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This work presents first results obtained with partly scale resolving simulation for two
different installation noise problems involving a cold jet interacting with a wing. Similar
to very large-eddy simulation (VLES), the resolvable very large scales of turbulent fluctua-
tions are directly calculated and the dissipation of the non-resolved scales is accounted for
by a subfilter scale stress model. In addition, stochastic forcing in space and time is applied
to model turbulent backscatter. The paper presents and discusses the rationale to explic-
itly realize turbulent backscatter along with details of the proposed stochastic backscatter
model and its calibration. As a novel approach, the entire subfilter forcing function is
modeled by means of an eddy-relaxation source term that provides a combined model for
forcing and dissipation. The relaxation parameter defines the amount of correlation of the
subfilter forcing with resolved quantities. Its proper calibration is achieved using decaying
homogeneous isotropic turbulence. Furthermore, characteristics of the backscatter forcing
are analyzed from synthetic turbulence data. The first jet-wing interaction problem stud-
ied is based on a generic static jet interacting with a non-inclined rectangular wing. The
second problem deals with a dual-stream nozzle installed at a high-lift wing with deployed
flap and slat in wind tunnel flow under approach conditions. For both problems installation
noise from the airframe yields higher peak levels than the jet-noise contribution alone. For
the first problem, relative to the corresponding jet spectrum a low-frequency narrow-band
contribution is observed that can be attributed to coherent jet structures interacting with
the airfoil trailing edge. Very good agreement with measured spectra is obtained. For the
second problem a broadband airframe installation contribution to the overall spectrum is
predicted with peak frequency above the jet contribution.

I. Introduction

Jet-flap installation noise arising from the interaction of the jet with the high-lift wing has become the
concern for modern transport aircraft with ultra high bypass ratio jet engines mounted in closest possible
proximity to the wing.

This work presents results obtained with partly scale resolving simulation for two different jet-flap inter-
action noise problems. The simulation approach utilizes coarse meshes, with the mesh resolution inferred
from an estimate of the scales necessary to capture the essential aeroacoustics sound generation and radiation
characteristics over the interesting frequency range. Similar to very large-eddy simulation (VLES),1 the very
large scales of turbulent fluctuations resolved on the mesh are directly calculated and the dissipation of the
non-resolved scales is accounted for by a vorticity based Smagorinsky-like subgrid scale stress model.2

In addition, stochastic forcing in space and time is applied in the CAA simulation utilizing the Fast
Random Particle-Mesh method (FRPM)3–5 to model turbulent backscatter, i.e. ’the effect of random subgrid-
scale (SGS) motion on the resolved (filtered) scales of turbulent motion’, referring to Schumann.6
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In general, the contribution of backscatter to the turbulent production in the well resolved scales grows
continuously with reduced mesh resolution.7 As was demonstrated for channel flow simulations,8 stochastic
forcing has the potential to significantly lower LES resolution requirements. Otherwise, chances are that the
missing backscatter contribution, i.e. a lack of forcing of the resolved scales by non-resolved scales, poses
limits on the mesh coarseness achievable without degradation of the resolved large scales physics.

Two different jet-wing installation problems are presented in this work. First, a generic jet installation
noise problem studied in the framework of the EU project JERONIMO is considered using a single stream
jet at Mj = 0.6 without background flow in combination with a rectangular unswept wing.

The second problem deals with a dual-stream nozzle installed at a high-lift wing with deployed flap and
slat (F16 geometry) with wind tunnel co-flow under approach conditions, studied in the framework of the
German national project POWER25, refer to Fig. 1.

(a) Problem 1: single stream static jet with unswept
wing;9 microphone positions indicated.

(b) Problem 2: dual-stream nozzle model with high-lift
wing (F16).

(c) Problem 2: snapshot of velocity vectors from Forced Eddy Simulation, Sec-
tion ??.??.2.

Figure 1. Simulation problems.

Section II discusses the rationale of applying explicit backscatter forcing. Section III gives an overview
on the numerical method applied in this work. Section IV discusses the calibration of the backscatter model.
Results of the application test cases are presented in Section V. A summary with conclusions is given in
Section VI.
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II. Backscatter Rationale

A. Forced Incompressible Navier-Stokes Equations

In the next section the simulation method applied in this work will be outlined for the incompressible
Navier-Stokes equations to clarify its basic general principle and to discuss the simulation strategy and its
rationale.

The incompressible Navier-Stokes equations are given by (e.g. refer to Stewart,10 Chp. 10)

∂vi
∂t

+
∂

∂xj
(vivj) +

1

ρ

∂p

∂xi
− ν ∂

2vi
∂x2j

= 0,
∂vi
∂xi

= 0, (1)

where vi indicates flow velocity, ρ density, p pressure and ν molecular viscosity. As being written in tensor
notation (implying usage of Einstein’s tensor notation for terms of equal indices), the momentum equation
provides a covariant tensor equation for the velocity vector that is valid for any arbitrary inertial frame of
reference moving at constant velocity, i.e. the momentum equation is Galilean invariant. Volume averaging
of the first momentum equation yields

∂vi
∂t

+
∂

∂xj
vivj +

1

ρ

∂p

∂xi
− ν ∂

2vi
∂x2j

= 0. (2)

Here, volume averaging is indicated by the overbar. Furthermore, it is assumed that the applied volume

averaging commutes with differentiation, i.e. ∂ϕ
∂x = ∂ϕ

∂x , and satisfies ϕ1 + ϕ2 = ϕ1 + ϕ2. Assuming a sharp
spectral cut-off filter, furthermore ϕ = ϕ holds.

The volume averaging procedure implies a sub-filter contribution, defined for velocity by v′i := vi − vi.
Based on this decomposition and using the previous filter relations, the filtered non-linear term can be

rewritten as
vivj = vi vj︸︷︷︸

I

+ viv′j + v′ivj︸ ︷︷ ︸
II

+ v′iv
′
j︸︷︷︸

III

. (3)

For a sharp spectral filter, terms (II) + (III) correspond to the well known sub-filter cross- and Reynolds-
stresses11 and term (I) is contributor to the Leonard stress term.11 This decomposition allows to further
rewrite Eq. (2) as

∂ṽi
∂t

+
∂

∂xj
ṽiṽj +

1

ρ

∂p̃

∂xi
− ν ∂

2ṽi
∂x2j

= f̃i(ṽi, v
′
i), (4)

Here the tilde is introduced to indicate that the resolved quantities are volume averaged quantities, i.e.,
ṽi = vi, however there is no explicit volume averaging needed to obtain them, rather Eq. (4) represents the
governing equation of resolved velocity. Note, the overbar indicates explicit volume averaging. The forcing

f̃i := − ∂

∂xi

(
viv′j + v′ivj + v′iv

′
j

)
(5)

defines the sub-filter forcing. Although it is formulated in terms of sub-filter quantities, the explicit filtering
operation restricts the forcing just to resolved scales (as indicated by the tilde symbol on top of the forcing
term). It is easy to proof that for a sharp cut-off filter Eq. (4) conserves Galilean invariancea.

B. Discussion of Volume Averaged Equation

Sharp spectral filtering involves a specific cut-off wave-number (length scale). The exact mathematical
derivation of Eq. (4) implies that it is general valid for any filter length scale applied, provided the right-
hand side subfilter forcing would be given. That is, applying a large filter width yields a coarse grained
solution, nevertheless the resolved variables comprise the physical solution up to the level of resolution.

Qualitatively, one would expect an increasing contribution of the subfilter forcing with increasing filter
width.7 At a specific scale, however, the trend must reverse to provide a decreasing contribution as for an
arbitrary large filter width the energy of the resolved quantities tends to zero, which implies zero forcing.

aE.g., refer to Pope,12 exercise 13.19.
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The volume averaged governing equations are often used to motivate the rationale behind large eddy
simulation (LES). Other than implied by Eq. (4), in scale resolving simulation such as LES or Detached
Eddy Simulation (DES), it is observable that a sufficient fine mesh is needed to properly capture turbulent
flow. Above a certain mesh resolution threshold the simulation quality deteriorates significantly and/or
turbulent production is not maintained anymore.

As pointed out by O’Neill,13 the majority of SGS parameterizations used in LES modeling are purely
dissipative, implying that they seek to represent the net energy transfer rather than the forward and backward
scatter separately, i.e.,

f̃i(v,v
′) ' f̃Di (v), (6)

where f̃Di (v) denotes a dissipative model relying on resolved quantities.
A subfilter model entirely defined by resolved quantities implies correlation 1.0 between subfilter forcing

and resolved scales. However, for DNS simulation a typical correlation between residual stresses and strain
rates between 0.16 and 0.5 is reported.6 Correlation less than one imply that the right-hand side forcing
term in Eq. (4) comprises also stochastic contributions that are uncorrelated to the resolved and provide
a turbulent production in the resolved regime by non-resolved quantities. As pointed out by Westbury et
al.,14 the forward scatter (towards smaller scales) and backscatter (towards larger scales) of energy within
a turbulent flow are often large and comparable in magnitude. Leslie and Quarini15 found that the ratio of
backscatter production to the net energy transfer rate can be greater than unity.

The amount of turbulent backscatter production, denoted hereafter as B̂, can be related to the turbulent
dissipation rate E as the measure of the turnover of energy in a turbulent flow. In the literature, the
backscatter production rate is estimated using the ansatz

B̂ = cBE × gB
(
lc
Lf

)
, (7)

where cB is a backscatter constant and gB is a function of mesh resolution lc and turbulent length scale Lf
which is of order O(1) in the inertial subrange, refer to the following discussion in the next section. This
implies that backscatter remains important for all LES simulations with resolution below the Kolmogorov
wave number scale. The backscatter constant is reported by Chasnov16 and others6,17,18 to be in the range

cB = 0.4 . . . 1.4. (8)

A considerable amount of work has been been already published aiming to augment datum purely dissi-
pative subgrid stress models with stochastic forcing,

f̃i ' f̃Di + f̃Fi , (9)

to model backscatter, e.g. refer to the work of Leith,19 Schumann6), Mason & Thomson,18 Marstorp et al.,20

Weinbrecht & Mason,17 and O’Neill et al.13 in the framework of time-domain LES simulation.
For the solution of the Navier-Stokes equations in wave-number space, stochastic forcing has been studied

e.g. in the framework of Renormalization Group Theory (RNG, refer to Yakhot & Orszag,21,22 Smith &
Woodruff,23 Zhou,24 Lesieur25) and the Eddy Damped Quasi Normal Markovian (EDQNM) model (Orzag,26

Lesieur25) to maintain non-decaying homogeneous isotropic turbulence in the incompressible forced Navier-
Stokes equations.

One could conjecture that the resolution limits observed in datum scale resolving simulation is related
to a missing active forcing contribution that sustains turbulence even on coarse meshes where turbulence
producing scales otherwise are filtered away by a filter too coarse.

Active volume forcing may help also to overcome the gray area problem, as turbulence is continuously
forced over the simulation domain, i.e. no sudden transition from steady to scale resolving areas is present.

So far, backscatter simulations have been conducted for generic problems involving simple geometries.
Active backscatter simulations might benefit from the development of stochastic methods developed in the
framework of CAA to model turbulent sound sources of inhomogeneous and complex flows. They are useful
to extend the range of applicability of stochastic backscatter models towards more complex geometrical
problems of direct technical relevance.

As outlined in the subsequent sections, in this work the entire turbulent forcing function f̃i is modeled
by means of a relaxation source term (eddy-relaxation model27) that provides forcing and dissipation in a
combined model and not as separate features.
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III. Simulation Method

To capture subsonic sound generation, the sketched incompressible method it is extended to compressible
flow following the simulation approach as being used by Tam & Kurbatski28–30 for Direct Numerical Simu-
lation (DNS) simulation of subsonic cold-flow sound problems. Refer also to the discussion of this approach
in Ref.27 The subfilter forcing terms of the momentum equation are used as discussed for the incompressible
case. Those of the energy are omitted, restricting the approach to cold subsonic problems.

The equations are solved in perturbation form27 using a solution of the time-averaged Reynolds Averaged
Navier-Stokes equation as a background flow. The perturbation form does not change the forcing term as
discussed for the complete incompressible equations.

The present equation serves as a starting form. The extension to include backscatter forcing also in the
energy equation that removes the datum subsonic cold-flow restrictions will be tackled in some ongoing work.

The simulations are carried out with the Computational Aeroacoustics (CAA) code PIANO31 of DLR.
The Navier-Stokes equations are solved in disturbance form over a time-averaged background flow with non-
linear disturbance equations (NLDE) as prescribed in Ref.,27 with the stationary background flow obtained
from precursor Reynolds Averaged Navier-Stokes (RANS) simulation. PIANO is a parallelized structured
multi-block code utilizing the DRP scheme proposed by Tam & Webb.32 High wave-number spurious waves
are removed optional either using artificial damping32 or 6th order spatial filtering. Time integration is
performed with an explicit 4th order Runge-Kutta scheme. At up- and downstream boundaries a sponge
zone is applied to damp out turbulent fluctuations. At all other boundaries radiation conditions32 are applied.

A. Relaxation model for subfilter forcing

The entire subfilter forcing is modeled as a relaxation source term on the right-hand side of the momentum
equation utilizing the eddy-relaxation model27 in the form

f̃ = −∇×
[
σ
(
Ω̃
′
− Ω̃

ref
)]

= −∇×
(
σΩ̃
′)︸ ︷︷ ︸

=:fD

+∇×
(
σΩ̃

ref
)

︸ ︷︷ ︸
=:fF

, (10)

where the resolved fluctuating vorticity is indicated by

Ω̃
′

= ∇× ṽ′, or Ω′i = −εijk
∂v′k
∂xj

, (11)

and Ω̃
ref

denotes a a fluctuating vorticity forcing vector, which is generated with the Fast Random Particle
Mesh (FRPM) method,3–5 typically applied over almost the entire computational domain, refer to Fig. 2.
The stochastic realization generates spatially variable fluctuations based on locally prescribed convection
velocity, turbulence decay with specific local time scale, local length scale, and prescribed variance. The
time scale and the variance of the resolved vorticity fluctuations are derived from RANS one-point statistics.
The proper calibration is discussed in detail in Section IV.

In the relaxation model the parameter σ specifies how close target and actual solution are coupled. To
be precise, the correlation between resolved and forcing (target) vorticity is

Ω′iΩ
ref
i√

(Ω′i)
2

√(
Ωrefi

)2 →
{

0 for σ → 0

1 for σ →∞
(12)

1. Deterministic Mode

The size of the relaxation parameter σ defines the mode of operation in the simulation. A high value of the
relaxation parameter σ enforces close coupling of the resolved vorticity fluctuations to the forcing vorticity,
i.e. the vorticity fluctuations are entirely prescribed by the stochastic model. This simulation mode is
hereafter referred to as ’Deterministic Mode’. Since the relaxation source term is formulated as the curl
of a forcing function, fluctuations of the acoustic particle velocity are not modified by the source term, i.e.
acoustic propagation is not affected and the source region is transparent for acoustic waves, refer to the
discussion and results in Ref.27
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2. Forced Eddy Simulation

Small values of σ in conjunction with non-linear equations enable the direct resolution of turbulence dynamics
as being triggered by production mechanisms resolved on the CAA mesh. By replacing σ by a subfilter eddy
viscosity νR, term fD corresponds to the fluctuating part of the subgrid scale force ’Model 3’ studied by
Dantinne et al. for Large Eddy Simulation (LES),2 i.e.,

fDi → −εijk
∂

∂xj

(
νRΩ̃′k

)
. (13)

The stochastic forcing is limited in the highest realized wave-number, i.e. restricted to scales larger than a
cut-off length scale lc derived from the resolution of the numerical scheme as a multiple of the mesh resolution
∆, so that the forcing is not present for smaller scales below lc. Hence, for small-scale wave-numbers fFi → 0
and the entire eddy relaxation term realizes a subfilter-stress model that effectively provides the dissipation
of energy at small scales. The eddy relaxation term has been shown to provide an all-pass characteristic
with very steep cut-off up to the cut-off length scale lc.

27

Hence, using a subfilter eddy viscosity related to the mesh scale lc in conjunction with an adequate
forcing, one could assume that this as a meaningful ansatz for an active backscatter model. However, this
conjecture has to be substantiated further.

The detailed derivation of the subfilter eddy viscosity will be subject of Section IV. The discussion will
show that the relaxation model of the complete subfilter forcing indeed provides a consistent backscatter
model. The calibration procedure that defines the residual eddy viscosity as the effective relaxation parameter
could be understood as a way to define the level of correlation of the entire subfilter forcing term with resolved
quantities.

For a fine mesh a typical subfilter eddy viscosity tends to zero, i.e. σ = νR → 0 (all fluctuations resolved)
and the simulation procedure realizes a direct noise computation (DNC) based on the NLDE as governing
equations. For coarser grids the derived νR scaling provides a monotonic growth with increasing mesh spacing
towards a Deterministic Modes simulation. However, for very coarse meshes the subfilter scaling reverses
and provides νR → 0 for lc →∞, refer to the discussion in Section II.

B. Stochastic Forcing with FRPM

The ’Random Particle-Mesh Method’ (RPM) was introduced in 2005.33 FRPM was proposed in 20073 as an
improved numerical version with further increased efficiency. The main building blocks of FRPM consists of
the following two elements:

1. Creation of a solenoidal (divergence free) field of fluctuations by superposition of model vortices of
random strength and spatial shape (blob) function derived from Gaussian distribution; the vortices
advect in a prescribed non-uniform mean-flow field.

2. Efficient numerical realization of the superposition of vortices via random particles and efficient recur-
sive 1-D Gaussian filters applied on an auxiliary FRPM mesh (source patch).

Forcing fluctuations are realized by the superposition of P random particles,

fFi = εijk
∂

∂xj

P∑
p=1

G(x− xp, lc)Â(xp) r
n
pk. (14)

Here, fFi is the i-th component of the forcing at discrete time level n (dependence on n not explicitly
indicated). The resulting velocity field is divergence free (solenoidal). The summation with index p runs
over all random particles. The random particles are represented by their positions xp and carry 3 Gaussian
random variables rnpk per particle. Furthermore, p is the particle number, and k indicates the random
variables. Their random variates are generated from an Ornstein-Uhlenbeck process involving a time scale
τB , refer to the discussion in Ref.34

The particles are advected in a mean-flow, i.e. ẋp = v0. The particle seeding and distribution is realized
so that a constant particle density is obtained and maintained throughout each simulation.

The shape function G (x− x′, lc) is a Gaussian distribution with standard deviation proportional to the

mesh length scale lc. The function Â specifies the actual local variance realized by the fluctuations. It is
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Figure 2. Pressure fluctuations in an intersection plane normal to the spanwise direction through the jet
axis; A, Deterministic Mode simulation; B, Forced Eddy Simulation; the area where the forcing is applied is
indicated with a dashed box.

Â =

√
2Q̂/3πlc. More details about the scaling can be found in Refs. 4, 5. In this way an energy spectrum

of Gaussian shape and integral length scale lc is realized.
For the numerical evaluation of Eq. (14) a direct simple computation of the shape function in the particle

surroundings at xp is avoided due to its numerical inefficiency. Rather, the random variates of each particle
are projected via trilinear interpolation from the particle to an auxiliary background mesh (denoted as
’FRPM patch’) that defines the resolved source area. The Gaussian is evaluated on the source patch via
successive application of 1-D Gaussian filtering in each coordinate direction.5 The typical speed-up for the
evaluation of Eq. (14) yields 2 orders of magnitude compared to simple evaluation.

Furthermore, Gaussian filtering can be realized with optimized signal processing algorithms, e.g. those
proposed by Young & van Vliet35 (constant length scale) or that of Purser36–38 (variable length scale).
Application of the Young & van Vliet recursive Gaussian filter to the previous example yields a further
speed up reaching a three orders of magnitude saving in computational time compared to simple evaluation
of the sum.

The forcing-spectrum function F (κ), F̂ :=
〈(
fFi
)2〉

= 2
∫
F (κ)dκ created by the method reads

F (κ) =
4l5

3π3
F̂ κ4 exp

(
−κ

2l2c
π

)
. (15)

The scaling of F̂ and Q̂ will be discussed in the calibration section of this paper.
Hence, using FRPM to directly model fluctuating vorticity the major backscatter features as discussed

in the literature are realized:

� backscatter-spectrum with k4-slope for small wave-numbers (Leith 1990,19 Schumann 19956)

� divergence-free (solenoidal) forcing (Leith 1990,19 Mason & Thomson 1992,18 Schumann 19956)
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� spatial correlation length scale of forcing defined by local mesh resolution (Leith 1990,19 Schumann
19956)

� forcing defined in a Lagrangian frame (Marstorp et al. 2007,20 Schumann 19956)

Furthermore, the present forcing realizes a finite turbulent decay time-scale, which however, in the datum
simulations is based on the turbulent time scale and not on the eddy turnover time used by Schumann6 and
Marstorp et al.,20 and a spatially distributed forcing variance.

As pointed out by Weinbrecht & Mason, for a spatially variable backscatter variance, the curl operator
applied to a stochastic vector potential creates a contribution proportional to the gradient of the backscatter
variance. As found by Mason & Thomson, smoothing of the backscatter forcing variance with a 1 : 2 : 1 filter
is recommended. The FRPM method allows to apply the amplitude scaling Â before or after application of
the Gaussian filtering, i.e. essentially realizing Â(x) or Â(xp), respectively. The latter option is applied in
this work and effectively yields a smoothing of the forcing variance with a Gaussian related to the resolved
mesh length scale lc.

To comply with the forcing characteristics, the spatially variable subfilter eddy viscosity νR is also filtered
before usage with a Gaussian filter of length scale lc. This procedure is also indicated considering the subfilter
forcing Eq. (5), which must comprise subfilter features on the level of the filter scale applied.

IV. Backscatter Model Calibration

A. DHIT Calibration of Stochastic Backscatter Forcing

1. Problem description

The calibration of the backscatter model is conducted in a two-step approach based on DNS reference data of
Wray39 for Decaying Homogeneous Isotropic Turbulence (DHIT). The initial turbulence spectrum is specified
by an initial turbulence kinetic energy, dissipation rate, and spectrum peak level, respectively given by40

kt = 0.95m2/s2, E = 1.56m2/s3, κmax = 4.0. (16)

An initial turbulent length scale

Lf = cl
k
3/2
t

E
(17)

infers from turbulence kinetic energy and dissipation rate. For a von Kármán spectrum it is cl ≈ 0.54, which
yields Lf ≈ 0.3205m.

The goal is to capture a proper decay just up to a cut-off wave-number related to the proper resolution
limit of the numerical scheme applied. For example, for the DRP scheme of Tam & Webb32 used for
the present study, a meaningful resolution limit is given by a cut-off wave-number κc related to 5PPW
(Points-Per-Wave-length) mesh resolution, i.e. clearly above the mesh Nyquist wave-number κn of 2PPW.
A corresponding ratio κn/κc = 2.5 is considered for the present calibration.

The typical decay behavior involves a decay of the spectrum peak amplitude, accompanied by a successive
shift of the spectrum peak wave number to lower wave-numbers, refer to Fig. 4. Thick solid lines therein
indicate the DNS reference solution.

Typically, the turbulent kinetic energy that results from the integral of the turbulence spectrum over
wave-number exhibits a decay at power law t−n, n ' 1.15− 1.45, refer to Pope,12 Chp. 10.4.

The data is non-dimensionalized based on the speed of sound c0 as reference velocity, a reference length
scale Lref = 1m, and a reference time scale Tref = Lref/c0. Simulations are carried out on a cube with
non-dimensional edge length 2π. Hence, the non-dimensional mesh resolution is given by ∆ = 2π/N . From
the mesh spacing the non-dimensional Nyquist and cut-off wave-numbers deduce as κn = π/∆.

2. Calibration procedure

The decay simulations are conducted on three different meshes with resolutions N = 323, 643, and 1283 grid
points, respectively, Fig. 6. Hence, cut-off wave-numbers are given by κc = κn/2.5 = 6.4, 12.8, and 25.6,
respectively for each mesh.

In a first calibration step, an eddy-viscosity is defined applying no forcing. Figs. 4 and 5 show examples
from the calibration procedure based on 323 and 643 resolution, respectively. On the left, Figs. 4(a) and 4(b),
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(a) 323 mesh. (b) 643 mesh.

(c) 1283 mesh.

Figure 3. DHIT test solutions for different mesh resolutions; iso-contours of x-, y-, and z-vorticity shown;
colormap related to vorticity magnitude.

only ASD regularization for removal of spurious wave-modes is applied with damping constant σ = 0.005. It
is visible that an energy pile-up to higher frequencies results. However, the decay at lower wave-number is
captured, indicating transport of energy from small to large wave-numbers by the non-linear terms. Figs. 4(b)
and 5(b)show results using a best calibrated eddy-viscosity in the model Eq. (10) without forcing. Note,
results are shown adopting the non-dimensional time levels used by Wray based on a reference velocity

√
kt

instead of c0.
With an appropriate eddy-viscosity, a decay can be adjusted that captures the proper shift and decay of

the peak amplitude according to the DNS reference data. Furthermore, for wave-numbers below and in a
regime above the spectral maximum, the simulation follows the DNS characteristics very well, e.g. no energy
pile-up to higher wave-numbers is visible.

However, a typical behavior is observable, showing a successively earlier drop-off of the spectrum even
below the intended mesh cut-off wave-number (indicated as a thick vertical line in the plots Fig. 4) with
increasing time level, refer to the numerical solutions indicated by thin solid lines in the figures. Note, this
spectral gap is attributed to the lack of backscatter turbulence production.

Indeed, the specific shape of the forcing spectrum with an κ4 increase up to the intended cut-off wave-
number–refer to the discussion in IV.B–supports an additional turbulence production in the spectral gap
below the cut-off wave-number and thus would support enrichment of the spectrum up to the desired cut-off
wave-number.
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(a) No extra eddy viscosity applied. (b) Calibrated eddy viscosity model.

Figure 4. DHIT test on 323 mesh.

(a) No extra eddy viscosity applied. (b) Calibrated eddy viscosity model.

Figure 5. DHIT test on 643 mesh.

Therefore, in a second step after successful calibration of the residual stress model part, active forcing is
applied to further extend the range of the resolved turbulence spectrum.

With forcing applied, the intended cut-off wave-number eventually results from the forcing cut-off, i.e.
can be deliberately adjusted. The length scale of the Gaussian used for the datum forcing spectrum is fixed
to a length scale lc = 2πβ/κc. The factor β = 2/5 (i.e. lc = 2∆) accounts for the smooth roll-off of the
Gaussian forcing spectrum. With the chosen value the intended cut-off around κc/κn = 2.5 is obtained.

3. Calibration of residual eddy viscosity

The previously sketched calibration procedure is conducted for all three meshes. The calibration involves
three relevant physical parameters (i.e. kt, ε, and lc) and two physical units (m and s).

Consequently, on dimensional grounds the eddy viscosity must be given by a dimensional factor νt :=
cuk

2
t /E times a non dimensional scaling function of non-dimensional parameter lc/Lf , with Lf as defined by
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Eq. (17). As indicated, the dimensional factor corresponds to the RANS eddy viscosity νt using a parameter
cµ ≈ 0.09. Thus, the residual eddy viscosity must be given by the relationship

νR = νt × gν
(
lc
Lf

) [
m2

s4

]
. (18)

For the present calibration study, all spectra are located in the inertial sub range, so that a power law is
assumed for the unknown scaling function.

For a spectrum with −5/3 roll-off, the exponent can be derived as m = 4/3, refer e.g. to the discussion
in Pope,12 Chp. 13.4. Thus, the residual eddy viscosity is assumed to be described by a scaling law

νR = β5νt

(
lc
Lf

)m
= β6νt

(
κc
κmax

)−m
. (19)

The second of the above expressions is suitable for the present calibrations where ratios κc/κmax are given,
refer to the previous discussion.

In an application using a steady RANS background flow to derive the residual stresses, the first expression
would be more suitable since RANS provides values for Lf and νt, and lc is the resolution related to the
CAA mesh used.

The constant β6 follows from the present calibration. According to the previously given parameters, the
two calibrations constants are related via

β5 = β6

(
5

4πβ2

)m
. (20)

The parameter β2 defines the relationship between integral length scale and peak wave-number of the tur-
bulent spectrum, Lf = β2 · κ−1max. For a von Kármán spectrum it is β2 = 1.339b. Eventually, this yields
β5 = 0.1983β6 for the parameter suitable for application with RANS background mean-flow data.

With the theoretical motivated exponent m = 4/3 a meaningful calibration could be achieved for different
mesh resolutions, refer to the results shown in Fig. 3. The constant β6νt are given in Tab. 1. From initial
values Eq. (16) a dimensional initial turbulent viscosity infers as ν∗t = 0.05207m2/s. Based on the values
shown in Tab. 1 the constants infer as

β6 = 0.961, and β5 = 0.191. (21)

4. Calibration of stochastic forcing

Next the calibration of forcing term fF in Eq. (10) is considered. A similar calibration procedure as discussed
for the eddy viscosity before can be applied to fix the forcing variance

F̂ :=
(
fFi
)2
. (22)

The forcing in the eddy relaxation model Eq. (10) is obtained by taking the curl of a vector potential
q := νRΩref , i.e,.

fF = ∇× q, or fFi = εijk
∂qk
∂xj

.

The vector potential is defined by absorbing the eddy viscosity in the reference forcing vorticity. Effectively,
it is the vector potential that is generated with FRPM based on mutually uncorrelated vector components.
The final task therefore is the proper definition of the source variance

Q̂ :=
〈
q2i
〉

(23)

bThis implies for the Wray spectrum with κmax = 4.0 a length scale Lf = 0.33475, i.e. a value slightly above the value
as provided by Eq. (17). The difference might be attributed to uncertainties related to the derivation of kt, E and differences
between assumed and real shapes of the turbulence spectrum. However, the difference is less than 5%, i.e. perhaps of well
bearable magnitude.
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(a) 323 mesh. (b) 643 mesh.

(c) 1283 mesh.

Figure 6. DHIT simulation with stochastic forcing applied.

to accomplish a specific desired forcing variance F̂ . From an independent calibration of the subfilter eddy
viscosity νR and the source variance Q̂, an effective forcing vorticity variance derives via(

Ωrefi

)2
=

Q̂

ν2R
. (24)

If the result agrees with the variance as expected for the reference vorticity, this provides a consistency check
that substantiates the relaxation source model based backscatter ansatz Eq. (10) with common relaxation
parameter νR.

The forcing variance can be expressed in terms of an appropriate dimensional scaling parameter times a
non-dimensional scaling function of a non-dimensional characteristic number of all relevant variables involved,
i.e. kt, E , and lc. Consequently, the forcing variance reads

F̂ =
k2t
L2
f

× gF
(
lc
Lf

) [
m2

s4

]
, (25)

where gF

(
lc
Lf

)
is a scaling function yet to be specified. Remind, the length scale Lf , Eq. (17), is entirely
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prescribed by the variables of the problem.
Similar to the residual eddy viscosity, in the inertial subrange it might be possible to assume the scaling

function to be defined by a power law, thus

gF

(
lc
Lf

)
lc�Lf−→

(
lc
Lf

)−r
∝ κrc , and F̂ ∝ κrc . (26)

As an additional parameter of the stochastic forcing a decay time scale τB has to be specified, refer to the
brief outline given in III.B for the Fast Random Particle-Mesh Method (FRPM) as applied in this work. To
be precise, τB is the integral time scale related to the time-correlations 〈qi(x, t)qi(x, t+ τ)〉 of the source
vector q(x, t) in point x. The source variance needed to obtain a specific forcing variance will be further
outlined in the next paragraph.

The forcing has been tested with different fixed and variable time scales, i.e. using

τB |N = τB |64
(
κc|64
κc|N

)p
, (27)

where the additional sub script indicates the number of points involved, i.e. the time scale is calibrated for
the case N = 64 and calibrated for the other mesh cases according to a cut-off wave-number based power
law.

The time scale for the 643 mesh can be related to the turbulent time scale kt/E via

τB = cτ
kt
E
. (28)

For p = 0 the time scale is independent from the mesh resolution, otherwise cτ is a function of the mesh
resolution.

Note, the forcing variance does not represent the actual backscatter variance that indicates the turbulence
production achieved by the forcing term, i.e. the essential quantity accomplished by the forcing.

Rather, the turbulence production achieved by the forcing follows by recasting the momentum equation
of resolved velocity fluctuations with applied forcing

∂ṽ′i
∂t

+ · · ·︸ ︷︷ ︸
Ni

= f̃i (29)

into the corresponding governing equation for turbulent kinetic energy. The transport equation for the
resolved turbulent kinetic energy kt =

〈
(ṽ′i)

2
〉
/2 derives by multiplying the momentum equation with ṽ′i

and subsequent ensemble averaging of the resulting equation, i.e. from the term-by-term evaluation of

〈ṽ′iNi〉 =
〈
ṽ′if̃i

〉
. Consequently, the backscatter variance follows from

B̂ :=
〈
f̃iṽi

′
〉
. (30)

As discussed by O’Neill et al.,13 Weinbrecht & Mason,17 Schuman,6 and Mason & Thomson,18 for a forcing
correlated over time scale τB , the velocity built-up due to a fixed forcing over limited time τB can be
estimated as δṽi

′ ∝ τB f̃i. As all other velocity fluctuations are uncorrelated to the forcing, this yields〈
f̃iṽi

′
〉
' 1/2

〈
f̃iδṽi

′
〉

. Upon inserting the estimate of δṽi
′ one arrives at

〈
f̃iṽi

′
〉
∝ τB

〈
f̃if̃i

〉
.

Test with different forcing parameters applied indicate that B̂ ∝ F̂ τB is satisfied for a large range of time
scales related to parameters cτ < 1. Thus, a good calibration could be found for different parameter values
provided the product F̂ τB remains invariant.

Based on power law parameters r and p and using B̂ ∝ F̂ τB , the backscatter variance infers to scale with
an effective power law

B̂ ∝ κqc , with q = r + p. (31)
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5. Source variance

The relationship between F̂ and Q̂ can be found following the discussion outlined in Ref.4 to derive fluctuating
velocity v′ of variance kt = 1/2

〈
v2i
〉

from the curl of a stochastic vector potential ψi of variance R̂ = 1/3
〈
ψ2
i

〉
,

vi = εijk∂ψk/∂xi (adopting the notations of the paper). Making the replacements 1/3Q̂→ R̂ and 1/2F̂ → kt
and using Eq. (21) of Ref.,4 one arrives at

kt =
3π

2l2s
R̂ ⇒ Q̂ =

l2c
π
F̂ . (32)

The quality ls indicates the integral length scale realized for the velocity fluctuations. It is replaced by the
cut-off length scale lc here. Eq. (32) implies

Q̂ ∝ κmc , (33)

with m = r − 2.

6. Main results of forcing calibration

Results for the forcing calibration are summarized in Tabs. 1 and 2 using the residual eddy viscosity derived
from the precursor tests without forcing based on a power law with n = −4/3. For Tab. 2 a constant non
dimensional time scale τB = 45 is used, which corresponds to a constant value of cτ = 0.217 and time scaling
exponent p = 0. For Tab. 1 the same cτ has been used for 643 resolution together with a scaling exponent
p = −2/3. The source variance is chosen for all three case such that a best possible calibration is achieved.

The effectively used initial source variance is varied over simulation time applying a decay law Q̂ exp(−t/td)
with td = 150 to take into account that the forcing contribution effectively also decays over time. Hence, the
scaling power m is the numerical result of the calibration procedure.

From the powers n, m, and p the effective scaling of the forcing and backscatter variance are derived
according to the previous discussion and as indicated in the tables.

As the main result, the backscatter power derives independent of the chosen time decay law as q =
1.00 . . . 1.33. However, the choice of the time decay power has an influence on the forcing power r so that
q = r + p remain invariant, a results that confirms the theoretical relationship B̂ ∝ F̂ τB .

The evaluation of the subfilter forcing variance reported in the next paragraph reveals an inertial range
scaling of the variance with power r = 1.0 for a Liepmann spectrum with −2 inertial decay and r ' 1.33
for −5/3 decay. This agrees with the scaling found in Tab. 2 and implies r = 0.0. That is, a time scale
defined by Eq. (28) with a mesh independent scaling parameter cτ . This time scale τB ∝ Lf/

√
kt differs

from backscatter time scales inferred from an eddy turnover time scale assumed in other work as the relevant
backscatter scale,6 which implies r 6= 0.

However, in the application reported a RANS derived time scale (r = 0) has been used with cτ =
0.02 . . . 0.2.

Taking the values from Tab. 2 and using the turbulence scales of the DHIT test case, the source variance
calibration is deduced as

Q̂ = γ1k
2
t

(
lc
Lf

)
(34)

with calibration constant
γ1 = 0.0133[−].

This value is valid for cτ = 0.217.

7. General remark

The calibration procedure that defines the residual eddy viscosity as the effective relaxation parameter could
be understood as a way to effectively define the level of correlation of the entire subfilter forcing term with
resolved quantities.

Recall, a subfilter model entirely defined by resolved quantities implies correlation 1.0 between subfilter
forcing and resolved scales. However, for DNS simulation a typical correlation between residual stresses and
strain rates between 0.16 and 0.5 is reported.6

Furthermore, its worth to note that the forcing source variance Q̂ = q2i as derived by the previously
discussed calibration procedure in the inertial subrange regime is consistent with the variance that can be
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Table 1. Calibration parameters obtained for different mesh resolutions, time scale depends of κc (p = −2/3).

mesh κc|N/κc|64 105νR 104Q̂/ν2
R 1013Q̂ τB n m p r = m+ 2 q = r + p

N3 [-] [-] [-] [-] [-] νR ∝ κnc Q̂ ∝ κmc τB ∝ κpc F̂ ∝ κrc B̂ ∝ κqc
323 0.5 7.87 1.12 6.94 71.43

-1.33 -0.33 -0.67 1.67 1.00
643 1 3.12 5.65 5.50 45.00

-1.33 0.00 -0.67 2.00 1.33
1283 2 1.24 35.6 5.47 28.34

Table 2. Calibration parameters for different mesh resolutions; time scale independent of κc (p = 0).

mesh κc|N/κc|64 105νR 104Q̂/ν2
R 1013Q̂ τB n m p r = m+ 2 q = r + p

N3 [-] [-] [-] [-] [-] νR ∝ κnc Q̂ ∝ κmc τB ∝ κpc F̂ ∝ κrc B̂ ∝ κqc
323 0.5 7.87 1.78 11.00 45.00

-1.33 -1.00 0.00 1.00 1.00
643 1 3.12 5.65 5.50 45.00

-1.33 -0.67 0.00 1.33 1.33
1283 2 1.24 22.48 3.46 45.00

directly derived from the relaxation source term fF of Eq. (10). Comparison of the forcing term with the

eddy relaxation term implies fFi = εijk∂
(
νRΩrefk

)
/∂xj = εijk∂qk/∂xj . Hence,

Q̂ = ν2Rζ, (35)

where ζ :=
(

Ωrefi

)2
defines the enstrophy. A physically motivated model for the resolved enstrophy was e.g.

derived and discussed in Ref.,34,41,42 yielding

ζ = cζ
kt
l2c

= cζ
kt
L2
f

(
Lf
lc

)2

∝ cζ
c2l

E2

k2t
κ2c . (36)

With the power-law scaling found from the calibration of the residual eddy viscosity, νR ∝ k2t /Eκ
−4/3
c , it

follows
Q̂ ∝ ν2Rζ ∝ k2t κ−2/3c . (37)

This yields a forcing

F̂ ∝ k2t
L2
f

κ4/3c . (38)

Both results for forcing and source variance are in agreement with the source scaling independently found
from the calibration in the previous section.

On the contrary, from theoretical reasoning and evaluations with synthetic turbulence a scaling function
is derived in this paper that for a homogeneous isotropic spectrum is also valid over the entire range of
wave-numbers,

Q̂ ∝ k2t
(
lc
Lf

)2

gF

(
lc
Lf

)
. (39)

Thus, using Eqs. (35) and (36) a model for νR can be derived for the entire wave-number range,

νR =

√
Q̂

ζ
∝ νt

(
lc
Lf

)2
√
g

(
lc
Lf

)
︸ ︷︷ ︸

gν

. (40)
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This defines the scaling function gν , Eq. (18). The missing calibration constant can be found by matching
the function in the asymptotic regime to the values found by calibration.

B. Backscatter Characteristics from Synthetic Turbulence

1. Evaluation of the forcing-spectrum function

(a) Low-pass filtered resolved part vi. (b) High-pass filtered subfilter part vi
′.

(c) Non-filtered field vi.

Figure 7. Synthetic turbulence fluctuations generated for the analysis of the subfilter forcing term and filtered
contribution using a sharp spectral filter; shown are iso-contours of z-velocity; colormap related to vorticity
magnitude.

The characteristics of the subfilter forcing function Eq. (5) has been further studied using synthetic tur-
bulence to generate homogeneous isotropic turbulence spectra. The study aims to derive in a first step major
characteristics to be realized by the stochastic backscatter forcing model eventually used in applications.

To be precise, the goal is not to model the sub-filter velocities to compute the subfilter forcing function
in a real application, which would introduce the stringent resolution requirements for the modeling of the
residual scales. Rather, the intention is to derive scaling laws and the characteristic shape of the resulting
forcing function that is restricted to the resolved regime. A model for it will introduce no more stringent
mesh resolution requirements than those imposed by the resolution of the resolved scales.

For this initial scaling study, the spectra have been generated by filtering a stochastic white-noise field
with a specific designed spatial filter that enables the generation of different generic turbulence spectra,
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adjustable in terms of turbulent length scales Lf and the power laws in the inertial subrange and below the
spectrum maximum. For the present study spectra with asymptotic κ4 increase for κ→ 0 and a roll-off with
κ−2 (Liepmann spectrum), κ−5/3 (von Kármán spectrum), and κ−1.1 have been studied.

Figure 8. Energy-spectrum function with sharp spec-
tral low- and high-pass filtered contributions and related
forcing-spectrum function.

Two different mesh resolutions, 1283 and 2563

of non-dimension edge length 2π have been con-
sidered. Fig. 7 shows a snapshot of the generated
fields on a 1283 mesh. Depicted are the unfil-
tered field vi and the related resolved and subfil-
ter fields ṽi and v′i, respectively. A sharp spectral
filter with adjustable cut-off wave-number is ap-
plied. From the synthetically generated velocity
fluctuations the energy-spectrum function E(κ) is
evaluated. A typical outcome of the spectral anal-
ysis is shown in Fig. 8 for a von Kármán spectrum
with decay ∝ κ−5/3. Note, the spectrum exhibits
a final roll-off due to the final mesh resolution in-
volved.

High- and low-pass filtered spectra are also
shown in the plot. The cut-off wave number is
indicated by the vertical line. Eventually, the
explicitly derived resolved and subfilter velocities
are used to compute the subfilter forcing function
Eq. (5). The procedure provides a vector f̃ that
is processed similarly to the velocity vector, thus

providing the subfilter forcing-spectrum function F (κ).
Note, as the subfilter forcing function for real turbulence is partly correlated with the resolved quantities.

Hence, its computation from synthetic turbulence does not represent the uncorrelated stochastic part of the
subfilter forcing alone, i.e. f̃Fi in Eq. (9).

However, in this work the forcing is applied in the framework of a relaxation model, thus fFi is deemed
to be represented by the complete subfilter forcing-spectrum function. The final levels of correlation with
the left-hand side results from the magnitude of the calibrated relaxation parameter.

The forcing-spectrum function reveals a characteristic shape as discussed in the literature, i.e., an increase
with k4-slope for all wave-numbers up to the cut-off wave-number (Leith 1990,19 Schumann 19956), refer to
Fig. 8. This spectral shape can be found over a wide range of cut-off wave-numbers. This shape, furthermore,
is also found for other turbulence spectra with different inertial subrange decay powers. Usage of a cut-off
filter with finite slope also effects the shape of the forcing-spectrum roll-off but not the κ4-branch. With the
applied stochastic FRPM method a pretty good approximation to this generic shape can be accomplished.

2. Scaling of the forcing-spectrum function

The evaluation of characteristics of the subfilter forcing from synthetic turbulence can be further used to

study the scaling of the forcing variance F̂ =
〈(
fFi
)2〉

over different cut-off wave-numbers κc. Fig. 9 presents

a set of forcing spectra F (κ) that results from the variation of the cut-off wave-number. Spectra in red are
related to the entire subfilter forcing as defined by Eq. (5), spectra in blue present the spectra of the subfilter

Reynolds stresses ∂
∂xi

(
v′iv
′
j

)
alone. It can be seen that for higher wave-number the subfilter forcing spectrum

is dominated from contributions coming from terms ∂
∂xi

(
ṽiv′j + v′ivj

)
.

Furthermore, a common envelope of all forcing-spectrum functions is apparent, indicated for both sets
by black dashed lines. The integral of the forcing-spectrum function gives its variance,

F̂ = 2

∫
F (κ)dκ. (41)

The scaling of the forcing with respect to the cut-off wave-number F̂ (κc) can be found by according integrat-
ing of the forcing-spectrum function related to cut-off wave-number κc. The result of numerical integration
of the spectra is shown in Fig. 10. The evaluation has been conducted using Liepmann spectra with κ−2

decay.
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Figure 9. Evaluation of the subfilter forcing spectrum for different cut-off wave-numbers; blue, forcing-
spectrum function from subfilter Reynolds stresses; red, complete forcing-spectrum function; the data sets
reveal a common envelope indicated by the dashed lines.

Figure 10. Evaluation of the forcing variance with respect to cut-off wave-number from synthetic turbulence
from the integration of numerical evaluated forcing-spectrum functions for 3 different turbulent length scales
Lf = 0.1, 0.2, and 0.385 and comparison with theory.

Three different integral length scales of the underlying turbulence spectrum are considered, viz, Lf = 0.1,
0.2, 0.385. The plot reveals three distinct areas, i.e. an initial increase with slope κ5c , followed by a region
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with κ1c increase and a final roll-off (colored solid lines). The roll-off is attributed to the limited upper
resolution of the generated turbulence spectra. Approximative de-filtering with an inverse Gaussian, shown
as colored dashed lines in the plot, reveals a longer coincidence of the curves with an asymptotic κ1c law.

Also shown in the plot are results of a theoretical backscatter variance scaling function derived from
Canonical Modeling theory.34 The theoretical backscatter scaling is derived as

B̂(λc) = b1E gB (λc) (42)

with λc := lc/Lf , b1 ' 0.70 and an analytical given backscatter scaling function

gB (λc) = λ−5c

{
1− exp

(
−
[

5λc
2π

]2)(
1 +

[
5λc
2π

]2)}
. (43)

Details of its derivation are beyond the scope of this paper and will be reported elsewhere. The argument
of the backscatter scaling function depends on the mesh length scale parameter lc = π/κc. The numerical
evaluations reveals the forcing scaling function gF as defined by Eq. (25). A very good agreement with gB
is observed, which implies direct proportionality,

gB(λc) ∝ gF (λc), (44)

provided the analytically derived backscatter scaling is substantiated.
Recall, the asymptotic power-law obtained from synthetic turbulence with an increase with r ' 1.0 . . . 1.33

in conjunction with the results from the calibration procedure implies a time scale

τB ∝
Lf√
kt

(
lc
Lf

)−p
(45)

with p = 0, refer to the final calibration discussion. Based on the relation B̂ = F̂ τB derived from the
calibration procedure and implied by theoretical reasoning, the agreement of backscatter and forcing scaling
function follows inevitably for p = 0:

gB

(
lc
Lf

)
= gF

(
lc
Lf

)
×
(
lc
Lf

)−p
p=0→ gF

(
lc
Lf

)
. (46)

Anyway, the analytical scaling function is very suitable to model the general shape of the forcing variance
function, refer to Fig. 11. There, the forcing function variance has been evaluated using integral length scales
in the range Lf = 0.05 to Lf = 1.0 and constant turbulent kinetic energy in the synthetic turbulence realiza-
tion. The scaling law Eq. (25) implies collapse of all curves if the forcing variance is non-dimensionalized with
L2
f/k

2
t and plotted over non-dimensional wave-number Lfκc. This is confirmed by the simulations. Because

of the limited resolution range obtained with synthetic turbulence, the resolved range differs and, particular,
the drop-off of the scaling function from the asymptotic value indicated by the analytical function occurs at
different wave-numbers. In (a) the result with 1283 resolution are shown. In (b) for 2563 resolution. It is
visible that the drop-off occurs at higher wave-numbers for the better resolution.

Note, the analytical scaling function as well as the evaluation shown from synthetic turbulence are based
on model spectra with n = −2 decay. Analytical scaling functions can be derived for other powers as well.
Fig. 12(a) shows analytical scaling functions for n = −2 and n = −1. Use of a decreased inertial subrange
slope causes an increase of the asymptotic power r, following a law m = 3 + n. For n = −5/3 the power is
m = 4/3, i.e. renders the value of r as found in the calibration. Note, the increase at low wave-numbers with
κ5c is always conserved. The figure also shows a scaling function gB as suggested by Mason & Thomson,18

which reveals a similar increase with κ5c at low wave numbers but with zero asymptotic slope.
Note, the analytical scaling function does not include the roll-off of the turbulence spectrum around the

Kolmogorov wave-number. This would show up as the behavior indicated by the dashed lines in the diagram,
similar to the late behavior seen in the numerical experiment but being caused by physical not numerical
reasons.

An increasing forcing function up to the Kolmogorov scale implies significant relevance of backscatter
for scale resolving simulation based on truncated scales. The effect of a scale-similar forcing spectrum with
a forcing variance increasing with power one is sketched in Fig. 12(b), which implies a constant value of
the spectrum maximum. For a specific wave-number κ in the resolved regime this implies reduction of the
forcing with increasing cut-off wave-number.
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(a) 1283 mesh. (b) 2563 mesh.

Figure 11. Self similarity of the results from synthetic turbulence for turbulent length scales in the range
Lf = 0.05 . . . 1.0 and comparison with theoretical scaling function.

(a) Theoretical scaling functions. (b) Self similar backscatter spectra.

Figure 12. Left, theoretical scaling functions for n = −2 and n = −1 inertial subrange decay and scaling function
proposed in literature; right, effect of grid refinement κc2 > κc1 on forcing at wave number κ.

C. Concluding remarks

To summarize, the results from DHIT calibration, synthetic turbulence analysis, and theory provide an overall
consistent agreement. Fig. 13 depicts the numerical and theoretical derived scaling functions together with
3 data points from forcing calibration, that highlights the general agreement. Finally, the independent
calibration of forcing variance and eddy viscosity confirmed validity of the relaxation model ansatz Eq. (10)
as a meaningful backscatter model.
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Figure 13. Comparison of numerical and theoretical derived forcing scaling functions with 3 data points from
DHIT calibration (squares).

V. Simulation Results

As a first application problem, a generic problem is studied that has been defined in the framework
of the EU project JERONIMO. Simulations have been conducted with the above described approach in
deterministic (DM) and forced (FES) mode. The configuration consists of a single stream jet (SSJ) in
combination with a rectangular unswept wing and NACA0012 wing sections. The nozzle exit Mach number
is Mj = 0.6 at otherwise static conditions. The NACA0012 airfoil is located parallel to the jet axis at zero
degree angle of attack.

The chord length spans four nozzle diameters. The wing trailing edge (TE) is located one nozzle diameter
vertically above the jet axis (H/Dj = 1) and has an axial displacement of L/Dj = 4 from the nozzle exit
plane center. A more detailed description of this setup can also be found in Cavalieri et al.9

The RANS simulation of the SSJ-NACA0012 wing case is computed with the CFD solver TAU of DLR
using a Spalart-Allmares turbulence model. Results of the distributions of Mach number, turbulence kinetic
energy, and source variance Q̂ as defined by Eq. (34) are plotted in Fig. 14.

It can be observed in this plot, that the small vertical separation between jet and wing of ∆Y = 1Dj

results in a grazing jet flow along the bottom part of the NACA0012 airfoil.
In order to compute the source variance Q̂, Bradshaw’s hypothesis was applied to obtain the turbulence

kinetic energy kt and the dissipation rate ω. Firstly, the shear rate parameter is computed with

S∗ =

√
2S̃ijS̃ij , (47)

where the shear rate tensor is given by

S̃ij =
1

2

(
∂ũi
∂xj

+
∂ũj
∂xi

)
− 1

3

∂ũk
∂xk

δij . (48)

With the obtained shear rate parameter and given eddy viscosity νt from RANS, the turbulence kinetic
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(a) Mach number distribution.

(b) Turbulence kinetic energy.

(c) Source variance distribution Q̂.

Figure 14. RANS results for the configuration with single stream jet and NACA0012 wing in the symmetry
plane of the jet at spanwise coordinate Z/Dj = 0.

energy (TKE) and dissipation rate are modeled by

kt =
νtS
∗

√
cµ

and ω =
kt
νt
. (49)

Eventually, turbulent length and times scales are computed from Lf = cl/cµ
√
kt/ω and τB = cτ/cµω

−1,
with cτ ' 0.02. The grid resolution is derived from ∆ = ∆x for the first simulation problem. The grid
cut-off length scale is defined by lc = 2∆. The resulting distribution of turbulence kinetic energy is shown
in Fig. 14(b). Using Lf , lc, and kt, evaluation of Eq. (34) provides the distribution as shown in Fig. 14(c).

The above described RANS solution is used subsequently for simulations in deterministic (DM) and
forced mode (FES).

For the CAA simulations a CAA mesh is designed based on an H-C topology with 576 grid blocks, which
spans a spatial domain in vertical and spanwise direction between −10 < Y/Dj < 11 and −10 < Z/Dj < 10
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Figure 15. Top-, side- and front-view of the pressure field from FES for a single stream jet in ambient medium
(Mj = 0.6, M∞ = 0.0, jet nozzle diameter Dj = 0.05m) installed at a rectangular wing (trailing edge position
H/Dj = 1, L/Dj = 4); microphone positions indicated correspond in color with the spectra shown in Fig. 16.

with the jet axis located in the center of the computational domain. In axial direction, the CAA domain
resolved a domain of −2.6 < X/Dj < 36 extension. Sponge layers are defined close to the inflow and outflow
regions, reducing the effective CAA domain to 0 < X/Dj < 30. The total number of mesh points of this
CAA mesh is 86 Mio.

The same mesh is applied in both CAA computations utilizing two different relaxation parameters, viz
σ = 0.01 in the first computation with and σ = 10−4 in the second simulation. The value corresponds in
magnitude to that derived for the eddy viscosity νR, Eq. (19) in the initial jet region, where values 0.5 · 10−4

to 2 ·10−4 are obtained. A constant parameter of same magnitude has been used for the initial test reported
here. Simulations with spatial distribution could not be finished in due time and will be reported in ongoing
work.

The computational time of this configuration was between 3-7 days with 312 CPUs depending on the
time sample length. For the evaluation of spectra, 8 microphone circles are defined at incremental polar
angle steps of ∆θ = 10◦ between θ = 20 and θ = 90◦. On each circle, 72 microphones with a distance of
R/Dj = 7.15 to the jet axis are distributed equidistantly as depicted in Fig. 1(a).

Fig. 15 is showing the resulting distribution of sound pressure fluctuations for the computation in forced
mode, i.e. with relaxation parameter σ = 10−4. The top part of the figure presents the X − Z-plane at
Y/Dj = 1, which included the NACA0012 trailing edge, and at Y/Dj = −7, which is a position below the
jet at a distance approximately corresponding to the sample microphone positions. The bottom left part of
this figure is showing a X − Y -plane at Z/Dj = 0, i.e. the symmetry plane of the jet flow, and the bottom
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(a) CAA, Deterministic Mode (DM), polar angle θ = 90◦. (b) CAA, Deterministic Mode (DM), polar angle θ = 40◦.

(c) CAA, Forced Eddy Simulation (FES), polar angle θ = 90◦. (d) CAA, Forced Eddy Simulation (FES), polar angle θ = 40◦.

Figure 16. Sound pressure level spectra from single stream jet in ambient medium (Mj = 0.6, M∞ = 0.0, jet
nozzle diameter Dj = 0.05m) installed at a rectangular wing (trailing edge position H/Dj = 1, L/Dj = 4); solid
lines: CAA simulation with NACA0012 wing section; symbols, measurement for flat plate wing section;9 three
different azimuthal angles (blue: ϕ = 80◦, above wing; black: 180◦, spanwise direction; red: 260◦, below wing);
polar angle θ = 90◦.

right part the Y − Z-plane at Z/Dj = 3, i.e. a plane cutting the NACA0012 airfoil close before the trailing
edge. Six different microphone positions–hereafter used for spectral evaluation–are also illustrated as red,
blue and black dots representing the positions at polar angles θ = 40◦, 90◦ and φ = 80◦, 180◦, 260◦. The plots
indicate a strong noise source that causes radiation of circular waves from the trailing edge. This radiation
directivity is typically observed for a trailing edge noise source.

The spectra of indicated microphone positions are evaluated in Fig 16 as narrow band spectra for de-
terministic and forced case. The spectra from Deterministic Mode simulation is plotted in the top row and
with Forced Eddy Simulation in the bottom row. For the evaluation of computed spectra the measurements,
which are described by Cavalieri et al.9 for a flat plat wing with same trailing edge position and jet Mach
number are used as reference. The measurement as included in these plots (measurement of University of
Poitiers, S. Piantanida43) is representing the same configuration of a single stream jet with exit Mach number
of Maj = 0.6 and a NACA0012 wing.
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As advocated by Cavalieri et al.,9 the low-frequency hump with its maximum around St ≈ 0.2 in this
setup can be attributed to the interaction of coherent jet structures with the wing trailing edge. Also the
CAA results of these computations as shown in the comparison of Fig. 16 are supporting this explanation
for the low frequency noise contribution from coherent jet flow structures. Since the forcing parameter in
deterministic computation is chosen as a relatively high value, the vortical fluctuation from stochastical
modeling are prescribed directly without to resolve larger vortices. Consequently, the jet flow instabilities
are not developing for this type of simulation and no low frequency hump is observed in Fig. 16(top) for
this case. Otherwise for the forced mode in Fig. 16(bottom), which allows the development of all large
scale dynamics including the hydrodynamic instability of the jet flow. In this case, the resolved coherent
structures are interacting with the wing trailing edge and result in low frequency contribution that leads to
the spectral hump. The comparison of computation in forced mode in Fig. 16(bottom) shows indeed a better
agreement in the low frequency range and thus is indicating that the hydrodynamic instability as expected
from the measurement is numerically well reproduced.

Furthermore, the Forced Eddy Simulation approach is applied to a more complex configuration (refer
to Fig. 1(b),(c)). As the applications discussed in the literature mainly are focused on generic problems
such as decaying isotropic turbulence and turbulent channel flows, to the authors knowledge the following
simulation presents the most complex case accomplished with an active backscatter model up to date. This
constellation consists of an ultra high bypass ratio (UHBR) nozzle (Dj = 0.16m in model scale), which is
installed below a high-lift wing with deployed flap and slat (F16 geometry) within the wind tunnel co-flow.
The flow conditions are describing the situation at flight approach as defined in the framework of the German
national project POWER25.

The RANS solution for this configuration is solved with a two-equation turbulence model (Menter-SST),
which provides directly all required quantities for the stochastic modeling. The resolved CAA domain is
comprising the entire section of measurement of the AWBc wind tunnel. The spatial extensions of the CAA
domain are in axial direction 0m < X < 3.5m, in spanwise direction −0.4m < y < 0.4m and in vertical
direction −1.8m < z < 0.5m. The box-shaped computational domain is rotated around the y-axis at the
nozzle exit to follow the deflection of the jet flow by the wing. The CAA mesh consist of 186 grid blocks with
in total 12 Mio. grid points which allows a frequency resolution of around fmax ≈ 7kHz. For this problem,

the grid lenght scale is computed from ∆ = (∆x∆y∆z)
1/3

.
Fig. 17(a),(b) and (c) is illustrates flow structures based on the resulting Q-criterion, which demonstrate

the development of large vortical structures as visible for instance in the middle part of jet flow from the
view above in Fig. 17(c) The stochastic backscatter region is defined by spatial extension of FRPM patch,
which was limited here only to jet flow whereas the shear-layer of windtunnel nozzle is excluded. Thus, only
the vortical fluctuations of the UHBR nozzle are visible in these plots. A complete suppression of windtunnel
shear-layer fluctuations was however not possible, which are partly visible close to the AWB-nozzle and at
the end section of the UHBR jet flow.

The plotted 1/3-octave band spectra of Fig. 17(d) are evaluated for a microphone position below the wing
trailing edge at around 5 nozzle diameters distance. The solid red line spectrum represents FES results. The
other both spectra are obtained from 2-D CAA computations, whereat the spectrum with the peak at lower
frequencies (black symbols) represents a 2-D CAA computation with a jet mixing noise source model and
the other (red symbols) the computation with an airframe source model. As can be readily seen, if both 2-D
spectra are combined, the total contribution as found in the FES simulation is obtained. Herein, the lower
frequency position of the jet noise spectrum can be explained with a large diameter of UHBR nozzle. On the
other hand, the airframe noise contributes mainly at high frequencies, which even exceeds the SPL values
of jet noise contribution. The simulations are conducted for approach flight condition with a relatively low
nozzle exit Mach number.

VI. Summary and Conclusions

A stochastic backscatter model has been introduced that is based on an eddy-relaxation source term
that provides a combined model for forcing and dissipation. The relaxation parameter defines the amount
of correlation of the subfilter forcing with resolved quantities. Its proper calibration is achieved using
decaying homogeneous isotropic turbulence (DHIT). Furthermore, characteristics of the backscatter forcing
are analyzed from synthetic turbulence data.

cAcoustic Windtunnel Braunschweig
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The results from DHIT calibration, synthetic turbulence analysis, and theory provide an overall consistent
agreement. The result imply that an appropriate backscatter time scale is proportional to the turbulent
time scale albeit with a constant smaller than one, but not to an eddy turnover time scale. From synthetic
turbulence a scaling of the backscatter forcing variance is found in the inertial subrange that increases with
power 1.0 . . . 1.33. A theoretical scaling function is introduced that very well matches the trends found from
numerical experiment.

Finally, the independent calibration of forcing variance and eddy viscosity confirms the validity of the
relaxation model ansatz Eq. (10) showing that the eddy viscosity serves as a common relaxation parameter
of forced and resolved quantities.

As first application tests, this work presented results for two different installation noise problems involv-
ing a cold jet interacting with a wing. The first jet-wing interaction problem studied is based on a generic
static jet interacting with a non-inclined rectangular wing. The second problem deals with a dual-stream
nozzle installed at a high-lift wing with deployed flap and slat in wind tunnel flow under approach conditions.
For both problems installation noise from the airframe yields higher peak levels than the jet-noise contribu-
tion alone. For the first problem, relative to the corresponding jet spectrum a low-frequency narrow-band
contribution is observed that can be attributed to coherent jet structures interacting with the airfoil trailing
edge. Very good agreement with measured spectra is obtained. The agreement reveals the potential of the
described method to properly capture the flow dynamics in the resolved regime. For the second problem a
broadband airframe installation contribution to the overall spectrum is predicted with peak frequency above
the jet contribution.
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(a) Q-Criterion, FES of AWB set-up. (b) Simulation domain relative to AWB wind tunnel nozzle
and collector.

(c) Q-Criterion, view from above.

(d) 1/3-octave spectrum

Figure 17. Simulation of jet-flap interaction noise for a dual-stream nozzle with unswept high-lift wing with
slat and flap deployed in the DLR Acoustic Windtunnel AWB; (a)-(c), turbulent structures from FES for
the wind tunnel set-up; (d), one-third octave spectrum from 3-D Forced Eddy Simulation (solid line) and
individual jet and airframe noise (AFN) spectra from 2-D CAA simulation (symbols).
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