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Abstract
Metagenomics, the sequence characterization of all genomes within a sample, is widely

used as a virus discovery tool as well as a tool to study viral diversity of animals. Metage-

nomics can be considered to have three main steps; sample collection and preparation,

sequencing and finally bioinformatics. Bioinformatic analysis of metagenomic datasets is in

itself a complex process, involving few standardized methodologies, thereby hampering

comparison of metagenomics studies between research groups. In this publication the new

bioinformatics framework MetLab is presented, aimed at providing scientists with an inte-

grated tool for experimental design and analysis of viral metagenomes. MetLab provides

support in designing the metagenomics experiment by estimating the sequencing depth

needed for the complete coverage of a species. This is achieved by applying a methodology

to calculate the probability of coverage using an adaptation of Stevens’ theorem. It also pro-

vides scientists with several pipelines aimed at simplifying the analysis of viral metagen-

omes, including; quality control, assembly and taxonomic binning. We also implement a tool

for simulating metagenomics datasets from several sequencing platforms. The overall aim

is to provide virologists with an easy to use tool for designing, simulating and analyzing viral

metagenomes. The results presented here include a benchmark towards other existing soft-

ware, with emphasis on detection of viruses as well as speed of applications. This is pack-

aged, as comprehensive software, readily available for Linux and OSX users at https://

github.com/norling/metlab.
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Introduction
Metagenomics is the study of the combined genomic material of a sample and as such viral
metagenomics concentrate on characterization of the viral fraction of the sample.[1,2]. By
applying high throughput sequencing (HTS), with selective enrichment of the viral target and
reduction of host genome, the virome of an organism or environment is explored in an unbi-
ased way, without the need for culturing or viral isolation. The use of this methodology have
increased enormously in the last decade, partially due to the increased availability of high
throughput sequencing, but also due to development of better tools for analysis and interpreta-
tion of datasets [3–5]. For viral discovery the availability of the technology has dawned a new
era, with several notable findings the last 10 years [6]. The technology is also in use for disease
monitoring, investigations into complex multifactorial disease and for preparedness against
new zoonotic agents [2,6–9].

Due to the complexity of metagenomic investigations, several caveats exist for designing
experiments and analyzing their results. The three most common problems are related to the
nature of the target. i), Viruses are small genomic entities within a world of giants; even the
smaller bacterial genomes are considerably larger and risk masking out the viral genomes dur-
ing analysis [10]. This is normally solved by either viral enrichment, e.g. DNA amplification or
virus isolation, or by increasing the depth of sequencing [11]. ii), the diversity of viral genomics
is incredibly complex, encompassing all known variants of genomic structure [12]. iii) The cur-
rent knowledge of viral diversity, e.g. studies estimate that as much as 95% of the viral diversity
as unknown, providing a huge range of unknown factors while performing analysis [10,2]. This
leads to problems in estimating viral abundance in a sample as well as problems related to the
availability of target sequences while assigning taxonomic identities to the sequence reads dur-
ing analysis [5].

Coverage theories and its application within metagenomics
In metagenomic experiments the coverage of each genomic entity within the sample is one of
the few metrics available to estimate how good the dataset is [12]. With high enough sequenc-
ing depth, the identification of all genomes within the metagenome is feasible and as such the
estimated coverage of genomic entities within a dataset is an important metrics for determining
the validity of an experiment [13]. Coverage theories for metagenomics try to assess the needed
depth of sequencing within an experiment [14]. This will enable researchers to evaluate the
metagenomics dataset as an objective subsample of the metagenome e.g. as with the common
estimate of sample size to reach coverage of a population [13–15]. This enables a researcher to
estimate not only the needed amount of sequencing data, but indirectly also predict the lowest
abundance genome that can likely be identified with a given sequencing technology [12]. For
these calculations to be valid there must be good estimates of the genome size range within the
sample, the abundance of the different species and the sequencing output [14,15].

Bioinformatics analysis of viral metagenomes
Quality control. The sequence quality of HTS data is of great importance for the validity

of the results within an metagenomics experiment, the introduction of low quality datasets will
not only increase the complexity of the analysis, it will also risk producing false positives e.g.
known viruses classified as new strains due to erroneous reads [16,17]. For viral metagenomics,
sequence contamination is often introduced during the nucleotide amplification, during either
the selective enrichment procedure or during the library preparation [16,17]. This data corrup-
tion combined with technology specific systematic errors, e.g. the Illumina GGC error, must be
removed or accounted for during analysis [18,19]. Even though several tools exists for
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measuring sequence read quality, only one tool includes metrics specifically for metagenomics:
PrinSeq [20–22].

Assembly. Genome assembly has historically been focused on single genomes [23]. As
such the focus has been high sequencing depth, good mean coverage and removal of contami-
nating sequence reads e.g. alien sequences [20]. In metagenomics assemblies however, the
focus of the dataset is multiple genomes, low mean coverage and plenty of contaminating
sequence i.e. from host or species outside the focus of the study, like bacteria in viral metage-
nomics datasets [4]. The complexity of species diversity within the sample, as well as low cover-
age, introduces problems with chimeric contigs e.g. the synthetic combination of reads from
two or more organisms genomes, which increases the complexity of the assembly as well as
provides possible false positives in downstream applications [24–26]. Different approaches can
be used to limit the complexity of the dataset, including mapping towards reference sequences
to remove known species within the sample [27].

Almost all de novo assemblers build on one of three themes; i) the greedy algorithm e.g.
CAP3 and TIGR, ii) the Overlap-Layout-Consensus e.g. Celera assembler, Mira and Newbler,
and iii) strategies based on de Bruijn graphs e.g. SPAdes and Ray [28,29] [30–33]. For metage-
nomics datasets there is also a number of adaptions of existing software as well as some special-
ized methodologies available for de novo assembly [29,34,35]. It is estimated that over 90% of
the microbial genomes are undiscovered, and in addition, the included genomes are unknown,
making mapping assembly impossible. Thus de novo assembly is the standard approach to
metagenomics datasets [36].

Taxonomic binning. The characterization of the taxonomic diversity of microbial com-
munities is one of the primary objectives in a metagenomic study [10]. Phylogenetic classifica-
tion of metagenomic reads, referred to as binning, is a problem closely related to assembly
[4,5,37].

Several binning methods have been developed, and can be categorized as two types: taxon-
omy-dependent or taxonomy-independent [38]. Taxonomy-dependent methods aim to clas-
sify sequences into known taxonomic groups, by following supervised learning procedures,
while taxonomy-independent methods, aim to bin the reads based on mutual similarity, with-
out database comparison. Taxonomy independent methods are thus closely related to unsuper-
vised machine learning procedures [37].

Taxonomy-dependent methods can be divided into three subclasses: alignment-based
methods, composition-based methods, and hybrid methods, using both alignment and compo-
sition for the binning [37,38]. Alignment based methods commonly rely on BLAST, followed
by applications of the Lowest Common Ancestor Algorithm to classify the reads in taxonomic
groups [39,40]. A limitation of Blast-based approaches is the computing cost. To combat this
limitation, several methods have been developed to speed up the process, introducing tools
such as Kraken, Diamond [41] and GPU-BLAST [42–44].

Composition-based methods instead use compositional properties like GC-content, oligo-
nucleotide usage, or codon-usage patterns to classify reads, based on models or sequence motifs
from a reference database [45]. Hybrid methods use a combination of alignment and composi-
tion based methods. For example, PhymmBL combines the results of BLAST with scores pro-
duced from Interpolated Markov Models, aiming to achieve higher accuracy than BLAST
alone [46].

Viruses vs bacteria. To our knowledge, the only standalone approach developed to classify
viral sequences is ProViDE [47]. Most binning approaches are based or trained on bacterial
marker genes, thus are mainly useful for bacterial sequences. Indeed, the study of viral diversity is
hampered by the lack of universally conserved genes across all viral species, such as the 16s ribo-
somal RNA gene in prokaryotes or the Internal transcribed spacer in fungal eukaryotes [2,48].
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As previously mentioned, HTS based metagenomics approaches have been used to great
success during the last decade for viral discovery [7]. The methods used are however limited by
the stringency of taxonomy based methods, and 60–99% of the sequences generated in differ-
ent viral metagenomic studies are not homologous to known viruses [6], providing a challenge
for identification and characterization of new viruses.

Aim. This study aims at producing a bioinformatics framework for design and analysis of
viral metagenomics experiments, MetLab. This is done by providing an implementation of the
algorithms proposed by Wendl et al. [14] for estimating needed coverage, simulating viral
metagenomes, as well as providing analysis pipelines for i) preprocessing of datasets, ii) elimi-
nation of host material and iii) quick taxonomic classification. This is packaged, as a compre-
hensive piece of software, readily available for Linux and OS X users and with a graphical user
interface from https://github.com/norling/metlab.

Material and Methods
MetLab is written as a two-part application, the computational framework and the graphical
user interface (GUI). The framework is composed of three main modules. Each module can be
used via the GUI (a python tkinter interface (http://tkinter.unpythonic.net/wiki/)), and both
the Metamaker and the Experimental Design modules can be used as standalone command-
line applications, which provide an easy-to-use alternative.

The application is written in Python 2.7 (www.python.org/), giving platform independence,
and is released under the GPLv3 license, allowing any developer to extend or incorporate the
classes into future systems. The included modules so far are: a viral metagenomic dataset simu-
lator, a coverage probability module for experimental design, and an adaptable analysis pipe-
line module.

Metamaker module: viral datasets simulation
The Metamaker module has two functions; it can read a set of sequencing data, creating a sta-
tistical profile, and secondly, simulate datasets from such a profile. The profile includes read
length, read length variation, number of reads, and per-base error probabilities. The profile is
designed to be simplistic but create a reasonable approximation of real sequencing data. The
user can choose from seven sequencing technologies profiles that are currently available Ion-
Torrent, IontProton, Illumina MiSeq, Illumina HiSeq, Illumina NextSeq, Pacific Biosystems
and Oxford Nanopore. To generate a dataset—the user inputs the number of species to include
and the distribution of their abundance (uniform or exponential), and the module downloads
random viral genomes from NCBI, generating two output files. One is a Sanger Fastq file with
read statistics corresponding to the profile, and the other one is a key file, a list of comma-sepa-
rated values (csv) describing the dataset contents.

The script introduces errors randomly according to the quality values, marking erroneous
nucleotides in the fastq sequence using lowercase letters. The script makes heavy use of BioPy-
thon (biopython.org) for communicating with NCBI, downloading and parsing sequence data,
and uses the numpy library (www.numpy.org) for efficient numerical calculations.

Experimental design module: implementation of Stevens Theorem
There are multiple proposed ideas for estimating the sequencing needs of a metagenomic proj-
ect. One of the more advanced algorithms for calculating this need was published by Wendl
et al., [14], which is an adaptation of Stevens’ theorem. A metagenomic assembly starts with a
number of reads, R, of (mean) length l from a metagenomic community. The probability of
assembling a certain member of the metagenomic community with an abundance of α and a
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genome size of L can then be calculated. The probability of a position in the target genome
being covered by a read from the same genome can be written as φ = (l/L). Together with the
Steven’s series limiter η = min (R, int(1/ φ)) this is used to calculate the probability of an ideal
assembly with k gaps, according to the algorithm proposed by Wendl, et al. The module
includes implementations of theorem 1 (gap consensus), Eq 1, and it’s first corollary for calcu-
lating the probability of complete coverage (Eq 2).

PðB ¼ kÞ ¼ R

k

 !XZ

b¼k

R� k

b� k

 !
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Stevens’ theorem for metagenomic gap consensus probability [14], B describes the number
of sequence gaps in a theoretical ideal assembly of k gaps, where R is the number of sequence
reads, φ is the probability of a position being covered, α is the species abundance in the com-
munity and η is the smaller of R and int(1/φ).

PðB ¼ 0Þ ¼
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Stevens’ theorem for metagenomic full coverage probability [14], where R is the number of
sequence reads, φ is the probability of a position being covered, α is the species abundance in
the community and η is the smaller of R and int(1/φ).

These are computationally hard problems, which regular precision programs do not handle
well. In response to this, a dedicated python module was implemented as a C extension using
the GNUMPFR Library [49], a multiple-precision floating-point library allowing arbitrary
numerical precision calculations, as well as mpmath (http://mpmath.org/), a python library
giving a slower, but easier to install, solution.

Analysis pipeline module. The metagenomic analysis pipeline, based on a set of programs
suited for metagenomic analysis, is modular and as such flexible depending on the users need
for analysis, e.g. omitting assembly and or host filtering. The pipeline starts with data pre-pro-
cessing with Prinseq-Lite [50]. Trimming and filtering options are set to default values (extrap-
olated from a normal need), but the user can easily modify them. The next steps is host
genome mapping with Bowtie2 [51], designed for metagenomic analysis from animal samples.
Reads that do not map to the host genome are extracted using SAMTOOLS [52], de novo
assembly is performed on the unmapped reads with SPAdes [28], which is optional and must
be enabled by the user. The unmapped reads, and possibly contigs, are then taxonomically
classified.

Selection of methods for taxonomic classification. At the start of the developing process,
the door was open to several classification methods, the goal being to find the best compromise
between ease of use, speed and accuracy. Eight datasets were simulated with the Metamaker
module using Ion Torrent and Ion Proton profiles, with different read lengths and species dis-
tributions. All the reads with a mean Phred quality score< 20 were discarded using PrinSeq.
These simulated datasets were used to benchmark several metagenomics taxonomic binning
tools: Kraken [42], Blastn + LCA from the Fragment Classification Package (FCP) [53], Dia-
mond (blastx command) [41], Blastx and MEGAN 5 [40], RAIphy [54], ProViDE [47] and
Naïve Bayes Classifier (NBC) [55].

As most binning methods are unable to work on short reads, all datasets were assembled de
novo using Ray. Chimeric contigs, which corresponded to an average of 7% of the contigs
across the 8 datasets, were discarded and the contigs originating from only one species were
classified using the previously cited binning methods.
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All the classifiers were used with default parameters, and the following databases: nr (NCBI)
for Diamond and Blastx, a combination of RefSeq (Archea + Bacteria) and the phages and viral
divisions of GenBank for Kraken and RAIphy, and the NCBI Archaeal, Bacterial and Viral
genomes for FCP and NBC.

In the case of Kraken, the database was used i) as-is (superDB) ii) using the—max-db-size
parameter with a value of 4G (minisuperDB or shrunk database).

In the implemented pipeline, after binning with the method of choice, Krona Tools is used
to generate a HTML report summarizing the taxonomic classification as an interactive pie
chart [56].

The reads that remained unclassified after primary binning classification are retrieved for a
classification at protein level to be able to detect more divergent homologies. Gene prediction
is attempted using FragGeneScan [57], which provides predicted protein sequences as output.
These predicted protein sequences are then scanned for a set of viral Hidden Markov Models
(HMM) profiles called vFams, published by Skewes-Cox et al. [58], using HMMER3 [59].
Results are summarized in a report, listing sequences with a significant match with a vFam, the
corresponding vFam, and the viral families of sequences used to build the vFam profile. These
predictions can also be visualized in a Krona chart produced by the module. The system also
provides the user with output files that are tab-separated and can be imported in Excel or R for
further analysis.

Testing on published datasets
In order to test our analysis pipeline, two other sets of data were used as a comparison in this
study; one being a simulated dataset published in the Clinical Pathoscope article [60] and the
other being a real dataset classified using a BLAST-LCA approach.

The first dataset used is a simulated dataset from the Clinical Pathoscope project, containing
human (90%), bacterial (9%) and viral reads (1%). After quality control, the good quality reads
were mapped toward the human genome following the MetLab standard procedure before to
be classified using Kraken.

The second data-set used was the initial dataset used for the publication “Metagenomic
Detection of Viral Pathogens in Spanish Honeybees: Co-Infection by Aphid Lethal Paralysis,
Israel Acute Paralysis and Lake Sinai Viruses” [61]. In this publication a single Roche 454 Life
Science run on one eight of a Pico titer Plate. For a more detailed study see the original publica-
tion. Dr. Fredrik Granberg, SLU, Sweden graciously provided this dataset. The aim was a direct
comparison of the results gained from that study with results gained from the approach pre-
sented in this article.

Results and Discussion
The developed software, Metlab, consists of several modules implemented within a framework
to simplify design, simulation and analysis of metagenomics datasets, with emphasis on detect-
ing previously known and putatively novel viruses. The read simulation module, Metamaker, is
implemented to provide a preliminary dataset for scientists to estimate the complexity and
validity of the different analytical pipelines. The second module provides confidence values for
detecting all viral genomes within a sample, based on the generalization of Steven’s Theorem.
This enables the user to make an informed decision when designing the sequencing part of the
experiment and as such avoid the possibility of under/over-sequencing the sample. The third
module is dedicated to the analysis of the dataset; incorporating quality control, host filtering,
assembly and taxonomic classification.
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Metamaker module: viral datasets simulation
The Metamaker module reads sequencing data, generates profiles from the data and simulates
read sequences based on the profile and NCBI viral sequences. It can generate datasets of Ion
Torrent, Ion Proton, Illumina MiSeq, Illumina HiSeq, NextSeq as well as Pacific Biosystems
and Oxford Nanopore profiles.

The module produces viral datasets with realistic error profiling and known taxonomic con-
tent, enabling testing and validation of assembly and taxonomic binning methods.

Experimental design module: implementation of Stevens Theorem
The model proposed by Wendl et al. was previously not implemented. A novel implementation
was developed, relying on the GNUMPFR Library, written in C, dedicated as a Python module.
This allowed the implementation of the proposed model as well as maintaining ease of installa-
tion and providing users with a confidence value based estimation of the needed sequencing
depth for a metagenomics experiment.

The implementation estimates the needed sequencing depth based on the Metamaker pro-
files produced while simulating datasets. Given the lowest species abundance and its genome
size, the module calculates the probability of covering all included genomes (such as at least
one contig is produced from each genome) given a theoretical optimal assembly. If a single run
is not sufficient to reach that probability the module goes into iterative state, consecutively add-
ing simulated runs until coverage probability is reach or a maximum of 10 runs are simulated.

The experimental design probability calculations can either be used from the command-
line, or from the graphical user interface.

Analysis pipeline module
Selection of a binning method. Eight datasets simulated using Metamaker were used for

comparing taxonomic methods and selecting the one method to be integrated into the analysis
module. Basic read and assembly statistics for the 8 simulated datasets are shown in Table 1. A
direct comparison of the six methods running time and system resources needed is shown in
Table 2. Only Kraken and RAIphy ran in less than one hour, while Diamond ran in 3.3 hours
on 4 cpus, and Blastx for over five days on 8 cpus. However, Kraken used 78G of RAM with the

Table 1. Statistics of the simulated reads: quality filtering and de novo assembly.

NGS profile IonProton IonTorrent200 IonTorrent400 IonTorrent

Species Distribution (200
viruses)

Exponential Uniform Exponential Uniform Exponential Uniform Exponential Uniform

Prinseq quality
filtering

Number of input
sequences

15,399,727 14,553,370 591,020 610,006 411,304 462,169 2,521,607 2,623,306

Input mean length (nt) 144.64 144.65 244.1 243.89 325.19 325.52 198.88 198.71

Good sequences (%) 84.64% 85.73% 88.49% 88.45% 83.88% 83.86% 85.87% 85.89%

Good sequences mean
length (nt)

153.68 152.92 237.54 237.48 336.88 336.97 215.14 215.14

Ray de novo
assembly

Number of contigs 2,455 3,521 1,953 7,533 2,659 8,889 1,111 3,075

Total length (nt) 2,939,578 6,220,833 2,361,974 6,777,218 2,269,692 6,662,688 1,655,583 6,146,569

Average length (nt) 1,197 1,766 1,209 899 853 749 1,490 1,998

N50 (nt) 24,608 25,523 11,761 2,077 3,566 1,350 25,150 12,567

Largest contig (nt) 171,369 167,708 93,770 59,708 159,613 49,652 137,229 93,761

Used reads (%) 89.93 95.93 98.2 94.37 97.98 91.51 31.19 91.35

doi:10.1371/journal.pone.0160334.t001
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superDB, more than 25 times than RAIphy. The use of the shrunk database (superminiDB)
greatly reduced the amount of RAM needed by Kraken to 4.5G.

For each binning method, the assigned taxonomy of each contig was compared to its actual
taxonomy. The results are summarized in Fig 1.

The analysis shows that after validation, Kraken outperformed all the others methods, clas-
sifying 88.58% of the contigs at the correct species. When using the shrunk database, Kraken
classified correctly 87.36% of the contigs while using 17 times less RAM. The Blast-based meth-
ods also performed well, with about 60% of the sequences classified at the correct species, with
Blastn+LCA (FCP) classifying 93% of the contigs at the correct family. Megan5 used either
with Diamond or Blastx achieved a similar level of accuracy at the species level but classified
less viruses at the family level and had a higher level of false positives (7.90% for Diamond,
9.45% for Blastx). ProViDE, also based on Blastx, showed less accurate predictions than
Megan, with less than 40% of the contigs classified at the correct family.

It has to be noted that the NBC tool and RAIphy always give a prediction, hence the per-
centage of unclassified sequences by these methods is 0. Notably, RAIphy always provides a
prediction at the species level. Thereby the predicted species was wrong 86% of the time.

These results show that not all kinds of binning methods are well adapted to the classifica-
tion of viral sequences and that the most efficient methods are the alignment-based methods.

Table 2. Comparison of time and computing resources used by the compared binningmethods.

Kraken (superDB) Kraken (minisuperDB) RAIphy FCP Blastn+LCA Diamond (Megan) Blastx (Megan & ProViDE) NBC*

Mean running
time

33 mins < 1 min 30 mins 75 mins 3.3 hrs > 5 days NA

Memory required 78G 4.2G 3G 2.5G 9.5G 10G NA

CPUs used 1 1 1 8 4 8 NA

*These data are not available for NBC as it was run online.

doi:10.1371/journal.pone.0160334.t002

Fig 1. Comparison of the binning methods. The represented percentages are an average of validations
obtained with the 8 simulated datasets.

doi:10.1371/journal.pone.0160334.g001
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Methods dedicated to virus detection and using only viral dataset can be biased and then over-
assign some sequences, producing a high amount of false positives in the results. Moreover,
using a tool than can detect viruses as well as archaea and bacteria has its use even if the pur-
pose of the analysis is to detect the viruses, because it enables to detect the possible bacterial
contaminants. Of the two best performing alignment-based methods, providing the largest
amount of correctly classified sequences, Kraken outperforms the secondary method, Blastn-
LCA. This is true for both running time as well as accuracy. Kraken has proven to be both effi-
cient and effective in performing classifications, as well as having the benefit of being able to
quickly analyze a huge amount of sequences, making it possible to run without the assembly
step.

Kraken being efficient in classifying short sequences, it was also run on the reads using the
shrunk database. 86.03% were classified at the correct species, a level of accuracy similar to the
analysis carried on the contigs, and using the same amount of computing resources.

Seeing that Kraken was i) the most accurate, ii) the fastest and iii) able to run on a consumer
grade laptop using the shrunk database, it was seen as the best choice for primary taxonomic
binning method and integrated into MetLab. Indeed, Kraken is included as a classifier, together
with two separate databases; the expanded viral database, including all data from the VRL and
PHG divisions of GenBank as well as RefSeq Archaea and Bacteria, and the shrunk version of
the same, suitable for running classifications on consumer grade computers. As the other clas-
sifiers were deemed unsuitable for this application they were excluded from the software.

Detection of highly divergent viruses. A secondary method using HMMER on the vFam
database was implemented to predict the reads of viral origin where Kraken could not get a
clear match. Working at the protein level for detecting sequences of viral origin is a logical step
as Kraken requires exact matches and is highly dependent on the database used for classifica-
tion. As such, using a secondary method on the unclassified reads enables the users a higher
sensitivity for detection of viral families and detection of previously uncharacterized viruses.

However, that secondary method could not be used on the simulated datasets. Indeed,
almost no reads remained unclassified after running Kraken. This case will not arise when
using real datasets, which contain more sequences from unknown viruses. The method will
prove itself useful on the tests realized on existing real datasets.

Testing on published datasets
Testing on the Clinical Pathoscope dataset. After quality filtering and removal of the

human sequences, a total number of 970602 reads were analyzed with Kraken. About 74% of
those reads were classified as bacteria, 17% of the reads remained unclassified and 9% were
classified as viruses. Within the 74%, the reads were correctly classified at least to the genus
level, with 41% of reads classified to the genus Streptococcus, 39% to theHaemophilus genus
and 19% toMoraxella, which corresponded to the actual proportions of these genera in the
dataset. After validation of the classification of viral reads, 4.80% of the viral reads were unclas-
sified and among the 95.2% of classified viral reads 93.35% were predicted at the correct family,
with 87.95% at the correct species, and 1.85% were wrongly predicted

Testing on the “Spanish Honeybees” dataset. Summarized in Table 3 are the comparison
of viral read detection between the Blastn-LCA approach and the approach used within
MetLab (Kraken and vFam) for the dataset from Granberg et al. The three main viruses found
are the same with both methods. Focusing on the ssRNA viruses, a direct comparison provides
some valid questions. In the original analysis several reads were classified as Turnip Yellow
Mosaic Virus (TYMV), a virus belonging to the Tymovirus, but this virus could not be identi-
fied using Kraken. However, Granberg et al. state in the publication that for TYMV, one contig
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of 225 bp was generated and it shared 91% nucleotide sequence similarity with its most similar
reference genome (GenBank X07441), but only over a stretch of 56 bp in the middle. Since the
ends did not show any resemblance with the reference, this could either indicate a new type of
TYMV-like virus or an incorrectly assembled contig. 206 reads similar to two vFams containing
sequences only from Tymoviridae were found by MetLab. This additional information brought
by the analysis at the protein-level indicates that a virus distantly related to the TYMV could be
present in the dataset. Moreover, MetLab, with its combined prediction method, enabled the
detection of sequences from Baculoviridae and Phycodnaviridae, as well as other viral families.

Concluding the results we can see that even though there are some minor drawbacks with
the use of Kraken as a classification tool (see [42] as well as previous discussion) the main goal
of rapid classification is achieved using this approach. Given the need of simplification of data-
bases a rapid taxonomy dependent, highly specific classification tool will shorten analysis by
several hours if not days. With the ultimate goal of providing a tool that is easy to use the for-
mat of Kraken results is likable, and a graphical representation in Krona [62] available within
MetLab makes it even more user friendly.

The addition of a protein level classification on all the viral reads left unclassified by Kraken
using FragGeneScan and HMMER3 with the vFam database adds valuable information about
viral families without adding much time to the analysis. The complete analysis workflow is pre-
sented on Fig 2.

MetLab Graphical User Interface
The experimental design module of the graphical user interface (GUI) is presented on Fig 3.
The three modules of MetLab are displayed selecting tabs, accessible at a glance. All the param-
eters and options present at the command-line are accessible through the GUI for each sepa-
rate module.

The standard analysis pipeline is implemented without assembly but the user can easily
switch to a pipeline with an assembly step. The standard pipeline enables rapid classification of
viral reads after quality filtering and host removal by mapping, by taxonomic binning using
Kraken as well as prediction of sequences of viral origin on unclassified reads by use of vFam/
HMM. Results are presented to the user both as Krona charts and as tab-separated files that

Table 3. Viral sequences detected in the Spanish Honeybees dataset. Comparison of the number of reads classified as viruses by Granberg et al.
(Blastn-LCAmethod) and the number of reads classified as viruses by MetLab with Kraken and vFammethods.

Granberg et al. MetLab results

Taxon Blastn-LCA Kraken vFam MetLab total

Secoviridae 1968 (TuRSV) 936 (TuRSV) 279 1215

Dicistriviridae 1048 (IAPV) 583 (IAPV) 0 583

664 (ALPV) 878 (ALPV) 0 878

Tymoviridae 563 (TYMV) 0 206 206

Caudovirales (Phages) 30 22 0 22

Retroviridae 16 68 0 68

Lake Sinai Virus 14 38 0 38

Baculoviridae 0 11 535 546

Phycodnaviridae 0 8 193 201

Others 7 769 613 1382

Total viruses reads 4310 3313 1826 5139

TuRSV: Turnip Ringspot Virus, IAPV: Israel Acute Paralysis Virus, ALPV: Aphid Lethal Paralysis Virus, TYMV: Turnip Yellow Mosaic Virus.

doi:10.1371/journal.pone.0160334.t003
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can be imported in R for further analysis. By providing both a visual representation and a table
the user is enabled to both have a quick overview of the results as well as an in-depth source of
information for further investigations.

Conclusion
MetLab thus provides a wide field of usage, before, during and after the metagenomics experi-
ment. It gives the opportunity to design the experiment, providing calculations for the coverage
needed, enabling the user to carefully prepare his experiment depending on the sequencing
technology used. MetLab also provides the Metamaker module, allowing the user to simulate
viral metagenomics datasets with seven different sequencing technology profiles. Metamaker is
useful for testing, validating and selecting external analysis tools that could be applied on the
data. After the sequencing MetLab offers a panel of pipelines dedicated to the analysis of meta-
genomes. These pipelines go from pre-processing step to taxonomic classification. Several bin-
ning methods were tested throughout the course of the development and Kraken was chosen as

Fig 2. Main workflow of the MetLab analysis pipelines.

doi:10.1371/journal.pone.0160334.g002
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a primary binning method with additional support gained from a taxonomic prediction at the
protein level using HMMER and vFam, a database of viral profiles. Improvements may be
achieved in order to detect a wider range of species, by working on the database used for taxo-
nomic binning. Options to allow the user to extract reads of interest will be added in the near
future. MetLab has already successfully been used internally for several studies, including “The
intestinal eukaryotic virome in healthy and diarrhoeic neonatal piglets” [63].
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