Wolken-Transmissionsgrad-Zuweisung für ein räumlich hochaufgelöstes Echtzeit DNI Karten-Kurzzeitprognose-System

5. Fachtagung Energiemeteorologie (Goslar)

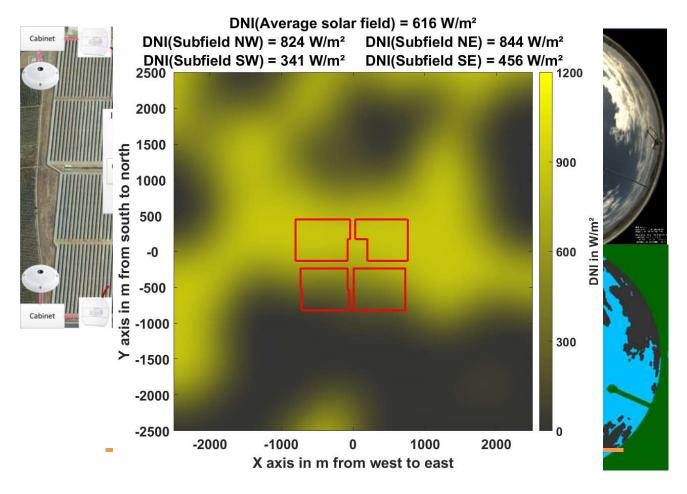
06.06.2018

Bijan Nouri,

Luis Segura, Pascal Kuhn, Stefan Wilbert, Christoph Prahl,

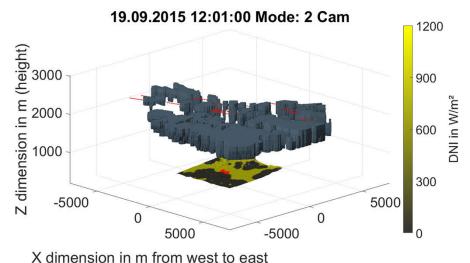
Robert Pitz-Paal, Lourdes Ramirez Santigosa, Luis F. Zarzalejo

Knowledge for Tomorrow

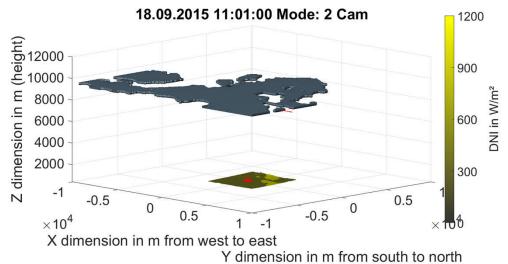

Inhalt

- Funktionsweise des Wolkenkamera basierten Nowcasting-Systems
- Messen des Wolken-Transmissionsgrads
- Zuweisung des Transmissionsgrads basierend auf statistischer Analyse
- Validierung der Zuweisung

Funktionsweise des WobaS Nowcasting-Systems

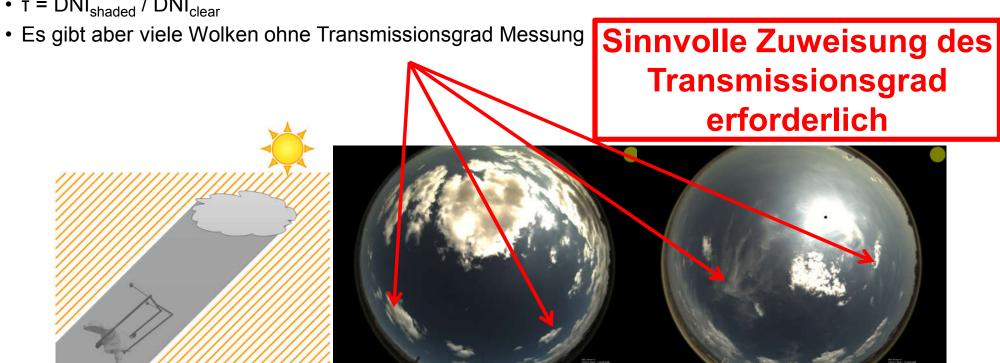


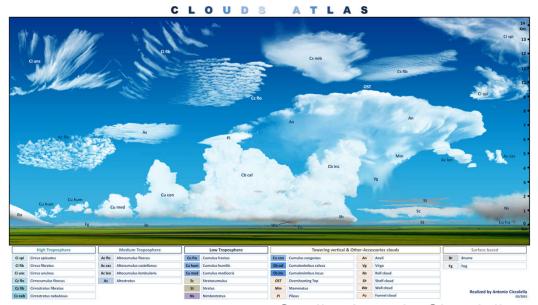
Funktionsweise des WobaS Nowcasting-Systems


- System basiert auf 2 bis 4 Überwachungskameras & mindestens eine bodengestützte DNI Messung
- System nutzt 3-D Wolkenmodell mit individuellen Wolken

Cumuluswolken mit CBH ≈ 1700 m

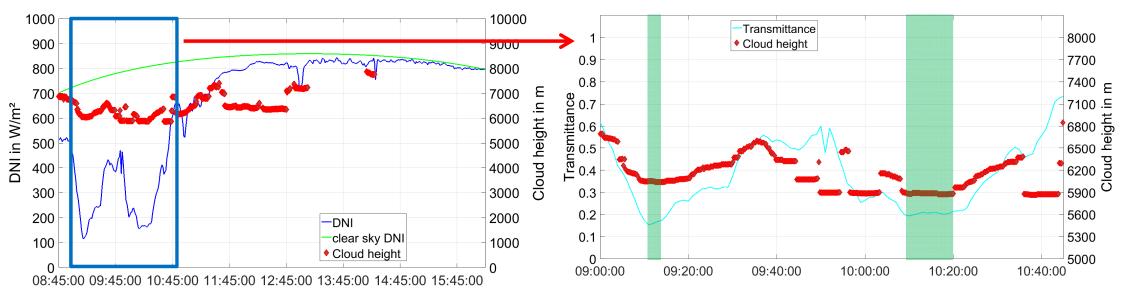
Y dimension in m from south to north


Cirruswolken mit CBH ≈ 9500


Messen des Wolken Transmissionsgrad

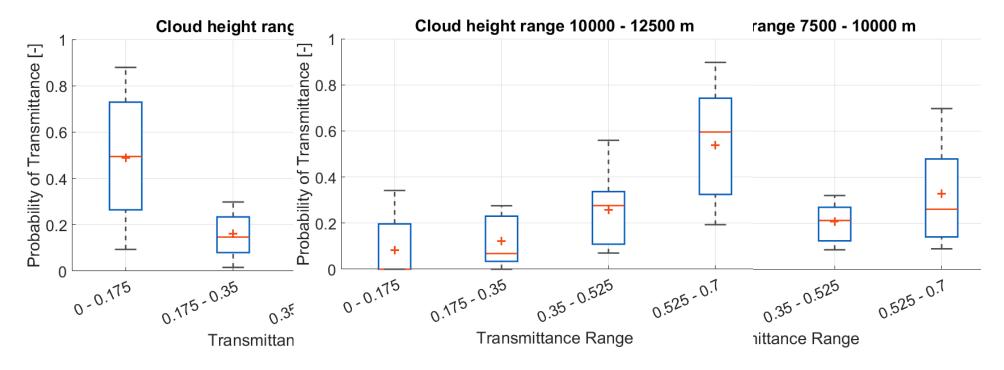
- Transmissionsgrad der Wolken ist verknüpft mit Wolkengattung
- Der Transmissionsgrad von Wolken wird über bodengestützte DNI Messungen bestimmt
- $T = DNI_{shaded} / DNI_{clear}$

Zuordnung von Wolken-Transmissionsgrad basierend auf der Wolkenhöhe


Quelle: Antonio Ciccolella

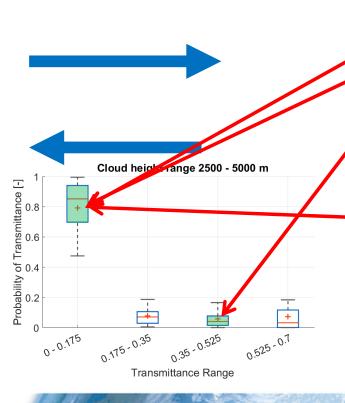
- Unterschiedlichen Wolkengattungen haben unterschiedliche typische Transmissionsgrade
 - Automatische Wolkenklassifizierung aus Kamerabildern ist schwierig (Wolkendetektion ist schon komplex)
- Wolkengattung kann grob Höhe zugewiesen werden (Abhängigkeit zum Breitengrad und Bedingungen)
 - Wolkenhöhe recht gut messbar (Nouri et al., 2017, Kuhn et al., 2018)
- Daher: Statistische Analyse des Wolken-Transmissionsgrad anhand von Wolkenhöhen
 - gemessen mittels eines Ceilometer und DNI Messungen mit einer zeitlichen Auflösung von 5 s

Datenaufbereitung für die statistische Analyse


- Zuordnen von DNI-Messungen und Wolkenhöhen-Messungen
 - Ermitteln von Zeitperioden mit vergleichsweise konstanten Wolkenhöhen Bedingungen
- Ermitteln der clear sky DNI
- Berechnen des Transmissionsgrads ($\tau = DNI_{shaded} / DNI_{clear}$)
- Filtern von stabilen Transmissionsgrad Messungen mit möglichst konstanten Wolkenhöhen
 - Überprüfen std(τ) über einen Mindestzeitraum
 - Überprüfen std(h) über einen Mindestzeitraum

Statistische Analyse des Wolken-Transmissionsgrad

- 595 tägige Datenbasis aufgezeichnet auf der Plataforma Solar de Almería (PSA)
- Jeder Tage wird separat analysiert
- Statistik über alle Tage mit validen Daten (ca. 70% der Tage beinhalten valide Daten (≈280T valide Messpunkte))


Zuweisung des Transmissionsgrads basierend auf Wolkenhöhe

Gewichteter Mittelwert mittels korrespondierenden Ergebnissen der statistischen Analyse

$$\tau = \sum_{i=1}^{n} \tau_i \cdot \frac{Pr(\tau_i)}{\sum Pr(\tau_i)} = 0.134$$

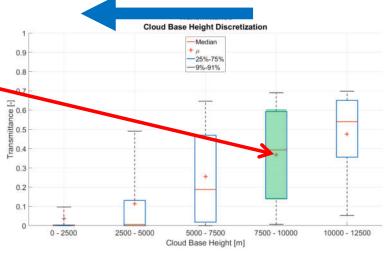
Zuweisung Transmissionsgrad für eine Wolke mit einer Höhe von 3000 m

Transmissionsgrad Messungen der unmittelbaren Vergangenheit (kein Messwert älter 4 h)

Zeit	Gemessener Transmissionsgrad	Gemessene Wolkenhöhe
t1	0.10	3015
t2	0.13	3100
t3	0.12	1023
t4	0.42	3250
t5	0.20	5079
t6	0.15	3198

Filter der Messwerte bezogen zur Wolkenhöhe der Zielwolke

Zuweisung des Transmissionsgrads basierend auf Wolkenhöhe



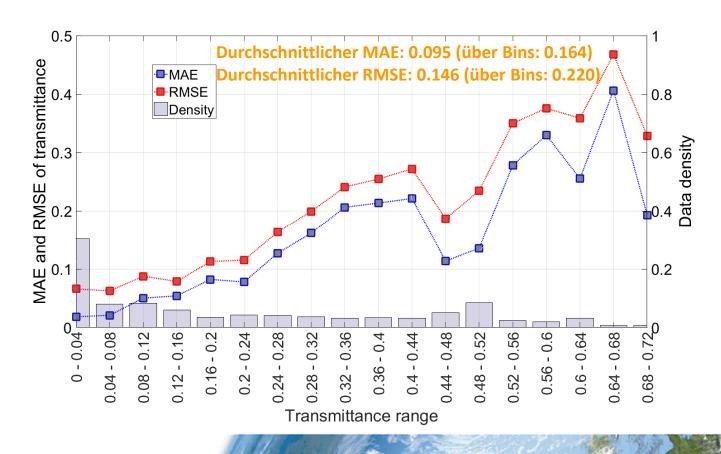
Zuweisung
Transmissionsgrad
einer Wolke mit einer
Höhe von ca. 9000 m

Cloud Base Height Discretization

Korrespondierender Mittelwert aus dem gesamten historischen Datensatz (595 Tage)

$$\tau = 0.37$$

Transmissionsgrad Messungen der unmittelbaren Vergangenheit (kein Messwert älter 4 h)


`	,
Gemessener Transmissionsgrad	Gemessene Wolkenhöhe
0.10	3015
0.13	3100
0.12	1023
0.42	3250
0.20	5079
0.15	3198
	0.10 0.13 0.12 0.42 0.20

Keine Korrespondierenden Messwerte für die Zielwolke

Validierung des zugewiesenen Transmissionsgrads

- Vergleich gemessener Transmissionsgrad zum zugewiesenen Transmissionsgrad
 - 30 Tage
 - Mehr als 1000 valide Transmissionsgrad-Messungen

Zusammenfassung/Ausblick

Zusammenfassung

- Kurzeitprognosesystem mit individuellen 3-D Wolkenobjekten für räumlich aufgelöste DNI Karten wurde entwickelt
- Die Zuweisung des Transmissionsgrads erfolgt mittels aktueller Messwerte und den Ergebnissen einer statistischen Analyse
- Validierung des Verfahren erfolgte über einen 30 tägigen Datensatz mit unterschiedlichen atmosphärischen Bedingungen
- Wichtig: Ergebnisse der Wahrscheinlichkeitsanalyse sind standortabhängig
 - Für einen neuen Standort werden die PSA Daten nur Anfangs benutzt und später mit den neuen Messwerten des Kamerasystems vom eigentlichen Standort ersetzt

Ausblick

• Grobe Wolkenklassifizierung für optimierte Zuweisung (besonders in mittleren Höhen)

Danke! Fragen? bijan.nouri@dlr.de

- Nouri B. Et al., Nowcasting of DNI Maps for the Solar Field Based on Voxel Carving and Individual 3D Cloud Objects from All Sky Images, 23rd SolarPACES Conference (2017).
- Kuhn P. et al., Validation of an all-sky imager based nowcasting system for industrial PV plants, Prog Photovolt Res Appl., pp. 1-14, (2017)
- Kuhn P. et al., Benchmarking three low-cost, low-maintenance cloud height measurement systems and ECMWF cloud heights, accepted to Solar Energy (2018).

