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The feeling of embodiment, i.e., experiencing the body as belonging to oneself and

being able to integrate objects into one’s bodily self-representation, is a key aspect

of human self-consciousness and has been shown to importantly shape human

cognition. An extension of such feelings toward robots has been argued as being crucial

for assistive technologies aiming at restoring, extending, or simulating sensorimotor

functions. Empirical and theoretical work illustrates the importance of sensory feedback

for the feeling of embodiment and also immersion; we focus on the the perceptual

level of touch and the role of tactile feedback in various assistive robotic devices. We

critically review how different facets of tactile perception in humans, i.e., affective, social,

and self-touch, might influence embodiment. This is particularly important as current

assistive robotic devices – such as prostheses, orthoses, exoskeletons, and devices for

teleoperation–often limit touch low-density and spatially constrained haptic feedback,

i.e., the mere touch sensation linked to an action. Here, we analyze, discuss, and

propose how and to what degree tactile feedback might increase the embodiment of

certain robotic devices, e.g., prostheses, and the feeling of immersion in human-robot

interaction, e.g., in teleoperation. Based on recent findings from cognitive psychology on

interactive processes between touch and embodiment, we discuss technical solutions

for specific applications, which might be used to enhance embodiment, and facilitate

the study of how embodiment might alter human-robot interactions. We postulate that

high-density and large surface sensing and stimulation are required to foster embodiment

of such assistive devices.

Keywords: embodiment, affective touch, social touch, self-touch, human-machine interfaces, tactile feedback,
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1. INTRODUCTION

Due to recent societal trends and technical improvements,
assistive robots, i.e., devices that enable or support the
performance of a functional task, have gained increased
importance in various applications such as prostheses, orthoses,
exoskeletons, and devices for teleoperation (Dollar and Herr,
2008; Beckerle et al., 2017; Veneman et al., 2017; Fani et al.,
2018). A central issue in assistive robotics is to what extent the
device might and should be integrated into the user’s bodily
self-representation, which has been shown to be highly plastic,
e.g., (Moseley et al., 2012). It has previously been argued that
particularly robots aiming at restoring, improving, or enhancing
human sensorimotor functions might benefit from enhanced
embodiment (Pazzaglia and Molinari, 2016; Makin et al., 2017;
Niedernhuber et al., 2018). This concerns ownership, i.e., the
sensation that an object belongs to the body, as well as agency,
i.e., the feeling of being in control of an object’s movements
(Synofzik et al., 2008). Thus, the crucial question is: how should
assistive robots be designed for optimized integration with the
user’s body?

There has been a keen interest within psychological,
neuroscientific, and philosophical studies to investigate to what
extent an external object might become part of oneself. Many
of these studies focused on the investigation of tool use.
Importantly, due to the nature of tool use, this literature
largely focuses on motor aspects and visuomotor contingencies.
Yet, at least since the seminal study on the rubber hand
illusion (Botvinick and Cohen, 1998), research has increasingly
investigated the influence of sensory feedback and multisensory
processing on the experience of the bodily self. Multisensory
integration seems to be a crucial underpinning of the illusion
(Bremner and Spence, 2017). Interestingly, a large body of
literature suggests that various aspects of touch might differently
modulate the feeling of ownership in rubber-hand-illusion-like
setups. For example, illusory ownership of a virtual hand can
be elicited when participants actively touch the limb (Hara
et al., 2015), i.e., during self-touch. Specific, low speed tactile
stimulation that activates specific fibers and is associated with
positive feelings, i.e., affective touch (Löken et al., 2009), was
observed to increase illusory ownership of a rubber hand
(Crucianelli et al., 2013, 2017; van Stralen et al., 2014). These
results suggest subtle and complex influences of multi-faceted
tactile information on the sense of self and the integration of an
external object into the person’s bodily self-representation. The
network of receptors in the human skin is spatially distributed
and provides high-density information.

The majority of contemporary tactile feedback techniques,
however, focus on low-density and spatially constrained tactile
feedback related to active touch of external objects typically
through fingers and hand (Antfolk et al., 2013b; Schofield et al.,
2014; Svensson et al., 2017; Stephens-Fripp et al., 2018). Yet,
this does by no means cover all facets of tactile afferent signals
humans typically get from their body when interacting with
their environment. Various interaction scenarios also rely on
passive touch, i.e., being touched either by one self (self-touch)
or by someone else (social/interpersonal touch). Beyond purely

functional information about the consequence of a self-generated
action, passive and especially social touch might be important
in non-verbal communication, for example, in transferring
emotional states (Hertenstein et al., 2006, 2009). The required
spatial resolution is not yet known, which seems to highlight
the limitations of most current technologies, but we think that
cutting edge sensory and stimulation devices could help to
explore this as argued in detail below.

These facets of touch have preliminarily been investigated
in scenarios where they are mediated through a human-
machine interface and related to prosthetics, telerobotics, and
assistance (Haans and Usselsteijn, 2009; Hara et al., 2015;
Huisman, 2017), but are far from being fully understood.
Additionally, the applicability of the different facets might
depend on the application domain: while it intuitively makes
sense that affective tactile feedbackmight enhance the integration
of a prostheses into the bodily self and might foster more
natural interpersonal interaction, other assistive devices, e.g.,
teleoperation in hazardous areas, might not require integration
into their user’s bodily self, but nevertheless might benefit from
more natural feedback to allow for intuitive interaction. Thus, a
careful look into the requirements regarding tactile feedback in
different domains is indispensable in order to design robots that
actually ‘feel good’ to their users.

Here, we will discuss to what degree engineering well-
integrated tactile feedback could increase the integration of
assistive robotic devices such as prostheses (Rosén et al., 2009;
Marasco et al., 2011; Bensmaia and Miller, 2014), exoskeletons
(Avizzano and Bergamasco, 1999; O’Malley and Gupta, 2008;
Frisoli et al., 2009; Ben-Tzvi and Ma, 2015; Mallwitz et al., 2015;
Shokur et al., 2016; Planthaber et al., 2018), and telerobotic
devices (Gomez-Rodriguez et al., 2011; Gallo et al., 2012; Sengül
et al., 2012; Pamungkas and Ward, 2014; Weber and Eichberger,
2015) into their users’ body representations. Possibly, increased
experience of the bodily self facilitates the use and increases
the acceptance and performance of such devices (D’Alonzo
and Cipriani, 2012; D’Alonzo et al., 2015; Imaizumi et al.,
2016). Furthermore, we consider virtual reality (VR) training
approaches as a flexible and low-cost measure (Holden, 2005)
to support and enhance users in interacting with assistive
robots.

We give theoretical and technical perspectives and suggestions
to develop human-robot interactions that embrace affective
and social facets of touch as well as self-touch. Therefore, we
argue that a shift toward spatially distributed and high-density
tactile sensing and stimulation would open up new avenues
to empirically investigate user-oriented assistance in terms of
applied sciences as well as neuroscientific and psychological
research. Finally, the integration of different touch principles
might enhance the usability and user experience. We discuss the
relations of tactile feedback and perception of robotic devices
on a perceptual level as well as how they influence the bodily
self-experience and how they are influenced by human-machine
interfaces. The subsequent sections discuss potential technologies
and applications of high-density bidirectional interfaces with
tactile stimulation over large surfaces and their relation to bodily
self-experience.
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2. TECHNICAL SOLUTIONS FOR

STIMULATION AND SENSING DEVICES

We argue that provision of artificial touch feedback enhances
bodily self-experience and that the integration of assistive devices
into the bodily self improves control (Castellini et al., 2014;
Beckerle, 2017). This is highly desirable whenever a human
user must learn to use a robotic device as if it was a real
extension of his or her body rather than a tool (Hahne et al.,
2017). Hence, exploring the functions of the human sense
of touch is an important research topic and it still requires
substantial technological advancements in several aspects of
human-machine interfacing (HMI). From the engineer’s point
of view, all facets of touch can be enforced via tactile sensing
to detect the act of being touched (Dahiya et al., 2010; Zou
et al., 2017) and tactile stimulation to elicit the feeling of
being touched (Franceschi et al., 2017). To provide all required
facets of touch, the HMI must mimic the human sense of
touch and implement high sensitivity and distributed sensing
and stimulation. Therefore, an ideal HMI enforcing touch
comprises an integrated shape-conformable high-density, large-
surface tactile stimulator and tactile sensor, with characteristics
similar to those of the human skin (Dahiya et al., 2010). First
works attempt to provide such HMIs (Kim et al., 2014), but many
open research questions remain as outlined in the remainder.
Interestingly, robotics research already starts to use whole-body
artificial skin to endow humanoid robots with more human-like
body experience, which is also used for control purposes, i.e.,
implementing a safety margin around the robot or supporting it
to reach objects (Roncone et al., 2016).

2.1. Tactile Stimulation
Tactile stimulation is mainly applied to restore or transmit tactile
feedback to a human.Methods for restoring tactile feedback have,
for instance, been investigated in prosthetics (Li et al., 2017).
However, the focus in previous work has been on providing active
touch to improve manipulation or grasping – for example, using
force feedback to allow manipulation of delicate objects. So far,
affective and social touch have essentially not been considered.
Tactile sensations can be elicited using invasive (Raspopovic et al.,
2014) and non-invasive (Li et al., 2017) electrical stimulation
to depolarize cutaneous afferents or by mechanical stimulation,
e.g., vibration motors, force, and torque applicators (Schofield
et al., 2014), to directly activate skinmechanoreceptors. However,
most of the presented feedback systems are rather simple
and include a single stimulator delivering stimuli related to
one variable of the assistive robot only, e.g., grasping force
of a prosthesis and/or hand aperture (Antfolk et al., 2013a).
A few multichannel interfaces have been presented recently,
coding feedback information through careful positioning of the
stimulators (spatial coding) or using a combination of spatial and
parameter modulation (mixed coding) (Dosen et al., 2017; Strbac
et al., 2017).

Human-to-human social and affective touch is typically
delivered in the form of distributed, non-stationary pressure
patterns, e.g., a handshake, and/or gentle motions across
the skin, e.g., a caress. To realistically emulate this type of

interaction, a specific tactile interface is required, providing
high-density stimulation through a dense network of spatially
distributed stimulation channels, potentially covering large areas
of the user’s limb. Electrotactile stimulation is particularly
suitable for this application due to its compactness, low power
consumption, and rather immediate activation of cutaneous
afferents. However, it needs to be considered that electrical
stimulation requires calibration as the elicited sensations depend
on body location. In addition, if not properly applied, the
stimulation can be uncomfortable. Recently, flexible matrix
electrodes for electrotactile stimulation have been presented
and tested (Štrbac et al., 2016; Franceschi et al., 2017). The
electrodes can be printed with a desired distribution and density
of stimulation points.

2.2. Tactile Sensing
Flexible sensors providing distributed tactile force measurement
(artificial skins) have already been presented (Kim et al., 2014;
Büscher et al., 2015) and are potentially able to capture the
complex mechanical interaction characteristics of social and
affective touch. In order to endow an anthropomorphic robotic
system such as a hand prosthesis with artificial touch, the tactile
sensors need to cover a two-dimensionally curved surface (Kim
et al., 2014), while maintaining high resolution and sensitivity.
First promising attempts in this direction have been made by
combining conductive elastomers with molded-interconnect-
devices (MID) (Kõiva et al., 2013). The sensors also need to
withstand the wear typical of affective touch situations such as
petting and stroking, where the surfaces are slid against each
other. Overall, the maintenance cycles, if any, need to be wide
apart for the technical systems, for them to be of additional
benefit for the user. Many current tactile sensor developments
capture the forces normal to the surface; we rather argue that,
for affective touch sensing, capturing shear forces is crucial,
as affective touch often involves sliding. To the best of our
knowledge, no single sensor development exists at present day
that achieves all the desired features in one – normal and
shear force sensing, high spatial resolution and sensitivity and
capability of covering curved surfaces, while being robust enough
to be used outside confined laboratory setups.

2.3. Integration of Sensing and Stimulation
Tactile sensing and stimulation need to be properly integrated.
The data measured by the sensor need to be coded into
stimulation profiles delivered by the stimulator. A particular
challenge is to accommodate the abundance of tactile data
(spatially distributed and high-density). Recently, a prototype
system has been demonstrated for transmitting tactile
information captured by an artificial skin sensor (64 taxels,
i.e., tactile pixels) to a human participant using electrotactile
stimulation through a matrix of 32 pads arranged around the
forearm. As there were more taxels than pads, the information
from several neighboring taxels was fused and mapped to
a single pad. Despite using this compromise to cope with
current technical limitations, the experimental results showed
that human users could recognize a range of shapes (letters,
geometries, and lines), retrace the exact trajectory, and guess the
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direction of the movement of the tactile stimulus (Franceschi
et al., 2017). This is an encouraging result for the prospects
of inducing and restoring affective and social touch: ideally,
repeated, coherent, and discernible tactile stimuli patterns
‘perceived’by the robot could be forwarded to the human via
biologically plausible mapping of tactile stimulation. What
this mapping should look like, as well as the desirable nature
of psychophysical properties of high-density stimulation, are
still open questions. Moreover, since a tactile sensation is often
associated with a characteristic thermal sensation, e.g., coldness
for metal surfaces, warmth for human touch, first studies
investigate multimodal feedback including thermal stimulation
(Gallo et al., 2012; Pacchierotti et al., 2017).

3. APPLICATIONS IN ASSISTIVE

ROBOTICS

We believe that the ability to control an assistive robotic device is
distinctly influencing its usage, acceptance, and integration into
the user’s bodily self. Moreover, corresponding sensory feedback,
as a main part of the sensory-motor loop, is highly relevant for
a person to perceive a body part as belonging to oneself. This
section discusses how high-density tactile feedback does or could
potentially improve different applications of assistive robotics
organized by the relevant facets of touch.

3.1. Active Touch
Large-surface tactile sensing is an important aspect of modern
robotics. Although grippers with high-resolution sensors are able
to manipulate and recognize objects only by tactile guidance
(Aggarwal et al., 2015), this data are typically used only by the
robot control algorithms, but not provided to the human user.
Directly conveying active touch could enhance the operator’s
control over the system and understanding of the environment.
Similarly, exoskeletons that assist patients with disabilities are
often missing tactile feedback, simplify it distinctly, or make use
of sensory substitution, e.g., substituting tactile by vibrotactile
feedback (Shokur et al., 2016). Certain sensory substitution
approaches try to provide multimodal tactile feedback, e.g.,
including pressure, vibration, shear force, and temperature (Kim
et al., 2010). Such multimodal stimulation could reestablish
complex active touch sensations in healthy individuals and
patients with somatosensory deprivation by either providing
somatotopically matching haptic stimulation (Kim et al., 2010) or
by stimulating uneffected body parts with unrestricted sensation
(Meek et al., 1989). We argue, that especially for the latter case
high-density and large-surface interfaces could enhance touch
sensation by possibly enforcing sensory remapping. Natural
touch sensation would not only improve the overall experience,
but could further enhance learning of simple (Bark et al., 2015)
as well as complex motor behavior (Sigrist et al., 2015). This is
especially true when combined with VR-based training scenarios
that are currently often lacking tactile feedback as well (Weiss
et al., 2006; Bovet et al., 2018).

An enhancement of control is even more important for
assistive devices that replace a body part, such as prostheses.

Here, spatially distributed high-density tactile feedback could
provide the missing tactile sensation and allow for an integrated
processing of visual and somatosensory feedback to restore the
user’s feeling of agency and the perceived integrity of the body
as investigations with rather simple vibrotactile feedback suggest
(Prewett et al., 2012; Witteveen et al., 2015). It has been shown
that amputees perceive a varying degree of ownership for their
prosthetic devices (Kern et al., 2009), which has been proposed to
be an important factor for prosthesis acceptance (Ehrsson et al.,
2008). Touch might play a key role in this process: recent studies
show that synchronous touches applied to both the residual limb
and a prosthetic glove (Ehrsson et al., 2008) and physiologically
appropriate cutaneous feedback (Marasco et al., 2011) is capable
to induce vivid ownership sensations for a prosthesis, which not
only becomes a tool, but an integrated part of the body (Graczyk
et al., 2018). It turns out that the synchrony of stimulation and
context (Rohde et al., 2011; Bekrater-Bodmann et al., 2012) as
well as synchrony of multimodal sensory input (Choi et al., 2016)
is of key importance.

3.2. Passive Touch
Passive touch is highly relevant for various domains of assistive
robotics. Examples are telerobotics, e.g., the visual sight is very
limited or simply not given under water, or during everyday
use of robotic prostheses, e.g., when being touched in the dark
or outside the field of view. Thus, an artificial skin to detect
contacts with the environment should cover the whole surface of
the robotic device. Such an approach could enhance the robots’
and thus also the users’ or teleoperators’ insight into the actual
environmental situation. Therefore, the HMI might cover large
areas of the user’s body to haptically mirror the robot’s surface
to the user. This could foster the integration of a teleoperated
robot’s body into the operator’s self-representation for higher
immersion and thus better control and could contribute to
the restoration of perceived body integrity of individuals using
prostheses. Despite technical feasibility, HMI design would then
also need to consider cognitive burden of the human processing
the various feedback (Beckerle et al., 2017).

3.3. Affective and Social Touch
Providing feedback also affectively might contribute to the
integration of robotic devices into the bodily self-representation,
similarly to recent observations in the rubber hand illusion
paradigm (Crucianelli et al., 2013, 2017; van Stralen et al., 2014).
The application of affective touch feedback in prosthesis users
is promising, since the skin of the residual limb potentially
remains sensitive for those signals. Hence, we expect prosthetic
applications to strongly benefit from high-density and large
surface feedback.

Social touch is at the basis of daily interpersonal interaction
and non-verbal communication and first tailored haptic
stimulators are under development (Culbertson et al., 2018).
Since social touch can support human-human interaction, it
might be helpful in robot-assisted caregiving contexts as well as
in enhancing the acceptance of prosthetic devices, particularly
for the upper extremity, as prior findings show that successful
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prosthesis use in terms of satisfaction and frequency is positively
associated with social integration (Ham and Cotton, 2013).

Today, VR-based training scenarios help to improve user
control in teleoperation and exoskeleton mediated assistance
(Lugo-Villeda et al., 2009; Folgheraiter et al., 2012; Fani et al.,
2018). While haptic guidance supports the users’ trajectory
tracking capabilities (Lugo-Villeda et al., 2009), the support of
a therapist could be mimicked by introducing the feeling of
her or him touching a patient to prevent unwanted movements.
Such a social touch must be different with respect to the forces
introduced to guide the patient and could further improve the
support of patients especially in VR-based therapy applications.

3.4. Self-Touch
Self-touch is often neglected, but important in order to establish
and maintain our own body representation (Bremner and
Spence, 2017). Moreover, this kind of touch has been shown to
increase body ownership (Hara et al., 2015) and first preliminary
studies have extended such scenarios to rather complex situations
of self-touch (Dieguez et al., 2009; Huynh et al., 2018). Research
on embodiment in VR also shows that correct self-contact is
more important for the feeling of embodiment than the mapping
of movements (Bovet et al., 2018). Yet, tactile feedback is often
limited to the hand or body parts, which was shown to constrain
the implementation of passive self-touch in VR (Bovet et al.,
2018).

4. CONCLUSION AND OUTLOOK

This paper points out the importance of various facets if
tactile feedback for the embodiment of assistive robotic devices.
Notably, self-touch, affective touch, and social touch should be
considered as they modulate embodiment on different levels
and ultimately concern psychosocial factors that determine
how the device will be used in real life. To communicate
this diverse tactile information between human and machine,
sensing and stimulation needs to be spatially distributed and
to be provided with high-density. Our review shows that
several promising technologies such as flexible tactile sensors

or electrotactile stimulation exist, but need to be improved
and integrated into one interface. The design of the non-
stationary and complex stimulation patterns to provide the actual
tactile feedback might take human-human interaction as an
example.

Finally, we expect that versatile and realistic tactile feedback
covering the different facets of touch will enhance the usability
and the user experience of assistive robots. We advocate
the inclusion of self-touch, affective touch, and social touch
to provide interfaces that approximate the capabilities of
human skin. We recommend fundamental research toward
a practical framework for psychology of tool use that can
provide guidelines toward engineering for embodiment. A tight
collaboration of engineering and psychology will be needed to
devise experimental protocols as well as day-to-day interaction
strategies between machines and humans. Advanced robotic
touch technology embedded into robotic artifacts will likely be
the main tool to enforce a real synergy with users.
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