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On Policy Learning Robust to Irreversible Events: An
Application to Robotic In-Hand Manipulation

Pietro Falco =, Abdallah Attawia

Abstract—In this letter, we present an approach for learning
in-hand manipulation skills with a low-cost, underactuated pros-
thetic hand in the presence of irreversible events. Our approach
combines reinforcement learning based on visual perception with
low-level reactive control based on tactile perception, which aims
to avoid slipping. The objective of the reinforcement learning level
consists not only in fulfilling the in-hand manipulation goal, but
also in minimizing the intervention of the tactile reactive control.
This way, the occurrence of object slipping during the learning
procedure, which we consider an irreversible event, is significantly
reduced. When an irreversible event occurs, the learning process
is considered failed. We show the performance in two tasks, which
consist in reorienting a cup and a bottle only using the fingers. The
experimental results show that the proposed architecture allows
reaching the goal in the Cartesian space and reduces significantly
the occurrence of object slipping during the learning procedure.
Moreover, without the proposed synergy between reactive control
and reinforcement learning it was not possible to avoid irreversible
events and, therefore, to learn the task.

Index Terms—Dexterous manipulation, learning and adaptive
systems, tactile reactive control.

I. INTRODUCTION

N THE last decade, robotic systems are moving from indus-
I trial applications to service applications in human-dwelled
environments. When the robots share the same environments
as humans, a crucial skill is the ability to use in a straight-
forward fashion also tools and objects designed for humans.
Hence, equipping robots with anthropomorphic hands and pro-
viding in-hand manipulation skills is a crucial step towards
service robotics. When performing in-hand manipulation, the
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Fig. 1. Overview of the proposed architecture.

robot changes the pose of an object with respect to the palm
using only the fingers. In in-hand manipulation applications,
planning reliable and robust trajectories offline still remains a
great challenge, since interaction forces between the object and
the robotic hand are difficult to predict, especially if the robot
works in unstructured environments and the object properties
are not fully known. Moreover, low-cost robotics hands, which
are becoming increasingly popular in the robotic community,
are compliant and underactuated [1]-[4]. On one side, those
hands can simplify grasping and potentially in-hand manipula-
tion by exploiting compliance and hand synergies. On the other
side, it becomes also more difficult to derive reliable mathe-
matical models. For these reasons, reinforcement learning can
play a key role in this field, as it allows learning control poli-
cies and object properties through the interaction between the
robot and the environment. However, a significant limitation of
strategies based on trial and error is that, in complex tasks like
in-hand manipulation, irreversible events can occur during the
learning process. For example, during a manipulation task the
object may fall down and the robot is not able to easily pick it
up and continue the learning procedure. As a second example,
during a task involving motion planning, the robot could hit an
obstacle damaging the environment or itself. Irreversible events
during the learning process limit the applicability of reinforce-
ment learning in industrial and domestic environments. In order
to reduce significantly the probability of irreversible events, we
introduced in previous work lower-level reactive control mod-
ules that locally correct the trajectories in position and force
[5], [6]. The harmonic integration of such reactive approaches
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in a reinforcement learning framework is still an unsolved prob-
lem, especially in the field of in-hand manipulation. Within the
field of reinforcement learning, the recent trend is to exploit
deep learning approaches, especially to acquire object grasping
skills [7], [8]. A limitation of actual deep reinforcement learning
methods for in-hand manipulation is the relatively high number
of interactions with the external environment required to learn
the task. Hence, in real-world applications irreversible events
are likely to occur, especially in the beginning of the learning
process. In this work, we propose a framework to achieve in-
hand manipulation avoiding irreversible events such as object
slipping. Classical motion planning techniques are not easily
applicable, since the model of the hand and of the object are
not known. On the other hand, also sole reinforcement learning
is not easily applicable, since the object can slip and pick it up
again is time consuming and cannot be automatized. For this rea-
son, we propose an approach that exploits the synergy between
a reactive slipping avoidance control layer and a reinforcement
learning layer based on visual perception. The proposed archi-
tecture is depicted in Fig. 1. The two layers work in synergy
though a bidirectional exchange of information. The Reinforce-
ment Learning (RL) layer sends to the Reactive Control (RC)
layer the trajectory associated to the current policy. The RC
layer locally corrects the trajectory in order to avoid the object
slipping during the learning procedure. On the other hand, the
control layer sends to the learning layer information concerning
the control energy during the trajectory, which quantifies how
strongly the tactile reactions were needed. This way, the robot
learns both to fulfill the in-hand manipulation operation and,
at the same time, to avoid the intervention of instinctive reac-
tions from the low-level reactive control. A second limitation
of current (deep) reinforcement learning for in-hand manipula-
tion is the lack of integration between different sensing modal-
ities. State-of-the art learning approaches are mainly based on
monomodal perception, mostly visual. Although such modern
approaches can work for grasping tasks, they are not proven to
be effective for in-hand manipulation where robot and environ-
ment interact tightly and the interaction forces play a key role.
An important part of the learning-control synergy proposed in
this work is the usage of higher-rate tactile perception for low-
level reflexes and both visual perception via a marker tracking
algorithm and tactile perception for the high-level learning.

II. RELATED WORK

Even though robust in-hand manipulation of unknown ob-
jects is not a mature field, in general dexterous manipulation
has been studied in the last decade. Many works, such as [9]-
[12], use motion planning and control techniques to carry out
dexterous manipulation tasks. In [13], the authors introduce a
planning method for the in-hand manipulation of an object with
an ellipsoid surface. Such methods assume that the physical
and geometric models of the object as well as the model of
the fingers are known beforehand. Hence, those algorithms can-
not be used easily for solving in-hand manipulation tasks on
compliant and underactuated hands. In [14], an approach is pre-
sented, which exploits tactile-based learning to manipulate an
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object supported by a planar surface with two robotic fingers. A
ReFlex robot hand is used, which is compliant and underactu-
ated. A method to learn finger-level manipulation skills with a
low-cost hand from human demonstrations is presented in [15].
Even though this work does not show case studies concerning
in-hand manipulation, the programming by demonstration ap-
proach can be interesting for initializing the learning process
of in-hand manipulation skills. The authors of [16] show an
approach to learn an in-hand rotation task based on adaptive
optimal control. The difference with our approach is that in
[16] the palm of the hand supports the object and the tactile
information is not exploited. Moreover, our approach exploits
reactive slipping avoidance based on a low-level closed loop that
works in synergy with the reinforcement learning level. A deep
learning approach combined with demonstrations is adopted
in [17], to perform in-hand manipulation tasks in a simulated
environment, while in [18] an in-hand non-prehensile manipu-
lation is executed starting from human demonstration. In [19],
an analytical hand model is exploited with a constrained opti-
mization scheme, while machine learning techniques based on a
random forest classifier are used to select task-specific models.
A method using biomimetic active touch is shown in [20], in
which a robotic finger rolls a cylinder in contact with the finger-
tip and in [21] a 3D-Printed Tactile Gripper is presented, able
to perform cylinder re-orienting operations.

We aim at achieving in-hand manipulation task, which con-
sists in changing the pose of an object the respect to the hand
palm, only using the fingers. Even though the task may ap-
pear simple for a human, we need to tackle several problems:
the number of degrees of freedom of the used robotic hand is
limited compared to human hand, the object can easily slip dur-
ing the learning process, and, due to the hand compliance, the
position of the motor at each finger does not give sufficient in-
formation on the position of fingertip. Also, we want that the
robot learns without the continuous support of a human opera-
tor, which means that the occurrence of irreversible events like
slipping must be reduced as much as possible. Due to those
challenges, a traditional learning approach based on vision is
not sufficient to learn the task, since it does not prevent irre-
versible events during the learning phase. On the other hand, a
classical control approach is not applicable in a straightforward
fashion since the hand is compliant and underactuated. Hence,
using a kinematic and dynamic model is not directly possible.
Our research question, addressed in this work, is if a synergy
between reactive control and reinforcement learning, together
with multimodal visuo-tactile perception, is effective to tackle
these challenges.

III. SYSTEM SETUP

The experimental setup is constituted by an Openbionics
ADA hand, a RGB-D camera for visual perception, and sim-
ple low-cost strain gauges sensors for tactile perception. In or-
der to collect the visual data, a Kinect depth camera is used, as
shown in Fig. 1. The pose of the manipulated object is computed
from the Kinect camera by placing a marker on the object. To
track the object pose, the ROS tool called AR Track Alvar is
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Fig. 2. Marker sticked on the object for tracking.

employed [22]. A marker similar to one shown in Fig. 2 is glued
on the object and tracked using Alvar to estimate online the pose
of the object. The ADA Hand shown in Fig. 1 is a 3D-printed
low-cost robotic hand from Openbionics that has 5 actuated
degrees of freedom. Each finger is connected to a linear mo-
tor using a tendon and all the motors are controlled by a printed
circuit board (PCB) that is based around the ATMEGA 2560 mi-
crocontroller. The PCB can be programmed using the Arduino
Software. Therefore, the control inputs of the hand are the po-
sitions of the linear motors that pull the tendons. The hand is
provided with one tendon per finger. Tactile perception is imple-
mented with Interlink FSR 406 sensors. An Interlink FSR 406 is
a force sensitive resistor that measures the normal force applied
on the manipulated object. The sensor has 39 mm square active
diameter and shows a decrease in resistance with the increase of
force applied on this area. It has a pressure reading range of 10 g
to 10kg. One sensor is fixed on each fingertip to compute the
force with which the fingers press on the manipulated object.
The pressure sensors are connected to an Arduino Uno board.
In this work, the force is measured only on the thumb, the index
finger, and the middle finger. The tactile sensor is chosen to
have enough active area to cover the front as well as the sides of
the fingers.

IV. PROPOSED APPROACH
A. Mathematical Description of the System

The first step of our approach consists in modeling the struc-
ture of the system. We represent the dynamic of the system
as:

X =gxs, u) + wy, ()

where x, € X and u, € U represent the state of the system
and the control input at the time frame t € R, g is the state-
evolution function of the system, and w is zero-mean Gaussian
white noise.

In our particular application, the state of the system is con-
stituted by the vector x = (¢, f) € R* where ¢ € R is the
orientation of the manipulated object described with the yaw
Euler angle (see Fig. 2) and f € R? are the interaction forces at
the sensorized fingertips, i.e., thumb, index, and middle finger.
The control input vector u € R3 includes the motor commands
of the three fingers u = (u, u», u3) and the function g is con-
sidered unknown. It is reasonable to consider g unknown, since
the hand is compliant and underactuated, the contact forces
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exchanged between the fingertips and the object are very diffi-
cult to predict and strongly depend on the object material.

B. Reinforcement Learning Module

After defining a mathematical formalization for the system,
we need to define a cost function in order to apply reinforcement
learning. The cost is a function that maps the state space to
real numbers ¢ : X — R. In our approach, the cost function is
defined as:

c(x) = M Ep(x) + A2 E, (e, (x)). 2

The proposed structure of c(x) is constituted by two terms,
denoted by the symbols E, and E,. The term E, takes into
account distance from the desired object configuration, and the
term E,, called in our framework reactive pseudoenergy, takes
into account how strongly the reactive control intervenes during
the task execution. Hence, E, is a function of the lower-level
control error e, (x), which is in general a function of the state.

In the literature on reinforcement learning, additive terms
in the cost can be used, for example, for regularization sake,
in order to prevent overfitting or to limit some state variables.
In this work, the meaning and the aim of the additional term is
different. Our idea is that the learning algorithm leverages the
reactive control module to avoid irreversible events especially
in the beginning of the learning process. The terms E, brings
an important benefit: it allows the system to learn, after a few it-
erations, also to prevent the intervention of the reactive control.
The motivation of this strategy is that the reflexes are not effec-
tive in 100% of the cases. Therefore, preventing in advance the
need of reactions further improves the robustness of the system.
This strategy allows a Tighter Interaction between learning and
Control modules (TIC strategy).

The complete task, then, consists in reaching the desired con-
figuration of the object and in avoiding irreversible events such
as object slipping. The terms A; and X, are the weights of the
convex combination. We have A, = 1 — Ay and Ay, A, € [0, 1].
In our framework, E, and E, have the following properties:

e E, E. €[0,1].

e [E,is afunction of the state x while E, is a function of the

reactive control error e,.

e [E, = 0in the states where the task is fulfilled and £, > 0
when the task is not fulfilled.

e F, =0 when the reactive control does not intervene and
E, is a crescent function of the magnitude of the reactive
control error signal.

In state of the art reinforcement learning approaches, the cost
function is typically constituted only by the term E,, which
quantifies how well the task is executed. A classical example of
E, is the distance between the final state and the desired goal.
In our approach, the term E, is also crucial. We use a reactive
control module to reduce the occurrence of irreversible events.
However, reactions do not succeed in every case and in our
approach the higher-level reinforcement learning is in charge to
learn how to avoid the need of such reactions. We choose:

E,=1- e—H¢—¢dez, (3)
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where ¢4, is the desired orientation of the object. We set
A1 = A, = 0.5 to give equal importance to avoiding the inter-
vention of the reactive control and to reaching the goal. In gen-
eral, £, can be a function of the state x according to the specific
application. It is important to note that the term E, is in the cost
function of the reinforcement learning module but it depends
on the error in the low-level control layer. It represents an im-
portant part of the connection between the two layers. With the
cost function in (3), we want to find a policy u, = my(x) such
that (i) the robot reaches the desired state and (ii) avoids the
intervention of instinctive reactions as much as possible. Due
to its simplicity and effectiveness, we choose a linear policy,
leaving as future work the test of more complex policies:

u, = Ax +b, 4)

with the controller parameters being 6 = {A, b}. The goal is
to find the optimal policy 7 that maps from states to actions:
x — m(x) = u,. The long-term expected return

T
J* =" Elex))] 5)
t=0

is used in order to evaluate the performance of the learned
controller 7, where c(x,) is the instantaneous cost of being in
state x at time ¢ and E[.] is the expectation operator.

In order to search for a policy that minimizes the cost function,
we can adopt any reinforcement learning approach. In this work,
we used PILCO (Probabilistic Inference for Learning Control)
which is introduced in [23]. PILCO is a model-based policy
search method that learns controllers from scratch with random
initializations and without informative prior knowledge of the
system. For each rollout, PILCO adopts a Gaussian Process (GP)
to learn a model of the system and a gradient-based method for
refining the policy. The GP, which is completely defined by a
mean function m(.) and a positive semidefinite covariance func-
tion k(., .), infers a distribution on the latent function g in (1).
The prior mean function is considered to be m = 0 and the ker-
nel to be the squared exponential (SE) kernel. The aim of the GP
is to approximate the function g: (x,, #,) — x,; by using state-
action pairs (x,, u,) as training inputs and the next states x|
as training target. Using the learned GP model, PILCO carries
out probabilistic long-term predictions p(xi|7), ..., p(xr|m)
for a given policy m. The policy search consists of two parts:
the policy evaluation and the policy improvement. This pro-
cess is repeated until convergence, where an optimal policy 7 *
is obtained. After the long-term predictions are computed, the
expected long-term cost J”* in (5) is evaluated by computing
expected value of c(x). A gradient-based policy improvement
is carried out by computing the gradient J™ with respect to
the policy parameters 6. Leveraging gradient-based non-convex
optimization methods, the (locally) optimal policy parameter
vector 6" is computed. After the optimized policy parameters
0™ are obtained, the optimal policy is applied to the system and
the new data are collected to update the GP model. In this work,
we repeat this procedure for a maximum of 11 times (rollouts).
For a complete description of PILCO, please refer to [23].
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C. Reactive Control Module

The objective of the reactive control module is to reduce the
occurrence of irreversible events, that are in this case object
slipping. In order to provide effective information to the higher
level, the reactive control module needs not only to detect if the
irreversible event is about to occur, but it needs also to quantify
the intensity of the required reaction. We call this intensity
reactive pseudo-energy E,. For example, if the object is slowly
slipping, a slight correction of the finger motor position is needed
and hence, the energy level will be close to zero. When, on the
other hand, the object is slipping very fast, high level of reactive
energy are required. The main task of the reactive control level
is to bring the energy E, to safe levels and to communicate the
higher reinforcement learning level the values of E, during the
policy execution, so that it can be incorporated into the total
cost.

In this particular application, the main irreversible event is
the slipping of the manipulated object. To quantify the entity of
the slipping, we use the following squared exponential function,
which we call slipping coefficient:

agip = e W1 (©6)

where «a;;, has a value between 0 and 1. The value 0 indicates
that the object is firmly grasped and 1 is associated to an object
slippage. The vector f denotes the measured forces. When the
forces are near zero the slipping coefficient increases and vice
versa. The chosen squared exponential satisfies the properties
required to energy functions defined in Section IV-B.

The block diagram in Fig. 3 shows the reactive control system
we adopted in this work. The control commands are given by
the following equations:

u=u,+u,, (N
u, = Ker, (8)
€r = Uslip — Udes, 9

where u is the vector of motor commands, u, is the com-
mand from reinforcement learning level, and u, is the local
correction by the reactive control module. K € R3*! is the
control gain and e, is the control error. We tuned the gain
K experimentally with a trial-and-error procedure. However,
in problems with a more complex reactive part, K could be
chosen with a standard model-free control technique [24], for
example Ziegler-Nichols tuning methods. Computing analyti-
cally the relationship between the slipping coefficient and the
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fingertip contact forces is a very complex problem especially if
the system is not in static or quasi-static condition. Therefore,
we use an empirical approach. We define a function 2 : F — O,
where F =10, 1] is the set of the forces measured during the
task execution normalized between O and 1 through a squared
exponential and, in our case, O is a set with three elements,
i.e., O = {firmly held, not firmly held, slipped}. The class firmly
held is associated to normalized forces such that the object
does not slip. The class not firmly held is associated to nor-
malized forces such that the object slowly slips, while the class
slipped is associated to normalized forces such that the object
falls down. In a preliminary calibration phase, we collected 50
force samples using random motor commands and deactivating
the reactive control module. For each force sample, we label
the associated class and compute the slipping coefficient o)
according to (6). As reported in Fig. 4, we observed that for
agip € [0,0.3) the object is firmly held, for ay;, € [0.3,0.7)
the object slips within 10 seconds, and for a;, € [0.7, 1] the
object quickly slips. Therefore, we set the desired slipping co-
efficient to gy = 0.25 for each finger, which is enough to hold
the object without squeezing it. In higher-dimensional cases, a
machine learning classification technique can be used such as
support vector machines or logistic regression [25].
We define the reactive pseudoenergy as

E, = |aslip — Ues]. (10)

In practice, the reactive pseudoenergy is equal to the absolute
value of the control loop error defined in (9). In the literature,
there are more complex slipping avoidance approaches which
leverage both normal and tangential contact forces, such as [5].
Nevertheless, we use low-cost tactile sensors unable to measure
the tangential component of the force. A similar approach to
slipping avoidance is based on machine learning and is proposed
in [26], which was specifically tested on a prosthetic hand and
uses demonstrations from humans. In our case, we do not exploit
human demonstrations, but we use executions from the robotic
system to train our slipping model.

IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 3, NO. 3, JULY 2018

TABLE I
COMPARISON BETWEEN DIFFERENT LEARNING TECHNIQUES

Learning Technique Success Rate  Object Slipping Rate
Visual RL 0% 100%
Visuo-tactile RL 10% 70%
Learning-control synergy 90% 0%

V. EXPERIMENTAL RESULTS

In this section, we evaluate our approach with the re-orienting
task shown in Fig. 6. The experiment starts when the coffee cup
is grasped by the hand. The motor positions for which the fin-
gertips touch the cup are registered and used as bounds, so that
during the learning procedure the finger are not open exces-
sively. In order to show the performance of our approach, we
carry out three sets of experiments. In the first set of experiments,
the reinforcement learning algorithm is executed without reac-
tive control and without using tactile data. In the second set of
experiments, we include both the visual perception and tactile
perception in the cost function. However, we do not activate the
low-level reactive control. In the third set, we use the synergy
between tactile reactive control and visual reinforcement learn-
ing. In the cost function, we include information coming from
the low-level reactive control. In order to show the applicabil-
ity of our approach to a different object of different material
and with a larger re-orientation angle, we execute a bottle re-
orienting task. For each case, 10 consecutive experiments (trials)
are performed. For each experiment, we execute a maximum of
11 rollouts. The parameters of the policy € in the first rollout
are randomly initialized, as suggested in [23].

As depicted in Fig. 6, an experiment can have three possible
outcomes: task learned, task not learned, and object slipped.
The task is considered learned if (i) executing a maximum of
11 rollouts, the final orientation of the object ¢ € G = [Pyes —
5deg, ¢g.s + 5 deg], (ii) the object does not slip for 10s after
the policy execution is over, and (ii7) in two consecutive rollouts
we have that ¢ € G. An example of task learned is reported
in Fig. 6(c). Note that a significant advantage of the proposed
approach is that the task is learned directly in the operational
space. We use the tolerance factor of 5 deg to take into account
the error of the tracker and the limited repeatability of the object-
hand system. If the object slips during the learning procedure,
the outcome is object slipped. In Fig. 6(a) is reported an example
of slipping. The object seems to reach a desired state but the
hand does not hold the object firmly enough. The outcome is
task not learned when the object does not slip, but ¢ & G after
11 rollouts. An experiment in which the task is not learned is
reported in Fig. 6(b), in which the object slides improperly while
the hand performs the first rollouts. This is due to the fact that
there is no human operator who corrects the configuration of
the cup during the learning procedure. In Fig. 6(d) the learned
policy is executed to pour coffee in a cup.

In order to evaluate the performance, we define two indexes
(see Table I). The first is called success rate and is computed as
the ratio between the number of successful experiments and the
number of total experiments. An experiment is called successful
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Fig. 5. Values of the cost function for 11 rollouts when both visual and tactile
data are taken into account in the cost function. The reactive control module
is deactivated. At the first rollout, the policy is initialized randomly. The green
color indicates that the task is learned, blue means that the task is not learned,
and red indicates that an irreversible event occurred.

when the task is learned, i.e., (i), (ii), and (iii) are satisfied. The
second index is called object slipping rate. It is computed by the
ratio between the number of experiments in which the object
slips and the total number of experiments.

A. Learning With Visual Data

In this case, the system has only the reinforcement learning
level and the perception is only visual. The cost function is

cp)=1—e¢ (11)

where ¢, is the desired yaw angle of the object and in this case
the only state variable of the system, i.e., x = ¢. We specify
the desired orientation of the object as ¢ = 70 deg. The policy
is structured as u = u, = A¢ + b, with A, b € R3. Since the
force information is totally missing and the reactive control is not
active, the object slipping occurs in all the cases, as summarized
in Table I.

—l1p—aes|I?
)

B. Learning With Visual and Tactile Data

In this scenario, data from the reactive control are not used,
but force data are used directly in the cost function. The usage of
forces in the cost function can potentially let the robot learn how
to manipulate the object by maintaining suitable contact between
object and fingertips. The cost function for this scenario is:

c(x)=1—(0.5a + 0.5b), (12)
a = exp(—||p — Paes| ), (13)
b=exp(—|If — faes!l, (14)

where f,,, = [2,2,2]N and ¢ .; = 70 deg. We performed 10
experiments. Each experiment is constituted by a maximum of
11 rollouts. The total cost values for each experiment and each
rollout are plotted in Fig. 5. In this case study, the task is learned
in one experiment out of ten. In two experiments, the object does
not slip in none of the 11 rollouts, but the cup does not reach the
final goal. In seven experiments the object slips. Even though the
performance is better than in the previous case study in terms
of success rate and slipping rate, this architecture achieves a
success rate of 10%, which can be considered not sufficient
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o _. Object slipped |

Fig. 6. Snapshots of three different experiment outcomes: (a) object slipped
during the learning procedure, (b) goal not reached after 11 rollouts, (c) task
learned, and (d) execution of the learned policy for pouring coffee into a cup.
(a) Object slipped, (b) Task not learned, (c) Task learned, (d) Execution of the
learned policy.

for real-world applications. The slipping rate for this case is
70%, which means that the object slips seven times out of ten
experiments. Such a rate is slightly better than in the previous
case because the forces are included in the cost function. Hence,
the robot tries to execute trajectories that maintain the required
contact between the objects and the fingertips. However, as
expected and shown in this set of experiments, using only the
learning component is not sufficient to avoid slipping, especially
during the first rollouts. In some experiments, even though the
slipping is avoided, the cup gradually slides and the hand is
not able to assign the desired object orientation, as shown, for
example, in Fig. 6(b).

C. Synergy Between Learning and Control Layers

The case in which both learning and control module work
in synergy is shown in this case study. First, we analyze the
performance of the proposed architecture. Then, we show how
including the reactive pseudoenergy in the cost function reduces
the intervention of the reactive control.

1) Performance Analysis: The total cost includes the goal
reaching component E,, that shows how far the current angle
is from the target angle, as well as the reactive energy E,. In
particular, the cost function is the one described in (2):

c=ME,+1E,,
Ey—=1— ¢ l0-buall,

Er = |aslip - ad63|7
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Fig. 7. Values of the cost function for 11 rollouts when the synergy between

learning and control module (TIC architecture) is adopted. At the first rollout,
the policy is initialized randomly. The green color indicates that the task is
learned, and blue that the task is not learned.
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Fig. 8. Median of the number of times the control system for slipping avoid-
ance is used in each iteration.

where A; = Ay = 0.5. We use the linear policy described in
(4). Differently from the case studies in Sections V-A and V-B,
the control input to the robot motors u is given according to a
combination of the learned policies and local corrections. The
results of this case study are shown in Fig. 7. The object slip-
ping during the learning process never occurs in the performed
experiments. The task is learned successfully 9 times out of 10.
In one experiment, the robot performs 11 rollouts but the goal
is not reached yet. Hence, the is task not learned in this case.
As summarized in Table I, the proposed architecture achieves
a 90% success rate. An example of orientation trajectory when
executing the learned policy is shown in Fig. 10(a).

2) Intervention of Reactive Control: An additional set of
five experiments is taken to investigate if the robot learns to
prevent low-level reactions. The results are show in Fig. 8. The
control reactions are considered activated when E, > 0.25. The
figure shows the median number of times in which the control
loop intervenes to achieve a firm grasp. As we can see from
the diagram in Fig. 8, in the first rollouts we have a significant
number of reactions, which are needed to avoid the slipping.
This explains why the architectures in Sections V-A and V-B
are affected by a high object slipping rate. It is interesting to
note that the median number of low-level reactions decreases to
0 after few rollouts. This means that, as expected, the system
learns to avoid in advance configurations associated to unstable
object grasping. This behavior is due to the presence of the
control energy in the cost function.
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Fig. 9.

Snapshot of the bottle re-orienting task.
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Fig. 10.  Orientation of the cup (a) and the bottle (b) during the execution of
the learned policy. (a) Cup Orientation, (b) Bottle Orientation.
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Fig. 11.  Inthe experiment of in-hand re-orienting of a plastic bottle, values of
the cost function for 11 rollouts when the synergy between learning and control
module (TIC) is adopted. At the first rollout, the policy is initialized randomly.
The green color indicates that the task is learned, blue means that the task is not
learned, and red indicates that an irreversible event occurred.

D. Experiments With a Different Object

In order to validate our approach with a different object and a
different material, we performed a second experiment with the
system shown in Fig. 9. In this setup, the robotic hand re-orients
a plastic bottle. The material is more slippy and a desired re-
orientation angle is bigger with respect to the previous task. In
this case, the initial orientation of the bottle is around 70 deg and
the desired goal is ¢4.; = 10 deg. The performance, in terms of
success rate, is summarized in Fig. 11. Also in this experiment,
we perform 10 learning experiments. In each experiment, we
perform 11 rollouts starting with a random policy. If the task is
not learned after 11 rollouts, we consider the learning procedure
not successful. If the object slips, we assume that an irreversible
event has occurred and the learning procedure is not successful.
As shown in Fig. 11, the task is successfully learned in 80%
of the cases. An irreversible event (object slipping) occurs in
one case. The task is not learned after 11 rollouts in 10% of
the cases, i.e., in one experiment the final desired orientation
is not in the interval G = [¢ges — S deg, dyes + 5 deg] after 11
rollouts. An example of orientation trajectory when executing
the learned policy is shown in Fig. 10(b).

VI. CONCLUSION AND FUTURE WORK

We proposed an approach for the harmonic combination of
tactile reactive control and visual reinforcement learning. The
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reinforcement learning module aims not only at reaching a goal
in the operational space, but also at minimizing the intervention
of the reactive control. Since reactive control cannot success in
all the cases, learning to avoid the need of reactions can improve
the performance. The experiments show that with our approach
it is possible for a robotic hand to learn an in-hand manipulation
task avoiding critical events such as object slipping. Another
interesting aspect is that without the learning-control synergy
the task was learned only in 10% of cases, since it was not pos-
sible to avoid the cup slipping during the learning procedure.
In fact, when we apply the classical RL strategy, irreversible
events easily occur in the first rollouts, when the robot did not
gain yet enough knowledge of the environment. The TIC ar-
chitecture allowed the robot to improve the knowledge of the
world while having a-priori, very simple reflexes that reduce
irreversible events in the first rollouts. Moreover, thanks to the
learning-control synergy, the system learns also how to prevent
the intervention of reactive control on the long run, enhancing
further the robustness. If we do not consider the object slipping
as irreversible event, a human operator can put again and again
the object in the robotic hand after it has slipped. In such a case,
we expect that the task could be in theory learned without the
synergy with the control level. The experiments show also that
the success of the learning-control synergy is connected to mul-
timodality. In fact, marker-based visual perception is a good way
to estimate with low-frequency the pose of the object. Higher-
rate tactile perception is not sufficient for easily estimating the
object pose but it is essential to prevent slipping. We applied this
framework to an in-hand manipulation task. However, this is a
general framework that can be applied in tasks which involve
motion and force control of autonomous systems, by defining
the task pseudoenergy E, and reactive pseudoenergy E, accord-
ingly.

A first direction for the future work is to introduce an ex-
ploration step to estimate automatically the slipping coefficient.
The second direction will be to use different robotic hands to ful-
fill more complex in-hand manipulation tasks such as spinning
a pen. We will also apply the proposed strategy to enrich our
previous work on impedance learning [27] and manipulation for
humanoids [28]. Moreover, we can use a residual-based learning
approach [29], [30] which exploits a very rough system model
in order to reduce the number of rollouts and the learning time.
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