Advanced Measurement Techniques to Characterize the Near-Specular Reflectance of Solar Mirrors

SolarPACES conference 2018 4.10.2018 Casablanca, Morocco

Florian Sutter (DLR), Aránzazu Fernández-García (CIEMAT), Anna Heimsath (Fraunhofer ISE), Marco Montecchi (ENEA), Cristina Pelayo (University of Zaragoza)

Contents

- Introduction
- Reflectometer developments to measure near-specular reflectance
- Round Robin test results
- Summary and conclusions

$$\rho = \rho(\lambda, \theta_i, \phi)$$

Solar radiation lies in the range of λ =[280-4000]nm

To facilitate the measurement, the irradiance in the UV [280-320) and far IR (2500-4000] is neglected. Their weight in the total spectrum is 0.09 and 0.87% respectively.

 $\rightarrow \lambda$ =[320-2500]nm is the typical range of interest

Solar-weighting:

$$\rho_s([\lambda_a, \lambda_b], \theta_i, \varphi) = \frac{\sum_{i=0}^{i_{\max}} \rho(\lambda_i, \theta_i, \varphi) \cdot G_b(\lambda_i)}{\sum_{i=0}^{i_{\max}} G_b(\lambda_i)}$$

ASTM G173 Air mass 1.5 direct normal irradiance distribution

$$\rho = \rho(\lambda, \Theta_i, \phi)$$

Annual incidence angle distribution obtained trough simulation (assumption no clouds)

Location	Latitude	$ar{ heta}_{i}$ [°]	θ _{max} [º]
Equator (PTC)	0° 0'	27.8	45
Aswan (PTC)	24° 05'	30.8	59
Ouarzazate (PTC)	30° 56'	32.8	64
PSA (PTC)	37° 05'	34.8	68
PSA (ST)	37° 05'	29.8	80

Maximum θ_{\max} and mean annual incidence angle $\bar{\theta}_i$ according to location and collector type

$\rightarrow \theta_i = [0.70]^{\circ}$ is the range of interest

[F. Sutter, M. Montecchi, H. von Dahlen, A. Fernández-García, M. Röger: The effect of incidence angle on the reflectance of solar mirrors. Solar Energy Materials and Solar Cells 176 (2018) 119-133]

 $\rho = \rho(\lambda, \theta_i, \phi)$

 $\varphi = \pi$: hemispherical reflectance

 φ = 0 mrad : specular reflectance

 $0 < \varphi < 40 \text{ mrad}$: near-specular

reflectance & beam divergence of light source of φ_s = 4.7mrad to simulate sun

Sun-conic reflectance: near-specular

disc

Hemispherical reflectance $\rho_{\lambda,h}$

Specular reflectance $\rho_{\lambda,\phi}$

reflectance

Sun-conic reflectance $\rho_{\lambda,\varphi,\ \varphi s}$

$$\rho = \rho(\lambda, \theta_i, \phi)$$

The acceptance half-angle of the receiver φ_r is 1/2 the ratio receiver size/mirror distance.

The angular spreading of the reflected beam is driven by angular radius of the sun φ_s =4.7mrad, augmented by an appropriate amount for spreading the beam due mirror scattering, tracking and shape inaccuracies

- $\rightarrow \varphi$ = [7-15] mrad is the range of interest for parabolic troughs of EuroTrough geometry
- $\rightarrow \varphi$ =[1-41]mrad is the range of interest for solar towers

	Range of interest for CSP	State of the art reflectance measurement
Wavelength λ	[320, 2500] nm	λ = 320 – 2500 nm only near-normal and hemispherical
Incidence angle θ_i	[0, 70]°	Only near normal
Acceptance angle <i>φ</i>	[1, 41] mrad for solar towers[7, 15] mrad for parabolic troughs(EuroTrough geometry)	ϕ = 7.5, 12.5 or 23 mrad for monochromatic measurement (D&S 15R reflectometer, other commercial devices operate at higher ϕ)

→ Further optimization of reflectance measurement equipment necessary!

Contents

- Introduction
- Reflectometer developments to measure near-specular reflectance
- Round Robin test results
- Summary and conclusions

SMQ2: the key instrument in **ENEA** strategy

ENEA-strategy for evaluating $\rho_{s.\phi}(\lambda,\theta_i,\varphi)$

- 1) Spectrum of hemispherical reflectance in 320-2500 nm at $\theta \sim 0^{\circ} \rightarrow$ commercial spectrophotometer
- 2) **EMA modeling** to predict off-normal polarized hemispherical spectra
- 3) Measurement of the ratio near-specular/hemispherical at few $\lambda_i \rightarrow SMQ2$ instrument

- 4) merged EMA-TIS modeling
- 5) Prediction of off-normal near-specular/ sun-conic solar reflectance

$$\alpha = -\frac{4\pi}{\lambda} \operatorname{Im} \left(\sqrt{n_1^2 - n_0^2 \sin(\theta)^2} \right)$$

$$\eta = \begin{cases} 1 & \text{for hemispherical} \\ TIS & \text{for near-specular} \end{cases}$$

$$TIS = exp \left[-\left(\frac{4\pi \, n_{ol} \, \sigma_{\varphi ol} cos(\,\theta_{ol})}{\lambda} \right)^{2} \right]$$

VLABS-II by Fraunhofer ISE – BRDF and specular reflectance

- BRDF & absolute specular reflectance measurement & sunconic reflectance
- $\lambda = [450,550,600,650]$ nm, flexible; $\theta_i = [10-70]^\circ$, 0.1° res., $\varphi = [1-33]$ mrad, 0.01mrad res.
- Solar weighted reflectance predicted, TIS-based model
- Update: Lightsource filter wheel, sunconic reflectance, driving unit

Spectral Specular Reflectometer (S2R) by DLR/Ciemat

- Designed as accessory for Perkin Elmer Lambda series spectrophotometers
- Sun-conic reflectance is directly measured in $\lambda = [320-2500]$ nm, $\theta_i = [10-70]^\circ$, φ = [9.8; 12.3; 14.8; 20.2; 35.9; 107.4] mrad
- Calibration with reference mirror (off-normal behavior predicted by EMA by ENEA)
- Update: Polarizer crystal to measure s- and p- independently and improve off normal accuracy

Custom Spectrophotometer by University of Zaragoza

- Configurable instrument designed ad-hoc for the Round Robin measurements
- Sun-conic reflectance is directly measured in λ =[320-2500]nm, θ_i = 10°, φ = 15 mrad
- Calibration with 4mm 2nd surface Ag reference mirror certified by NPL

Summary of reflectometer prototypes

Instruments	Measurand (reflectance)	Modeling	Outputs (solar weighted)
SMQ2 (ENEA)	Near-specular λ = 485; 530; 640 nm Θ = 3° ϕ = [3-50] mrad	Merged TIS-EMA	Near-specular / sun-conic Θ = [0-90] deg φ = [0-50] mrad
VLABS (Fraunhofer ISE)	Near-specular / Sun-conic λ = 450; 550; 600; 650 nm $10^{\circ} < \Theta < 80^{\circ}$ ϕ = [1-33] mrad	Modified TIS	Near-specular / sun-conic 10° < Θ < 80° φ = [1-33] mrad
S2R (DLR/CIEMAT)	Sun-conic $\lambda = [320\text{-}2500] \text{ nm} \\ 10^\circ < \Theta < 70^\circ \\ \phi = 9.8; 12.3; 14.8; 20.2; 35.9; 107.4 \\ \text{mrad}$	none	Sun-conic $10^{\circ} < \Theta < 70^{\circ}$ ϕ = 9.8; 12.3; 14.8; 20.2; 35.9; 107.4 mrad
Custom spectrophotometer (University of Zaragoza)	Sun-conic $\lambda = [320-2500] \text{ nm}$ $\Theta = 10^{\circ}$ $\phi = 15 \text{ mrad}$	none	Sun-conic Θ = 10° φ = 15 mrad

Contents

- Introduction
- Reflectometer developments to measure near-specular reflectance
- Round Robin test results
- Summary and conclusions

Round Robin Test (RRT): sample types

2 mm silvered glass mirror

- 4 samples types were sent around 4 labs
- Hemispherical RRT made use of different commercial spectrophotometers
- Near-specular RRT

 $\lambda = ([320, 2500]nm)$

 Θ_i = 10; 30; 60°

 ϕ =15 mrad

 $\varphi_{\rm S}$ = 4.7mrad

4 mm silvered glass mirror with anti-soiling coating

Enhanced aluminum mirror

Silvered-polymer mirror

RRT: results of hemispherical measurements

DLR/CIEMAT 98 Fraunhofer **ENEA** Hemispherical reflectance $\rho_{\rm s,h}$ [%] UNIZA 88 2mm glass AS-coated Aluminum Polymer Mirror type

Measured spectra of polymer mirror

Solar weighted reflectance comparison $\rho_{s,h}$

- Good agreement among the labs DLR/CIEMAT, Fraunhofer and ENEA with maximum standard deviation of σ =0.34%-p
- Systematic higher values of UNIZA (in the range of 0.7 to 1.9%-p) is currently being examined

RRT: results of 2mm silvered-glass mirror

- Lowest standard deviations among the laboratories are appreciated (σ =0.38%-p).
- → similar agreement as for the hemispherical RRT is achieved
- The silvered-glass mirror shows constant reflectance values over the range θ_i =[10-60]°
- → near-normal measurement is sufficient for silvered-glass mirrors

RRT: results of 4mm silvered-glass mirror with AS coating

- slightly higher standard deviations among the laboratories of up to σ =0.58%-p
- The results from DLR/CIEMAT and Fraunhofer indicate a decreasing reflectance with growing θ_i , while the ENEA results indicate a slight increase with growing θ_i
- → This is subject of current discussions and model refinement of ENEA

RRT: results of enhanced aluminum mirror

- highest deviations of up to σ =2.31%-p (for θ_i = 60°)
- The results from DLR/CIEMAT and Fraunhofer indicate a decreasing reflectance with growing θ_i , while the ENEA results indicate the opposite
- systemically lower reflectance was measured by DLR/CIEMAT compared to the rest of partners (maybe due to sample curvature)

RRT: results of silvered-polymer mirror

- Intermediate standard deviations up to σ =0.52%-p
- The results from DLR/CIEMAT and Fraunhofer indicate a decreasing reflectance with growing θ_i , while the ENEA results indicate the opposite

Contents

- Introduction
- Reflectometer developments to measure near-specular reflectance
- Round Robin test results
- Summary and conclusions

Summary and conclusions

- **Four experimental reflectometers** developed by different research organizations have been improved in order to measure solar-weighted off-normal near-specular reflectance
- Fraunhofer and ENEA's approach is to measure **monochromatically** and to apply different Total Integrated Scatter models to compute spectral behavior. DLR/Ciemat and Uni Zaragoza measured directly in the range [320-2500]nm.
- A **Round Robin** test was carried out at θ_i = 10, 30, 60° and φ = 15 mrad. Beam divergence of the reflectometers was set to 4.7 mrad to simulate the sun disc
- Good agreement (σ = 0.38%-p) was obtained for the **silvered-glass mirror**, with constant reflectance up to $\theta_i = 60^{\circ} \rightarrow$ near-normal measurement is sufficient for silvered-glass mirrors
- A decrease with θ_i was measured for the anti-soiling coated glass, polymer and aluminum mirror. ENEA improved its' EMA-TIS model to describe off-normal behavior. Significant deviations among the labs (up to $\sigma = 2.31\%$ -p for the aluminum mirror at $\theta_i = 60^\circ$)
 - → innovative mirrors require deeper analysis than standard silvered-glass mirrors

Thank you for your attention!

florian.sutter@dlr.de afernandez@psa.es anna.heimsath@ise.fraunhofer.de marco.montecchi@enea.it cpelayo@unizar.es

Part of the research conducting to the results of this paper were funded by SolarPACES within the project "Measuring and modelling near-specular solar reflectance at different incidence angles".

