katalysatoren, als 

Scavenger für Reagenzien oder zur Bioremediation. Hinzu kommt auch die erstaunliche Stabilität von 

Co/C-PEI-Dispersionen in Wasser, welche zusätzlich deren Einsatz in der Biotechnologie erlauben 

könnte. 

Im zweiten Kapitel wird die Fähigkeit von Co/C-Nanopartikeln Quecksilberionen aus Wasser zu 

extrahieren näher untersucht. Insbesondere Co/C-PEI-Nanopartikel (14) zeigten hohe Effizienz in der 

Entfernung von Hg2+ aus kontaminierten Wasserproben, selbst in Anwesenheit von anderen, 

kompetitiven Metallionen. Diese magnetischen Nanopartikel zeigten eine hohe Extraktionskapazität 

im Vergleich zu anderen veröffentlichen Studien, in Verbindung mit einer Selektivität für die 

Extraktion von toxischem Quecksilber in relevanten Konzentrationen gegenüber anderen Ionen. Hinzu 

kommt, dass kein Cobaltleaching festgestellt werden konnte wenn Co/C-PEI-Nanopartikel verwendet 
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wurden und die MNPs in mindestens sechs aufeinanderfolgenden Zyklen wiederverwendet werden 

konnten. Zudem konnte die Hochskalierung des Prozesses erfolgreich am Beispiel der 

Dekontamination (≤ 2 µg·L-1 Hg2+) von 20 L Trinkwasser, welches 30 µg·L-1 Hg2+ enthielt, gezeigt 

werden, wobei nur  60 mg Co/C-PEI-Nanopartikel verwendet wurden. 

Das dritte Kapitel behandelt die Darstellung von geeigneten Nanocarrieren als Transporter für „small 

interfering RNA“ (siRNA) in lebende Zellen. Es erläutert die Funktionalisierung von wasserlöslichen, 

magnetischen Nanocubes (NCs) mit positiv geladenen Polymeren für die elektrostatische Bindung der 

negativ geladenen siRNA-Moleküle, sowie deren Evaluation in vitro. Dabei wurden zwei 

verschiedene Herangehensweisen untersucht. Die Erste beinhaltete die Entwicklung einer 

Polymerbeschichtung der Manganferrit-Nanocubes, gefolgt von der Funktionalisierung der 

Polymerhülle mit N‘-N‘-Dimethylethylendiamin (DMAEMA) und Polyethylenglykolmolekülen 

(cationic Mn-cubes, 22). Der zweite Ansatz war die Verwendung eines Copolymers aus 2-

Dimethylaminoethylmethacrylat (DMAEMA) und Oligoethylenglykolmethylether (OEGMEMA) auf 

den Eisenoxid-Nanocubes (cationic IONCs, 25), welche eine höhere Oberflächenladung zeigten. In 

der Tat zeigten (cationic IONCs, 25) eine höhere Effizienz bei Beladung, Abschirmung und Transport, 

bei gleichzeitiger Verringerung von nicht-spezifischer Proteinadsorption. Zudem konnten keine 

zytotoxischen Eigenschaften nachgewiesen werden, was für das Potential dieses Nanotransporter und 

ihre zukünftige Anwendung in biologischen Systemen spricht. Auf der letzten Stufe dieser Arbeit 

wurde die Effektivität der Nanomaterialien als Transporter für siRNA in lebende Zellen durch 

Expression von grün fluoreszierendem Protein (GFP) untersucht. Mit anti-GFP siRNA-beladenes 

IONCs (25) zeigte vielversprechende Resultate, mit einer um 40% verminderten Proteinexpression. 
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Riassunto 

 
La presente tesi di dottorato espone il lavoro di ricerca svolto durante gli ultimi tre anni presso 

l’università di Regensburg (UR, Regensburg, Germania) e l’Istituto Italiano di Tecnologia (IIT, 

Genova, Italia). L’attività scientifica si è focalizzata sullo sviluppo e la caratterizzazione di 

nanoparticelle magnetiche per differenti applicazioni, attraverso tre progetti principali qui discussi. I 

primi due progetti sono stati svolti all’università di Regensburg, il terzo presso l’Istituto Italiano di 

Tecnologia. 

Il primo capitolo riporta la stabilizzazione in soluzione di nanoparticelle di cobalto rivestite di 

carbonio (Co/C, 1) per mezzo di modificazioni chimico-fisiche della superficie, al fine di evitarne 

l’agglomerazione. In particolare, diversi tipi di rivestimento sono stati studiati e si è analizzato il loro 

effetto sulle proprietà magnetiche delle nanoparticelle. Nanoparticelle Co/C rivestite di silicio sono 

state sintetizzate con successo, dimostrando buona stabilità in diversi solventi ed il mantenimento di 

un valore di saturazione di magnetizzazione (Ms) pari a 140 emu.g-1. Questo si presta inoltre a 

successive funzionalizzazioni e all’introduzione di molecole quali catalizzatori metallici. In aggiunta 

alla sopracitata funzionalizzazione, la sintesi diretta di un rivestimento di polietilenamina, ottenuto 

tramite polimerizzazione dell’aziridina, ha dimostrato essere in grado di incrementare la stabilità delle 

nanoparticelle (Co/C-PEI, 14) in soluzione acquosa fino diversi mesi. Tale fenomeno può essere 

attribuito al significativo aumento di gruppi idrofilici, dovuti alla presenza delle amine, che tuttavia ne 

hanno determinato una diminuzione della Ms a 39 emu.g-1. Ciononostante, le MNPs possono ancora 

essere raccolte in pochi secondi attraverso l’utilizzo di un magnete esterno. È stato inoltre affrontato lo 

studio dell’uso combinato di questi due materiali di rivestimenti. A tale scopo, un guscio di silicio è 

stato sintetizzato e successivamente funzionalizzato per mezzo della polimerizzazione dell’aziridina. 

Le MNPs risultanti (Co/C-@SiO2-PEI, 15) hanno mostrato una discreta stabilità sia in fase acquosa sia 

in fase organica ed una saturazione di magnetizzazione paragonabile a quella riportata per Co/C-PEI. 

La disponibilità di diversi rivestimenti superficiali per le nanoparticelle di Co/C ne aumenta le 

possibili applicazioni come supporti per catalizzatori e agenti di rimozione di inquinanti dalle acque. 

Inoltre, la notevole stabilità in acqua delle nanoparticelle Co/C-PEI ne può altresì permettere 

l’applicazione in campo biotecnologico. 

Nel secondo capitolo è analizzata la capacità delle nanoparticelle di Co/C di rimuovere ioni di 

mercurio dalle acque. Nanoparticelle Co/C-PEI (14) hanno dimostrato un’elevata capacità di 

rimozione deli ioni Hg2+ da campioni di acqua contaminata, anche alla presenza di ioni metallici 

competitori. La capacità estrattiva e la selettività di tali nanoparticelle si sono rivelate essere molto 

elevate se paragonata ad altri casi oggetto studiate, favorendo l’estrazione di mercurio rispetto ad altri 

ioni presenti anche ad elevata concentrazione, fino ad un massimo di sei cicli di estrazione 

consecutivi. Nondimeno, la possibilità delle scale up del processo di estrazione è stata dimostrata 
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attraverso la decontaminazione di 20 L di acqua contenente 30 µg.L-1 di Hg2+ fino a livelli accettabili 

(≤ 2 µg.L-1), usando solamente 60 mg di nanoparticelle Co/C-PEI.  

Infine, il capitolo 3 presenta la preparazione di nanoparticelle magnetiche per il delivery di siRNA 

(small interfering RNA) nelle cellule. Il capitolo riguarda la funzionalizzazione di nanocubi (NCs) 

magnetici, solubili in acqua, con un rivestimento polimerico carico positivamente in grado di formare 

legami elettrostatici con molecole di siRNA che presentano invece carica negativa, e la loro successiva 

valutazione in vitro. Due diversi approcci sono studiati a tal scopo. Il primo consiste nello sviluppo di 

un guscio polimerico sulla superficie dei nanocubi di ferrite di manganese, seguito dalla sua 

funzionalizzazione con molecole di N’N’- dimetiletilenediamina (DMEDA) e polietilenglicole 

(cationic Mn-cubes, 22). Il secondo approccio fa uso invece di nanocubi di ossido di ferro con un 

copolimero composto di (dimetilamino)etile metacrilato (DMAEMA) e oligoetilene glicole metil etere 

metacrilato (OEGMEMA) (cationic IONCs, 25) il quale reca una maggiore carica di superficie rispetto 

al primo. Infatti, IONCs (25) si sono dimostrati più efficienti nel caricare, proteggere e rilasciare il 

siRNA, limitando inoltre l’adsorbimento aspecifico di proteine che potrebbe diminuire la performance 

delle nanoparticelle. In aggiunta, nessun effetto citotossico è stato osservato rendendo tali particelle 

potenziali candidate per applicazioni biologiche. L’ultima parte di questo lavoro tratta l’efficienza di 

questi nanovettori nel delivery di siRNA all’interno delle cellule attraverso lo studio dell’espressione 

della green fluorescent protein (GFP). IONCs (25) recanti il siRNA anti-GFP hanno prodotto risultati 

promettenti, con una riduzione dell’espressione della proteina fino al 40%. 
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The potential of magnetic nanoparticles in a glance 

 

 

 

 

 

1. Magnetic nanoparticles: motivation and overview 

Nanotechnology is one of the major research fields in modern science. The concept behind 

nanoscience started, back in 1959, with the famous statement made by physicist Richard Feynman: 

“There is plenty of room at the bottom”.1 Whereas Feynman, known as the “father” of nanoscience, 

brought out the concept of manipulating materials with atomic precision, the term nanotechnology was 

first used in 1974 by Norio Taniguchi.2  Although modern nanoscience is quite recent, its signs were 

unconsciously known for centuries. From the Lascaux cave paintings to the windows in the Notre-

Dame cathedral, alternate sizes of gold and iron oxide particles created suggestive colors which 

animated the everyday life of people. Back then, the artists were just not aware of the underlying 

physicochemical principles which led to that plethora of colors. Nowadays, nanotechnology allows the 

controlled synthesis and functionalization of materials on the nanometer scale, providing engineers, 

chemists and physicists, the new “nanotechnologists”, the possibility to work on a molecular or 

cellular level. Such fundamental control of the materials at the nanoscale, promise a broad and 

revolutionary technology platform for life sciences and healthcare applications. Indeed, developments 

in nanoscience have provided the manufacturing of nanomaterials for industry, biomedicine, 

environmental engineering, safety and security, food, water resources, energy conversion, and many 

other areas.3 
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Involved in the development of this current technology, magnetic materials composed of metals such 

as nickel, cobalt, iron and metal oxides have been on focus of research. They can be found in a variety 

of devices, e.g. batteries, hard disks and videotapes, and the interest in miniaturizing these materials 

led to the discovery of magnetic nanoparticles (MNPs) which display different properties from the 

bulk.4 At the present time, the potential of magnetic nanoparticles is well described for applications in 

catalysis,5-8 biomedicine,9-11 data storage,12 and even environmental remediation.13,14 Especially in 

liquid systems they are very interesting as they can, with an appropriate surface chemistry, be 

homogeneously dispersed, highly reactive and easily separated with the aid of a magnet, due to their 

high response to a magnetic field.15,16  

There are countless methods of synthesizing different kinds of magnetic nanoparticles and their 

success depends highly on the chemical stability of the resultant materials.4,15 Moreover, once 

industrial applications of nanoparticles cover a broad spectrum of solvent media they need to be 

dispersible in various liquid phases. For instance, in water bioremediation, the MNPs  need to give a 

stable dispersion in aqueous solutions, but also a magnetic moment high enough to allow their simple 

and effective recovery by an external magnet, once the purification is completed.17 Differently, for 

biomedical applications, they must ensure biocompatibility and colloidal stability at physiological 

conditions. The stability of the particles in terms of agglomeration and reactivity can be solved by 

coating their surface.15 These coatings can be developed from organic species such as surfactants15 or 

polymers15,18,19 or inorganic material like silica20-22 or carbon.16,23 In most of the cases, the shell not 

only stabilizes the particles, but also acts as an anchor or additional surface for further 

functionalization.  

Driven by the remarkable advances on magnetic nanoparticles research, this chapter revises their 

features and applications, pointing out relevant findings for their potential use in the industrial and 

biomedical fields. 

 
2. Basics of magnetism for nanoparticles 

Magnetic effects are caused by movements of particles that have both mass and electric charges. A 

spinning electric-charged particle creates a magnetic dipole, known as magneton. In ferromagnetic 

materials, magnetons are associated in groups.3 The volume of ferromagnetic material in which all 

magnetons are aligned in the same direction is called magnetic domain, and this distinguishes 

ferromagnetism from paramagnetism, being the latter one defined as a single domain state. Magnetic 

domains are separated by domains walls and depend on the size of the particles. Below a certain 

critical size, it costs more energy to create a domain wall than to support the external magnetostatic 

energy of the single domain. Therefore, magnetism assumes that the state of lowest energy of 

ferromagnetic particles has uniform magnetization for smaller particles and non-uniform 

magnetization for larger ones.3,15,24 As shown in Fig. 2, nanoparticles below a critical size are called 
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single domain,  which means that they are uniformly magnetized with all the spins aligned in the same 

direction; bigger particles instead are multi-domain structured.15 

 

Fig. 1 Schematic illustration of the coercivity-size relations of small particles. 

The reaction of ferromagnetic materials to an applied magnetic field is well described by a hysteresis 

loop which is characterized by coercivity and remanence (Fig. 3B left). After achieving the saturation 

magnetization (MS) and removed the magnetic field applied, ferromagnetic materials, instead of 

retracing their original path, retain some memory known as remanence. To completely reduce the 

magnetization to zero, a coercive force must be applied. Thus, coercivity measures the resistance of 

the material to demagnetization, and is usually represented as a hysteresis curve (Fig. 3B).15,25  

As shown in Fig. 2, coercivity is strongly size-dependent: it increases to a maximum as the particle 

size is reduced until the critical value at which the transition from multi-domain to single domain is 

reached, and then decreases toward zero. For multi-domain particles the inversion of the magnetic 

moment occurs by the displacement of the magnetic domain walls (Fig. 3A); this process requires 

small amounts of energy and consequently leads to low coercivity values. 3,15,25,26 Instead, for single 

domain particles the direction switching of the magnetic dipole occurs through the overcoming of the 

anisotropy energy barrier (EA) which is defined by the following equation: 

EA = KeffV 

where Keff is the effective anisotropy constant of the particles and V is their magnetic volume.27 

Therefore, the higher is the volume of single domain nanoparticles and the anisotropy constant, the 

higher is the value of coercivity. 

When the size of the single domain particle is further decreased to another critical value at which 

thermal energy is high enough to easily overcome the anisotropy barrier, the magnetic moments of the 

particles become independent from each other and they are spontaneously and continuously reversed 
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resulting in absence of coercivity (Fig. 3A). This phenomenon is called superparamagnetism, because 

like paramagnetism is characterized by absence of coercivity, while significant saturation 

magnetization values are maintained (Fig. 3B right).3,15,26 

 

Fig. 2 A) Magnetic moment of ferromagnetic and superparamagnetic nanoparticles. Under a magnetic field the 

domain walls in ferromagnetic materials are removed and the spins aligned to the direction of the magnetic field, 

saturating the magnetization. Whereas, superparamagnetic materials which are defined as single domain 

structures have no domain walls to be removed, but simply the alignment of the magnetic moments to the 

direction of the field. The domain structure of the magnetic materials has been drawn for simplicity. Reproduced 

with permission from reference 3. B) Typical hysteresis curves obtained for ferromagnetic (left) and 

superparamagnetic (right) nanoparticles. 

The abovementioned properties make superparamagnetic nanoparticles actually magnetic only in the 

presence of a magnetic field. The magnetic behavior is reverted to nonmagnetic state when the field is 

removed ensuring a good dispersion of the particles and avoiding the typical aggregation problems 

from ferromagnetic materials. For that reason, this specific type of nanoparticles is very appealing for 

biomedical applications.28  
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For any application, it is usually required a surface coating of the MNPs with some organic ligands or 

inorganic species to stabilize them and add specific functionalities. The presence of these coatings on 

the surface modulates the magnetic properties by modifying the anisotropy of the metal atoms 

allocated on the surface. This usually leads to a decrease in the magnetic moment which is attributed 

to the presence of a magnetically dead layer on top of the MNPs.29,30 Therefore, smooth changes on 

size and surface coating have an impact on the coercivity and consequently on the magnetic 

performance of the particles. Hence, MNPs have to be carefully tailored to provide suitable 

nanomagnets for the diverse applications envisage.  

 

3. Surface coating effects on the magnetic properties of nanoparticles 

Despite all the significant developments on the synthesis of magnetic nanoparticles differing in shape, 

size and composition, their protection and stabilization in solution are crucial requirements for any 

application. The stability of a magnetic colloidal suspension results from the equilibrium between 

attractive and repulsive forces. Theoretically, four kinds of forces can contribute to the inter-particle 

potential in the system: (1) van-der-Waals forces, (2) dipolar forces, (3) steric repulsion and (4) 

electrostatic attractive forces. Controlling the strength of these forces, by applying different surface 

coatings, is a key parameter to obtain good dispersibility of the particles.27 

However, it is well known that the addition of mass on top of the magnetic nanoparticles modulates 

the magnetization values, limiting the potential applications of the final material. The Saturation 

magnetization (MS) of magnetic particles is defined on a per gram basis (emu.g-1), thus a non-magnetic 

shell will necessarily decrease it. This reduction has been mainly associated to the existence of a 

magnetically dead layer on the particle’s surface. Consequently, a commitment between stabilization 

of the nanoparticles dispersion in solution and preservation of high magnetic moments has to be 

considered when designing coating methodologies.15,28 More specifically, ligands such as polyethylene 

glycol, dextran and aminosilanes which are often used to improve the suspension of magnetic 

nanoparticles in liquid phase, modulate their magnetic properties by modifying the anisotropy and 

reducing surface magnetic moment of the metal atoms located at the surface of the particles.29,30  

This modulation in the magnetic properties was recently reported by Borca-Tasciuc et al. who 

demonstrated, in commercial magnetic nanoparticles, that the effect on the magnetic phase varies 

according to the surface functionalization as well as with the solvent used for the measurement.31 

The different types of coatings commonly used can be roughly categorized in two groups: organic and 

inorganic coatings. The first one includes the use of surfactants or polymeric shells, while inorganic 

coatings comprise silica, carbon or precious metals.15 

In order to better understand the general implications of the surface coating on the magnetic response 

of nanoparticles silica and polymer coatings will be further discussed here.  
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Silica coatings have been widely applied in iron oxide nanoparticles to prevent aggregation in the 

liquid phase and enhance their chemical stability. The inert silica shell inhibit particles agglomeration 

by two different mechanisms: (1) it shields the magnetic dipole interaction and (2) it improves the 

coulomb repulsion of the nanoparticles due to its negative charge. It also prevents the direct contact of 

the magnetic core with other molecules which might compromise their activity, as it e.g. happens for 

the attachment of dyes which usually leads to luminescence quenching.27 These features are controlled 

by varying the shell thickness (Fig. 4), which can be achieved by altering the amount of silica 

precursor, usually tetraethyl orthosilicate (TEOS), or the amount of catalyst during synthesis.32  

 

Fig. 3 (A-C) Transmission electron microscopy (TEM) images of iron oxide nanoparticles whose surfaces have 

been coated with silica shells of various thicknesses. In this case, the thickness of silica coating could be 

controlled by adjusting the amount of precursor added to the solution:  (A) 10, (B) 60, and (C) 1000 mg of TEOS 

to 20 mL of 2-propanol. (D) A high-resolution transmission electron microscopy (HRTEM) image of the iron 

oxide nanoparticles whose surface has been uniformly coated with 6 nm of amorphous silica shell. Reproduced 

with permission from reference 39. Copyright 2002, American Chemical Society. 

The preferred method to synthesize silica shells is the Ströber method also known as sol-gel process. 

This synthesis provides an hydrophilic, readily functionalizable additional shell on the nanoparticles 

surface.15 Following such a procedure, the silica is generated in situ by the hydrolysis and 

condensation of a sol-gel precursor, usually TEOS.32-35 This method was first applied to rod-like 

particles, then to micrometer-sized hematite and later to iron oxide nanoparticles.32  

For instance, Simard et al. synthesized multifunctional magnetic nanoparticles, involved in a silica 

shell doped with a dye. The authors claim comparable emission properties to the free dye molecules, 
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suggesting the successful hindrance of contact between dye and magnetic core offered by the presence 

of an outer silica shell. However, the saturation magnetization of the silica-coated iron oxide MNPs 

was observed to be much lower than that of the as-received MNPs. This fact is attributed to the 

presence of the non-magnetic silica shell (10-15 nm thick) which drops the magnetization from about 

60 to 10 emu·g-1.36 

Another method to prepare the silica coating is by microemulsion synthesis. In this case, micelles or 

inverse micelles are used to confine and control the silica coating. This method requires greater effort 

to separate the core-shell nanoparticles from a large amount of surfactant associated with the 

microemulsion system.27 For example, Zhang et al. have reported the synthesis and characterization of 

Mn and Co spinel ferrite silica coated nanoparticles with tunable magnetic core, by using a reverse 

micelle microemulsion approach. Also in this case, the authors clearly proved that both CoFe2O4 and 

MnFe2O4 have reduced MS after silica coating.37 More recently, the same effect was detected for 

NiFe2O4 which showed a reduced MS after coating with silica.38  

Surfactants or polymers are also often employed to enhance stability, biocompatibility and 

functionality of MNPs. These molecules can be chemically anchored or physically adsorbed on the 

surface of the MNPs, to form a shell which creates repulsive forces that balance the attractive van der 

Walls forces acting on the nanoparticles.15 Specifically, polymers containing functional groups such as 

carboxylic acids, phosphates and sulfates can easily bind the surface of iron oxide nanoparticles.39 In 

addition, a wide variety of suitable polymers were used for the coating of diverse MNPs, including 

polyamines,19 poly(methacrylic acid),40 dextran (DXS) and poly(l-lysine),41 polystyrene,42,43 among 

others. 

The effect of e.g. an N-isopropylacrylamide (NIPAM) coating on the magnetic properties of Fe3O4 

MNPs was shown to decrease the magnetization of the synthesized nanoparticles from 76 to 52 emu·g-

1.44 Moreover, the magnetization of dextran-coated MNPs was evaluated to be around 7 emu·g-1. Such 

low value, certainly makes magnetic detection and separation by application of a magnetic field very 

difficult.45 Differently, the coating of IONCs by an amphiphilic polymer, developed by Pellegrino et 

al., resulted in no changes in coercivity and saturation magnetization. These findings indicate a bulk-

like behavior of the nanocubes.46 

Another type of material which might provide better solutions considering magnetic handling of the 

particles are carbon-coated cobalt (Co/C) MNPs. The surface of Co/C ferromagnetic nanoparticles, 

first synthesized by Stark et al., can be easily functionalized with different species.16 Using diazonium 

chemistry on the carbon outer shell allows the introduction of a multitude of functional groups. Further 

polymerization can be done directly from these functional sites or by click chemistry e.g. described by 

Reiser et al.19 Recently, Stark et al. have developed a versatile platform for click reactions of relevant 

tag molecules with enhanced stability in solution of the Co/C ferromagnetic nanoparticles (Fig. 5). The 

materials were prepared by surface initiated atom transfer radical polymerization (SI-ATRP). A 

reduction in MS due to the presence of a non-magnetic layer was observed also in this case. 



14 

Nevertheless, significantly high values of magnetization are still observed (over 90 emu·g-1) when 

compared to the most conventional iron oxide nanoparticles.45 

 

Fig. 4 TEM of stable Co/C MNPs showing the separation and the polymer layer surrounding the metal cobalt 

core. Adapted with permission from reference 53. Copyright 2014, Royal Society of Chemistry. 

Despite the obvious tendency of the magnetization to be reduced upon the addition of nonmagnetic 

mass on the surface of the particles, especially polymers or silica, a clear correlation between these 

two parameters cannot be established and generalized for all cases. For instance, gold-coated cobalt 

nanoparticles have a lower magnetic anisotropy than uncoated particles, whereas gold coating of iron 

particles enhances the anisotropy, an effect which was attributed to alloy formation with the gold.30 

Similarly, magnetic coatings on top of MNPs have a dramatic effect on the final magnetic properties, 

since the combination of two magnetic phases will lead to new magnetic nanocomposites.15 

Overall, the coercivity and hence the magnetic behavior of MNPs to an inert coating is rather complex 

and system specific. Therefore, the concept of magnetization reduction on addition of mass cannot be 

generalized, as the effects highly depend on the type of coating and its features as well on the nature of 

magnetic core, shape and size of the nanoparticles. 

 

4. Applications of magnetic nanoparticles 

4.1. Nanoparticles as potential tools in industry  
Considering the developments on synthesis, functionalization and detailed characterization realized on 

magnetic nanoparticles, one can only imagine that research has resulted in thousands of potential 

application for these nanotools. However, how many of these applications can actually be translated to 

relevant industrial processes is not clear. The advantages of using magnetic nanoparticles in contrast to 

conventional materials are obvious: they offer the possibility of magnetic separation together with the 

advantageous features of nano-sized materials. Thus, potential sustainable applications where MNPs 

can actually replace conventional methodologies and materials are nowadays on focus of research. 
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At the present time, chemistry allows cost-effective manufacturing of compounds in a variety of 

processes. The key factor remains the separation and isolation of reagents, catalysts or intermediates. 

Industrial conventional processes are based on time-consuming or costly techniques such as 

distillation, chromatography, crystallization and filtration. A novel approach using MNPs combines 

provides fast and efficient magnetic separation.47 In addition, chemical processes such as ore refining, 

active ingredient isolation, impurity removal and pharmaceutical manufacturing present a common 

problem related to the low concentration of important substances or reagents in large liquid volumes. 

Therefore, MNPs with high surface-to-volume ratio rise as a very attractive solution due to the 

possibility of capturing such reagents that are subsequently removed by magnetic separation.47 

The potential application of MNPs in different industrial processes including catalysis and 

bioremediation are discussed on the following paragraphs.  

4.1.1. (Bio)Catalytic applications 

Catalysis is a field of great importance since it provides a sustainable way to convert raw materials 

into valuable chemicals and fuels in an economical, efficient, and environmentally benign manner. 

The rationale behind it is the synthesis of compounds while minimizing the use and generation of 

hazardous substances and time-consuming wasteful purification techniques. In short, an ideal catalytic 

system must fulfil three main aspects: reactivity, easy recovery and possibility of re-use.48-50  

The field of catalysis is undergoing an explosive development on the design of catalysts with excellent 

activity, greater selectivity and high stability. Here, MNPs have been widely applied as supports for 

heterogeneous catalysts. They allow the dispersion of the catalyst in solution combined with a fast and 

easy way to recover it from the reaction medium when isolating the product.47,48 

The easy and economic synthesis of magnetic nanoparticles from inexpensive raw materials in 

combination with the simplicity of magnetic handling might outperform and replace conventional 

materials such as zeolites and silica at the industrial scale in a near future. However, first, 

environmental implications concerning the toxicity of these nanomaterials need to be solved.48,49 

A broad assortment of catalytic reactions has been studied using catalysts supported on magnetic 

nanoparticles. They include hydrogenation, oxidation and carbon-carbon coupling reactions. Bare 

magnetic nanoparticles have been explored, with the catalytic activity relying solely on the magnetic 

material itself or other metals directly deposited on their surface. The most common nanoparticles are 

iron oxide, however other metal ferrites generated by partial substitution of iron by a second metal 

(Cu, Co, Zi, Ni, Mn) allows the expansion of scope for oxidative and coupling reactions.49  

One of the most used hybrid supports used for catalysis are silica coated magnetite particles.50 Nazifi 

et al. prepared magnetite encapsulated in a silica shell bearing sulfonic acid groups, which can be used 

as a solid acid catalyst for the synthesis of 1,8-dioxo-octahydroxanthene derivatives. Such an approach 

avoids hazardous reagents, thus being considered as an eco-friendly alternative.51  

A specific class of MNPs, the Co/C nanomagnets, have been extensively exploited for application in 

heterogeneous catalysis.16 Reiser et al. have used these nanoparticles as support for the reversible 
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noncovalent attachment of a pyrene-tagged Pd N-heterocyclic carbene complex. This “boomerang” 

catalyst was used for the hydroxycarbonylation of aryl halides in water under an atmospheric pressure 

of carbon monoxide, demonstrating high activity in more than 16 iterative runs.52 Furthermore, they 

reported the deposition of palladium nanoparticles on the surface of these carbon-coated MNPs for the 

hydrogenation of alkenes. The authors showed that the developed magnetic catalytic system compares 

favorably to conventional palladium catalyst in terms of activity, handling, leaching and recyclability 

through magnetic decantation (Fig. 5).53  

 

Fig. 5 Recover of catalytic Co/C nanoparticles and isolation of the product after reaction. The catalysis is 

performed under magnetic stirring (right picture). When the reaction is finished the magnetic catalyst is easily 

collected with an external magnet (left picture), giving the purified product. The nanocatalyst is then available 

for the next catalytic reaction. Adapted with permission from reference 25. Copyright 2013, WILEY-VCH 

Verlag GmbH & Co. KGaA, Weinheim. 

The use of magnetic nanoparticles as supports for catalytic processes has also been extended to the 

field of biocatalysis. Herein, enzymes present key advantages compared to conventional chemical 

catalysts: (1) high activity, (2) great selectivity and (3) specificity. They are currently used in various 

chemical procedures such as redox reactions, (trans)esterification processes and enantioselective 

synthesis. However, their widespread application in many of these processes is impaired by inherent 

drawbacks including high costs, availability, recovery and recycling of the catalyst. For overcoming 

these issues, several methodologies have been reported including entrapment of the enzymes on 

porous materials or their immobilization on the surface of solid supports.54,55 The first refers to ion 

exchange resins whereas the second one is related with the adsorption or covalent attachment to 

different supports. Among these, MNPs provide the advantage of simple and fast recovery.48 

Enzymes can be attached to the surface of MNPs by EDC coupling and used for pharmaceutical and 

organic production, sensing and proteomics analysis. However, the immobilization of the enzyme 

should not impair its catalytic activity nor its selectivity.50 Therefore, innovative approaches are 

necessary to prepare novel “magnetic enzymes”. Zheng et al. recently reported the development of a 

magnetic enzymatic nanosystem consisting of an iron oxide core surrounded by polydopamine and 

immobilized trypsin. The novel enzymatic nanohybrid proved to work efficiently for the digestion of 
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proteins while being conveniently separated from the reaction mixture by an external magnet.56 

Additionally, several studies have been focusing on the use of such nanocatalysts for the production of 

biodiesel.57,58 This field draws much attention as biodiesel is a renewable biodegradable, non-toxic 

alternative which can be generated from vegetable or waste cooking oils. For instance, Laosiripojana 

and co-workers have shown the efficient biocatalytic activity of immobilized lipase for the conversion 

of vegetable oils to fatty acid methyl ester (FAME). The biocatalyst supported on iron oxide 

nanoparticles could be efficiently recycled for at least 5 cycles with more than 80% activity 

remaining.59 Similarly, Lee et al. have immobilized lipase onto MNPs and used them for biodiesel 

production from waste cooking oil.60  

Compared to common petrodiesel, biodiesel has a higher cetane number and does not contain 

hazardous aromatic compounds and almost no sulfur, thus reducing the emission of carbon monoxide, 

hydrocarbons, and particulate matter in the exhaust gas. This might considerably reduce air pollution 

while attenuating our dependence on petroleum.60 

4.1.2. Environmental applications 

As mankind progress rapidly with industrialization, in modern civilization, it is natural to expect 

increasing contaminations. The unavailability of high quality drinking water is a critical problem 

across the world, especially in the so called third world countries. A significant amount of toxic 

compounds have been found in drinking water in large concentrations, including pesticides, heavy 

metals and micro-organisms, especially around industrial areas where the situation is quite severe. 

Hence, a number of solutions have been used for purification of drinking water, namely: sand 

filtration, activated carbon based adsorption, distillation and reverse osmosis. While all of them deliver 

great benefits, they are still far from ensuring availability of quality drinking water at an affordable 

price and fast time. Therefore, there is an increasing demand to discover novel materials to further 

improve the most conventional technologies.61 

During the last decades, magnetic nanoparticles, which offer great flexibility for their in situ 

application, have been widely studied for remediation of groundwater, soil and air on both 

experimental and field scale.3 Indeed, magnetically assisted chemical separation (MACS) technology 

might provide a cost-effective solution to the most challenging environmental clean-up problems. 

Here, MNPs provide a convenient and simple method to remove a variety of contaminants from 

complicated matrices in wide range of chemical conditions. Such technology presents evident 

advantages when compared to conventional used adsorbents, as it requires considerably less complex 

equipment which in turn facilitates the scale-up processes.3,62 

MACS technology for the separation of radionuclides in tank-separation has been reported as a new 

approach to solve the critical problem of waste treatment at the US department of Energy and 

Department of Defense sites. This type of expertise can be used at any tank or location, including 

situations where remote operation is necessary. Unlike ion exchange processes, MACS does not 

require preliminary filtration of the solution. The effectiveness of the process has been demonstrated at 



18 

bench scale for decontamination of uranium, americium, and plutonium at the Argonne National 

Laboratory in Lemont, US.62 Additionally, also dyes or hazardous metal ions can be removed from 

wastewater of many industrial sectors, such as textile factories, tanneries and paint industry using 

MACS technology. 3,63,64
 

A successful wastewater treatment must fulfil the following criteria: treatment flexibility and 

efficiency, reuse of the treatment agents, environmental safety and low cost.65 Magnetic scavengers or 

nanosorbents have been specifically explored for the removal of heavy metals ions from water, which 

is an issue of great concern due to their imminent danger to health and environment and their tendency 

for bioaccumulation even at low concentrations.  

For instance, Nassar has shown that iron oxide nanoparticles have a maximum adsorption capacity for 

Pb(II) of 36 milligrams per gram of nanomaterial which is considerably higher than the previously 

reported low cost sorbents.66 The small size of the nanoparticles allows the diffusion of metal ions 

from solution to the active sites of the adsorbent, making them very effective and economic. 

Moreover, Pang et al. demonstrated the efficiency of functionalized iron oxide MNPs for removal of 

Hg(II), revealing an extraction capacity as high as 380 milligrams of mercury per gram of 

nanosorbents. However, no selectivity tests in combination with other metals were reported.67  

The mechanisms of decontamination can involve adsorption by surface site binding or electrostatic 

interaction.65 An overview of magnetic nanoparticles used as scavengers or nanosorbents for metal 

removal in polluted water is given in Table1.  

Table 1. Magnetic scavengers for decontamination of different metal ions in polluted water. 

Scavenger Functional 
group Heavy metal Maximum extraction 

capacity 
Mesostructured silica magnetite68 -NH2 Cu(II) 0.5 mmol·g-1 

δ-FeOOH-coated-γ-Fe2O3
69 - Cr(VI) 25.8 mg·g-1 

Magnetic iron-nickel oxide70 - Cr(VI) 30 mg·g-1 

Montmorillonite-supported MNPs71 -Alo; -SiO Cr(VI) 15.3 mg·g-1 

Hydrous iron oxide MNPs61 - As(V), Cr(VI) As(V): 8 mg·g-1 

Amino-modified Fe3O4 MNPs72 -NH2 Cu(II), Cr(VI) 
Cu(II): 12.43 mg·g-1 

Cr(VI): 11.24 mg·g-1 

Poly-L-cysteine coated Fe3O4 

MNPs73 
-Si-O; -NH2 

Ni(II), Pb(II), 

Zn(II), As(III), 

Cu(II), Cd(II) 

Over 50% recovery for all 

metals. The best performance 

was found for Ni(II) to be 

89%. 

m-PAA-Na-coated MNPs74 -COO 
Cu(II), Pb(II), 

Cd(II), Ni(II) 

Cu(II): 30 mg·g-1; Pb(II): 40 

mg·g-1; Cd(II): 5 mg·g-1; 

Ni(II): 27 mg·g-1 
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Fe3O4-silica coated MNPs75 -Si-OH Pb(II), Hg(II) 
Over 90% extraction for both 

elements. 

PEI-coated Fe3O4 MNPs76 -NH2 Cr(VI) 83.3 mg·g-1 

Dimercaptosuccinic acid-coated 

Fe3O4 MNPs77 
-SH 

Hg(II) Ag(I), 

Pb(II), Cd(II), 
Hg(II): 220 mg·g-1 

Salicylic acid functionalized silica-

coated Fe3O4 MNPs64 
-COOH 

Cu(II), Cr(III), 

Cd(II), Ni(II) 

Cu(II): 39.9 mg·g-1; Cr(III): 

39.8 mg·g-1; Cd(II): 27.8 

mg·g-1; Ni(II):17.3 mg·g-1 

PEI-coated Co/C MNPs17 -NH2 Hg(II) 550 mg·g-1 

Amino-functionalized silica 

materials with a magnetic core78 
-NH2 Cu(II) 0.7 mmol·g-1 

The application of such materials for decontamination processes in real situations must circumvent 

aggregation of the MNPs as well as undesired interaction with other substances. For instance, 

phosphates might compete with the heavy metals for active sites, thus limiting the effectiveness of the 

scavenger. For resolving this constraint, again the strategy is to apply different coatings or functional 

groups on the surface of the MNPs.75,79,80  

Similarly, a vast amount of work has been done on the removal of organic pollutants from water using 

MNPs as sorbents. Liu et al. showed iron oxide hollow nanospheres could efficiently remove red dyes 

from water and be collected using an external magnet.81 Similarly to heavy metal adsorption, the 

adsorption of contaminants takes place via surface exchange reaction until the surface functional sites 

are fully occupied. Furthermore, different modified-MNPs have been studied for the removal of 

polycyclic aromatic hydrocarbon (PAH) pollutants from water, allowing the elution of analytes after 

extraction and recycling of the adsorbent.82,83  

Considering the advances achieved in MNPs research, this technology might provide opportunities for 

developing next-generation nanosorbents for the decontamination of polluted water. Such novel 

scavengers compare well to conventional technologies, showing higher specificity and capacity, easier 

separation and extended lifecycles.65 

4.2. Biomedical applications 

MNPs have also been explored for their potential medical application in clinic. In biomedicine or 

biotechnology, the applications of such nanomagnets might be classified as in vitro or in vivo 

according to their use outside or inside the body, respectively. In vitro applications are related with 

magnetic separation, selection or diagnosis whereas in vivo applications include therapeutic areas as 

hyperthermia, drug delivery and procedures like magnetic resonance imaging (MRI).3 

Most particles currently used in the biomedical field are superparamagnetic iron oxide nanoparticles 

(SPIONs). They receive great interest as they can be magnetized with an external magnetic field and 
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immediately re-dispersed once the magnet is removed. For that reason they provide enhanced colloidal 

stability which is required for any application in biological systems.15,47  

Magnetic separation can also be used as a fast and efficient method for the capture of specific proteins, 

cells, DNAs or bacteria often required for analysis.15 For instance, Pawar et al. developed a suitable 

magnetic scavenger, comprising iron oxide nanoparticles coated with silica and an additional shell of 

chitosan, for the separation of DNA from biological samples.84 The isolation results of genomic DNA 

achieved from saliva indicated that the functionalized magnetic nanoparticles have outstanding 

advantages in operation, selectivity, and capacity over the present existing isolation protocols (phenol–

chloroform extraction). 

Berensmeier et al. have shown an efficient high-gradient magnetic separation for technical scale 

protein recovery using low cost magnetic nanoparticles. The authors claim that using 100 grams of 

functionalized nanomagnets containing a pentadentate chelate ligand, a purification performance of 

around 12 grams of His-GFP per hour is achieved, with an eluate purity of 96% and a yield of 93% for 

the whole process.85 Actually, the successful performance of such nanomaterials for in vitro 

applications made their translation into commercialized products possible e.g. Dynabeads®, which can 

be used for cell separation, protein isolation and exosome analysis.  

In a typical bioseparation application, the biological entities are tagged with MNPs and then collected 

with an external magnetic field. Due to their high surface-to-volume ratio, magnetic nanoparticles 

have superior performance on the bioseparation of molecules in large volumes of fluids. Additionally, 

the attachment of antibodies to the MNPs can be used for highly specific binding of the target 

molecules.3 

Another application in which the use of magnetic nanoparticles has received attention is cancer 

treatment. Most pharmaceutical approaches used to treat cancer nowadays are based on 

chemotherapeutic agents, which generally exhibit high cytotoxic effects but poor specificity for the 

intended biological target. This practice often results in systemic distribution of the antitumor drug 

causing severe side effects in healthy tissues.4 Therefore, it is important to find different type of 

therapies with improved performances to reduce size effects for the patient. Encouraged by these facts, 

researchers have been focus on the development of potential drug targeting magnetic nanocarriers. 

This concept was first introduced in 1970 by Widder et al. and to the present time the possibility of 

suitable applications for magnetic nanocarriers has drastically increased.86 Magnetic targeting is 

defined as the guidance of drug-loaded MNPs to the desired site of action using a localized magnetic 

field, holding them there during the treatment and then removing them once the therapy is 

completed.15 Significant advantages can be achieved performing such a therapy, as it allows the 

reduction of the drug dosage, diminishing the adverse side effects due to the high local concentration 

of the drug at the desired part of the organism.3,15  

Despite the very promising in vitro results, first clinical trials have revealed poor effective response. 

Consequently, magnetic nanocarriers have not been approved and used in clinic yet.4 To accomplish a 
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successful performance, the magnetic carrier, has to be carefully tailored with specific chemical 

properties. As described before, the stabilization of the nanomagnets must be ensured. This can be 

achieved by the development of polymeric or silica shells on the surface of the MNPs. The additional 

use of protein repellent species (e.g. PEG) is often the strategy followed to avoid interaction with 

opsonins, increasing the circulation of the nanomaterials in the blood stream. At any stage of this 

synthetic route, different types of therapeutic molecules can be physically adsorbed or covalently 

attached. Among them, doxorubicin (DOXO) and paclitaxel (PTX) have been widely studied.4 

Pellegrino et al. have shown the efficiency of magnetic nanocubes covered with a shell of thermo-

responsive polymer to load DOXO and release it under an alternating magnetic field. Such material 

might be used in future for the combined cancer therapy using hyperthermia and chemotherapy, while 

circumventing the side effects of conventional chemotherapy.87 In another study, Xu and co-workers 

developed a PTX encapsulated magnetic nanocarrier using thermoresponsive molecules as coating 

agent. High encapsulation efficiency and tumor inhibition reflected the great potential of the carriers 

for specific binding and targeting release of the antitumor drug.88
 

Similarly, the concept of magnetic delivery has been extended to gene transfection, commonly known 

as magnetofection. In the last few years, due to the importance of nucleic acid delivery for producing 

proteins or shutting down the production of endogenous genes, magnetofection has attracted 

considerable attention. The delivery is based on the magnetic force exerted upon the magnetic vectors 

to direct them into the target cells both in vitro and in vivo.4 Compared to conventional gene delivery 

strategies, magnetofection has shown to significantly increase gene delivery to human xenograft tumor 

models.28 Plank et al. have brought together gene vectors with magnetic nanoparticles, showing the 

potentiated efficacy of the vector up to several hundred-fold, allowed the reduction of the duration of 

gene delivery to minutes.89 

In addition, Chen et al. used modified-SPIONs coated with polyethyleneimine (PEI) as a multiple 

gene delivery system for transfection of porcine kidney cells. The PEI-coated SPIONS showed strong 

binding affinity for DNA plasmids expressing the genes encoding a green (DNAGFP) or red 

(DNADsRed) fluorescent protein. As a result, stable and efficient co-expressed of GFP and DsRed in 

porcine kidney PK-15 cells was achieved by magnetofection.90 

More recently, RNA interference (RNAi) technology has been in the focus of research since siRNAs 

or miRNAs can target and inhibits the expression of almost any gene.91,92 The use of magnetic 

nanoparticles as carries offer the mentioned advantages of reducing time of therapy and minimize 

vector dosage.28 Currently, in vitro magnetofection products using cationic polymer coated MNPs are 

commercially available. For instance, Magnetionfection™ offers a variety of products which cover a 

wide range of cell as well as cargo type (siRNA, DNA, oligonucleotides). RNAi will be described in 

Chapter 3. 

Additional to drug delivery and gene transfection the so-called hyperthermia therapy is also being 

explored as an alternative approach for cancer treatment. Hyperthermia is considered a supplementary 
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treatment to chemotherapy, radiotherapy and also surgical interventions.15 The rationale behind this 

therapeutic approach is the capacity of SPIONs to produce heat when exposed to an alternating 

magnetic field. This feature can be used in vivo for destroying pathological cells in tumors, since they 

are much more sensitive to temperature increase (over 41ºC) than normal cells.3,15,27 

The key advantage of hyperthermia relies on the possibility to heat the restricted area of the tumor.  

Specifically, when exposed to an alternating magnetic field the magnetization of the SPIONs flips 

randomly from the parallel to the antiparallel orientations. This causes the transfer of magnetic energy 

to the particles in the form of heat. The use of subdomain magnetic nanoparticles is preferred to multi-

domain microparticles due to their higher absorption of power at tolerable magnetic fields.3 The 

hyperthermia capacity of SPIONs strongly depends on their properties: e.g. size, chemical 

composition, shape, etc. Consequently, well-defined synthetic routes for SPIONs are required in order 

to enhance their heating performance and reduce the dose to a minimum level.15 

Pastor et al. evaluated the effect of SiO2 coating on Fe3O4 MNPs. Unfortunately, they confirmed a 

reduced MS and a lower coercivity, and consequently a lower heating capacity, for SiO2-coated Fe3O4 

MNPs as compared to analogous uncoated Fe3O4 nanoparticles.93 Depending on the severity of this 

reduction, the ability of the materials for being using for example in hyperthermia therapy might be 

compromised.  

Nevertheless, several in vitro studies for the selective remote inactivation of cancer cells by oscillating 

magnetic fields have been reported. For instance, Pellegrino et al. have recently proved the potential of 

superparamagnetic nanocubes for efficiently perform hyperthermia therapy. This study revealed more 

than 50% of cancerous cell mortality over an hour of treatment.46 

The establishment of hyperthermia in clinical routine had encouraged the industrial sector to develop 

suitable MNPs capable of generating heat when exposed to an oscillating magnetic field. The German 

company MagForce for example, developed suitable products (NanoTherm, NanoPlan and 

NanoActivator) for the local treatment of glioblastoma multiform, prostate and pancreatic cancer.4  

SPIONs also proved to be a novel class of materials for cellular and molecular imaging. As contrast 

agents they have the advantage of inducing an enhanced contrast in MRI in comparison to 

paramagnetic ones. Consequently, fewer amounts of particles are needed to dose the human body.3 

Most of the multimodal MRI studies include the conjugation of MNPs with organic fluorophores. This 

conjugates provide high anatomical resolution and sensitivity. The optical component can be detected 

by a variety of techniques both in vivo and in vitro, such as fluorescent microscopy, flow cytometry, 

spectrophotometry, clinical endoscopy, etc.4 For example, Hwang et al. have developed a non-invasive 

multimodal magnetic particle (labelled with fluorescent, radioisotopic substances) as a potential tool 

for in vivo imaging. MicroPET and MRI images showed intense radioactivity and ferromagnetic 

intensities with MFBR-laden cells. Their imaging approach provide time-course imaging analysis to 

track cellular localization and distribution by using optical, radionuclide, and magnetic resonance 

agents in living subjects.94 A lot of other studies have been reported using MNPs for bio-imaging, 
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including the monitoring of stem cell migration and clearance mechanisms of nanoparticles in 

humans.4 

Thanks to the great advances on the synthesis and functionalization of MNPs, these nanomaterials are 

a strong candidate to set up an acceptable platform for diagnosis and therapy. However, their 

application in clinic, avoiding any collateral effect to the patient, requires further work which is being 

accomplished cooperatively by researchers of different scientific areas. 

 

5. Conclusions and future perspectives  

This review shows the remarkable progress on MNPs research for the development of suitable 

solutions on both industrial and medical fields. The possibility of magnetic separation or accumulation 

represents the major advantage of MNPs when compared to most conventional technologies currently 

used. In addition, other advantages can be pointed out: (1) they can be easily synthesized and (2) 

conjugated with other molecules in a straightforward way, expanding to a great extent their potential 

applications.  

One of the features which might compromise the application of MNPs is their stability in solution. 

Circumventing magnetic collapse between particles is absolutely necessary to ensure functionality and 

good performance of the materials. Therefore, different type of coatings can be applied including 

carbon shells, inorganic coatings e.g. silica, or organic molecules like surfactants or polymers. 

Nevertheless, when applying a surface coating caution should be taken in order to minimize the effects 

on the magnetic properties of the pristine nanoparticles safeguarding their easy magnetic recovery or 

guidance. 

With all the advances achieved on this field, there was a boost on the amount of suitable applications 

found for MNPs. Properly tailored they can be used for diverse functions. From bioremediation of 

water,17 passing through catalytic systems, until biomedical materials, magnetic nanoparticles have 

covered a broad range of applications, resulting already in the commercialization of some products. 

Even though few limitations have still to be overcome, considering the speed at which research is 

evolving it can simply be expected that in the near future MNPs will substitute conventional 

methodologies, modernizing both the chemical and biomedical industries.  
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Chapter 1 

Towards the stabilization of readily recyclable 

carbon-coated cobalt nanoparticles via surface 

functionalization

 

 

Highly magnetic carbon-coated cobalt (Co/C) nanoparticles were engineered via surface 

functionalization for meeting different dispersibility requirements. Such nanoparticles are very 

attractive due to their particularly easy magnetic collection, being widely used in different chemical 

processes e.g. synthesis or catalysis. However, better dispersion of these nanoparticles in a variety of 

reaction media is desirable in order to avoid strong stirring or continuous sonication. Circumventing 

magnetic collapse of the particles in solution certainly help to maximize their performance for any 

envisage application. Therefore, here I report the development of different surface coatings, more 

specifically silica or polymeric shells, on Co/C nanoparticles rendering them dispersible in organic 

solvents and most importantly in aqueous phase, without compromising their facile magnetic 

separation. 

 

Parts of this chapter are published in: 

• Kainz, Q. M.; Fernandes, S.; Eichenseer, C. M.; Besostri, F.; Korner, H.; Muller, R.; Reiser, O. Faraday 

Discussions 2014, 175, 27-40. Reproduced with permission of The Royal Society of Chemistry. 

(http://pubs.rsc.org/en/Content/ArticleLanding/2014/FD/C4FD00108G). 

• Fernandes, S.; Eichenseer, C. M.; Kreitmeier, P.; Rewitzer, J.; Zlateski, V.; Grass, R. N.; Stark, W. J.; Reiser, O. 

RSC Advances 2015, 5, (58), 46430-46436. Reproduced with permission of The Royal Society of Chemistry. 

(http://pubs.rsc.org/en/Content/ArticleLanding/2015/RA/C5RA04348D). 
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1.1 Introduction 

Magnetic nanoparticles (MNPs) are of great interest for researchers in a variety of fields 

including catalysis,1-3 magnetic resonance imaging (MRI),4,5 biotechnology/biomedicine6-11 and 

environmental remediation.12-16 Many suitable methods for the synthesis of nanoparticles, 

applicable in the aforementioned disciplines have been developed. However, the performance 

of magnetic materials is highly dependent on their stability at the different surrounding 

conditions to which they are exposed.17 Generally, the as-synthesized MNPs are chemically 

unstable, being easily oxidized and prone to agglomeration. Therefore, it is crucial do develop 

suitable surface coatings to protect and stabilize the nanoparticles while simultaneously 

ensuring high magnetization and dispersibility in solution.17 Coating strategies includes surface 

grafting using organic species (e.g. surfactant17 and/or polymers17-19) or inorganic layers (e.g. 

silica20-22 or carbon23,24). In most cases the surface coating does not only provide protection and 

stabilization but also offers an additional platform for further functionalization with catalytic 

active species, various drugs or specific binding sites. Functionalized MNPs are particularly 

promising for application in catalysis,1-3 bioseparation25 and biolabeling26 due to the possibility 

of magnetic separation from solution. Especially in liquid-phase catalysis, one can combine the 

high dispersion and reactivity of the nanoparticles with an easy and fast recovery.27,28 In fact, 

magnetically driven separation makes the recovery of catalysts much simpler than tedious 

cross-flow filtration and centrifugation methods allowing the recycling and reusability of 

expensive catalysts or ligands.1  

Despite the significant advances on the synthesis of MNPs the possibility to scale up the 

production process, as well as the need to ensure the stability and recycling of the resulting 

magnetic materials are still challenging. Not meeting these requirements can significantly limit 

their applicability especially when considering the industrial sector.17  

For instance metallic nanoparticles, having a much higher magnetization than their oxide 

counterparts have attracted much attention. However, high reactivity and undesired toxicity of 

the metal core of these MNPs are two additional problems contributing for limiting their 

application. Silica, polymers or surfactants are commonly used as a primary coating for 

metallic MNPs to reduce the impact of the mentioned issues. Nevertheless, instability in basic 

environments and high temperatures of these coatings still need to be overwhelmed. 

Differently, carbon-coated MNPs are remarkably stable under harsh conditions.17 For instance, 

Johnson et al. have reported a direct salt-conversion approach for large-scale synthesis of 

carbon-encapsulated magnetic Fe and Fe3C nanoparticles, by direct pyrolysis.29 The authors 

proved the potential for scaling up the synthesis as well as the stability of the materials at 

temperatures up to 400ºC. Unfortunately, there a broad size distribution of the nanoparticles 

ranging from 20-200 nm was observed. In addition, Lu and co-workers have shown the 

fabrication of carbon shell protected cobalt nanoparticles, via pyrolysis, proving the high 
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stability under acidic and basic conditions.30 The graphitic-shell provides a barrier against 

oxidation and prevents metal leaching from the core while preserving its high magnetic 

moment.31 However maintaining the particles in an isolated, dispersible state has proven to be 

very challenging, especially in aqueous phase.17 

Over the past few years ferromagnetic cobalt nanoparticles containing graphene-like carbon 

layers (Co/C MNPs) have been investigated.18 Such commercially available nanoparticles, 

firstly synthetized by Stark et al., have a number of attractive features. First of all, the metal 

core of these particles (20–50 nm in size) renders them highly magnetic with a saturation 

magnetization (MS) of 130–160 emu.g-1.23 This allows an easy recovery even if heavy 

molecules are attached to the particle surface, condition which generally decreases the 

magnetization to levels of unfunctionalized superparamagnetic iron oxide particles (30–50 

emu.g-1).17  Additionally, the carbon shell, having a thickness of only 1–3 nm, provides high 

stability against oxygen as well as acidic and basic pH. Last but not least, the carbon shell 

offers the possibility for covalent surface attachment via diazonium chemistry or simple 

adsorption by Π-Π stacking.32 Nevertheless, due to their high magnetization and hydrophobic 

surface these particles are prone to agglomeration (see Fig. 1), especially in aqueous phase. 

 

Fig. 1. Transmission electron microscopy (TEM) picture showing the clear tendency for agglomeration of 

ferromagnetic Co/C nanoparticles. Figure adapted with permission from reference 33. Copyright 2012, Royal 

Society of Chemistry. 

Envisioning a real industrial application for such materials it is demanding to improve their 

dispersibility in solution since most of the automated industrial reactors allow simply shaking 

and not stirring or sonication, usually needed to disperse these MNPs. Indeed, even in our 

laboratories dispersibility issues might impair the use of the nanoparticles e.g. in catalytic 

reactions in water. Stark et al. recently showed that carbon-coated nanoparticles covalently 

functionalized with highly charged polymers, allow the formation of stable dispersions in 

aqueous media.33 Additionally, Hongjie Dai and co-workers, have shown the use of water-
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soluble FeCo/graphitic shell nanocrystals as contrast agents by capping them with a 

phospholipidic-poly(ethylene glycol) (PL-PEG).24 

Therefore the feasibility to attenuate the properties of Co/C MNPs by applying different 

coatings was studied, aiming to achieve good dispersibility while keeping high magnetization 

values. Herein, the comparison of various complementary synthetic strategies for 

functionalizing Co/C nanoparticles is reported. This includes organic and inorganic coatings, 

and the extensive evaluation of such materials with respect to their dispersibility in various 

solvents. Furthermore, the magnetic performance of the MNPs, regarding recovery and 

recyclability, was also assessed and compared for the different type of coatings applied.  

 

1.2 Silica-coated magnetic Co/C nanoparticles 

Inorganic silica coating offers a biologically inert and chemically reactive shell which has been 

intensively studied during the last decades for applications in chemistry and biomedicine. The 

hydrophilicity and biocompatibility of silica makes it very attractive for biotechnological applications 

such as protein separation34 or photothermal cancer therapy.21 Likewise, studies on silica-coated 

supports for catalysis21,35 or peptide synthesis36  have been reported. Commonly, the direct coating of 

silica on different physical supports is done by ammonia-catalyzed hydrolysis and condensation of 

tetraethyl orthosilicate (TEOS).21,22,37,38 This low cost sol-gel process usually offers good homogeneity 

of the formed shell. 

In this subsection, the development of a silica shell starting from the pristine Co/C (1), as shown in 

Scheme 1, is discussed. Firstly, the cationic surfactant cetyltrimethylammonium bromide (here 

referred as CTAB) is adsorbed on the outer graphene-like layer of the MNPs (1) by hydrophobic 

interaction of its alkyl chain exposing the ammonium group on the surface of the MNPs. In this 

manner, it forms a positive wrapping around the nanoparticles in aqueous solution. Subsequently, the 

injection of TEOS under basic conditions leads to its hydrolysis and condensation into silicate 

polyanions. These can interact with the positively exposed charges from the CTAB simply by 

electrostatic interaction or hydrogen-bonding (see Scheme 1). Therefore, the presence of CTAB 

should facilitate the growth of a silica shell around the nanoparticles while preventing TEOS own 

nucleation process.34 
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Scheme 1 Synthesis of Co/C@SiO2 (2) from pristine Co/C (1), using CTAB as the surfactant for the silica 

growth on the nanoparticle’s surface. 

In a study reporting silica grafting onto carbon nanotubes, Zhang and co-authors claim that one of the 

parameters affecting the morphology of the silica-coated MNPs is the ratio (w/w) CTAB/MNPs 

used.34 Thus, the variation of CTAB added to the MNPs was studied for the following ratios: 2:1; 

20:1; 60:1. The presence of silica was immediately confirmed by attenuated total reflection infrared 

spectroscopy (ATR-IR) in confront with the pristine Co/C MNPs (1) which have no detectable peaks. 

According to the spectra obtained for all the three samples (Fig. 2) a strong band at 1100 cm-1 is 

assigned to the Si-O-Si asymmetric stretching. Other bands at 950 and 800 cm-1 are recognized as the 

Si-OH stretching and Si-O-Si symmetric vibration,38 confirming the silica coating on the 

nanoparticles.  

 

Fig. 2 ATR-IR spectra of Co/C@SiO2 (2) prepared from pristine Co/C (1) using different ratios (w/w) of 

CTAB/MNPs. Green line: ratio 2:1; red line: ratio 20:1; black line: ratio 60:1. 

Indeed, TEM analysis confirmed the presence of silica for all three samples. Despite slight differences 

between each ratio CTAB/MNPs tested, the results still show significant aggregation of the beads. For 

the lowest amount of CTAB used (Fig. 3A), very thick shells are formed and the homogeneous 

nucleation process of TEOS is favored, most likely due to the insufficient amount of CTAB on the 
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surface of the particles. In contrast, using higher ratios of CTAB to MNPs (see Fig. 3B and 3C) one 

can reduce the formation of silica nanoparticles as well as the thickness of the silica-coated nanobeads. 

However, defined silica shells around the beads are not obtained in any of these samples, as 

considerable agglomeration of the initial magnetic materials is detected.  

Accordingly, a significant decrease in the saturation magnetization of the MNPs was detected. As 

shown in Fig. 4, the MS values are similar and approximated to 55 emu.g-1. This value is much lower 

than the one registered for the pristine MNPs (1) which have a MS around 150 emu.g-1. 23 This 

phenomenon is directly related to the huge increase in silica mass around the nanomaterials, as seen in 

the TEM pictures (Fig. 3). 

 
Fig. 3 TEM pictures of Co/C@SiO2 (2) prepared from pristine Co/C (1) using different ratios (w/w) of 

CTAB/MNPs: A) 2:1; B) 20:1; C) 60:1. 

 
Fig. 4 Saturation magnetization of the different synthesized Co/C@SiO2. (2). Green line: ratio (w/w) 

CTAB/MNPs 2:1; red line: ratio CTAB/MNPs 20:1; black -line: ratio CTAB/MNPs 60:1. 

In order to avoid the decrease in magnetization of Co/C MNPs, a strategy for the synthesis of a thinner 

and more defined silica shell around the nanoparticles was developed. Here, the silica was grown from 

the exposed amine groups on the surface of functionalized nanoparticles (3)23 as illustrated in Scheme 

2.  
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Scheme 2 Synthesis of Co/C@SiO2 (4) from Co/C-NH2 (3). The volume ratio TEOS:EtOH for the growth of 

silica was varied as: 0.05, 0.2 and 2%. 

 

The functionalized nanoparticles were obtained by covalently attaching linkers bearing amine groups 

to the surface of Co/C (1). To do this, 4-(2- aminoethyl)aniline was converted to the corresponding 

diazonium salt which subsequently reacts with the carbon surface of pristine nanobeads (1) upon 

sonication (Scheme 2). The loading with amino groups was determined by elemental microanalysis to 

be 0.1 mmol.g-1. To grow the silica on the surface of Co/C-NH2 (3), the MNPs were dispersed in 

ethanol with catalytic amounts of ammonia while a solution of TEOS was added dropwise to promote 

a controlled shell formation. 

In this case, the volume ratio TEOS to EtOH was varied from 0.05, 0.2 up to 2% in order to check the 

impact on the morphology of the silica shell. Again, the formation of silica was confirmed by ATR-IR 

spectroscopy showing the most pronounced band of Si-O-Si asymmetric stretching at 1100cm-1 and 

950-800cm-1 (Fig. 5).  

 
Fig. 5 ATR-IR spectra of Co/C@SiO2 (4) prepared from Co/C-NH2 (3) using different volume ratios of 

TEOS/EtOH. Blue line: 0.05% TEOS; green line: 0.2% TEOS; black line: 2% TEOS. 

Generally, according to the TEM pictures in Fig. 6, this synthesis gives much nicer coated nanobeads 

than the one described for the previous methodology. Increasing the amount of TEOS leads to the 

formation of less defined shells, much thicker and randomly distributed (Fig. 6C). On the contrary, 

using 0.2 and 0.05% of TEOS (Fig. 6B or 6A, respectively) results in fine encapsulated magnetic 
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beads surrounded by a much thinner shell. Moreover, sample aggregation, which was detected by 

TEM in Fig. 3 for the previous reported materials, is much less pronounced here. These facts are in 

good agreement with the values measured for the magnetization of the MNPs (see Fig. 7) which were 

found to be higher when the silica shell around the NPs was smaller. Usually the MS is lowered with 

the gain of mass as detected for the sample prepared with 2% TEOS in which the silica coating is 

considerably bigger. By adjusting the parameters of the synthesis it is possible to keep the magnetic 

properties of the nanoparticles in the range of the non-functionalized ones (150 emu.g-1).23 In fact, 

from Fig. 7, one can see that for nanobeads prepared with 0.05% of TEOS the saturation 

magnetization of the material is practically unchanged (140 emu.g-1) and decreases as the amount of 

TEOS used for the reaction increases (114 emu.g-1 for TEOS 0.2% and 60 emu.g-1 for TEOS 2%). 

Such properties evidence Co/C nanoparticles to be highly attractive when compared even to the most 

common unfunctionalized magnetite nanoparticles, with a maximum MS value measured at 92 emu.g-

1.23 

 

Fig. 6 TEM pictures of Co/C@SiO2 (4) prepared from Co/C-NH2 (3) using different volume ratios of 

TEOS/EtOH. A) 0.05% TEOS; B) 0.2% TEOS; C) 2% TEOS. 

 
Fig. 7 Saturation magnetization of the synthesized Co/C@SiO2 (4) using different volume ratios of TEOS/EtOH.  

Blue line: 0.05% TEOS; green line: 0.2% TEOS; black line: 2% TEOS. 

In confront to the saturation magnetization stated for silica coated-magnetite nanoparticles, which 

drops usually to values as low as 15 emu.g-1,39 the impact of these results becomes even greater. Kim 

et al. reported an excellent magnetization of silica-coated magnetite nanoparticles to be about 64.1 
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emu.g-1,20 which is still 2 times lower than the values obtained for the best synthesis conditions of 

silica-coated ferromagnetic Co/C nanobeads (140 emu.g-1).  

As shown in Fig. 8, the developed coating, improves the stability of the nanoparticles in different 

solvents (water, ethanol and DCM) while allowing a fast recovery from solution within a few seconds 

(Fig. 8D). Despite their high magnetization, it is possible to keep such materials in solution with a 

simple continuous shaking mechanism which is definitely not enough for the pristine Co/C 

nanomagnets. Even after collection or deposition, a simple hand shaking is enough as depicted in Fig. 

8C for dispersing them again in the respective solvent. 

 

Fig. 8 Co/C@SiO2 (4) dispersion in DCM, H2O and EtOH after 5 minutes of sonication (A), deposition / 

precipitation over time (B), re-dispersion with hand shaking (C). Fast recovery of the nanobeads with an external 

magnet (D). 

The improvement in dispersibility of the beads obtained by applying a silica coating on the surface 

allows for the possibility to explore the potential of these nanomagnets for example in catalysis as it 

will be discussed further in this chapter. Additionally, the presence of silanol groups on the surface can 

easily react with various coupling agents to covalently attach molecules to the Co/C MNPs. 3-

(aminopropyl)triethoxysilane (known as APTES) has been commonly used to introduce amine groups 

on the surface of silica coated magnetite nanoparticles.40 Later in this chapter another approach will be 

discussed for the attachment of amine-rich polymers on silica-coated Co/C MNPs. 

 

1.3 Polymer-coated magnetic Co/C nanoparticles 

Bearing in mind the stabilization of Co/C MNPs in aqueous phase, polymer coatings comprising high 

number of polar groups arise as a promising strategy to be explored. Highly ramified dendrimeric-like 

molecules are very attractive since they offer the possibility of changing charge, functionality, and 
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reactivity of magnetic supports, enhancing their stability and dispersibility.41,42 Two different 

methodologies, shown in Fig. 9, can be adopted for the synthesis of these polymers: a convergent or a 

divergent growth. The convergent pathway starts from peripheral molecules and proceeds inward 

building dendrons which are then coupled together at the focal point. On the other hand, the divergent 

approach starts from a reactive core molecule which is expanded giving rise to different generations of 

the dendrimer. The resultant molecules contain much higher number of functional terminal groups in 

contrast to linear polymers.41,43,44 

 
Fig. 9 Schematic representation of convergent and divergent synthesis of dendrimers. Adapted with permission 

from refrence 44. Copyright 2012, Royal Society of Chemistry  

The preparation of  dendron-functionalized MNPs can be done by directly synthesizing the dendrons 

on the surface of the nanoparticles45 or by attaching the previously synthesized molecules using e.g. 

click-chemistry.18, 46 Either way, the nanomaterials can be functionalized with different generations of 

the desired dendrons. On one hand, the direct synthesis from the surface, a “grafting from” approach, 

of the nanoparticles leads to higher loadings but compromises the control on the synthesis due to the 

difficulty of analysis on the MNPs. On the other hand, the synthesis of the dendrons followed by 

“clicking” on the surface, here referred as “grafting to” strategy,  provides a much better control on its 

purity but decreases the loadings of polymer achieved.18  

A grafting to methodology for the covalent attachment of poly(amidoamine) PAMAM dendrons on 

the surface of Co/C MNPs was preformed and the results discussed here. Second generation (G2) of 

PAMAM dendrons were synthesized according to a procedure described in literature.47  
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Briefly, propargyl amine is successively reacted with methyl acrylate and ethylenediamine via 

conventional divergent growth, giving consecutive generations of the dendrons with duplicated 

number of functional groups, after each complete generation (2 steps). The propargyl group on the 

focal point allows the dendrons to be easily clicked to the surface of the Co/C nanoparticles previously 

functionalized with azide moieties (Scheme 3).12 

 

 

Scheme 3 Covalent immobilization of PAMAM dendron G2 on Co/C MNPs via click chemistry.12 Benzyl azide-

functionalized nanoparticles (5) and  nanoparticles enwrapped in a Wang type resin with azide moieties (6) were 

used to click the dendrons under similar reaction conditions. 

Two different routes were followed to link PAMAM G2 to Co/C nanoparticles: benzyl azide-

functionalized Co/C nanoparticles (Co/C-N3, 5)46, 48 or a Wang type resin having azide end groups 

covalently attached to Co/C nanoparticles (Co/C-PS-N3, 6),25, 49, 50 were found to be suitable platforms 

to accommodate PAMAM dendrons via ligation by a copper catalyzed azide/alkyne cycloaddition 

using conditions previously described.46, 48 Co/C-PS-N3 (6) generally offer higher loading of azide 

groups, up to 2.4 mmol azide per gram of nanoparticles, compared to Co/C-N3 (5) which have 

loadings in the range of 0.1 mmol azide per gram of MNPs.12 

The click reaction was conveniently followed and confirmed by IR spectroscopy, monitoring the 

attenuation of the azide band at 2100 cm-1 before and after reaction (see Fig. 10).  
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Fig. 10 ATR-IR spectra of azide-functionalized nanoparticles: Co/C-N3 (5) (black line) and Co/C-PS-N3 (6) 

(blue line); and the respective PAMAM-functionalized nanoparticles after click reaction: Co/C-PAMAM G2 (7) 

(red line) and Co/C-PS-PAMAM G2 (8) (green line). 

The loading of dendrons on the surface of the nanoparticles (7) and (8) was estimated by 

thermogravimetric analysis (TGA) analysis to be 0.02 and 0.6 mmol of PAMAM molecules per gram 

of nanomaterial, respectively. Both the loadings are considerably low in view of the loadings of the 

initial azide-tagged MNPs (5) and (6). This might be easily explained by the steric hindrance of such 

ramified dendrons which cannot fit more than a certain amount of molecules due to a limitation on 

space organization. From Fig. 11, one can confirm that the higher gain in mass for NPs (8) results in a 

lower saturation magnetization (50 emu.g-1) when compared to the nanomaterials (7) (105 emu.g-1). 

However, both types of PAMAM –functionalized MNPs are still quite easily recovered from solutions 

simply by applying an external magnet. Unfortunately, despite the presence of the polar groups on the 

surface, none of the materials (7) or (8) is well dispersible in aqueous solutions most likely due to the 

low loadings of PAMAM obtained. 
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Fig. 11 Saturation magnetization of the synthesized Co/C-PAMAM G2 (7) (red line) and Co/C-PS-PAMAM G2 

(8) (green line) in comparison to pristine Co/C (1). 

Polyethylenimine (PEI) has been used to functionalize magnetic nanoparticles making them water 

stable through its high density of amine groups. Several studies describe the grafting of commercially 

available PEI with different molecular weights to the surface of different nanoparticles.51-53  

Following a “grafting to” strategy reported by Lellouche et al.,51 commercial PEI (25 KDa) was 

attached on divinyl sulfone (DVS) functionalized nanoparticles (Scheme 4). For this purpose, DVS, 

which is a homobifunctional molecule, was used to react with the amine groups of Co/C-NH2 (3) by 

rapid Michael additions. The subsequent addition of branched PEI to the readily prepared Co/C-DVS 

(9) resulted in PEI-coated MNPs (10). The total content of nitrogen for Co/C-PEI (10) was estimated 

to be 0.36 mmol per gram of nanomaterial by elemental microanalysis. Repeating both steps, an 

increase in the nitrogen loading to 0.64 mmol per gram was achieved. Unfortunately, even at such 

loadings the dispersibility of the nanoparticles in aqueous phase was not improved. 
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Scheme 4 Synthesis of Co/C-PEI (10) by Michael addition of DVS and subsequent reaction of CO/C-DVS (9) 

with branched PEI (25 KDa). 



42 

Another approach reported by Adronov et al.53 for the PEI functionalization of carbon nanotubes 

(CNTs), revealing impressive solubility in aqueous solution, was tested for the Co/C MNPs (Scheme 

5). Here, benzoic acid was first attached to the pristine Co/C nanoparticles (1) by diazonium 

chemistry. This step was carried out using two different reaction conditions: (1) the one described in 

Scheme 4 and (2) the conditions usually described for the diazonium chemistry applied to these Co/C 

nanobeads described e.g. in Scheme 2 for the synthesis of Co/C-NH2 (3). As a result it was found that 

route (1) resulted in 10 times higher loadings of benzoic acid than route (2). Thus, Co/C-COOH (11) 

from route (1) were used to react with thionyl chloride producing chloride acid functionalized 

nanoparticles (Co/C-COCl) (12). The last step consisted on the reaction of Co/C-COCl (12) with a 

large excess of branched PEI resulting in PEI-coated Co/C nanoparticles (13) with a total content of 

nitrogen estimated to be 0.7 mmol per gram of nanomaterial. However, once more the developed 

polymer coating revealed to be insufficient to enhance the dispersibility of the MNPs (13) in aqueous 

phase. Together with the results showed for the “clicking” of PAMAM on Co/C-N3 MNPs these 

findings confirm the unsatisfactory polymer loading to the nanoparticles following a “grafting to” 

methodology. 

 

Scheme 5 Grafting of PEI (25 KDa) to Co/C-COCl nanoparticles (12). First benzoic acid is attached to the 

nanoparticles via diazonium chemistry giving Co/C-COOH (11). Subsequently (11) are reacted with thyonil 

chloride to produce Co/C-COCl (12) which are subsequently reacted with branched PEI resulting on Co/C-PEI 

(13). 

In contrast, Leong et al., have shown that the direct polymerization of aziridine under acidic 

conditions leads to higher amounts of polymer covalently attached to the surface of CNTs.54 

Therefore, a “grafting from” approach of the PEI onto the MNPs by aziridine polymerization on the 

surface of Co/C-NH2 (3) was attempted. Using 1000 equivalents of aziridine, Co/C-PEI nanoparticles 

(14) were obtained (Scheme 6) with a loading of 10-14 mmol amino functionalities per gram of 

nanomaterial based on the nitrogen content determined by elemental analysis or by TGA 

measurements.32 
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Scheme 6 Synthesis of Co/C-PEI (14) by aziridine polymerization on the surface of Co/C-NH2 (3), under acidic 

conditions.32 

The chemical structure of PEI-coated MNPs (14) was identified by infrared spectroscopy. As shown in 

Fig. 12, the recorded spectrum reveals the characteristic peaks of PEI at 3417 cm-1 (N-H stretching), 

2934-2812 cm-1 (C-H stretching), 1604 cm-1 (N-H bending), 1458 cm-1 ( C-H bending) and 1350-1000 

cm-1 (C-N stretching).55  

 

Fig. 12 Characteristic ATR-IR spectra of Co/C-NH2 (3) (black line) and Co/C-PEI (14) (green line). 

Moreover, as shown in Fig. 13, TEM analysis indicated that Co/C-PEI (14) consisted of discrete 

particles contrasting the pristine Co/C nanoparticles showed in Fig. 1 where major agglomeration can 

be observed. The magnetization of Co/C-PEI was considerably decreased to 39 emu.g-1 (Fig. 14). This 

reduction is consistent with the significant gain in mass of the PEI-polymer (60 wt% by TGA). Indeed, 

this nanomaterial proved to form stable dispersions in water over days with no tendency for 

agglomeration or sedimentation. Interestingly, this tendency was also observed in a biphasic systems 

with dichloromethane present as a second layer (see Fig. 14 right flask), contrasting the Co/C-

PAMAM particles (7) and (8), as well as the PEI-coated nanoparticles (10) and (13) described above.  

7001100150019002300270031003500

I rel

Wavenumber (cm-1)

N

N

N

NH

NH2

NH

NH2

HN NH2

HN

NH2

n

14

Co



44 

 

Fig. 13 Stability of Co/C-PEI (14) in water (left flask) and in biphasic system (Water/DCM – right flask). The 

stability is also confirmed from the TEM micrograph where single MNPs can be distinguished. The scale bar is 

20 nm. 

 

Fig. 11 Saturation magnetization of Co/C-PEI (14) (green line) in comparison to pristine Co/C (1) (black line). 

These nanoparticles proved their stability over months in aqueous solution, opening the possibility 

their use in biotechnological applications. On the contrary if freeze-dried, the particles can be well re-

dispersed in water or polar solvents and collected by an external magnet, as shown in Fig. 15. This 

makes them also interesting for applications in chemical processes where water is used as the solvent 

or in water bioremediation as it is discussed later in chapter 2. 
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Fig. 15 Lyophilized Co/C-PEI (14) re-dispersion by sonication (5 minutes) and collection with an external 

magnet. The recovery is done in a few seconds after putting the magnet on the side of the flask. 

 

1.4 Combined silica-polymer coating on magnetic Co/C nanoparticles 

Once optimized the synthesis and development of polymeric and inorganic silica coatings on top of 

Co/C MNPs, the combination of both strategies was studied and the stability in solution for different 

solvents was evaluated. PEI-coated MNPs (14) showed very good stability in water, but not in organic 

solvents. For instance, in DCM these MNPs are not dispersible even using sonication. Aiming to 

produce a more versatile material, containing a high density of NH2 reactive groups while being 

dispersible also in organic solvents, the combination of both types of coatings was studied. To achieve 

this purpose, first the silica shell was implemented as described in Scheme 2. Then, aziridine 

polymerization was carried out using the conditions described by Lindén et al. for grafting PEI on the 

surface of silica materials (Scheme 7).56   
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Scheme 7 Synthesis of Co/C@SiO2-PEI (15) from Co/C@SiO2 (4) by polymerization of aziridine under acidic 

conditions. 

The presence of hyperbranched PEI, which was grown from the free hydroxyl groups on the outer 

silica shell, was confirmed by IR spectroscopy. From Fig. 16 one can see that the starting material 4 

exhibit only the bands for silica, at 1100cm-1 and 950-800cm-1, while the spectra of Co/C@SiO2-PEI 

(15) matches also with minor shifts the peaks assigned to Co/C-PEI (14) at 3417 cm-1 (N-H 

stretching), 2934-2812 cm-1 (C-H stretching), 1604 cm-1 (N-H bending), 1458 cm-1 ( C-H bending) and 

1350-1000 cm-1 (C-N stretching). 
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Fig. 16 Characteristic ATR-IR spectra for Co/C@SiO2 (4) (blue line), Co/C-PEI (14) (green line) and 

Co/C@SiO2-PEI (15) (red line). 

As expected, the saturation magnetization measured for Co/C@SiO2-PEI (15) (45 emu.g-1) drops to 

comparable values of those found for Co/C-PEI (14) due to the gain in mass during the polymerization 

(see Fig. 17).  

 

Fig. 17 Saturation magnetization for Co/C@SiO2 (4) (blue line), Co/C-PEI (11) (green line) and Co/C@ SiO2-

PEI (12) (red line). 
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Regarding the dispersibility in solution of these MNPs it was found that the combination of silica and 

PEI indeed result in a nanomaterial, highly loaded with amino groups, which can be easily dispersed in 

both aqueous and organic systems. Fig. 18A shows, the dispersion of Co/C@SiO2-PEI (15) in water, 

DCM and ethanol, proving the improvement achieved when comparing with the Co/C-PEI (14) which 

revealed a great stability in water systems but not in organic media. The stability of the beads was also 

confirmed for other organic solvents such as: NMP, DMA and DMF. Moreover, the materials can be 

collected, using a magnet, within less than a minute as depicted in Fig. 18B. This outcome enlarges the 

range of applications suitable to Co/C nanoparticles especially as supports for catalysis and scavengers 

for intermediate reagents. 

 
Fig. 18 Co/C@SiO2-PEI (15) dispersibility in water, DCM and ethanol (A) and recovery from solution applying 

an external magnet (B). 

 

1.5 Outlook and applications  

As described along this chapter, Co/C MNPs offer the advantage of easy and fast collection applying 

an external magnet due to their extremely high magnetic moment. However, this feature brings also 

disadvantages considering their dispersibility in solution. Typically continuous sonication or strong 

stirring are applied to ensure the dispersion of such nanoparticles. Unfortunately, for industrial 

applications this is not always possible. Rather than sonication or stirring, industrial reactors usually 

offer the possibility of simple shaking. For this reason better dispersion of the nanobeads in diverse 

solvents is required. Therefore, the aim of this project was to develop different surface coatings to 

stabilize the dispersion of Co/C MNPs in solution, improving their performance and increasing the 

range of applications possibly given to these nanobeads. Both silica and polymers were grafted on the 

surface and the obtained magnetic materials fully characterized and compared in terms of 

dispersibility and easiness of recovery. Similarly the combination of the two coatings was tested 

giving promising results for developing a more versatile material dispersible both in aqueous and 

organic phase.  

Silica coated magnetic nanoparticles, showed much better dispersibility in solution than the pristine 

MNPs (1) without compromising the high magnetization of the materials, which are easily and fast 

collected with a magnet. Bringing and maintaining them dispersed in solution requires a simple 
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shaking of the flask. On the other hand, PEI-coated MNPs (14) showed a surprising stability in water 

which might be interesting for using these materials in biotechnological applications. If kept in 

solution these materials seem to be stable over months of incubation. Once lyophilized, despite the 

significant decrease in the magnetization mass of these samples, they could still be recovered from 

solution within few seconds of collection with an external magnet.  

Different applications have been explored for the developed magnetic supports. Generally it was found 

that a “grafting from” approach leads to higher polymeric functionalization of the nanoparticles and 

consequently better dispersions than a “grafting to” methodology. Polymer coated-MNPs have been 

used as scavengers for metal recovery from contaminated water samples proving the great 

recyclability and potential of Co/C-PEI nanomagnets (14) to be used in a real upscale process 

(described in detail in chapter 2). PEI-coated nanomaterials show a much better performance than the 

PAMAM-coated ones specifically due to the improvement in aqueous dispersion and the higher 

amount of amine groups available on the surface. Their potential in catalysis was also explored by 

incorporating Pd nanoparticles and testing them for hydrogenation reactions. Additionally, other 

metals such as Ru, Pt and Au have been successfully incorporated and are very promising for being 

used in catalytic reactions having water as the solvent, which is not possible for Co/C MNPs (1).  

Similarly, Co/C@SiO2 were used as a platform for incorporating metals and their use in catalysis was 

explored. Fe, Ru and Pd were successfully incorporated with loadings of: 0.06, 0.11 and 0.17 mmol of 

catalyst per gram of material. The amount of catalyst incorporated can be tuned by changing the initial 

amount of the respective precursor added to the synthesis. Given the work which has been done on 

Co/C nanoparticles for catalytic applications using Pd as the active catalyst,1,3 Pd-doped silica-coated 

magnetic nanoparticles (Co/C@ SiO2@Pd) were also prepared and their performance compared to the 

previous developed systems. The synthesis of these nanobeads was done according to Scheme 8. The 

procedure is adapted from the synthesis of Co/C@SiO2 (4) adding Pd2(dba)3·CHCl3 complex while 

growing the silica shell. These catalysts have shown promising results for Suzuki-Miyaura coupling 

reactions between phenyl boronic acid and aryl halide (iodide and bromide), using very low amounts 

of catalyst (0.1 and 0.3, respectively) and short reaction times in the microwave, allowing the 

recyclability of the catalyst for at least 6 cycles. 
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Scheme 8 Synthesis of Pd-incorporated Co/C@SiO2 MNPs (13). The same procedure was followed to 

incorporate ruthenium and iron. 
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Moreover, the potential of Co/C-PEI (14) and Co/C@SiO2-PEI (15) MNPs for being used as reagent 

scavengers has been studied in collaboration with Dr. Peter Meier from NOVARTIS (Basel, 

Switzerland). ((1R,8S,9s)-bicyclo[6.1.0]non-4-yn-9-yl)methyl 4-nitrophenyl carbonate (here referred 

as BCN ligand) was attached on the surface of the amine-functionalized magnetic beads following the 

synthesis depicted in Scheme 9. The resulting Co/C-BCN nanoparticles exposing the triple bond were 

explored for scavenging a variety of azide-tagged molecules revealing very promising results. The 

high loading of amino groups on nanoparticles (14) and (15) allows higher loadings of the BCN ligand 

thus reducing the amount of nanoparticles needed for the copper-free click reaction of different azide-

labeled molecules.  

 

 

Scheme 9 Synthesis of BCN-functionalized particles (17) from PEI-functionalized nanomaterials (14) and (15). 

 

1.6 Experimental section 

Materials and methods  
The Co/C nanomagnets (1) were purchased from Turbobeads Llc, Switzerland. Prior to use, they were 

washed in a concentrated HCl / water mixture (1:1) 5 times for 24 h. Acid residuals were removed by 

washing with Millipore water (5x) and the particles were dried at 50°C in a vacuum oven.57 The 

magnetic nanobeads were dispersed using an ultrasonic bath and recovered with the aid of a 

neodymium based magnet (15 x 30 mm). ATR-IR was carried out on a Biorad Excalibur FTS 3000, 

equipped with a Specac Golden Gate Diamond Single Reflection ATR-System or a Varian FTS 1000 

spectrometer. Elemental microanalysis was carried out by the micro analytical department of the 

University of Regensburg using a Vario EL III or Mikro-Rapid CHN apparatus (Heraeus). 

The ICP-OES was measured on a Spectroflame EOP (Spectro) at the University of Regensburg. 

Termogravimetric analysis (TGA) was done on a TGA 7 (Perkin Elmer). The magnetization 

measurements and TEM pictures of all silica-encapsulated nanoparticles was done at the Trinity 

College of Dublin, while for all the other samples both characterizations were performed at the 

Physics Faculty of the University of Regensburg. 

Amine-functionalized nanoparticles (3)33, azide-functionalized nanoparticles (5)58,59 and azide-

functionalized polystyrene-coated nanoparticles (6)25 were prepared on the gram scale following 

previously reported procedures.  
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Synthesis of PAMAM dendrons 

 
Scheme 7 Divergent synthesis of clickable PAMAM dendrons with propargyl amine at the focal point. 

The synthesis of PAMAM dendrons was done according to a procedure described elsewhere.47 Herein, 

propargyl amine (1.0 equiv.) was reacted with methyl acrylate (83 equiv.) under N2 at room 

temperature giving rise to the dendron G0.5 (95%). Then, ethylenediamine (60 equiv.) was added (1.0 

equiv.) to yield dendron G1 with two amino functional groups (98%). After repetition of these two 

steps, second generation dendrons could be obtained in good yields (88%). For every half-generation 

dendron purification by silica column chromatography was performed. NMR and EI-MS are in 

accordance with the literature values.47 

 

Nomenclature of the magnetic nanoparticles 

The nomenclature of the beads is done as follows:  

Co/C  Carbon-coated cobalt nanoparticles 

Co/C@SiO2 Silica-encapsulated carbon-coated cobalt nanoparticles 

Co/-NH2 Amine -functionalized carbon-coated cobalt nanoparticles 

Co/C -N3 Azide-tagged carbon-coated cobalt nanoparticles 

Co/C-PAMAM G2 Second generation PAMAM-functionalized carbon-coated cobalt 

nanoparticles 

Co/C-PS-N3 Azide-tagged polystyrene-coated carbon-coated cobalt nanoparticles 

Co/C-PS-PAMAM G2 Second generation PAMAM-functionalized polystyrene-coated carbon-

coated cobalt nanoparticles 

Co/C-DVS Divinyl sulfone functionalized carbon-coated cobalt nanoparticles 

Co/C-COOH Benzoic acid functionalized carbon-coated cobalt nanoparticles 

Co/C-COCl Chloride acid functionalized carbon-coated cobalt nanoparticles 

Co/C-PEI PEI-functionalized carbon-coated cobalt nanoparticles 

Co/C@SiO2-PEI PEI-functionalized silica-encapsulated carbon-coated cobalt nanoparticles 

Co/C@ SiO2@Pd Palladium doped silica-encapsulated carbon-coated cobalt nanoparticles 

Co/C-BCN BCN ligand-functionalized carbon-coated cobalt nanoparticles 
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Synthesis of Co/C@SiO2 (2) 

 
The synthesis of  Co/C@SiO2 (2) was adapted from a procedure described in the literature for silica 

coating of CNTs.34 Typically, 50 mg of Co/C (1) were dispersed in 50 mL of EtOH together with the 

desired amount of CTAB (0.1, 1 or 3 g) and sonicated for 1h. Then, the NPs were decanted in order to 

remove non-attached CTAB and re-dispersed in 20 mL of EtOH for 30 minutes. When a stable 

dispersion is obtained, 2mL of NH4.OH (32%) is added to the solution and sonicated for 2 minutes, 

followed by the addition of a TEOS solution (0.5 mL in 20 mL of EtOH) in a dropwise manner. 

Sonication was done for 90 minutes and then the reaction was left to stir overnight. In the end the 

MNPs (2) were magnetically decanted, intensively washed with EtOH and dried under vacuum. 

IR (ν/cm-1) (0.1 g CTAB): 1067, 943, 789; (1 g CTAB): 1057, 957, 802; (3 g CTAB): 1058, 937, 787. 

 

Synthesis of Co/C@SiO2 (4) 

 
In a typical synthesis, 50 mg of Co/C-NH2 (3) were sonicated in 100 mL of EtOH and 8 mL of 

NH4.OH (32%) for 30 minutes. Then, TEOS (2, 0.2 or 0.05 mL) was added into the solution reacted 

for 2 hours. After completion of the reaction time, the obtained MNPs (4) were intensively washed 

with EtOH and dried under vacuum. 

IR (ν/cm-1) (2%TEOS): 1074, 929, 786; (0.2%TEOS): 1039, 987, 779; (0.05%TEOS): 1080, 777. 

 

Synthesis of Co/C-PAMAM G2 (7)  
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In a typical experiment, 100 mg of azide functionalized nanoparticles (0.019 mmol (N3) per gram 

nanoparticles, 0.007 mmol) (5) and 5 equivalents (70 mg, 0.095 mmol) of the second generation 

PAMAM dendron, containing 4 functional groups, were used. The PAMAM was previously dissolved 

in 5 mL of degassed THF/H2O (3:1) mixture followed by the successive addition of Co/C- N3 (5), Na-

ascorbate (30 mol%, 0.029 mmol, 5.75 mg) and CuSO4 (10 mol%, 0.0095 mmol, 2.37 mg). 

Afterwards the reaction mixture was sonicated for 15 minutes and stirred for 48 hours at room 

temperature. The magnetic nanoparticles were separated applying an external magnet and washed with 

acetone (5x 5 mL), H2O (5x 5 mL) and acetone (3x 5 mL). In the end, the nanobeads were dried under 

vacuum. The reactions were monitored by ATR-IR, evaluating the attenuation of the azide peak (Fig. 

10) and the loadings estimated by TGA (Fig. 19).  

Co/C-PAMAM (7): TGA (N2): 0.02 mmol.g-1; 1.4 % mass loss.  

 

Fig. 19 TGA spectra of the azide tagged nanoparticles (5) (black) and (6) (blue) and the subsequent PAMAM-

clicked magnetic beads (7) (red) and (8) (green). The loadings can be estimated from the weight loss % of the 

materials. 

 

Synthesis of Co/C-PS-PAMAM G2 (8)  

 

0

20

40

60

80

100

0 100 200 300 400 500 600 700 800

W
ei

gh
t (

%
)

Temperature (° C)

Co/C-N3 Co/C-PAMAM G2

Co/C-PS-N3 Co/C-PS-PAMAM



53 

In a typical experiment, 100 mg of azide functionalized nanoparticles (8) (2.42 mmol (N3) per gram 

nanoparticles, 0.242 mmol) (5) and 5 equivalents (894 mg, 1.21 mmol) of the second generation 

PAMAM dendron, containing 4 functional groups, were used. The PAMAM was previously dissolved 

in 5 mL of degassed THF/H2O (3:1) mixture followed by the successive addition of Co/C-PS-N3 (8), 

Na-ascorbate (30 mol%, 0.363 mmol, 72  mg) and CuSO4 (10 mol%, 0.121 mmol, 30  mg). 

Afterwards the reaction mixture was sonicated for 15 minutes and stirred for 48 hours at room 

temperature. The magnetic nanoparticles were separated applying an external magnet and washed with 

acetone (5x 5 mL), H2O (5x 5 mL) and acetone (3x 5 mL). In the end, the nanobeads were dried under 

vacuum. The reactions were monitored by ATR-IR, evaluating the attenuation of the azide peak (Fig. 

10) and the loadings estimated by TGA (Fig. 19).  

Co/C-PS-PAMAM (8): TGA (N2): 0.6 mmol.g-1; 42 % mass loss. 

 

Synthesis of Co/C-DVS (9) 

 

Co/C-NH2 (3) (500 mg, 0.05 mmol, 1.0 equiv.) were dispersed in 20 mL of  i-PrOH in the ultrasonic 

bath for 5 minutes. A solution of  DVS (10 µL, 0.15 mmol, 3 equiv.) in 5 mL of i-PrOH was added to 

the reaction and the mixture sonicated for 5 minutes more followed by vigorously stirring for 2 hours. 

Finally Co/C-DVS (9) were washed three times with i-PrOH and dried under vacuum. 

Elemental microanalysis [%]: Co/C (3): C, 10.5; H, 0.2; N, 0.14; Co/C-DVS (9): C, 10.6; H, 0.2; N, 

0.14; Loading (C): 0.02 mmol·g-1. 

Synthesis of Co/C-PEI (10) 

 

Co/C-DVS (9) (500 mg, 0.01 mmol) were dispersed in 20 mL of i-PrOH in the ultrasonic bath during 

5 minutes. 500 mg of branched PEI (25 KDa) was dissolved in 5 mL of i-PrOH and the solution added 

to the nanoparticles dispersion. The reaction was left in ultrasonic bath for 5 minutes and after stirred 
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for 14 hours. The resulting nanoparticles (10) were washed with i-PrOH (3x) and water (2x), freeze 

dried and the loading of nitrogen estimated by elemental microanalysis.  

Elemental microanalysis [%]: C, 11.21; H, 0.39; N, 0.65; Loading (N): 0.36 mmol·g-1. 

Synthesis of Co/C-COOH (11) 

 

100 mg of pristine Co/C (1) (0.82 mmol carbon) in 10 mL of water were dispersed in the ultrasonic 

bath during 30 minutes. After, 315 mg of 4-aminobenzoic acid (2.3 mmol, 2.8 equiv per mol carbon) 

were added to the flask, followed by 154 µL mL of isoamylnitrite (1.15 mmol, 1.4 equiv per mol 

carbon) and the reaction was refluxed for 18h. The nanoparticles (11) were washed with DMF until 

the solution became colorless. DMF was removed by washing with diethyl ether, and the particles 

were dried under vacuum. 

Elemental microanalysis [%]: Co/C (1): C, 9.84; H, 0.12; Co/C-COOH (11): C, 13.67; H, 0.63; N, 

0.83; Loading (C): 0.46 mmol·g-1. 

Synthesis of Co/C-COCl (12) 

 

Co/C-COOH nanoparticles (11) (50 mg, 0.025 mmol, 1equiv.) were dispersed in 10 mL of anhydrous 

DMF and stirred at 0ºC under nitrogen. Thionyl chloride (18 µL, 0.25 mmol, 10 equiv.) was added 

slowly. The reaction temperature was raised to room temperature and allowed to stir for 4 hours. The 

resulting Co/C-COCl nanoparticles (12) were washed with anhydrous DCM (3x) to remove the excess 

of thionyl chloride and directly used for the next step. 

Synthesis of Co/C-PEI (13) 

 

The as-prepared Co/C-COCl (12) were immediately dispersed in 10 mL of anhydrous DCM and added 

slowly to a solution of 5 gram PEI (25 kDa) dissolved in 50 mL of anhydrous DCM at 0ºC. The 

reaction was stirred for 16 hours under nitrogen atmosphere, after which the temperature was raised to 
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55ºC over a period of 4 hours. The resulting PEI-coated nanoparticles (13) were washed with DMF 

(3x), water (3x) and diethyl ether (2x) and freeze dried for elemental microanalysis. 

Elemental microanalysis [%]: C, 14.18; H, 0.89; N, 1.87; Loading (N): 0.7 mmol·g-1. 

Synthesis of Co/C-PEI (14)32 

 

In a typical experiment, amine-functionalized Co/C MNPs (3) 23  (100 mg, 0.015 mmol, 1.0 equiv.), 

were pre-dispersed in 10 mL DCM using an ultrasonic bath for 15 min. Under stirring, aziridine 

(778 µL, 15 mmol, 1000 equiv.) and catalytic amounts of conc. HCl (15 µL, 15 M) were added to the 

reaction mixture which was heated up to 80 °C for 24 h. Afterwards, the NPs were collected using an 

external magnet, washed with DCM (2x 50 mL), H2O (5x 50 mL) and again DCM (3x 50 mL). In the 

end, the beads were re-dispersed in water or freeze-dried. The extent of polymerization was estimated 

by TGA (59 wt%), as depicted in Fig. 20.  

IR (ν/cm-1):3417, 2934, 2821, 2362, 1648, 1604, 1458, 1351, 1298, 1014. 

Elemental microanalysis [%]: C, 28.69; H, 5.30; N, 13.27; Loading (N): 9.5 mmol·g-1. 

1 

Fig. 20 TGA analysis of the amine-coated Co/C nanoparticles (3) (black) and PEI-coated MNPs (14) (green) to 

estimate % of polymerization. 
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Synthesis of Co/C@SiO2-PEI (15) 

 

Adapted from a procedure described in literature.56 Under a nitrogen controlled atmosphere, 60 mg of 

Co/C@SiO2 (4) were dispersed in 3 mL of toluene together with 6 µL of acetic acid, for 5 minutes by 

sonication. Then, 360 µL of aziridine were added and the reaction refluxed under N2 for 24 hours. 

The washing was preformed 5 times with toluene and the obtained Co/C@SiO2-PEI (15) freeze-dried. 

IR (ν/cm-1): 3408, 2926, 2844, 1631, 1524, 1485, 1419, 1051, 771.  

Elemental microanalysis [%]: C, 10.38; H, 2.03; N, 3.35; Loading (N): 1.5 mmol N /g.nanoparticles 

Synthesis of Co/C@SiO2@Pd (16) 

 

250 mg of Co/C-NH2 (3) were sonicated in 500 mL of EtOH and 40 mL of NH4.OH (32%) for 30 

minutes. TEOS (2, 0.2 or 0.05 mL) was added into the solution and reacted for 1 hour, after which 

Pd2(dba)3·CHCl3 (50 mg, 0.048 mmol) was added. The mixture was sonicated for 1 hour more. After 

completion of the reaction time, the obtained Co/C@SiO2@Pd (16) were intensively washed with 

EtOH and dried under vacuum. 

The amount of incorporated metal per nanoparticles was estimated by ICP to be 0.107 mmol.g-1. 

Synthesis of Co/C-BCN (17) 
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In a typical experiment, 100 mg of Co/C-PEI (14) (0.177 mmol N) were dispersed in 4 mL anhydrous 

DCM in the ultrasonic bath for 10 minutes, under nitrogen atmosphere. After, Et3N (740 µL, 5.31 

mmol, 30 equiv.) and BCN ligand (111 mg, 0.354 mmol, 2 equiv.) are added to the mixture which is 

left to stirr at 40ºC during 48h.  In the end of the reaction, the resulting BCN-functionalized 

nanoparticles (17) were washed wth DCM (5x) and freeze-dried. 
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Chapter 2 

Reversible magnetic mercury extraction from wateri 

 

A facile and efficient way to decontaminate Hg2+ polluted water with the aid of magnetic, highly 

stable and recyclable carbon-coated cobalt (Co/C) nanoparticles is reported. Comparing non-

functionalized Co/C nanomagnets with particles that were functionalized with amino moieties, the 

latter one proved to be more effective for scavenging mercury with respect to extraction capacity and 

recyclability. A novel nanoparticle–polyethyleneimine hybrid (Co/C-PEI) prepared by direct ring 

opening polymerization of aziridine initiated by an amine functionalized nanoparticle surface led to a 

high capacity material (10 mmol amino groups per gram nanomaterial) and thus proved to be the best 

material for scavenging toxic mercury at relevant concentrations (mg·L−1 / μg·L−1) for at least 6 

consecutive cycles. On a large-scale, 20 liters of drinking water with an initial Hg2+ concentration of 

30 μg·L−1 can be decontaminated to the level acceptable for drinking water (≤2 μg·L−1) with just 60 

mg of Co/C-PEI particles.ii 

 

i Reproduced with permission from The Royal Society of Chemistry: S. Fernandes, C. M. Eichenseer, P. Kreitmeier, J. 

Rewitzer, V. Zlateski, R.N. Grass, W.J. Stark, O. Reiser, RSC Advances 2015, 5, 46430-46436. This manuscript was jointly 

written by S. Fernandes and C. M. Eichenseer. (http://pubs.rsc.org/en/Content/ArticleLanding/2015/RA/C5RA04348D).  
ii The synthesis and characterization of Co/C-PAMAM G2 (7)  and Co/C-PS-PAMAM G2 (8) were done by S. Fernandes. 

The synthesis of NOVA PEG Amino Resin PEI (18) was performed by C. Eichenseer. The large scale experiment was 

carried out by S. Fernandes and V. Zlateski at the ETH, Zurich. All other experiments were carried out by S. Fernandes and 

C. Eichenseer at the University of Regensburg. 

. 
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2.1 Introduction 

Removal of organic and inorganic waste from water has become an issue of major interest for 

the last few decades. In particular, the decontamination of heavy metals is still a matter of great 

concern, since these harmful substances can cause severe threats to human health. In this 

context, mercury is considered one of the most toxic pollutants to the environment and public 

health, being involved in several disasters of food poisoning in different countries around the 

world.1,2 The cumulative character of this metal leads to an enrichment in the environment and 

the food chain,3,4 which in turn may cause permanent adverse effects in the liver, lung, brain or 

kidney of living organisms, even at very low doses.1,4 Furthermore, its solubility in water 

brings along additional problems concerning the toxicity, especially for the aquatic system.5 

Indeed, in its divalent form mercury is often found in fresh water, seawater, ground water and 

soil in considerable amounts.1,4 Therefore, mercury and its derivatives are considered as 

priority hazardous substances (PHSs)1,6 by several environmental associations that have started 

mercury monitoring programs worldwide.1  

Facing the above-mentioned harms, different methodologies have been used for water 

treatment such as centrifugation, ultrafiltration, crystallization, sedimentation, solid-phase 

extraction and chemical precipitation.1,2 Usually, the extraction of particular heavy metals is 

performed by using insoluble adsorbents.7-9 However, this method requires further filtration 

which involves energy-intensive pumping and tedious recovery of the materials.10 

In an attempt to develop more sensitive, simple and cost-effective materials, nanotechnology 

has attracted much attention in this field.2,5 Magnetic nanoparticles in particular might 

contribute to such applications due to their distinct advantages like high surface area-to-

volume ratio and therefore higher extraction capacities compared to micrometer-sized 

particles. Another major advantage is the facile and convenient separation of the nanoparticles 

by applying an external magnetic field, enabling an easy recovery and recycling of the 

scavenger,1,4,6 potentially even in the open environment.  

Additionally, materials that selectively bind Hg2+ in the presence of other metals are needed in 

order to prove feasibility in a real water decontamination situation. For instance, studies with 

1‐naphthylthiourea–methyl isobutyl ketone11 or mesoporous crystalline material functionalized 

with mercaptopropyl12 showed that these selectively extract Hg(II) from aqueous samples. 

Nevertheless, recovery and regeneration of the chelating agent proved to be impractical. 

Considering this, a selective magnetic mercury scavenger would make the entire process much 

easier and faster as well as enhance the reusability of the chelating agent.  

Functionally modified magnetic nanobeads have already been used for the extraction of 

different metals from aqueous solution such as cadmium,13,14 copper,13,15 lead,13,14 zinc,15 

mercury,14,16,17 cobalt18,19 and nickel18 under various conditions. However, concerning mercury, 
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limitations related to selectivity in the presence of other metals and reusability of the 

scavengers are being encountered. Iron oxide nanoparticles were primarily considered as an 

attractive solution for magnetic separation. Recently, Pang et al.17 reported the synthesis of 

functionalized iron oxide nanoparticles which efficiently remove Hg2+  from water samples 

(380 mg Hg2+ extracted per mol adsorbent) but selectivity in combination with other metals or 

recyclability of this scavenger material was not studied. In addition, Khani et al.16 have 

developed magnetite nanoparticles functionalized with triazene groups showing selectivity 

towards mercury in binary systems, which could be used in 2 cycles with an extraction 

capacity of 10.26 mg Hg2+ per gram nanomaterial. Mandel et al. have reported that thiol-

modified magnetic microparticles are capable of extracting mercury preferentially over other 

metals. However, co-adsorption of copper and cadmium was also observed in some cases. The 

release of adsorbed mercury (II) in order to recycle the scavenger was possible to an extent of 

about 30%, and the estimated extraction capacity was around 74 mg Hg2+ 

per gram microparticles.20 Magnetic Co/C nanoparticles, which exhibit excellent thermal and 

chemical stability as well as higher magnetization, recently appeared as a promising alternative 

for improving the extraction capacity and reusability of scavengers.13,21 Such nanoparticles 

provide an additional carbon surface that stabilizes the metal core and allows for 

functionalization using established diazonium chemistry.22,23  

Herein, the potential of Co/C nanomagnets to be used as magnetic scavengers for mercury 

extraction from water is reported. In addition, the influence of amino functionalities on the 

nanoparticles to improve the extraction efficiency and selectivity was assessed, providing 

functional nanomagnets that show an extraction capacity as high as 550 milligrams of Hg2+ per 

gram of nanoparticles. 

 

2.2 Results and Discussion 

Carbon-coated nanobeads have proved their effectiveness in a variety of applications such as 

supports for scavengers, reagents or catalysts.24-30 Relevant for this study, this type of 

nanoparticles was previously used for complexation/extraction of cadmium,13 copper,13 lead,13 

arsenic 31 as well as noble metals like gold21,32 and platinum.32 However, no studies for the 

removal of Hg2+ from contaminated water were reported. 

In order to remove Hg2+ ions from contaminated water, firstly pristine, commercially available, 

Co/C nanoparticles (1),22 were investigated as a possible scavenger. Two mercury solutions 

with different concentrations were prepared (15 and 30 mg·L-1) and the progress of extraction 

was monitored by inductively coupled plasma optical emission spectrometry (ICP-OES) over 

10 minutes, aiming at practical decontamination times in real case scenarios, to study the 

adsorption kinetics and estimate the maximum extraction capacity of the nanobeads. From 
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these results, using 5 mg of nanoparticles to decontaminate 5 mL of both HgCl2 solutions, it 

was concluded that approximately 13 mg Hg2+ can be scavenged using 1 gram of nanoparticles 

within 10 minutes, even at low initial mercury concentrations of 15 mg·L-1. However, also 

considerable leaching of Co2+ ions from the nanoparticle core was observed. The adsorption of 

Hg2+ onto the carbon layer of the nanoparticles was confirmed by X-ray photoelectron 

spectroscopy (XPS) analysis and is in agreement with the results obtained for multi-walled 

carbon nanotubes (MWCNTs).33  

Although the extraction of Hg2+ ions using unmodified Co/C nanoparticles (1) proved to be 

possible to some extent, there are three major limitations: (1) the occurring cobalt leaching 

leads to an undesired contamination that needs to be prevented. (2) The extraction capacity (13 

mg Hg2+ per gram of nanoparticles) is relatively low requiring a high amount of nanoparticles 

to remove Hg2+ on large scale. (3) An efficient release of mercury from the particles, thus 

allowing their recycling, was not possible under various conditions tried (aqua regia; heating at 

150 °C; aqua regia combined with high temperature). 

Therefore, the surface of the nanomagnets was functionalized to improve the extraction 

capacity, also aiming to avoid cobalt leaching and ensuring recyclability. Non-magnetic, 

amino-functionalized materials have been reported for their extraction capability towards Hg2+ 

, and especially Masri and Friedman have demonstrated the high affinity of polyamine 

derivatives towards Hg2+ ions in aqueous solutions.34 Furthermore, amino-functionalized 

carbon nanotubes have been successfully applied for extracting Hg2+  from water samples.35 

However, selectivity studies with these materials were either not performed or limited to 

binary systems. Taken these precedents as a lead, this project focus on the development of high 

capacity amino-polymers, such as polyethyleneimine (PEI) and poly(amidoamine) (PAMAM), 

supported on readily recyclable magnetic nanobeads for selective Hg2+ removal. 

Thus, propargylated PAMAM dendrimer G2, having four terminal amino groups was 

connected in two different ways to the surface of the NPs (Scheme 1): benzyl azide 

functionalized Co/C nanoparticles (5)23,28  (0.1 mmol azide per g nanomaterial) or a Wang type 

resin having azide end groups covalently attached to Co/C nanoparticles (6)29 (2.4 mmol azide 

per g nanomaterial), were found to be suitable platforms to accommodate PAMAM dendrimers 

via ligation by a copper catalyzed azide/alkyne cycloaddition using conditions previously 

described in our group.23,28 The reaction was conveniently followed by monitoring the 

characteristic azide peak at 2100 cm-1 with attenuated total reflection infrared spectroscopy 

(ATR-IR) spectroscopy, to give rise to (7) (0.02 mmol PAMAM per gram nanomaterial) and 

(8) (0.57 mmol PAMAM per gram nanomaterial), respectively. Higher magnetization values 

were observed for Co/C-PAMAM G2 (7) (106 emu·g-1) when compared to higher loaded 

Co/C-PS-PAMAM G2 (8) (50 emu·g-1), reflecting the different amounts of non-magnetic 

material attached to the nanobeads. 
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Scheme 1 Covalent immobilization of PAMAM dendron G2 on Co/C nanoparticles via click chemistry. 

Reagents and conditions: i) CuSO4•5 H2O (10 mol%), sodium ascorbate (30 mol%), THF-H2O (3:1), 24 h, at 

room temperature. 

PEI-functionalised Co/C nanobeads were prepared starting from Co/C-NH2 (3)22 (0.15 mmol 

amine per g nanomaterial) following a procedure for the functionalization of carbon nanotubes 

described by Liu et al. (Scheme 2).36 Using 1000 equivalents of aziridine, high loadings of 

approximately 10 mmol amine per gram nanomaterial (14) were obtained, by growing the PEI 

polymer on the nanoparticle surface. These nanoparticles form stable dispersions in water,37 

thus avoiding agglomeration, which is a general problem for unmodified Co/C nanoparticles. 

The saturation magnetization of this material was found to be still high (39 emu·g-1), rivalling 

that of low-loading magnetite particles.38 Therefore, an easy and effective recovery by 

magnetic separation is still possible within seconds. 

 

Scheme 2 Synthesis of polyethyleneimine-functionalized nanoparticles (14) by ring opening polymerization of 

aziridine.37 
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A comparison of the extraction efficiency of all nanobeads (Fig. 1) using 5 mL of an aqueous 

solution of HgCl2 (30 mg·L-1) and 5 mg of nanomaterial during 10 minutes for benchmarking 

purposes showed that Co/C-PAMAM G2 (7) was found to extract mercury (50%) comparable 

to unmodified Co/C nanoparticles, which is attributed to the low loadings of PAMAM, and 

consequently amine groups, obtained during the functionalization. Improved extraction 

capacity (73%) was found for Co/C-PS-PAMAM G2 (8), which can be ascribed to increased 

loadings of terminal amino groups made possible through the additional polystyrene layer on 

the surface of the nanoparticles.26,27,29,31,39 For both materials no significant cobalt leaching was 

detected. The Hg2+ removal efficiency was found to be even better for Co/C-PEI (14) (≥ 98%, 

reaching the detection limit [100 µg.L-1] of the ICP-OES), while still avoiding cobalt leaching 

from the nanoparticles into the solution.  

 

Fig. 1 Comparison of the extraction capacity of the different nanobeads. Reaction conditions: 5 mg of 

nanoparticles, 5 mL of Hg2+ solution (30 mg·L-1), 10 min extraction time, solution pH 6.53. The grey bar is for 

Co/C (1), the blue bar for Co/C-PAMAM G2 (7), the red bar for Co/C-PS-PAMAM G2 (8) and the green bar for 

Co/C-PEI (14). 

The maximum extraction capacity of Co/C-PEI (14) was subsequently estimated by extracting 

solutions of higher mercury concentration. The removal of mercury from a 5 mL solution 

containing 580 mg Hg2+ per litre was possible using 5 mg of nanoparticles (14). The 

scavenging efficiency was estimated to be 95%, after 10 minutes of reaction. This corresponds 

to an extraction capacity of 550 mg Hg2+ per gram of nanomaterial (14), which compares 

favorably to the results obtained for Co/C (1) (15 mg Hg2+ extracted per gram of nanoparticles) 

and for previously reported magnetic mercury scavengers (5.6 – 152 mg Hg2+ extracted per 

gram nanomaterial).4,16,40 

Hg2+ could also be efficiently removed from much more diluted solutions using Co/C-PEI (14). 

Starting from 100 mL of an aqueous solution containing 1.87 mg·L-1 Hg2+, 3 mg Co/C-PEI 

nanoparticles (14) are sufficient to bring the mercury concentration down to the detection limit 

(100 µg.L-1) of the ICP-OES analysis again within 10 minutes (Fig. 2). 

0

20

40

60

80

100

H
g2+

 re
m

ov
al

 (
%

)



67 

 

Fig. 2 Hg2+ extraction over 10 minutes of reaction. 100 mL of an aqueous solution (1.64 mg·L-1, 

solution pH 6.71), 3 mg Co/C-PEI nanoparticles (14). The dashed curve represents the exponential 

decay fit of the data set (decay constant: 1.8 ± 1.2 min-1). After 10 min, the detection limit (100 µg·L-1) 

of the ICP-OES analysis was reached.  

To validate that the Hg2+ uptake occurs due to a complexation of the metal ions by the amino 

groups the extraction capacity of the PEI-polymer itself was tested. A commercially available 

PEG-resin with terminal amino groups (19) was functionalized with PEI in the same manner 

(Scheme 3) as for the Co/C-NH2 particles (3) described above.  
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Scheme 3 Synthesis of PEI functionalized PEG-resin (19) by ring opening polymerization of aziridin as 

described for Co/C-PEI (14). 

The so obtained PEI-resin (19) (10.9 mmol of nitrogen per gram of resin) was used for 

extraction, applying identical conditions as in the previous experiments. A similar extraction 

capacity for the PEI-functionalized resin (19), when compared to the Co/C-PEI nanomagnets 

(14) was determined, while the PEG-amino resin (18) itself showed nearly no ability to extract 

mercury (see Fig. 3). In fact, using PEI-resin (19) an extraction efficiency of 90% is achieved, 

as for the amino-resin (18) only 10% of the Hg2+ is extracted.  
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These findings suggest that indeed the amino functionalities on the surface of the nanoparticles 

are responsible for the removal of mercury, which is in agreement with literature reports for 

amino functionalized multi-wall carbon nanotubes,35 or chitosan based absorbents40 or 

polyamine derivatives.34 

 

Fig. 3 Hg2+ extraction of 100 mL of an aqueous solution (1.8 mg·L-1, solution), using 3 mg of the 

amino-resin (18) and PEI-resin (19), within 10 minutes.  

It is known that PEI can also chelate metal ions such as Ni2+, Cu2+, Zn2+, Cd2+ and Pb2+.41 

However, no selectivity studies using PEI for extracting mercury in the presence of other metal 

ions have been reported up until now. Testing the extraction of Hg2+ against other competitive 

metals in solution at the same time, indeed it was found that Co/C-PEI nanomagnets (14) show 

a high preference for Hg2+  (Fig. 4A and 4B). Experiments were done with an extraction time 

of 10 minutes and 3 hours in a pH range of 5.2 - 6.2, representing the range that is obtained 

upon dissolving the metal salts in pure water. No significant changes were detected between 

these two time points indicating that under the conditions applied, the equilibrium time for all 

tested metals has been reached, after 10 minutes of extraction. The preferential extraction of 

Hg2+ is supported by the selective extraction also shown for the PEI-resin (19) (see Fig. 4D). 

Moreover, XPS analysis on the NPs used to obtain the results in Fig. 4A confirmed the 

preferential uptake of mercury against the other metals. In addition, an experiment at basic pH 

8.3 was performed to evaluate the influence of the pH on the adsorption of the metals (Fig. 

4C). Again, a preferential uptake of Hg2+ was detected (68%), however absorption Cu2+ (51%) 

and Pb2+ (17%) occurred to a significant extent as well.  
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Fig. 4 Selective extraction of Hg2+, within 10 minutes, using Co/C-PEI (14) in the presence of competitive metal 

ions: (A) 3 mg of NPs were used to decontaminate a 100 mL solution containing Hg2+, Cu2+, Pb2+, Ni2+, Ba2+ and 

Cr3+ in equimolar amounts (10 µM), solution pH 5.59; (B) 3 mg of NPs were used to decontaminate an aqueous 

100 mL solution containing Hg2+, Pb2+, Ni2+, Zn2+ and Cd2+, solution pH 6.16. (C) 3 mg of NPs were used to 

decontaminate a 100 mL solution containing Hg2+, Cu2+, Pb2+, Ni2+, Ba2+ and Cr3+, solution pH 8. (D) Selective 

extraction of Hg2+ using NOVA PEG amino resin PEI (18) in the presence of competitive metal ions: 3 mg were 

used to decontaminate 100 ml aqueous solution. 

Having developed a scavenger that combines the advantages of using a selective adsorbent 

with the magnetic properties of a solid support, the performance of Co/C-PEI nanoparticles 

(14) was tested in tap water samples. For these experiments water from the facilities of the 

University of Regensburg was used and artificially contaminated with Hg2+ (2 mg·L-1). 

Especially, the water sample was analysed with respect to the content of mercury, magnesium 

and iron before and after treatment with nanoparticles (14). The concentration of Ca2+ was also 

measured to be around 100 mg·L-1, thus being present in large excess with respect to the 

extraction capacity of (14) used in this experiment. However, the values obtained from ICP 

measurements for calcium before and after extraction were somewhat erratic, and cannot be 

taken into consideration. Despite the presence of those other ions that are naturally occurring in 

drinking water mercury was still efficiently removed (Table 1, Sample 1). 

0

0,5

1

1,5

2

2,5

3

Cr Ni Cu Ba Hg Pb

A
m

ou
nt

 o
f m

et
al

s 
in

 s
ol

ut
io

n 
(m

g·
L-

1 )

Initial amount of metal Amount of remaining metal

0,0

0,5

1,0

1,5

2,0

Cr Ni Cu Ba Pb Hg

A
m

ou
nt

 o
f m

et
al

s 
in

 s
ol

ut
io

n 
(m

g·
L-

1 )

Initial amount of metal Remaining amount of metal

A B 

C 

0

0,5

1

1,5

2

Cr Ni Cu Ba Hg Pb

Initial amount of metal Amount of remaining metal

D 



70 

As iron can occur in higher concentrations in water of different areas42 an additional 

experiment was performed in the presence of an excess of iron. Still 90% Hg2+ was 

successfully extracted even if the content of iron was approximately 20 times higher than that 

of mercury (Table 1, Sample 2). 

 
Table 1 Extraction results in tap water. 

 Metal ions before / after extraction  
( mg·L-1) 

Hgc Fec Mgc 

Sample 1a - Regensburg drinking water spiked with Hg2+ 2.2 / 0.3 ≤0.1 / ≤0.1 19.1 / 19.1 

Sample 2b - Regensburg drinking water spiked with Fe2+ 
and Hg2+ 

   2.2 / 0.2 35 / 32.5 - 

a Hg2+ artificially added to the tap water samples (the source of mercury used is HgCl2). In addition, the 
sample contained approx. 100 mg·L-1 Ca2+ (see text). b Fe2+ and Hg2+  artificially added to the tap water 
samples (the source of iron used is FeCl2·4H2O). c Values determined for tap water samples from the 
University of Regensburg. Extraction conditions: 3 mg Co/C-PEI NPs (14) were used to decontaminate 
100 mL aqueous solution (pH 6.71) within 10 minutes. 
 

Having proven the feasibility of the nanomagnets for extracting mercury in real water samples, 

a simple recycling methodology of the magnetic scavenger had to be established. More 

specifically, mercury has to be released after extraction in order to regenerate and reuse the 

nanomaterial. Considering the fact that the amino groups on the surface of the nanoparticles 

(14) are responsible for scavenging the mercury ions, a logical approach is the protonation of 

these groups lowering the pH to reverse their complexation ability. For the release the 

following procedure was established: after the extraction time, the nanobeads were collected 

with a magnet and the aqueous decontaminated solution was completely decanted, followed by 

the addition of 20 mL of an acid. In the course of determining the conditions for the release of 

mercury, different acids (0.01 M) were tested. These experiments showed that strong acids like 

H2SO4, HCl and HNO3 are suitable for achieving high mercury release, while weak acids like 

acetic acid are less effective. Further optimizations were performed with H2SO4 solutions 

differing in molarity and thus in the pH. The best conditions were found to be 0.5 M H2SO4, 

corresponding to a pH value of approximately 0.4. Noteworthy, ICP measurements revealed 

that no significant cobalt leaching from the core of the nanomaterial is detected during the 

release of mercury. 
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Thus, a multicycle extraction/recycling protocol was established (Fig. 5) for aqueous solutions 

(tap water) containing mercury. The Hg2+ contaminated water containing the nanomagnets (14) 

was shaken for 10 minutes and then the NPs are recovered applying an external magnet. The 

decontaminated water is then decanted and the nanoparticles (14) were subsequently treated 

with H2SO4 (20 mL, 0.5 M, 20 minutes) in order to release the mercury. Finally, a magnet is 

used once more to collect the NPs and decant the acidic solution. This was then followed by 

washing the nanomaterials with a 0.5 M potassium carbonate solution and water to regenerate 

the amino groups, and the nanoparticles are used in the next cycle. 

Nanoparticles charged with Hg2+

Magnetic separation

Adsorption of Hg2+

to nanoparticles

Hg2+contaminated solution

Magnetic 
nanoparticles

Decontaminated 
solution

Acidic solution

Desorption
Concentrated Hg2+ solution

Recycling of nanoparticles
  

Fig. 5 Graphical representation of the recycling protocol performed for the extraction of mercury in tap water 

samples. The nanoparticles (14) were shaken with the contaminated water for 10 minutes. After completing the 

extraction time, the magnetic materials are collected by using an external magnet and the Hg2+ desorbed by the 

protonation of the amine groups in H2SO4 solution for 5 minutes. The particles (14) were regenerated by 

washing with a 0.5 M potassium carbonate solution and water and re-used for the next adsorption experiment. 

Following the scheme in Fig. 5, it was demonstrated that in six consecutive cycles more than 

90% of the mercury could be extracted from tap water samples (6x 100 mL spiked with 2 

mg·L-1 Hg2+ each), after 10 minutes extraction for each single experiment (Fig. 6). Even 

though the release step was not complete each time, the extraction capacity remained nearly 

unchanged during the six runs. In some cases the release was observed to be higher than 100%, 

probably due to incomplete release of mercury at the previous step, which was apparently set 

free in the next cycle. 
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Fig. 6 Reusability of Co/C-PEI (14) in six consecutive runs (extraction and subsequent release). 

Reaction conditions: Co/C-PEI (14) (3 mg) were shaken in 100 mL of 2 mg·L-1 Hg2+ containing aqueous 

sample (pH 6.7) for 10 min. Release: 20 mL 0.5 M H2SO4 within 20 min. 

 

Fig. 7 Large-scale experiment was performed in a reactor containing 20 L of an aqueous mercury solution (30 

µg·L-1). The extraction was done at room temperature during one hour using 3 mg of Co/C-PEI (14) per liter, 

which were recovered by an external neodymium magnet (magnification, right picture). 

In addition, TEM analysis (see experimental section) proved that there are no significant 

changes or alterations in the appearance of the nanoparticles visible after the recycling process. 

Aiming to prove their use in a realistic industrial application, the applicability of these 

magnetic scavengers in a large-scale experiment was done in cooperation with the group of 

Prof. Wendelin Stark at the ETH Zurich. For this purpose a 20 liters reactor, from ETH Zurich, 
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was used (see Fig. 7) and filled with normal Zurich drinking water artificially contaminated 

with 30 µg·L-1 Hg2+. An even lower concentration of particles than in the previous recycling 

experiments was employed (3 mg·L-1). Gratifyingly, after one hour reaction time the water was 

detoxified from mercury to 93%, leaving behind a mercury content of 2 µg.L-1 as determined 

by atomic fluorescence spectroscopy (AFS). This value is within the limit for drinking water 

according to World Health Organization.42 Thus, the simple and efficient scavenger (14) 

developed here has proved its potential to decontaminate water samples from Hg2+ poisoning, 

which also might be applicable in the open environment due to the facile recovery of the 

magnetic support. 

 

2.3 Conclusion 

Unfunctionalized carbon-coated nanobeads (1) proved to have potential for mercury removal from 

water, however, with some major limitations. A significant improvement was achieved with PEI-

functionalized nanomagnets (14), which showed a very high capacity for extracting toxic Hg2+ in a 

multimetal environment from drinking water samples at relevant concentrations. The extraction occurs 

through the complexation of Hg2+ ions by the amino groups of the functionalized nanoparticles (14). 

The recyclability of the nanoparticles was ensured for at least 6 consecutive cycles with no loss of 

extraction capacity. The nanoparticles (14) showed as well the ability of extracting from a 20 liters 

reactor, which proved the potential of (14) for the detoxification of drinking water in realistic 

applications. 

In summary, a simple and efficient scavenger has been developed to decontaminate water samples 

from Hg2+ poisoning, which might also be applicable in the open environment due to the facile 

recovery of the magnetic support. 

 

2.4 Experimental section 

Materials and methods 
Commercially available chemicals were used without further purification. NovaPEG amino resin 

Novabiochem® (batch number: S6625326; loading: 0.59 mmol/g) was purchased from Merck KGaA. 

Column chromatography was performed with silica gel (Merck, Geduran 60, 0.063-0.200 mm 

particles size) and flash silica gel 60 (Merck, 0.04-0.063 mm particles size). Attenuated total reflection 

infrared spectroscopy (ATR-IR) was carried out on a Biorad Excalibur FTS 3000, equipped with a 

Specac Golden Gate Diamond Single Reflection ATR-System or a Varian FTS 1000 spectrometer. 

Solid and liquid compounds were measured neatly and the wavenumbers are reported as cm-1. Mass 

spectrometry was performed using a Finnigan ThermoQuest TSQ 7000 at the Central Analytical 
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Laboratory (University of Regensburg). Elemental microanalysis was carried out by the micro 

analytical department of the University of Regensburg using a Vario EL III or Mikro-Rapid CHN 

apparatus (Heraeus). The inductively coupled plasma optical emission spectrometry (ICP-OES) was 

measured on a Spectroflame EOP (Spectro) at the University of Regensburg while the atomic 

fluorescence spectroscopy (AFS) was performed at Bachema AG Switzerland. Termogravimetric 

analysis (TGA) was done on a TGA 7 (Perkin Elmer). Magnetization measurements were performed 

using superconducting quantum interference device (SQUID) at the Physics Department at the 

University of Regensburg.  X-ray photoelectron Spectroscopy (XPS) analysis was performed at SuSoS 

(Switzerland). 

Nomenclature of the magnetic nanoparticles 

The nomenclature of the nanoparticles is as follows: Co/C for magnetic nanoparticles with cobalt core 

and carbon shell. Co/C-R for functionalized Co/C NPs where R indicates the functional groups on the 

graphene-like layers: PAMAM G2 for the dendrimeric poly(amidoamine) coating of the second 

generation and PEI for the polyethyleneimine coating. Co/C-PS-PAMAM G2 for polystyrene coated 

cobalt nanoparticles with an additional dendrimeric functionalization. 

Synthesis of the nanoparticles 

The ATR-IR spectra and TGA profile of Co/C-PAMAM G2 and Co/C-PS-PAMAM G2 are shown in 

Chapter 1. 

 
Magnetic Co/C-PAMAM G2 (7) 

  

In a typical experiment, 100 mg of azide functionalized nanoparticles (0.019 mmol (N3) per gram 

nanoparticles, 0.007 mmol) (5) and 5 equivalents (70 mg, 0.095 mmol) of the second generation 

PAMAM dendron, containing 4 functional groups, were used. The PAMAM was previously dissolved 

in 5 mL of degassed THF/H2O (3:1) mixture followed by the successive addition of Co/C- N3 (5), Na-

ascorbate (30 mol%, 0.029 mmol, 5.75 mg) and CuSO4 (10 mol%, 0.0095 mmol, 2.37 mg). 

Afterwards the reaction mixture was sonicated for 15 minutes and stirred for 48 hours at room 

temperature. The magnetic nanoparticles were separated applying an external magnet and washed with 

acetone (5x 5 mL), H2O (5x 5 mL) and acetone (3x 5 mL). In the end, the nanobeads were dried under 

vacuum. The reactions were monitored by ATR-IR, evaluating the attenuation of the azide peak and 

the loadings estimated by TGA.  

Co/C-PAMAM (7): TGA (N2): 0.02 mmol.g-1; 1.4 % mass loss.  
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Magnetic Co/C-PS-PAMAM G2 (8)  

 

In a typical experiment, 100 mg of azide functionalized nanoparticles (8) (2.42 mmol (N3) per gram 

nanoparticles, 0.242 mmol) (5) and 5 equivalents (894 mg, 1.21 mmol) of the second generation 

PAMAM dendron, containing 4 functional groups, were used. The PAMAM was previously dissolved 

in 5 mL of degassed THF/H2O (3:1) mixture followed by the successive addition of Co/C-PS-N3 (8), 

Na-ascorbate (30 mol%, 0.363 mmol, 72  mg) and CuSO4 (10 mol%, 0.121 mmol, 30  mg). 

Afterwards the reaction mixture was sonicated for 15 minutes and stirred for 48 hours at room 

temperature. The magnetic nanoparticles were separated applying an external magnet and washed with 

acetone (5x 5 mL), H2O (5x 5 mL) and acetone (3x 5 mL). In the end, the nanobeads were dried under 

vacuum. The reactions were monitored by ATR-IR, evaluating the attenuation of the azide peak and 

the loadings estimated by TGA.  

Co/C-PS-PAMAM (8): TGA (N2): 0.6 mmol.g-1; 42 % mass loss. 

Magnetic Co/C-PEI (14)  

 
For this specific batch, amino-functionalized carbon-coated cobalt nanoparticles (3)22 (Co/C-NH2) 

(946 mg, 0.1 mmol, 1.0 equiv.) were pre-dispersed in 95 mL DCM using an ultrasonic bath for 15 min. 

Under stirring, aziridine (5.4 mL, 103.6 mmol, 1000 equiv.) and conc. HCl (141.6 µL)) were added to 

the reaction mixture which then was heated to 80 °C for 48 h. Afterwards the NPs were collected using 

an external magnet, washed with DCM (2x 50 mL), H2O (5x 50 mL) and again DCM (3x 50 mL). 

Then the nanobeads were dried under vacuum at 50 °C. As the degree of polymerization was not 

satisfactory the whole procedure was repeated using 500 mg of the herein synthesized nanoparticles 

(1.0 equiv.) in 49 mL DCM, 2.85 mL aziridine (1000 equiv.) and 100 µL conc. HCl. After a reaction 
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time of 69 h the nanoparticles were washed with DCM (2x 50 mL), H2O (5x 50 mL) and again DCM 

(3x 50 mL). The extent of polymerization was estimated by TGA (66 wt%).  

IR (ν/cm-1): 3417, 2934, 2821, 2362, 1648, 1604, 1458, 1351, 1298, 1014. 

Elemental microanalysis [%]: C, 30.46; H, 7.09; N, 14.97; Loading (N): 10.7 mmol·g-1 nanoparticles. 

 

Fig. 8 TGA analysis of the phenylethylamine-coated Co/C nanoparticles (3) (black) and PEI-coated MNPs (14) 

(green). 

NOVA PEG Amino Resin-PEI (19) 

 

The commercially available Nova PEG amino resin (19) (50 mg, 29.5 µmol, 1.0 equiv.) was pre-

swollen in 5 mL DCM. Then aziridine (775 µL, 14.9 mmol, 506 equiv.) and conc. HCl (15.5 µL) were 

added under stirring. The resulting reaction mixture was heated to 80 °C for 24 h. Afterwards the resin 

was filtered off, washed with DCM (2x 20 mL), H2O (5x 20 mL) and DCM (3x 20 mL) and dried 

under vacuum at 50 °C.  

IR (ν/cm-1): 3413, 2936, 2823, 1653, 1614, 1457, 1357, 1292, 1098. 

Elemental microanalysis [%]: C, 38.27; H, 8.18; N, 16.24. Loading (N): 10.9 mmol·g-1. 

TGA (N2): 65 wt% PEI. 
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Fig. 9 TGA analysis of the commercially available NOVA PEG Amino Resin (17) (black) and the respective 

PEI-coated resin (18) (blue). 

Metal extraction experiments 

Adsorption of mercury from aqueous solutions 

A given amount of the magnetic nanoparticles was added to an aqueous mercury solution with a 

defined concentration of the heavy metal. The experiment was carried out at room temperature and the 

pH of the solutions specified at the results section. The metal salts used are HgCl2, BaCl2·2H2O, 

CuCl2, CrCl3·6H2O, PbCl2, Ni(C5H7O2) 2, Zn(ClO4) 2·6H2O and CdCl2·H2O. 

First, the nanoparticles in solution were dispersed for one minute in the ultrasonic bath and then the 

dispersion was agitated in a mechanical shaker for 10 minutes. Afterwards the particles were collected 

with the help of a magnet and the solution was decanted. The remaining mercury in solution was 

determined by ICP-OES (detection limit: 0.1 mg·L-1). For the large scale experiment the remaining 

solution was analyzed by atomic fluorescence spectroscopy (AFS) with a detection limit of 1 µg·L-1. 

Desorption of mercury and re-usability of the nanomagnets 

After extraction, the nanoparticles (14) (3 mg) were collected with an external magnet and re-

dispersed in 20 mL of H2SO4 (0.5 M). The solution was sonicated for 3 min followed by 5 min of 

mechanical shaking. The nanomagnets were collected once more using by the aid of an external 

magnet, washed with a 0.5 M potassium carbonate solution (10 mL) and water (10 mL), and re-used 

for the next extraction experiment. This procedure was repeated six times to study the materials’ 

recyclability. 

To determine the amount of mercury desorbed, the acid solution used above was diluted with aqua 

regia 32% (v/v), filtered and analyzed by ICP-OES. 
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Transmission electron microscopy pictures 

TEM pictures of the Co/C-PEI nanoparticles (14) before (A) and after recycling process (B). 

 

 

X-Ray photoelectron spectroscopy  

XPS analysis was performed on three samples of Co/C nanoparticles after extraction of metals: 

• Co/C (1) after the extraction of HgCl2 

• Co/C-PEI (14) after the extraction of HgCl2 

• Co/C-PEI (14) after the extraction of HgCl2
 from a mixture of different metal salts (HgCl2, 

BaCl2·2H2O, CuCl2, CrCl3·6H2O, PbCl2, Ni(C5H7O2)2) 

Results: 

• Co/C (1): The metallic Co core of the particle can still be detected, indicating, that the C-

coating is less than 10 nm thick. Mercury is its oxidized form.  

• Co/C-PEI (14): The metallic Co core of the particle is not detected anymore on these particles. 

Hg is detected, in its oxidized form. 

• Co/C-PEI (14): The metallic Co core of the particle is not detected anymore on these particles. 

Hg is detected in its oxidized form. Additionally some Cu was detected. Ni, Cr, Pb and Ba 

could not be detected. 
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Chapter 3 

Development and characterization of suitable 
antifouling magnetic nanocarriers for RNAi therapy 

 

 

 

Herein, the potential of two nanocarriers for RNAi therapy was studied. Two different procedures 

were followed to coat the different magnetic nanocubes (NCs), composed of iron oxide or manganese 

ferrite, with positively-charged species that can bind the negatively-charged siRNA simply by 

electrostatic interaction. Both the cationic nanocubes were fully characterized to assess their 

physicochemical properties, their behavior in biological environment and the capacity to deliver 

siRNA to living cells. Iron oxide nanocubes coated with a pH-responsive copolymer containing 

(dimethylamino)ethyl methacrylate (DMAEMA) and oligoethylene glycol methyl ether methacrylate 

(OEGMEMA) moieties showed to be quite promising, loading high amounts of siRNA and reducing 

the non-specific adsorption of proteins, therefore allowing its delivery into the cells without cytotoxic 

signs. 

 

 

 
 

 

The functionalization of cationic IONCs (25) was performed by my colleague Thanh-Binh Mai and is it is confidential since 

is not yet published and subject to patenting evaluation. 
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3.1 Introduction 

RNA interference (RNAi) technology is an endogenous pathway for post-transcriptional gene 

silencing which is triggered by small double stranded RNA (dsRNA) molecules, such as small 

interfering RNAs (siRNA) and microRNAs (miRNA).1 By activating this path, RNAs can target and 

downregulate the expression of specific genes, binding to their complementary messenger RNA 

(mRNA) sequences.2 Thus, the use of synthetic siRNA, endogenous miRNA or oligonucleotides, has 

emerged as a very promising and revolutionary therapeutic approach for genetic based diseases such 

as cancer, since they were found to work in mammalian cells.1,3 

The RNAi machinery (Fig.1) starts with the binding of the siRNA to the RNA-induced silencing 

complex (RISC) which separates the two strands of siRNA, allowing the guiding activated-RNA 

strand to identify, bind and cleave complementary mRNA. As a result, the biosynthesis of the 

correspondent protein is suppressed. Once incorporated in the RISC, the siRNA can catalyze hundreds 

of times the gene silencing of identical mRNAs.2,4 

 

Fig. 1 RNAi machinery scheme. Natural occurring long double-stranded RNAs are introduced into the 

cytoplasm, where they are cleaved into small interfering RNAs (siRNAs) by the enzyme Dicer. Alternatively, 

synthetic siRNAs can be introduced directly into the cell. The siRNA is then incorporated into RISC, resulting in 

the cleavage of the sense strand of RNA. The activated RISC–siRNA complex binds to and degrades 

complementary mRNA, which leads to the silencing of the target gene. The activated RISC–siRNA complex can 

then be recycled for the destruction of identical mRNA targets hundreds of times. Scheme adapted with 

permission from reference 5. Copyright 2006, Nature Publishing Group.  

This type of therapy offers some advantages when compared to conventional drugs of synthetic origin: 

(1) it can target and inhibit mostly any gene, being more than 20 RNAi-based drugs already involved 

in clinical trials;2,5 (2) siRNAs can be easily synthesized in contrast to other biomolecules such as 
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antibodies or proteins;5 (3) siRNAs are highly selective.6 However, there are still some limitations on 

the current siRNA formulations which need to be overcome prior to consider RNAi a valuable 

alternative therapeutic approach for human diseases. Among them it is possible to distinguish at least 

four critical issues: (1) the protection from degradation; (2) efficient targeted delivery; (3) silencing 

specificity; (4) immunogenicity/toxicity. In particular, the delivery of the RNA molecules remains the 

biggest challenge in clinical applications, for several reasons. It has passed over a decade since Dr. 

Inder Verma proclaimed “There are only three problems in gene therapy: delivery, delivery and 

delivery”,3,7 but the issue remains an open challenge and opportunity. Also, siRNA by its own has a 

limited capacity to breakdown the protein expression, due to its instability in the blood stream, the 

possibility of causing immune responses and the incapacity of diffusing across the cell membrane as a 

negative, hydrophilic large molecule.8 Specifically, when administered in the blood stream, naked 

siRNA can be degraded very quickly by serum nucleases and stimulate the immune system. 

Additionally, there were found indications that other factors, involved in the RNAi machinery, can be 

saturated by over-expressed exogenous siRNAs. This might result in major implications, as reported 

for the death of mice after PolIII promoter-driven expression of small hairpin RNA (shRNAs) in the 

liver.9 Therefore, research is pushing forward on the development of good delivery systems to bring 

RNA to its activity site in low effective doses and deprived of any toxic effect.10 

An ideal carrier aiming a successful delivery has to overcome both extracellular and intracellular 

barriers once administered into the bloodstream (Fig. 2). The carrier must payload and protects the 

siRNA from degradation and clearance, thus increasing the circulation time in the blood stream by 

reducing the non-specific interactions with serum proteins (antifouling effect).10-13  

 

Fig. 2 Schematic trafficking of siRNA-carriers after systemic administration. Both extra and intracellular barriers 

must be overcome in order to successfully silence target genes. The carriers have to be able to (1) avoid 
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filtration, phagocytosis and degradation in the bloodstream; (2) be transported across the vascular endothelial 

barrier; (3) diffuse through  the extracellular matrix; (4) enter the cells; (5) escape the endosomal / lysosomal 

degradation; (6) release the siRNA inside the cell cytosol for RNAi machinery. Scheme adapted with permission 

from reference 11. Copyright 2009, Nature Publishing Group. 

Indeed, the carrier interaction with serum components can cause undesired aggregation with 

erythrocytes or interaction with other particular proteins, which might tag the delivery vehicles for 

other cells rather than the target cells for treatment. For instance, the adsorption of opsonins on the 

carrier promotes its uptake by the mononuclear phagocyte system leading to undesired clearance of the 

carriers from the bloodstream.10,13 In addition, the carrier has to be able to promote cellular uptake, 

escape the endosomal-lysosomal degradation system and ultimately release the siRNA into the cytosol 

for entering the RNAi machinery (see Fig. 2).11,12 

Considering the endosomal escape, the most commonly used strategy is to induce the so-called 

“proton sponge” effect. For this purpose, cationic polymers are widely used. However, even though 

they actually improve the cellular uptake they were proven to induce undesired cytotoxicity and non-

specific accumulation in the body.8,14 As an alternative, less toxic pH-responsive polymers, which can 

be protonated under acidic pH to assist endosomal escape, can be used.8 The proton sponge effect is 

directly related with the pH-buffering capacity of the RNA-carrier to retain the protons, during 

endosomal acidification upon cellular uptake. Alongside, the accumulation of Cl- counter ions disturbs 

the osmotic pressure inside the endosomal vesicle, eventually leading to its swelling and disruption 

releasing the nanocarriers into the cell cytoplasm.  

The two main strategies in RNAi technology are the delivery of shRNA-encoding genes, by 

engineering viruses which ultimately generate siRNAs, or the non-viral delivery of synthetic 

siRNAs.1,7,9 No ideal delivery system had been found so far, thus it is important to accurately study the 

advantages and disadvantages of each of these approaches for clinical translation. Viral vector-

dependent delivery systems are generally more effective due to their intrinsic capacity to infect cells. 

However, they have big constraints concerning immunogenicity. On the other hand, non-viral therapy 

arises as a less expensive and less immunogenic alternative.2,8 It is worth mentioning, that already few 

years ago, some of the artificial siRNA carriers based on liposomes and siRNA-protein conjugates 

have been under clinical trial evaluation as siRNA based therapeutics in several human diseases.2,15 

Compared to naked siRNA sequences the aforementioned carriers showed improved performance in 

delivery efficiency, targeting specificity and silencing efficacy.15 

Currently, the most commonly studied RNA-carriers are polycations like polyethylene imine14,16,17 and 

poly-L-lysine18 or lipid-like particles19 bearing positively charged head groups, such as 

Lipofectamine® 2000. The main benefit of using such carriers is their ability to form polyelectrolyte 

complexes with the negatively charged-RNAs simply by electrostatic interaction.3 Nevertheless, other 

nanomaterials such as silica coated nanoparticles, carbon nanotubes and magnetic nanoparticles, are 

gaining much attention for RNAi therapy.20 Indeed, the proper functionalization of all these nanoscale 
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materials has the potential to provide a successful dose of siRNAs or miRNAs required for gene 

delivery, given their high surface to volume ratio (the size range of these nanoparticles is 10-50 nm vs 

150-200 nm of liposomes like particles or poly-L-lysine complexes). Magnetic nanoparticles in 

particular have the advantage of magnetic guidance and accumulation on the desired site of action. 

They were first introduced for drug delivery purposes late in the 1970s by Widder et al.21 Here, the 

authors show the efficacy of magnetic albumin microspheres for tumor therapy and as magnetic 

resonance contrast agents, in animal experiments. This study prepared the ground to the use of 

magnetic nanoparticles surrounded by a biocompatible coating in biological systems. Ideally, in a real 

application, the complex NP-therapeutic agent should be injected into the blood stream, via blood 

vessels close to the body region where the carrier needs to be delivered. Then a magnetic field is 

applied at the target site forcing the particles to enter the defective cells.21,22 

In the last few years, an increasing attention has been paid to the efficient synthesis of shape-

controlled, stable and monodisperse iron oxide nanoparticles (IONPs).23 Indeed, various studies have 

proved the potential of magnetic nanoparticles for being used in a variety of biomedical applications 

like hyperthermia treatment,24,25 drug delivery,26-28 MRI contrast agents29 and transfection carriers.20 

For instance, Boyer et al. have shown that IONPs coated with poly(oligoethylene glycol) methyl ether 

acrylate (P(OEGMA)) and poly(dimethylaminoethyl acrylate)  (P(DMAEA)) could be used at the 

same time as siRNA transfection carrier and be monitored as MRI contrast agents in vitro.30 Other 

studies, have demonstrated the effectiveness of IONPs modified with cationic polymers to yield 

siRNA-IONPs complexes.31,32 

Following the aforementioned evidences, the motivation of this research work was to test new pH-

responsive magnetic materials, recently synthesized in Pellegrino’s group as magnetic carriers for 

siRNA molecules. A protocol to obtain controlled colloidal synthesis of monodisperse magnetic iron 

oxide nanocubes (IONCs)25 and their subsequent transfer in water was recently developed.33,34 The 

possibility to further functionalize these IONCs without compromising their stability and 

biocompatibility, would enable their use in biological applications such as drug26 or gene delivery.35 In 

addition, since Pellegrino’s group is focused also on the synthesis of new magnetic nanoparticles 

having available different type of iron oxide or ferrite particles with enhanced features for magnetic 

hyperthermia, this work explored the possibility to combine heat mediated gene delivery with 

hyperthermia. Indeed a synergistic therapy reported by Lee et al.36 showed that their nanocubes were 

capable of targeting tumor cells for combined siRNA and hyperthermia-based therapy, resulting in a 

significant inhibition of proliferation and induction of apoptosis in tumor cells. For this purpose, great 

efforts were done to synthesize and fully characterize antifouling positively-charged nanocubes of two 

different chemical natures: manganese ferrite and iron oxide nanocubes. The characterization involved 

the determination of physicochemical properties but also the biological evaluation of the systems’ 

stability in biological fluids and its interaction with cells including a comparative study of their 

citotoxicity. In particular, positive-functionalized IONCs were exploited for the loading of siRNA 
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molecules. Then, the characterized conjugates IONCs-siRNA were applied for gene silencing therapy 

studies. Thanks to its suitability, anti-green fluorescent protein (GFP) siRNA was used as a model 

RNA for validating the effectiveness of nanocarriers as delivery tools for mammalian cells 

transfection. The carriers’ efficiency was evaluated by the downregulation of GFP in human cervical 

carcinoma cells (HeLa) assessed by fluorescent assay.  

 

3.2 Results and discussion 

3.2.1 Preparation and characterization of cationic MnFe2O4 cubes by polymer coating 

and further functionalization of the polymeric shell 

The effectiveness of cationic nanocubes (NCs) to load and delivery siRNA, was done by comparing 

two types of different materials. The first sample was prepared accordingly with the synthesis in 

Scheme 1. Manganese ferrite nanocubes (here referred as MnFe2O4, 20), with a size of 13 ± 2 nm, 

were prepared according to non-hydrolytic wet-chemical protocol, still under development in 

Pellegrino’s group. Then, the as-synthesized nanocubes (20), were modified with a positively charged 

coating (here referred as cationic Mn-cubes, 22) by a two-step approach: (1) they were first transferred 

into water enwrapping them in a polymeric amphiphilic shell of poly(maleic anhydride alt-1-octadene) 

(hereafter referred as PC18);33 (2) followed by the covalent attachment, via EDC chemistry, of amino 

bearing tertiary amine named N,N’-dimethylethylenediamine (hereafter referred as DMEDA) in order 

to render them positively-charged and methoxypolyethylene glycol amine (hereafter referred as 

monoamino-PEG), to improve colloidal stability. 

 

Scheme 1 Sketch of the synthesis of water soluble positively-charged MnFe2O4 nanocubes later used for the 

delivery of siRNA. Starting from hydrophobic MnFe2O4 nanocubes (20) in CHCl3 they were first transferred to 

water by means of polymer coating with poly(maleic anhydride−alt−1-octadecene), followed by the covalent 

linkage of a tertiary amine (DMEDA) and monoamino-PEG molecules to give cationic Mn-cubes (22).  
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Briefly, a large excess of the amphiphilic polymer PC18 was mixed with the as-synthesized MnFe2O4 

nanocubes (20) in chloroform such that a ratio of monomeric polymer units of 500 molecules per nm2 

was set. The development of the polymeric shell is promoted by the intercalation of the hydrophobic 

alkyl chains of the polymer with the aliphatic chains of the surfactant which coats the nanocubes 

during solvent evaporation. The hydrophilic region of the polymer is developed during exposure of the 

maleic anhydride groups at the surface of nanocubes to the water solution added to the dried 

nanocubes in a second step. The polymer-coated cubes (here mentioned as Mn-PC, 21) were brought 

in water by sonication and the excess of polymer was efficiently removed in a sucrose gradient by 

ultracentrifugation, giving stable monodisperse Mn-PC cubes (21) as observed by evaluating their 

migration band by gel electrophoresis, the hydrodynamic size by dynamic light scattering (DLS) 

(Fig.3B) and their spectroscopic image by transmission electron microscopy (TEM) analysis (Fig.3A-

C). Once transferred into water, Mn-PC (21) can be further functionalized by EDC chemistry on the 

PC18 carboxyl groups exposed on the nanocrystals’ surface. Accordingly, a tertiary amine (DMEDA) 

and monoamino-PEG (750 Da) molecules were covalently attached to the surface of the Mn-PC (21). 

As a result, positively charged and monodisperse Mn-cubes (22) were obtained. The comparative 

measure of the zeta potential confirmed the successful charge conversion from approximately -48 mV 

to +35 mV, due to the presence of tertiary amines on the surface (Fig. 3). Moreover, the 

functionalization of the polymeric shell did not compromise the overall size and stability of the 

nanocubes, as seen by DLS (Fig.3B) and TEM (Fig.3C and 3D). The PEG polymer molecules were 

employed for stability purposes, particularly to reduce the non-specific protein interaction of the 

materials when in contact with biological fluids (antifouling ability).30 
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Fig. 3 A) Gel electrophoresis of Mn-PC cubes (21) after having removed the free polymer by ultracentrifugation. 

Agarose gel 1% was used and a potential of 100V was applied for 45 minutes. B) Average hydrodynamic sizes 

before and after DMEDA functionalization, inset: zeta potential, in water of the Mn-PC (21) and cationic Mn-

cubes (22). Color code: blue for Mn-PC (21) and red for cationic Mn-cubes (22). TEM image (scale bars 

100 nm) of: C) Mn-PC (21); cationic Mn-cubes (22). 

Different types of iron oxide nanocubes have been investigated in Pellegrino’s group for their heating 

ability under an alternating magnetic field.24,25 The heating capacity of the magnetic materials is 

expressed as the specific absorption rate (SAR). Specifically, the SAR provides a measure of the rate 

at which energy is adsorbed per unit mass (g) of magnetic material when exposed to a radiofrequency. 

This depends not only on the amplitude of the magnetic field (H) and frequency (f) applied but also on 

the structure and composition of the NCs.24  

SAR measurements were performed on the manganese ferrite Mn-PC (21) in order to evaluate their 

heat performance for hyperthermia applications.  

The SAR values, normalized to the iron amount, are calculated according to the equation: 

��� ��� � �
	

 � �
��  

where C(J·L-1·K-1) is the specific heat capacity of water per unit volume and m is the iron 

concentration in (g·L-1) of the NCs in solution.37 
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SAR measurements were performed by introducing an aqueous solution of the magnetic materials in a 

device consisting of a coil generating magnetic fields of different frequencies and magnetic field 

amplitudes. The measurements were performed in non-strictly adiabatic conditions, therefore only the 

first few seconds of the curve temperature vs. time (dT/dt) were used for estimating the slope. A 

concentration of nanocubes that allows a steep increase of the temperature over few seconds is then 

necessary. 

Fig. 4A displays the SAR values as a function of the magnetic field intensity (H) and Fig 4B the 

product Hf at two different frequencies (300 and 105 KHz) and for three different fields (12, 16 and 24 

kA·m-1) for both manganese ferrite Mn-PC (21) and iron oxide nanocubes of approximated size. The 

iron oxide cubes25 were transferred to water as described for the manganese ferrite nanocubes, 

presenting a charge of -45 mV. This set of data shows a decrease in the SAR values for the manganese 

ferrite NCs (21) when compared to the correspondent iron oxide nanocubes of similar size.  

 
Fig. 4 The graphs show the comparison of the SAR values for Mn-PC (21) (13 ± 2 nm) (squares) and the 

approximately correspondent in size (14 ± 3 nm) standard iron oxide nanocubes (triangles). A) SAR values as a 

function of the magnetic field amplitude H for water soluble Mn-PC (21) at 300 (■ blue squares), and 105 kHz 

(□ black empty squares). Iron oxide nanocubes of the same size were measured as a comparison at 300(▲ red 

triangles) and 105 kHz (∆ green empty triangles). Each experimental data point was calculated as the mean value 

of at least 4 measurements and error bars indicate the standard deviation. B) SAR values as a function of the 

product Hf for water soluble Mn-PC (21) at 24(□ green empty squares), 16 (∆ blue empty triangles) and 

12 kA·m-1 (o red empty circles). The corresponding full symbols indicate the SAR values for the standard iron 

oxide nanocubes at the same field intensities. The vertical dashed line defines the biological limit (5 x 109 A·m-

1·s-1).38 

 

In Fig. 4A, considering the measurement for the highest applied field intensity and frequency, it is 

possible to notice a drop in the SAR value from 640 to 374 W·gFe
-1, being the highest value registered 

for the iron oxide nanocubes. The same trend is observed for the other frequency-amplitude 

combinations. In addition from Fig.4B, it is evident that within magnetic fields and frequencies that 
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are tolerated by patients (dashed black line) Mn-PC (21) have quite low SAR values. Nevertheless, the 

results shown in Fig. 14 compare well to those obtained by Lee et al. who have used nanoparticles 

with a SAR value of 69 W·gFe
-1 (at 334 kHz and 12 kA·m-1) for the combined therapy of gene delivery 

with hyperthermia.36 

This preliminary data suggests that the manganese ferrite NCs have the potential for being used in 

hyperthermia treatments, however a better control over shape and size of the nanocubes during the 

synthesis would be needed to improve the SAR values, as reported before for iron oxide nanocubes by 

Guardia et al.24 

 

3.2.2 Preparation and characterization of cationic IONCs by copolymerization of 

DMAEMA and OEGMEMA  

The second approach followed for preparing water soluble cationic iron oxide nanocubes which were 

also tested for delivery of siRNA is shown in Scheme 2. In this case, given the very high heating 

performance of iron oxide nanoparticles of 16 nm in cube edge, this sample was selected. Positive 

cubes (here referred as cationic IONCs, 25) were prepared by a two-step approach that involves first a 

ligand exchange protocol to introduce the macro-initiators on the surface of the iron oxides nanocubes 

(23). Then, in a second step, the polymerization of (dimethylamino)ethyl methacrylate (DMAEMA) 

and oligoethylene glycol methyl ether methacrylate (OEGMEMA) took place (unpublished 

procedure). The excess of polymer was removed on a sucrose gradient by ultracentrifugation on the 

top layer of the gradient, and the resulting water soluble highly positive nanocubes were collected on a 

different density layer. The cationic IONCs (25) were very uniform in size and individual particles 

with no sign of aggregation could be detected as shown in Fig.5A and 5B.  

The DMAEMA moieties act as a pH-responsive block which might trigger endosomal-lysosomal 

escape and degradation by reinforcing the proton sponge effect, thus being quite attractive for the 

envisage application in this work.39 

  
 

Scheme 2 Synthesis of cationic IONCs. The as-synthesized IONCs (23) are first subjected to a ligand exchange 

procedure (1) in order to introduce on the surface the macro-initiators. The copolymerization of DMAEMA and 

OEGMEMA is then carried out on the nanocubes surface (2) to achieve cationic IONCs (25). 
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Following such a protocol IONCs with charges as high as approximately +50 mV (Fig. 5A) were 

obtained, thanks to the presence of the DMAEMA block of the co-polymer. On the other hand, the 

OEGMEMA chains are responsible for retaining the stability and reducing unspecific protein 

adsorption on the surface in biological medium, thereby improving the antifouling properties of the 

nanocubes. 

 

Fig. 5 Average hydrodynamic size (A), zeta potential (inset panel A) and TEM image (B) of cationic IONCs 

(25) (scale bar 50 nm). 

 

3.2.3 Stability of the synthesized cationic nanocubes in FBS and physiological medium 

– interaction with serum proteins 

The application of nanocubes in the biomedical field is mainly related to their stability, biodistribution 

and toxicity.40 Particularly, the tendency of the nanoparticles to aggregate in high-ionic-strength fluids, 

as the biological media, is one of the main key limitations for their applications in biomedicine. 

Particle aggregates can block the blood capillaries and are usually recognized as foreign materials by 

the immune system being cleared from the blood circulation by the reticuloendothelial system 

(RES).41 The key to avoid agglomeration and stabilize the nanoparticles is to overcome magnetic and 

Van der Waals attraction forces, by engineering their surface, introducing coatings capable of proving 

steric or electrostatic repulsion at the magnetic nanoparticles surface.41 Additionally, it is well known 

that the adsorption of protein onto the surface of nanoparticles occurs immediately upon contact of the 

magnetic nanoparticles with the physiological environment, forming the so-called protein corona.41, 42 

The protein corona formation strongly depends on nanoparticle characteristics such as morphology, 

charge, porosity, crystallinity, roughness, or surface coating. The physical properties of the MNPs are 

significantly altered after the formation of protein corona, resulting in changes in their size, 

composition and colloidal stability that might favor particle agglomeration. Thus, the protein layer on 

the surface provides a new identity of the nanomaterial which determines their behavior and 

interaction with living cells.40,43 
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To evaluate the biological impact of the developed magnetic carriers, in particular their antifouling 

properties, the positive charged NCs were tested for the stability in a 10% fetal bovine serum (FBS) 

aqueous solution and Dulbecco’s Modified Eagle Medium (DMEM) supplemented equally with 10% 

FBS. The nanocubes were monitored visually over time by checking if precipitation or aggregation 

occurred. The results in Fig. 6 clearly show that both types of cationic materials, Mn-cubes (22) and 

IONCs (25), are stable in the presence of serum proteins (Fig. 6 B, C, E and F) in contrast to the Mn-

PC (21) which precipitate quite fast (Fig. 6A and 6D). 

 

Fig. 6 Stability proof of the nanocubes in 10% FBS aqueous solution (A-C) and DMEM supplemented with 10% 

FBS (D-F), during 24h of incubation. A, D) Mn-PC (20); B, E) cationic Mn-cubes (22); C, F) cationic IONCs 

(25). 

Furthermore, the protein adsorption on the surface of the cationic Mn-cubes (22) and cationic IONCs 

(25) was evaluated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), 

which consists on the separation of denatured proteins according to their electrophoretic mobility. 

Essentially, the SDS detergent linearizes the proteins’ charge to negative which then migrate simply 

according to their molecular weight. The aim of this test was to study and better understand to which 

extent the protein corona is formed on the surface of these nanocubes and which are the consequences 

of the different coatings applied on the formation of the corona. Fig. 7 reveals considerably less 

pronounced bands for both cationic nanocubes (22 and 25) compared to the strong bands detected for 

Mn-PC (21). This indicates a much lower amount of adsorbed proteins on the cationic NCs that is 

most likely due to the presence of the PEG molecules in the polymeric shell which provide antifouling 

features. 
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Fig. 7 Comassie stained SDS-PAGE gel of NCs-PC (21), cationic Mn-cubes (22) and cationic IONCs (25) after 

90 minutes of incubation in FBS solution. The electrophoresis was run at 120 V for 60 minutes on a 12% 

acrylamide gel. After, the gel was stained with Comassie for visual evaluation of the protein bands.  

Nonspecific protein adsorption on the surface of nanoparticles, forming the protein corona, is 

commonly defined as a negative effect, once it can compromise the fate of the nanoparticles. 

However, it is well known that the formation of coronas is also relevant to help on the stabilization of 

the nanoparticles in biological systems.41,44 The advantages and disadvantages of protein corona 

formation strongly depend on the nature of the protein-nanoparticle interaction, considering the 

amount and type of proteins adsorbed.41 

From the results obtained for our positive charged materials, one can assume that the protein corona 

occurs to an extent in which it doesn’t compromise the colloidal stability of the nanocubes in 

biological environment (see Fig. 6). Less clear results were found for Mn-PC (21), which precipitated 

early after incubation which the serum. To better comprehend the effect of the corona formation in 

these cationic magnetic nanocubes, the time evolution of the hydrodynamic diameter of cationic 

IONCs (25) was measured for 24h, to assess their stability in biological medium in the presence or 

absence of FBS. 

As depicted in Fig. 8, in the presence of FBS the nanocubes show an excellent stability over an 

incubation of 24h in biological medium, while in the non-supplemented medium the nanocubes reveal 

significant aggregation. These results proved that the corona effect is favorable and greater stability of 

the nanohybrids is achieved, allowing a safe application of these NCs for biological studies. 



94 

 

Fig. 8 Hydrodynamic diameter (intensity average) monitoring study of cationic IONCs (25) in biological 

medium in the presence or absence of 10% FBS, over a total incubation period of 24h. The red curve indicates 

the hydrodynamic size of the IONCs incubated in non-supplemented medium, while the blue curve indicates the 

hydrodynamic diameter for the IONCs incubated with FBS supplemented medium. 

 

3.2.4 Cell cytotoxicity and intracellular iron concentration estimation 

The cytotoxicity and uptake of nanoparticles by cells depends mainly on the materials properties like 

size, shape, composition, surface charge and surface hydrophobicity.45  

Firstly, the cytotoxicity of cationic Mn-cubes (22) was studied at different incubation times (24, 48 

and 96h) and at various Fe concentrations in a range from 6 to 50 µg·mL-1 on human cervical 

carcinoma cell line (HeLa) cells. HeLa cells were chosen here due to the possibility to be used also for 

the protein downregulation experiments in a later stage. The cellular viability was assessed by 

PrestoBlue (PB) assay which consists on the change in color of the PB reagent once reduced by 

metabolic active living cells. The percentage of viable cells was estimated by monitoring the 

absorbance of the PB solution after incubation with the cells. As shown in Fig. 9, no significant signs 

of toxicity were detected, even after an incubation time of 96h. The viability results higher than 80% 

for all the concentrations of iron administered, proved the feasibility of the materials for being used in 

biological applications.  
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Fig. 9 HeLa GFP cell viability assessed by PrestoBlue for cationic Mn-cubes (22). Fe concentrations ranging 

from 6 up to 50 µg·mL-1, after 24, 48 and 96 hours of incubation, were analyzed. The percentage of viable cells 

is normalized with respect to the non-treated control cells. 

Similarly, the cytotoxicity of cationic IONCs (25) was also studied. For this Ovarian-carcinoma cells 

(IGROV-I) were incubated with Fe concentrations from 6 to 50 µg·mL-1, for 24, 48 and 72h. In this 

case, IGROV-I cells which naturally overexpress epidermal growth factor receptor (EGFR) were used 

since they are also a good target for protein downregulation experiments due to the opportunity to 

delivery anti-EGFR siRNA. Again, no significant toxicity was noticed for all the concentrations tested, 

especially for the highest one, in which more than 80% of viability is still achieved after 3 days of 

incubation with the magnetic nanocubes. 

  

Fig. 10 IGROV-I cell viability accessed by PrestoBlue for cationic IONCs (25) at Fe concentrations ranging 

from 6 up to50 µg·mL-1, after 24, 48 and 72 hours of incubation. The percentage of viable cells is normalized 

with respect to the non-treated control cells. 
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Generally, highly positive charged nanoparticles are associated with enhanced cytotoxic responses.45 

Indeed, cationic nanoparticles are known for causing more pronounced disruption of plasma 

membrane as well as stronger mitochondrial and lysosomal damage.45 However, the interference of the 

nanoparticles on intrinsic cellular signaling pathways does not depend exclusively on surface charge 

but on a variety of factors, and it varies also with the type of cells used.44-46 In this case, the obtained 

results reveal that, despite the high positive charge of the particles, no real cellular damage is detected, 

most likely due to the presence of PEG molecules. Indeed, PEGylaton is a well-known strategy to 

decrease cytotoxicity of the nanoparticles.30,45 Though, it has to be applied in a suitable manner 

because it affects as well the uptake of the materials and indeed it can lead to a reduction in the 

amount of nanoparticles internalized. Giving that the final efficacy of the nanoparticles as a delivery 

agent depends on the amount of particles which can be taken up by the cells, a compromise has to be 

found, in order to decrease cytotoxic effects but retaining the charge high enough to load the negative 

charged siRNA and ensure higher uptake by the cells.44-46 

As shown before, the designed cationic Mn-cubes (22) and IONCs (25), present high surface charge, 

but they do not induce cytotoxic effects at the maximum iron dosage administered (50 µg·mL-1).  

The performance of the nanocarriers for any biomedical studies, such as hyperthermia or delivery 

systems, strongly depends on the amount of nanocubes capable of entering the cells. Similarly to the 

cytotoxicity, the uptake depends also on the nanoparticles size, shape, composition and surface 

charge.45 The intracellular uptake of the positive charged nanocubes was measured by administering 

an iron dosage of 50 µg·mL-1 to HeLa GFP cells. After 24h of incubation, the Fe content internalized 

was measured by elemental analysis after digesting the cells in an acidic solution.  

Both types of nanocrystals, cationic Mn-cubes (22) and IONCs (25), were taken up by the cells in 

comparable amounts which corresponds to about 14 and 12 picograms (pg) of iron per cell, 

respectively. By optical microscopy, (Fig. 11) one can observe the incorporation of the both kinds of 

NCs. Slight agglomeration is detected for Mn-cubes (22), although no signs of cytotoxicity are 

registered. 

 

Fig.11 Optical microscope imaging of Hela GFP cells exposed (24h) to cationic Mn-cubes (22) (B) and cationic 

IONCs (25) (C) at an iron content of 50 µg·mL-1. (A) Control untreated HeLa GFP cells. The scale bar is 

100µm. 
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3.2.5 siRNA loading onto cationic nanocubes 

The ability of the positive charged nanocarriers to complex siRNA was evaluated by agarose gel 

electrophoresis and photoluminescence (PL) measurements. For detection purposes, a siRNA 

sequence bearing a terminated a fluorescent marker (herein referred as Alexa488-siRNA) was chosen. 

For the loading, increasing amounts of siRNA were added (Table 1), while keeping fixed the amount 

of nanocubes at a Fe concentration of 25 µg. The volume of all solutions was adjusted to keep the 

concentration of Fe at 0.38 g.L-1  

Table 1 Ratio of siRNA tested, keeping the amount of Fe constant at 25 µg for cationic cubes 22 and 25. 

 

The reactions were mixed for 30 minutes, in RNAse-free water. The formation of the conjugates is 

expected to happen simply by electrostatic interaction between the positive charged NCs and the 

negative charged siRNA molecules. To confirm it, after washing away unbounded siRNA molecules, 

the conjugates NCs-siRNA were loaded into a 1% agarose gel and the electrophoresis ran for 45 

minutes at 100 V. The washing solutions were monitored by measuring the photoluminescence of the 

of free siRNA molecules. As shown in the two examples given in Fig. 12 it was found that two 

washing steps were sufficient to ensure the clearance of siRNA from the solution, resulting in a 

spectrum without the peak at 519 nm associated to the presence of Alexa488-siRNA. 

 

Fig. 12 Photoluminescence measurements (excitation wavelength: 495 nm) of the initial siRNA solution and the 

washing solutions after conjugation of siRNA with cationic nanocubes. Washing solutions from the conjugation 

of siRNA with (A) cationic Mn-cubes (22) and (B) with cationic IONCs (25). 

 Cationic Mn-cubes (22) Cationic IONCs (25) 

Sample 1 2 3 4 5 6 7 8 9 

Ratio pmol siRNA / µg Fe 1 5 10 2 4 8 16 32 100 
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After conveniently washed, one can see from the results obtained for the electrophoresis in Fig. 13 that 

both the materials have the ability to load siRNA given the presence of fluorescent siRNA molecules 

co-localized with the nanocubes bands in the gels. Although, there is a significant difference in the 

manner by which siRNA is loaded and complexed to the positive NCs. For instance, when applying 

the voltage for running the gel, the siRNA complexed with the cationic Mn-cubes (22) is detached 

from the magnetic materials, which remain inside the well, and runs along the gel in accordance with 

the control free siRNA molecules (see Fig. 13A). Oppositely, as shown in Fig. 13B, for all complexes 

formed using cationic IONCs (25) the siRNA remains in the well attached to the magnetic nanocubes. 

These results not only confirm the formation of the siRNA-loaded nanocubes for both nanocarriers but 

also reveal a very strong interaction, in the case of cationic IONCs (25). In fact, the siRNA does not 

segregate from the nanocubes even when applying the high voltage used to run the gel (100 V). 

Increasing the amount of siRNA (sample 9 in Fig.13B) one can detect loosely bounded molecules 

which start to detach from the IONCs and run accordingly to the free siRNA control, towards the 

positive pole. However, most of the genetic material remains attached to the nanocubes.  

This set of data suggests that for the cationic Mn-cubes (22) siRNA is adsorbed more on the surface of 

the cationic nanocubes by interacting with available tertiary amines, whereas for cationic IONCs (25) 

the siRNA is encapsulated inside the polymeric layer which is developed around the particles. 

Considering that an optimal nanocarrier must protect the siRNA from degradation when entering the 

cells, IONCs (25) might present a greater potential for the expect application since the siRNA 

molecules are not completely exposed to the surrounding environment.  

 

Fig. 13 Gel electrophoresis of NCs-siRNA conjugates for Mn-cubes 22 (A) and IONCs 25 (B). The gel was run 

at 100 V for 45 minutes. For number code see Table 1. The points highlighted with the yellow circles are the free 

siRNA molecules. 

Once confirmed the loading of siRNA on the surface of the cationic NCs, by electrophoresis, a more 

detailed analysis was carried out to better understand the properties of the as-formed nanocarriers. 

Cationic Mn-cubes (21) showed a limited capacity for loading the siRNA cargo, losing the stability 

and precipitating already when using a ratio of 5 pmol siRNA to microgram of iron, as it is shown in 

Fig. 14A. This phenomenon might be attributed to the loss of electrostatic repulsion between 
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neighboring Mn-cubes (22) when partially “covered” with RNA molecules. Nevertheless, sample 

number 1 in Fig. 14A, having a ratio of 1pmol of siRNA per microgram of iron, was further 

characterized exhibiting good stability after conjugation with the genetic material as observed from the 

picture in Fig. 14A and the TEM micrographs in Fig. 14B. Additionally, the zeta potential on this 

sample reveals a decrease of the surface charge from +35 mV to +24mV due to the adsorption of the 

negatively-charged RNA on the surface.  

In order to assess the amount of siRNA adsorbed onto cationic Mn-cubes (22) a different experiment 

using 2 pmol siRNA per microgram iron was performed. The total amount of siRNA adsorbed onto 

Mn-cubes (22) was roughly estimated by photoluminescence measurements of Alexa488-siRNA. The 

loading estimation was done by subtracting the signal of the remaining siRNA in solution, after 

magnetic decantation, to the signal of the initial siRNA solution used to form the conjugates, as 

reported by Curcio et al..35 From the graphic depicted in Fig. 14C, 95 % of the siRNA binds to the 

nanocubes giving an overall loading of approximately 1.9 pmol siRNA per microgram of iron. 

Although it looks that saturation is not yet achieve, the concentration of siRNA could not be increased 

as this would compromise the stability of the cationic Mn-cubes (22) and lead to precipitation, as 

shown in Fig. 14A for sample 2 and 3.  

 

Fig. 14 A) Stability in solution of siRNA-NCs conjugates using cationic Mn-cubes (22). B) TEM image of the 

siRNA-NCs conjugates and C) PL spectra of siRNA solutions used to prepare the conjugates (excitation 

wavelength: 495 nm). The siRNA loaded was calculated from the difference of the remaining solution of siRNA 

(after performing 2 washing cycles with RNAse-free water) when compared to the initial one, giving a loading 

of 95%. For this particular experiment 25 µg Fe were used to load 50 pmol of siRNA. 
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Differently, the positive charged cationic IONCs (25) can load much higher amounts of siRNA 

without losing the stability of the complex siRNA-NCs (Fig. 15). The formation of the conjugates and 

the increase in siRNA loaded was confirmed by zeta potential measurements (Fig. 15A). According to 

the obtained results, for the lowest ratios of siRNA studied, no significant difference in the surface 

charge was detected. This outcome confirms the hypothesis that the siRNA is encapsulated inside the 

polymeric shell rather than adsorbed on the surface. Oppositely, when the ratio of siRNA increases 

substantially one can see a decrease in surface charge, most likely due to the adsorption of siRNA on 

the surface of the nanocubes once the inner polymeric shell is saturated.  

The loading of siRNA onto cationic IONCs (25) was also estimated by measuring the PL of the 

siRNA in solution.35 In this case, 25 µg of Fe were reacted with 625 pmol siRNA (ratio of 5) revealing 

75% of siRNA complexation to the nanocubes from the results obtained in Fig. 14B. From this data 

the loading saturation seems to be achieved at roughly 19 pmol siRNA per picogram of Fe, which is 

10 times higher than the loading obtained for Mn-cubes (22). 

 

Fig. 15 A) siRNA-IONCs (25) conjugates charge variation (grey bars) in respect to the amount of siRNA used 

(red dashed line); B) PL spectra of siRNA in solution (excitation wavelength: 495 nm) before and after reaction 

with cationic IONCs (25). The amount of loaded siRNA was calculated from the difference of the initial and the 

remaining siRNA in solution after performing 2 washing cycles with RNAse-free water. 

From these data, given the fact that siRNA could successfully be loaded on for both cationic Mn-cubes 

(22) and IONCs (25) and considering their different behavior when loading the siRNA, the materials 

were then studied in a biological model for protein expression downregulation, and their potential for 

protecting and delivery the genetic material was compared. 
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3.2.6 GFP knockdown on HeLa cells using siRNA-NCs conjugates  

In order to evaluate in vitro the transfection efficiency of the developed carriers, and thus understand 

the biological activity of the NCs- siRNA conjugates, HeLa GFP transfected cells were used as a 

model. Briefly, as shown in Fig. 16, the complexes were formed simply by mixing the positive NCs 

with siRNA for 30 minutes in reduced serum media Opti-MEM. Then, the as prepared conjugateswith 

no further purifictaion were administered to the cells and the culture was maintained for 96 hours, with 

a medium exchange after the first 24h of incubation. These conditions were chosen because by 

previous group work on the same cell line using other types of siRNA carrier vector,  the most 

effective incubation time required for the silencing was found to be at 96h.35  

Lipofectamine® 2000, which is a well-known transfection agent, was used for comparison. A control 

containing only siRNA was also performed in order to confirm the incapability of transfection by the 

siRNA itself. After treating the cells for 96h the fluorescence of GFP protein was assessed by 

fluorescence activated cell sorting (FACS) which records the fluorescent signal of single cells. The 

results were normalized to the percentage of GFP signal measured for HeLa GFP non-treated cells 

(control).  

 

Fig. 16 Schematic protocol for the GFP knockdown analysis in HeLa cells. The culture was always done in 24-

MW plate seeded with 10 000 cells one day before starting the incubation with the NCs. 

Fig. 17 clearly shows the incapability of siRNA itself to penetrate the cell membrane, as stated before. 

Additionally, a control containing only cationic Mn-cubes (22) (50 µg·mL-1) was done, as a negative 

control, to ensure that the presence of the nanocarriers themselves, had no interference with the 

intrinsic detected cell fluorescence. For the siRNA-Mn-cubes (22) conjugates tested, a decrease in 

GFP expression was detected when increasing the amount of iron used to load the same amount of 

siRNA (250 nM). At the lower dosages of iron, little effect was noticed on the downregulation of GFP 

protein, which was estimated to be around 20%. Indeed, even at an iron administered dosage of 
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80 µg·mL-1 30% of knockdown was registered. Although, regarding their cytotoxicity, the 

applicability of such materials is quite limited. From an iron concentration of 80 µg·mL-1 the effects on 

cell death were considerably high, reducing their potential for the desired application. 

 
Fig. 17 FACS normalized data for GFP downregulation on HeLa cells using cationic Mn-cubes (22) as the 

nanocarriers for siRNA delivery. The red coloured bars represent the control for untreated HeLa GFP cells, 

NCs (22) only (50 µg·mL-1) and siRNA only; the blue bars represent the knockdown results obtained when using 

different concentrations of the conjugates siRNA_NCs (22) to treat the cells; the green bar is the positive control 

performed with Lipofectamine. For all experiments, the concentration of siRNA was kept constant as 250 nM). 

On the contrary, as revealed in Fig. 18 and Fig. 19, when cationic (25) were used to load the siRNA 

and subsequently treat the cells, 40 % of gene knockdown was achieved at the lowest level of Fe 

dosage (50 µg·mL-1) tested also for cationic Mn-cubes (22). Compared to the results discussed in Fig. 

17 (for cationic Mn-cubes, 22), for the same concentration of iron used (50 µg·mL-1) the efficiency of 

the RNAi therapy increases by a factor of 2 using cationic IONCs (25). Noteworthy, this 

downregulation occurred without cytotoxic side effects as it was shown before in Fig. 10.  Moreover, 

the percentage of gene knockdown achieved was found to be directly related with the amount of 

materials used to treat the cells, as shown by the results obtained when using half the amount of the 

conjugates (25µg·mL-1) in Fig. 18. Even though, lower percentage of knockdown was obtained 

comparing to the commercial available Lipofectamine, it is worth to note that siRNA loaded onto 

Lipofectamine is easily internalized via direct diffusion within the cell membrane and it is quite toxic, 

as described in previous studies.30, 35 On the contrary, the cationic-polymeric coated nanoparticles bind 

the plasma negatively-charged cellular membrane and are transported inside the cell via endosomal-

lysosomal system. The presence of amines buffers H+ and cause lysosomal Cl- accumulation likely 

leading to osmotic swelling and lysis of endosomes, thereby preventing the degradation of the siRNA. 
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This mechanism has been reported for other types of pH-sensitive carriers and it would need a further 

microscopy cellular study to confirm it.35 

 
Fig. 18 FACS normalized data for GFP downregulation on HeLa cells using cationic IONCs (25) as the 

nanocarriers for siRNA delivery. The red bars represent the control for untreated HeLa GFP cells and cell treated 

with IONCs (25) only (50 µg·mL-1); the blue bars represent the knockdown results using conjugates 

siRNA_IONCs (25) as siRNA carriers; the green bar is the positive control performed with Lipofectamine. 

 

Fig. 19 FACS data for GFP downregulation on HeLa cells using cationic IONCs (25) as the nanocarriers for 

siRNA delivery.  

The obtained results were in good agreement with the measured capacity of loading the siRNA. For 

cationic Mn-cubes (22) which can load a limited amount of siRNA, it was necessary to increase the 
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amount of Fe used to knockdown the GFP expression to a comparable extent when using the cationic 

IONCs (25). Moreover, the strongest interaction assumed for nanocarrier (25) and the siRNA, which is 

encapsulated in the polymeric shell, offers a better protection mechanism to avoid the degradation of 

the genetic material once in physiological environment. For this reason it would be also interesting to 

study the dissociation kinetics of the siRNA from the nanocubes in order to adapt the time of 

incubation and enhance the downregulation efficiency of the nanocarriers. The protective feature of 

these nanocarriers was confirmed by performing an additional experiment in which BSA was used to 

pre-coat the IONCs-siRNA conjugates before administration to the cells. This approach is reported for 

enhancing gene silencing effect by increasing cell uptake and protecting siRNA from degradation.47-49 

However, the outcome downregulation percentage was comparable to the one observed when no BSA 

was used (see Fig. 18). This data corroborated the above stated assumption that the encapsulation of 

the siRNA inside the polymeric shell is enough to efficiently prevent its degradation. On the other 

hand having a protein serum, such as human albumin, absorbed on the siRNA/nanocarriers might 

better camouflage the carrier and thus enable a longer blood circulation time, with enhanced 

accumulation at the tumor. Additional tests by confocal imaging will be performed in the future in 

order to better understand the mechanism of nanocarrier uptake and siRNA release once inside the 

cell. Furthermore, the delivery efficiency will be also studied under a magnetic field, which has been 

reported to enhance the transfection efficiency by increasing the dosage of iron taken up by the cells.30 

 

3.3 Conclusions 

Herein, I present the in vitro study of two potential nanocarriers for siRNA delivery. In the first part of 

this chapter, two different procedures were followed to obtain cationic water-soluble nanocubes. 

Cationic Mn-cubes (22) were prepared using manganese ferrite nanocubes which were transferred in 

water, functionalized and fully characterized to assess their heat performance, protein adsorption and 

colloidal stability. Cationic IONCs (25) were prepared starting from iron oxide nanocubes (23) that 

were already known to have optimal heat performance proving ideal candidates for combining heat-

mediated siRNA delivery and magnetic hyperthermia.24,25,36 Both types of cationic nanocubes were 

successfully transferred in water without losing stability while presenting very high positive surface 

charge. This feature was required for complexing negatively-charged siRNA molecules. More 

specifically, cationic Mn-cubes (22) were obtained by first developing a polymeric coating around the 

as synthesized IONCs using the amphiphilic polymer PC18. This gives negatively water soluble Mn-

PC (21) which are then further functionalized with DMEDA and PEG molecules for obtaining stable 

cationic Mn-cubes (22) (+30 mV). Differently, a new unpublished procedure was set by another 

member of the group to obtain highly cationic and stable IONCs (25) (+50 mV).  

Then, in a second part of the project, a biological characterization of the magnetic nanocubes was 

done. Firstly, the nanocubes were tested for their stability in biological medium, by incubating them in 
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FBS containing media and confirming the positive influence of protein corona on their colloidal 

stability. Then, the different cationic NCs were tested on cell lines showing a high degree of 

internalization by HeLa GFP cells. Moreover, no cytotoxicity was found at an iron concentration range 

from 6 to 50 µg. mL-1.  

Finally, the last part of this work describes and compares the use of the cationic nanocubes as delivery 

tools of siRNA into cells by evaluating protein downregulation in HeLa GFP cells. In theory, the 

positive surface charge of these IONCs allows them to easily bind siRNA molecules by simple 

electrostatic interaction. This was confirmed for both cationic Mn-cubes (22) and cationic IONCs (25) 

by gel electrophoresis and photoluminescence measurements. Although significant differences were 

observed on the binding forces between the genetic material and the differently functionalized 

nanocarriers. Cationic IONCs (25) showed a much stronger interaction with siRNA, which is 

encapsulated inside the polymeric shell, when compared with cationic Mn-cubes (22), which adsorbs 

the siRNA on their surface. Indeed, in the latter case siRNA is more exposed to enzyme degradation. 

Additionally, the pH-responsive block DMAEMA39 (from cationic IONCs, 25) might prompt 

endosomal-lysosomal escape by reinforcing the proton sponge effect, preventing in a more efficient 

way lysosomal degradation. 

In conclusion, a promising nanocarrier for siRNA delivery was developed. Noteworthy, this nanotool 

is able to ensure the three main requirements need for transfection applications. Cationic IONCs (25) 

composed of a copolymer of DMAEMA and OEGMEMA are (1) capable of loading the siRNA, (2) 

efficiently protect it against degradation and (3) release it into the cell cytoplasm for binding the RISC 

complex and finally interrupt specific protein’s expression. However, further experiments must be 

carried out in order to increase the knockdown effect and understand how the siRNA is released and 

its mechanism of action once inside the cell. This study represents the proof of concept for using other 

siRNAs sequences against tumor targeting proteins (e.g. the anti-EGFR siRNA sequence to be tested 

on IGROV-I cells) as the next target in order to have a more relevant impact in gene therapy for 

cancer treatment. 

 

3.4 Experimental section 

Materials and methods 

Unless specified, chemicals were purchased from Sigma-Aldrich and used as received without further 

purification. Poly (maleic anhydride–alt-1-octadecene), MW 20.000 - 25.000 was purchased from 

Polyscience. The HPLC purified αGFP-siRNA oligonucleotide (target sequence 5’-

GCAAGCTGACCCTGAAGTTC-3’) and siRNA modified at the 5’end of the sense stand with the 

AlexaFluor488 (target sequence 5’-GGCAAGCUGACCCUGAAGUUC-3’) were purchased from 

Qiagen. Lipofectamine 2000 was purchased from Invitrogen. All suspensions for working with siRNA 

were diluted using RNase free milli-Q water (18.2 MΩ).  
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Preparation and characterization of cationic MnFe2O4 cubes by polymer coating and 

further functionalization of the polymeric shell 

Water transfer by polymer coating of single MnFe2O4 NCs 

MnFe2O4 NCs (20) were prepared accordingly to a non-hydrolytic wet-chemical protocol set up in our 

laboratory by another group member and not yet published. The as-synthesized MnFe2O4 NCs (20), 

with an average size of 13 ± 2 nm, were first transferred into water by using a previously reported 

method.21,22 Specifically, 1.28 mL of nanocubes in chloroform (0.2 µM) were mixed with 6.3 mL of a 

137 mM solution of amphiphilic PC18 in a total volume of 10 mL, keeping a ratio of polymer 

monomers per nm2 of nanocrystal surface equal to 500. The solvent was slowly evaporated, overnight, 

inside the oven at 65ºC under slow shaking.  When solvent evaporation was completed, the 

nanocrystals formed a film that was re-dissolved in 15 mL of sodium borate buffer (50mM, pH 9) in 

an ultrasonic bath, until all the polymeric film was completely dissolved in the aqueous phase. The 

solution was then concentrated on a centrifuge amicon tube (cut off: 100 KDa Amicon, Millipore) and 

purified by ultracentrifugation to remove the excess of polymer in solution. The concentrated Mn-PC 

(21) were loaded on the top of a continuous sucrose gradient (20% - 40% -66%), at a maximum 

volume of 1 mL per tube and ultracentrifuged at 20000 rpm for 1h30, using a Beckman Coulter 

Optima LE-80 K ultracentrifuge equipped with a SW41 Ti rotor. During the ultracentrifugation, the 

NCs moved along the gradient until they reached a phase with comparable density while the polymer 

excess, which had a clear blue fluorescent signal under UV light, remained on top of the sucrose 

gradient (20%). Then, the nanocubes were collected with a syringe and washed in an amicon 

centrifuge tube, at 2500 rpm, to remove the sucrose. Depending on the batch of nanocubes, time and 

speed of ultracentrifugation needed to be slightly adjusted. To confirm the removal of the free polymer 

the NCs were loaded in a 1% agarose gel and the electrophoresis ran for 45-60 minutes at 100V. The 

analysis of the gel, under at 480 nm, provided a feasible measure of the successful removal of PC18 

when no fluorescent band was detected on the front of the gel. The resulting water soluble magnetic 

nanocubes were also characterized by DLS, zeta potential and TEM for size, surface charge and 

morphology evaluation.  

Hyperthermia measurements of Mn-PC (21) 

To evaluate the SAR of Mn-PC (21) a commercially available DM100 Series (nanoScale 

Biomagnetics Corp.) set up was used. 300 µL of IONCs in water, at a Fe concentration of 3 g.L-1, were 

introduced into the sample holder and exposed to an AC magnetic field at two different frequencies 

(110 kHz and 300 kHz) and at three magnetic field amplitudes (12, 16 and 24 kA.m-1). All reported 

SAR values and error bars were calculated from the mean and standard deviation respectively of at 

least four experimental measurements. SAR values were calculated according to the Equation 1 and 

taking into account only the first few seconds of the curve dT/dt. The specific heat capacity of the 

water is 4185 J.L-1.K-1. 
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Functionalization of the polymer shell of Mn-PC (21) 

Once transferred to water, the Mn-PC (21) were further functionalized with DMEDA and monoamino-

PEG by EDC chemistry on the exposed carboxylic groups on the polymeric shell. After optimizing the 

reaction conditions, a solution of 1 mL of Mn-PC nanocubes (21) (0.5 µM, 1.7 mg Fe) in borate buffer 

was reacted with an equal volume of DMEDA (1 mL,100 mM, molar ratio DMEDA/NCs equal to 

2x105), mono-amine-PEG molecules (750 Da, 1 mL, 100 µM, molar ratio PEG/NCs equal to 200) and 

2M solution EDC (1 mL, molar ratio EDC/NCs equal to 2x106) in borate buffer. The mixture was 

shaken for 3h at room temperature. To remove the unreacted molecules several washes in Amicon 

centrifuge tubes were performed at no more than 2500 rpm, in RNAse free water. Once again, the 

resulting cationic Mn-cubes (22) were analyzed for surface charge, size and morphology by zeta 

potential measurement, DLS and TEM respectively. 

 

Electrophoretic characterization  

Each sample was mixed with a solution of gel-loading buffer (Orange G and 30 % glycerol) 

corresponding to 20% of the total sample volume. Gel electrophoresis was done on 1% agarose gel for 

45-60 minutes at 100V. The gel was observed in bright field or under 480 nm filter using a BIO-RAD 

Gel Doc™ XR imaging system. 

Dynamic light scattering measurements and zeta potential 

The measurements were carried out using a Zeta Sizer Nano ZS90 (Malvern Instruments, USA) 

equipped with a 4.0 mW He-Ne laser operating at 633nm and Avalanche photodiode detector. At least 

three replicate measurements were made for each sample dissolved in water, at 25ºC with the pH 

adjusted to 7.  

Elemental analysis 

The concentration of Fe was determined by elemental analysis using the inductively coupled plasma 

optical emission spectrometer (ICP-OES iCAP 6500, Thermo). The samples were digested in 3:1 

HCl/HNO3 (v/v) solutions. 

Transmission electron microscopy 

Conventional TEM images were obtained using JEOL JEM 1011 electron microscope, working with 

an acceleration voltage of 100 kV and equipped with a W thermionic electron source and a 11Mp 

Orius CCD Camera (Gatan company, USA). Samples were prepared by placing a drop of sample onto 

a carbon coated copper grid which was then left to dry before imaging. 
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Stability of the synthesized cationic nanocubes in FBS and physiological medium – 

interaction with serum proteins 

The stability of the cationic nanocubes was assessed by pouring 100 µg Fe inside 1 mL of a 10% FBS 

aqueous solution and DMEM physiological medium, monitoring it visually during 24h to see if 

precipitation occurred. For that purpose pictures were taken every two hours for the first 6 hours of 

incubation and then again when 24h incubation was completed. The stability of the two types of 

cationic NCs (22 and 25) was compared with the unstable Mn-PC (21) monitored under the same 

conditions. 

To better investigate the interaction with serum proteins, a SDS-PAGE analysis was done. For that, the 

nanocubes were incubated at a concentration of 0.2 mg Fe·mL-1 in 10% FBS for 2h. Then, they were 

collected by centrifugation at 14000 rpm for 30 minutes.  The pellet was re-suspended and washed in 

PBS three times through gentle pipetting to remove non-bounded proteins. After, the proteins were 

eluted by re-suspending the samples in sample buffer (containing 0.002% bromophenol blue, 10% 

sodium dodecyl sulfate, 5% β-mercaptoethanol and 30% glycerol) and denatured at 100°C for 5 

minutes. The separation was done on a 12% polyacrylamide gel at 120 V. Control sample of FBS was 

prepared in the same way and loaded to the gel. Novex® Sharp Pre-stained Protein Standard from 

Invitrogen was used as a molecular ladder. The same volume of all samples was added to allow a 

direct comparison of the results.  The gel was stained with comassie for one hour and after washed in 

destained solution for another hour followed by water overnight. Finally, it was analyzed using a BIO-

RAD ChemiDOC™ MP equipment.  

siRNA loading onto cationic nanocubes  

The loading of Alexa488-labelled siRNA molecules on the positively charged NCs was done by 

simply mixing together the siRNA with the NCs. Different ratios of siRNA, reported in Table 2, were 

loaded on the nanocubes according to the following formula: 

����� =  
�
�� �����

�� ��
 

In a typical experiment, 25 µg Fe of NCs, previously washed with RNAse-free milli-Q water, were 

used to react with different amounts of siRNA (see Table 2), keeping the iron concentration in solution 

at 0.38 g·L-1. After 30 minutes shaking, the siRNA-loaded NCs were washed and analyzed by agarose 

gel (1%) electrophoresis (using a BIO-RAD ChemiDOC™ MP imaging system) and measured for size 

and charge determination at the DLS. In addition, since an Alexa488 tagged siRNA was used, the 

estimation of loaded siRNA was done by measuring its emission spectra at an excitation wavelength 

of 495 nm, using a Cary Eclipse Varian photoluminescence spectrometer.35 The initial loading solution 

of siRNA and the final solution, which contains the non-bounded siRNA molecules after NCs 

collection by magnetic decantation, were analyzed. The loading efficiency was calculated by the 

difference of the fluorescent intensity peak at 519 nm of both solutions. 
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Table 2 Conditions tested for siRNA loading on the cationic NCs. 

 

Cellular studies for cationic nanocubes 

Cell culture 

HeLa (ATCC, UK) (here referred as HeLa WT) and IGROV-I cells (ATCC, UK) were cultured in 

DMEM (Gibco, UK) and RPMI-1640 (Gibco, UK), respectively, in T75 flasks. Both physiological 

media were supplemented with 10% Inactivated Fetal Bovine Serum (FBS), 1% Penicillin 

Streptomycin (PS) and 1% Glutamine at 37 °C, in 95% humidity and 5% CO2. Cells were split every 

3-4 days before reaching 90 % confluence.  

GFP over-expressing HeLa cells (HeLa GFP) were obtained by lipofectamine transfection of 

pAcGFP1-N1 vector (ClonTech). After three days of transfection the cells were treated with neomycin 

antibiotic at increasing concentrations until 1mg·mL-1 to select the positive GFP over-expressing cells. 

This cell line was grown in the same conditions described for HeLa Wild Type (WT) with the addition 

of 10% G418 disulfate salt solution (50 mg·mL-1 in H2O, Sigma Aldrich) to the complete DMEM 

culture medium. 

Cytotoxicity by PrestoBlue 

For testing cell viability PrestoBlue (PB) assay was used according to the manufacturer's protocol 

(Invitrogen, Carlsbad, CA, USA). HeLa GFP cells were seeded in a 24 multiwell plate, 24 hours 

before starting the nanocubes exposure treatment at the following cell densities: 5x104, 3x104 and 

1x104. Then, the cells were incubated with cationic Mn-cubes (22) and the cytotoxicity assessed at 24, 

48 and 96 h. IGROV-I were plated at 10x104, 6x104 and 3x104. After letting the cells adhere in the 

bottom of the well for a day, a Fe dose of 50 µg·mL-1 of cationic IONCs (25) was added to the media 

and incubated for 24, 48 and 72 h, at 37°C. After the incubation time was complete, the medium was 

exchanged by a 10% solution of PB reagent in complete DMEM, and the cells incubated for additional 

2h at 37 °C with 5% CO2.  The cell viability was detected by reading the absorbance for each well at 

570 and 600 nm. All the values for the different nanocubes conditions were normalized with respect to 

the cell viability values obtained for not treated cells (control). 

 Cationic Mn-cubes 22 Cationic IONCs 25 

Sample 1 2 3 4 5 6 7 8 9 

µg Fe 25 25 

pmol siRNA / µg Fe 1 5 10 2 4 8 16 32 100 

siRNA (pmol) 25 125 250 50 100 200 400 800 2500 
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Intracellular Fe uptake 

HeLa GFP cells were seeded, at a concentration of 12x104 cells per well, in 12 multiwell plate one day 

before the experiment, and incubated at 37ºC with 5% CO2. 24 hours after, the adherent cells were 

treated with cationic NCs (22) and (25) dissolved in 800µL of complete DMEM at an iron 

concentration of 50 µg·mL-1. After 24h of incubation at 37°C, the cells were washed with PBS three 

times, trypsinized/detached and centrifuged. The pellet was re-suspended in 1mL of complete fresh 

medium. Then, the cells were counted, centrifuged again and the obtained pellet digested in Aqua 

Regia overnight. The acidic solution was diluted with water and the intracellular Fe concentration 

determined by ICP-OES. For the imaging of the internalized nanocubes, a Motic AE31 inverted 

microscope equipped with a Moticam 2500, in a True-color phase contrast mode, was used to acquire 

cell images.  

GFP knockdown on HeLa cells using siRNA-NCs conjugates  

For the siRNA downregulation assay, HeLa GFP cells (1x104) per well were seeded in 24 multiwell 

plates, in 500µL of complete DMEM, one day before the injection of the magnetic nanocubes. 

Immediately before starting the treatment, αGFP-siRNA was loaded on the magnetic nanocubes by 

simply mixing the two components. An iron amount ranging from 25-100 µg Fe, depending on the 

experiment, was reacted with 125 pmol of siRNA in Opti-MEM reduced serum media (Gibco, UK). 

For the formation of the conjugates the nanocubes concentration was maintained at 0.38 g·L-1 of iron . 

After shaking for 30 minutes, the as-prepared conjugates were administered to the cells at iron dosages 

of 50-200 µg·mL-1 and siRNA concentration of 250nM, adjusting the total volume to 500µL with 

complete DMEM . After 24h incubation, the medium was exchanged and the culture maintained for 

72h more, thus completing a total incubation time of 96h. As a positive control, 1.5µL of 

Lipofectamine 2000 (Invitrogen) was used to load 125 pmol of siRNA, in Opti-MEM®, by shaking it 

15 minutes, and then given to the cells at a total concentration of 250nM siRNA per well.  Once the 

96h of culture were finished, the medium was collected, the cells washed once with PBS and detached 

from the growing substrate by trypsinization. After washing two times in 500 μL of PBS, the cell 

pellet was re-suspended in 200 μL of PBS and analyzed 2-3h later by FACS (FACSAriaII, BD). 

FACS is a specialized flow cytometry method which provides a fast, objective and quantitative 

recording of fluorescent signals from individual cells. Particularly for this application, the cell 

suspension enters a narrow rapid stream flow which is arranged in such a way that forces the passage 

of single cells per droplet. Each droplet is crossed by a laser light source giving information on the 

granularity and size of the cells, as well as the fluorescent characteristic of each single cell.  

FACS analysis was performed on the following samples: (1) non-fluorescent wild-type HeLa, (2) 

untreated HeLa GFP (control), and HeLa GFP treated with (3) αGFP-siRNA alone (250 nM), (4) 

siRNA-Lipofectamine, (5) cationic nanocubes (22) and (25) alone, (6) siRNA-NCs (22) and (7) 

siRNA- IONCs (25) conjugates. The fluorescent signal of each cell suspension tested was normalized 

with respect to the result obtained for HeLa GFP untreated cells. 
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List of abbreviations  

 

AcOH  acetic acid 

AFS  atomic fluorescence spectroscopy  

ATR-IR attenuated total reflecttion infrared 

BCN  ((1R,8S,9s)-bicyclo[6.1.0]non-4-yn-9-yl)methyl 4-nitrophenyl carbonate 

CNTs  carbon nanotubes 

Co/C  carbon-coated cobalt nanoparticles 

CTAB  cetyltrimrthylammonium bromide 

CuBr2  copper bromide 

DCM  dichloromethane 

DLS  dynamic light scattering  

DMA  dimethylacetamide 

DMAEMA (dimethylamino)ethyl methacrylate 

DMEDA N,N’-dimethylethylenediamine 

DMEM  Dulbecco's Modified Eagle's Medium 

DMF  dimethylformamide 

DMSO  dimethylsulfoxide 

DNA   deoxyribonucleic acid 

DOPA BiBA dopamine 2-bromoisobutyramide 

DVS  divinyl sulfone 

EDC  1 -ethyl-3-(3-dimethylaminopropyl)carbodiimide 

equiv.  equivalent 

Et3N  triethylamine  

EtOH  ethanol 

FACS  fluorescence activated cell sorting 

FBS  fetal bovine serum 

G2  second generation 

GFP  green fluorescent protein 

H2SO4  sulfuric acid 

HCl  chloridric acid 

HeLa  human cervical carcinoma cell line 

HNO3  nitric acid 

ICP-OES  inductively coupled plasma optical emission spectrometry  

IGROV-I ovarian-carcinoma cells  

IONCs  iron oxide nanocubes 
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IONPs  iron oxide nanoparticles 

i-PrOH  isopropanol 

MACS  magnetically assisted chemical separation  

Me6TREN tris[2-(dimethylamino)ethyl]amine 

MNPs  magnetic nanoparticles 

MRI  magnetic resonance imaging 

mRNA  messenger RNA 

MS  saturation magnetization 

MWCNTs multiwalled carbon nanotubes 

NCs  nanocubes 

IONCs  iron oxide nanocubes 

NMP  N-Methyl-2-pyrrolidone 

OEGMEMA oligoethylene glycol methyl ether methacrylate 

Opti-MEM reduced serum Modified Eagle's Medium 

PAMAM  poly(amidoamine) 

PB  presto blue 

PBS  phosphate-buffered saline  

PC18  poly(maleic anhydride alt-1-octadene) 

PEG  polyethylen glycol  

PEI  polyethylenimine 

PL  photoluminescence 

RISC  RNA-induced silencing complex 

RNA  ribonuclei acid 

RNAi  RNA interference technology 

RPMI  Roswell Park Memorial Institute medium 

SAR  specific absorption rate 

SDS-PAGE sodium dodecyl sulfate polyacrylamide gel electrophoresis 

siRNA  small interfering RNA 

SPIONs superparamagnetic iron oxide nanoparticles 

TEM  transmission electron microscopy 

TEOS  tetraethyl orthosilicate 

TGA  termogravimetric analysis 

THF  tetrahydrofurane 

UB  ultrasonic bath 

UV  ultraviolet light 

XPS  x-ray photoelectron spectroscopy 
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